Sample records for representative rock types

  1. Rare Earth Element and Trace Element Data Associated with Hydrothermal Spring Reservoir Rock, Idaho

    DOE Data Explorer

    Quillinan, Scott; Bagdonas, Davin

    2017-06-22

    These data represent rock samples collected in Idaho that correspond with naturally occurring hydrothermal samples that were collected and analyzed by INL (Idaho Falls, ID). Representative samples of type rocks were selected to best represent the various regions of Idaho in which naturally occurring hydrothermal waters occur. This includes the Snake River Plain (SRP), Basin and Range type structures east of the SRP, and large scale/deep seated orogenic uplift of the Sawtooth Mountains, ID. Analysis includes ICP-OES and ICP-MS methods for Major, Trace, and REE concentrations.

  2. Ion microprobe analyses of aluminous lunar glasses - A test of the 'rock type' hypothesis

    NASA Technical Reports Server (NTRS)

    Meyer, C., Jr.

    1978-01-01

    Previous soil survey investigations found that there are natural groupings of glass compositions in lunar soils and that the average major element composition of some of these groupings is the same at widely separated lunar landing sites. This led soil survey enthusiasts to promote the hypothesis that the average composition of glass groupings represents the composition of primary lunar 'rock types'. In this investigation the trace element composition of numerous aluminous glass particles was determined by the ion microprobe method as a test of the above mentioned 'rock type' hypothesis. It was found that within any grouping of aluminous lunar glasses by major element content, there is considerable scatter in the refractory trace element content. In addition, aluminous glasses grouped by major elements were found to have different average trace element contents at different sites (Apollo 15, 16 and Luna 20). This evidence argues that natural groupings in glass compositions are determined by regolith processes and may not represent the composition of primary lunar 'rock types'.

  3. Petrology and K-Ar ages of rift-related basaltic rocks, offshore northern Brazil, 3/sup 0/N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fodor, R.V.; McKee, E.H.

    1986-07-01

    Tholeiitic basaltic rock in three cores from Petrobras drill site APS-21, 1960-2480 m depths, Amapa basin, offshore Brazil is compositionally similar to rift-related basaltic rock associated with the opening of both the North and South Atlantic Oceans (SiO/sub 2/ 52-54 wt %; K/sub 2/O 0.7-1.3%; TiO/sub 2/ 1.3-2%). Whole-rock K-Ar ages are 185.4, 183.2, and 126.5 m.y. If these represent crystallization ages, then the older samples correspond to North Atlantic tectonism (as represented by the Liberian dike system) and the younger correlates with South Atlantic rift-related magmatism (of which Serra Geral flood basalts are the best example). Trace- and REE-elementsmore » identify T-type mantle source-areas (La/Sm/sub (n)/ approx. 2; Zr/Nb 8-11) that feasibly were mixes of N-type and P-type components (metasomatized or veined upper mantle). These Amapa basin mafic rocks document the southernmost magmatism related to North Atlantic rifting, as well as early Mesozoic mantle source-areas and processes beneath Gondwanaland such as those identified with basalts in the South Atlantic basin.« less

  4. Joint simulation of stationary grade and non-stationary rock type for quantifying geological uncertainty in a copper deposit

    NASA Astrophysics Data System (ADS)

    Maleki, Mohammad; Emery, Xavier

    2017-12-01

    In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an intrinsic random field of order k with Gaussian generalized increments. The proposals concern both the inference of the model parameters and the construction of realizations conditioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock type.

  5. Petrology and geochemistry of mafic magmatic rocks from the Sarve-Abad ophiolites (Kurdistan region, Iran): Evidence for interaction between MORB-type asthenosphere and OIB-type components in the southern Neo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Saccani, Emilio; Allahyari, Khalil; Rahimzadeh, Bahman

    2014-05-01

    The Sarve-Abad (Sawlava) ophiolites crop out in the Main Zagros Thrust Zone and represent remnants of the Mesozoic southern Neo-Tethys Ocean that was located between the Arabian shield and Sanandaj-Sirjan continental block. They consist of several incomplete ophiolitic sequences including gabbroic bodies, a dyke complex, and pillow lava sequences. These rocks generally range from sub-alkaline to transitional character. Mineral chemistry and whole-rock geochemistry indicate that they have compositions akin to enriched-type mid-ocean ridge basalts (E-MORB) and plume-type MORB (P-MORB). Nonetheless, the different depletion degrees in heavy rare earth elements (HREE), which can be observed in both E-MORB like and P-MORB like rocks enable two main basic chemical types of rocks to be distinguished as Type-I and Type-II. Type-I rocks are strongly depleted in HREE (YbN < ~ 6), whereas Type-II rocks are moderately depleted in HREE (YbN > 9.0). Petrogenetic modeling shows that Type-I rocks originated from 7 to 16% polybaric partial melting of a MORB-type mantle source, which was significantly enriched by plume-type components. These rocks resulted from the mixing of variable fractions of melts generated in garnet-facies and the spinel-facies mantle. In contrast, Type-II rocks originated from 5 to 8% partial melting in the spinel-facies of a MORB-type source, which was moderately enriched by plume-type components. A possible tectono-magmatic model for the generation of the southern Neo-Tethys oceanic crust implies that the continental rift and subsequent oceanic spreading were associated with uprising of MORB-type asthenospheric mantle featuring plume-type component influences decreasing from deep to shallow mantle levels. These deep plume-type components were most likely inherited from Carboniferous mantle plume activity that was associated with the opening of Paleo-Tethys in the same area.

  6. Extensional tectonics during the igneous emplacement of the mafic-ultramafic rocks of the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Dewit, M. J.

    1986-01-01

    The simatic rocks (Onverwacht Group) of the Barberton greenstone belt are part of the Jamestown ophiolite complex. This ophiolite, together with its thick sedimentary cover occupies a complex thrust belt. Field studies have identified two types of early faults which are entirely confined to the simatic rocks and are deformed by the later thrusts and associated folds. The first type of fault (F1a) is regional and always occurs in the simatic rocks along and parallel to the lower contacts of the ophiolite-related cherts (Middle Marker and equivalent layers). These fault zones have previously been referred to both as flaser-banded gneisses and as weathering horizons. In general the zones range between 1-30m in thickness. Displacements along these zones are difficult to estimate, but may be in the order of 1-100 km. The structures indicate that the faults formed close to horizontal, during extensional shear and were therefore low angle normal faults. F1a zones overlap in age with the formation of the ophiolite complex. The second type of faults (F1b) are vertical brittle-ductile shear zones, which crosscut the complex at variable angles and cannot always be traced from plutonic to overlying extrusive (pillowed) simatic rocks. F1b zones are also apparently of penecontemporaneous origin with the intrusive-extrusive igneous processs. F1b zones may either represent transform fault-type activity or represent root zones (steepened extensions) of F1a zones. Both fault types indicate extensive deformation in the rocks of the greenstone belt prior to compressional overthrust tectonics.

  7. The Rock Record of Seismic Nucleation: examples from pseudotachylites beneath the Whipple Detachment Fault, eastern California

    NASA Astrophysics Data System (ADS)

    Ortega-Arroyo, D.; Behr, W. M.; Gentry, E.

    2017-12-01

    The mechanisms that lead to nucleation and dynamic weakening in the middle crust are not well understood. Proposed mechanisms include flash heating of asperities, thermal pressurization of pore fluids, dynamic instabilities, and fracture interactions. We investigate this issue in the rock record using exhumed mid-crustal rocks exposed beneath the Whipple Detachment fault (WDF) in eastern CA. Analysis of pseudotachylites (PS) beneath the WDF, representing paleo-earthquakes, reveal two types: Type 1 PS exhibit little to no precursory cataclasis and are concentrated along shear bands at the margins of feldspar-rich lenses embedded in more quartz-rich domains. These appear synkinematic with S-C fabrics in the surrounding mylonites and they exhibit finely dynamically recrystallized grains in quartz at their margins, suggesting coeval ductile deformation. By contrast, Type 2 PS occur along the principal slip surface of a brittle shear zone and show evidence for precursory cataclasis, brecciation, and fracturing. Some cataclasites inject into the host rock, forming eddies along the boundary with the PS. Slip appears to localize progressively into a 2 cm thick fault core, with PS concentrated primarily in the interior- the presence of solidified melt and fluidized cataclasite as clasts within the fault core suggests multiple slip events are preserved. We interpret the two types of pseudotachylites to represent different conditions and mechanisms of earthquake nucleation near the brittle-ductile transition (BDT). Type 1 PS are interpreted to represent nucleation in deeper sections of the BDT by failure along mineralogically-controlled stress concentrations hosted within an otherwise viscously deforming mylonite. Our data suggest that these do not develop into large-magnitude EQ's because seismic slip is dampened into the surrounding quartz-rich viscous matrix; instead they may represent deep microseismicity and/or seismic tremor. By contrast, Type 2 PS are interpreted to nucleate when thermally pressurized pore fluids are able to escape into the permeable damage zone, causing a recovery in the fault's effective friction, and promoting melting. Type 2 PS appear to experience greater weakening, accumulate larger slip, and may represent larger-magnitude seismicity at the base of the seismogenic zone.

  8. A method for development of a system of identification for Appalachian coal-bearing rocks

    USGS Publications Warehouse

    Ferm, J.C.; Weisenfluh, G.A.; Smith, G.C.

    2002-01-01

    The number of observable properties of sedimentary rocks is large and numerous classifications have been proposed for describing them. Some rock classifications, however, may be disadvantageous in situations such as logging rock core during coal exploration programs, where speed and simplicity are the essence. After experimenting with a number of formats for logging rock core in the Appalachian coal fields, a method of using color photographs accompanied by a rock name and numeric code was selected. In order to generate a representative collection of rocks to be photographed, sample methods were devised to produce a representative collection, and empirically based techniques were devised to identify repeatedly recognizable rock types. A number of cores representing the stratigraphic and geographic range of the region were sampled so that every megascopically recognizable variety was included in the collection; the frequency of samples of any variety reflects the frequency with which it would be encountered during logging. In order to generate repeatedly recognizable rock classes, the samples were sorted to display variation in grain size, mineral composition, color, and sedimentary structures. Class boundaries for each property were selected on the basis of existing, widely accepted limits and the precision with which these limits could be recognized. The process of sorting the core samples demonstrated relationships between rock properties and indicated that similar methods, applied to other groups of rocks, could yield more widely applicable field classifications. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Distinct Igneous APXS Rock Compositions on Mars from Pathfinder, MER and MSL

    NASA Technical Reports Server (NTRS)

    Gellert, Ralf; Arvidson, Raymond; Clark, Benton, III; Ming, Douglas W.; Morris, Richard V.; Squyres, Steven W.; Yen, Albert S.

    2015-01-01

    The alpha particle x-ray spectrometer (APXS) on all four Mars Rovers returned geochemical data from about 1000 rocks and soils along the combined traverses of over 50 kilometers. Here we discuss rocks likely of igneous origin, which might represent source materials for the soils and sediments identified along the traverses. Adirondack-type basalts, abundant in the plains of Gusev Crater, are primitive, olivine bearing basalts. They resemble in composition the basaltic soils encountered at all landing sites, except the ubiquitous elevated S, Cl and Zn in soils. They have been postulated to represent closely the average Martian crust composition. The recently identified new Martian meteorite Black Beauty has similar overall geochemical composition, very distinct from the earlier established SNC meteorites. The rim of the Noachian crater Endeavour, predating the sulfate-bearing Burns formation at Meridiani Planum, also resembles closely the composition of Adirondack basalts. At Gale Crater, the MSL Curiosity rover identified a felsic rock type exemplified by the mugearitic float rock JakeM, which is widespread along the traverse at Gale. While a surprise at that time, possibly related more evolved, alkaline rocks had been previously identified on Mars. Spirit encountered the Wishstone rocks in the Columbia Hills with approx. 6% Na2O+K2O, 15 % Al2O3 and low 12% FeO. Pathfinder rocks with elevated K and Na and >50% SiO2 were postulated to be andesitic. Recently Opportunity encountered the rock JeanBaptisteCharbonneau with >15% Al2O3, >50% SiO2 and approx. 10% FeO. A common characteristic all these rocks is the very low abundance of Cr, Ni and Zn, and an Fe/Mn ratio of about 50, indicating an unaltered Fe mineralogy. Beside these likely igneous rock types, which occurred always in several rocks, a few unique rocks were encountered, e.g. Bounce Rock, a pyroxene-bearing ejecta rock fragment resembling the Shergottite EETA 79001B meteorite. The APXS data can be used to relate the findings of all 4 landing sites, constrain the water to rock ratio of sediments or imply source rock provenance. Beyond that the capability to quantify important volatile elements like P, S, Cl, and Br have provided new insights into the chemistry and the environment present during the formation of the sediments.

  10. Apollo 16 rocks - Petrology and classification.

    NASA Technical Reports Server (NTRS)

    Wilshire, H. G.; Stuart-Alexander, D. E.; Jackson, E. D.

    1973-01-01

    The Apollo 16 rocks are classified in three broad intergradational groups: (1) crystalline rocks, subdivided into igneous rocks and metaclastic rocks, (2) glass, and (3) breccias, which are subdivided into five groups on the basis of clast and matrix colors. Most of the rocks were derived by impact brecciation of an anorthosite-norite suite but may represent ejecta from more than one major basin. First-cycle breccias are believed to have consisted of clasts of crushed anorthosite-norite in a fine-grained partly fused matrix with a chemical composition similar to that of the clasts. Most of the other recognized breccia types could have been produced by rebrecciation of first-cycle breccias.

  11. Metaultramafic schists and dismembered ophiolites of the Ashe Metamorphic Suite of northwestern North Carolina, USA

    USGS Publications Warehouse

    Raymond, Loren A.; Merschat, Arthur J.; Vance, R. Kelly

    2016-01-01

    Metaultramafic rocks (MUR) in the Ashe Metamorphic Suite (AMS) of northwestern North Carolina include quartz ± feldspar-bearing QF-amphibolites and quartz-deficient, locally talc-, chlorite-, and/or Mg-amphibole-bearing TC-amphibolites. Some workers divide TC-amphibolites into Todd and Edmonds types, based on mineral and geochemical differences, and we provisionally add a third type – olivine ± pyroxene-rich, Rich Mountain-type rocks. Regionally, MUR bodies range from equant, Rich Mountain- to highly elongate, Todd-TC-amphibolite-type bodies. The MURs exhibit three to five mineral associations containing assemblages with olivine, anthophyllitic amphibole, Mg-hornblende, Mg-actinolite, cummingtonite, and serpentine representing decreasing eclogite to greenschist facies grades of metamorphism over time. MUR protoliths are difficult to determine. Southwestern MUR bodies have remnant olivine ± pyroxene-rich assemblages representing ultrabasic-basic, dunite-peridotite-pyroxenite protoliths. Northeastern TC-amphibolite MURs contain hornblende and actinolitic amphiboles plus chlorites – aluminous and calcic assemblages suggesting to some that metasomatism of basic, QF-amphibolites yields all TC-amphibolites. Yet MgO-CaO-Al2O3 and trace element chemistries of many TC-amphibolites resemble compositions of plagioclase peridotites. We show that a few AMS TC-amphibolites had basaltic/gabbroic protoliths, while presenting arguments opposing application of the metasomatic hypothesis to all TC-amphibolites. We establish that MUR bodies are petrologically heterolithic and that TC-amphibolites are in contact with many rock types; that those with high Cr, Ni, and Mg have olivine- or pyroxene-dominated protoliths; that most exhibit three or more metamorphic mineral associations; and that contacts thought to be metasomatic are structural. Clearly, different MUR bodies have different chemistries representing various protoliths, and have different mineral assemblages, reflecting both chemical composition and metamorphic history. Spot sampling of heterolithic MUR bodies does not reveal MUR body character or history or allow ‘type’ designations. We recommend that the subdivision of MUR bodies into ‘types’ be abandoned and that the metasomatic hypothesis be carefully applied. AMS MURs and associated metamafic rocks likely represent fragments of dismembered ophiolites from various ophiolite types.

  12. Lithologic Distribution and Geologic History of the Apollo 17 Site: The Record in Soils and Small Rock Particles from the Highland Massifs

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Rockow, Kaylynn M.; Korotev, Randy L.; Haskin, Larry A.

    1996-01-01

    Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments from the 2 mm-4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large rock samples. The compositions and proportions of 2 mm-4 mm fragments provide a bridge between compositions of less than 1 mm fines and types and proportions of rocks observed in large collected breccias and their clasts. The 2 mm-4 mm fraction of soil from South Massif, represented by an unbiased set of lithic fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7% Incompatible-Trace-Element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro breccia, and metal). In contrast, the 2 mm - 4 mm fraction of a soil from the North Massif, represented by an unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31 % agglutinates and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass- weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17 highland stations, differences between the station-2 and station-6 samples are representative of differences between available samples from the two massifs. From the distribution of different rock types and their compositions, we conclude the following: (1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely layered massifs and known local geology. The greater percentage of impact-melt breccia in the South- Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the 2 mm-4 mm grain-size fraction is enriched in impact-melt breccias compared to the less than 1 mm fraction, suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin) highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite, which is a component that is rare in station-2 South-Massif,contains magnesian troctolitic in impact-melt breccia interpreted by most investigators to be ejecta from the Serenitatis basin.

  13. Lithologic distribution and geologic history of the Apollo 17 site: The record in soils and small rock particles from the highland massifs

    NASA Astrophysics Data System (ADS)

    Jolliff, Bradley L.; Rockow, Kaylynn M.; Korotev, Randy L.; Haskin, Larry A.

    1996-01-01

    Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments from the 2 mm-4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large rock samples. The compositions and proportions of 2 mm-4 mm fragments provide a bridge between compositions of <1 mm fines, and types and proportions of rocks observed in large collected breccias and their clasts. The 2 mm-4 mm fraction of soil from South Massif, represented by an unbiased set of lithic fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7% incompatible-trace-element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro breccia, and metal). In contrast, the 2 mm-4 mm fraction of a soil from the North Massif, represented by an unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31% agglutinates and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass-weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17 highland stations, differences between the station-2 and station-6 samples are representative of differences between available samples from the two massifs. From the distribution of different rock types and their compositions, we conclude the following: (1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely layered massifs and known local geology. The greater percentage of impact-melt breccia in the South-Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the 2 mm-4 mm grain-size fraction is enriched in impact-melt breccias compared to the <1 mm fraction, suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin) highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite, which is a component that is rare in station-2 South-Massif soils. (4) Compositional differences between poikilitic impact-melt breccias from the two massifs suggest broad-scale heterogeneity in impact-melt breccia interpreted by most investigators to be ejecta from the Serenitatis basin. We have found rock types not previously recognized or uncommon at the Apollo 17 site. These include (1) ITE-rich impact-melt breccias that are compositionally distinct from previously recognized "aphanitic" and "poikilitic" groups at Apollo 17; (2) regolith breccias that are free of mare components and poor in impact melt of the types associated with the main melt-breccia groups, and that, if those groups derive from the Serenitatis impact, may represent the pre-Serenitatis surface; (3) several VLT basalts, including an unusual very-high-K basaltic breccia; (4) orange-glass regolith breccias; (5) aphanitic-matrix melt breccias at station 6; (6) fragments of alkali-rich composition, including alkali anorthosite, and monzogabbro; (7) one fragment of 72275-type KREEP basalt from station 3; (8) seven lithic fragments of ferroan-anorthositic-suite rocks; and (9) a fragment of metal, possibly from an L chondrite. Some of these lithologies have been found only as lithic fragments in the soils and not among the large rock samples. In contrast, we have not found among the 2 mm-4 mm lithic fragments individual samples of certain lithologies that have been recognized as clasts in breccias (e.g., dunite and spinel troctolite). The diversity of lithologic information contained in the lithic fragments of these soils nearly equals that found among large rock samples, and most information bearing on petrographic relationships is maintained, even in such small samples. Given a small number of large samples for "petrologic ground truth," small lithic fragments contained in soil "scoop" samples can provide the basis for interpreting the diversity of rock types and their proportions in remotely sensed geologic units. They should be considered essential targets for future automated sample-analysis and sample-return missions.

  14. Stratigraphic and structural reconstruction of an Upper Ordovician super-eruption (Catalan Pyrenees)

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Casas, Josep Maria; Muñoz, Josep A.

    2017-04-01

    Pre-Variscan basement of the Pyrenees includes evidence of many magmatic episodes represented by different types of granitoids and volcanic rocks, which indicates the complex geodynamic history of this peri-Gondwana terrane during Palaeozoic. One of the most significative magmatic episodes is that of Upper Ordovician (Caradocian) age, which is represented by several granitic and granodioritic bodies and volcanic rocks mostly of pyroclastic nature. In the Catalan Pyrenees this magmatism is well represented in the Ribes de Freser and Nuria area, where the orthogneisses from the Nuria massif and the Ribes granophyre, both with a similar age of 457 Ma, seem to form a calc-alkaline plutonic suite covering terms from deeper to shallower levels. The presence of numerous pyroclastic deposits and lavas interbedded with Caradocian sediments and intruded by and immediately above the Ribes granophyre, suggests that this intrusive episode also generated significant volcanism. The area also hosts an important volume of rhyolitic ignimbrites and andesitic lavas strongly affected by Alpine tectonics and commonly showing tectonised contacts at the base and top of the sequences. These volcanic rocks were previously attributed to the Upper Carboniferous late-Variscan volcanism, extensively represented in the Pyrenees. However, new laser ablation U-Pb zircon geochronology from these rocks has revealed an Upper Ordovician age ( 455 Ma), similar to that of the plutonic rocks of the same area, thus suggesting a probable genetic relation between all them. The palinspatic reconstruction of the Alpine and Variscan tectonic units that affect this area has permitted to infer the geometry, facies distribution, original position, and thickness of these volcanic rocks previously attributed to the late-Variscan volcanism, and reveals how they are spatially (and stratigraphically) associated with the previously identified Late Ordovician volcanic rocks. In particular, the volcanic rocks cropping out at the Ribes de Fresser area correspond to intra-caldera deposits representing a minimum volume of 600 km3, (DRE), which confirm the existence of super-eruptions of Upper Ordovician age in the Pyrenees.

  15. Impact Characteristics of Different Rocks in a Pulsed Laser Irradiation Experiment: Simulation of Micrometeorite Bombardment on the Moon

    NASA Astrophysics Data System (ADS)

    Wu, Yanxue; Li, Xiongyao; Yao, Wenqing; Wang, Shijie

    2017-10-01

    Without the protection of the atmosphere, the soils on lunar surfaces undergo a series of optical, physical, and chemical changes during micrometeorite bombardment. To simulate the micrometeorite bombardment process and analyze the impact characteristics, four types of rocks, including terrestrial basalt and anorthosite supposed to represent lunar rock, an H-type chondrite (the Huaxi ordinary chondrite), and an iron meteorite (the Gebel Kamil iron meteorite) supposed to represent micrometeorite impactors, are irradiated by a nanosecond pulse laser in a high vacuum chamber. Based on laser irradiation experiments, the laser pits are found to be of different shapes and sizes which vary with the rock type. Many melt and vapor deposits are found on the mineral surfaces of all the samples, and nanophase iron (npFe) or Fe-Ni alloy particles are typically distributed on the surfaces of ilmenite, kamacite, or other minerals near kamacite. By analyzing the focused ion beam ultrathin slices of laser pits with a transmission electron microscope, the results show that the subsurface structures can be divided into three classes and that npFe can be easily found in Fe-bearing minerals. These differences in impact characteristics will help determine the source material of npFe and infer the type of micrometeorite impactors. During micrometeorite bombardment, in the mare regions, the npFe are probably produced simultaneously from lunar basalt and micrometeorites with iron-rich minerals, while the npFe in the highlands regions mainly come from micrometeorites.

  16. Types and Mechanisms of Alterations on the Mesozoic Ophiolites (Lake Van Region-Turkey): Petrographical and Geochemical Approach

    NASA Astrophysics Data System (ADS)

    Yazıcı, Ömer; Üner, Tijen; Mutlu, Sacit; Depçi, Tolga

    2017-04-01

    Mesozoic ophiolites are widely located in the eastern part of Lake Van Basin. The ophiolitic rocks deformed during the rifting and/or closure period of the Neo-Tethyan Ocean are observed as tectonic slices in the region. These ophiolites are represented by volcano-sedimentary units, isolated dikes, and mafic-ultramafic rocks. The formation, emplacement and post-emplacement processes of these ophiolitic rocks can be understood owing to alterations as rodingitization, serpentinization, and listwaenitization. Three stages of sequent mineralization are detected in the ophiolitic rocks. First stage is pyrometasomatization, represented by metamorphic minerals (garnet, chlorite etc.), observed in intruded dikes. Second stage is hydrothermal alteration of mafic-ultramafic rocks namely serpentinization. Listwaenite alteration is the last stage of mineralization. According to petrographical investigations, garnet+chlorite+diopsite minerals are detected in rodengites. The conversion of the plagioclase minerals to the calcsilicatic minerals in rodengites suggests that these rocks are metasomatic rocks produced by Ca-rich fluids derived from serpentinization of the ultramafic rocks. The serpentine minerals (chrysotile-lizardite) can be distinguished from each other by their morphology as being platy or fibrous. Listwaenite alteration is followed by the formation of carbonate, silica, oxides and hydroxides. Chemical analysis of these rocks show that the listwaenites have an enrichment in Ni and Co contents while the rodingites have low SiO2 and high CaO and MgO values (SiO2 28,50 - 36,67%, CaO 11,99 - 20,88%, and MgO 7,99 - 17,73%). Alteration types observed on the ophiolitic rocks demonstrate that these rocks are metamorphised by low pressure and low to middle temperature conditions (greenshist facies). Serpentinization is pointing out an alteration which occurred during the emplacement of the ophiolites or the latter period. This study has been supported by Project number 2013-FBE-YL072 of the Department of Scientific Research Projects of Yüzüncü Yıl University.

  17. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  18. Role of Brittle Behaviour of Soft Calcarenites Under Low Confinement: Laboratory Observations and Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Lollino, Piernicola; Andriani, Gioacchino Francesco

    2017-07-01

    The strength decay that occurs in the post-peak stage, under low confinement stress, represents a key factor of the stress-strain behaviour of rocks. However, for soft rocks this issue is generally underestimated or even neglected in the solution of boundary value problems, as for example those concerning the stability of underground cavities or rocky cliffs. In these cases, the constitutive models frequently used in limit equilibrium analyses or more sophisticated numerical calculations are, respectively, rigid-plastic or elastic-perfectly plastic. In particular, most of commercial continuum-based numerical codes propose a variety of constitutive models, including elasticity, elasto-plasticity, strain-softening and elasto-viscoplasticity, which are not exhaustive in simulating the progressive failure mechanisms affecting brittle rock materials, these being characterized by material detachment and crack opening and propagation. As a consequence, a numerical coupling with mechanical joint propagation is needed to cope with fracture mechanics. Therefore, continuum-based applications that treat the simulation of the failure processes of intact rock masses at low stress levels may need the adoption of numerical techniques capable of implementing fracture mechanics and rock brittleness concepts, as it is shown in this paper. This work is aimed at highlighting, for some applications of rock mechanics, the essential role of post-peak brittleness of soft rocks by means of the application of a hybrid finite-discrete element method. This method allows for a proper simulation of the brittle rock behaviour and the related mechanism of fracture propagation. In particular, the paper presents two ideal problems, represented by a shallow underground cave and a vertical cliff, for which the evolution of the stability conditions is investigated by comparing the solutions obtained implementing different brittle material responses with those resulting from the assumption of perfectly plastic behaviour. To this purpose, a series of petrophysical and mechanical tests were conducted on samples of soft calcarenite belonging to the Calcarenite di Gravina Fm. (Apulia, Southern Italy), focusing specific attention on the post-peak behaviour of the material under three types of loading (compression, indirect tension and shear). Typical geometrical features representative of real rock engineering problems observed in Southern Italy were assumed in the problems examined. The numerical results indicate the impact of soft rock brittleness in the assessment of stability and highlight the need for the adoption of innovative numerical techniques to analyse these types of problems properly.

  19. Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Sun, Yong; Diwu, Chunrong; Zhu, Tao; Ao, Wenhao; Zhang, Hong; Yan, Jianghao

    2017-05-01

    The Dunhuang tectonic belt (DTB) is of great importance for understanding the tectonic evolution of the southernmost Central Asian Orogenic Belt (CAOB). In this study, the temporal-spatial distribution, petrogenesis and tectonic setting of the Paleozoic representative intrusive rocks from the DTB were systematically investigated to discuss crustal evolution history and tectonic regime of the DTB during Paleozoic. Our results reveal that the Paleozoic magmatism within the DTB can be broadly divided into two distinct episodes of early Paleozoic and late Paleozoic. The early Paleozoic intrusive rocks, represented by a suite metaluminous-slight peraluminous and medium- to high-K calc-alkaline I-type granitoids crystallized at Silurian (ca. 430-410 Ma), are predominantly distributed along the northern part of the DTB. They were probably produced with mineral assemblage of eclogite or garnet + amphibole + rutile in the residue, and were derived from magma mixing source of depleted mantle materials with various proportions of Archean-Mesoproterozoic continental crust. The late Paleozoic intrusive rocks can be further subdivided into two stages of late Devonian stage (ca. 370-360 Ma) and middle Carboniferous stage (ca. 335-315 Ma). The former stage is predominated by metaluminous to slight peraluminous and low-K tholeiite to high-K calc-alkaline I-type granitic rocks distributed in the central part of the DTB. They were also generated with mineral assemblage of amphibolite- to eclogite-facies in the residue, and originated from magma source of depleted mantle materials mixed with different degrees of old continental crust. The later stage is represented by adakite and alkali-rich granite exposed in the southern part of the DTB. The alkali-rich granites studied in this paper were possibly produced with mineral assemblage of granulite-facies in the residue and were generated by partial melting of thickened lower continental crust. Zircon Hf isotopes and field distribution of those Paleozoic intrusive rocks reveal that both the Silurian and the late Devonian magmatic activities predominantly represent crustal growth processes in the DTB, accompanied by different degrees of reworking of pre-existing continental crust. However, the middle Carboniferous (ca. 335-315 Ma) magmatic activity reflects a crustal reworking process. The Silurian and late Devonian intrusive rocks were most likely formed in the arc-related subduction zones, whereas, the middle Carboniferous intrusive rocks were possibly formed in a transitional tectonic setting from compression to extension, representing the final stage of Paleozoic orogeny in the DTB. These Paleozoic magmatic rocks further suggest that the DTB has reactivated from a stable block to an orogen and undergone two episodes (the early Paleozoic and the late Paleozoic) of orogeny during Paleozoic. It represents a Paleozoic accretionary orogen of the southernmost margin of the CAOB between the Tarim Craton and North China Craton, and tectonically extends northward to the Beishan orogen and westward to the eastern South Tianshan Belt.

  20. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy.

    PubMed

    Rothschild, Pierre-Raphaël; Salah, Sawsen; Berdugo, Marianne; Gélizé, Emmanuelle; Delaunay, Kimberley; Naud, Marie-Christine; Klein, Christophe; Moulin, Alexandre; Savoldelli, Michèle; Bergin, Ciara; Jeanny, Jean-Claude; Jonet, Laurent; Arsenijevic, Yvan; Behar-Cohen, Francine; Crisanti, Patricia

    2017-08-18

    In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.

  1. Rock.XML - Towards a library of rock physics models

    NASA Astrophysics Data System (ADS)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  2. Rating the strength of coal mine roof rocks. Information circular/1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molinda, G.M.; Mark, C.

    1996-05-01

    The Ferm pictoral classification of coal measure rocks is widely utilized in coalfield exploration. Although extremely useful as an alternative to conventional geologic description, no material properties are provided that would be suitable for engineering solutions. To remedy this problem, the USBM has tested over 30 common coal measure roof rock types for axial and bedding strength. More than 1,300 individual point load tests have been conducted on core from 8 different coal mines representing the full range of common coal measure rocks. The USBM core and roof exposure properties database has been merged with the picture classification to provide,more » for the first time, a simple, clear guide from field identification of core to the associated mechanical strength of the rock. For 33 of the most common roof rocks, the axial and diametral point load strength, as well as the ultimate unit rating, is overprinted onto the photograph.« less

  3. S-type granitic magmas—petrogenetic issues, models and evidence

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.

    2003-04-01

    Despite a perception that it represents a perverse divergence, it is perfectly possible to believe in the existence of S- and I-type granites (and the implications for the nature of their protoliths), and to disbelieve in the applicability of the restite-unmixing model for chemical variation in granitic magmas. White and Chappell erected the S-I classification with impeccable validity. The isotopic evidence demands contrasting source reservoirs for S- and I-type granitic magmas. However, the major advance was not the classification, but the recognition that highly contrasting parental materials must be involved in the genesis of granitic magmas. The restite-unmixing model is commonly seen as a companion to the S-I classification, but it is really a separate issue. This model implies that the compositions of granites 'image' those of their source rocks in a simple way. However, there are other equally valid models that can explain the data, and none of them represents a unique solution. The most cogent explanation for the high-grade metasedimentary enclaves in most S-type granites is that they represent mid-crustal xenoliths; restitic enclaves are either rare or absent. Inherited zircons in S-type rocks are certainly restitic. However, the occurrence of a substantial restitic zircon population does not imply an equally substantial restitic component in the rest of the rock. Zircon and zirconium behaviours are controlled by disequilibrium and kinetics, and Zr contents of granitic rocks can rarely be used to infer magma temperatures. Since the dominant ages among inherited zircons in Lachlan Fold Belt (LFB) S-type granites are Ordovician and Proterozoic, it seems likely that crust of this age, but geochemically different from the exposed rocks, not only underlies much of the LFB but also forms a component in the granite magma sources. The evidence is overwhelming that the dark, microgranular enclaves that occur in both S- and I-type granites are igneous in origin. They represent globules of quenched, more mafic magma mingled and modified by exchange with the host granitic magma. However, magma mixing does not appear to be a significant process affecting the chemical evolution of the host magmas. Likewise, the multicomponent mixing models erected for some granitic rock suites are mathematically nonunique and, in some cases, violate constraints from isotopic studies. S- and I-type magmas commonly retain their distinct identities. This suggests limited source mixing, limited magma mixing and limited wall-rock assimilation. Though intermediate types certainly exist, they are probably relatively minor in volume. Crystal fractionation probably plays the major role in the differentiation of very many granitic magmas, including most S-types, especially those emplaced at high crustal levels or in the volcanic environment. Minor mechanisms include magma mixing, wall-rock assimilation and restite unmixing. Isotopic variations within plutons and in granite suites could be caused by source heterogeneities, magma mixing, assimilation and even by isotopic disequilibrium. However, source heterogeneity, coupled with the inefficiency of magma mixing is probably the major cause of observed heterogeneity. Normal geothermal gradients are seldom sufficient to provide the necessary heat for partial melting of the crust, and crustal thickening likewise fails to provide sufficient heat. Generally, the mantle must be the major heat source. This might be provided through mantle upwelling and crustal thinning, and possibly through the intra- and underplating of mafic magmas. Upper crustal extension seems to have been common in regions undergoing granitic magmatism. Migmatites probably provide poor analogues of granite source regions because they are mostly formed by fluid-present reactions. Granitic magmas are mostly formed by fluid-absent processes. Where we do see rare evidence for arrested fluid-absent partial melting, the melt fraction is invariably concentrated into small shear zones, veinlets and small dykes. Thus, it seems likely that dyking is important in transporting granitic magma on a variety of scales and at many crustal levels. However, one major missing link in the chain is the mechanism by which melt fractions, in small-scale segregations occurring over a wide area, can be gathered and focused to efficiently feed much wider-spaced major magma conduits. Answers may lie in the geometry of the melting zones and in the tendency of younger propagating fractures to curve toward and merge with older ones. Self-organization almost certainly plays a role.

  4. Influences of petrographic parameters on technological properties of greywackes used for crushed stone production

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Cermak, Martin; Krutilova, Katerina

    2014-05-01

    This study focuses on the influence of petrographic parameters on technological properties of greywackes. These sedimentary rocks make about 27 % of crushed stone market in the Czech Republic. Mainly in Moravia (eastern part of the Czech Republic), greywackes represent almost exclusive high quality aggregate. The behaviour of greywackes varies, however, from quarry to quarry. In this study, we have selected the most important deposits that cover major lithological variation of local greywackes. Studied greywackes were analysed for their petrographic parameters quantitatively (using image analysis of thin sections). The pore space characteristics were determined by using fluorescent dye - epoxy resin impregnated specimens. The studied rocks are composed of subangular and angular quartz grains, lithoclasts (stable rocks: quartzites, and unstable rocks: phylites, metaphylites, siltstones, slates, greywackes, and less frequently acid eruptive rocks), feldspars (orthoclas, microcline, plagioclase), and detrital micas. Detrital and authigenic chlorite has been found as well. The matrix which represents the largest volume of rock-forming components contains a mixture of sericite, chlorite, clay minerals, cements, and clasts in aleuropelitic size. Based on the microscopic examination, all studied rock types were classified as greywacke with fine- to medium-grained massive rock fabric. Only specimen from Bělkovice has shown partly layered structure. Alteration of feldspars and unstable rock fragments represents common feature. Diagenetic features included pressure dissolution of quartz clasts and formation of siliceous and/or calcite cements. Based on the experimental study of technological performance of studied greywackes and its correlation to petrographic features, the average size of clasts and volume of matrix make the driving factors affecting the LA values. The LA values decrease with the increasing of volume of matrix (R = 0.61) and with decreasing average grain size (R = 0.44). The degree of sorting influences LA values as well; more graded greywackes tend to show higher LA values. Regarding PSV, its values increase with increasing volume of quartz clasts.

  5. Fault rock texture and porosity type in Triassic dolostones

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo

    2015-04-01

    Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique, the fractal dimension of representative samples is also computed. Results of such a work shows that five main textural types are present: 1) fractured and fragmented dolomites; 2) protocataclasites characterized by intense intragranular extensional fracturing; 3) cataclasites due to a chipping-dominated mechanism; 4) cataclasites and ultracataclasites with pronounced shear fracturing; 5) cemented fault rocks, which localize along the main slip surfaces. The first four textural types are therefore indicative to the fault rock maturity within individual cataclastic fault cores. A negative correlation among grain-matrix ratio and grain sphericity, roundness and sorting is computed, which implies that ultracataclasites are made up of more spherical and rounded smaller grains relative to cataclasites and protocataclasites. Each textural type shows distinct D0-values (box-counting dimension). As expected, a good correlation between the D0-value and fault rock maturity is computed. Ongoing analysis of selected images obtained from representative samples of the five textural classes will shed lights on the relative role played by the aforementioned micro-mechanisms on the porosity evolution within the cataclastic fault cores.

  6. Semimicro chemical and x-ray fluorescence analysis of lunar samples

    USGS Publications Warehouse

    Rose, H.J.; Cuttitta, F.; Dwornik, E.J.; Carron, M.K.; Christian, R.P.; Lindsay, J.R.; Ligon, D.T.; Larson, R.R.

    1970-01-01

    Major and selected minor elements were determined in seven whole rock fragments, five portions of pulverized lunar rock, and the lunar soil. Three different rock types were represented: vesicular, fine-grained basaltic rocks; medium-to coarse-grained, vuggy gabbroic rocks; and breccia. The ranges (in percent) for the major constituents of the lunar samples are: SiO2, 38 to 42; Al2O3, 8 to 14; total iron as FeO, 15 to 20; MgO, 6 to 8; CaO, 10 to 12; Na2O, 0.5 to 1; K2O, 0.05 to 0.4; TiO2, 8 to 13; MnO, 0.2 to 0.3; and Cr2O3, 0.2 to 0.4. The high reducing capacity of the samples strongly suggests the presence of Ti(III).

  7. Historical rock falls in Yosemite National Park, California (1857-2011)

    USGS Publications Warehouse

    Stock, Greg M.; Collins, Brian D.; Santaniello, David J.; Zimmer, Valerie L.; Wieczorek, Gerald F.; Snyder, James B.

    2013-01-01

    Inventories of rock falls and other types of landslides are valuable tools for improving understanding of these events. For example, detailed information on rock falls is critical for identifying mechanisms that trigger rock falls, for quantifying the susceptibility of different cliffs to rock falls, and for developing magnitude-frequency relations. Further, inventories can assist in quantifying the relative hazard and risk posed by these events over both short and long time scales. This report describes and presents the accompanying rock fall inventory database for Yosemite National Park, California. The inventory database documents 925 events spanning the period 1857–2011. Rock falls, rock slides, and other forms of slope movement represent a serious natural hazard in Yosemite National Park. Rock-fall hazard and risk are particularly relevant in Yosemite Valley, where glacially steepened granitic cliffs approach 1 km in height and where the majority of the approximately 4 million yearly visitors to the park congregate. In addition to damaging roads, trails, and other facilities, rock falls and other slope movement events have killed 15 people and injured at least 85 people in the park since the first documented rock fall in 1857. The accompanying report describes each of the organizational categories in the database, including event location, type of slope movement, date, volume, relative size, probable trigger, impact to humans, narrative description, references, and environmental conditions. The inventory database itself is contained in a Microsoft Excel spreadsheet (Yosemite_rock_fall_database_1857-2011.xlsx). Narrative descriptions of events are contained in the database, but are also provided in a more readable Adobe portable document format (pdf) file (Yosemite_rock_fall_database_narratives_1857-2011.pdf) available for download separate from the database.

  8. Cobalt—Styles of deposits and the search for primary deposits

    USGS Publications Warehouse

    Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.

    2017-11-30

    Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and the Ducktown (Tennessee) waste and tailings; andKnown five-element vein districts in Arizona and New Mexico, as well as in the Yukon-Tanana terrane of Alaska; and hydrothermal deposits associated with ultramafic rocks along the west coast, in Alaska, and in the Appalachian Mountains.

  9. A preliminary report on the geology of the Dennison-Bunn uranium claim, Sandoval County, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1978-01-01

    Uranium at the Dennison-Bunn claim, south of Cuba, N. Mex., along the east margin of the San Juan Basin, occurs in unoxidized gray, fluvial channel sandstone of the Westwater Canyon Member of the Upper Jurassic Morrison Formation. The uranium-bearing sandstone is bounded on the north and south by a variable zone of buff and orange sandstone. Within the mineralized zone, the uranium has been remobilized and reconcentrated along the margins of numerous smaller tongues of oxidized rock in a configuration similar to that found in roll-type uranium deposits. In cross section, these small-scale features are zoned; they have an inner, pale orange, oxidized core, a mineralized redox rim cemented with hematite(?), and an outer-shell of -gray, slightly to moderately mineralized rock. The uranium content in the mineralized rock ranges from 0.001 to 0.07 percent U3O8. The uranium, at this locality, is believed to have originated within the Westwater Canyon Member or to have been derived from the overlying Brushy Basin Member. Based on observed outcrop relations, two hypotheses are proposed for explaining the origin of the occurrence. Briefly these hypotheses are: (1) the mineralized zone represents the remnant of an original roll-type uranium deposit, formed during early Eocene time, which has undergone subsequent oxidation with remobilization and redeposition of uranium around the margins of smaller tongues of oxidized rock; and (2) the mineralized zone represents the remnant of an original tabular deposit which has undergone subsequent oxidation with remobilization and redeposition of uranium around the margins of smaller tongues of oxidized rock.

  10. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  11. Stratigraphy and structure of the Strawberry Mine roof pendant, central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, W.J.

    1981-01-01

    The Strawberry mine roof pendant, 90 km northeast of Fresno, Calif., is composed of a sequence of metasedimentary rocks of probable Early Jurassic age and a sequence of metaigneous rocks of middle Cretaceous age. The metasedimentary rocks are a former miogeosynclinal sequence of marl and limestone now metamorphosed to calc-silicate hornfels and marble. A pelecypod found in the calc-silicate hornfels has been tentatively identified as a Mesozoic bivalve, possibly Inoceramus pseudomytiloides of Early Jurassic age. These metasedimentary rocks are similar in lithology, structure, and gross age to the metasedimentary rocks of the Boyden Cave roof pendant and are assigned to the Lower Jurassic Kings sequence. The younger metaigneous rocks are metamorphosed shallow-in trusi ve rocks that range in composi tion from granodiorite to rhyolite. These rocks are similar in composition and age to the metavolcanic rocks of the surrounding Merced Peak quadrangle and nearby Ritter Range, and probably represent necks or dikes that were one source for the meta volcanic rocks. The roof pendant is intruded by several plutons, ranging in composition from dioritic to highly felsic, that constitute part of the granodiorite of Jackass Lakes, also M middle Cretaceous age. The contemporaneous suites of metaigneous, metavolcanic, and plutonic rocks in the region represent a middle Cretaceous period of calc-alkalic volcanism and plutonism in the central Sierra Nevada and are interpreted as part of an Andean-type volcanic-plutonic arc. Three deformations are documented in the roof pendant. The first deformation is reflected only in the metasedimentary rocks and consists of northeast-to east-west-trending folds. Similar structures occur in the Boyden Cave roof pendant and in the Calaveras Formation and represent a Middle Jurassic regional deformation. Evidence of the second deformation occurs in the metasedimentary and metaigneous rocks and consists of folds, faults, minor structures, and regional metamorphism along N. 25? W. trends. Crosscutting of these structures by the contemporaneous granodiorite of Jackass Lakes indicates that this deformation occurred simultaneously with volcanism and plutonism during the middle Cretaceous. The third deformation involved both the roof pendant and adjacent plutonic rocks and consists of folds, faults, schistosities, and regional metamorphism along N. 65? -900 W. trends. Crosscutting of similar structures in other middle Cretaceous plutonic rocks of the Merced Peak quadrangle by undeformed late Cretaceous plutonic rocks indicates a regional deformation of middle to late Cretaceous age. Structures of similar style, orientation, and age occur elsewhere in metavolcanic and plutonic rocks throughout the central Sierra Nevada.

  12. Magnetic mineralogy and rock magnetic properties of silicate and carbonatite rocks from Oldoinyo Lengai volcano (Tanzania)

    NASA Astrophysics Data System (ADS)

    Mattsson, H. B.; Balashova, A.; Almqvist, B. S. G.; Bosshard-Stadlin, S. A.; Weidendorfer, D.

    2018-06-01

    Oldoinyo Lengai, a stratovolcano in northern Tanzania, is most famous for being the only currently active carbonatite volcano on Earth. The bulk of the volcanic edifice is dominated by eruptive products produced by silica-undersaturated, peralkaline, silicate magmas (effusive, explosive and/or as cumulates at depth). The recent (2007-2008) explosive eruption produced the first ever recorded pyroclastic flows at this volcano and the accidental lithics incorporated into the pyroclastic flows represent a broad variety of different rock types, comprising both extrusive and intrusive varieties, in addition to various types of cumulates. This mix of different accidental lithics provides a unique insight into the inner workings of the world's only active carbonatite volcano. Here, we focus on the magnetic mineralogy and the rock magnetic properties of a wide selection of samples spanning the spectrum of Oldoinyo Lengai rock types compositionally, as well from a textural point of view. Here we show that the magnetic properties of most extrusive silicate rocks are dominated by magnetite-ulvöspinel solid solutions, and that pyrrhotite plays a larger role in the magnetic properties of the intrusive silicate rocks. The natrocarbonatitic lavas, for which the volcano is best known for, show distinctly different magnetic properties in comparison with the silicate rocks. This discrepancy may be explained by abundant alabandite crystals/blebs in the groundmass of the natrocarbonatitic lavas. A detailed combination of petrological/mineralogical studies with geophysical investigations is an absolute necessity in order to understand, and to better constrain, the overall architecture and inner workings of the subvolcanic plumbing system. The results presented here may also have implications for the quest in order to explain the genesis of the uniquely natrocarbonatitic magmas characteristic of Oldoinyo Lengai.

  13. Development of a Unified Rock Bolt Model in Discontinuous Deformation Analysis

    NASA Astrophysics Data System (ADS)

    He, L.; An, X. M.; Zhao, X. B.; Zhao, Z. Y.; Zhao, J.

    2018-03-01

    In this paper, a unified rock bolt model is proposed and incorporated into the two-dimensional discontinuous deformation analysis. In the model, the bolt shank is discretized into a finite number of (modified) Euler-Bernoulli beam elements with the degrees of freedom represented at the end nodes, while the face plate is treated as solid blocks. The rock mass and the bolt shank deform independently, but interact with each other through a few anchored points. The interactions between the rock mass and the face plate are handled via general contact algorithm. Different types of rock bolts (e.g., Expansion Shell, fully grouted rebar, Split Set, cone bolt, Roofex, Garford and D-bolt) can be realized by specifying the corresponding constitutive model for the tangential behavior of the anchored points. Four failure modes, namely tensile failure and shear failure of the bolt shank, debonding along the bolt/rock interface and loss of the face plate, are available in the analysis procedure. The performance of a typical conventional rock bolt (fully grouted rebar) and a typical energy-absorbing rock bolt (D-bolt) under the scenarios of suspending loosened blocks and rock dilation is investigated using the proposed model. The reliability of the proposed model is verified by comparing the simulation results with theoretical predictions and experimental observations. The proposed model could be used to reveal the mechanism of each type of rock bolt in realistic scenarios and to provide a numerical way for presenting the detailed profile about the behavior of bolts, in particular at intermediate loading stages.

  14. The Žermanice sill: new insights into the mineralogy, petrology, age, and origin of the teschenite association rocks in the Western Carpathians, Czech Republic

    NASA Astrophysics Data System (ADS)

    Matýsek, Dalibor; Jirásek, Jakub; Skupien, Petr; Thomson, Stuart N.

    2018-04-01

    The Žermanice locality represents the best-exposed example of the meta-basaltoid/meta-gabbroic rock type of the teschenite association. It forms a subhorizontal volcanic body (sill) 27-30 m thick. The subvolcanic rock is inhomogeneous and slightly differentiated. The predominant rock type is a basaltoid (diabase-dolerite), medium-grained, speckled, mesocratic rock exhibiting an evident subophitic texture. Miarolitic cavities are abundant in some places. The major rock constituents are albite, microcline, chlorite, and pyroxene, as well as analcime and plagioclase in places. The accessory magmatic phases are biotite, ilmenite, fluorapatite, sulphides, Ti-rich magnetite, Nb-rich baddeleyite, and chevkinite-(Ce) or perrierite-(Ce). A large extent of alteration is evident from the presence of chloritization, albitization of plagioclases, and zeolitization (analcimization). Geochemical analyses reveal an affinity for metaluminous igneous rocks. The best fit is with the within-plate basalts or the within-plate volcanic zones. The classification of this rock is problematic because of the mixed intrusive and extrusive features; the choice is between meta-alkali basalt and metadolerite (meta-microgabbro). 207Pb common lead-corrected U-Pb apatite dating yields a weighted mean age of 120.4 ± 9.6 Ma, which corresponds to the middle Aptian. The igneous body is at most ca. 10 Ma younger than the surrounding late Hauterivian sediments and might have been emplaced into unconsolidated or partly consolidated sediments. According to our research, it is evident that at least some teschenite association rocks are in fact low-grade metamorphic rocks.

  15. Mapping Rock and Soil Units in the MPF IMP SuperPan Using a Kohonen Self Organizing Map

    NASA Technical Reports Server (NTRS)

    Farrand, W.; Merenyi, E.; Murchie, S.; Barnouin-Jha, O.; Johnson, J.

    2004-01-01

    The 1997 Mars Pathfinder mission provided information on a site in the Ares Vallis floodplain. Initial analysis of multispectral data from the Imager for Mars Pathfinder (IMP) indicated the presence of only a single rock type, the 'gray rock' spectral class and various coated variants thereof (e.g., 'maroon rock'). Continued analysis of the IMP 'SuperPan' mosaic has confirmed multiple examples of a second 'black rock' spectral class existing as small cobbles in the near field and as boulders in the far field. These results are consistent with recent analysis of MGS Thermal Emission Spectrometer (TES) data which indicates that there is likely a mix of both 'Surface Type 1' (ST1) and 'Surface Type 2' (ST2) spectral classes at the MPF landing site. Nominally, the black rock spectral class would correspond to ST1 (basalts) and 'gray rock' would correspond to ST2 (andesites). Orbital remote sensing has also revealed the pervasive presence of layering on Mars. Recently it was suggested that there are extensive outcrops of the black rock spectral class in the SuperPan far field on the flanks of the Twin Peaks and on the rim of Big Crater. These authors suggested that these exposures represented outcrops of black rock from beneath a surficial, flood deposited layer. In this work, we have reexamined the MPF IMP SuperPan mosaic using an artificial neural network self organizing map (SOM) processing architecture in order to classify the distribution of spectral classes within the SuperPan. In this paper, we present initial results from that work and draw specific attention to a subset of the identified spectral classes in order to address questions relating to whether there are extensive exposures of black rock in the IMP far field, what other materials might be exposed in the far field, and what evidence there is for subsurface layering at the MPF landing site.

  16. Geochemistry of lunar crustal rocks from breccia 67016 and the composition of the moon

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Taylor, Stuart R.

    1992-01-01

    The geochemistry of anorthositic clasts from an Apollo 16 breccia 67016 is studied in order to investigate the role of these rock types in lunar crustal evolution. The samples have aluminous, alkali-poor compositions and varied FeO and MgO contents. Three compositional groups are recognized. One group is poor in mafic constituents with low abundances of lithophile trace elements typical of lunar anorthosites, while the other two groups are more mafic and are distinguished from each other by FeO/MgO ratios greater than one in the case of ferroan noritic and less than one in the case of magnesian troctolitic. These mafic-enriched varieties have considerably higher lithophile element concentrations, at levels similar to that of the bulk lunar crust. The ferroan noritic clasts may represent a fundamental type of igneous rock in the lunar crust which has not been widely recognized.

  17. Geochemical constraints on the petrogenesis of the pyroclastic rocks in Abakaliki basin (Lower Benue Rift), Southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Chukwu, Anthony; Obiora, Smart C.

    2018-05-01

    The pyroclastic rocks in the Cretaceous Abakaliki basin occur mostly as oval-shaped bodies, consisting of lithic/lava and vitric fragments. They are commonly characterized by parallel and cross laminations, as well contain xenoliths of shale, mudstone and siltstones from the older Asu River Group of Albian age. The rocks are basic to ultrabasic in composition, comprising altered alkali basalts, altered tuffs, minor lapillistones and agglomerates. The mineral compositions are characterized mainly by laths of calcic plagioclase, pyroxene (altered), altered olivines and opaques. Calcite, zeolite and quartz represent the secondary mineral constituents. Geochemically, two groups of volcaniclastic rocks, are distinguished: alkaline and tholeiitic rocks, both represented by fresh and altered rock samples. The older alkali basalts occur within the core of the Abakaliki anticlinorium while the younger tholeiites occur towards the periphery. Though most of the rocks are moderate to highly altered [Loss on ignition (LOI, 3.43-22.07 wt. %)], the use of immobile trace element such as Nb, Zr, Y, Hf, Ti, Ta and REEs reflect asthenospheric mantle source compositions. The rocks are enriched in incompatible elements and REEs (∑REE = 87.98-281.0 ppm for alkaline and 69.45-287.99 ppm for tholeiites). The ratios of La/Ybn are higher in the alkaline rocks ranging from 7.69 to 31.55 compared to the tholeiitic rocks which range from 4.4 to 16.89 and indicating the presence of garnet-bearing lherzolite in the source mantle. The spidergrams and REEs patterns along with Zr/Nb, Ba/Nb, Rb/Nb ratios suggest that the rocks were generated by a mantle plume from partial melting of mixed enriched mantle sources (HIMU, EMI and EMII) similar to the rocks of the south Atlantic Ocean such as St. Helena (alkaline rocks) and Ascension rocks (tholeiitic rocks). The rocks were formed in a within-plate setting of the intra-continental rift type similar to other igneous rocks in the Benue Rift and are not related to any subduction event as previously suggested.

  18. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the seven quarter of the project the research team analyzed some of the acoustic velocity data and rock deformation data. The goal is to create a series of ''deformation-velocity maps'' which can outline the types of rock deformational mechanisms which can occur at high pressures and then associate those with specific compressional or shear wave velocity signatures. During this quarter, we began to analyze both the acoustical and deformational properties of the various rock types. Some of the preliminary velocity data from the Danian chalk will be presented in this report. This rock type was selected for the initialmore » efforts as it will be used in the tomographic imaging study outlined in Task 10. This is one of the more important rock types in the study as the Danian chalk is thought to represent an excellent analog to the Ekofisk chalk that has caused so many problems in the North Sea. Some of the preliminary acoustic velocity data obtained during this phase of the project indicates that during pore collapse and compaction of this chalk, the acoustic velocities can change by as much as 200 m/s. Theoretically, this significant velocity change should be detectable during repeated successive 3-D seismic images. In addition, research continues with an analysis of the unconsolidated sand samples at high confining pressures obtained in Task 9. The analysis of the results indicate that sands with 10% volume of fines can undergo liquefaction at lower stress conditions than sand samples which do not have fines added. This liquefaction and/or sand flow is similar to ''shallow water'' flows observed during drilling in the offshore Gulf of Mexico.« less

  19. Sudbury project (University of Muenster-Ontario Geological Survey): New investigations on Sudbury breccia

    NASA Astrophysics Data System (ADS)

    Mueller-Mohr, V.

    Sudbury breccias occur as discordant dike breccias within the footwall rocks of the Sudbury structure, which is regarded as the possible remnant of a multiring basin. Exposures of Sudbury breccias in the North Range are known up to a radial distance of 60-80 km from the Sudbury Igneous Complex (SIC). The breccias appear more frequent within a zone of 10 km adjacent to the SIC and a further zone located about 20-33 km north of the structure. From differences in the structure of the breccias, as for example the size of the breccia dikes, contact relationships between breccia and country rock as well as between different breccia dikes, fragment content, and fabric of the ground mass, as seen in this section, the Sudbury Breccias have been classified into four different types. (1) Early breccias with a clastic/crystalline matrix comprise small dikes ranging in size from approx. 1 cm to max. 20 cm. (2) Polymict breccias with a clastic matrix represent the most common type of Sudbury breccia. The thickness of the dikes varies from several tens of centimeters to a few meters but can also extend to more than 100 m in the case of the largest known breccia dike. Contacts with country rock are sharp or gradational. Heterogenous matrix consisting of a fine-grained rock flour displays nonoriented textures as well as extreme flow lines. Chemical analysis substantiates at least some mixing with allochthonous material. (3) Breccias with a crystalline matrix are a subordinate type of Sudbury breccia. According to petrographical and chemical differences, three subtypes have been separated. (4) Late breccias with a clastic matrix are believed to represent the latest phase of brecciation. Two subtypes have been distinguished due to differences in the fragment content.

  20. Sudbury project (University of Muenster-Ontario Geological Survey): New investigations on Sudbury breccia

    NASA Technical Reports Server (NTRS)

    Mueller-Mohr, V.

    1992-01-01

    Sudbury breccias occur as discordant dike breccias within the footwall rocks of the Sudbury structure, which is regarded as the possible remnant of a multiring basin. Exposures of Sudbury breccias in the North Range are known up to a radial distance of 60-80 km from the Sudbury Igneous Complex (SIC). The breccias appear more frequent within a zone of 10 km adjacent to the SIC and a further zone located about 20-33 km north of the structure. From differences in the structure of the breccias, as for example the size of the breccia dikes, contact relationships between breccia and country rock as well as between different breccia dikes, fragment content, and fabric of the ground mass, as seen in this section, the Sudbury Breccias have been classified into four different types. (1) Early breccias with a clastic/crystalline matrix comprise small dikes ranging in size from approx. 1 cm to max. 20 cm. (2) Polymict breccias with a clastic matrix represent the most common type of Sudbury breccia. The thickness of the dikes varies from several tens of centimeters to a few meters but can also extend to more than 100 m in the case of the largest known breccia dike. Contacts with country rock are sharp or gradational. Heterogenous matrix consisting of a fine-grained rock flour displays nonoriented textures as well as extreme flow lines. Chemical analysis substantiates at least some mixing with allochthonous material. (3) Breccias with a crystalline matrix are a subordinate type of Sudbury breccia. According to petrographical and chemical differences, three subtypes have been separated. (4) Late breccias with a clastic matrix are believed to represent the latest phase of brecciation. Two subtypes have been distinguished due to differences in the fragment content.

  1. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    NASA Astrophysics Data System (ADS)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane, are late Cretaceous metamorphic supracrustal rocks.

  2. Geochemistry and tectonic setting of the Golabad granitoid complex (SW Nain, Iran)

    NASA Astrophysics Data System (ADS)

    Mansouri Esfahani, Mahin; Khalili, Mahmoud; Alaminia, Zahra

    2018-03-01

    The Oligo-Miocene Golabad granitoid complex intrusive into the Eocene volcanic rocks occurs in the Urumieh-Dokhtar Magmatic Arc (UDMA) in Iran. According to microscopic and chemical studies, the granitoid complex consists of three different rock types: 1) plutonic rocks comprising diorite, quartz diorite, granodiorite and granite; 2) volcanic rocks composed of basalt, andesite basalt, ± pyroxene bearing andesite and rhyolite, and 3) pyroclastic rocks. The main mineral constituents of these rocks are mostly plagioclase (oligoclase and andesine), quartz, K-feldspar, amphibole (magnesio-hornblende and actinolite-hornblende) and Mg-biotite. In addition, apatite, titanite, zircon, and opaque minerals are common accessory minerals. The studied enclaves are classified as mafic micro-granular enclaves (MME) with monzodiorite compositions. Geochemically, the rocks in this study represent medium to high-K calc-alkaline series, metaluminous and I-type nature. Plotting, the chemical composition of plagioclase on the An-Ab-Or ternary diagram, the temperature of crystallization is estimated to range from 700 to 900 °C at a pressure of 4.5 Kbar. High TiO2 values of biotites from the Golabad granitoid complex suggest magmatic origin and the crystallization temperature is estimated to range from 700 to 750 °C. The amphiboles according to their chemical analysis, are classified as igneous amphiboles generated in high oxygen fugacity conditions. The chemical data of the amphiboles and biotites pointed out to the I- type nature of the Golabad granitoid complex emplaced in an active continental margin subduction setting. The amphibole crystallization pressure was estimated by Al in amphibole varies from 1.09 to 2.28 Kbar. Using the calculated pressure the depth of the formation of the Golabad granitoid complex estimated from 4 to 9 Km.

  3. Contributions to the gold metallogeny of northern Nevada

    USGS Publications Warehouse

    Tosdal, Richard M.

    1998-01-01

    Nevada is one of the Earth's premier gold producing regions, accounting for approximately 64 percent of the U.S and nine percent of the world total. The impact of these mines on nearby local economies and on our national balance of payments is profound, and will continue well into the next century. Of principal importance in this region are giant sedimentary-rock-hosted (Carlin-type) deposits. These are some of the world's largest deposits, but yet are poorly understood. Other sedimentary-rock hosted deposits in the region, the distal-disseminated Ag-Au type, are genetically related to shallow plutonic complexes. Hot-spring gold-silver systems associated with Tertiary volcanic rocks represent a third type of precious metal deposit in northern Nevada. These deposits, despite being generally smaller than sedimentary-rock-hosted gold deposits, are also important gold-silver resources. Aspects about the geologic and metallogenic setting of gold-silver deposits in northern Nevada are addressed in the twenty-two chapters that compose this volume. The volume is organized along four themes: (1) crustal structure; (2) Carlin-type deposits; (3) pluton-related gold-silver deposits near Battle Mountain; and (4) hot-spring gold-silver deposits. This Open-File Report, the result of ongoing geologic and mineral-resource investigations, provides a basis for mineral exploration, for land-use planning decisions, and for environmental questions in northern Nevada.

  4. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.

  5. From vein precipitates to deformation and fluid rock interaction within a SSZ: Insights from the Izu-Bonin-Mariana fore arc

    NASA Astrophysics Data System (ADS)

    Micheuz, Peter; Quandt, Dennis; Kurz, Walter

    2017-04-01

    International Ocean Discovery Program (IODP) expeditions 352 and 351 drilled through oceanic crust of the Philippine Sea plate. The two study areas are located near the outer Izu-Bonin-Mariana (IBM) fore arc and in the Amami Sankaku Basin. The primary objective was to improve our understanding of supra-subduction zones (SSZ) and the process of subduction initiation. The recovered drill cores during IODP expedition 352 represent approximately 50 Ma old fore arc basalts (FAB) and boninites revealing an entire volcanic sequence of a SSZ. Expedition 351 drilled FAB like oceanic crust similar in age to the FABs of expedition 352. In this study we present data on vein microstructures, geochemical data and isotopic signatures of vein precipitates to give new insights into fluid flow and precipitation processes and deformation within the Izu-Bonin fore arc. Veins formed predominantly as a consequence of hydrofracturing resulting in the occurrence of branched vein systems and brecciated samples. Along these hydrofractures the amount of altered host rock fragments varies and locally alters the host rock completely to zeolites and carbonates. Subordinately extensional veins released after the formation of the host rocks. Cross-cutting relationships of different vein types point to multiple fracturing events subsequently filled with minerals originating from a fluid with isotopic seawater signature. Based on vein precipitates, their morphology and their growth patterns four vein types have been defined. Major vein components are (Mg-) calcite and various zeolites determined by Raman spectra and electron microprobe analyses. Zeolites result from alteration of volcanic glass during interaction with a seawaterlike fluid. Type I veins which are characterized by micritic infill represent neptunian dykes. They predominantly occur in the upper levels of drill cores being the result of an initial volume change subsequently to crystallization of the host rocks. Type II veins are characterized by blocky carbonates and idiomorphic to blocky zeolites. Blocky carbonates locally exhibit zonation patterns. Type III and type IV veins are both assumed to be extensional veins. Type III is characterized by syntaxial growth and elongate blocky carbonate minerals. They predominantly occur as asymmetric syntaxial veins, locally exhibiting more than one crack-seal event. Type IV veins are defined as antitaxial fibrous carbonates. Type II veins commonly show deformation microstructures like twinning (type I/II twins), slightly curved twins, and subgrain boundaries indicative of incipient plastic deformation. Based on these observations differential stresses around 50 MPa were needed to deform vein minerals, presumably related to IBM fore arc extension due to the retreat of the subducted Pacific plate. We acknowledge financial support by the Austrian Research Fund (P27982-N29) to W. Kurz

  6. Constraining mechanisms of quartz precipitation in the Archean ocean using silicon isotopes

    NASA Astrophysics Data System (ADS)

    Brengman, L. A.; Fedo, C.; Martin, W.

    2017-12-01

    To constrain reservoir values for the Archean silica cycle we measured silicon isotope compositions (δ30Si) of 28 igneous, siliciclastic sedimentary, hydrothermal, and chemical sedimentary rock samples from three Archean greenstone belts representing different times (>3.7 - 2.7 Ga) and tectonic regimes. We posit that silicon isotope compositions of quartz (746 analyses measured in situ by secondary ion mass spectrometry at the NORDSIM facility) are linked to changes in key geochemical parameters that vary within local depositional environments, coupled with a dependency on size and δ30Si composition of the source reservoir. Collectively, siliceous precipitates from even a single basin span a 7‰ range in δ30Si values. Such heterogeneity, regardless of basinal position or presence of Fe-phases demonstrates that δ30Si values of chemical sediments are linked to neither a well-mixed water column representative of a single ocean composition, nor a specific time in Earth history. Combining data from all three greenstone belts we discern that all measured Algoma-type iron formation (IF) and about 50% of associated chert samples possess δ30Si values <0‰, while the majority of silicified volcanic rocks and the remaining 50% of chert samples have δ30Si values >0‰. Negative values of Algoma-type IF can be explained by rate-dependent fractionation during precipitation and/or adsorption to Fe/Al. Combined experimental and natural data for quartz precipitates suggest slow precipitation rates coupled with closed system, Rayleigh type distillation could produce the isotopically heavy values. Such results suggest the quartz-precipitating fluid for these rocks evolves from an open system in disequilibrium, to one that is closed, and in equilibrium with the host rock. In contrast to the static range of values through time for Algoma-type IF, associated cherts and silicified rocks, compiled data for Superior-type IF from 3 - 1.8 Ga record a systematic increasing trend from dominantly 30Si-depleted to 30Si-enriched values over the Archean-Paleoproterozoic transition. Interpreted in the context of our provisional, mass-balance based flux model for the Precambrian silicon cycle, we conclude the 30Si-enrichment to reflect the evolving δ30Si composition of the ocean due to the addition of continentally derived silica.

  7. Lithium isotopes as indicators of meteorite parent body alteration

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; James, Rachael H.; Fehr, Manuela A.; Bland, Philip A.; Gounelle, Matthieu

    2013-05-01

    Hydrothermal processing on planetesimals in the early solar system produced new mineral phases, including those generated by the transformation of anhydrous silicates into their hydrated counterparts. Carbonaceous chondrites represent tangible remnants of such alteration products. Lithium isotopes are known to be responsive to aqueous alteration, yet previously recognized variability within whole rock samples from the same meteorite appears to complicate the use of these isotopes as indicators of processing by water. We demonstrate a new way to use lithium isotopes that reflects aqueous alteration in carbonaceous chondrites. Temperature appears to exert a control on the production of acetic acid-soluble phases, such as carbonates and poorly crystalline Fe-oxyhydroxides. Temperature and degree of water-rock interaction determines the amount of lithium isotope fractionation expressed as the difference between whole rock and acetic acid-leachable fractions. Using these features, the type 1 chondrite Orgueil (δ7Li(whole rock) = 4.3‰; Δ7Li(acetic-whole) = 1.2‰) can be distinguished from the type 2 chondrites Murchison (δ7Li(whole rock) = 3.8; Δ7Li(acetic-whole) = 8.8‰) and carbonate-poor Tagish Lake (δ7Li(whole rock) = 4.3; Δ7Li(acetic-whole) = 9.4‰). This initial study suggests that lithium isotopes have the potential to reveal the role of liquid water in the early solar system.

  8. Integration of rock physical signatures with depositional environments: A case study from East Coast of India

    NASA Astrophysics Data System (ADS)

    Mondal, Samit; Yadav, Ashok; Chatterjee, Rima

    2018-01-01

    Rock physical crossplots from different geological setup along eastern continental margin of India (ECMI) represent diversified signatures. To characterize the reservoirs in rock physics domain (velocity/modulus versus porosity) and then connecting the interpretation with geological model has been the objectives of the present study. Petrophysical logs (total porosity and volume of shale) from five wells located at sedimentary basins of ECMI have been analyzed to quantify the types of shale such as: laminated, dispersed and structural in reservoir. Presence of various shale types belonging to different depositional environments is coupled to define distinct rock physical crossplot trends for different geological setup. Wells from three different basins in East Coast of India have been used to capture diversity in depositional environments. Contact model theory has been applied to the crossplot to examine the change in rock velocity with change in reservoir properties like porosity and volume of shale. The depositional and diagenetic trends have been shown in the crossplot to showcase the prime controlling factor which reduces the reservoir porosity. Apart from that, the effect of geological factors like effective stress, sorting, packing, grain size uniformity on reservoir properties have also been focused. The rock physical signatures for distinct depositional environments, effect of crucial geological factors on crossplot trends coupled with established sedimentological models in drilled area are investigated to reduce the uncertainties in reservoir characterization for undrilled potentials.

  9. Representative Bulk Composition of Oil Types for the 2002 U.S. Geological Survey Resource Assessment of National Petroleum Reserve in Alaska

    USGS Publications Warehouse

    Lillis, Paul G.

    2004-01-01

    Bulk oil composition is an important economic consideration of a petroleum resource assessment. Geological and geochemical interpretations from previous North Slope studies combined with recently acquired geochemical data are used to predict representative oil gravity (?API) and sulfur content (wt.% S) of the oil types for the 2002 U.S. Geological Survey resource assessment of the National Petroleum Reserve of Alaska (NPRA). The oil types are named after their respective source rock units and include Kuna-Lisburne, Shublik-Otuk, Kingak-Blankenship, and Pebble-GRZ-Torok. The composition of the oil (24?API, 1.6 wt.% S) in the South Barrow 12 well was selected as representative of Kuna-Lisburne oil. The average gravity and sulfur values (23?API and 1.6 wt.% S, respectively) of the Kuparuk field were selected to be representative of Shublik-Otuk oil type. The composition of the oil (39?API, 0.3 wt.% S) from the Alpine field discovery well (ARCO Bergschrund 1) was selected to be representative of Kingak-Blankenship oil. The oil composition (37?API, 0.1 wt.% S) of Tarn field was considered representative of the Pebble-GRZ-Torok oil type in NPRA.

  10. Experimental Studies on Permeability of Intact and Singly Jointed Meta-Sedimentary Rocks Under Confining Pressure

    NASA Astrophysics Data System (ADS)

    Wong, Louis Ngai Yuen; Li, Diyuan; Liu, Gang

    2013-01-01

    Three different types of permeability tests were conducted on 23 intact and singly jointed rock specimens, which were cored from rock blocks collected from a rock cavern under construction in Singapore. The studied rock types belong to inter-bedded meta-sandstone and meta-siltstone with very low porosity and high uniaxial compressive strength. The transient pulse water flow method was employed to measure the permeability of intact meta-sandstone under a confining pressure up to 30 MPa. It showed that the magnitude order of meta-sandstone's intrinsic permeability is about 10-18 m2. The steady-state gas flow method was used to measure the permeability of both intact meta-siltstone and meta-sandstone in a triaxial cell under different confining pressures spanning from 2.5 to 10 MPa. The measured permeability of both rock types ranged from 10-21 to 10-20 m2. The influence of a single natural joint on the permeability of both rock types was studied by using the steady-state water flow method under different confining pressures spanning from 1.25 to 5.0 MPa, including loading and unloading phases. The measured permeability of both jointed rocks ranged from 10-13 to 10-11 m2, where the permeability of jointed meta-siltstone was usually slightly lower than that of jointed meta-sandstone. The permeability of jointed rocks decreases with increasing confining pressure, which can be well fitted by an empirical power law relationship between the permeability and confining pressure or effective pressure. The permeability of partly open cracked specimens is lower than that of open cracked specimens, but it is higher than that of the specimen with a dominant vein for the meta-sandstone under the same confining pressure. The permeability of open cracked rock specimens will partially recover during the unloading confining pressure process. The equivalent crack (joint) aperture is as narrow as a magnitude order of 10-6 m (1 μm) in the rock specimens under confining pressures spanning from 1.25 to 5.0 MPa, which represent the typical ground stress conditions in the cavern. The in situ hydraulic conductivity measurements conducted in six boreholes by the injection test showed that the in situ permeability of rock mass varies between 10-18 and 10-11 m2. The lower bound of the in situ permeability is larger than that of the present laboratory-tested intact rock specimens, while the upper bound of the in situ permeability is less than that of the present laboratory-tested jointed rock specimens. The in situ permeability test results were thus compatible with our present laboratory permeability results of both intact and jointed rock specimens.

  11. Metabasalts from the Mid-Atlantic Ridge: new insights into hydrothermal systems in slow-spreading crust

    NASA Astrophysics Data System (ADS)

    Gillis, Kathryn M.; Thompson, Geoffrey

    1993-12-01

    An extensive suite of hydrothermally altered rocks were recovered by Alvin and dredging along the MARK [Mid-Atlantic Ridge, south of the Kane Fracture Zone (23 24°N)] where detachment faulting has provided a window into the crustal component of hydrothermal systems. Rocks of basaltic composition are altered to two assemblages with these characteristics: (i) type I: albitic plagioclase (An02 10)+mixed-layer smectite/chlorite or chlorite±actinolite±quartz±sphene, <10% of the clinopyroxene is altered, and there is no trace metal mobility; (ii) type II: plagioclase (An10 30)+amphibole (actinolite-magnesio-hornblende) +chlorite+sphene, >20% of the clinopyroxene is altered, and Cu and Zn are leached. The geochemical signature of these alteration types reflects the relative proportion and composition of secondary minerals, and the degree of alteration of primary phases, and does not show simple predictive relationships. Element mobilities indicate that both alteration types formed at low water/rock ratios. The MARK assemblages are typical of the greenschist and transition to the amphibolite facies, and represent two distinct, albeit overlapping, temperature regimes: type I-180 to 300°C and type II-250 to 450°C. By analogy with DSDP/ODP Hole 504B and many ophiolites, the MARK metabasalts were altered within the downwelling limb of a hydrothermal cell and type I and II samples formed in the upper and lower portions of the sheeted like complex, respectively. Episodic magmatic and hydrothermal events at slow-spreading ridges suggest that these observed mineral assemblages represent the cumulative effects of more than one hydrothermal event. Groundmass and vein assemblages in the MARK metabasalts indicate either that alteration conditions did not change during successive hydrothermal events or that these assemblages record only the highest temperature event. Lack of retrograde reactions or overprinting of lower temperature assemblages (e.g., zeolites) suggests that there is a continuum in alteration conditions while crustal segments remain in the ridge axis environment. The type II samples may be representative of the reaction zone where compositions of hydrothermal fluids actively venting at the seafloor today become fixed. This prediction necessitates interaction between hydrothermal fluids and intersertal glass and/or mafic phases, in addition to plagioclase, in order to produce the observed range in vented fluid pH.

  12. Performance Evaluation Test of the Orbit Screen Model 68A and the Komplet Model 48-25 Rock Crusher

    DTIC Science & Technology

    2008-08-01

    two representatives from the Government of Ecuador, Ms . Viviana Anabela Meza Cevallos, from the Demining Center of Ecuador, and Lieutenant Jose Luis...Mines ( MRMs ) Antipersonnel Simulants............................ 8 4 Orbit Screen Model 68 Testing...Mock Mine .............................................................................................................. 7 Figure 8: MRM Simulant, Type

  13. The Widespread Distribution of Komatiitic Tuffs in the 3.3 Ga Weltevreden Formation, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Thompson, M. E.; Lowe, D. R.; Byerly, G. R.

    2007-12-01

    The 3.5-3.2 Ga Barberton greenstone belt is a heavily deformed, 10-15 km thick succession of volcanic and sedimentary rocks representing one of the best preserved Paleoarchean supracrustal sequences known. It consists of the basal volcanic-dominated Onverwacht Group and the overlying sedimentary-dominated Fig Tree and Moodies Groups. Major volcanic rocks in the BGB include komatiites, tholeiitic basalts, and dacites. Although flow rocks and fragmental deposits have been identified representing all extrusive magma types, the abundance of komatiitic volcaniclastic units is remarkable considering the mechanical difficulties in explosively erupting low viscosity ultramafic lava. In the Onverwacht Group, most komatiitic tuffs contain 85-95 wt% SiO2, due to early silicification, and very low concentrations of most other elements, making original compositions somewhat uncertain. However, in the northernmost part of the BGB, north of the Inyoka Fault, the ~ 3.3 Ga Weltevreden Formation is composed largely of komatiitic flow rocks, tuffs, layered ultramafic complexes, and subordinate black and banded cherts. Previous studies have established the extrusive nature of the komatiites, but there are also many thick interlayered slaty units, previously interpreted as sheared flow rocks, which show cross-bedding, soft-sediment deformation, and other features indicating an alternate derivation. These units range from 2 to 80 m thick and may represent 10% or more of the overall stratigraphy of the Weltevreden Formation. They are characterized by low-temperature serpentinization that has commonly preserved original elemental abundances, enabling a more precise determination of primary komatiitic liquid composition. These rocks are magnesium rich, with MgO ranging from 23 to 36 wt%, and high Ni (~1500 ppm) and Cr (~2600 ppm) contents typical of komatiites. Several possible mechanisms could have produced these rocks, including (1) erosion and transport of pre-existing komatiitic flow rock, (2) volcanic base surges, (3) current reworking of fall-deposited pyroclastic material, and (4) remobilization of hyaloclastitic debris. The abundance of fine-grained sediments and of flat- and cross-laminated beds, the paucity of cr-spinels, and komatiitic immobile element ratios suggest that most of these high-Mg beds formed by minor reworking of komatiitic pyroclastic ash in a subaqueous environment.

  14. The effect of organic acids on wettability of sandstone and carbonate rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mwangi, Paulina; Brady, Patrick V.; Radonjic, Mileva

    This paper examines the role of crude oil’s organic acid surface active compounds (SAC) in determining the reservoir wettability over a range of salinities and temperatures. To isolate the effects of individual SACs, this project used model oil mixtures of pure decane and single SACs to represent the oleic phase. Due to the large number of experiments in this study, we used wettability measurement method by the modified flotation technique (MFT) to produce fast, reliable, and quantitative results. The results showed that oil wetting by decane increased with temperature for carbonate rocks. Sandstones oil wetting showed little temperature dependency. Themore » presence of long-chained acids in decane increased oil wetting in sandstone and carbonate rocks as salinity was lowered, while the short-chained acid increased water wetting under the same conditions. The effect of organic acids on wettability was slightly enhanced with increasing temperature for all rock types.« less

  15. The effect of organic acids on wettability of sandstone and carbonate rocks

    DOE PAGES

    Mwangi, Paulina; Brady, Patrick V.; Radonjic, Mileva; ...

    2018-02-21

    This paper examines the role of crude oil’s organic acid surface active compounds (SAC) in determining the reservoir wettability over a range of salinities and temperatures. To isolate the effects of individual SACs, this project used model oil mixtures of pure decane and single SACs to represent the oleic phase. Due to the large number of experiments in this study, we used wettability measurement method by the modified flotation technique (MFT) to produce fast, reliable, and quantitative results. The results showed that oil wetting by decane increased with temperature for carbonate rocks. Sandstones oil wetting showed little temperature dependency. Themore » presence of long-chained acids in decane increased oil wetting in sandstone and carbonate rocks as salinity was lowered, while the short-chained acid increased water wetting under the same conditions. The effect of organic acids on wettability was slightly enhanced with increasing temperature for all rock types.« less

  16. Differences in dissolved organic matter lability between alpine glaciers and alpine rock glaciers of the American West

    NASA Astrophysics Data System (ADS)

    Hall, E.; Fegel, T. S., II; Baron, J.; Boot, C. M.

    2015-12-01

    While alpine glaciers in montane regions represent the largest flux of dissolved organic matter (DOM) from global ice melt no research has examined the bioavailability of DOM melted out of glacial ice in the western continental United States. Furthermore, rock glaciers are an order of magnitude more abundant than ice glaciers in U.S., yet are not included in budgets for perennial ice carbon stores. Our research aims to understand differences in the bioavailability of carbon from ice glaciers and rock glaciers along the Central Rocky Mountains of Colorado. Identical microbial communities were fed standardized amounts of DOM from four different ice glacier-rock glaciers pairs. Using laboratory incubations, paired with mass spectrometry based metabolomics and 16S gene sequencing; we were able to examine functional definitions of DOM lability in glacial ice. We hypothesized that even though DOM quantities are similar in the outputs of both glacial types in our study area, ice glacial DOM would be more bioavailable than DOM from rock glaciers due to higher proportions of byproducts from microbial metabolism than rock glacier DOM, which has higher amounts of "recalcitrant" plant material. Our results show that DOM from ice glaciers is more labile than DOM from geologically and geographically similar paired rock glaciers. Ice glacier DOM represents an important pool of labile carbon to headwater ecosystems of the Rocky Mountains. Metabolomic analysis shows numerous compounds from varying metabolite pathways, including byproducts of nitrification before and after incubation, meaning that, similar to large maritime glaciers in Alaska and Europe, subglacial environments in the mountain ranges of the United States are hotspots for biological activity and processing of organic carbon.

  17. Magnetic signatures of the orogenic crust of the Patagonian Andes with implication for planetary exploration

    NASA Astrophysics Data System (ADS)

    Díaz Michelena, Marina; Kilian, Rolf

    2015-11-01

    The Patagonian Andes represent a good scenario of study because they have outcrops of diverse plutonic rocks representative of an orogenic crust on Earth and other planets. Furthermore, metamorphic surface rocks provide a window into deeper crustal lithologies. In such remote areas, satellite and aerial magnetic surveys could provide important geological information concerning exposed and not exposed rocks, but they integrate the magnetic anomalies in areas of kilometres. For the southernmost Andes long wavelength satellite data show clear positive magnetic anomalies (>+100 nT) for the Patagonian Batholith (PB), similar as parts of the older martian crust. This integrated signal covers regions with different ages and cooling histories during magnetic reversals apart from the variability of the rocks. To investigate the complex interplay of distinct magnetic signatures at short scale, we have analysed local magnetic anomalies across this orogen at representative sites by decimeter-scale magnetic ground surveys. As expected, the investigated sites have positive and negative local anomalies. They are related to surface and subsurface rocks, and their different formation and alternation processes including geomagnetic inversions, distinct Curie depths of the magnetic carriers, intracrustal deformation among other factors. Whole rock chemistry (ranging from 45 to >80 wt.% SiO2 and from 1 to 18 wt.% FeOtot.), magnetic characteristics (susceptibilities, magnetic remanence and Königsberger ratios) as well as the composition and texture of the magnetic carriers have been investigated for representative rocks. Rocks of an ultramafic to granodioritic intrusive suite of the western and central PB contain titanomagnetite as major magnetic carrier. Individual magnetic signatures of these plutonic rocks reflect their single versus multidomain status, complex exolution processes with ilmenite lamella formations and the stoichiometric proportions of Cr, Fe and Ti in the oxides. At the eastern margin of the PB the investigated plutons and mafic dykes have been emplaced and equilibrated at 4-6 km depth. They do not contain magnetite but include variable amounts of ferrimagnetic monoclinic C4 pyrrhotite, which was formed along fractures zones by a hydrothermal gold-bearing mineralisation. The intensity of their positive magnetic anomalies (up to +220 nT) is well correlated with the amount of pyrrhotite (1-4 vol.%). In all cases, high resolution ground surveys variations of the magnetic signature down to 20 nT could be used to clearly distinguish different rock types on a decimeter scale. Vector magnetometer MOURA designed for martian exploration was successfully used for these surveys and provides results comparable to a commonly used caesium scalar magnetometer. This is important for near future ground surveys on Mars and the Moon.

  18. Igneous stratigraphy and rock-types from a deep transect of the gabbroic lower crust of the Atlantis Bank core complex (SW Indian Ridge): preliminary results from IODP Expedition 360

    NASA Astrophysics Data System (ADS)

    Sanfilippo, A.; France, L.; Ghosh, B.; Liu, C. Z.; Morishita, T.; Natland, J. H.; Dick, H. J.; MacLeod, C. J.; Expedition 360 Scientists, I.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling programme ('SloMo' project) aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. As an initial phase of the SloMo project, IODP Exp. 360 intended to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. During this expedition, 89 cores of gabbroic rocks were recovered at Hole U1473A, drilled to 789.7 m below seafloor. This hole was subsequently deepened to 809.4 mbsf during transit Expedition 362T, which recovered additional 7 cores. The gabbroic section recovered at Hole U1473A consists of several types of gabbro, diabase, and felsic veins. The main lithology is dominated by olivine gabbro (76.5% in abundance), followed by gabbro containing 1-2% oxide (9.5%), gabbro with >2% oxide (7.4%), gabbro sensu stricto (5.1%), felsic veins (1.5%) and diabase (<0.5%). The different lithologies appear randomly distributed throughout the section, although oxide abundance seems to decrease slightly downhole, except for the lowermost intervals where oxide gabbros are more abundant. Based on changes in rock types, grain size, texture, and the occurrence of felsic material, we identified eight lithologic units, which locally define separate geochemical trends. Each unit is characterized by meter-scale heterogeneity which classically characterizes gabbros formed at slow spreading ridges. Reaction textures in olivine gabbros, crosscutting relationships between oxide gabbros and host rocks, the presence of intrusive to sutured contacts, igneous layering and the widespread occurrence of felsic veins and segregations indicate that the evolution of this section was controlled by complicated interactions of magmatic processes, e.g., fractional crystallization, melt-rock reaction, late-stage melt migration, which were active in a crystal mush formed by multiple injections of magma. This contribution describes the main features of these rocks and discusses the complexity of the igneous processes producing this 800 m-long transect of oceanic crust that was formed in a robust magmatic segment of an ultraslow spreading ridge.

  19. Generation of felsic rocks of bimodal volcanic suites from thinned and rifted continental margins: Geochemical and Nd, Sr, Pb-isotopic evidence from Haida Gwaii, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Dostal, Jaroslav; Hamilton, Tark S.; Shellnutt, J. Gregory

    2017-11-01

    The compositionally bimodal volcanic rocks of the Eocene-Miocene Masset Formation from Queen Charlotte basin, Haida Gwaii, British Columbia, Canada, underlie an area greater than 5000 km2 where their exposed sections are up to 1.6 km thick. The suite of mafic and felsic rocks (dacites and rhyolites) that erupted closely spaced in time, in both submarine and subaerial conditions, was associated with significant crustal extension and thin continental crust ( 19-24 km thick), with volcanism persisting for 35 Ma (from 46 to 11 Ma). Predominant mafic types (mafic:felsic 2:1) are moderately enriched mid-ocean-ridge-like basalts that were derived by a partial melting of a heterogeneous spinel peridotite source. Felsic rocks are plagioclase-phyric, two pyroxene-bearing, mainly peraluminous types which have Nd, Pb and Sr isotopic compositions overlapping those of basalts including high positive ƐNd(t) values (up to >+6). The chondrite-normalized REE patterns show light REE enrichment but flat heavy REE along with a variable negative Eu anomaly. Mineralogy, major and trace elements, Nd-Sr-Pb isotopic data and model calculations using MELTS are consistent with a derivation of felsic rocks from the basalts by fractional crystallization. The intercalation of basaltic and felsic rocks suggests the existence of separate, simultaneously active plumbing and feeder systems and relatively stable magma chamber(s) to generate large volumes of differentiated felsic magmas by fractional crystallization. The Masset rocks provide an example for the generation of felsic magmas of bimodal volcanic suites during rifting along a thinned continental margin. Appendix 1b Representative analyses of minerals of the Masset Formation felsic rocks

  20. Results from the Mars Pathfinder camera.

    PubMed

    Smith, P H; Bell, J F; Bridges, N T; Britt, D T; Gaddis, L; Greeley, R; Keller, H U; Herkenhoff, K E; Jaumann, R; Johnson, J R; Kirk, R L; Lemmon, M; Maki, J N; Malin, M C; Murchie, S L; Oberst, J; Parker, T J; Reid, R J; Sablotny, R; Soderblom, L A; Stoker, C; Sullivan, R; Thomas, N; Tomasko, M G; Wegryn, E

    1997-12-05

    Images of the martian surface returned by the Imager for Mars Pathfinder (IMP) show a complex surface of ridges and troughs covered by rocks that have been transported and modified by fluvial, aeolian, and impact processes. Analysis of the spectral signatures in the scene (at 440- to 1000-nanometer wavelength) reveal three types of rock and four classes of soil. Upward-looking IMP images of the predawn sky show thin, bluish clouds that probably represent water ice forming on local atmospheric haze (opacity approximately 0.5). Haze particles are about 1 micrometer in radius and the water vapor column abundance is about 10 precipitable micrometers.

  1. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  2. Effect of Small Numbers of Test Results on Accuracy of Hoek-Brown Strength Parameter Estimations: A Statistical Simulation Study

    NASA Astrophysics Data System (ADS)

    Bozorgzadeh, Nezam; Yanagimura, Yoko; Harrison, John P.

    2017-12-01

    The Hoek-Brown empirical strength criterion for intact rock is widely used as the basis for estimating the strength of rock masses. Estimations of the intact rock H-B parameters, namely the empirical constant m and the uniaxial compressive strength σc, are commonly obtained by fitting the criterion to triaxial strength data sets of small sample size. This paper investigates how such small sample sizes affect the uncertainty associated with the H-B parameter estimations. We use Monte Carlo (MC) simulation to generate data sets of different sizes and different combinations of H-B parameters, and then investigate the uncertainty in H-B parameters estimated from these limited data sets. We show that the uncertainties depend not only on the level of variability but also on the particular combination of parameters being investigated. As particular combinations of H-B parameters can informally be considered to represent specific rock types, we discuss that as the minimum number of required samples depends on rock type it should correspond to some acceptable level of uncertainty in the estimations. Also, a comparison of the results from our analysis with actual rock strength data shows that the probability of obtaining reliable strength parameter estimations using small samples may be very low. We further discuss the impact of this on ongoing implementation of reliability-based design protocols and conclude with suggestions for improvements in this respect.

  3. Geologic map of the Kechumstuk fault zone in the Mount Veta area, Fortymile mining district, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O’Neill, J. Michael; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Siron, Christopher R.

    2014-01-01

    This map was developed by the U.S. Geological Survey Mineral Resources Program to depict the fundamental geologic features for the western part of the Fortymile mining district of east-central Alaska, and to delineate the location of known bedrock mineral prospects and their relationship to rock types and structural features. This geospatial map database presents a 1:63,360-scale geologic map for the Kechumstuk fault zone and surrounding area, which lies 55 km northwest of Chicken, Alaska. The Kechumstuk fault zone is a northeast-trending zone of faults that transects the crystalline basement rocks of the Yukon-Tanana Upland of the western part of the Fortymile mining district. The crystalline basement rocks include Paleozoic metasedimentary and metaigneous rocks as well as granitoid intrusions of Triassic, Jurassic, and Cretaceous age. The geologic units represented by polygons in this dataset are based on new geologic mapping and geochronological data coupled with an interpretation of regional and new geophysical data collected by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. The geochronological data are reported in the accompanying geologic map text and represent new U-Pb dates on zircons collected from the igneous and metaigneous units within the map area.

  4. Geological evolution of the Iraqi Mesopotamia Foredeep, inner platform and near surroundings of the Arabian Plate

    NASA Astrophysics Data System (ADS)

    Sissakian, Varoujan K.

    2013-08-01

    The Iraqi territory could be divided into four main tectonic zones; each one has its own characteristics concerning type of the rocks, their age, thickness and structural evolution. These four zones are: (1) Inner Platform (stable shelf), (2) Outer Platform (unstable shelf), (3) Shalair Zone (Terrain), and (4) Zagros Suture Zone. The first two zones of the Arabian Plate lack any kind of metamorphism and volcanism. The Iraqi territory is located in the extreme northeastern part of the Arabian Plate, which is colliding with the Eurasian (Iranian) Plate. This collision has developed a foreland basin that includes: (1) Imbricate Zone, (2) High Folded Zone, (3) Low Folded Zone and (4) Mesopotamia Foredeep. The Mesopotamia Foredeep, in Iraq includes the Mesopotamia Plain and the Jazira Plain; it is less tectonically disturbed as compared to the Imbricate, High Folded and Low Folded Zones. Quaternary alluvial sediments of the Tigris and Euphrates Rivers and their tributaries as well as distributaries cover the central and southeastern parts of the Foredeep totally; it is called the Mesopotamian Flood Plain. The extension of the Mesopotamia Plain towards northwest however, is called the Jazira Plain, which is covered by Miocene rocks. The Mesopotamia Foredeep is represented by thick sedimentary sequence, which thickens northwestwards including synrift sediments; especially of Late Cretaceous age, whereas on surface the Quaternary sediments thicken southeastwards. The depth of the basement also changes from 8 km, in the west to 14 km, in the Iraqi-Iranian boarders towards southeast. The anticlinal structures have N-S trend, in the extreme southern part of the Mesopotamia Foredeep and extends northwards until the Latitude 32°N, within the Jazira Plain, there they change their trends to NW-SE, and then to E-W trend. The Mesozoic sequence is almost without any significant break, with increase in thickness from the west to the east, attaining 5 km. The sequence forms the main source and reservoir rocks in the central and southern parts of Iraq. The Cenozoic sequence consists of Paleogene open marine carbonates, which grades upwards into Neogene lagoonal marine; of Early Miocene and evaporitic rocks; of Middle Miocene age, followed by thick molasses of continental clastics that attain 3500 m in thickness; starting from Late Miocene. The Quaternary sediments are very well developed in the Mesopotamia Plain and they thicken southwards to reach about 180 m near Basra city; in the extreme southeastern part of Iraq. The Iraqi Inner Platform (stable shelf) is a part of the Arabian Plate, being less affected by tectonic disturbances; it covers the area due to south and west of the Euphrates River. The main tectonic feature in this zone that had affected on the geology of the area is the Rutbah Uplift; with less extent is the Ga'ara High. The oldest exposed rocks within the Inner Platform belong to Ga'ara Formation of Permian age; it is exposed only in the Ga'ara Depression. The Permian rocks are overlain by Late Triassic rocks; represented by Mulussa and Zor Hauran formations, both of marine carbonates with marl intercalations. The whole Triassic rocks are absent west, north and east of Ga'ara Depression. Jurassic rocks, represented by five sedimentary cycles, overlie the Triassic rocks. Each cycle consists of clastic rocks overlain by carbonates, being all of marine sediments; whereas the last one (Late Jurassic) consists of marine carbonates only. All the five formations are separated from each other by unconformable contacts. Cretaceous rocks, represented by seven sedimentary cycles, overlie the Jurassic rocks. Marine clastics overlain by marine carbonates. Followed upwards (Late Cretaceous) by continental clastics overlain by marine carbonates; then followed by marine carbonates with marl intercalations, and finally by marine clastics overlain by carbonates; representing the last three cycles, respectively. The Paleocene rocks form narrow belt west of the Ga'ara Depression, represented by Early-Late Paleocene phosphatic facies, which is well developed east of Rutbah Uplift and extends eastwards in the Foredeep. Eocene rocks; west of Rutbah Uplift are represented by marine carbonates that has wide aerial coverage in south Iraq. Locally, east of Rutbah Uplift unconformable contacts are recorded between Early, Middle and Late Eocene rocks. During Oligocene, in the eastern margin of the Inner Platform, the Outer Platform was uplifted causing very narrow depositional Oligocene basin. Therefore, very restricted exposures are present in the northern part of the Inner Platform (north of Ga'ara Depression), represented by reef, forereef sediments of some Oligocene formations. The Miocene rocks have no exposures west of Rutbah Uplift, but north and northwestwards are widely exposed represented by Early Miocene of marine carbonates with marl intercalations. Very locally, Early Miocene deltaic clastics and carbonates, are interfingering with the marine carbonates. The last marine open sea sediments, locally with reef, represent the Middle Miocene rocks and fore reef facies that interfingers with evaporates along the northern part of Abu Jir Fault Zone, which is believed to be the reason for the restriction of the closed lagoons; in the area. During Late Miocene, the continental phase started in Iraq due to the closure of the Neo-Tethys and collision of the Sanandaj Zone with the Arabian Plate. The continental sediments consist of fine clastics. The Late Miocene - Middle Pliocene sediments were not deposited in the Inner Platform. The Pliocene-Pleistocene sediments are represented by cyclic sediments of conglomeratic sandstone overlain by fresh water limestone, and by pebbly sandstone. The Quaternary sediments are poorly developed in the Inner Platform. Terraces of Euphrates River and those of main valleys represent pleistocene sediments. Flood plain of the Euphrates River and those of large valleys represent Holocene sediments. Residual soil is developed, widely in the western part of Iraq, within the western marginal part of the Inner Platform.

  5. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.

    2017-03-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  6. An Experimental Study of Cutting Performances of Worn Picks

    NASA Astrophysics Data System (ADS)

    Dogruoz, Cihan; Bolukbasi, Naci; Rostami, Jamal; Acar, Cemil

    2016-01-01

    The best means to assess rock cuttability and efficiency of cutting process for using mechanical excavation is specific energy (SE), measured in full-scale rock cutting test. This is especially true for the application of roadheaders, often fitted with drag-type cutting tools. Radial picks or drag bits are changed during the operation as they reach a certain amount of wear and become blunt. In this study, full-scale cutting tests in different sedimentary rock types with bits having various degree of wear were used to evaluate the influence of bit wear on cutting forces and specific energy. The relationship between the amount of wear as represented by the size of the wear flats at the tip of the bit, and cutting forces as well as specific energy was examined. The influence of various rock properties such as mineral content, uniaxial compressive strength, tensile strength, indentation index, shore hardness, Schmidt hammer hardness, and density with required SE of cutting using different levels of tool wear was also studied. The preliminary analysis of the data shows that the mean cutting forces increase 2-3 times and SE by 4-5 times when cutting with 4 mm wear flat as compared to cutting with new or sharp wedge shape bits. The grain size distribution of the muck for cutting different rock types and different level of bit wear was analyzed and discussed. The best fit prediction models for SE based on statistical analysis of laboratory test results are introduced. The model can be used for estimating the performance of mechanical excavators using radial tools, especially roadheaders, continuous miners and longwall drum shearers.

  7. Estimating regional-scale permeability–depth relations in a fractured-rock terrain using groundwater-flow model calibration

    USGS Publications Warehouse

    Sanford, Ward E.

    2017-01-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1–10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40–60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at <300 m than the regional modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  8. A new species of Leptodactylus Fitzinger (Anura, Leptodactylidae, Leptodactylinae) from montane rock fields of the Chapada Diamantina, northeastern Brazil.

    PubMed

    De Carvalho, Thiago Ribeiro; Leite Felife Sa Fortes; Pezzuti, Tiago Leite

    2013-01-01

    In this paper, we describe a new species of the Leptodactylusfuscus group on the basis of adult morphology and advertisement call, occurring restricted to montane rock fields of the Chapada Diamantina, northern portion of the Espinhaço Range, central State of Bahia, northeastern Brazil. In addition, we re-describe the advertisement call ofL. camaquara from its type locality. Leptodactylus oreomantis sp. nov. represents the first species of the genus occurring restricted to montane rock fields of the Chapada Diamantina, northeastern Brazil, whereas the other three species of the L. fuscus group assumed to be restricted to montane field environments (L. camaquara, L. cunicularius, and L. tapiti) occur in association with mountain ranges of southeastern or central Brazil.

  9. Late Carboniferous to Early Permian magmatic pulses in the Uliastai continental margin linked to slab rollback: Implications for evolution of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Wang, Qingfei; Tao, Jixiong; Santosh, M.; Ma, Tengfei; Zhao, Rui

    2018-05-01

    The Paleo Asian Ocean underwent a protracted closure history during Late Paleozoic. Here we investigate the magmatic evolution during this process based on a detailed study in the Baiyinwula region along the Uliastai continental margin. The major rock types in this area are Late Carboniferous-Early Permian volcanic sequences and coeval intrusions. We identified four stages of magmatic evolution based on the diverse assemblages and their precise isotopic ages. The first stage is represented by andesites with a zircon 206Pb/238U age of ca. 326 ± 12 Ma. These rocks are metaluminous to weakly peraluminous, high-K calc-alkaline, and possess high Na2O/K2O ratios in the range of 1.23 to 2.45. They also display enrichment of large ion lithophile elements (LILE) and depletion of high field strength elements (HFSE), with markedly positive zircon εHf (t) varying from 8.1 to 15.6.The geochemical features of these andesites are similar to those of typical arc volcanic rocks. The second stage includes granodiorites emplaced at 318.6 + 1.8 Ma. The rocks are high-K calc-alkaline with A/CNK values ranging from 0.95 to 1.06, and show enrichment in LILE and depletion in HFSE. They show geochemical affinities to adakites, with high Sr and low Y and Yb contents, indicating magma derivation from thickened lower crust. Zircon grains from these rocks display positive initial εHf (t) values ranging from 11.1 to 14.6 with corresponding two-stage Hf model ages (TDM2) of 394-622 Ma. The third stage consists of syenogranite together with a volcanic suite ranging in composition from rhyolite todacite, which formed during 303.4 ± 1.2 to 285.1 ± 2.2 Ma. They possess elevated silica and alkali contents, high FeOt/MgO and Ga/Al ratios, low Al2O3, MgO and CaO contents, and high Rb, Y, Nb, Ce, Zr, Y, and Ga contents, strong negative Ba, Sr and Eu anomalies, showing I- to A-type granitic affinities. Zircons in these rocks show elevated Hf isotopic compositions (εHf (t) = 9.9 to 14.6) with TDM2 varying from 324 to 673 Ma. The fourth magmatic pulse is represented by K-feldspar granite with zircon U-Pb ages from 283.2 ± 1.9 Ma to 280.0 ± 1.4 Ma, and typical alkalic A-type granite geochemistry. These rocks possess positive εHf (t) values in the range of 9.7 to15.2, and a restricted range of Hf model age from 327 to 684 Ma. The magmatic rocks from the four stages show comparable εHf (t) and T2DM, suggesting that the magmas were derived from the same evolving mantle-derived source. We propose a tectonic model linking the evolution of the magmatism with the closure of the Paleo Asian Ocean that involved the following stages. The andesites were formed during the initial oceanic subduction stage with magma sourced from the metasomatized lithospheric mantle. Stage 2 adakite-like rocks were derived from subduction-induced thickened crust. Subsequent slab rollback resulted in asthenospheric upwelling and melting of residual juvenile crust to generate the I- and A- type syenogranite, rhyolite and dacite suite, finally followed by the A-type K-feldspar granite.

  10. A quantitative analysis of rock cliff erosion environments

    NASA Astrophysics Data System (ADS)

    Lim, M.; Rosser, N.; Petley, D. N.; Norman, E. C.; Barlow, J.

    2009-12-01

    The spatial patterns and temporal sequencing of failures from coastal rock cliffs are complex and typically generate weak correlations with environmental variables such as tidal inundation, wave energy, wind and rain. Consequently, understanding of rock cliff behaviour, its response to predicted changes in environmental forcing and, more specifically, the interaction between marine and climatic factors in influencing failure processes has remained limited. This work presents the results from the first attempt to characterise and quantify the conditions on coastal cliffs that lead to accelerated rates of material detachment. The rate of change in an 80 m high section of coastal rock cliffs has been surveyed annually with high-resolution terrestrial laser scanning (TLS). The rockfall data have been analysed according to a simplified source geology that exhibit distinct magnitude-frequency distributions relating to the dominance of particular failure types. An integrated network of sensors and instrumentation designed to reflect the lithological control on failure has been installed to examine both the distinction between prevailing conditions and those affecting the local cliff environment and the physical response of different rock types to micro-climatic processes. The monitoring system records near-surface rock strain, temperature, moisture and micro-seismic displacement in addition to air temperature, humidity, radiation, precipitation, water-level and three-dimensional wind characteristics. A characteristic environmental signal, unique to the cliff face material, has been identified that differs substantially from that experienced by the surrounding area; suggesting that established methods of meteorological and tidal data collection are insufficient and inappropriate to represent erosive processes. The interaction between thermo- and hydro-dynamics of the cliff environment and the physical response of the rock highlights the composite environmental effects acting on the rock mass and provides a new interpretation on the dominant controls on the behaviour of coastal rock cliffs that challenges the almost universal application of undercutting and cantilever collapse as the primary driver of rock cliff erosion.

  11. Fluid inclusions in jadeitite and jadeite-rich rock from serpentinite mélanges in northern Hispaniola: Trapped ambient fluids in a cold subduction channel

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuhiko; Hertwig, Andreas; Schertl, Hans-Peter; Maresch, Walter V.

    2018-05-01

    Freezing-point depression was measured in aqueous fluid inclusions to determine salinities in six samples of jadeitite and jadeite-rich rock from the Jagua Clara serpentinite mélange of the Rio San Juan Complex, Dominican Republic. The mélange represents a fossil subduction-zone channel from a cold, mature subduction zone with a geothermal gradient of 6 °C/km. One hundred and twenty-five determinations of salinity in primary inclusions hosted in jadeite, quartz, apatite and lawsonite range between extremes of 1.2 and 8.7, but yield a well-defined mean of 4.5 ± 1.1 wt% (±1 s.d.) NaCl equiv, slightly higher than mean seawater (3.5 wt%). In one sample, eight additional fluid inclusions in quartz aligned along grain boundaries yield slightly lower values of 2.7 ± 1.3 wt% NaCl equiv. Homogenization temperatures were also measured for 47 fluid inclusions in two samples, but primary entrapment densities are not preserved. It is significant that the suite includes two types of samples: those precipitated directly from an aqueous fluid as well as examples of metasomatic replacement of a pre-existing magmatic rock. Nevertheless, the results indicate identical salinity for both types and suggest a much stronger genetic link between the two types of jadeitite and jadeite-rich rock than has previously been assumed. Based on the results of conductivity measurements in modern subduction zones, we envision a pervasive fluid in the subduction channel that evolved from salinity levels lower than those in sea-water up to the measured values due to on-going but largely completed serpentinization in the subduction channel. The present data represent a reference marker for the subduction channel of the Rio San Juan intra-oceanic subduction zone at 30-50 km depth and after 50-60 Myr of operation.

  12. Nature and geodynamic setting of the protoliths of the UHP metamorphic Complex and migmatites in Bixiling area, the Dabie Orogen, China

    NASA Astrophysics Data System (ADS)

    Li, H.; Jahn, B.; Wang, D.; Yu, H.; Liu, Z.; Hou, G.

    2013-12-01

    As the largest coesite-bearing mafic-ultramafic body in the Dabie-Sulu orogen, the Bixiling Complex is composed of meta-ultramafic rocks, MgAl-rich eclogites and FeTi-rich eclogites. The FeTi-rich eclogites are further divided into low-Si-high-Fe type (Type I) and high-Si-low-Fe type (Type II) according to their mineral assemblages and bulk chemical composition. Field, petrographic, petrological and geochemical characteristics of these rocks, although suffered an ultra-high pressure metamorphism, still show a magmatic differentiation process among the protoliths of the meta-ultramafic rocks, MgAl-rich eclogites and Type I FeTi-rich eclogites. A small degree of lower crustal contamination occurred during their magma chamber process. Amphibolite is widespread in the periphery of the complex. Non-foliation and fine-grained texture are their obvious characteristics. Geochemical and isotopic affinities suggest that the amphibolites represent a product of complete retrogression from type II FeTi-rich eclogites. The UHP complex is enclosed in granitic gneisses, which variably include two-mica plagioclase gneiss, epidote two-mica plagioclase gneiss, or white-mica plagioclase gneiss. They all show TTG, especially trondjhemitic composition. A migmatite outcrop was found near the northeastern end of the complex. The migmatites consist of dark colored, non-foliated amphibolites and light-colored, fine-grained trondhjemitic gneisses. Field occurrences, microstructures observed under optical microscope and SEM, Sr-Nd isotopic data suggest an origin of partial melting. Chemical composition of two stages of amphiboles occurred in both the amphibolites and the trondhjemitic gneisses also imply a partial melting process occurred. Trace element, Sr-Nd isotope and SHRIMP zircon U-Pb dating of MgAl-rich eclogite, amphibolites and trondhjemite suggest that the migmatites represent a partial melting of crustal materials at about 780Ma, possibly accompanied by the coeval emplacement of a differentiated mafic intrusive body. These rocks were deeply subducted into a mantle depth during the Triassic continental collision between the Yangtze Craton and North China Craton, and thereafter were exhumed to the surface. Their residual geochemical characteristics and spatial / temporal relationship could impose constraints on the tectonic evolution of the Dabieshan UHP terrane.

  13. Rock types of South Pole-Aitken basin and extent of basaltic volcanism

    USGS Publications Warehouse

    Pieters, C.M.; Head, J. W.; Gaddis, L.; Jolliff, B.; Duke, M.

    2001-01-01

    The enormous pre-Nectarian South Pole-Aitken (SPA) basin represents a geophysically and compositionally unique region on the Moon. We present and analyze the mineralogical diversity across this basin and discuss the implications for basin evolution. Rock types are derived from Clementine multispectral data based on diagnostic characteristics of ferrous absorptions in fresh materials. Individual areas are characterized as noritic (dominated by low-Ca pyroxene), gabbroic/basaltic (dominated by high-Ca pyroxene), feldspathic (<3-6% FeO), and olivine-gabbro (dominated by high-Ca pyroxene and olivine). The anorthositic crust has effectively been removed from the interior of the basin. The style of volcanism within the basin extends over several 100 Myr and includes mare basalt and pyroclastic deposits. Several areas of ancient (pre-Orientale) volcanism, or cryptomaria, have also been identified. The nonmare mafic lithology that occurs across the basin is shown to be noritic in composition and is pervasive laterally and vertically. We interpret this to represent impact melt/breccia deposits derived from the lower crust. A few localized areas are identified within the basin that contain more diverse lithologies (gabbro, olivine-gabbro), some of which may represent material from the deepest part of the lower crust and perhaps uppermost mantle involved in the SPA event. Copyright 2001 by the American Geophysical Union.

  14. Multispectral Imaging from Mars PATHFINDER

    NASA Technical Reports Server (NTRS)

    Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.

    2007-01-01

    The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.

  15. Prospecting for Diverse Igneous Rock Types on Mars: Pixl on "black Beauty" Nwa 7533

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Flannery, D.; Allwood, A.; Thompson, D. R.; Hodyss, R. P.; Clark, B. C.; Elam, W. T.; Hurowitz, J.

    2015-12-01

    In order to understand the evolution of the Martian crust and mantle, we need to acquire and analyze samples of igneous rocks other than the basaltic and ultramafic lithologies represented by the majority of Martian meteorites. Recent results from the Curiosity Rover demonstrate that diverse rock types exist in some Martian sedimentary environments in the form of conglomerate components or float, some of which shed light on the nature of early Martian crust (e.g., Sautter et al., 2015). We are developing investigation strategies for the in-situ instruments that will be flown on the Mars 2020 rover. These instruments will be used to inform the sampling campaigns required for future sample return missions. To achieve this, we applied PIXL (Planetary Instrument for X-ray Lithochemistry), an instrument for the Mars 2020 rover mission, to the meteorite NWA 7533. This meteorite is a pairing of NWA 7034, known informally as "Black Beauty", a new type of Martian meteorite that is broadly similar to the average composition of the Martian crust. This type of meteorite is essentially a 'conglomerate', with many diverse rock types, including mafic, feldspathic, and exotic rock fragments such as feldspar-ilmenite-phosphate clasts, as observed using higher-spatial resolution and higher sensitivity laboratory instruments (e.g., Agee et al., 2013; Humayun et al., 2014; Santos et al., 2015). Using PIXL, we analyzed a mm-scale cut and polished surface and applied algorithms developed by the PIXL team to semi-autonomously define and group regions containing similar lithological components (Thompson et al., 2015). PIXL data rapidly reveal distinctive zircon-bearing lithologies and feldspar-ilmenite-phosphate clasts similar to the detailed petrographic and mineralogical observations. Results suggest that PIXL readily identifies lithologies with minerals and elements (e.g., Rb and Sr) that are important for geochronology studies.

  16. Thermal Inertia of Rocks and Rock Populations and Implications for Landing Hazards on Mars

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    Rocks represent an obvious potential hazard to a landing spacecraft. They also represent an impediment to rover travel and objects of prime scientific interest. Although Mars Orbiter Camera (MOC) images are of high enough resolution to distinguish the largest rocks (an extremely small population several meters diameter or larger), traditionally the abundance and distribution of rocks on Mars have been inferred from thermal inertia and radar measurements, our meager ground truth sampling of landing sites, and terrestrial rock populations. In this abstract, we explore the effective thermal inertia of rocks and rock populations, interpret the results in terms of abundances and populations of potentially hazardous rocks, and conclude with interpretations of rock hazards on the Martian surface and in extremely high thermal inertia areas.

  17. Surface Properties and Characteristics of Mars Landing Sites from Remote Sensing Data and Ground Truth

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.

    2008-12-01

    Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably with 100 m scale topographic slopes extrapolated from altimetry profiles and meter scale slopes from high-resolution stereo images. The third global unit has very low thermal inertia and very high albedo, indicating it is dominated by deposits of bright red atmospheric dust that may be neither load bearing nor trafficable. The landers have thus sampled the majority of likely safe and trafficable surfaces that cover most of Mars and show that remote sensing data can be used to infer the surface characteristics, slopes, and surface materials present at other locations.

  18. The ancient lunar crust, Apollo 17 region

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1992-01-01

    The Apollo 17 highland collection is dominated by fragment-laden melt rocks, generally thought to represent impact melt from the Serenitatis basin-forming impact. Fortunately for our understanding of the lunar crust, the melt rocks contain unmelted clasts of preexisting rocks. Similar ancient rocks are also found in the regolith; most are probably clasts eroded out of melt rocks. The ancient rocks can be divided into groups by age, composition, and history. Oldest are plutonic igneous rocks, representing the magmatic components of the ancient crust. The younger are granulitic breccias, which are thoroughly recrystallized rocks of diverse parentages. The youngest are KREEPy basalts and felsites, products of relatively evolved magmas. Some characteristics of each group are given.

  19. The post-collisional late Variscan ferroan granites of southern Sardinia (Italy): Inferences for inhomogeneity of lower crust

    NASA Astrophysics Data System (ADS)

    Conte, Aida Maria; Cuccuru, Stefano; D'Antonio, Massimo; Naitza, Stefano; Oggiano, Giacomo; Secchi, Francesco; Casini, Leonardo; Cifelli, Francesca

    2017-12-01

    The post-collisional late Variscan magmatism of Sardinia-Corsica batholith attained a peak at about 290 Ma. In southern Sardinia, in the frontal part of the Variscan orogenic wedge, this magmatism is represented by three suites of granitoids, here defined as GS1, GS2 and GS3. GS1, GS2 and GS3 are slightly peraluminous and F-bearing granitoids; GS1 and GS3 granites show in addition a ferroan character, whereas GS2 rocks range from magnesian to ferroan, from granodiorites to leucogranites. From magnetic susceptibility data, GS1 and GS2 belong to the ilmenite series, whereas GS3 is a slightly oxidized rock-suite plotting on the ilmenite/magnetite series boundary. Each rock-suite shows distinctive characters, in terms of petrography, petrochemistry, rock associations, as well as metallogenic signature of the related fluids. The distinction among rock-suite types is made on the basis of both mafic and characteristic accessory minerals. Siderophyllitic dark mica as the only mafic phase, and accessory xenotime (Y) characterize the GS1 rocks; GS2 mineral associations include biotite ± hornblende + allanite + magnetite; GS3 rocks show an association of hastingsite + annite + allanite + magnetite. Chemical variations in the studied samples suggest different magmatic evolution of independent magmas. Pb, Sr and Nd isotopic data constrain the origin of magmas to lower crustal sources. Chemical composition of rocks and dark micas meet those of liquids experimentally obtained by low degrees of partial melting of different meta-igneous deep crustal sources, felsic for GS1 rock-types and more mafic for GS3 rock-types. GS1 intrusions show granophile-type (Sn-W-Mo) metallogenic signatures, very low magnetic susceptibility, and Nd model ages (referred to the Depleted Mantle - TDM) of 2.3 Ga, coherent with a possible derivation from an old (early Proterozoic-Neoarchean), reduced and weathered basement, tectonically buried under Variscan covers. A definite deep crustal inhomogeneity is mirrored by GS3 granites, whose compositional and isotopic features indicate a younger (Nd model age: 1.6 Ga) tonalitic amphibolite source. Overall, the peculiarities of the studied granitoids suggest further compositional differences in the deep crust between southern and northern portion of the Sardinia-Corsica Variscan transect. Late Variscan lithospheric delamination appears as the most reliable mechanism that may have determined the high thermal regime that triggered partial melting of the crust. The close field association, at 290 Ma, of tholeiitic dike swarms and ferroan granitoids, supports this inference.

  20. Paleoproterozoic Keulik-Kenirim Ore-Bearing Gabbro-Peridotite Complex, Kola Region: A New Occurrence of Ferropicritic Magmatism

    NASA Astrophysics Data System (ADS)

    Smolkin, V. F.; Lokhov, K. I.; Skublov, S. G.; Sergeeva, L. Yu.; Lokhov, D. K.; Sergeev, S. A.

    2018-03-01

    Comprehensive research of ore-bearing differentiated intrusions of the Keulik-Kenirim structural unit, which represents a fragment of the Paleoproterozoic Pechenga-Varzuga Belt, has been carried out for the first time. The intrusions are subvolcanic by type and lenticular in shape, nearly conformable and steeply dipping. They are made up of peridotite, olivine and plagioclase pyroxenites, and gabbro metamorphosed under amphibolite facies conditions along with host basic volcanics. All intrusive rocks are enriched in TiO2 and FeO. Sulfide Cu-Ni mineralization is represented by disseminated, pocket, and stringer-disseminated types, which are clustered in the peridotitic zone as hanging units and bottom lodes. The Ni content in disseminated ore is estimated at 0.45-0.55 wt % and 1.15-3.32 wt % in ore pockets; the Cu grades are 0.17-0.20 and 0.46-5.65 wt %, respectively. To determine the age of intrusions and metamorphism of intrusive and volcanic rocks, various isotopic systems have been used: Sm-Nd (TIMS) in rock and U-Pb (SIMS SHRIMP) and Lu-Hf (LA-ICP-MS) in zircon. Conclusions on the origin of zircons are based on concentrations of trace elements including REE therein and Hf-Nd correlation in zircons and rocks. The U-Pb system of zircons reflects episodes of igneous rock formation (1982 ± 12 Ma) and their postmagmatic transformation (1938 ± 20 Ma). The last disturbance of the U-Pb isotopic system occurred 700 and 425 Ma. Xenogenic zircons dated from 3.17 to 2.65 Ga have been revealed in the studied samples. These zircons were captured by magma from the Archean basement during its ascent. The intrusions were emplaced synchronously with economic ore formation in the Pechenga ore field (1985 ± 10 Ma). The peak metamorphism of intrusive rocks under amphibolite facies conditions is recorded at 40 Ma later. The differentiated intrusions of the Keulik-Kenirim structural unit are close in their internal structure, mineralogy, and geochemistry, as well as in age and features of related Cu-Ni mineralization to ore-bearing intrusions of the Pechenga ore field, which are derivatives of ferropicritic (ferriferous) magmatism.

  1. Fluid evolution of Au-Cu zones in Um Balad area, North Eastern Desert of Egypt: Implications from mineral chemistry and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, Mohamed; Salem, Ibrahim; Slobodník, Marek; Ragab, Ahmed

    2018-07-01

    Scanning electron microscope (SEM), Electron microprobe (EMPA) and fluid inclusion studies of the ore body, as well as geochemical analyses of country rocks were performed to determine the nature and characteristics of the mineralizing fluid responsible for Au-Cu deposits in Um Balad area, Northern Eastern Desert of Egypt. The Um Balad Au-Cu deposits are confined to well developed-quartz veins and veinlets cutting through the hosting country rocks. Petrographic and geochemical investigations of the hosting rocks distinguished between two main rock units; 1) metagabbro-diorite rocks with tholeiitic nature derived in island arc/continental margin tectonic regime, and 2) granodiorite rocks formed from calc-alkaline magma in continental margin regime. Wallrock alterations are represented by propylitic and argillic types. The mineralized quartz veins are striking in NE-SW direction and dipping between (35°-45°) in SE direction, other mineralized mafic dykes enriched with auriferous quartz veinlets are trending NE-SW and dipping 70°/SE. The main ore minerals are represented by gold, chalcopyrite, pyrite, sphalerite, malachite, covellite and goethite. While, geffroyite, cuprite, chrysocolla, pseudomalachite, britholite, wolframite, scheelite, hematite and rutile are detected as minor constituents. Fluid inclusions microthermometry and isochore calculations combined with chlorite geothermometry revealed that the Um Balad deposits were formed at temperature ranging from 305 °C to 325 °C and pressure between (100-500 bar). The mineralization had been developed in the shallow levels, beneath the water table at depth of 350-1760 m, rather than common mesothermal vein-type deposits in Egypt. Magmatic water have been suggested as the main source for the mineralized fluid. The transportation of the gold metal seems to be happen as bisulfide complexes in moderately acidic environment. The deposition was resulted from combination of changes in physico-chemical parameters, temperature and pressure plus the instability of the reduced sulfur complexes. A contamination with metamorphic and/or meteoric water was also proposed that has strong influence during the depositional process.

  2. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of amore » ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.« less

  3. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    PubMed

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize AMD, while controlling gas flow and oxygen supply. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Digital Rock Simulation of Flow in Carbonate Samples

    NASA Astrophysics Data System (ADS)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three ranges of wetting properties. The wetting variation affected phase mobility and residual phase saturations for primary oil flood and floods with varying ratios of oil and water.

  5. Petrology and geochemistry of komatiites and tholeiites from Gorgona Island, Colombia

    NASA Astrophysics Data System (ADS)

    Aitken, Bruce G.; Echeverría, Lina M.

    1984-04-01

    Komatiitic rocks from Gorgona Island, Colombia, in contrast to their Archaean counterparts, occur as rather structureless flows. In addition, textural and mineralogical features indicate that the Gorgona komatiites may have crystallized from superheated liquids. Komatiitic rocks have MgO contents which range from 24 to 11 wt.% and plot on well-defined olivine (Fo90) control lines. Calculations show that potential evolved liquids (MgO<11 wt%) will be SiO2-poor. Komatiites, in this case, cannot be regarded as parental to the associated tholeiitic basalt sequence. On the basis of REE concentrations and Sr, Nd isotopic compositions, the associated basalts are found to be of two types. One type (K-tholeiite) is characterized by noticeably fractionated REE patterns and relatively primitive isotopic compositions similar to those of the komatiites. K-tholeiites, together with komatiites, are regarded as comprising a distinctive komatiitic suite. REE patterns within this suite show progressive depletion in the LREE from K-tholeiites to komatiites, and represent increasingly higher degrees of melting of the same mantle source region. The other type (T-tholeiite), representative of the bulk of the exposed basalt sequence, has flat REE patterns and relatively evolved isotopic compositions. This tholeiitic suite is clearly genetically unrelated to the komatiitic suite.

  6. An unconventional depiction of viewpoint in rock art.

    PubMed

    Pettigrew, Jack; Scott-Virtue, Lee

    2015-01-01

    Rock art in Africa sometimes takes advantage of three-dimensional features of the rock wall, such as fissures or protuberances, that can be incorporated into the artistic composition (Lewis-Williams, 2002). More commonly, rock artists choose uniform walls on which two-dimensional depictions may represent three-dimensional figures or objects. In this report we present such a two-dimensional depiction in rock art that we think reveals an intention by the artist to represent an unusual three-dimensional viewpoint, namely, with the two human figures facing into the rock wall, instead of the accustomed Western viewpoint facing out!

  7. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  8. Detection and mapping of hydrothermally altered rocks in the vicinity of the Comstock Lode, Virginia Range, Nevada, using enhanced Landsat images

    USGS Publications Warehouse

    Ashley, Roger P.; Goetz, A.F.H.; Rowan, L.C.; Abrams, M.J.

    1979-01-01

    The Virginia Range, immediately southeast of Reno, Nev., consists mainly of flows, breccias, and turfs of Miocene age. Most of these volcanic rocks are of intermediate composition; rhyodacite is the most common rock type. Basalt, rhyolite and rhyolite tuff, and tuffaceous sedimentary rocks of Miocene and Pliocene age also cover substantial areas in the range. Pre-Tertiary metasedimentary, metavolcanic, and granitic rocks are exposed in scattered inliers, mostly along the southern and eastern margins of the range. Several large areas and many small areas within the volcanic pile were subjected to hydrothermal alteration during and after the period of intermediate volcanic activity. Economic precious metal mineralization is spatially and temporally associated with the hydrothermal alteration in several areas. The most important deposit is the Comstock Lode, which produced 192 million troy ounces of silver and 8.3 million troy ounces of gold from epithermal veins (Bonham, 1969). The hydrothermally altered rocks include silicified, advanced argillic, montmorillonite-bearing argillic, and propylitic types. The first three types typically contain pyrite, and some propylitic rocks contain pyrite as well. Supergene oxidation of these pyritic rocks produces limonitic bleached rocks. The term 'limonite,' as used here, refers to any combination of the minerals hematite, goethite, and Jarosite. Where vegetation cover is sparse to moderate, these limonitic rocks are readily identified on Landsat images enhanced by the color-ratio composite technique developed by Rowan and others (1974), so the altered areas can be mapped. About 30 percent tree cover (here mainly pinyon pine) is sufficient to change the spectral signature of individual picture elements (pixels) enough so that limonitic materials can no longer be uniquely identified. As in all other areas where this technique has been applied, limonitic unaltered rocks with intermediate to high albedos have the same appearance on the color-ratio composite as limonitic altered rocks. This problem represents the most important limitation to the use of enhanced Landsat images for detection and mapping of hydrothermally altered rocks. Reflectance spectra of altered and unaltered rocks taken in the field in the Virginia Range show that most altered rocks have a conspicuous absorption band near 2.2 ?m produced by clay minerals or alunite, whereas unaltered rocks have no features in this spectral region. Thus spectral information for selected bands in the 1.1-2.5 ?m region may allow discrimination between limonitic altered and limonitic unaltered rocks (Rowan and others, 1977; Abrams and others, 1977; Rowan and Abrams, 1978). Another potential limitation is loss of spectral information on slopes with low effective sun angle. Although a minor problem in the Virginia Range, loss of information sufficient to preclude identification of limonitic altered rocks occurs with effective sun angle lower than 20-25 degrees. Thus, even at moderate latitudes substantial parts of areas with high topographic relief may be lost to observation.

  9. Properties of carbonate rocks related to SO2 reactivity

    USGS Publications Warehouse

    Borgwardt, R.H.; Harvey, R.D.

    1972-01-01

    Petrographic examination and grain size-distribution measurements were made on 11 specimens representing a broad spectrum of limestones and dolomites. The SO2 reaction kinetics of calcines prepared from each rock type were determined at 980??C. Stones of various geological types yield calcines of distinctly different physical structures that show correspondingly large differences in both rate of reaction and capacity for SO2 sorption. Pore size and particle size together determine the extent to which the interiors of individual particles react. Particles smaller than 0.01 cm with pores larger than 0.1 ?? react throughout their internal pore structure at a rate directly proportional to the BET surface. The rate decays exponentially as sulfation proceeds until the pores are filled with reaction product. The ultimate capacity of small particles is determined by the pore volume available for product accumulation, which is generally equivalent to about 50% conversion of the CaO in limestones. Variations in effectiveness of carbonate rocks for flue gas desulfurization are explained by the physical properties of their calcines, which are related to the crystal structure of the original rock. The high reaction rates achieved in the limestone injection process apparently result from the large surface area existing for short periods immediately following the dissociation of CaCO3.

  10. Géochimie et cadre géodynamique du volcanisme néoprotérozoïque terminal (vendien) du Haut Atlas occidental, Maroc(Geochemical features and tectonic setting of late Neoproterozoic Vendian volcanism in the western High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Jouhari, A.; El-Archi, A.; Aarab, M.; El-Attari, A.; Ennih, N.; Laduron, D.

    2001-05-01

    Late Neoproterozoic Vendian volcanic and volcaniclastic rocks are widely distributed in the western High Atlas. They are located north of the Tizi n'Test Fault, separating the West African Craton from a northerly adjacent craton. These volcanic rocks overlie a semipelitic formation, which represents the equivalent of the Tidilline and Anzi Formations of the Anti-Atlas. The geochemical characteristics of these volcanic rocks suggest a calc-alkaline active margine environment associated with the post Pan-African tectonics. They differ from those of the Anti-Atlas by their lower content of K 2O. The later rock type was generated by a melting process of the crust subducted beneath the northern craton. A carbonate-shale unit, which contains examples of interstratified calc-alkaline dacite, overlies the volcanic succession, demonstrating that the volcanic activity continued sporadically until Early Cambrian times.

  11. Concentrations of radioactive elements in lunar materials

    NASA Astrophysics Data System (ADS)

    Korotev, Randy L.

    1998-01-01

    As an aid to interpreting data obtained remotely on the distribution of radioactive elements on the lunar surface, average concentrations of K, U, and Th as well as Al, Fe, and Ti in different types of lunar rocks and soils are tabulated. The U/Th ratio in representative samples of lunar rocks and regolith is constant at 0.27; K/Th ratios are more variable because K and Th are carried by different mineral phases. In nonmare regoliths at the Apollo sites, the main carriers of radioactive elements are mafic (i.e., 6-8 percent Fe) impact-melt breccias created at the time of basin formation and products derived therefrom.

  12. A chilled margin of komatiite and Mg-rich basaltic andesite in the western Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    Maier, W. D.; Barnes, S.-J.; Karykowski, B. T.

    2016-06-01

    A chill sequence at the base of the Lower Zone of the western Bushveld Complex at Union Section, South Africa, contains aphanitic Mg-rich basaltic andesite and spinifex-textured komatiite. The basaltic andesite has an average composition of 15.2 % MgO, 52.8 % SiO2, 1205 ppm Cr, and 361 ppm Ni, whereas the komatiite has 18.7 % MgO, 1515 ppm Cr, and 410 ppm Ni. Both rock types have very low concentrations of immobile incompatible elements (0.14-0.72 ppm Nb, 7-31 ppm Zr, 0.34-0.69 ppm Th, 0.23-0.27 wt% TiO2), but high PGE contents (19-23 ppb Pt, 15-16 ppb Pd) and Pt/Pd ratios (Pt/Pd 1.4). Strontium and S isotopes show enriched signatures relative to most other Lower Zone rocks. The rocks could represent a ~20 % partial melt of subcontinental lithospheric mantle. This would match the PGE content of the rocks. However, this model is inconsistent with the high SiO2, Fe, and Na2O contents and, in particular, the low K2O, Zr, Hf, Nb, Ta, Th, LREE, Rb, and Ba contents of the rocks. Alternatively, the chills could represent a komatiitic magma derived from the asthenosphere that underwent assimilation of the quartzitic floor accompanied by crystallization of olivine and chromite. This model is consistent with the lithophile elements and the elevated Sr and S isotopic signatures of the rocks. However, in order to account for the high Pt and Pd contents of the magma, the mantle must have been twice as rich in PGE as the current estimate for PUM, possibly due to a component of incompletely equilibrated late veneer.

  13. Characterization of rock samples and mineralogical controls on leachates

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Cravotta, Charles A.; Galeone, Daniel G.; Jackson, John C.; Dulong, Frank T.; Hornberger, Roger J.; Brady, Keith B.C.

    2009-01-01

    Rocks associated with coal beds typically include shale, sandstone, and (or) limestone. In addition to common rock-forming minerals, all of these rock types may contain sulfide and sulfate minerals, various carbonate minerals, and organic material. These different minerals have inherently different solubility characteristics, as well as different acid-generating or acid-neutralizing potentials. The abundance and composition of sulfur- and carbonate-bearing minerals are of particular interest in interpreting the leaching column data because (1) pyrite and carbonate minerals are the primary controls on the acid-base account of a sample, (2) these minerals incorporate trace metals that can be released during weathering, and (3) these minerals readily react during weathering due to mineral dissolution and oxidation of iron.Rock samples were collected by the Pennsylvania Department of Environmental Protection (PaDEP) from five different sites to assess the draft standardized leaching column method (ADTI-WP2) for the prediction of weathering rates and water quality at coal mines. Samples were sent to USGS laboratories for mineralogical characterization and to ActLabs for chemical analysis. The samples represent a variety of rock types (shales, sandstones, and coal refuse) that are typical of coal overburden in the eastern United States. These particular samples were chosen for testing the weathering protocols because they represent a range of geochemical and lithologic characteristics, sulfur contents, and acid-base accounting characteristics (Hornberger et al., 2003). The rocks contain variable amounts of pyrite and carbonate minerals and vary in texture.This chapter includes bulk rock chemical data and detailed mineralogical and textural data for unweathered starting materials used in the interlaboratory validation study, and for two samples used in the early phases of leaching column tests (Wadesville Sandstone, Leechburg Coal Refuse). We also characterize some of the post-weathering rock samples, report trace-element content in leachate, and discuss mineralogical controls on leachate quality based on data from one of the participating laboratories. Table 5.1 lists the samples described in this chapter, the sample numbers, and comments on the characteristics of each lithology. Sample locations are plotted in Figure 5.1. Chapters 2 and 3 describe the sample locations, sample preparation protocols, ABA characteristics, and rationale for selection of rock samples for testing. Microprobe data for pyrite and carbonate minerals are tabulated in Appendix 5.1. Leachate data, along with a series of graphs showing concentration and cumulative transport trends, for the laboratory data discussed in this chapter are included as Excel spreadsheets in Appendices 5.2 and 5.3. Leach column data for the interlaboratory study are evaluated and interpreted in Chapters 7 -11.

  14. Mantle sources and origin of the Middle Paleoproterozoic Jatulian Large Igneous Province of the Fennoscandian shield: evidence from isotope geochemical data on the Kuetsjarvi volcanics, Kola Craton

    NASA Astrophysics Data System (ADS)

    Bogina, Maria; Zlobin, Valeriy; Chistyakov, Alexeii; Evgenii, Sharkov

    2014-05-01

    Paleoproterozoic is one of the most important stages in the Earth's evolution as marking a cardinal change in a style of tectonomagmatic processes at 2.2-2.0 Ga, which corresponds to the formation of the Jatulian Large Igneous Province at the Fennoscandian Shield. The fragment of this province is represented by the volcanics of the Kuetsjarvi Group in the Kola Craton. These rocks differ in the extremely wide rock diversity and prominent role of alkaline rocks, the extremely rare rocks in the Precambrian. The rocks of the group are subdivided into the alkaline and tholeiitic basaltic series. The tholeiites are highly fractionated (mg# 38) high-Ti rocks enriched in HFSE. The alkaline series show wider mg# variations (32-52), which is inconsistent with a single fractionation sequence of these series. All rocks have high HFSE, at extremely wide LILE variations. Tholeiites show moderate LREE fractionation pattern at practically flat HREE: La/YbN = 3.6-4.5; La/SmN = 2.2-2.4, Gd/YbN = 1.5-1.7 and slight Eu anomaly (Eu/Eu* = 0.80-0.85). The alkaline rocks display much more fractionated LREE and fractionated HREE (La/YbN = 43.9-5.8; La/SmN = 2.2-2.4, Gd/YbN = 2.04-3.92) patterns at Eu anomaly varying from 0.53 to 1. The spidergrams of both series reveal negative Nb and Sr anomalies at sign-variable Ti anomaly. The alkaline rocks are enriched relative to tholeiites in U, Th, and Nb. Examination of behavior of incompatible trace elements offers an opportunity to compare the conditions of generation of parental mantle magmas of the studied series. In particular, the tholeiitic basalts have higher Zr/Nb ratios than the alkaline rocks, which in combination with their lower La/Yb ratios indicates their formation under the higher melting degree of mantle source as compared to the alkaline rocks. Simultaneous increase in Ce/Y ratio in the alkaline rocks may indicate their formation at greater depths. Tholeiitic basalts have lower Nb/U ratio, which testifies some crustal contamination of the melts. In addition, they have low Ti/Y (323-449) ratios and high Lu/Hf (0.11-0.16), which is typical of the rocks formed by melting of spinel peridotites. The alkaline basalts were derived from a deeper garnet-bearing mantle source (Ti/Y = 640-1140, Lu/Hf = 0.03-0.05). Isotope-geochemical study showed that these rocks have very similar Nd isotope composition ((eNd (2200) = +1.5 in the alkaline basalt and +1.9 in the tholeiites). It was found that the studied alkaline rocks are similar in composition to the OIB-type Tristan da Kunha basalts, while tholeiites are closer to the high-Ti rocks of the Parana plateau, which experienced significant lithospheric contribution. Obtained data confirm the within-plate setting at the Jatulian stage of the Fennoscandian Shield. The Kutesjarvi Group consists of two rock types: OIB-type alkaline and E-MORB-type tholeiitic, which is typical of most Phanerozoic large igneous provinces. However, unlike the latters, the rocks of this area were too much tectonized and eroded to compile a systematic sequence. But, the Kuetsjarvi Group may be considered as the fragment of the oldest large igneous province.

  15. Prioritizing Scientific Data for Transmission

    NASA Technical Reports Server (NTRS)

    Castano, Rebecca; Anderson, Robert; Estlin, Tara; DeCoste, Dennis; Gaines, Daniel; Mazzoni, Dominic; Fisher, Forest; Judd, Michele

    2004-01-01

    A software system has been developed for prioritizing newly acquired geological data onboard a planetary rover. The system has been designed to enable efficient use of limited communication resources by transmitting the data likely to have the most scientific value. This software operates onboard a rover by analyzing collected data, identifying potential scientific targets, and then using that information to prioritize data for transmission to Earth. Currently, the system is focused on the analysis of acquired images, although the general techniques are applicable to a wide range of data modalities. Image prioritization is performed using two main steps. In the first step, the software detects features of interest from each image. In its current application, the system is focused on visual properties of rocks. Thus, rocks are located in each image and rock properties, such as shape, texture, and albedo, are extracted from the identified rocks. In the second step, the features extracted from a group of images are used to prioritize the images using three different methods: (1) identification of key target signature (finding specific rock features the scientist has identified as important), (2) novelty detection (finding rocks we haven t seen before), and (3) representative rock sampling (finding the most average sample of each rock type). These methods use techniques such as K-means unsupervised clustering and a discrimination-based kernel classifier to rank images based on their interest level.

  16. Estimation Criteria for Rock Brittleness Based on Energy Analysis During the Rupturing Process

    NASA Astrophysics Data System (ADS)

    Ai, Chi; Zhang, Jun; Li, Yu-wei; Zeng, Jia; Yang, Xin-liang; Wang, Ji-gang

    2016-12-01

    Brittleness is one of the most important mechanical properties of rock: it plays a significant role in evaluating the risk of rock bursts and in analysis of borehole-wall stability during shale gas development. Brittleness is also a critical parameter in the design of hydraulic fracturing. However, there is still no widely accepted definition of the concept of brittleness in rock mechanics. Although many criteria have been proposed to characterize rock brittleness, their applicability and reliability have yet to be verified. In this paper, the brittleness of rock under compression is defined as the ability of a rock to accumulate elastic energy during the pre-peak stage and to self-sustain fracture propagation in the post-peak stage. This ability is related to three types of energy: fracture energy, post-peak released energy and pre-peak dissipation energy. New brittleness evaluation indices B 1 and B 2 are proposed based on the stress-strain curve from the viewpoint of energy. The new indices can describe the entire transition of rock from absolute plasticity to absolute brittleness. In addition, the brittle characteristics reflected by other brittleness indices can be described, and the calculation results of B 1 and B 2 are continuous and monotonic. Triaxial compression tests on different types of rock were carried out under different confining pressures. Based on B 1 and B 2, the brittleness of different rocks shows different trends with rising confining pressure. The brittleness of red sandstone decreases with increasing confining pressure, whereas for black shale it initially increases and then decreases in a certain range of confining pressure. Granite displays a constant increasing trend. The brittleness anisotropy of black shale is discussed. The smaller the angle between the loading direction and the bedding plane, the greater the brittleness. The calculation B 1 and B 2 requires experimental data, and the values of these two indices represent only relative brittleness under certain conditions. In field operations, both the relative brittleness and the brittleness obtained from seismic data or mineral composition should be considered to gain a more comprehensive knowledge of the brittleness of rock material.

  17. Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dien, P.T.

    1994-07-01

    The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.« less

  18. Petrological processes in mantle plume heads: Evidence from study of mantle xenoliths in the late Cenozoic alkali Fe-Ti basalts in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2015-04-01

    It is consensus now that within-plate magmatism is considered with ascending of mantle plumes and adiabatic melting of their head. At the same time composition of the plumes' matter and conditions of its adiabatic melting are unclear yet. The major source of objective information about it can be mantle xenoliths in alkali basalts and basanites which represent fragments of material of the plume heads above magma-generation zone. They are not represent material in melting zone, however, carry important information about material of modern mantle plumes, its phase composition and components, involved in melting. Populations of mantle xenoliths in basalts are characterized by surprising sameness in the world and represented by two major types: (1) dominated rocks of ``green'' series, and (2) more rare rocks of ``black'' series, which formed veins in the ``green'' series matrix. It can evidence about common composition of plume material in global scale. In other words, the both series of xenoliths represent two types of material of thermochemical mantle plumes, ascended from core-mantle boundary (Maruyama, 1994; Dobretsov et al., 2001). The same types of xenoliths are found in basalts and basanites of Western Syria (Sharkov et al., 1996). Rocks of ``green'' series are represented by Sp peridotites with cataclastic and protogranular structures and vary in composition from dominated spinel lherzolites to spinel harzburgites and rare spinel pyroxenites (websterites). It is probably evidence about incomplete homogenizing of the plume head matter, where material, underwent by partial melting, adjoins with more fertile material. Such heterogeneity was survived due to quick cooling of upper rim of the plume head in contact with relatively cold lithosphere. Essential role among xenoliths of the ``black'' series play Al-Ti-augite and water-bearing phases like hornblende (kaersutute) and Ti-phlogopite. Rocks of this series are represented by wehrlite, clinopyroxenite, amphibole clinopyroxenite, hornbledite, etc. as well as megacrysts of Al-Ti-augite, kaersutite, ilmenite, sanidine, etc. Numerous vesicles often occurred in megacrysts, especially in kaersurtite. Sp peridotites of the matrix are sharply different on their geochemical features from the ``black series'' rocks (in this case, megacrysts of kaersutite) which are the most close to composition of xenoliths-bearing alkali basalts. From this follows that geochemistry of plume-related basalts was determined by mantle fluids which occurred in magma-generation zone. Very likely, that these fluids, enriched in Fe, Ti, LREE, alkalis, and incompatible elements, initially were parts of intergranular material of original mantle plume material and were released due to its decompression. Because their high mobility, the fluids percolated upwards and accumulated in the upper part of the mantle plume head, where promoted its melting by lowering of solidus of the matter. Excess of the fluids gathered beneath the cooled upper rim and penetrated in its rocks which led to appearance of centers of secondary melting (melt-pockets). Very likely, that these secondary melts formed rocks of the ``black series'' (Ismail et al., 2008;Ryabchkov et al., 2011; Ma et al., 2014). According to geobarometric estimations, Sp peridotite xenoliths from Syria derived from depths 24-42 km (0.8-1.4 GPa) under temperatures 896-980oC; formation of melt-pockets, enriched in volatiles, occurred at the depths 21-27 km (0.7-0.9 GPa) under 826-981oC (Sharkov et al., 1996; Ismail et al., 2008; Ma et al., 2014). From this follows that plumeheads reached depths approximately 21-30 km which is in agree with practically absence of lower-crustal xenoliths in the populations. One of the problems of plume-related magmatism is coexisting of alkali and tholeiitic basalts, which origin often considered with different PT conditions. However, these basalt not rarely interlayered, especially at low and middle levels of LIPs or in single volcanoes (Hawaii, Etna, etc.) which is not in a good agreement with such idea. We suggest that the situation can be more likely explained by nonuniform impregnation of peridotite matrix with fluid components which composition and/or quantity can play essential role in composition of smeltings. It is especially important because even small differences in their ñomposition near to plane of SiO2 saturation in ``basalt tetrahedron'' (Yoder and Tilley, 1962) lead to appearance of Ne-normative or Ne-free melts at practically similar PT conditions. Thus, judging on composition of the mantle xenoliths in basalts of all occurrences in the world, quite possible that Sp peridotites (mainly lherzolites) together with intergranular geochemical-enriched fluid components represent the matter of the modern thermochemical mantle plumes. Origin of two major types of the plume-related magmas, probably, considered with fluid regime in the plume head.

  19. Micro-Ct Imaging of Multi-Phase Flow in Carbonates and Sandstones

    NASA Astrophysics Data System (ADS)

    Andrew, M. G.; Bijeljic, B.; Blunt, M. J.

    2013-12-01

    One of the most important mechanisms that limits the escape of CO2 when injected into the subsurface for the purposes of carbon storage is capillary trapping, where CO2 is stranded as pore-scale droplets (ganglia). Prospective storage sites are aquifers or reservoirs that tend to be at conditions where CO2 will reside as a super-critical phase. In order to fully describe physical mechanisms characterising multi-phase flow during and post CO2 injection, experiments need to be conducted at these elevated aquifer/reservoir conditions - this poses a considerable experimental challenge. A novel experimental apparatus has been developed which uses μCT scanning for the non-invasive imaging of the distribution of CO2 in the pore space of rock with resolutions of 7μm at temperatures and pressures representative of the conditions present in prospective saline aquifer CO2 storage sites. The fluids are kept in chemical equilibrium with one-another and with the rock into which they are injected. This is done to prevent the dissolution of the CO2 in the brine to form carbonic acid, which can then react with the rock, particularly carbonates. By eliminating reaction we study the fundamental mechanisms of capillary trapping for an unchanging pore structure. In this study we present a suite of results from three carbonate and two sandstone rock types, showing that, for both cases the CO2 acts as the non-wetting phase and significant quantities of CO2 is trapped. The carbonate examined represent a wide variety of pore topologies with one rock with a very well connected, high porosity pore space (Mt Gambier), one with a lower porosity, poorly connected pore space (Estaillades) and one with a cemented bead pack type pore space (Ketton). Both sandstones (Doddington and Bentheimer) were high permeability granular quartzites. CO2 was injected into each rock, followed by brine injection. After brine injection the entire length of the rock core was scanned, processed and segmented into grain, brine and CO2. Experiments were repeated five times for each rock type, allowing for statistical errors to be estimated. The images from each experiment were approximately 900x900x3200 voxels, representing a sample size of approximately 6.4mm x 6.4mm x 22.4mm. Higher residual saturations were found in the sandstones (Bentheimer: 0.299×0.009, Doddington: 0.27×0.03) than in the carbonates (Mt Gambier: 0.187×0.007, Estaillades: 0.190×0.005, Ketton: 0.193×0.012). The size frequency distribution of ganglia was also examined. The largest ganglia contributed negligibly to the total residual saturation in all cases apart from Mt Gambier, where the increased connectivity of the pore-space inhibits non-wetting phase snap-off. The snap-off of ganglia is understood theoretically as a percolation process, and ganglia size distributions show approximately power-law distributions with exponents agreeing with predictions from percolation theory apart from in Mt Gambier limestone, where the extreme connectivity of the pore space may cause snap-off to be a non-percolation like process. We also present the first dynamic real time multiphase fluid displacements at reservoir conditions. These images were taken using the same reservoir-condition flow rig at Diamond Light Source synchrotron. This advanced facility allows for scanning intervals of 30 seconds, enabling the imaging of discrete pore-filling events (Haines jumps).

  20. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  1. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  2. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  3. 10 CFR 960.3-1-2 - Diversity of rock types.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  4. Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques.

    PubMed

    Pederson, Joel L; Chapot, Melissa S; Simms, Steven R; Sohbati, Reza; Rittenour, Tammy M; Murray, Andrew S; Cox, Gary

    2014-09-09

    Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses about its age span the entire Holocene epoch and previous attempts at direct radiocarbon dating have failed. We provide multiple age constraints through the use of cross-cutting relations and new and broadly applicable approaches in optically stimulated luminescence dating at the Great Gallery panel, the type section of BCS art in Canyonlands National Park, southeastern Utah. Alluvial chronostratigraphy constrains the burial and exhumation of the alcove containing the panel, and limits are also set by our related research dating both a rockfall that removed some figures and the rock's exposure duration before that time. Results provide a maximum possible age, a minimum age, and an exposure time window for the creation of the Great Gallery panel, respectively. The only prior hypothesis not disproven is a late Archaic origin for BCS rock art, although our age result of A.D. ∼ 1-1100 coincides better with the transition to and rise of the subsequent Fremont culture. This chronology is for the type locality only, and variability in the age of other sites is likely. Nevertheless, results suggest that BCS rock art represents an artistic tradition that spanned cultures and the transition from foraging to farming in the region.

  5. Permian A-type rhyolites of the Muráň Nappe, Inner Western Carpathians, Slovakia: in-situ zircon U-Pb SIMS ages and tectonic setting

    NASA Astrophysics Data System (ADS)

    Ondrejka, Martin; Li, Xian-Hua; Vojtko, Rastislav; Putis, Marian; Uher, Pavel; Sobocký, Tomas

    2018-04-01

    Three representative A-type rhyolitic rock samples from the Muráň Nappe of the inferred Silicic Unit of the Inner Western Carpathians (Slovakia) were dated using the high-precision SIMS U-Pb isotope technique on zircons. The geochronological data presented in this paper is the first in-situ isotopic dating of these volcanic rocks. Oscillatory zoned zircon crystals mostly revealed concordant Permian (Guadalupian) ages: 266.6 ± 2.4 Ma in Tisovec-Rejkovo (TIS-1), 263.3 ± 1.9 Ma in Telgárt-Gregová Hill (TEL-1) and 269.5 ± 1.8 Ma in Veľká Stožka-Dudlavka (SD-2) rhyolites. The results indicate that the formation of A-type rhyolites and their plutonic equivalents are connected to magmatic activity during the Permian extensional tectonics and most likely related to the Pangea supercontinent break-up.

  6. The effect of the Ras homolog gene family (Rho), member A/Rho associated coiled-coil forming protein kinase pathway in atrial fibrosis of type 2 diabetes in rats.

    PubMed

    Chen, Jinling; Li, Qingqing; Dong, Ruiqing; Gao, Huikuan; Peng, Hui; Wu, Yongquan

    2014-09-01

    Diabetes mellitus promotes atrial structural remodeling, thereby producing atrial arrhythmogenicity. Atrial arrhythmia can substantially increase the risk of premature death. The aim of this study was to investigate the role of Ras homolog gene family, member A (RhoA)/Rho associated coiled-coil forming protein kinase (ROCK) in atrial fibrosis in diabetic hearts, and the effects of fasudil hydrochloride hydrate on atrial fibrosis. An eight-week-old male Sprague-Dawley rat model of type 2 diabetes was established using a high-fat diet combined with streptozotocin [30 mg/kg, once, intraperitoneal (i.p.)]. Animals were randomly divided into three groups: Control rats, untreated diabetic rats that received vehicle, and treated diabetic rats that received Rho kinase inhibitor fasudil hydrochloride hydrate (10 mg/kg/day, i.p., for 14 weeks). The morphological features of atrial fibrosis were observed using Masson staining. The mRNA expression levels of RhoA, ROCK1, ROCK2, type-I and type-III procollagen were assessed with quantitative polymerase chain reaction. The protein levels of RhoA, ROCK1 and ROCK2 were evaluated using western blot analysis. The atria of untreated diabetic rats showed evident atrial fibrosis as compared to the control rats; the mRNA expression levels of RhoA, ROCK1, ROCK2, type-I and type-III procollagen were upregulated; and the protein levels of RhoA, ROCK1 and ROCK2 were increased. The treatment with fasudil hydrochloride hydrate significantly reduced atrial fibrosis, mRNA levels of RhoA, ROCK1, ROCK2, type-I and type-III procollagen, and the protein levels of RhoA, ROCK1 and ROCK2. The results suggested that RhoA/ROCK was involved in atrial fibrosis, and that fasudil hydrochloride hydrate ameliorates atrial fibrosis through the RhoA/ROCK pathway in rats with type 2 diabetes.

  7. Paleomagnetic Results From the Mid-Tertiary Cripple Creek Diatreme Complex

    NASA Astrophysics Data System (ADS)

    Rampe, J. S.; Geissman, J. W.; Melker, M.

    2001-12-01

    The Cripple Creek diatreme complex, located about 30 km southwest of Pikes Peak, Colorado, is host to gold and high grade telluride deposits associated with mid-Tertiary alkaline magmatism. Formation of the diatreme took place between about 32.5 and 28.7 Ma, based on previously reported ArAr age determinations. The complex consists of breccia (the primary rock type), that was subsequently intruded by aphanitic phonolite, porphyritic phonolite, phonotephrite, and finally lamprophyre. Rocks presently at the surface were emplaced within a few kilometers of the paleosurface, followed by hydrothermal activity resulting in pervasive K metasomatism and gold mineralization. Mineralized deposits within the diatreme are currently being mined in an open pit fashion allowing for fresh three dimensional exposures of all representative rock types in the district. The Front Fange of Colorado, since cessation of northeast-directed Laramide compression, is characterized by east-west Rio Grande rift extension. Determining Laramide and younger deformation in the Front Range of Colorado is diffucult due to the dominance of Laramide structures and exposed Precambrian rocks with complex structural histories. Structures that affect the Cripple Creek diatreme complex and host Precambrian crystalline rocks clearly were active after intrusive activity and therefore reflect tectonism in the Front Range since early diatreme formation. Over 100 sites have been collected from all representative rock types in the district, with eight to ten oriented samples per site. Results indicate that the materials are capable of carrying geologically stable magnetizations and generally reveal excellent magnetization behavior using both AF and thermal methods. Many sites are associated with contact and breccia tests. Site mean directions are of both normal (D = 5.0° , I = 67.5° , α 95 = 6.4, κ = 89.2), N = 7 and reverse polarity (D = 162.2° , I = -67.3° , α 95 = 4.2, κ = 61.1) N =13; with site mean directions steeper than the expected mid-Tertiary polarity direction. Also, some sites exhibit multiple component behavior with both normal and reverse polarity magnetizations that are well defined (D = 29.7° , I = 72.5° , α 95 = 9.2, κ = 28.4) N = 10 and (D = 173.6° , I = -64.1° , α 95 = 3.1, κ = 594.8) N = 5, in aphanitic phonolite site CC89. We interpret these results to indicate that diatreme formation took place over at least one magnetic reversal and that the diatreme was modestly deformed resulting in north-side down tilting.

  8. Mapping known and potential mineral occurrences and host rocks in the Bonnifield Mining District using minimal cloud- and snow-cover ASTER data: Chapter E in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Hubbard, Bernard E.; Dusel-Bacon, Cynthia; Rowan, Lawrence C.; Eppinger, Robert G.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    On July 8, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor acquired satellite imagery of a 60-kilometer-wide swath covering a portion of the Bonnifield mining district within the southernmost part of the Tintina Gold Province, Alaska, under unusually favorable conditions of minimal cloud and snow cover. Although rocks from more than eight different lithotectonic terranes are exposed within the extended swath of data, we focus on volcanogenic massive sulfides (VMS) and porphyry deposits within the Yukon-Tanana terrane (YTT), the largest Mesozoic accretionary terrane exposed between the Denali fault system to the south of Fairbanks and the Tintina fault system to the north of Fairbanks. Comparison of thermal-infrared region (TIR) decorrelation stretch data to available geologic maps indicates that rocks from the YTT contain a wide range of rock types ranging in composition from mafic metavolcanic rocks to felsic rock types such as metarhyolites, pelitic schists, and quartzites. The nine-band ASTER visible-near-infrared region--short-wave infrared region (VNIR-SWIR) reflectance data and spectral matched-filter processing were used to map hydrothermal alteration patterns associated with VMS and porphyry deposit types. In particular, smectite, kaolinite, opaline silica, jarosite and (or) other ferric iron minerals defined narrow (less than 250-meter diameter) zonal patterns around Red Mountain and other potential VMS targets. Using ASTER we identified some of the known mineral deposits in the region, as well as mineralogically similar targets that may represent potential undiscovered deposits. Some known deposits were not identified and may have been obscured by vegetation or snow cover or were too small to be resolved.

  9. The rocks of Gusev Crater as viewed by the Mini-TES instrument

    USGS Publications Warehouse

    Ruff, S.W.; Christensen, P.R.; Blaney, D.L.; Farrand, W. H.; Johnson, J. R.; Michalski, J.R.; Moersch, J.E.; Wright, S.P.; Squyres, S. W.

    2006-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on board the Mars Exploration Rover Spirit is part of a payload designed to investigate whether a lake once existed in Gusev Crater. Mini-TES has observed hundreds of rocks along the rover's traverse into the Columbia Hills, yielding information on their distribution, bulk mineralogy, and the potential role of water at the site. Although dust in various forms produces contributions to the spectra, we have established techniques for dealing with it. All of the rocks encountered on the plains traverse from the lander to the base of the Columbia Hills share common spectral features consistent with an olivine-rich basaltic rock known as Adirondack Class. Beginning at the base of the West Spur of the Columbia Hills and across its length, the rocks are spectrally distinct from the plains but can be grouped into a common type called Clovis Class. These rocks, some of which appear as in-place outcrop, are dominated by a component whose spectral character is consistent with unaltered basaltic glass despite evidence from other rover instruments for significant alteration. The northwest flank of Husband Hill is covered in float rocks known as Wishstone Class with spectral features that can be attributed uniquely to plagioclase feldspar, a phase that represents more than half of the bulk mineralogy. Rare exceptions are three classes of basaltic "exotics" found scattered across Husband Hill that may represent impact ejecta and/or float derived from local intrusions within the hills. The rare outcrops observed on Husband Hill display distinctive spectral characteristics. The outcrop called Peace shows a feature attributable to molecular bound water, and the outcrop that hosts the rock called Watchtower displays a dominant basaltic glass component. Despite evidence from the rover's payload for significant alteration of some of the rocks, no unambiguous detection of crystalline phyllosilicates or other secondary silicates has been observed by Mini-TES. The mineralogical results supplied by Mini-TES provide no clear evidence that a lake once existed in Gusev Crater. Copyright 2006 by the American Geophysical Union.

  10. Evaluating the competing effects of lithology and sediment supply on the erosional dynamics of rivers crossing active faults.

    NASA Astrophysics Data System (ADS)

    Whittaker, Alex; Boulton, Sarah; Kent, Emiko; Zondervan, Jesse; Hann, Madeleine; Watkins, Stephen; Bell, Rebecca; Brooke, Sam

    2017-04-01

    Lithology and sediment supply influence the erosional dynamics of rivers crossing active faults and together these effects govern the style, timescale and means by which landscapes respond to their tectono-climatic boundary conditions. Here, for transient bedrock catchments in the Gediz Graben, Turkey, and the Gulf of Corinth, Greece, for which the timing and rate of active faulting is known, we quantify the relative importance of rock strength and sediment supply on models of fluvial incision. We determine rock type, strength and erodibility using a Schmidt hammer and structural measurements of joint density and size. We evaluate the downstream distribution of channel width and stream power and calculate the extent to which the latter scales with tectonic rates and rock strength. Sediment supply is constrained using estimates of bedrock exposure, transport capacities and erosional fluxes. For the Turkish examples, stream powers in the metamorphic rocks are four times greater than in the Neogene sediment units, indicating a four-fold difference in bedrock erodibility, K, for a two-fold variation in in Schmidt hammer hardness. In the Gulf of Corinth examples, we interpret differences in stream powers near the active faults to represent order of magnitude differences in bedrock erodibility between carbonate and sandstone/conglomerate units. We also observe that in both cases, significant along-strike variation in fault slip rate is not associated with an increase in stream power for the sedimentary rocks and we assess the extent to which this stream power deficit may also represent the effects of sediment-flux-dependent incision.

  11. The deep layers of a Paleozoic arc: geochemistry of the Copley-Balaklala series, northern California

    NASA Astrophysics Data System (ADS)

    Brouxel, Marc; Lapierre, Henriette; Michard, Annie; Albarède, Francis

    1987-10-01

    REE, Zr, Nb concentrations and Sr, Nd isotope compositions have been measured in Copley basalts and andesites, Balaklala rhyolites, and Mule Mountain trondhjemites (northern California) which represent the deep layers of a well preserved intra-oceanic island arc of Siluro-Devonian age. 87Sr/ 86Sr is shifted towards high values (up to 0.707) whereas Ce is preferentially removed from rhyolites. A large proportion of the analyzed samples including some acidic rocks shows a pronounced depletion in light REE. The ɛ Nd(T) values of most Copley, Balaklala, and Mule Mountain rocks fall in the range +6 to +8 which suggests that they originated from a normal MORB-type source ( ɛ Nd(T) ≈ +9 ) contaminated with either sediments or an OIB-type component. In modern island arcs, only the shallow levels are accessible: comparison with the Copley-Balaklala-Mule Mountain Series suggests that, at depth, an immature island arc is likely to comprise thick layers of LILE-depleted tholeiites and rhyolites intensely altered by pervasive circulation of seawater. Least-square solutions of trace element models suggest that rhyolites and trondhjemites represent remelting of mafic volcanics from the arc basement rather than residual melts of basalt-andesite differentiation.

  12. Variation of rock-forming metals in sub-annual increments of modern Greenland snow

    USGS Publications Warehouse

    Hinkley, T.K.

    1992-01-01

    Modern snowpack from central south Greenland was sampled in sub-seasonal increments and analysed for a suite of major, minor and trace rock-forming metals (K, Rb, Cs, Ca, Sr, Ba). There is a sharp seasonal concentration maximum for all six metals that comes in summer, later than mid-June. Metal concentrations in all other parts of the year's snowpack are up to 10 or more times smaller. The concentration maximum is preceded by low values in autumn-winter, very low values in early-mid-spring, and moderate-to-high values in late spring early summer; this pattern is seen consistently in three separate time stratigraphic intervals representing the same seasonal periods, spanning the time interval 1981-1984. The absolute concentration values of the snow strata representing the low-concentration portion of the year, autumn-winter-spring, may vary substantially from year to year, by a factor of two, or more. The finding that all rock-forming metals are at a sharp concentration maximum in late summer contrasts with the interpretations of several other studies in high-latitude northern regions. Those studies have reported a broad maximum of continental dust-associated metals in late winter and spring. However samples of the other studies have mostly come from regions farther to the north, and the analyses have emphasized industrial pollutant metals rather than the matched rock-forming suite of the present study. The metals measured were chosen to give information about the origin and identity of the rock and soil dusts, and sea salts, present as impurities in the snow. Metal ratios indicate that the dusts in the snowpacks are of continental origin and from ferromagnesian rocks. Source rock types for dusts in central south Greenland snow contrast with the felsic rock dusts of the Sierra Nevada, CA, annual snowpacks, and with the very felsic rock dusts in large south central Alaskan mountain glaciers. Samples in which masses of sea salt are much larger than those of rock dusts may be identified by small changes in metal ratios caused by moderate increases of K and Ca from marine sources, nearly unaccompanied by the minor and trace metals Rb, Cs and Ba, that are very rare in the oceans. A sampling frequency, such as that of the present study, that divides a year's accumulation into 8-10 subsamples is sufficient to reveal details of the time pattern of variation in proportions and concentrations of metals that give information about atmospheric deposition of important types of earth materials.Modern snowpack from central south Greenland was sampled in sub-seasonal increments and analyzed for a suite of major, minor and trace rock-forming metals (K, Rb, Cs, Ca, Sr, Ba). There is a sharp seasonal concentration maximum for all six metals that comes in summer, later than mid-June. Metal concentrations in all other parts of the year's snowpack are up to 10 or more times smaller. The concentration maximum is preceded by low values in autumn-winter, very low values in early-mid-spring, and moderate-to-high values in late spring-early summer; this pattern is seen consistently in three separate time stratigraphic intervals representing the same seasonal periods, spanning the time interval 1981-1984. The absolute concentration values of the snow strata representing the low-concentration portion of the year, autumn-winter-spring, may vary substantially from year to year, by a factor of two, or more. The finding that all rock-forming metals are at a sharp concentration maximum in late summer contrasts with the interpretations of several other studies in high-latitude northern regions. Those studies have reported a broad maximum of continental dust-associated metals in late winter and spring. However, samples of the other studies have mostly come from regions farther to the north, and the analyses have emphasized industrial pollutant metals rather than the matched rock-forming suite of the present study. The metals measured were chosen to give informati

  13. Granitoids of the Ufalei block (South Urals): Sr-Nd isotope systematics, geodynamic position and genetic reconstructions

    NASA Astrophysics Data System (ADS)

    Ronkin, Yu. L.; Shardakova, G. Yu.; Maslov, A. V.; Shagalov, E. S.; Lepikhina, O. P.

    2009-04-01

    Petrogeochemical and isotopic-geochronological signatures in granitoids developed in structures with complex geological history represent an important feature for reconstructing paleogeodynamic settings. Granitoids are widespread in the western slope of the Urals, where the Uralian Orogen contacts via a collage of different-age blocks of the east European Platform. The Ufalei block located in the Central Urals megazone at the junction between the South and Middle Urals’ segments represents one such boundary structure with multistage geological evolution. The isotopic ages obtained by different methods for acid igneous rocks range from 1290 to 245 Ma. We determined close Rb-Sr and Sm-Nd ages (317 Ma) for granites of the Nizhnii Ufalei Massif. By their petrochemical parameters, granitoids and host granite-gneisses differ principally from each other: the former are close to subduction-related, while the latter, to continental-riftogenic varieties. The primary ratio (87Sr/86Sr)0 = 0.70428 and ɛNd ≈ +4 values indicate significant contribution of oceanic (island-arc?) material to the substrate, which served as a source for granites of the Nizhnii Ufalei Massif. Model Nd ages of granites vary from 641 to 550 Ma. Distinct oceanic rocks and varieties with such ages are missing from the surrounding structures. New isotopic dates obtained for ultramafic and mafic rocks from different zones of the Urals related to the Cadomian cycle imply development of unexposed Upper Riphean-Vendian “oceanic” rocks in the central part of the Ufalei block, which played a substantial role in the formation of the Nizhnii Ufalei granitoids. Such rocks could be represented, for example, by fragments of the Precambrian Timanide-type ophiolite association. The analysis of original materials combined with published data point to the heterogeneous composition and structure of the Ufalei block and a significant part of the western segment of the Central Uralian Uplift and extremely complex geological history of the region coupling the Uralian Orogen with the East European Platform in the present-day structure.

  14. Shear zones of the Verkhoyansk fold-and-thrust belt, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Fridovsky, Valery; Polufuntikova, Lena

    2017-04-01

    The Verkhoyansk fold-and-thrust belt is situated on the submerged eastern margin of the North Asian craton, and is largely composed of the Ediacaran - Middle Paleozoic carbonate and the Upper Paleozoic-Mesozoic terrigenous rocks. The Upper Carboniferous - Jurassic sediments constitute the Verkhoyansk terrigenous complex containing economically viable orogenic gold deposits. The structure of the belt is mainly controlled by thrusts and associated diagonal strike slips. Linear concentric folds are common all over the area of the belt. Shear zones with associated similar folds are confined to long narrow areas. Shear zones were formed during the early stages of the Oxfordian-Kimmeridgian collisional and accretionary events prior to the emplacement of large orogenic granitoid plutons. The main ore-controlling structures are shear zones associated with slaty cleavage, shear folds, mullion- and boudinage-structures, and transposition features. The shear zones are listric-type, and represent branches of a detachment structure, which is assumed to be present at the base of the Verkhoyansk fold-and-thrust belt. A vertical zonation of shear zones is correlated with the distance to the detachment. Changes in the dip angle of the shear zones (as indicated mainly by cleavage), structural paragenesis, the degree of microdeformation of the host rocks, and the type of ore-controlling structures can be clearly observed in the direction away from the detachment. Structural zoning is evidenced, among other things, by changing morphologic types of microstructures and by strain-indicators of the degree of rock metamorphism. Four morphologic types of microstructures are identified. The first platy-shear type is characterized by aggregate cleavage and the coefficient of deformation (Cd) of single grains from 1.0 to 2.0. Irregular angular fragments of variously oriented grains can be observed in thin sections. The second shear-cataclastic morphologic type (Cd from 2.0 to 3.0) exhibits combined aggregate and intergranular cleavage. The third cataclastic-segregation morphologic type (Cd from 3.0 to 4.5) is distinguished by a wide distribution of lentelliptical grains of rock-forming minerals in a finely-crystalline matrix and by intergranular cleavage. The rocks of the fourth segregation-striate morphologic type (Cd >5.0) contain lenticular segregations of quartz and feldspar in an intensely linearized mylonite groundmass.

  15. Granulite-facies rocks in the Whatley Mill gneiss, Pine Mountain basement massif, Eastern Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniell, N.; Salpas, P.A.

    1993-03-01

    The Pine Mountain basement massif is a granulite terrane exposed in a tectonic window through the Inner Piedmont of western Georgia and eastern Alabama. Investigations of the westernmost extent of the massif, the Whatley Mill Gneiss, have revealed four distinct lithologies: (1) an augen gneiss, the type lithology; (2) mylonite that develops in the shear zones cutting the unit; (3) a phaneritic rock showing weak to no foliation; (4) enclaves of biotite gneiss within the weakly-foliated rock. Additionally, the weakly-foliated rock comprises two distinct phases which are in sharp contact along curved and undulating boundaries: phase 1 is a coarser-grainedmore » rock; phase 2 is a finer-grained rock of the same mineralogy as phase 1 except it contains rare hypersthene. This first recorded observation of hypersthene unequivocally confirms the granulite-facies origin of the unit. Major and trace element compositions of the phase 1 rock are identical to those of the augen gneiss. The phase 2 rock, has a distinct composition with higher SiO[sub 2] and lower incompatible trace elements than the phase 1 rock. The enclaves display a range in major elements but higher incompatible elements than the other lithologies. Geochemical and petrologic relationships leads one to interpret: (1) the weakly-foliated rock retains many of its primary igneous features including its two phases and enclaves; (2) the two phases of the weakly-foliated rock arose as a result of injection of one magma (phase 2) into a cooler, crystal mush solidifying from another magma (phase 1); (3) the enclaves represent either autoliths of xenoliths; (4) the augen gneiss arose by isochemical deformation of the phase 1 rock.« less

  16. Mars Exploration Rover APXS Results from Matijevic Hill

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Clark, B. C.; Gellert, R.; Klingelhoefer, G.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R. V.; Schrader, C. M.; Schroeder, C.; Yen, A. S.; hide

    2013-01-01

    Correlation analysis of APXS results on the eastern slope rocks indicate that the Matijevic Hill rocks are overall compositionally distinct from the Shoemaker Formation rocks [6]. Compared to the Shoemaker impactites, Matijevic Hill rocks are higher in Al, Si, and Ni, and lower in Ti, Fe, and Zn. No significant variation is evident in the APXS analyses that indicate the presence of a smectite or other phyllosilicate, as opposed to basaltic rocks. However, APXS data cannot in themselves rule out phyllosilicates. If indeed this material contains smectite, as seen from orbit, it implies that the rock has been isochemically altered to create the phyllosilicate content. The Cl content of the Cape York rocks is relatively high, and whereas the S/Cl ratio in the Burns Formation is 4x higher than in soil, in the Cape York rocks it is lower than in soil. These trends indicate that the alteration processes and types of aqueous salt loads were different between Cape York and Meridiani. In addition, significant deviations from the Martian Mn/Fe ratio are observed in Whitewater Lake coatings and the altered Grasford/Deadwood rocks (Fig. 3). These variations indicate that the redox/pH conditions during alteration of the Shoemaker Formation rocks and the Matijevic Hill rocks were similar, but that the Deadwood/Grasberg unit may have undergone alteration under different conditions, possibly at a later time. The Matijevic Hill outcrops appear to share a common genetic origin. It is not yet clear whether both the Shoemaker impactites and Matijevic Hill rocks are related to the formation of Endeavour Crater, or whether the Matijevic Hill suite represents a prior episode of Martian impact or volcanism. Opportunity continues to investigate both hypotheses.

  17. Correlation of Rock Spectra with Quantitative Morphologic Indices: Evidence for a Single Rock Type at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Biedermann, K. L.; Pierre, N. M.; Haldemann, A. F. C.; Johnson, J. R.

    2005-01-01

    The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder (IMP) visible/near-infrared data, efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, as many factors influencing spectral signatures cannot be quantified to a sufficient level to be removed. It has not been fully determined which spectral categories stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique rock mineralogies difficult. Morphology, like composition, is a characteristic tied to the intrinsic properties and geologic and weathering history of rocks. Rock morphologies can be assessed quantitatively and compared with spectral data, to identify and classify rock types at the MPF landing site. They can also isolate actual rock spectra from spectral types that are surficial in origin, as compositions associated with mantling dust or chemical coatings would presumably not influence rock morphology during weathering events. We previously reported on an initial classification of rocks using the quantitative morphologic indices of size, roundness, sphericity and elongation. Here, we compare this database of rock characteristics with associated rock surface spectra to improve our ability to discriminate between spectra associated with rock types and those from other sources.

  18. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    USGS Publications Warehouse

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle are attributes of the ancient North American cratonic margin that appear to be essential prerequisites to this style of postcollisional magmatism and associated gold-rich fluid exsolution. This type of magmatic hydrothermal activity occurs in a very specific tectonic setting that typically sets intrusion-related gold deposits apart from orogenic gold deposits, which are synorogenic in timing and have no consistent direct relationship to such diverse and contemporaneous lithospheric mantle-derived magmas, although they too are commonly sited adjacent to lithospheric boundaries.

  19. Lunar Reconnaissance Orbiter Camera Observations Relating to Science and Landing Site Selection in South Pole-Aitken Basin for a Robotic Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Clegg-Watkins, R. N.; Petro, N. E.; Lawrence, S. L.

    2016-01-01

    The Moon's South Pole-Aitken basin (SPA) is a high priority target for Solar System exploration, and sample return from SPA is a specific objective in NASA's New Frontiers program. Samples returned from SPA will improve our understanding of early lunar and Solar System events, mainly by placing firm timing constraints on SPA formation and the post-SPA late-heavy bombardment (LHB). Lunar Reconnaissance Orbiter Camera (LROC) images and topographic data, especially Narrow Angle Camera (NAC) scale (1-3 mpp) morphology and digital terrain model (DTM) data are critical for selecting landing sites and assessing landing hazards. Rock components in regolith at a given landing site should include (1) original SPA impact-melt rocks and breccia (to determine the age of the impact event and what materials were incorporated into the melt); (2) impact-melt rocks and breccia from large craters and basins (other than SPA) that represent the post-SPA LHB interval; (3) volcanic basalts derived from the sub-SPA mantle; and (4) older, "cryptomare" (ancient buried volcanics excavated by impact craters, to determine the volcanic history of SPA basin). All of these rock types are sought for sample return. The ancient SPA-derived impact-melt rocks and later-formed melt rocks are needed to determine chronology, and thus address questions of early Solar System dynamics, lunar history, and effects of giant impacts. Surface compositions from remote sensing are consistent with mixtures of SPA impactite and volcanic materials, and near infrared spectral data distinguish areas with variable volcanic contents vs. excavated SPA substrate. Estimating proportions of these rock types in the regolith requires knowledge of the surface deposits, evaluated via morphology, slopes, and terrain ruggedness. These data allow determination of mare-cryptomare-nonmare deposit interfaces in combination with compositional and mineralogical remote sensing to establish the types and relative proportions of materials expected at a given site. Remote sensing compositions, e.g., FeO, also constrain the relative abundances of components. Landing-site assessments use crater and boulder distributions, and slope and terrain rugge

  20. Rock and Soil Types at Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Type areas of rocks and soils. (A) Dark rock type and bright soil type: Shown is the dark rock Barnacle Bill. Reflectance spectra typical of fresh basalt and APXS spectra indicating more silica-rich basaltic andesite compositions characterize this type. These rocks are typically the small boulders and intermediate-sized cobbles at the Pathfinder site. The bright soil type is very common and in this case comprises Barnacle Bill's wind tail and much of the surround soil area. This soil has a high reflectance and a strongly reddened spectrum indicative of oxidized ferric minerals. (B) Bright rock type: Shown is the bright rock Wedge. Reflectance spectra typical of weathered basalt and APXS spectra indicating basaltic compositions characterize this type. These rocks are typically larger than 1 meter in diameter and many display morphologies indicating flood deposition. (C) Pink rock type: Shown is the pink rock Scooby Doo. APXS and reflectance spectra indicate a composition and optical characteristics similar to the drift soil. However, the morphology of the pink rock type indicates a cemented or rocklike structure. This material may be a chemically cemented hardpan that underlies much of the Pathfinder site. (D) Dark soil type: The dark soil type is typically found on the windward sides of rocks or in rock-free areas like Photometry Flats (shown here) where the bright soil has been striped away by aeolian action or in open areas. Other locations include the Mermaid Dune. (E) Disturbed soil type: The darkening of disturbed soil relative to its parent material, bright soil, as a result of changes in soil texture and compaction caused by movement of the rover and retraction of the lander airbag. (F) Lamb-like soil type: This soil type shows reflectance and spectral characteristics intermediate between the bright and dark soils. Its distinguishing feature is a weak spectral absorption near 900 nanometers not seen in either the bright or dark soils.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  1. Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: A case study in Central Portugal.

    PubMed

    Pereira, A; Lamas, R; Miranda, M; Domingos, F; Neves, L; Ferreira, N; Costa, L

    2017-01-01

    The goal of this study was to estimate radon gas production rate in granitic rocks and identify the factors responsible for the observed variability. For this purpose, 180 samples were collected from pre-Hercynian and Hercynian rocks in north and central Portugal and analysed for a) 226 Ra activity, b) radon ( 222 Rn) per unit mass activity, and c) radon gas emanation coefficient. On a subset of representative samples from the same rock types were also measured d) apparent porosity and e) apparent density. For each of these variables, the values ranged as follows: a) 15 to 587 Bq kg -1 , b) 2 to 73 Bq kg -1 , c) 0.01 to 0.80, d) 0.3 to 11.4 % and e) 2530 to 2850 kg m -3 . Radon production rate varied between 40 to 1386 Bq m -3  h -1 . The variability observed was associated with geologically late processes of low and high temperature which led to the alteration of the granitic rock with mobilization of U and increase in radon 222 Rn gas emanation. It is suggested that, when developing geogenic radon potential maps, data on uranium concentration in soils/altered rock should be used, rather than data obtained from unaltered rock. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Classification of hydrogeologic areas and hydrogeologic flow systems in the basin and range physiographic province, southwestern United States

    USGS Publications Warehouse

    Anning, David W.; Konieczki, Alice D.

    2005-01-01

    The hydrogeology of the Basin and Range Physiographic Province in parts of Arizona, California, New Mexico, Utah, and most of Nevada was classified at basin and larger scales to facilitate information transfer and to provide a synthesis of results from many previous hydrologic investigations. A conceptual model for the spatial hierarchy of the hydrogeology was developed for the Basin and Range Physiographic Province and consists, in order of increasing spatial scale, of hydrogeologic components, hydrogeologic areas, hydrogeologic flow systems, and hydrogeologic regions. This hierarchy formed a framework for hydrogeologic classification. Hydrogeologic areas consist of coincident ground-water and surface-water basins and were delineated on the basis of existing sets of basin boundaries that were used in past investigations by State and Federal government agencies. Within the study area, 344 hydrogeologic areas were identified and delineated. This set of basins not only provides a framework for the classification developed in this report, but also has value for regional and subregional purposes of inventory, study, analysis, and planning throughout the Basin and Range Physiographic Province. The fact that nearly all of the province is delineated by the hydrogeologic areas makes this set well suited to support regional-scale investigations. Hydrogeologic areas are conceptualized as a control volume consisting of three hydrogeologic components: the soils and streams, basin fill, and consolidated rocks. The soils and streams hydrogeologic component consists of all surface-water bodies and soils extending to the bottom of the plant root zone. The basin-fill hydrogeologic component consists of unconsolidated and semiconsolidated sediment deposited in the structural basin. The consolidated-rocks hydrogeologic component consists of the crystalline and sedimentary rocks that form the mountain blocks and basement rock of the structural basin. Hydrogeologic areas were classified into 19 groups through a cluster analysis of 8 characteristics of each area's hydrologic system. Six characteristics represented the inflows and outflows of water through the soils and streams, basin fill, and consolidated rocks, and can be used to determine the hydrogeologic area's position in a hydrogeologic flow system. Source-, link-, and sink-type hydrogeologic areas have outflow but not inflow, inflow and outflow, and inflow but not outflow, respectively, through one or more of the three hydrogeologic components. Isolated hydrogeologic areas have no inflow or outflow through any of the three hydrogeologic components. The remaining two characteristics are indexes that represent natural recharge and discharge processes and anthropogenic recharge and discharge processes occurring in the hydrogeologic area. Of the 19 groups of hydrogeologic areas, 1 consisted of predominantly isolated-type hydrogeologic areas, 7 consisted of source-type hydrogeologic areas, 9 consisted of link-type hydrogeologic areas, and 2 consisted of sink-type hydrogeologic areas. Groups comprising the source-, link-, and sink-type hydrogeologic areas can be distinguished between each other on the basis of the hydrogeologic component(s) through which interbasin flow occurs, as well as typical values for the two indexes. Conceptual models of the hydrologic systems of a representative hydrogeologic area for each group were developed to help distinguish groups and to synthesize the variation in hydrogeologic systems in the Basin and Range Physiographic Province. Hydrogeologic flow systems consist of either a single isolated hydrogeologic area or a series of multiple hydrogeologic areas that are hydraulically connected through interbasin flows. A total of 54 hydrogeologic flow systems were identified and classified into 9 groups. One group consisted of single isolated hydrogeologic areas. The remaining eight groups consisted of multiple hydrogeologic areas and were distinguished o

  3. Assessment of aggregate quality and petrographic properties' influence on rock quality: A case study from Nordland county, Norway

    NASA Astrophysics Data System (ADS)

    Kløve Keiding, Jakob; Erichsen, Eyolf; Heldal, Tom; Aslaksen Aasly, Kari

    2017-04-01

    Good access to construction materials is crucial for future infrastructure development and continued economic growth. In Norway >80 % of construction materials come from crushed aggregates and represent an growing share of the consumption. Although recycling to some extend can cover the need for construction materials, economic growth, increasing population and urbanization necessitates exploitation of new rock resources in Norway as well as many other parts of the world. Aggregates must fulfill a number of technical requirements to ensure high quality and long life expectancy of new roads, buildings and structures. Aggregates also have to be extracted near the consumer market. Particularly for road construction strict criteria are in place for wearing course for roads with high traffic density. Thus knowledge of mechanical rock quality is paramount for both exploitation as well as future resource and land-use planning but is often not assessed or mapped beyond the quarry scale. The Geological survey of Norway runs a database with information about crushed aggregate deposits from >1500 Norwegian quarries and sample sites. Here we use mechanical test analyses from the database to assess the aggregate quality in the Nordland county, Norway. Maps have been produced linking bed rock geology with rock quality parameters. The survey documents that the county is challenged in meeting the requirements for roads with high traffic density and especially in the middle parts of the county many samples have weak mechanical properties. This to some degree reflect that weak Cambro-Silurian rocks like phyllite, schist, carbonate and greenstone are abundant in Nordland. Typically mechanically stronger rock types such as gabbro, monzonite and granite are also exposed in large parts of the county, but are also characterized by relative poor or very variable mechanical test quality. Preliminary results indicate that many intrinsic parameters influence the mechanical rock strength, but variable degrees of deformation in the different tectonostratigraphic units exposed in Nordland affects the rock mechanical properties and is a prominent feature of our mapping. Unsurprisingly rock type, mineralogy, grain size and rock texture are all important factors that have a major control on the mechanical behaviour of the rocks. However, this assessment shows that there is an intricate interaction between these parameters and the resulting mechanical properties at present making it difficult to assess mechanical quality accurately only based on petrographic examination.

  4. Chemical composition of rocks and soils at Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Rose, H. J., Jr.; Cuttitta, F.; Berman, S.; Brown, F. W.; Carron, M. K.; Christian, R. P.; Dwornik, E. J.; Greenland, L. P.

    1974-01-01

    Seventeen soils and seven rock samples were analyzed for major elements, minor elements, and trace elements. Unlike the soils at previous Apollo sites, which showed little difference in composition at each collection area, the soils at Taurus-Littrow vary widely. Three soil types are evident, representative of (1) the light mantle at the South Massif, (2) the dark mantle in the valley, and (3) the surface material at the North Massif. The dark-mantle soils are chemically similar to those at Tranquillitatis. Basalt samples from the dark mantle are chemically similar although they range from fine to coarse grained. It is suggested that they originated from the same source but crystallized at varying depths from the surface.

  5. Major-element geochemistry of the Silent Canyon-Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    USGS Publications Warehouse

    Crowe, Bruce M.; Sargent, Kenneth A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13-15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline comendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain-Silent Canyon volcanic centers differs in the total range and distribution of Si02, contents, the degree of peralkalinity (molecular Na2O+K2O>Al2O3) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain-Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site.

  6. Estimating Tunnel Strain in the Weak and Schistose Rock Mass Influenced by Stress Anisotropy: An Evaluation Based on Three Tunnel Cases from Nepal

    NASA Astrophysics Data System (ADS)

    Panthi, Krishna Kanta; Shrestha, Pawan Kumar

    2018-06-01

    Total plastic deformation in tunnels passing through weak and schistose rock mass consists of both time-independent and time-dependent deformations. The extent of this total deformation is heavily influenced by the rock mass deformability properties and in situ stress condition prevailing in the area. If in situ stress is not isotropic, the deformation magnitude is not only different along the longitudinal alignment but also along the periphery of the tunnel wall. This manuscript first evaluates the long-term plastic deformation records of three tunnel projects from the Nepal Himalaya and identifies interlink between the time-independent and time-dependent deformations using the convergence law proposed by Sulem et al. (Int J Rock Mech Min Sci Geomech 24(3):145-154, 1987a, Int J Rock Mech Min Sci Geomech 24(3):155-164, 1987b). Secondly, the manuscript attempts to establish a correlation between plastic deformations (tunnel strain) and rock mass deformable properties, support pressure and in situ stress conditions. Finally, patterns of time-independent and time-dependent plastic deformations are also evaluated and discussed. The long-term plastic deformation records of 24 tunnel sections representing four different rock types of three different headrace tunnel cases from Nepal Himalaya are extensively used in this endeavor. The authors believe that the proposed findings will be a step further in analysis of plastic deformations in tunnels passing through weak and schistose rock mass and along the anisotropic stress conditions.

  7. Geology of the Chesapeake and Ohio Canal National Historical Park and Potomac River Corridor, District of Columbia, Maryland, West Virginia, and Virginia

    USGS Publications Warehouse

    Southworth, Scott; Brezinski, David K.; Orndorff, Randall C.; Repetski, John E.; Denenny, Danielle M.

    2008-01-01

    The Chesapeake and Ohio Canal National Historical Park is 184.5 mi long and extends from Washington, D.C., to Cumberland, Md. The canal passes through three physiographic provinces including the Piedmont, Valley and Ridge, and the Blue Ridge; the map area also includes rocks of the Coastal Plain and Appalachian Plateaus provinces. Each province contains unique packages of rocks that influenced the character of the canal and towpath. The ages of the bedrock encountered along the length of the park range from Mesoproterozoic to Jurassic and represent a variety of tectonic and depositional environments. The different rock types and surficial deposits dictated the various construction methods for the canal, which was excavated in Quaternary flood-plain deposits as well as through bedrock. The ancient course of the Potomac River and the deposits it left behind also influenced the location of the canal and towpath. The engineers made good use of the many rock types to construct the locks, dams, aqueducts, and culverts that guided water from the Potomac River into the canal and maintained the water level as canal boats traveled between higher elevations in western Maryland to sea level in Washington, D.C. The canal and towpath provide a unique transect across the central Appalachian region for examining the rich geologic diversity and history.

  8. Sr-Nd-Pb isotope systematics of the Permian volcanic rocks in the northern margin of the Alxa Block (the Shalazhashan Belt) and comparisons with the nearby regions: Implications for a Permian rift setting?

    NASA Astrophysics Data System (ADS)

    Shi, Guanzhong; Wang, Hua; Liu, Entao; Huang, Chuanyan; Zhao, Jianxin; Song, Guangzeng; Liang, Chao

    2018-04-01

    The petrogenesis of the Permian magmatic rocks in the Shalazhashan Belt is helpful for us to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB) in the northern margin of the Alxa Block. The Permian volcanic rocks in the Shalazhashan Belt include basalts, trachyandesites and trachydacites. Our study shows that two basalt samples have negative εNd(t) values (-5.4 to -1.5) and higher radiogenic Pb values, which are relevant to the ancient subcontinental lithospheric mantle. One basalt sample has positive εNd(t) value (+10) representing mafic juvenile crust and is derived from depleted asthenosphere. The trachyandesites are dated at 284 ± 3 Ma with εNd(t) = +2.7 to +8.0; ISr = 0.7052 to 0.7057, and they are generated by different degrees of mixing between mafic magmas and crustal melts. The trachydacites have high εNd(t) values and slightly higher ISr contents, suggesting the derivation from juvenile sources with crustal contamination. The isotopic comparisons of the Permian magmatic rocks of the Shalazhashan Belt, the Nuru-Langshan Belt (representing the northern margin of the Alxa Block), the Solonker Belt (Mandula area) and the northern margin of the North China Craton (Bayan Obo area) indicate that the radiogenic isotopic compositions have an increasingly evolved trend from the south (the northern margins of the Alxa Block and the North China Craton) to the north (the Shalazhashan Belt and the Solonker Belt). Three end-member components are involved to generate the Permian magmatic rocks: the ancient subcontinental lithospheric mantle, the mafic juvenile crust or newly underplated mafic rocks that were originated from depleted asthenosphere, and the ancient crust. The rocks correlative with the mafic juvenile crust or newly underplated mafic rocks are predominantly distributed along the Shalazhashan Belt and the Solonker Belt, and the rocks derived from ancient, enriched subcontinental lithospheric mantle are mainly distributed along the northern margins of the Alxa Block and the North China Craton. The magmatic rock types, isotopic features and their temporal, spatial distributions suggest an extensional regime probably related to rifting.

  9. Deformation of the Songshugou ophiolite in the Qinling orogen

    NASA Astrophysics Data System (ADS)

    Sun, Shengsi; Dong, Yunpeng

    2017-04-01

    The Qinling orogen, middle part of the China Central Orogenic Belt, is well documented that was constructed by multiple convergences and subsequent collisions between the North China and South China Blocks mainly based on geochemistry and geochronology of ophiolites, magmatic rocks as well as sedimentary reconstruction. However, this model is lack of constraints from deformation of subduction/collision. The Songshugou ophiolite outcropped to the north of the Shangdan suture zone represents fragments of oceanic crust and upper mantle. Previous works have revealed that the ophiolite was formed at an ocean ridge and then emplaced in the northern Qinling belt. Hence, deformation of the ophiolite would provide constraints for the rifting and subduction processes. The ophiolite consists chiefly of metamorphosed mafic and ultramafic rocks. The ultramafic rocks contain coarse dunite, dunitic mylonite and harzburgite, with minor diopsidite veins. The mafic rocks are mainly amphibolite, garnet amphibolite and amphibole schist, which are considered to be eclogite facies and retrograde metamorphosed oceanic crust. Amphibole grains in the mafic rocks exhibit a strong shape-preferred orientation parallel to the foliation, which is also parallel to the lithologic contacts between mafic and ultramafic rocks. Electron backscattered diffraction (EBSD) analyses show strong olivine crystallographic preferred orientations (CPO) in dunite including A-, B-, and C-types formed by (010)[100], (010)[001] and (100)[001] dislocation slip systems, respectively. A-type CPO suggests high temperature plastic deformation in the upper mantle. In comparison, B-type may be restricted to regions with significantly high water content and high differential stress, and C-type may also be formed in wet condition with lower differential stress. Additionally, the dunite evolved into amphibolite facies metamorphism with mineral assemblages of olivine + talc + anthophyllite. Assuming a pressure of 1.5 GPa, which corresponds to equilibration in the spinel stability field, application of the olivine-spinel thermometer (Ballhaus et al., 1991) suggests temperature of 622 ± 22 °C. Amphibole schists display well-developed amphibole CPO with [100], [010] and [001] axes concentrate parallel to Z-, Y- and X-directions, respectively. The strong CPO of amphiboles could be interpreted as anisotropic growth and passive rigid-body rotation under various different stresses rather than results of dislocation creep. The Hbl + Pl thermometer (Holland and Blundy, 1994) constrains the equilibrium temperature to be 640 ± 34 °C for the amphibolite facies metamorphism. Zircons in light-color from the amphibolite with Th/U<0.1 and depletion of HREE yield a U-Pb age of 504 ± 10 Ma, representing the metamorphic age of eclogite. In comparison, the zircons in dark-color from amphibolite showing flat HREE patterns and negative abnormal of Eu give a U-Pb age of 489 ± 5.2 Ma, constraining the time of retrograde metamorphism of eclogite. Together with field investigation and regional geology, our new data propose that the A-type olivine CPO was formed in oceanic upper mantle with the spreading of Shangdan ocean before ca. 514 Ma. At ca. 504 Ma, the deep subduction of oceanic lithosphere endured eclogite facies metamorphism and induced B-type olivine CPO. Up to ca. 489 Ma, obduction of the fragments of metamorphosed oceanic lithosphere resulted in the C-type olivine CPO in dunite and amphibole CPO in the retrograded metamorphic eclogite.

  10. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    USGS Publications Warehouse

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a segment of the Roberts Mountain thrust front, which bridges the southern ends of the trends. This pattern appears to delineate two well-defined, sub-parallel, northwest?southeast-trending crustal-scale structural zones. These features, here termed the ?Carlin? and ?Cortez? structural zones, are believed to control the regional-scale distribution of the sedimentary rock-hosted occurrences. Mineralizing processes were focused along these structural zones and significant ore deposits exist where they intersect other tectonic zones, favorable host rock-types, and (or) where appropriate physio-chemical conditions were present. The origin and age of the Carlin and Cortez structural zones are not well constrained, however, they are considered to be transcurrent features representing a long-lived, deep-crustal or mantle-rooted zone of weakness. Areas of elevated volcanic rock-hosted mineral potential are principally distributed along two broad and diffuse belts that trend (1) northwest-southeast across southwestern Nevada, parallel to the Sierra Nevada, and (2) northeast-southwest across northern Nevada, extending diagonally from the Sierra Nevada to southern Idaho. The first belt corresponds to the Walker Lane shear zone, a wide region of complex strike-slip faulting. The second, here termed the ?Humboldt shear(?) zone?, may represent a structural zone of transcurrent movement. Together, the Walker Lane and Humboldt shear(?) zones are believed to control the regional-scale distribution of volcanic rock-hosted occurrences. Volcanic rock-hosted mineralization was closely tied to the southward and westward migration of Tertiary magmatism across the region (which may have been mantle plume-driven). Both magmatic and mineralizing processes were localized and concentrated along these structural zones. The Humboldt shear(?) zone may have also affected the distribution of sedimentary rock-hosted mineralization along the Battle Mountain?Eureka (C

  11. Interpretation of Gravimetric and Aeromagnetic Data of the Tecoripa Chart in Southeast Sonora, Mexico.

    NASA Astrophysics Data System (ADS)

    Martínez-Retama, S.; Montaño-Del Cid, M. A.

    2015-12-01

    The Tecoripa chart H12-D64 is located southeast of the state of Sonora, México, south of Arizona. The geology is represented by sedimentary rocks of the Ordovician and Triassic, volcanic rocks of the Upper Cretaceous and Tertiary, intrusive rocks from the Upper Cretaceous- Tertiary and sedimentary rocks of the Cenozoic. In this paper a gravimetric study was conducted to determine the configuration and depth of the basement and to develop a structural model of the subsurface. For this purpose a consistent gravimetric survey in 3 profiles was conducted. To complement this study, gravimetric data obtained by INEGI (96 gravimetric stations spaced every 4000 m) that correspond to a regional survey was also used. The two sets of data were corrected and processed with the WinGLink software. The profiles were then modeled using the Talwani method. 4 Profiles corresponding to the gravimetric survey and 5 data profiles from INEGI were modeled. Aeromagnetic data from the total field of Tecoripa chart were also processed. The digital information was integrated and processed by generating a data grid. Processes applied to data consisted of reduction to the pole, regional-residual separation and upward continuations. In general, the obtained structural models show intrusive bodies associated with well-defined high gravimetric and magnetic and low gravimetric and magnetic are associated with basins and sedimentary rocks. The obtained geological models show the basement represented by volcanic rocks of the Tarahumara Formation from the Upper Cretaceous which are in contact with sedimentary rocks from the Barranca Group from Upper Cretaceous and limestones from the Middle Ordovician. Both volcanic and sedimentary rocks are intruded by granodiorite- granite with ages of the Tertiary-Oligocene. Based on the superficial geology as well as in the configuration of the basement and the obtained structural model the existence of faults with NW-SE orientation that originate Horst and Graben type structures can be inferred. The basins have depths of 2,000 to 4,000m with sedimentary fillings from the Báucarit Formation and Quaternary sediments.

  12. Major chemical characteristics of Mesozoic Coast Range ophiolite in California

    USGS Publications Warehouse

    Bailey, E.H.; Blake, Jr., M.C.

    1974-01-01

    Sixty-four major element analyses of rocks representative of the Coast Range ophiolite in California were compared with analyses of other onland ophiolite sequences and those of rocks from oceanic ridges. The rocks can be classed in five groups harzburgite-dunite, clinopyroxenite-wehrlite, gabbro, basalt-spilite, and keratophyre-quartz keratophyre which on various diagrams occupy nonoverlapping fields. The harzburgite-dunite from onland ophiolite and ocean ridges are comparable and very low in alkalies. Possible differentiation trends defined on AFM diagrams by other rocks from onland ophiolites and ocean ridges suggest two lines of descent: (1) A trend much like the calc-alkalic trend, though shifted somewhat toward higher iron, and (2) an iron-enrichment trend defined chiefly by the more iron-rich gabbros and amphibolite. MgO-variation diagrams for rocks from the Coast Range ophiolite further distinguish the iron-rich gabbros and amphibolite from the other rock groups and indicate that the iron enrichment, unlike that of the Skaergaard trend, is related to the formation of amphibole. Ophiolite sequences that include the most silicic rock types, such as quartz keratophyre, also exhibit the most pronounced dual lines of descent, suggesting that the silicic rocks and the amphibole-rich gabbros are somehow related. Although the major element chemistry of the Coast Range ophiolite is clearly like that of rocks dredged from oceanic ridges, it is not sufficiently diagnostic to discriminate among the choices of a spreading ridge, an interarc basin, or perhaps even the root zone of an island arc as the site of ophiolite formation.

  13. Raman Spectroscopy for Mineral Identification and Quantification for in situ Planetary Surface Analysis: A Point Count Method

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Wang, Alian; Rockow, Kaylynn M.; Jolliff, Bradley L.; Korotev, Randy L.; Viskupic, Karen M.

    1997-01-01

    Quantification of mineral proportions in rocks and soils by Raman spectroscopy on a planetary surface is best done by taking many narrow-beam spectra from different locations on the rock or soil, with each spectrum yielding peaks from only one or two minerals. The proportion of each mineral in the rock or soil can then be determined from the fraction of the spectra that contain its peaks, in analogy with the standard petrographic technique of point counting. The method can also be used for nondestructive laboratory characterization of rock samples. Although Raman peaks for different minerals seldom overlap each other, it is impractical to obtain proportions of constituent minerals by Raman spectroscopy through analysis of peak intensities in a spectrum obtained by broad-beam sensing of a representative area of the target material. That is because the Raman signal strength produced by a mineral in a rock or soil is not related in a simple way through the Raman scattering cross section of that mineral to its proportion in the rock, and the signal-to-noise ratio of a Raman spectrum is poor when a sample is stimulated by a low-power laser beam of broad diameter. Results obtained by the Raman point-count method are demonstrated for a lunar thin section (14161,7062) and a rock fragment (15273,7039). Major minerals (plagioclase and pyroxene), minor minerals (cristobalite and K-feldspar), and accessory minerals (whitlockite, apatite, and baddeleyite) were easily identified. Identification of the rock types, KREEP basalt or melt rock, from the 100-location spectra was straightforward.

  14. Cortlandtitic enclaves associated with calc-alkaline granites from Tapia-Asturias (Hercynian Belt, northwestern Spain)

    NASA Astrophysics Data System (ADS)

    Galán, G.; Suárez, O.

    1989-10-01

    Petrographic and mineralogical characteristics of amphibole-olivine- and pyroxene-bearing ultramafic rocks from Asturias (NW Spain) are dealt with in this paper. These rocks are of cortlandtitic type and occur as small rare enclaves in basic rocks related to Hercynian calc-alkaline, post-tectonic epizonal granites, in the northwest of the Iberian Peninsula. These particular ultramafic enclaves are characterized by poikilitic cumulate microtexture. Olivine (Fo 77-81), spinel, from chromite to pleonaste composition, enstatite, subordinated diopside and sulphides are included in large brown calcic amphibole crystals displaying an irregular zonation. Phlogopite and plagioclase are also found, in a much lower proportion, between the large amphibole crystals. Mineral assemblage and chemical composition of minerals indicate formation conditions of 1150°C, 7-8 kbar of Ptotal and PH 2O < Ptotal. These rocks could represent the earlier products of fractional crystallization from a hydrated high-alumina basalt involved in the genesis of the calc-alkaline granites. This basic magma would start crystallizing at a relatively deep level, carrying up the first products of its crystallization during its ascent.

  15. Experimental results of temperature response to stress change: An indication of the physics of earthquake rupture propagation

    NASA Astrophysics Data System (ADS)

    Lin, W.; Yang, X.; Tadai, O.; Zeng, X.; Yeh, E. C.; Yu, C.; Hatakeda, K.; Xu, H.; Xu, Z.

    2016-12-01

    As a result of the earthquake rupture propagation, stress on the earthquake fault and in the hanging wall and in the footwall coseismically drops. Based on the thermo-elasticity theory, the temperature of rocks may change associated with coseismic stress change at the same time as their elastic deformation. This coseismic temperature change is one of the physics of earthquake rupture propagation, however has not been noted and expressly addressed before. To understand this temperature issue, we conducted laboratory experiments to quantitatively investigate temperatures response of rocks to rapid stress change of various typical rocks. Consequently, we developed a hydrostatic compression experimental equipment for rock samples with a high resolution temperature measuring system. This enable us to rapidly load and/or unload the confining pressure. As experimental rock samples, we collected 15 representative rocks from various scientific drilling projects and outcrops of earthquake faults, and quarries in the world. The rock types include sandstone, siltstone, limestone, granite, basalt, tuff etc. Based on the classical thermo-elastic theory, a conventional relationship between the temperature change (dT) of rock samples and the confining pressure change (dP) in the hydrostatic compression system under adiabatic condition can be expressed as a linear function. Therefore, we can measure the adiabatic pressure derivative of temperature (dT/dP) directly by monitoring changes of rock sample temperature and confining pressure during the rapidly loading and unloading processes. As preliminary results of the experiments, the data of 15 rock samples showed that i) the adiabatic pressure derivative of temperature (dT/dP) of most rocks are about 1.5 6.2 mK/MPa; ii) the dT/dP of sedimentary rocks is larger than igneous and metamorphic rocks; iii) a good linear correlation between dT/dP and the rock's bulk modulus was recognized.

  16. Seismic Monitoring of Rock Falls in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Zimmer, V. L.; Stock, G. M.; Sitar, N.

    2008-12-01

    Between 1857 and 2007, more than 600 landslide events have been documented in Yosemite National Park, with the vast majority of events occurring as rock falls in Yosemite Valley. The conditions leading to and triggering rock fall are understood in approximately 50 percent of cases, but in the other 50 percent, there were no apparent triggers. Occasionally, large rock falls have been preceded by smaller events that, in retrospect, may have been precursors. Close range seismic monitoring presents an opportunity to study the conditions leading up to rock fall, as well as the mechanics of the actual rock fall as recorded seismically. During the winter of 2007-08, we conducted a rock fall seismic monitoring feasibility study in Yosemite Valley. A station consisting of an 8 Hz geophone and an accelerometer was placed on a ledge 1000 feet above the valley floor, in a historically active rock fall area known as the Three Brothers. At least two rock falls in this area were recorded by the instrumentation and witnessed by visitors, representing the first time rock falls have been recorded with seismic instrumentation in Yosemite Valley. Significant energy was recorded in a wide frequency range, from a few Hz to approximately 150 Hz, limited by the geophone response and attenuation of the signal due to distance to the source (400 m). Furthermore, there exists a weak signal approximately 5-10 seconds before the obvious rock fall signature. We hypothesize that the weak signal represents rock fall initiation manifesting as the first blocks sliding down the cliff face, while the stronger impulses represent these blocks impacting ledges and the bottom talus field. This study demonstrated that rock fall monitoring is feasible with seismic instrumentation, and serves as the catalyst for future studies using a network of sensors for more advanced analysis.

  17. The Regolith of 4 Vesta - Inferences from Howardites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Herrin, J. S.; Cartwright, J. A.

    2011-01-01

    Asteroid 4 Vesta is quite likely the parent asteroid of the howardite, eucrite and diogenite meteorites - the HED clan. Eucrites and diogenites are the products of igneous processes; the former are basaltic composition rocks from flows, and shallow and deep intrusive bodies, whilst the latter are cumulate orthopyroxenites thought to have formed deep in the crust. Impact processes have excavated these materials and mixed them into a suite of polymict breccias. Howardites are polymict breccias composed mostly of clasts and mineral fragments of eucritic and diogenitic parentage, with neither end-member comprising more than 90% of the rock. Early work interpreted howardites as representing the lithified regolith of their parent asteroid. Recently, howardites have been divided into two subtypes; fragmental howardites, being a type of non-regolithic polymict breccia, and regolithic howardites, being lithified remnants of the active regolith of 4 Vesta. We are in the thralls of a collaborative investigation of the record of impact mixing contained within howardites, which includes studies of their mineralogy, petrology, bulk rock compositions, and bulk rock and clast noble gas contents. One goal of our investigation is to test the hypothesis that some howardites represent breccias formed from an ancient, well-mixed regolith on Vesta. Another is to use our results to further understand regolith processing on differentiated asteroids as compared to what has been learned from the Moon. We have made petrographic observations and electron microprobe analyses on 21 howardites and 3 polymict eucrites. We have done bulk rock analyses using X-ray fluorescence spectrometry and are completing inductively coupled plasma mass spectrometry analyses. Here, we discuss our petrologic and bulk compositional results in the context of regolith formation. Companion presentations describe the noble gas results and compositional studies of low-Ca pyroxene clasts.

  18. Stress-Activated Electronic Charge Carriers in Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Pan, C. T.; Jones, H. H.; Freund, F. T.

    2006-12-01

    Igneous rocks, when subjected to deviatory stress, turn into a battery. We report on gabbro (Shanxi, China) and anorthosite (Larvik, Norway). We use tiles, 30 x 30 x 0.9 cm3, and a pair of steel pistons, 4.4 cm diameter to subject a small off-center volume of ~10 cm3 to 10 MPa, about 5% failure strength. Instantly upon loading, two types of electronic charge carriers are activated in the stressed rock volume and a current begins to flow. One current leg is carried by holes, which flow from the stressed through the unstressed rock to the edges of the tile. The other current leg is carried by electrons, which flow from the stressed rock into the steel pistons and through the external wire to the edge, where they meet the holes. We have measured the impedance of the gabbro and anorthosite over the frequency range from <1 Hz to 10 MHz. We measured the impedence across the 10 cm3 volume between the two pistons and a similar volume outside the pistons in the path of the holes flowing to the edges of the tile: (1) before loading, (2) during loading. We obtain thus information about both types of charge carriers, electrons and holes. Both are associated with oxygen anions that changed their valence from 2- to 1- (peroxy). An O- among O2- represents a defect electron in the O2- sublattice, known as positive hole or p-hole for short. In unstressed rocks the O- exist in an electrically inactive form as O- pairs, chemically equivalent to peroxy links, O3X-OO-XO3 with X = Si4+, Al3+ etc. Stresses cause the peroxy links to break, allowing electrons from neighboring O2- to jump in and p-holes to jump out. The p-holes can spread through unstressed rocks using energy levels at the upper edge of the valence band.

  19. Petrophysical, Lithological and Mineralogical Characteristics of the Shale Strata of the Volga- Ural Region

    NASA Astrophysics Data System (ADS)

    Morozov, Vladimir P.; Plotnikova, Irina N.; Pronin, Nikita V.; Nosova, Fidania F.; Pronina, Nailya R.

    2014-05-01

    The objects of the study are Upper Devonian carbonate rocks in the territory of South-Tatar arch and Melekess basin in the Volga- Urals region. We studied core material of Domanicoid facies from the sediments of Mendymski and Domanik horizons of middle substage of Frasnian stage of the Upper Devonian. Basic analytical research methods included the following: study of the composition, structural and textural features of the rocks, the structure of their voids, filter and reservoir properties and composition of the fluid. The complex research consisted of macroscopic description of the core material, optical microscopy analysis, radiographical analysis, thermal analysis, x-ray tomography, electron microscopy, gas-liquid chromatography, chromate-mass spectrometry, light hydrocarbons analysis using paraphase assay, adsorbed gases analysis, and thermal vacuum degassing method. In addition, we performed isotopic studies of hydrocarbons saturating shale rocks. Shale strata are mainly represented by carbonate-chert rocks. They consist mainly of calcite and quartz. The ratio of these rock-forming minerals varies widely - from 25 to 75 percent. Pyrite, muscovite, albite, and microcline are the most common inclusions. Calcareous and ferruginous dolomite (ankerite), as well as magnesian calcite are tracked down as secondary minerals. While performing the tests we found out that the walls of open fractures filled with oil are stacked by secondary dolomite, which should be considered as an indication moveable oil presence in the open-cut. Electron microscopy data indicate that all the studied samples have porosity - both carbonates and carbonate-siliceous rocks. Idiomorphism of the rock-forming grains and pores that are visible under a microscope bring us to that conclusion. The analysis of the images indicates that the type of reservoir is either porous or granular. The pores are distributed evenly in the volume of rock. Their size is very unstable and varies from 0.5 microns to 100 microns. The lowest value are observed in long carbonate-siliceous rocks, the highest values are found in carbonate rocks. The latter is caused by the fact that there is a very strong recrystallization of calcite and its dolomite substitution in carbonates. Open porosity ranges from 0.65 to 7.98 percent, average value is 4.1percent . Effective porosity has an average value of 0.44 percent, ranging from 0.22 to 1.97. Permeability varies from 0.043 to 1.49 mD, average value is 0,191 mD. Organic matter was found in all samples. Its content varies within the section. The fluctuation range of from 1.0 to 20 percent. The lowest content of carbonates is found in carbonates, while the highest is observed in carbonate-siliceous rocks with a high content of chalcedony. Average organic matter content is 5-7 percent. According to Rock-Eval studies of the core, the catagenetic maturity of organic matter corresponds to MK1 - MK2 degree. We found a connection between the type of organic matter and the composition of adsorbed gas. We also could see that the samples with humic organics present in their organic matter and can be characterized by a fair dominance of methane over other gases. There is a clear relationship between organic matter content and the intensity of the gas saturation of the rock. Organic matter is characteristic mainly of the most siliceous formations. In "pure" carbonates, which are represented by micro-layers with different capacities, OM is not observed at all or its content is quite low.

  20. Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications.

    PubMed

    Zhang, Y Q; Sanati-Nezhad, A; Hejazi, S H

    2018-01-16

    A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.

  1. Relationship between mineralogy and porosity in seals relevant to geologic CO2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, Alexander; Anovitz, Lawrence; Sheets, Julia

    2014-01-01

    Porosity and permeability are key petrophysical variables that link the thermal, hydrological, geochemical, and geomechanical properties of subsurface formations. The size, shape, distribution, and connectivity of rock pores dictate how fluids migrate into and through micro- and nano-environments, then wet and react with accessible solids. Three representative samples of cap rock from the Eau Claire Formation, the prospective sealing unit that overlies the Mount Simon Sandstone, a potential CO 2 storage formation, were interrogated with an array of complementary methods. neutron scattering, backscattered-electron imaging, energydispersive spectroscopy, and mercury porosimetry. Results are presented that detail variations between lithologic types in totalmore » and connected nano- to microporosity across more than five orders of magnitude. Pore types are identified and then characterized according to presence in each rock type, relative abundance, and surface area of adjacent minerals, pore and pore-throat diameters, and degree of connectivity. We observe a bimodal distribution of porosity as a function of both pore diameter and pore-throat diameter. The contribution of pores at the nano- and microscales to the total and the connected porosity is a distinguishing feature of each lithology observed. Pore:pore-throat ratios at each of these two scales diverge markedly, being almost unity at the nanoscale regime (dominated by illitic clay and micas), and varying by one and a half orders of magnitude at the microscale within a clastic mudstone.« less

  2. Petrophysical Rock Typing of Unconventional Shale Plays: A Case Study for the Niobrara Formation of the Denver-Julesburg (DJ) Basin

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, A.; Prasad, M.

    2015-12-01

    The hydrocarbon-rich mudstone rock layers of the Niobrara Formation were deposited in the shallow marine environment and have evolved as overmature oil- or gas-prone source and reservoir rocks. The hydrocarbon production from its low-porosity, nano-darcy permeability and interbedded chalk-marl reservoir intervals is very challenging. The post-diagenetic processes have altered the mineralogy and pore structure of its sourcing and producing rock units. A rock typing analysis in this play can help understand the reservoir heterogeneity significantly. In this study, a petrophysical rock typing workflow is presented for the Niobrara Formation by integrating experimental rock properties with geologic lithofacies classification, well log data and core study.Various Niobrara lithofacies are classified by evaluating geologic depositional history, sequence stratigraphy, mineralogy, pore structure, organic content, core texture, acoustic properties, and well log data. The experimental rock measurements are conducted on the core samples recovered from a vertical well from the Wattenberg Field of the Denver-Julesburg (DJ) Basin. Selected lithofacies are used to identify distinct petrofacies through the empirical analysis of the experimental data-set. The grouped petrofacies are observed to have unique mineralogical properties, pore characteristics, and organic contents and are labelled as discrete Niobrara rock types in the study area.Micro-textural image analysis (FESEM) is performed to qualitatively examine the pore size distribution, pore types and mineral composition in the matrix to confirm the classified rock units. The principal component analysis and the cluster analysis are carried out to establish the certainty of the selected rock types. Finally, the net-to-pay thicknesses of these rock units are compared with the cumulative production data from the field to further validate the chosen rock types.For unconventional shale plays, the rock typing information can be used to locate hydrocarbon sweetspots, facilitate the placement of the horizontal section of the wells along the sweetspots, and can augment engineers' abilities on suitable well placement considerations. It can also help enhancing the effectiveness of the hydraulic fracture stimulation and completion operation.

  3. Petrographic and geochemical characterization of the Triassic and Jurassic magmatic and volcanic rocks of southeastern Ecuador

    NASA Astrophysics Data System (ADS)

    Villares, Fabián; Eguez, Arturo; Yanez, Ernesto

    2014-05-01

    Formely, the subandean zone in the southeastern Ecuador involved large volcanic and magmatic rocks included in the Misahualli Formation and Zamora batholith, both as expression of the Jurassic cal-alcaline volcanic arc. The aim of the project carried out by the INIGEMM (Instituto Nacional de Investigación Geológico Minero Metalúrgico) was discriminate the volcanic products including a continuous set going from basalts to ryolithes and volcanoclastic rocks. Geochemical characterization was done using representative 16 whole - rock chemical analysis. The oldest rocks of the investigated area called Pachicutza Unit, include greenish to black, massive basalts and basaltic andesites, locally showing pillows structures. The texture is aphanitic to microporphyritic with slight crystal growth of plagioclase and pyroxenes. The Unit include also local pyroclastic breccias and tuffs showing variable skarnification related to the intrusion of the jurassic Zamora Batholith. Two samples of basalts show tholeiitic affinity, corresponding to an N- MORB, probably representing an early stage in opening of a regional Triassic rift reported since Colombia to Peru in the Andes. These geochemical characteristics are similar to the amphibolites of Monte Olivo Unit in the Real Cordillera. The Jurassic large volcanic assembly of the Misahualli Formation was also differenciated. Basal volcanics include green, subporphyritic andesites and volcanic breccias possibly generated at an early stage of the volcanic arc, caused by a change of extensive to compressive regime. Continental volcano sedimentary and sedimentary rock were discriminate as Nueva Esperanza and Suarez Units, respectively. The volcanosedimentary sequence include massive to laminate tuffs and tuffites of intermediate composition. The sediments of the Suarez Unit include dominant conglomerats and sandstones of fluvial domain. The regional volcanic sequence is completed by the Las Peñas Unit that includes aphanitic to porphyritic andesites and coarse volcanic breccias. Three geochemical analysis of the lavas show andesitic composition, have medium to high-K calc-alkaline and represent the products of a subduction zone. All intrusions in the area were mapped as Zamora Batholith. Nevetheless, the field observations confirm a large Jurassic batholith but also other significant minor intrusion that intrudes the cretaceous sedimentary formations of the area. Thus, magmatic rocks in the area are named as Zamora batholithic complex. Petrography of the Zamora Batholith ranges from tonalite to monzo-granite with the same qualitative mineralogy. Rocks are composed by different proportions of plagioclase, amphibole, K-feldspar, quartz, biotite, opaques and epidote, as accessory minerals has zircon, sphene and apatite. Zamora Granitoids ranged from dioritic to granitic compositions ( 60.09 - . 73.6 wt % SiO2). The Zamora Granitoids have medium to high-K calc-alkaline and represent the products of a subduction zone. Products are generated within a magmatic arc in normal conditions of maturity. The Zamora Granitoids are I - type intrusions.

  4. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: influence of matrix porosity, matrix permeability, and fracture coating minerals.

    PubMed

    Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A

    2007-08-15

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  5. U.S.A. National Surface Rock Density Map - Part 2

    NASA Astrophysics Data System (ADS)

    Winester, D.

    2016-12-01

    A map of surface rock densities over the USA has been developed by the NOAA-National Geodetic Survey (NGS) as part of its Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Program. GRAV-D is part of an international effort to generate a North American gravimetric geoid for use as the vertical datum reference surface. As a part of modeling process, it is necessary to eliminate from the observed gravity data the topographic and density effects of all masses above the geoid. However, the long-standing tradition in geoid modeling, which is to use an average rock density (e.g. 2.67 g/cm3), does not adequately represent the variety of lithologies in the USA. The U.S. Geological Survey has assembled a downloadable set of surface geologic formation maps (typically 1:100,000 to 1:500, 000 scale in NAD27) in GIS format. The lithologies were assigned densities typical of their rock type (Part 1) and these variety of densities were then rasterized and averaged over one arc-minute areas. All were then transformed into WGS84 datum. Thin layers of alluvium and some water bodies (interpreted to be less than 40 m thick) have been ignored in deference to underlying rocks. Deep alluvial basins have not been removed, since they represent significant fraction of local mass. The initial assumption for modeling densities will be that the surface rock densities extend down to the geoid. If this results in poor modeling, variable lithologies with depth can be attempted. Initial modeling will use elevations from the SRTM DEM. A map of CONUS densities is presented (denser lithologies are shown brighter). While a visual map at this scale does show detailed features, digital versions are available upon request. Also presented are some pitfalls of using source GIS maps digitized from variable reference sources, including the infamous `state line faults.'

  6. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals

    NASA Astrophysics Data System (ADS)

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.

    2007-08-01

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  7. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2013-11-01

    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the Northern Neotethys. The Ankara Mélange thus exhibits the record of ~120-130 million years of oceanic magmatism in geological history of the Northern Neotethys.

  8. Shear heating and metamorphism in subduction zones, 2. The seismic-aseismic transition at c. 50 km depth.

    NASA Astrophysics Data System (ADS)

    Castro, A. E.; Spear, F. S.; Kohn, M. J.

    2017-12-01

    Recent work demonstrates that shear heating, which is required for explaining fore-arc heat flow, reconciles thermal models with pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks, i.e. exhumed rocks are representative of normal subduction. However, the range of subduction conditions on Earth (age, angle and rate of subducting plate, character of overriding plate, coefficient of friction, etc.) implies a ≥250 °C range of corresponding temperatures at the depth of the seismic-aseismic transition (SAT), which is consistently observed at 40-60 km in subduction zones worldwide. Here we show that the predicted rheologies and mineral stabilities for 3 common rock types fail to explain the global consistency of the SAT depth, and we propose that mechanical removal of the weakest rocks is required. Using either realistic thermal models, or P-T conditions recorded by exhumed metamorphic rocks, a substantial subset of depths corresponding with any single petrologic or rheological process falls outside the relatively restricted 40-60 km depth of the SAT. For example, a thermal weakening mechanism (the brittle-ductile transition) implies a wide range of depths, regardless of proposed T (e.g. 20-30 km (300 °C), 25-60 km (400 °C), 35 to >85 km (500 °C), etc). Similarly, individual dehydration reactions span a larger range of depths than observed for the SAT; for example, chlorite-out (metapelites: 35 to >85 km; metabasalts: 40 to >85 km), brucite-out (35-75 km) and serpentine/talc-out (50 to >80 km). The failure of a single petrologic and rheological trigger for these characteristic rocks to produce a consistent SAT depth implies that these rocks do not control the SAT, and consequently must not be abundant at depths below the SAT. That is, these hydrated, weak, and buoyant rocks must be squeezed out of the subduction system, although subduction of discontinuous blobs or lenses to greater depth, e.g. to feed arc volcanoes, may occur. The SAT instead may represent progressive strengthening of the subduction interface through mechanical exclusion of weak rocks and formation of stiffer minerals with increasing temperature and depth. Ultimately, as the strengths of the slab and mantle wedge converge at c. 80 km depth, mechanical coupling occurs, driving mantle wedge convection.

  9. Role of replacement in the genesis of anorthosite in the Boehls Butte area, Idaho.

    USGS Publications Warehouse

    Hietanen, A.

    1986-01-01

    In this area in N Idaho, three large and numerous small lenses of layered to massive anorthosite consisting of two, and locally three, types of plagioclase with minor hornblende and mica occur in aluminium silicate-rich garnet mica schist. In most of this anorthosite, megacrysts of andesine with bytownite inclusions are embedded in a fine-grained groundmass of bytownite or anorthite; locally, labradorite occurs rather than andesine. Some labradorite laths show Carlsbad twinning and rims of andesine around anorthite inclusions. Along the contacts, lenses of fine-grained bytownite anorthosite with some hornblende or garnet and quartz are common. These lenses could represent calcic parent rocks converted to two-plagioclase rocks by partial replacement of bytownite by andesine. -R.A.H.

  10. Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian-Early Carboniferous magmatism in SW Gondwana (27-32°LS): an example of geodynamic switching

    NASA Astrophysics Data System (ADS)

    Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2018-04-01

    We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.

  11. Rockbursting Potential of Kimberlite: A Case Study of Diavik Diamond Mine

    NASA Astrophysics Data System (ADS)

    Leveille, Paul; Sepehri, Mohammadali; Apel, Derek B.

    2017-12-01

    The research described in this paper provides information about the rockbursting potential of kimberlite. Kimberlite is a diamond-bearing rock found in deposits around the world including northern Canada. This paper outlines three methods for the prediction of rockbursts based on the properties of a rock. The methods include the: strain energy index, strain energy density, and rock brittleness. Kimberlite samples collected from Diavik, a diamond mine in northern Canada, were tested to define the rock's uniaxial compressive strength, tensile strength, and hysteresis loop. The samples were separated into sub-rock types based on their descriptions from the mine geologists. The results indicate that it is possible to produce rockbursts in kimberlite. It was also observed that the sub-rock types had a range of rockbursting properties. Some types of kimberlite exhibited little to no potential for producing bursts, while other types potentially could produce violent bursts. The diverse nature of kimberlite indicates that the rockbursting properties of the rock should not be generalized and are dependent on the sub-rock type being encountered.

  12. Mineral deposit densities for estimating mineral resources

    USGS Publications Warehouse

    Singer, Donald A.

    2008-01-01

    Estimates of numbers of mineral deposits are fundamental to assessing undiscovered mineral resources. Just as frequencies of grades and tonnages of well-explored deposits can be used to represent the grades and tonnages of undiscovered deposits, the density of deposits (deposits/area) in well-explored control areas can serve to represent the number of deposits. Empirical evidence presented here indicates that the processes affecting the number and quantity of resources in geological settings are very general across many types of mineral deposits. For podiform chromite, porphyry copper, and volcanogenic massive sulfide deposit types, the size of tract that geologically could contain the deposits is an excellent predictor of the total number of deposits. The number of mineral deposits is also proportional to the type’s size. The total amount of mineralized rock is also proportional to size of the permissive area and the median deposit type’s size. Regressions using these variables provide a means to estimate the density of deposits and the total amount of mineralization. These powerful estimators are based on analysis of ten different types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfide, Franciscan Mn, kuroko massive sulfide, low-sulfide quartz-Au vein, placer Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control tracts around the world therefore generalizing across deposit types. Despite the diverse and complex geological settings of deposit types studied here, the relationships observed indicate universal controls on the accumulation and preservation of mineral resources that operate across all scales. The strength of the relationships (R 2=0.91 for density and 0.95 for mineralized rock) argues for their broad use. Deposit densities can now be used to provide a guideline for expert judgment or used directly for estimating the number of most kinds of mineral deposits.

  13. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites

    NASA Astrophysics Data System (ADS)

    Lacinska, Alicja M.; Styles, Michael T.; Bateman, Keith; Hall, Matthew; Brown, Paul D.

    2017-06-01

    In situ sequestration of CO2 in mantle peridotites has been proposed as a method to alleviate the amount of anthropogenic CO2 in the atmosphere. This study presents the results of eight-month long laboratory fluid-rock experiments on representative mantle rocks from the Oman-United Arab Emirates ophiolite to investigate this process. Small core samples (3 cm long) were reacted in wet supercritical CO2 and CO2-saturated brine at 100 bar and 70°C. The extent of carbonate formation, and hence the degree of carbon sequestration, varied greatly depending on rock type, with serpentinite (lizardite-dominated) exhibiting the highest capacity, manifested by the precipitation of magnesite MgCO3 and ferroan magnesite (Mg,Fe)CO3. The carbonate precipitation occurred predominantly on the surface of the core and subordinately within cross-cutting fractures. The extent of the CO2 reactions appeared to be principally controlled by the chemical and mineralogical composition of the rock, as well as the rock texture, with all these factors influencing the extent and rate of mineral dissolution and release of Mg and Fe for subsequent reaction with the CO2. It was calculated that ≈ 0.7 g of CO2 was captured by reacting ≈ 23 g of serpentinite, determined by the mass of magnesite formed. This equates to ≈ 30 kg CO2 per tonne of host rock, equivalent to ≈ 3% carbonation in half a year. However, recycling of carbonate present in veins within the original rock sample could mean that the overall amount is around 2%. The increased reactivity of serpentinite was associated with preferential dissolution of more reactive types of serpentine minerals and brucite, that were mainly present in the cross-cutting veins. The bulk of the serpentinite rock was little affected. This study, using relatively short term experiments, suggests that serpentinite might be a good host rock for CO2 sequestration, although long term experiments might prove that dunite and harzburgite could be an effective in an engineered system of CCSM. Wet scCO2 proved to be chemically aggressive than CO2-saturated brine and its ingress along fractures and grain boundaries resulted in greater host rock dissolution and subsequent carbonate precipitation.

  14. Rock type discrimination techniques using Landsat and Seasat image data

    NASA Technical Reports Server (NTRS)

    Blom, R.; Abrams, M.; Conrad, C.

    1981-01-01

    Results of a sedimentary rock type discrimination project using Seasat radar and Landsat multispectral image data of the San Rafael Swell, in eastern Utah, are presented, which has the goal of determining the potential contribution of radar image data to Landsat image data for rock type discrimination, particularly when the images are coregistered. The procedure employs several images processing techniques using the Landsat and Seasat data independently, and then both data sets are coregistered. The images are evaluated according to the ease with which contacts can be located and rock units (not just stratigraphically adjacent ones) separated. Results show that of the Landsat images evaluated, the image using a supervised classification scheme is the best for sedimentary rock type discrimination. Of less value, in decreasing order, are color ratio composites, principal components, and the standard color composite. In addition, for rock type discrimination, the black and white Seasat image is less useful than any of the Landsat color images by itself. However, it is found that the incorporation of the surface textural measures made from the Seasat image provides a considerable and worthwhile improvement in rock type discrimination.

  15. An evaluation of thematic mapper simulator data for the geobotanical discrimination of rock types in Southwest Oregon

    NASA Technical Reports Server (NTRS)

    Weinstock, K. J.; Morrissey, L. A.

    1984-01-01

    Rock type identification may be assisted by the use of remote sensing of associated vegetation, particularly in areas of dense vegetative cover where surface materials are not imaged directly by the sensor. The geobotanical discrimination of ultramafic parent materials was investigated and analytical techniques for lithologic mapping and mineral exploration were developed. The utility of remotely sensed data to discriminate vegetation types associated with ultramafic parent materials in a study area in southwest Oregon were evaluated. A number of specific objectives were identified, which include: (1) establishment of the association between vegetation and rock types; (2) examination of the spectral separability of vegetation types associated with rock types; (3) determination of the contribution of each TMS band for discriminating vegetation associated with rock types and (4) comparison of analytical techniques for spectrally classifying vegetation.

  16. Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system

    NASA Astrophysics Data System (ADS)

    Stöffler, Dieter; Hamann, Christopher; Metzler, Knut

    2018-01-01

    We reevaluate the systematics and geologic setting of terrestrial, lunar, Martian, and asteroidal "impactites" resulting from single or multiple impacts. For impactites derived from silicate rocks and sediments, we propose a unified and updated system of progressive shock metamorphism. "Shock-metamorphosed rocks" occur as lithic clasts or melt particles in proximal impactites at impact craters, and rarely in distal impactites. They represent a wide range of metamorphism, typically ranging from unshocked to shock melted. As the degree of shock metamorphism, at a given shock pressure, depends primarily on the mineralogical composition and the porosity of a rock or sediment sample, different shock classification systems are required for different types of planetary rocks and sediments. We define shock classification systems for eight rock and sediment classes which are assigned to three major groups of rocks and sediments (1) crystalline rocks with classes F, M, A, and U; (2) chondritic rocks (class C); and (3) sedimentary rocks and sediments with classes SR, SE, and RE. The abbreviations stand for felsic (F), mafic (M), anorthositic (A), ultramafic (U), sedimentary rocks (SR), unconsolidated sediments (SE), and regoliths (RE). In each class, the progressive stages of shock metamorphism are denominated S1 to Sx. These progressive shock stages are introduced as: S1-S7 for F, S1-S7 for M, S1-S6 for A, S1-S7 for U, S1-S7 for C, S1-S7 for SR, S1-S5 for SE, and S1-S6 for RE. S1 stands for "unshocked" and Sx (variable between S5 and S7) stands for "whole rock melting." We propose a sequence of symbols characterizing the degree of shock metamorphism of a sample, i.e., F-S1 to F-S7 with the option to add the tabulated pressure ranges (in GPa) in parentheses.

  17. Petrology of unshocked crystalline rocks and shock effects in lunar rocks and minerals

    USGS Publications Warehouse

    Chao, E.C.T.; James, O.B.; Minkin, J.A.; Boreman, J.A.; Jackson, E.D.; Raleigh, C.B.

    1970-01-01

    On the basis of rock modes, textures, and mineralogy, unshocked crystalline rocks are classified into a dominant ilmenite-rich suite (subdivided into intersertal, ophitic, and hornfels types) and a subordinate feldspar-rich suite (subdivided into poikilitic and granular types). Weakly to moderately shocked rocks show high strain-rate deformation and solid-state transformation of minerals to glasses; intensely shocked rocks are converted to rock glasses. Data on an unknown calcium-bearing iron metasilicate are presented.

  18. High resolution HH-XRF scanning and XRD modelling as a tool in sedimentological analysis - A case study from the Enreca-3 core, Bach Long Vi Island, Vietnam

    NASA Astrophysics Data System (ADS)

    Rizzi, Malgorzata; Hemmingsen Schovsbo, Niels; Korte, Christoph; Bryld Wessel Fyhn, Michael

    2017-04-01

    To improve the understanding and interpretation of the depositional environment of a late Oligocene lacustrine organic rich oil-prone source rock succession, 2464 hand held (HH)-XRF measurements were made systematically on the 500 m long, continuous core from the fully cored Enreca-3 well. This core, drilled on the remote Bach Long Vi Island, northern Gulf of Tonkin, offshore Vietnam, represents a deep lake succession alternating between lacustrine pelagic dominated sediments interrupted by hyperpycnal turbidites, high density turbidites and debris flows [1, 2]. From a combined HH-XRF-XRD data set, multivariate data analysis and regression models are used to type the rock and to predict the XRD mineral composition based on HH-XRF composition. The rock types and the modelled mineral composition highlight the geochemical variations of the sediment and allows for direct comparison with sedimentological processes and facies changes. The modeling also depicts the cyclic alteration of rock types that are present on many different scales ranging from centimeters to hundreds of meters [1, 2]. The sedimentological and geochemical variations observed throughout the cored section reflects fluctuating paleoclimate, tectonism and hinterland condition controlling the depositional setting, which may provide a deeper understanding of the deposition of this and similar Paleogene syn-rift succession in the South China Sea region. It allows furthermore the development of a more generalized depositional model relevant for other deep-lacustrine syn-rift basins. [1] Petersen et al. (2014) Journal of Petroleum Geology, 37: 373-389. [2] Hovikoski et al. (2016) Journal of Sedimentary Research, 86(8): 982-1007.

  19. The ratios of carbon and non-radiogenic helium and argon isotopes in the mantle and crustal rocks

    NASA Technical Reports Server (NTRS)

    Lokhov, K.; Levsky, L.

    1994-01-01

    The studies of the relations of carbon and primary isotopes of noble gases were carried out on the natural gases and on the mantle rocks from the mantle M-type sources, which represent the degassed mantle reservoir (MORB's). These works has the aim of estimation of the values of the C/3He ratios in the deep mantle fluids to determine the flux of the mantle CO2 on the basis of known flux of primary mantle 3He. It was found, that in the natural gases the values of the C/3He ratios fall into the range from 1 times E plus 6 to 1 times E plus 15, and in the fluids of MORB's are constant near 2 times E plus 9. We have studied the mantle rocks from the relatively undergassed mantle P minus type sources: continental; Baikal Rift (Siberia), Mongolia, Catalonia (Spain), Pannonia Depression (central Europe) and ocean; Spietzbergen isl., Hawaii isl., Canarian isl. It ws found, that in mantle xenolites and the host alkaline basalts from the continental rifts and ocean islands, the values of the C/3He ratios fall into the range from E plus 11 to E plus 15 (and this result needed to be explained; the higher carbon to helium ratios is relatively undergassed mantle reservoir compared with the degassed one, requires whether hilly compatibility of helium compared with carbon, whether additional flux of 3He to the degassed mantle reservoir). From the other hand it was found that in the mantle rocks from the sources of P minus and M minus types, continental carbonatites, the values of the C/36Ar ratios are constant in the range from E plus 9 to E plus 10, the close values have the MORB's also.

  20. Contrasting cratonal provenances for upper Cretaceous Valle Group quartzite clasts, Baja California

    USGS Publications Warehouse

    Kimbrough, D.L.; Abbott, G.; Smith, D.P.; Mahoney, J.B.; Moore, Thomas E.; Gehrels, G.E.; Girty, G.H.; Cooper, John D.

    2006-01-01

    Late Cretaceous Valle Group forearcbasin deposits on the Vizcaino Peninsula of Baja California Sur are dominated by firstcycle arc-derived volcanic-plutonic detritus derived from the adjacent Peninsular Ranges batholith. Craton-derived quartzite clasts are a minor but ubiquitous component in Valle Group conglomerates. The source of these clasts has implications for tectonic reconstructions and sediment-dispersal paths along the paleo-North American margin. Three strongly contrasting types of quartzite are recognized based on petrology and detrital zircon U-Pb geochronology. The first type is ultramature quartz arenite with well-rounded, highly spherical zircon grains. Detrital zircon ages from this type are nearly all >1.8 Ga with age distributions that closely match the distinctive Middle-Late Ordovician Peace River arch detrital signature of the Cordilleran margin. This type has been previously recognized from prebatholithic rocks in northeast Baja California (San Felipe quartzite). A second quartzite type is subarkosic sandstone with strong affinity to southwestern North America; important features of the age spectra are ~1.0-1.2 Ga, 1.42 and 1.66 Ga peaks representing cratonal basement, 500-300 Ma grains interpreted as recycled Appalachian-derived grains, and 284- 232 Ma zircon potentially derived from the Early Permian-Middle Triassic east Mexico arc. This quartzite type could have been carried to the continental margin during Jurassic time as outboard equivalents of Colorado Plateau eolianites. The third quartzite type is quartz pebble conglomerate with significant ~900- 1400 Ma and ~450-650 Ma zircon components, as well as mid- and late Paleozoic grains. The source of this type of quartzite is more problematic but could match either upper Paleozoic strata in the Oaxaca terrane of southern Mexico or a southwestern North America source. The similarity of detrital 98 zircon spectra in all three Valle Group quartzite types to rocks of the adjacent Cordilleran margin support previous interpretations that Valle Group forearc basin sediments were deposited in proximity to rocks on the mainland of northwest Mexico and southwestern United States.

  1. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    The San Gabriel fault, a deeply eroded late Oligocene to middle Pliocene precursor to the San Andreas, was chosen for petrologic study to provide information regarding intrafault material representative of deeper crustal levels. Cataclastic rocks exposed along the present trace of the San Andreas in this area are exclusively a variety of fault gouge that is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote, and Fe-Ti oxide mineralogy representing the milled-down equivalent of the original rock (Anderson and Osborne, 1979; Anderson et al., 1980). Likewise, fault gouge and associated breccia are common along the San Gabriel fault, but only where the zone of cataclasis is several tens of meters wide. At several localities, the zone is extremely narrow (several centimeters), and the cataclastic rock type is cataclasite, a dark, aphanitic, and highly comminuted and indurated rock. The cataclastic rocks along the San Gabriel fault exhibit more comminution than that observed for gouge along the San Andreas. The average grain diameter for the San Andreas gouge ranges from 0.01 to 0.06 mm. For the San Gabriel cataclastic rocks, it ranges from 0.0001 to 0.007 mm. Whereas the San Andreas gouge remains particulate to the smallest grain-size, the ultra-fine grain matrix of the San Gabriel cataclasite is composed of a mosaic of equidimensional, interlocking grains. The cataclastic rocks along the San Gabriel fault also show more mineralogiec changes compared to gouge from the San Andreas fault. At the expense of biotite, amphibole, and feldspar, there is some growth of new albite, chlorite, sericite, laumontite, analcime, mordenite (?), and calcite. The highest grade of metamorphism is laumontite-chlorite zone (zeolite facies). Mineral assemblages and constrained uplift rates allow temperature and depth estimates of 200 ± 30° C and 2-5 km, thus suggesting an approximate geothermal gradient of ~50°C/km. Such elevated temperatures imply a moderate to high stress regime for the San Andreas, which is consistent with experimental rock failure studies. Moreover, these results suggest that the previously observed lack of heat flow coaxial with the fault zone may be the result of dissipation rather than low stress. Much of the mineralogy of the cataclastic rocks is still relict from the earlier igneous or metamorphic history of the protolith; porphyroclasts, even in the most deformed rocks, consist of relict plagioclase (oligoclase to andesine), alkali feldspar, quartz, biotite, amphibole, epidote, allanite, and Fe-Ti oxides (ilmenite and magnetite). We have found no significant development of any clay minerals (illite, kaolinite, or montmorillonite). For many sites, the compositions of these minerals directly correspond to the mineral compositions in rock types on one or both sides of the fault. Whole rock major and trace element chemistry coupled with mineral compositions show that mixing within the zone of cataclasis is not uniform, and that originally micaceous foliated, or physically more heterogeneous rock units may contribute a disproportionally large amount to the resultant intrafault material. As previously found for the gouge along the San Andreas, chemical mobility is not a major factor in the formation of cataclastic rocks of the San Gabriel fault. We see only minor changes for Si and alkalies; however, there is a marked mobility of Li, which is a probable result of the alteration and formation of new mica minerals. The gouge of the San Andreas and San Gabriel faults probably formed by cataclastic flow. There is some indication, presently not well constrained, that the fine-grained matrix of the cataclasite of from the San Gabriel fault formed in response to superplastic flow.

  2. Spinel and plagioclase peridotites of the Nain ophiolite (Central Iran): Evidence for the incipient stage of oceanic basin formation

    NASA Astrophysics Data System (ADS)

    Pirnia, Tahmineh; Saccani, Emilio; Arai, Shoji

    2018-06-01

    The Nain ophiolites crop out along the western border of the central East Iran Microcontinent (CEIM) and consist of an ophiolitic mélange in which pargasite-bearing spinel and plagioclase mantle lherzolites are largely represented. Whole-rock and mineral chemistry data suggest that these rocks record the complex history of the asthenospheric and lithospheric mantle evolution. The spinel lherzolites have experienced low-degree ( 5%) partial melting and contain clinopyroxenes with positive Eu anomalies (Eu/Eu* = 1.10-1.48) suggesting that the partial melting occurred under oxidized conditions (fayalite-magnetite-quartz -0.8 to +1.3). The pargasite and coexisting clinopyroxene in these rocks are depleted in light rare earth elements (LREE) (mean chondrite-normalized CeN/SmN = 0.045). The depleted chemistry of this amphibole reflects metasomatism during interaction with H2O-rich subalkaline mafic melts, most likely concurrently with or after the partial melting of the spinel lherzolites. The plagioclase lherzolites were subsequently formed by the subsolidus recrystallization of spinel lherzolites under plagioclase facies conditions as a result of mantle uprising, as evidenced by: (1) the development of plagioclase rims around the spinels; (2) plagioclase + orthopyroxene exsolution textures within some clinopyroxene grains; (3) an increase in plagioclase modal content coupled with an increase in modal olivine and a decrease in modal pyroxene and pargasite; (4) coincident decreases in Al, Mg, and Ni, and increases in Cr, Ti, and Fe in spinel, as well as decreases in Al and Ca, and increases in Cr and Ti in pyroxene and pargasite; and (5) the identical whole rock compositions of the spinel and plagioclase lherzolites, which rules out a magmatic origin for the plagioclase in these units. The Nain lherzolites have similar whole-rock and mineral geochemical compositions to subcontinental peridotites that are typically representative of Iberia-type rifted continental margins and ocean-continent transition zones (OCTZ), suggesting that they formed during the early stages of the evolution of the Nain oceanic basin. This means that the Nain lherzolites represent the Triassic-Jurassic western border of the CEIM or alternatively an associated OCTZ.

  3. Characterising the metamorphic discontinuity across the Main Central Thrust Zone of eastern-central Nepal

    NASA Astrophysics Data System (ADS)

    Wang, Jiamin; Zhang, Jinjiang; Wei, Chunjing; Rai, SantaMan; Wang, Meng; Qian, Jiahui

    2015-04-01

    The Main Central Thrust Zone (MCTZ) is a top-to-south shear zone that has exhumed the high-grade Himalayan metamorphic core during the orogeny. Identifying the location of the MCTZ is a major challenge and the characteristics of the metamorphic discontinuity remain under debate. To clarify this issue, petrologic and thermobarometric studies were carried out on metapelites and metapsammites that were collected from the basal Nyalam transect in eastern-central Nepal. Results reveal that the metamorphic discontinuity across the MCTZ is characterised by a continuous increase in peak P-T conditions toward higher structural levels, a relatively high field temperature gradient (25-50 °C km-1) and different types of P-T paths. Specifically, representative rocks in the MCTZ record sub-solidus peak conditions (637 ± 16 °C and 9.2 ± 1.0 kbar) and a hairpin-type P-T path. The lower GHC rocks record supra-solidus peak conditions (690 ± 32 °C and 10.3 + 1.1/-1.4 kbar) and a prograde loading path with a small segment of decompression. The presence of a high field pressure gradient across the MCTZ is debatable in the Nyalam transect due to the large uncertainties in pressure estimates. Comparison between obtained P-T results and model predictions indicates that a multiple thrusting process dominated exhumation of the MCTZ and lower GHC rocks, while crustal flow contributed partly to exhumation of the lower GHC rocks.

  4. Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques

    PubMed Central

    Pederson, Joel L.; Chapot, Melissa S.; Simms, Steven R.; Sohbati, Reza; Rittenour, Tammy M.; Murray, Andrew S.; Cox, Gary

    2014-01-01

    Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses about its age span the entire Holocene epoch and previous attempts at direct radiocarbon dating have failed. We provide multiple age constraints through the use of cross-cutting relations and new and broadly applicable approaches in optically stimulated luminescence dating at the Great Gallery panel, the type section of BCS art in Canyonlands National Park, southeastern Utah. Alluvial chronostratigraphy constrains the burial and exhumation of the alcove containing the panel, and limits are also set by our related research dating both a rockfall that removed some figures and the rock’s exposure duration before that time. Results provide a maximum possible age, a minimum age, and an exposure time window for the creation of the Great Gallery panel, respectively. The only prior hypothesis not disproven is a late Archaic origin for BCS rock art, although our age result of A.D. ∼1–1100 coincides better with the transition to and rise of the subsequent Fremont culture. This chronology is for the type locality only, and variability in the age of other sites is likely. Nevertheless, results suggest that BCS rock art represents an artistic tradition that spanned cultures and the transition from foraging to farming in the region. PMID:25157162

  5. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    NASA Astrophysics Data System (ADS)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  6. The main features of the Uralian Paleozoic magmatism and the epioceanic nature of the orogen

    NASA Astrophysics Data System (ADS)

    Fershtater, G. B.

    2013-02-01

    The 2000 km Uralian Paleozoic orogen is situated on the western flank of the Uralo-Mongolian folded belt. It is characterized by an abundant variety of magmatic rocks and related ore deposits. Uralian Paleozoic magmatism is entirely subduction-related. It is proposed that the Uralian orogen represents a cold mobile belt in which the mantle temperature was 200 to 500 °C cooler than in the adjacent areas; a situation which is similar to the modern West Pacific Triangle Zone including Indonesia, the Philippine Islands, and southern Asia. During the course of the geological evolution of the Uralian orogen, the nature of the magmatism has changed from basic rocks of indisputable mantle origin (460-390 Ma) to mantle-crust gabbro-granitic complexes (370-315 Ma) followed by pure crustal granite magmatism (290-250 Ma). This order in rock type and age reflects the evolution of Paleozoic magmatic complexes from the beginning of subduction to the final stages of the orogen development.

  7. Anisotropy of diamagnetic susceptibility in Thassos marble: A comparison between measured and modeled data

    NASA Astrophysics Data System (ADS)

    de Wall, Helga; Bestmann, Michel; Ullemeyer, Klaus

    2000-11-01

    A study of shear zones within the calcite marble complex of the island of Thassos (Greece) shows that the low field anisotropy of magnetic susceptibility (AMS)-technique can be successfully applied to diamagnetic rocks for characterizing rock fabrics. The strain path involves both an early pure shear stage and a simple shear overprint that is documented by a transition from triaxial (neutral) to uniaxial (prolate) shapes of AMS ellipsoids. The maximum susceptibility is oriented perpendicular to the rock foliation, reflecting the preferred orientation of calcite c-axes in the protolith as well as in the mylonites. For three samples that represent different types of calcite fabrics, the AMS was recalculated from neutron and electron backscatter diffraction textural data. A comparison of the measured and modeled data shows a good coincidence for the orientation of the principal AMS axes and for the recalculated anisotropy data. Both measured and modeled data sets reflect the change from neutral to distinct prolate ellipsoids during progressive deformation.

  8. Chemical mixing model studies of lunar orbital geochemical data - Apollo 16 and 17 highlands compositions

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Hawke, B. R.

    1982-01-01

    Chemical mixing model studies of lunar geochemical data for the central and Taurus-Littrow lunar highlands were performed utilizing pristine highland rock types as end member compositions. The central highlands show considerable diversity in composition; anorthosite is the principal rock type in the Apollo 16/Descartes region, while norite predominates in the highlands west of the landing site. This change in crustal composition is coincident with a major color boundary seen in earth-based multispectral data and probably represents the presence of distinct geochemical provinces within the central highlands. The Taurus-Littrow highlands are dominated by norite; anorthosite is far less abundant than in the central highlands. This suggests that the impact target for the Serenitatis basin was different than that of the Nectaris basin and further strengthens the hypothesis that the lunar highlands are petrologically heterogeneous on a regional basis. It is suggested that the lunar highlands should be viewed in terms of geochemical provinces that have undergone distinct and complex igneous and impact histories.

  9. The Friction Factor in the Forchheimer Equation for Rock Fractures

    NASA Astrophysics Data System (ADS)

    Zhou, Jia-Qing; Hu, Shao-Hua; Chen, Yi-Feng; Wang, Min; Zhou, Chuang-Bing

    2016-08-01

    The friction factor is an important dimensionless parameter for fluid flow through rock fractures that relates pressure head loss to average flow velocity; it can be affected by both fracture geometry and flow regime. In this study, a theoretical formula form of the friction factor containing both viscous and inertial terms is formulated by incorporating the Forchheimer equation, and a new friction factor model is proposed based on a recent phenomenological relation for the Forchheimer coefficient. The viscous term in the proposed formula is inversely proportional to Reynolds number and represents the limiting case in Darcy flow regime when the inertial effects diminish, whereas the inertial term is a power function of the relative roughness and represents a limiting case in fully turbulent flow regime when the fracture roughness plays a dominant role. The proposed model is compared with existing friction factor models for fractures through parametric sensitivity analyses and using experimental data on granite fractures, showing that the proposed model has not only clearer physical significance, but also better predictive performance. By accepting proper percentages of nonlinear pressure drop to quantify the onset of Forchheimer flow and fully turbulent flow, a Moody-type diagram with explicitly defined flow regimes is created for rock fractures of varying roughness, indicating that rougher fractures have a large friction factor and are more prone to the Forchheimer flow and fully turbulent flow. These findings may prove useful in better understanding of the flow behaviors in rock fractures and improving the numerical modeling of non-Darcy flow in fractured aquifers.

  10. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturingmore » fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.« less

  11. Comparison of natural gases accumulated in Oligocene strata with hydrous pyrolysis gases from Menilite Shales of the Polish Outer Carpathians

    USGS Publications Warehouse

    Kotarba, M.J.; Curtis, John B.; Lewan, M.D.

    2009-01-01

    This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 ??C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 ??C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. ??13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the ??13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than kerogen less enriched in 13C. The typically assumed linear trend for ??13C of methane, ethane and propane versus their reciprocal carbon number for a single sourced natural gas is not observed in the experimental gases. Instead, the so-called "dogleg" trend, exemplified by relatively 13C depleted methane and enriched propane as compared to ethane, is observed for all the kerogen types and at both experimental conditions. Three of the natural gases from the same thrust unit had similar "dogleg" trends indicative of Menilite source rocks with Type III kerogen. These natural gases also contained varying amounts of a microbial gas component that was approximated using the ????13C for methane and propane determined from the experiments. These approximations gave microbial methane components that ranged from 13-84%. The high input of microbial gas was reflected in the higher gas:oil ratios for Outer Carpathian production (115-1568 Nm3/t) compared with those determined from the experiments (65-302 Nm3/t). Two natural gas samples in the far western part of the study area had more linear trends that suggest a different organic facies of the Menilite Shales or a completely different source. This situation emphasizes the importance of conducting hydrous pyrolysis on samples representing the complete stratigraphic and lateral extent of potential source rocks in determining specific genetic gas correlations. ?? 2009 Elsevier Ltd.

  12. Carbonate-silicate melt immiscibility, REE mineralising fluids, and the evolution of the Lofdal Intrusive Suite, Namibia

    NASA Astrophysics Data System (ADS)

    Bodeving, Sarah; Williams-Jones, Anthony E.; Swinden, Scott

    2017-01-01

    The Lofdal Intrusive Suite, Namibia, consists of calcio-carbonatite and silica-undersaturated alkaline intrusive rocks ranging in composition from phono-tephrite to phonolite (and nepheline syenite). The most primitive of these rocks is the phono-tephrite, which, on the basis of its Y/Ho and Nb/Ta ratios, is interpreted to have formed by partial melting of the mantle. Roughly linear trends in major and trace element contents from phono-tephrite to phonolite and nepheline syenite indicate that the latter two rock types evolved from the phono-tephrite by fractional crystallisation. The nepheline syenite, however, has a lower rare earth element (REE) content than the phonolite. The carbonatite has a primitive mantle-normalised REE profile roughly parallel to that of the silica-undersaturated alkaline igneous rocks, although the absolute REE concentrations are higher. Like the phono-tephrite, it also has a mantle Y/Ho ratio. However, the Nb/Ta and Zr/Hf ratios are significantly higher. Moreover, the carbonatite displays strong negative Ta, Zr and Hf anomalies on spidergrams, whereas the silicate rocks display positive anomalies for these elements. Significantly, this behaviour is predicted by the corresponding carbonatite-silicate melt partition coefficients, as is the behaviour of the REE. Based on these observations, we interpret the carbonatite to represent an immiscible liquid that exsolved from the phono-tephrite or possibly the phonolite melt. The result was a calcio-carbonatite that is enriched in the heavy REE (HREE) relative to most other carbonatites. Fluids released from the corresponding magma are interpreted to have been the source of the REE mineralisation that is currently the target of exploration. 2. The composition of feldspar in nepheline syenite, fenite, calcio-carbonatite and phonolite plotted on the feldspar ternary classification diagram modified after Schairer (1950) in terms of the components albite (Ab), orthoclase (Or) and anorthite (An). Note: ANO = anorthosite, SAN = sanidine, OLI = oligoclase, AND = andesine, LAB = labradorite, BYT = bytownite. 3. Composition of the Lofdal mica plotted on the biotite classification diagram of Rieder et al. (1998). 4. Clinopyroxene composition in nepheline syenite and calcio-carbonatite phenocrysts illustrated on the classification ternary for sodic pyroxenes (after Morimoto; 1989). Quad (Q) represents wollastonite, enstatite and ferrosilite of the Mg-Ca-Fe group of pyroxenes. 5. The range of carbonatite compositions illustrated on the carbonatite classification diagram of Gittins and Harmer (1997). 6. Composition of the Lofdal nepheline syenite on the plutonic Total-Alkali-Silica diagram of Wilson (1989). 7. a. A binary plot showing the concentration of Y versus that of Ho in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 27.7 (Sun and McDonough, 1989). b. A binary plot showing the concentration of Nb versus that of Ta in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 17.4 (Sun and McDonough, 1989). c. A binary plot showing the concentration of Zr versus that of Hf in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 36.2 (Sun and McDonough, 1989). 8. A binary plot showing the concentration of K2O versus Na2O in nepheline syenite and fenite.

  13. 77 FR 23665 - Procurement List Proposed Additions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ...: Services Service Type/Location: Mailroom Operations, Official Mail Distribution Center, 1 Rock Island Arsenal, Building 132, Rock Island, IL. NPA: The Arc of the Quad Cities Area, Rock Island, IL. Contracting Activity: Dept of the ARMY, W4MM USA Joint Munitions CMD, Rock Island, IL. Service Type/Location: Custodial...

  14. The Cannery Formation--Devonian to Early Permian arc-marginal deposits within the Alexander Terrane, Southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Layer, Paul W.; Harris, Anita G.; Haeussler, Peter J.; Murchey, Benita L.

    2011-01-01

    The Cannery Formation consists of green, red, and gray ribbon chert, siliceous siltstone, graywacke-chert turbidites, and volcaniclastic sandstone. Because it contains early Permian fossils at and near its type area in Cannery Cove, on Admiralty Island in southeastern Alaska, the formation was originally defined as a Permian stratigraphic unit. Similar rocks exposed in Windfall Harbor on Admiralty Island contain early Permian bryozoans and brachiopods, as well as Mississippian through Permian radiolarians. Black and green bedded chert with subordinate lenses of limestone, basalt, and graywacke near Kake on Kupreanof Island was initially correlated with the Cannery Formation on the basis of similar lithology but was later determined to contain Late Devonian conodonts. Permian conglomerate in Keku Strait contains chert cobbles inferred to be derived from the Cannery Formation that yielded Devonian and Mississippian radiolarians. On the basis of fossils recovered from a limestone lens near Kake and chert cobbles in the Keku Strait area, the age of the Cannery Formation was revised to Devonian and Mississippian, but this revision excludes rocks in the type locality, in addition to excluding bedded chert on Kupreanof Island east of Kake that contains radiolarians of Late Pennsylvanian and early Permian age. The black chert near Kake that yielded Late Devonian conodonts is nearly contemporaneous with black chert interbedded with limestone that also contains Late Devonian conodonts in the Saginaw Bay Formation on Kuiu Island. The chert cobbles in the conglomerate in Keku Strait may be derived from either the Cannery Formation or the Saginaw Bay Formation and need not restrict the age of the Cannery Formation, regardless of their source. The minimum age of the Cannery Formation on both Admiralty Island and Kupreanof Island is constrained by the stratigraphically overlying fossiliferous Pybus Formation, of late early and early late Permian age. Because bedded radiolarian cherts on both Admiralty and Kupreanof Islands contain radiolarians as young as Permian, the age of the Cannery Formation is herein extended to Late Devonian through early Permian, to include the early Permian rocks exposed in its type locality. The Cannery Formation is folded and faulted, and its stratigraphic thickness is unknown but inferred to be several hundred meters. The Cannery Formation represents an extended period of marine deposition in moderately deep water, with slow rates of deposition and limited clastic input during Devonian through Pennsylvanian time and increasing argillaceous, volcaniclastic, and bioclastic input during the Permian. The Cannery Formation comprises upper Paleozoic rocks in the Alexander terrane of southeastern Alaska. In the pre-Permian upper Paleozoic, the tectonic setting of the Alexander terrane consisted of two or more evolved oceanic arcs. The lower Permian section is represented by a distinctive suite of rocks in the Alexander terrane, which includes sedimentary and volcanic rocks containing early Permian fossils, metamorphosed rocks with early Permian cooling ages, and intrusive rocks with early Permian cooling ages, that form discrete northwest-trending belts. After restoration of 180 km of dextral displacement of the Chilkat-Chichagof block on the Chatham Strait Fault, these belts consist, from northeast to southwest, of (1) bedded chert, siliceous argillite, volcaniclastic turbidites, pillow basalt, and limestone of the Cannery Formation and the Porcupine Slate of Gilbert and others (1987); (2) greenschist-facies Paleozoic metasedimentary and metavolcanic rocks that have Permian cooling ages; (3) silty limestone and calcareous argillite interbedded with pillow basalt and volcaniclastic rocks of the Halleck Formation and the William Henry Bay area; and (4) intermediate-composition and syenitic plutons. These belts correspond to components of an accretionary complex, contemporary metamorphic rocks, forearc-basin deposits,

  15. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  16. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Yun-Chuan; Xu, Ji-Feng; Chen, Jian-Lin; Wang, Bao-Di; Kang, Zhi-Qiang; Huang, Feng

    2018-02-01

    The formation of the Shiquanhe-Yunzhug-Namu Tso ophiolite mélange zone (SNMZ) within the Lhasa Terrane, Tibetan Plateau, is key to understanding the Mesozoic tectonic evolution of this terrane, which remains controversial. We show that the Yunzhug ophiolite in the central segment of the SNMZ formed at 150 Ma, based on U-Pb dating of zircons from a gabbroic sample in a well-developed sheeted dike complex. Geochemically, these mafic rocks are dominated by E-MORB-type compositions, along with minor amounts of rocks with P-MORB-type compositions. The samples also exhibit high εNd(t) values and lack negative Nb and Ta anomalies. Data for all the samples plot within the MORB array on a Th/Yb-Nb/Yb diagram. Therefore, these mafic rocks most likely formed in either a slow spreading oceanic setting or an embryonic ocean, and not in a back-arc basin as has been previously assumed. Taking into account the regional geology, we propose that the Yunzhug ophiolite is part of a distinct ophiolitic belt and represents material formed in an embryonic ocean within the Lhasa Terrane, which provides new insights into the Jurassic tectonic evolution of the Lhasa Terrane.

  17. Strontium and neodymium isotope systematics of target rocks and impactites from the El'gygytgyn impact structure: Linking impactites and target rocks

    NASA Astrophysics Data System (ADS)

    Wegner, Wencke; Koeberl, Christian

    2016-12-01

    The 3.6 Ma El'gygytgyn structure, located in northeastern Russia on the Chukotka Peninsula, is an 18 km diameter complex impact structure. The bedrock is formed by mostly high-silica volcanic rocks of the 87 Ma old Okhotsk-Chukotka Volcanic Belt (OCVB). Volcanic target rocks and impact glasses collected on the surface, as well as drill core samples of bedrock and impact breccias have been investigated by thermal ionization mass spectrometry (TIMS) to obtain new insights into the relationships between these lithologies in terms of Nd and Sr isotope systematics. Major and trace element data for impact glasses are added to compare with the composition of target rocks and drill core samples. Sr isotope data are useful tracers of alteration processes and Nd isotopes reveal characteristics of the magmatic sources of the target rocks, impact breccias, and impact glasses. There are three types of target rocks mapped on the surface: mafic volcanics, dacitic tuff and lava of the Koekvun' Formation, and dacitic to rhyolitic ignimbrite of the Pykarvaam Formation. The latter represents the main contributor to the impact rocks. The drill core is divided into a suevite and a bedrock section by the Sr isotope data, for which different postimpact alteration regimes have been detected. Impact glasses from the present-day surface did not suffer postimpact hydrothermal alteration and their data indicate a coherent alteration trend in terms of Sr isotopes with the target rocks from the surface. Surprisingly, the target rocks do not show isotopic coherence with the Central Chukotka segment of the OCVB or with the Berlozhya magmatic assemblage (BMA), a late Jurassic felsic volcanic suite that crops out in the eastern part of the central Chukotka segment of the OCVB. However, concordance for these rocks exists with the Okhotsk segment of the OCVB. This finding argues for variable source magmas having contributed to the build-up of the OCVB.

  18. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Hosseini, Mohammad Reza; Hassanzadeh, Jamshid; Alirezaei, Saeed; Sun, Weidong; Li, Cong-Ying

    2017-07-01

    The Urumieh-Dokhtar magmatic belt of Central Iran runs parallel to the Zagros orogenic belt and has been resulted from Neotethys ocean subduction underneath Eurasia. The Bahr Aseman volcanic-plutonic complex (BAC), covering an area 2000 km2 in the Kerman magmatic belt (KMB) in the southern section of the Urumieh-Dokhtar belt, has long been considered as the earliest manifestation of extensive Cenozoic arc magmatism in KMB. The nature and timing of the magmatism, however, is poorly constrained. An area 1000 km2, in BAC and adjacent Razak volcaniclastic complex and Jebal Barez-type granitoids, was mapped and sampled for geochemistry and geochronology. Andesite and basaltic andesite are the main volcanic components in the study area; plutonic bodies vary from tonalite to quartz diorite, granodiorite and biotite-granite. The rocks in BAC display dominantly normal calc-alkaline character. On spider diagrams, the rocks are characterized by enrichments in LILE relative to HFSE and enrichments in LREE relative to HREE. These features suggest a subduction related setting for the BAC. LaN/YbN ratios for the intrusive and volcanic rocks range from 1.41 to 5.16 and 1.01 to 6.42, respectively. These values are lower than those for other known granitoids in KMB, namely the abyssal, dominantly Oligocene Jebal Barez-type (LaN/YbN = 1.66-9.98), and the shallow, dominantly late Miocene Kuh Panj-type (LaN/YbN = 12.97-36.04) granitoids. This suggests a less evolved magma source for the BAC igneous rocks. In Y vs. Nb and Th/Yb vs. La/Yb discrimination diagrams, an island-arc setting is defined for the BAC rocks. The rocks further plot in primitive island-arc domain in Nb vs. Rb/Zr and Y/Nb vs. TiO2 diagrams. The BAC volcanic and plutonic rocks yielded zircon U-Pb ages of 78.1 to 82.7 Ma and 77.5 to 80.8 Ma, respectively. Zircon U-Pb dating of volcanic rocks and granitoids from the adjacent Razak complex and the Jebal Barez-type granitoids indicated 48.2 Ma and 26.1 Ma ages, respectively, consistent with earlier works on similar rocks elsewhere in KMB. The new data allow a revision of the chronostratigraphy/tectonic history of KMB. In Late Cretaceous, a back arc rift developed extending from Nain to Baft (NB back arc) to the northeast of the Sanandaj-Sirjan magmatic arc. Along with shrinking of the Neotethys Ocean, the dip angle of the subducting slab decreased during the Late Cretaceous, and arc magmatism moved from the Sanandaj-Sirjan zone landward. Meanwhile, Bahr Aseman volcanic-plutonic complex formed as an island-arc in NB back arc rift. Later with arc shift, due to shallowing of subducted slab, magmatism moved toward continent leading to extensive volcanism in Kerman magmatic arc during Eocene and Oligocene, represented by volcanic-sedimentary Razak and Hezar Complexes, respectively.

  19. Benchmark Design and Installation: A synthesis of Existing Information.

    DTIC Science & Technology

    1987-07-01

    casings (15 ft deep) drilled to rock and filled with concrete. Disks - 1 . Set on vertically stable structures (e.g., dam monoliths). 2 . Set in rock ...Structural movement survey 1 . Rock outcrops (first choice) -- chiseled square on high point. 2 . Massive concrete structure (second choice) - cut square on...bolt marker (type 2 ). 58,. % %--"% %I 1 ± 4 -I,.- Table Cl. Recomnded benchmarks. Type of condition or terrain Type of markert Bedrock, rock outcrops

  20. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Naoko, E-mail: naoko.sano@ncl.ac.uk; Barlow, Anders J.; Cumpson, Peter J.

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars andmore » Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.« less

  1. The petrogenesis of late Neoproterozoic mafic dyke-like intrusion in south Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Azer, M. K.; Abu El-Ela, F. F.; Ren, M.

    2012-08-01

    New field, petrographical and geochemical studies are presented here for the late Neoproterozoic Rimm intrusion (˜15 km long) exposed in the southern Sinai Peninsula, Egypt in the northernmost Arabian-Nubian Shield (ANS). Field relations indicate that the Rimm intrusion is younger than the surrounding metamorphic rocks and calc-alkaline syn-tectonic granodiorite and it was not affected by regional metamorphism. The anorogenic peralkaline granite of Gebel Serbal crosscuts the Rimm intrusion. The Rimm intrusion is made up of several consanguineous rock types with gradational contacts. It is composed chiefly of pyroxene-hornblende gabbro, hornblende gabbro and minor quartz diorite. The chemical composition of the mafic minerals indicated that the studied rocks derived from calc-alkaline mafic magma. Geochemically, the studied rocks are characterized by enrichment in LILE relative to HFSE and LREE relative to HREE [(Ce/Yb)N = 4.50-6.36]. Quartz diorite display slightly concave HREE pattern and slightly negative Eu-anomaly [(Eu/Eu*)n = 0.91] which may be the result of fractionation of amphibole and plagioclase from the source melt, respectively. The Rimm intrusion evolved from mafic mantle magma into different type rocks by fractional crystallization with minor crustal contamination. The initial magma corresponds to pyroxene-hornblende gabbro and the crystallization of hornblende was caused by slight H2O increase in magma after crystallization of near-liquidus clinopyroxene and Ca-rich plagioclase. Amphiboles geobarometer indicate that the gabbroic rocks of the Rimm intrusion crystallized at pressures between 4.8 and 6.4 Kb, while quartz diorite crystallized at 1.3-2.1 Kb. Crystallization temperatures range between 800 and 926 °C for the gabbros and between 667 and 784 °C for the quartz diorite. The Rimm intrusion represents a post-orogenic phase formed during the crustal thinning and extension of the Arabian-Nubian Shield.

  2. Chemical composition of sedimentary rocks in California and Hawaii

    USGS Publications Warehouse

    Hill, Thelma P.

    1981-01-01

    A compilation of published chemical analyses of sedimentary rocks of the United States was undertaken by the U.S. Geological Survey in 1952 to make available scattered data that are needed for a wide range of economic and scientific uses. About 20,000-25,000 chemical analyses of sedimentary rocks in the United States have been published. This report brings together 2,312 of these analyses from California and Hawaii. The samples are arranged by general lithologic characteristics and locality. Indexes of stratigraphy, rock name, commercial uses, and minor elements are provided. The sedimentary rocks are classified into groups and into categories according to the chemical analyses. The groups (A through F2) are defined by a system similar to that proposed by Brian Mason in 1952, in which the main parameters are the three major components of sedimentary rocks: (1) uncombined silica, (2) clay (R203 ? 3Si02 ? nH20), and (3) calcium-magnesium carbonate. The categories are based on the degree of admixture of these three major components with other components, such as sulfate, phos- phate, and iron oxide. Common-rock, mixed-rock, and special-rock categories apply to rocks consisting of 85 percent or more, 50-84 percent, and less than 49 percent, respectively, of the three major components combined. Maps show distribution of sample localities by States; triangular diagrams show the lithologic characteristics and classification groups. Cumulative-frequency curves of each constituent in each classification group of the common-rock and mixed-rock categories are also included. The numerous analyses may not adequately represent the geochemical nature of the rock types and formations of the region because of sampling bias. Maps showing distribution of sample localities indicate that many of the localities are in areas where, for economic or other reasons, special problems attracted interest. Most of the analyzed rocks tended to be fairly simple in composition - mainly mixtures of just two of the three major components or a mixture of these and a fourth component such as phosphate, gypsum, or iron oxide.

  3. Geophysical Characterization and Structural Model of the Santa ROSALÍA Aquifer, Sonora, MÉXICO

    NASA Astrophysics Data System (ADS)

    Martínez-Retama, S.; Montaño-Del Cid, M. A.

    2017-12-01

    The main objective of this work was to determine the morphology and depth of the basement, as well as the elaboration of a structural model for the Santa Rosalía aquifer, from the processing and interpretation of gravimetric and aeromagnetic data and its correlation with the Geology of the area. The study area is located in the central portion of the State of Sonora, Mexico. In general, the geology of the site is characterized by sedimentary, igneous and metamorphic rocks whose ages vary from the Precambrian to Recent. Chronologically, the geology of the study area consists of igneous and metamorphic rocks of Precambrian age, considered as a metamorphic complex. The Paleozoic is represented by a sequence of prebatolytic rocks. This sequence is intruded by rocks of the Upper Cretaceous. The Triassic-Jurassic periods consist of arenaceous units of the Barranca Group. The Cretaceous is constituted by the Tarahumara Formation, as well as granite bodies. The Quaternary is composed of alluvial deposits, which are overlain by sediments of Recent. In this work a gravimetric survey was performed, registering a total of 7 profiles. In addition, measured data from the National Institute of Statistics and Geography (INEGI) were used. The aeromagnetic study was carried out with data from the Mexican Geological Service (SGM). In order to reduce the ambiguity in the modeling process, a rock sampling was taken from the study area and its density and magnetic susceptibility were measured. Finally, two-dimensional models of gravimetric and magnetic profiles were made to obtain the structural model of the study area. The geological-structural models obtained show gravimetric anomalies (low)associated with sedimentary basins with depths of 800 m to 1,500 m., indicating the most susceptible áreas to water storage. The basement is represented by volcanic and granite rocks that are in contact with Paleozoic sedimentary rocks (Limestone) and in some areas with volcanic rocks of the Tarahumara Formation. In these models two types of sliding tectonic events were interpreted. In the first one a system of low-angle normal faulting related to the distensive event Basin and Range was interpreted. In the second, a series of high- angle normal faults, which form Horst and Grabens structures related to the opening of the Gulf of California were modeled.

  4. Characterization of Martian Rock Shape for MER Airbag Drop Tests

    NASA Astrophysics Data System (ADS)

    Dimaggio, E. N.; Schroeder, R.; Castle, N.; Golombek, M.

    2002-12-01

    Rock distributions for the final platforms used in airbag drop tests are currently being designed for the Mars Exploration Rovers (MER) scheduled to launch in 2003. Like Mars Pathfinder (MPF), launched in 1996, MER will use a series of airbags to cushion its landing on the surface of Mars. Previous MER airbag drop tests have shown that sharp, angular (triangular) rocks >20 cm high may be hazardous. To aid in defining the rock distributions for the final airbag tests, images from the Viking Landers 1 and 2 and MPF were used to identify rocks that are >20 cm high, and characterize them as triangular, square or round. Approximately 33% of all rocks analyzed are triangular. Of the rocks analyzed that are ~20-60 cm high, ~14% are triangular. Most of these triangular rocks are small, ~20-30 cm high. Rock distributions of previous airbag platforms were similarly classified and show a greater percentage of triangular and square rocks that are ~20-60 cm high than at the landing sites. The burial of a rock (perched, partially buried or buried) was also considered because perched rocks may pose less of a threat to the airbags than those buried because perched rocks can be dislodged and roll during impact. Approximately 19% of all rocks analyzed, and ~19% of rocks that are ~20-60 cm high, are triangular and partially buried or buried. These data suggest that the platform rock distributions appropriately represented the risks to the airbags associated with triangular rocks. A similar percentage of >20 cm high triangular rocks will be added to the drop test platforms to represent landing site rock distributions.

  5. Evolution and tectonic setting of the Malani - Nagarparkar Igneous Suite: A Neoproterozoic Silicic-dominated Large Igneous Province in NW India-SE Pakistan

    NASA Astrophysics Data System (ADS)

    de Wall, Helga; Pandit, Manoj K.; Donhauser, Ines; Schöbel, Stefan; Wang, Wei; Sharma, Kamal K.

    2018-07-01

    The Neoproterozoic Malani Igneous Suite (MIS) in NW India, along with analogous magmatic rocks from the adjoining Nagarparkar region in SE Pakistan can be collectively classified as a Silicic-dominated Large Igneous Province (SLIP). This magmatic event includes bimodal (predominantly felsic) volcanism, granite emplacement and felsic and mafic dyke intrusions. Felsic rocks have typical A-type affinity as indicated by high abundance of silica, alkali, high field strength and large ion lithophile element concentrations and low CaO and MgO contents. Their Nb negative anomalies and Zr-saturation parameters indicate significant crustal input and high temperature melting. Mafic volcanics and dykes show geochemical homogeneity and derivation from a depleted continental mantle source without any significant crustal contamination (low U and Th contents and no visible Nb anomaly). The region extending from the Mount Abu batholith in the east to Jaswantpura in the west (2700 km2), representing a transition from the metamorphic Sirohi terrane to the undeformed MIS, was evaluated through an integrated structural (including satellite image analysis), geochemical and geochronological study. During the initial stage (prior to 760 Ma) the granitic basement (Erinpura granites) and overlying Sirohi metasediments behaved in a brittle manner that led to development of linear fractures and NNE trending rift structures, and bimodal volcanic activity. Emplacement of voluminous granitic bodies in response to progressive extension of the crust is inferred during the more evolved second stage (younger than 760 Ma). Mirpur Granite, a representative of this younger granitic suite (Jalor type pink granite) has yielded 753 ± 9 Ma zircon, U-Pb, crystallization age. Granitic plutons mark regions of crustal extension, as seen in parallel alignment of plutonic bodies (Jaswantpura granitic belt) and parallel mafic dyke swarms (340°) transecting the granites. Structural analysis further identified an episode of crustal convergence which is documented in folding and faulting of the Sindreth Basin sequence and in tectonic overprint of early stage mafic rocks. Rifting and bimodal magmatic activity in MIS is coeval with similar rock types in Nagarparkar in SE Pakistan, further traceable into the Seychelles microplate and Central Madagascar. Considering the Neoproterozoic paleogeography and our observations, an extensional setting and an active continental margin position for MIS is inferred.

  6. Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: Geochronological and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Ling, Xiao-Xiao; Stern, Robert J.; Santos, Jose F.; Meinhold, Guido; Ghorbani, Ghasem; Shahabi, Shirin

    2015-01-01

    Carboniferous igneous rocks constitute volumetrically minor components of Iranian crust but preserve important information about the magmatic and tectonic history of SW Asia. Ghushchi granites and gabbronorites in NW Iran comprise a bimodal magmatic suite that intruded Ediacaran-Cambrian gneiss and are good representatives of carboniferous igneous activity. Precise SIMS U-Pb zircon ages indicate that the gabbronorites and granites were emplaced synchronously at ~ 320 Ma. Ghushchi granites show A-type magmatic affinities, with typical enrichments in alkalis, Ga, Zr, Nb and Y, depletion in Sr and P and fractionated REE patterns showing strong negative Eu anomalies. The gabbronorites are enriched in LREEs, Nb, Ta and other incompatible trace elements, and are similar in geochemistry to OIB-type rocks. Granites and gabbronorites have similar εNd(t) (+ 1.3 to + 3.4 and - 0.1 to + 4.4, respectively) and zircon εHf(t) (+ 1.7 to + 6.2 and + 0.94 to + 6.5, respectively). The similar variation in bulk rock εNd(t) and zircon εHf(t) values and radiometric ages for the granites and gabbronorites indicate a genetic relationship between mafic and felsic magmas, either a crystal fractionation or silicate liquid immiscibility process; further work is needed to resolve petrogenetic details. The compositional characteristics of the bimodal Ghushchi complex are most consistent with magmatic activity in an extensional tectonic environment. This extension may have occurred during rifting of Cadomian fragments away from northern Gondwana during early phases of Neotethys opening.

  7. Petrology and geochemistry of lithic fragments separated from the Apollo 15 deep-drill core

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Nielsen, R. L.; Drake, M. J.

    1977-01-01

    Petrological and geochemical analysis of lithic fragments separated from the Apollo 15 deep-drill core showed these fragments to fall into the essentially the same range of rock types as observed in surface soil samples and large rock samples. Three particles are singled out as being of special interest. One sample is a mare basalt containing extremely evolved phases. The particle may represent small-scale imperfect crystal/liquid separation in a lava flow. A green glass particle is not the ultramafic emerald green glass described from the Apollo 15 site, but rather an ANT-like light green color, and has a quite different chemical composition from the ultramafic variety. One mare basalt displays a positive Eu anomaly and is enriched in plagioclase relative to olivine plus pyroxene.

  8. Μicro-Raman spectroscopy for the characterization of rock-art pigments from Abrigo del Águila (Badajoz - Spain)

    NASA Astrophysics Data System (ADS)

    Rosina, P.; Gomes, H.; Collado, H.; Nicoli, M.; Volpe, L.; Vaccaro, C.

    2018-06-01

    Micro-Raman spectroscopic technique allowed the characterization of organic and inorganic pigments of different colours sampled from a rock-art shelter named Abrigo del Aguila, located in the district of Badajoz, Cabeza del Buey (Extremadura - Spain). Micro-Raman analyses has been coupled with SEM observation and elemental analyses (EDS). The white and the black colours, used for non-representative figures, have been identified respectively as anatase and amorphous carbon, while two different type of red pigment has been found on figurative representations. The darker one, sampled, from a sun-figure, comprises an indeterminate organic compound beside of hematite. The second one, sampled from an anthropomorphic figure, is of a brilliant red and only hematite has been recognized in it.

  9. A female black bear denning habitat model using a geographic information system

    USGS Publications Warehouse

    Clark, J.D.; Hayes, S.G.; Pledger, J.M.

    1998-01-01

    We used the Mahalanobis distance statistic and a raster geographic information system (GIS) to model potential black bear (Ursus americanus) denning habitat in the Ouachita Mountains of Arkansas. The Mahalanobis distance statistic was used to represent the standard squared distance between sample variates in the GIS database (forest cover type, elevation, slope, aspect, distance to streams, distance to roads, and forest cover richness) and variates at known bear dens. Two models were developed: a generalized model for all den locations and another specific to dens in rock cavities. Differences between habitat at den sites and habitat across the study area were represented in 2 new GIS themes as Mahalanobis distance values. Cells similar to the mean vector derived from the known dens had low Mahalanobis distance values, and dissimilar cells had high values. The reliability of the predictive model was tested by overlaying den locations collected subsequent to original model development on the resultant den habitat themes. Although the generalized model demonstrated poor reliability, the model specific to rock dens had good reliability. Bears were more likely to choose rock den locations with low Mahalanobis distance values and less likely to choose those with high values. The model can be used to plan the timing and extent of management actions (e.g., road building, prescribed fire, timber harvest) most appropriate for those sites with high or low denning potential. 

  10. Structural Analysis: Folds Classification of metasedimentary rock in the Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Shamsuddin, A.

    2017-10-01

    Understanding shear zone characteristics of deformation are a crucial part in the oil and gas industry as it might increase the knowledge of the fracture characteristics and lead to the prediction of the location of fracture zones or fracture swarms. This zone might give high influence on reservoir performance. There are four general types of shear zones which are brittle, ductile, semibrittle and brittle-ductile transition zones. The objective of this study is to study and observe the structural geometry of the shear zones and its implication as there is a lack of understanding, especially in the subsurface area because of the limitation of seismic resolution. A field study was conducted on the metasedimentary rocks (shear zone) which are exposed along the coastal part of the Peninsular Malaysia as this type of rock resembles the types of rock in the subsurface. The analysis in this area shows three main types of rock which are non-foliated metaquartzite and foliated rock which can be divided into slate and phyllite. Two different fold classification can be determined in this study. Layer 1 with phyllite as the main type of rock can be classified in class 1C and layer 2 with slate as the main type of rock can be classified in class 1A. This study will benefit in predicting the characteristics of the fracture and fracture zones.

  11. Bedrock geologic map of the Montpelier and Barre West quadrangles, Washington and Orange Counties, Vermont

    USGS Publications Warehouse

    Walsh, Gregory J.; Kim, Jonathan; Gale, Marjorie H.; King, Sarah M.

    2010-01-01

    The bedrock geology of the Montpelier and Barre West quadrangles consists of Silurian and Devonian metasedimentary rocks of the Connecticut Valley-Gaspe synclinorium (CVGS) and metasedimentary, metavolcanic, and metaintrusive rocks of the Cambrian and Ordovician Moretown and Cram Hill Formations. Devonian granite dikes occur throughout the two quadrangles but are more abundant in the Silurian and Devonian rocks. The pre-Silurian rocks are separated from the rocks of the CVGS by the informally named 'Richardson Memorial Contact,' historically interpreted as either an unconformity or a fault. The results of this report represent mapping by G.J. Walsh, Jonathan Kim, and M.H. Gale from 2002 to 2005. S.M. King assisted Kim and Gale from 2002 to 2003. A.M. Satkoski (Indiana University) assisted Walsh, and L.R. Pascale (University of Vermont) and C.M. Orsi (Middlebury College) assisted Kim and Gale as summer interns in 2003. This study was designed to map the bedrock geology in the area. This map supersedes a preliminary map of the Montpelier quadrangle (Kim, Gale, and others, 2003). A companion study in the Barre West quadrangle (Walsh and Satkoski, 2005) determined the levels of naturally occurring radioactivity in the bedrock from surface measurements at outcrops during the course of 1:24,000-scale geologic mapping to identify which rock types were potential sources of radionuclides. Results of that study indicate that the carbonaceous phyllites in the CVGS have the highest levels of natural radioactivity.

  12. Leperditicopid ostracodes from Ordovician rocks of Kentucky and nearby states and characteristic features of the order Leperditicopida

    USGS Publications Warehouse

    Berdan, J.M.

    1984-01-01

    Leperditicopid ostracodes from the Ordovician formations of Kentucky occur in micritic to fine-grained carbonate rocks believed to represent shallow-water facies. They are found at widely separated horizons in the Middle Ordovician High Bridge Group, the Middle and Upper Ordovician Lexington Limestone, and the Upper Ordovician Ashlock, Bull Fork, and Drakes Formations. In this sequence, the leperditicopes are represented by two genera of leperditiids, Eoleperditia Swartz, 1949 and Bivia Berdan, 1976, and six isochilinid genera, Isochilina Jones, 1858, Teichochilina Swartz, 1949, Ceratoleperditia Harris, 1960, Parabriartina n. gen., Kenodontochilina n. gen., and Saffordellina Bassler and Kellett, 1934; the type species of the hitherto poorly known genus Saffordellina, S. muralis (Ulrich and Bassler, 1923), is redescribed and refigured. In all, 18 taxa, of which 2 are in open nomenclature, are described and illustrated. In addition, the family Isochilinidae Swartz, 1949 is redefined to include genera without marginal brims and with straight ventral contact margins. The morphological characteristics of leperditicopid genera are discussed, and a table listing described genera and their diagnostic features is included.

  13. Hydrothermal quartz formation during fluctuations of brittle shear-zone activity and fluid flow: grain growth and deformation structures of the Pfahl shear zone (Germany)

    NASA Astrophysics Data System (ADS)

    Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.

    2012-12-01

    The Bavarian Pfahl shear zone is a WNW-ESE trending dextral strike-slip shear zone at the SW margin of the Bohemian Massif (Central Europe). It was discontinuously active during decreasing PT-conditions, i.e. from ductile to brittle, from the late-Carboniferous to the late-Cretaceous - Paleocene times. Triassic hydrothermal activity produced a 150 km long and 30-100 m wide quartz dyke along the main fault, surrounded by sheared basement rocks. Within a zone of >10 m metasomatism transformed the wall rocks to mostly kaolinite, chlorite and phyllosilicates. The quartz dyke exhibits a layered to lenticular and partly symmetric structure with different types of quartz masses, transected by a complex quartz vein network. This already indicates pulses of fluid flux and fragmentation during the lifetime of the shear zone. Analyses by optical microscopy, cathodoluminescence (CL) and SEM-EDX reveal at least four subsequent stages of quartz crystallization and fragmentation. (i) The oldest generation of quartz is represented by a homogeneous dark grey to reddish quartz mass made up by ~10-20 μm-sized crystals. It contains mm- to cm-sized angular wall-rock fragments, completely altered to kaolinite, indicating intense wall-rock alteration prior to the earliest event of silica precipitation. This rules out the possibility that the quartz mass developed from silicification of the wall rocks. This first type of quartz occurs as cm- to dm-large angular fragments in (ii) a light grey to pink quartz mass formed by ~10-50 μm-sized crystals. The different colours result from variable types and amounts of inclusions. Quartz of both generations shows random crystallographic orientations and complex inclusion structures. It probably developed during two fragmentation events and possibly from a silica gel precursor that crystallized after precipitation. (iii) The third quartz generation formed as a set of mm- to dm-wide veins roughly parallel to the trend of the Pfahl zone, crosscutting the first generations of fine-grained quartz mass and the wall rocks, in connection to intense fracturing and brecciation. The complex geometry of the vein sets points to multiple fluid injections and brecciation, as additionally indicated by coarse quartz with different inclusion and CL intensity. Temporal changes of strain rate are indicated by crystal plastic deformation structures in quartz, which overprint brittle structures. (iv) The fourth quartz generation occurs in mm- to dm-thick quartz veins, partly open as geodes, filling N-S oriented cm- to dm-spaced fractures that crosscut the earlier quartz masses and veins and extend at least several meters into the wall rock. They indicate the last activity of the shear-zone in a constant kinematic framework. Summarizing, the Pfahl shear zone shows brittle-ductile deformation during the long-term activity of a large-scale hydrothermal system. Consequently, it represents an excellent example where different generations of quartz precipitation can be connected to fluctuations of fluid flow and strain rate.

  14. Petrogenesis of Cretaceous volcanic-intrusive complex from the giant Yanbei tin deposit, South China: Implication for multiple magma sources, tin mineralization, and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Li, Qian; Zhao, Kui-Dong; Lai, Pan-Chen; Jiang, Shao-Yong; Chen, Wei

    2018-01-01

    The giant Yanbei tin ore deposit is the largest porphyry-type tin deposit in South China. The orebodies are hosted by the granite porphyry in the central part of the Yanbei volcanic basin in southern Jiangxi Province. The Yanbei volcanic-intrusive complex mainly consists of dacitic-rhyolitic volcanic rocks, granite, granite porphyry and diabase dikes. In previous papers, the granite porphyry was considered as subvolcanic rocks, which came from the same single magma chamber with the volcanic rocks. In this study, zircon U-Pb ages and Hf isotope data, as well as whole-rock geochemical and Sr-Nd isotopic compositions of different magmatic units in the Yanbei complex are reported. Geochronologic results show that various magmatic units have different formation ages. The dacite yielded a zircon U-Pb age of 143 ± 1 Ma, and the granite porphyry has the emplacement age of 138 ± 1 Ma. Diabase dikes which represented the final stage of magmatism, yielded a zircon U-Pb age of 128 ± 1 Ma. Distinctive whole rock Sr-Nd and zircon Hf isotopic compositions suggest that these magmatic units were derived from different magma sources. The volcanic rocks were mainly derived from the partial melting of Paleoproterozoic metasedimentary rocks without additions of mantle-derived magma. The granite porphyry has an A-type geochemical affinity, and was derived from remelting of Paleo-Mesoproterozoic crustal source with involvement of a subordinate mantle-derived magma. The granite porphyry is also a typical stanniferous granite with high F (4070-6090 ppm) and Sn (7-39 ppm) contents. It underwent strongly crystal fractionation of plagioclase, K-feldspar, and accessory minerals (like apatite, Fe-Ti oxides), which may contribute to the tin mineralization. The diabase was derived by partial melting of enriched lithospheric mantle which had been metasomatised by slab-derived fluids. The change of magmatic sources reflected an increasing extensional tectonic environment, perhaps induced by slab rollback of subducted paleo-Pacific plate.

  15. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  16. Classification of Broken Hill-Type Pb-Zn-Ag Deposits: A Refinement

    NASA Astrophysics Data System (ADS)

    Spry, P. G.; Teale, G. S.; Steadman, J. A.

    2009-05-01

    Broken Hill Hill-type Pb-Zn-Ag (BHT) deposits constitute some of the largest ore deposits in the world. The Broken Hill deposit is the largest accumulation of Pb, Zn, and Ag on Earth and the Cannington deposit is currently the largest silver deposit. Characteristic features of BHT deposits include: 1. high Pb+Zn+Ag values with Pb > Zn; 2. Metamorphism to amphibolite-granulite facies; 3. Paleo-to Mesoprotoerozoic clastic metasedimentary host rocks; 4. Sulfides that are spatially associated with bimodal (felsic and mafic) volcanic rocks, and stratabound gahnite- and garnet-bearing rocks and iron formations, 5. Stacked orebodies with characteristic Pb:Zn:Ag ratios and skarn-like Fe-Mn-Ca-F gangue assemblages, and the presence of Cu, Au, Bi, As, and Sb; and 6. Sulfur-poor assemblages. Broken Hill (Australia) has a prominent footwall feeder zone whereas other BHT deposits have less obvious alteration zones (footwall garnet spotting and stratabound alteration haloes). Deposits previously regarded in the literature as BHT deposits are Broken Hill, Cannington, Oonagalabie, Menninie Dam, and Pegmont (Australia), Broken Hill, Swartberg, Big Syncline, and Gamsberg (South Africa), Zinkgruvan (Sweden), Sullivan, Cottonbelt, and Foster River (Canada), and Boquira (Brazil). Of these deposits, only the Broken Hill (Australia, South Africa), Pinnacles, Cannington, Pegmont, and Swartberg deposits are BHT deposits. Another BHT deposit includes the Green Parrot deposit, Jervois Ranges (Northern Territory). The Foster River, Gamsberg, and Sullivan deposits are considered to be "SEDEX deposits with BHT affinities", and the Oonagalabie, Green Mountain (Colorado), and Zinkgruvan are "VMS deposits with BHT affinities". In the Broken Hill area (Australia), Corruga-type Pb-Zn-Ag deposits occur in calc-silicate rocks and possess some BHT characteristics; the Big Syncline, Cottonbelt, Menninie Dam, and Saxberget deposits are Corruga-type deposits. SEDEX deposits with BHT affinities, VMS deposits with BHT affinities, and Corruga-type deposits represent transitional deposits between BHT and SEDEX, VMS, and metamorphosed base metal calc-silicate deposits, respectively. Although the non-sulfide zinc deposits at Franklin Furnace and Sterling Hill, NJ, do not contain Pb, they resemble sulfur-poor BHT deposits.

  17. Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Ersoy, Hakan; Yalçinalp, Bülent; Arslan, Mehmet; Babacan, Ali Erden; Çetiner, Gözde

    2016-11-01

    Turkey located in the Alpine-Himalayan Mountain Belt has 35% of the natural stone reserves of the world and has good quality marble, limestone, travertine and onyx reserves especially in the western regions of the country. The eastern Black Sea Region with a 1.4 million meters cubes reserve has a little role on the natural stone production in the country. For this reason, this paper deals with investigation on the potential of carbonate stone in the region and determination of the geological and geo-mechanical properties of these rocks in order to provide economic contribution to the national economy. While the study sites are selected among the all carbonate rock sites, the importance as well as the representative of the sites were carefully considered for the region. After representative samples were analyzed for major oxide and trace element compositions to find out petrochemical variations, the experimental program conducted on rock samples for determination of both physical and strength properties of the carbonate rocks. The results of the tests showed that there are significant variations in the geo-mechanical properties of the studied rock groups. The density values vary from 2.48 to 2.70 gr/cm3, water absorption by weight values range from 0.07 to 1.15% and the apparent porosity of the carbonate rocks are between 0.19 and 3.29%. However, the values of the UCS shows variation from 36 to 80 MPa. Tensile and bending strength values range from 3.2 to 7.5 MPa and 6.0-9.2 MPa respectively. Although the onyx samples have the lowest values of apparent porosity and water absorption by weight, these samples do not have the highest values of UCS values owing to occurrence of the micro-cracks. The UCS values of the rock samples were also found after cycling tests However, the limestone samples have less than 5% deterioration after freezing-thawing and wetting-drying tests, but travertine and onyx samples have more than 15% deterioration. Exception of the apparent porosity values of travertine samples, all geo-mechanical properties of the studied carbonate rocks were determined in the acceptance values given by Turkish Standards Institute (TSE) for using as a natural dimension stone. After these investigations, it is anticipated that in the near future the number of quarries and factories will increase and more types of natural stones will be discovered in the eastern Black Sea Region and thus this will provide economic contribution to the economy of the country.

  18. Jurassic-Paleogene intraoceanic magmatic evolution of the Ankara Mélange, north-central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2014-02-01

    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in north-central Anatolia include locally coherent ophiolite complexes (∼ 179 Ma and ∼ 80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 256.9 ± 8.0 Ma, 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma indicating northern Tethys during the late Paleozoic through Cretaceous, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (∼ 67-63 Ma). All but the arc rocks occur in a shale-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the middle to late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant large ion lithophile elements (LILE) enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syenodioritic plutons exhibit high-K shoshonitic to medium- to high-K calc-alkaline compositions with strong enrichment in LILE, rare earth elements (REE) and Pb, and initial ɛNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syenodioritic plutons) in the southern part. The late Permian, Early to Late Jurassic, and Late Cretaceous amphibole-epidote schist, epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the early Triassic (or earlier). The latest Cretaceous-early Paleocene island arc volcanic, dike and plutonic rocks with subalkaline to alkaline geochemical affinities represent intraoceanic magmatism that developed on and across the subduction-accretion complex above a N-dipping, southward-rolling subducted lithospheric slab within the northern Neotethys. The Ankara Mélange thus exhibits the record of ∼ 120-130 million years of oceanic magmatism in geological history of the northern Neotethys.

  19. Typical Geo-Hazards and Countermeasures of Mines in Yunnan Province, Southwest China

    NASA Astrophysics Data System (ADS)

    Cheng, Xianfeng; Qi, Wufu; Huang, Qianrui; Zhao, Xueqiong; Fang, Rong; Xu, Jun

    2016-10-01

    Mining-induced geo-hazards have caused enormous destruction and threat to mines. Known as the "kingdom of nonferrous metals" and located in Southwest China, Yunnan Province developed mining-induced geo-hazards well with characteristics of multiple types, widespread distribution and serious damage. Landslides and debris flows are two common sub-types of geohazards causing most serious damage in Yunnan, and some of them were very representative in the world. Two landslides and two debris flows were chosen to analyze deeply. Both Laojinshan Landslide and Sunjiaqing Landslide possess the characteristic of rock avalanches. The high sliding speed and long distance made the landslides translate into clastic flows with impact force and caused enormous destruction. Rainstorm and mining waste rock were two main factors to induce debris flows in Yunnan mines. Heishan valley debris flow of Dongchuan copper mine was a super large rainstorm type viscose debris flow with very low frequency, which brought a good caution to utilize valleys which looked an unlikely debris flow. Nandagou Valley of Jinding lead-zinc mine in Lanping County was a rainstorm stimulating, gully-type, high frequency and large scale debris flow, which was induced by mining activities. Many countermeasures have been used for Yunnan mines, including engineering treatment technology and ecological remediation, monitoring and forecasting, relocation and public administration.

  20. Validation of a New Elastoplastic Constitutive Model Dedicated to the Cyclic Behaviour of Brittle Rock Materials

    NASA Astrophysics Data System (ADS)

    Cerfontaine, B.; Charlier, R.; Collin, F.; Taiebat, M.

    2017-10-01

    Old mines or caverns may be used as reservoirs for fuel/gas storage or in the context of large-scale energy storage. In the first case, oil or gas is stored on annual basis. In the second case pressure due to water or compressed air varies on a daily basis or even faster. In both cases a cyclic loading on the cavern's/mine's walls must be considered for the design. The complexity of rockwork geometries or coupling with water flow requires finite element modelling and then a suitable constitutive law for the rock behaviour modelling. This paper presents and validates the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at low confinement. The main features of the behaviour evidenced by experiments in the literature depict a progressive degradation and strain of the material with the number of cycles. A constitutive law based on a boundary surface concept is developed. It represents the brittle failure of the material as well as its progressive degradation. Kinematic hardening of the yield surface allows the modelling of cycles. Isotropic softening on the cohesion variable leads to the progressive degradation of the rock strength. A limit surface is introduced and has a lower opening than the bounding surface. This surface describes the peak strength of the material and allows the modelling of a brittle behaviour. In addition a fatigue limit is introduced such that no cohesion degradation occurs if the stress state lies inside this surface. The model is validated against three different rock materials and types of experiments. Parameters of the constitutive laws are calibrated against uniaxial tests on Lorano marble, triaxial test on a sandstone and damage-controlled test on Lac du Bonnet granite. The model is shown to reproduce correctly experimental results, especially the evolution of strain with number of cycles.

  1. Geologic map of the Sauk River 30- by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.

    2002-01-01

    Summary -- The north-south-trending regionally significant Straight Creek Fault roughly bisects the Sauk River quadrangle and defines the fundamental geologic framework of it. Within the quadrangle, the Fault mostly separates low-grade metamorphic rocks on the west from medium- to high-grade metamorphic rocks of the Cascade metamorphic core. On the west, the Helena-Haystack melange and roughly coincident Darrington-Devils Mountain Fault Zone separate the western and eastern melange belts to the southwest from the Easton Metamorphic Suite, the Bell Pass melange, and rocks of the Chilliwack Group, to the northeast. The tectonic melanges have mostly Mesozoic marine components whereas the Chilliwack is mostly composed of Late Paleozoic arc rocks. Unconformably overlying the melanges and associated rocks are Eocene volcanic and sedimentary rocks, mostly infaulted along the Darrington-Devils Mountain Fault Zone. These younger rocks and a few small Eocene granitic plutons represent an extensional tectonic episode. East of the Straight Creek Fault, medium to high-grade regional metamorphic rocks of the Nason, Chelan Mountains, and Swakane terranes have been intruded by deep seated, Late Cretaceous granodioritic to tonalitic plutons, mostly now orthogneisses. Unmetamorphosed mostly tonalitic intrusions on both sides of the Straight Creek fault range from 35 to 4 million years old and represent the roots of volcanoes of the Cascade Magmatic Arc. Arc volcanic rocks are sparsely preserved east of the Straight Creek fault, but dormant Glacier Peak volcano on the eastern margin of the quadrangle is the youngest member of the Arc. Deposits of the Canadian Ice Sheet are well represented on the west side of the quadrangle, whereas alpine glacial deposits are common to the east. Roughly 5000 years ago lahars from Glacier Peak flowed westward filling major valleys across the quadrangle.

  2. In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars

    NASA Technical Reports Server (NTRS)

    Hurowitz, J. A.; McLennan, S. M.; Tosca, N. J.; Arvidson, R. E.; Michalski, J. R.; Ming, D.; Schroeder, C.; Squyres, S. W.

    2006-01-01

    Experimental data for alteration of synthetic Martian basalts at pH=0-1 indicate that chemical fractionations at low pH are vastly different from those observed during terrestrial weathering. Rock analyses from Gusev crater are well described by the relationships apparent from low pH experimental alteration data. A model for rock surface alteration is developed which indicates that a leached alteration zone is present on rock surfaces at Gusev. This zone is not chemically fractionated to a large degree from the underlying rock interior, indicating that the rock surface alteration process has occurred at low fluid-to-rock ratio. The geochemistry of natural rock surfaces analyzed by APXS is consistent with a mixture between adhering soil/dust and the leached alteration zone. The chemistry of rock surfaces analyzed after brushing with the RAT is largely representative of the leached alteration zone. The chemistry of rock surfaces analyzed after grinding with the RAT is largely representative of the interior of the rock, relatively unaffected by the alteration process occurring at the rock surface. Elemental measurements from the Spirit, Opportunity, Pathfinder and Viking 1 landing sites indicate that soil chemistry from widely separated locations is consistent with the low-pH, low fluid to rock ratio alteration relationships developed for Gusev rocks. Soils are affected principally by mobility of FeO and MgO, consistent with alteration of olivine-bearing basalt and subsequent precipitation of FeO and MgO bearing secondary minerals as the primary control on soil geochemistry.

  3. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    PubMed

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  4. Introduction to the Apollo collections. Part 1: Lunar igneous rocks

    NASA Technical Reports Server (NTRS)

    Mcgee, P. E.; Warner, J. L.; Simonds, C. H.

    1977-01-01

    The basic petrographic, chemical, and age data is presented for a representative suite of igneous rocks gathered during the six Apollo missions. Tables are given for 69 samples: 32 igneous rocks and 37 impactites (breccias). A description is given of 26 basalts, four plutonic rocks, and two pyroclastic samples. The textural-mineralogic name assigned each sample is included.

  5. The Research on Tunnel Surrounding Rock Classification Based on Geological Radar and Probability Theory

    NASA Astrophysics Data System (ADS)

    Xiao Yong, Zhao; Xin, Ji Yong; Shuang Ying, Zuo

    2018-03-01

    In order to effectively classify the surrounding rock types of tunnels, a multi-factor tunnel surrounding rock classification method based on GPR and probability theory is proposed. Geological radar was used to identify the geology of the surrounding rock in front of the face and to evaluate the quality of the rock face. According to the previous survey data, the rock uniaxial compressive strength, integrity index, fissure and groundwater were selected for classification. The related theories combine them into a multi-factor classification method, and divide the surrounding rocks according to the great probability. Using this method to classify the surrounding rock of the Ma’anshan tunnel, the surrounding rock types obtained are basically the same as those of the actual surrounding rock, which proves that this method is a simple, efficient and practical rock classification method, which can be used for tunnel construction.

  6. Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: Implications for the late accretion history of the Moon and Earth

    USGS Publications Warehouse

    Puchtel, I.S.; Walker, R.J.; James, O.B.; Kring, D.A.

    2008-01-01

    To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically distinct from known chondrite types, and possibly represent a type of primitive material not currently delivered to Earth as meteorites. ?? 2008 Elsevier Ltd.

  7. Prediction of carbonate rock type from NMR responses using data mining techniques

    NASA Astrophysics Data System (ADS)

    Gonçalves, Eduardo Corrêa; da Silva, Pablo Nascimento; Silveira, Carla Semiramis; Carneiro, Giovanna; Domingues, Ana Beatriz; Moss, Adam; Pritchard, Tim; Plastino, Alexandre; Azeredo, Rodrigo Bagueira de Vasconcellos

    2017-05-01

    Recent studies have indicated that the accurate identification of carbonate rock types in a reservoir can be employed as a preliminary step to enhance the effectiveness of petrophysical property modeling. Furthermore, rock typing activity has been shown to be of key importance in several steps of formation evaluation, such as the study of sedimentary series, reservoir zonation and well-to-well correlation. In this paper, a methodology based exclusively on the analysis of 1H-NMR (Nuclear Magnetic Resonance) relaxation responses - using data mining algorithms - is evaluated to perform the automatic classification of carbonate samples according to their rock type. We analyze the effectiveness of six different classification algorithms (k-NN, Naïve Bayes, C4.5, Random Forest, SMO and Multilayer Perceptron) and two data preprocessing strategies (discretization and feature selection). The dataset used in this evaluation is formed by 78 1H-NMR T2 distributions of fully brine-saturated rock samples from six different rock type classes. The experiments reveal that the combination of preprocessing strategies with classification algorithms is able to achieve a prediction accuracy of 97.4%.

  8. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Wei, Ruihua; Gao, Yongfeng; Xu, Shengchuan; Santosh, M.; Xin, Houtian; Zhang, Zhenmin; Li, Weilong; Liu, Yafang

    2018-05-01

    The architecture and tectonic evolution of the Hegenshan accretionary belt in the Central Asian Orogenic Belt (CAOB) remains debated. Here we present an integrated study of zircon U-Pb isotopic ages, whole rock major-trace elements, and Sr-Nd-Pb isotopic data from the Hegenshan volcanic-plutonic belt in central Inner Mongolia. Field observations and zircon U-Pb ages allow us to divide the intrusive complex into an early phase at 329-306 Ma and a late phase at 304 to 299 Ma. The intrusive bodies belong to two magma series: calc-alkaline rocks with I-type affinity and A-type granites. The early intrusions are composed of granodiorite, monzogranite and porphyritic granite, and the late calc-alkaline intrusions include gabbro though diorite to granodiorite. The calc-alkaline intrusive rocks exhibit a well-defined compositional trend from gabbro to granite, reflecting continuous fractional crystallization. These rocks show obvious enrichment in LILEs and LREEs and relative depletion of HFSEs, typical of subduction-related magma. They also exhibit isotopic characteristics of mantle-derived magmas such as low initial 87Sr/86Sr (0.7029-0.7053), positive ɛNd(t) values (0.06-4.76) and low radiogenic Pb isotopic compositions ((206Pb/204Pb)I = 17.907-19.198, (207Pb/204Pb)I = 15.474-15.555, (208Pb/204Pb)I = 37.408-38.893). The marked consistency in geochemical and isotopic compositions between the intrusive rocks and the coeval Baoligaomiao volcanic rocks define a Carboniferous continental arc. Together with available regional data, we infer that this east-west trending continental arc was generated by northward subduction of the Hegenshan ocean during Carboniferous. The late alkali-feldspar granites and the high-Si rhyolites of the Baoligaomiao volcanic succession show similar geochemical compositions with high SiO2 and variable total alkali contents, and low TiO2, MgO and CaO. These rocks are characterized by unusually low Sr and Ba, and high abundances of Zr, Th, Nb, HREEs and Y, comparable to the features of typical A2-type granites including their high ratios of FeOT/MgO, Ga/Al and Y/Nb. Our study suggests that the A-type granite was derived from a distinct magma source rather than through fractional crystallization of the coeval calc-alkaline magmas. Their Nd-Pb isotopic compositions are similar to those of calc-alkaline arc rocks and are compatible with partial melting of pre-existing juvenile basaltic crust in the continental arc. Notably, the widespread eruptions of A2-type rhyolitic magmas (305.3 Ma-303.4 Ma) following a short period of magmatic quiescence was temporally and spatially associated with bimodal magmatism with mantle-derived gabbro-diorites and A-type granites (304.3 Ma-299.03 Ma) in the pre-existing arc volcanic-plutonic belt (329 Ma-306 Ma). Such a marked change in the magma affinity likely indicates subducted slab break-off resulting in a change of the regional stress field to an extensional setting within the Carboniferous continental arc that runs E-W for few thousands of kilometers. Thus, the onset of the late magmatism (305-299 Ma) likely represents the maximum age for the cessation of the northward subduction in the Hegenshan ophiolite-arc-accretion belt.

  9. Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces

    NASA Astrophysics Data System (ADS)

    Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.

    2017-12-01

    Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for such surfaces. This analysis yielded a continuum of contact angles (real above, and imaginary below, zero degrees) that can be used to investigate relationships with properties such surface roughness and porosity. It should be noted these are preliminary, unreplicated results and further research will be needed to verify them and refine the approach.

  10. Preliminary results of thermal conductivity and elastic wave velocity measurements of various rock samples collected from outcrops in hanging wall of the Alpine Fault

    NASA Astrophysics Data System (ADS)

    Lin, W.; Tadai, O.; Shigematsu, N.; Nishikawa, O.; Mori, H.; Townend, J.; Capova, L.; Saito, S.; Kinoshita, M.

    2015-12-01

    The Alpine Fault is a mature active fault zone likely to rupture in the near future and DFDP aims to measure physical and chemical conditions within the fault. DFDP-2B borehole was drilled into hanging wall of the Alpine Fault. Downhole temperature measurements carried out in DFDP-2B borehole showed that the geothermal gradient in the hanging wall of the fault is very high, likely reaching to 130-150 °C/km (Sutherland et al., 2015 AGU Fall Meeting). To explain this abnormal feature, the determination of thermal properties of all the rock types in the hanging wall of the Alpine Fault is essential. To measure thermal properties and elastic wave velocities, we collected six typical rock block samples from outcrops in Stony creek and Gaunt creek. These include ultramylonite, mylonite, muscovite schist, garnet amphibolite, protomylonite and schist, which are representative of the hanging wall of the Alpine Fault. Their wet bulk densities are 2.7 - 2.8 g/cm3, and porosities are 1.4 - 3.0%. We prepared a pair of 4 cm cube specimens of each rock type with one flat plane parallel to the foliation. First, we measured thermal conductivity by the transient plane heat source (hot disc) method in a bulk mode, i.e. to deal with the rock as an isotropic material. However, several samples have clearly visible foliation and are likely to be anisotropic. Thus, the data measured in bulk mode provided an average value of the rocks in the range of approximately 2.4 - 3.2 W/mK. The next step will be to measure thermal conductivity in an anisotropic mode. We also measured P wave velocity (Vp) using the same samples, but in two directions, i.e. parallel and perpendicular to the foliation, respectively. Our preliminary results suggested that Vp is anisotropic in all the six rocks. Generally, Vp parallel to foliation is higher than that in the perpendicular direction. Vp in the parallel direction ranged in 5.5 - 6.0 km/s, whereas in the perpendicular direction it was 4.4 - 5.5 km/s. We thank the PIs and onsite staffs of the DFDP-2 project for their helps to collecting rock samples, and the financial support by JSPS (Japan-New Zealand Joint Research Program).

  11. Plume magmatism and crustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake area, Western Superior Province

    NASA Astrophysics Data System (ADS)

    Tomlinson, K. Y.; Hughes, D. J.; Thurston, P. C.; Hall, R. P.

    1999-01-01

    The greenstone belts of the western Superior Province are predominantly 2.78 to 2.69 Ga and provide evidence of oceanic and arc volcanism during the accretionary phase of development of the Superior Province. There is also scattered evidence of Meso-Archean crust (predominantly 2.9 to 3.0 Ga) within the western Superior Province. The Meso-Archean greenstone belts commonly contain platformal sediments and unconformably overlie granitoid basement. The platformal sediments occur associated with komatiitic and tholeiitic volcanic rocks that suggest a history of magmatism associated with rifting during the Meso-Archean. The central Wabigoon Subprovince is a key area of Meso-Archean crust and in its southern portion comprises the Steep Rock, Finlayson and Lumby Lake greenstone belts. The Steep Rock greenstone belt unconformably overlies 3 Ga continental basement and contains platformal sediments succeeded by komatiitic and tholeiitic volcanic rocks. The Lumby Lake greenstone belt contains thick sequences of mafic volcanics, a number of komatiite horizons, and thin platformal sedimentary units. The two belts are joined by the predominantly mafic volcanic Finlayson greenstone belt. The volcanics throughout these three greenstone belts may be correlated to some extent and a range of basaltic and komatiite types is present. Al-undepleted komatiites present in the Lumby Lake greenstone belt have an Al 2O 3/TiO 2 ratio ranging from 14 to 27 and (Gd/Yb) N from 0.7 to 1.3. These are divided into basaltic komatiites with generally unfractionated mantle-normalised multi-element profiles, and spinifex-textured high-Mg basalts with slightly light REE enriched multi-element profiles and small negative Nb and Ta anomalies. The unfractionated basaltic komatiites represent high degree partial melts of the upper mantle whereas the spinifex-textured high-Mg basalts represent evolutionary products of the komatiite liquids following olivine and chromite fractionation and crustal contamination. Al-depleted komatiites are present in both the Lumby Lake and Steep Rock belts and have Al 2O 3/TiO 2 ratio ranges from 2.5 to 5. These display strong enrichment in the light REE and Nb and strong depletion in the heavy REE and Y ((Gd/Yb) N=2-4). They represent a deep mantle plume source generated from a high degree of partial melting in the majorite garnet stability field. The basaltic flows in all three greenstone belts are predominantly slightly light REE depleted and represent a slightly depleted upper mantle source. Basalts spatially associated with the unfractionated basaltic komatiites and the slightly light REE enriched spinifex-textured high-Mg basalts are also slightly enriched in light REE and have negative Nb and Ta anomalies. These basalts represent evolved products of the primitive basaltic komatiites and enriched spinifex-textured high-Mg basalts after further crustal contamination and olivine and clinopyroxene fractionation. The geochemical stratigraphy in the Lumby Lake belt is consistent with an ascending mantle plume model. The light REE depleted basalts were derived from upper mantle melted by an ascending mantle plume. These are overlain by the unfractionated basaltic komatiites and their evolutionary products which represent hotter plume head material derived from a mixture of plume mantle and entrained depleted upper mantle. In turn, these are overlain by strongly light REE and HFSE enriched komatiites that represent a deep plume source that has not been mixed with depleted mantle and are, therefore, likely to have been derived from a plume core or tail. Volcanism was protracted in these three greenstone belts lasting ca. 70 Ma and combined stratigraphic evidence from the Lumby Lake and Steep Rock belts suggests that more than one plume may have ascended and tapped the same mantle sources, over time, within the area. Plume magmatism and rifting of continental platforms thus appears to have been an important feature of crustal development in the Meso-Archean.

  12. Garnet clinopyroxenite layers from the mantle sequences of the Northern Apennine ophiolites (Italy): Evidence for recycling of crustal material

    NASA Astrophysics Data System (ADS)

    Montanini, A.; Tribuzio, R.; Thirlwall, M.

    2012-10-01

    This study aims to define the origin of garnet clinopyroxenite layers from the mantle sequences of the External Ligurian ophiolites. These mantle sequences retain a subcontinental origin and were exposed at a Jurassic ocean-continent transition. The garnet clinopyroxenites are mafic rocks with Mg# values of 66-71. Their chondrite-normalised REE patterns are characterised by severe LREE depletion (CeN/SmN=0.1-0.2) and nearly flat (Type-A pyroxenites) to moderately enriched HREE (Type-B pyroxenites). In addition, Type-A pyroxenites display a small positive Eu anomaly. The whole-rock REE variations are paralleled by the garnet REE compositions. We attribute the major and trace element characteristics of the garnet clinopyroxenites to recycling of gabbroic protoliths that underwent partial melting under eclogite facies conditions. The garnet clinopyroxenites may represent variably evolved garnet+clinopyroxene cumulates formed by eclogite-derived melts. In an alternative hypothesis, Type-A and -B pyroxenites are residual rocks after eclogite melting and cumulates derived from the eclogite melts, respectively. The high pressure fractionation event that gave rise to the garnet clinopyroxenites is considered of Triassic age on the basis of Sm-Nd and Lu-Hf isotope correlations. The Nd-Hf isotopic compositions of the garnet clinopyroxenites in the Triassic (ɛNd=+4.7 to +7.6, ɛHf=+4.4 to +12.8) lie below the mantle array, in agreement with recycled ancient MOR-type material. The oxygen isotopic composition of garnet and clinopyroxene from the garnet clinopyroxenites (δ18O=+4.9‰ to +5.2‰) may be reconciled with subduction-related recycling of the lowermost oceanic crust, or delamination and foundering of underplated gabbros from the continental lithosphere. The potential involvement of the garnet clinopyroxenites in the melting processes that gave rise to the MOR-type oceanic crust in the Jurassic would account for the moderate Nd isotope variability and the garnet geochemical signature of the ophiolitic basalts.

  13. Volcanic settings and their reservoir potential: An outcrop analog study on the Miocene Tepoztlán Formation, Central Mexico

    NASA Astrophysics Data System (ADS)

    Lenhardt, Nils; Götz, Annette E.

    2011-07-01

    The reservoir potential of volcanic and associated sedimentary rocks is less documented in regard to groundwater resources, and oil and gas storage compared to siliciclastic and carbonate systems. Outcrop analog studies within a volcanic setting enable to identify spatio-temporal architectural elements and geometric features of different rock units and their petrophysical properties such as porosity and permeability, which are important information for reservoir characterization. Despite the wide distribution of volcanic rocks in Mexico, their reservoir potential has been little studied in the past. In the Valley of Mexico, situated 4000 m above the Neogene volcanic rocks, groundwater is a matter of major importance as more than 20 million people and 42% of the industrial capacity of the Mexican nation depend on it for most of their water supply. Here, we present porosity and permeability data of 108 rock samples representing five different lithofacies types of the Miocene Tepoztlán Formation. This 800 m thick formation mainly consists of pyroclastic rocks, mass flow and fluvial deposits and is part of the southern Transmexican Volcanic Belt, cropping out south of the Valley of Mexico and within the two states of Morelos and Mexico State. Porosities range from 1.4% to 56.7%; average porosity is 24.8%. Generally, permeabilities are low to median (0.2-933.3 mD) with an average permeability of 88.5 mD. The lavas are characterized by the highest porosity values followed by tuffs, conglomerates, sandstones and tuffaceous breccias. On the contrary, the highest permeabilities can be found in the conglomerates, followed by tuffs, tuffaceous breccias, sandstones and lavas. The knowledge of these petrophysical rock properties provides important information on the reservoir potential of volcanic settings to be integrated to 3D subsurface models.

  14. Volcanic glass in Cretaceous dacites and rhyolites of the Paraná Magmatic Province, southern Brazil: Characterization and quantification by XRD-Rietveld

    NASA Astrophysics Data System (ADS)

    Andrade, Fábio Ramos Dias de; Polo, Liza Angélica; Janasi, Valdecir de Assis; Carvalho, Flávio Machado de Souza

    2018-04-01

    Acidic rocks are a significant component of the Cretaceous Paraná Magmatic Province, occurring in different stratigraphic positions, and often forming deposits of complex and as yet poorly defined architecture. Vitrophyric varieties are surprisingly abundant for a volcanic sequence of this age, and are composed of predominant glass plus plagioclase (labradorite-andesine), pyroxenes (augite ± pigeonite and orthopyroxene), Ti-rich magnetite, and traces of apatite. Hypocrystalline rocks, largely derived from devitrification, additionally contain sanidine, cristobalite, and quartz. The negative correlation between the abundance of these minerals and the amount of glass suggests that these latter phases formed by devitrification. Modal analysis using a combined XRD Rietveld-RIR method detected glass contents between 0 and 85 wt% % in a set of representative samples of Palmas-type acidic rocks from southern Brazil with dacite to rhyolite composition. Modal compositions determined by XRD and by scanning electron microscope are in good agreement with each other, and were checked against whole-rock XRF chemical data. Water contents up to 4 wt% show a positive linear correlation with the amount of glass, and are inferred to be mostly secondary, as original (pre-eruptive) H2O dissolved in melts is inferred to have been < 1.5 wt% in all rocks. Glass is the only water bearing phase in the studied samples, which lack low temperature hydrated phases. Water loss during devitrification appears to have occurred along fractures, and was accompanied by Na loss and, in some samples, also Ca, Rb and Sr loss. The rapid and inexpensive method of modal analyses of glassy rocks developed here may be a useful tool for mapping acidic volcanic rocks in southern Paraná Magmatic Province, and also to identify the architecture of these deposits.

  15. Three-dimensional distribution of igneous rocks near the Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska: constraints from regional-scale aeromagnetic data

    USGS Publications Warehouse

    Anderson, Eric D.; Zhou, Wei; Li, Yaoguo; Hitzman, Murray W.; Monecke, Thomas; Lang, James R.; Kelley, Karen D.

    2014-01-01

    Aeromagnetic data helped us to understand the 3D distribution of plutonic rocks near the Pebble porphyry copper deposit in southwestern Alaska, USA. Magnetic susceptibility measurements showed that rocks in the Pebble district are more magnetic than rocks of comparable compositions in the Pike Creek–Stuyahok Hills volcano-plutonic complex. The reduced-to-pole transformation of the aeromagnetic data demonstrated that the older rocks in the Pebble district produce strong magnetic anomaly highs. The tilt derivative transformation highlighted northeast-trending lineaments attributed to Tertiary volcanic rocks. Multiscale edge detection delineated near-surface magnetic sources that are mostly outward dipping and coalesce at depth in the Pebble district. The total horizontal gradient of the 10-km upward-continued magnetic data showed an oval, deep magnetic contact along which porphyry deposits occur. Forward and inverse magnetic modeling showed that the magnetic rocks in the Pebble district extend to depths greater than 9 km. Magnetic inversion was constrained by a near-surface, 3D geologic model that is attributed with measured magnetic susceptibilities from various rock types in the region. The inversion results indicated that several near-surface magnetic sources with moderate susceptibilities converge with depth into magnetic bodies with higher susceptibilities. This deep magnetic source appeared to rise toward the surface in several areas. An isosurface value of 0.02 SI was used to depict the magnetic contact between outcropping granodiorite and nonmagnetic sedimentary host rocks. The contact was shown to be outward dipping. At depths around 5 km, nearly the entire model exceeded the isosurface value indicating the limits of nonmagnetic host material. The inversion results showed the presence of a relatively deep, northeast-trending magnetic low that parallels lineaments mapped by the tilt derivative. This deep low represents a strand of the Lake Clark fault.

  16. World Map Showing Surface and Subsurface Distribution, and Lithologic Character of Middle and Late Neoproterozoic Rocks

    USGS Publications Warehouse

    Stewart, John H.

    2007-01-01

    INTRODUCTION The map was prepared to outline the basic information on where Neoproterozoic rocks are present in the World, and of the lithologic character of these rocks. The information provides a better understanding of major Neoproterozoic tectonic subdivisions useful in paleogeographic and plate tectonic reconstructions. The time frame of the map is within the middle and late Neoproterozoic from approximately 870 to 540 Ma and is after widespread Mesoproterozoic Grenville-age collisional events that are considered to have formed the hypothetical supercontinent of Rodinia. Much of the time represented by the map is interpreted to be during the fragmentation of Rodinia. The recognition of Neoproterozoic rocks is commonly difficult because of limited isotopic or paloeontological dating. Thus, some rocks shown on the map could be older or younger than the age indicated. However, at the scale of the map the the problem may be minor. Enough information seems to be available to indicate the general age of the rocks. Many of the successions contain diamictite deposits considered to be glaciogenic and dated as middle or late Neoproterozoic. These deposits thus show a rough correlation of middle and late Neoproterozoic rocks of the world. The map is a Richardson map projection, except for Antarctica which is a polar projection. The map was prepared from about 650 references, shown in the text linked below under 'Sources of Information', used to outline distribution patterns, determine rock types, and provide information on the regional and local geologic framework of the rocks. The focus of the references is on the geologic information needed to prepare the map. Other information, such as plate tectonic reconstructions or paleomagnetic studies is generally not included. The 'Sources of Information' lists references alphabetically for each of 14 regions. In brackets is a code for each area. These codes provide help in locating the specific regions in the references.

  17. The Apollo 16 regolith - A petrographically-constrained chemical mixing model

    NASA Technical Reports Server (NTRS)

    Kempa, M. J.; Papike, J. J.; White, C.

    1980-01-01

    A mixing model for Apollo 16 regolith samples has been developed, which differs from other A-16 mixing models in that it is both petrographically constrained and statistically sound. The model was developed using three components representative of rock types present at the A-16 site, plus a representative mare basalt. A linear least-squares fitting program employing the chi-squared test and sum of components was used to determine goodness of fit. Results for surface soils indicate that either there are no significant differences between Cayley and Descartes material at the A-16 site or, if differences do exist, they have been obscured by meteoritic reworking and mixing of the lithologies.

  18. Streamlined Archaeo-geophysical Data Processing and Integration for DoD Field Use

    DTIC Science & Technology

    2012-04-01

    names can now be renamed and are, by default, named B1, B2, etc. It is hard to tell if Band buttons (B1, B2, etc.) are depressed or not. Contrast...consisted of a man-made depression surrounded by low ridges. That aspect of the fort’s layout is discussed further in Chapter 5. 4.1.5 SITE HISTORY...larger rocks, natural depressions representing concentrations of relatively magnetic topsoil, etc., (Bevan 1998). Pits are a common feature type, but

  19. Microplastic Pollution in Table Salts from China.

    PubMed

    Yang, Dongqi; Shi, Huahong; Li, Lan; Li, Jiana; Jabeen, Khalida; Kolandhasamy, Prabhu

    2015-11-17

    Microplastics have been found in seas all over the world. We hypothesize that sea salts might contain microplastics, because they are directly supplied by seawater. To test our hypothesis, we collected 15 brands of sea salts, lake salts, and rock/well salts from supermarkets throughout China. The microplastics content was 550-681 particles/kg in sea salts, 43-364 particles/kg in lake salts, and 7-204 particles/kg in rock/well salts. In sea salts, fragments and fibers were the prevalent types of particles compared with pellets and sheets. Microplastics measuring less than 200 μm represented the majority of the particles, accounting for 55% of the total microplastics, and the most common microplastics were polyethylene terephthalate, followed by polyethylene and cellophane in sea salts. The abundance of microplastics in sea salts was significantly higher than that in lake salts and rock/well salts. This result indicates that sea products, such as sea salts, are contaminated by microplastics. To the best of our knowledge, this is the first report on microplastic pollution in abiotic sea products.

  20. Pellet microfossils: Possible evidence for metazoan life in Early Proterozoic time

    PubMed Central

    Robbins, Eleanora Iberall; Porter, Karen Glaus; Haberyan, Kurt A.

    1985-01-01

    Microfossils resembling fecal pellets occur in acid-resistant residues and thin sections of Middle Cambrian to Early Proterozoic shale. The cylindrical microfossils average 50 × 110 μm and are the size and shape of fecal pellets produced by microscopic animals today. Pellets occur in dark gray and black rocks that were deposited in the facies that also preserves sulfide minerals and that represent environments analogous to those that preserve fecal pellets today. Rocks containing pellets and algal microfossils range in age from 0.53 to 1.9 gigayears (Gyr) and include Burgess Shale, Greyson and Newland Formations, Rove Formation, and Gunflint Iron-Formation. Similar rock types of Archean age, ranging from 2.68 to 3.8 Gyr, were barren of pellets. If the Proterozoic microfossils are fossilized fecal pellets, they provide evidence of metazoan life and a complex food chain at 1.9 Gyr ago. This occurrence predates macroscopic metazoan body fossils in the Ediacaran System at 0.67 Gyr, animal trace fossils from 0.9 to 1.3 Gyr, and fossils of unicellular eukaryotic plankton at 1.4 Gyr. Images PMID:16593599

  1. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  2. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.

    PubMed

    von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy

    2008-01-01

    The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.

  3. The thermal maturation degree of organic matter from source rocks revealed by wells logs including examples from Murzuk Basin, Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negoita, V.; Gheorghe, A.

    1995-08-01

    The customary technique used to know the organic matter quantity per rock volume it as well as the organic matter maturation stage is based on geochemical analyses accomplished on a preselected number of samples and cuttings drawn from boreholes during the drilling period. But the same objectives can be approached without any extra cost using the continuous measurements of well logs recorded in each well from the ground surface to the total depth. During the diagenetic stage, the identification of potential source rocks out of which no hydrocarbon have been generated may be carried out using a well logging suitemore » including Gamma Ray Spectrometry, the Compensated Neutron/Litho Density combination and a Dual Induction/Sonic Log. During the catagenetic stage the onset of oil generation brings some important changes in the organic matter structure as well as in the fluid distribution throughout the pore space of source rocks. The replacement of electric conductive water by electric non-conductive hydrocarbons, together with water and oil being expelled from source rocks represent a process of different intensities dependent of time/temperature geohistory and kerogen type. The different generation and expulsion scenarios of hydrocarbons taking place during the catagenetic and metagenetic stages of source rocks are very well revealed by Induction and Laterolog investigations. Several crossplots relating vitrinite reflectance, total organic carbon and log-derived physical parameters are illustrated and discussed. The field applications are coming from Murzuk Basin, where Rompetrol of Libya is operating.« less

  4. The underwater photic environment of Cape Maclear, Lake Malawi: comparison between rock- and sand-bottom habitats and implications for cichlid fish vision.

    PubMed

    Sabbah, Shai; Gray, Suzanne M; Boss, Emmanuel S; Fraser, James M; Zatha, Richard; Hawryshyn, Craig W

    2011-02-01

    Lake Malawi boasts the highest diversity of freshwater fishes in the world. Nearshore sites are categorized according to their bottom substrate, rock or sand, and these habitats host divergent assemblages of cichlid fishes. Sexual selection driven by mate choice in cichlids led to spectacular diversification in male nuptial coloration. This suggests that the spectral radiance contrast of fish, the main determinant of visibility under water, plays a crucial role in cichlid visual communication. This study provides the first detailed description of underwater irradiance, radiance and beam attenuation at selected sites representing two major habitats in Lake Malawi. These quantities are essential for estimating radiance contrast and, thus, the constraints imposed on fish body coloration. Irradiance spectra in the sand habitat were shifted to longer wavelengths compared with those in the rock habitat. Beam attenuation in the sand habitat was higher than in the rock habitat. The effects of water depth, bottom depth and proximity to the lake bottom on radiometric quantities are discussed. The radiance contrast of targets exhibiting diffused and spectrally uniform reflectance depended on habitat type in deep water but not in shallow water. In deep water, radiance contrast of such targets was maximal at long wavelengths in the sand habitat and at short wavelengths in the rock habitat. Thus, to achieve conspicuousness, color patterns of rock- and sand-dwelling cichlids would be restricted to short and long wavelengths, respectively. This study provides a useful platform for the examination of cichlid visual communication.

  5. The Resurrection Peninsula ophiolite

    USGS Publications Warehouse

    Nelson, Steven W.; Miller, M.L.; Dumoulin, Julie A.; Nelson, Steven W.; Hamilton, Thomas D.

    1989-01-01

    The Resurrection Peninsula forms the east side of Resurrection Bay (fig. 3). Relief ranges from 437 m (1,434 ft) at the southern end of the peninsula to more than 1,463 m (4,800 ft) opposite the head of the bay. All rock units composing the informally named Resurrection Peninsula ophiolite of Nelson and others (1987) are visible or accessible by boat."Ophiolite" has been a geologic term since 1827 (Coleman, 1977). The term "ophiolite" initially referred to the rock serpentinite; the Greek root "ophi" (meaning snake or serpent) alluded to the greenish, mottled, and shiny appearance of serpentinites. In 1927, Steinmann described a rock association in the Alps, sometimes known as the "Steinmann Trinity', consisting of serpentine, diabase and spilitic lavas, and chert. Recognition of this suite led to the idea that ophiolites represent submarine magmatism that took place early in the development of a eugeosyncline. In the early 1970s the Steinmann Trinity was reconsidered in light of the plate tectonic theory, new petrologic studies, and the recognition of abducted oceanic lithosphere in orogenic belts of the world. In 1972 at a Geological Society of America Penrose Conference (Anonymous, 1972) the term "ophiolite" was defined as a distinctive assemblage of mafic to ultramafic rocks, with no emphasis on their origin. A complete ophiolite should contain, from bottom to top:1) Tectonized ultramafic rocks (more or less serpentinized)2) Gabbro complex containing cumulus textures and commonly cumulus peridotites3) Mafic sheeted-dike complex, grading upward into;4) Submarine pillow lavas of basaltic composition. Common associated rock types include plagiogranite (Na-rich) and an overlying sedimentary section typically dominated by chert.

  6. Paleoecology and paleoceanography of the Athel silicilyte, Ediacaran-Cambrian boundary, Sultanate of Oman.

    PubMed

    Stolper, D A; Love, G D; Bates, S; Lyons, T W; Young, E; Sessions, A L; Grotzinger, J P

    2017-05-01

    The Athel silicilyte is an enigmatic, hundreds of meters thick, finely laminated quartz deposit, in which silica precipitated in deep water (>~100-200 m) at the Ediacaran-Cambrian boundary in the South Oman Salt Basin. In contrast, Meso-Neoproterozoic sinks for marine silica were dominantly restricted to peritidal settings. The silicilyte is known to contain sterane biomarkers for demosponges, which today are benthic, obligately aerobic organisms. However, the basin has previously been described as permanently sulfidic and time-equivalent shallow-water carbonate platform and evaporitic facies lack silica. The Athel silicilyte thus represents a unique and poorly understood depositional system with implications for late Ediacaran marine chemistry and paleoecology. To address these issues, we made petrographic observations, analyzed biomarkers in the solvent-extractable bitumen, and measured whole-rock iron speciation and oxygen and silicon isotopes. These data indicate that the silicilyte is a distinct rock type both in its sedimentology and geochemistry and in the original biology present as compared to other facies from the same time period in Oman. The depositional environment of the silicilyte, as compared to the bounding shales, appears to have been more reducing at depth in sediments and possibly bottom waters with a significantly different biological community contributing to the preserved biomarkers. We propose a conceptual model for this system in which deeper, nutrient-rich waters mixed with surface seawater via episodic mixing, which stimulated primary production. The silica nucleated on this organic matter and then sank to the seafloor, forming the silicilyte in a sediment-starved system. We propose that the silicilyte may represent a type of environment that existed elsewhere during the Neoproterozoic. These environments may have represented an important locus for silica removal from the oceans. © 2017 John Wiley & Sons Ltd.

  7. Processes of high-T fluid-rock interaction during gold mineralization in carbonate-bearing metasediments: the Navachab gold deposit, Namibia

    NASA Astrophysics Data System (ADS)

    Dziggel, A.; Wulff, K.; Kolb, J.; Meyer, F. M.

    2009-08-01

    The Navachab gold deposit in the Damara belt of central Namibia is hosted by a near-vertical sequence of amphibolite facies shelf-type metasediments, including marble, calc-silicate rock, and biotite schist. Petrologic and geochemical data were collected in the ore, alteration halos, and the wall rock to evaluate transport of elements and interaction between the wall rock and the mineralizing fluid. The semi-massive sulfide lenses and quartz-sulfide veins are characterized by a complex polymetallic ore assemblage, comprising pyrrhotite, chalcopyrite, sphalerite, and arsenopyrite, native bismuth, gold, bismuthinite, and bismuth tellurides. Mass balance calculations indicate the addition of up to several orders of magnitude of Au, Bi, As, Ag, and Cu. The mineralized zones also record up to eightfold higher Mn and Fe concentrations. The semi-massive sulfide lenses are situated in the banded calc-silicate rock. Petrologic and textural data indicate that they represent hydraulic breccias that contain up to 50 vol.% ore minerals, and that are dominated by a high-temperature (T) alteration assemblage of garnet-clinopyroxene-K-feldspar-quartz. The quartz-sulfide veins crosscut all lithological units. Their thickness and mineralogy is strongly controlled by the composition and rheological behavior of the wall rocks. In the biotite schist and calc-silicate rock, they are up to several decimeters thick and quartz-rich, whereas in the marble, the same veins are only a few millimeters thick and dominated by sulfides. The associated alteration halos comprise (1) an actinolite-quartz alteration in the biotite schist, (2) a garnet-clinopyroxene-K-feldspar-quartz alteration in the marble and calc-silicate rock, and (3) a garnet-biotite alteration that is recorded in all rock types except the marble. The hydrothermal overprint was associated with large-scale carbonate dissolution and a dramatic increase in CO2 in the ore fluid. Decarbonation of wall rocks, as well as a low REE content of the ore fluid resulted in the mobilization of the REE, and the decoupling of the LREE from the HREE. The alteration halos not only parallel the mineralized zones, but may also follow up single layers away from the mineralization. Alteration is far more pronounced facing upward, indicating that the rocks were steep when veining occurred. The petrologic and geochemical data indicate that the actinolite-quartz- and garnet-clinopyroxene-K-feldspar-quartz alterations formed in equilibrium with a fluid (super-) saturated in Si, and were mainly controlled by the composition of the wall rocks. In contrast, the garnet-biotite alteration formed by interaction with a fluid undersaturated in Si, and was mainly controlled by the fluid composition. This points to major differences in fluid-rock ratios and changes in fluid composition during alteration. The alteration systematics and geometry of the hydrothermal vein system are consistent with cyclic fluctuations in fluid pressure during fault valve action.

  8. Digital Bedrock Compilation: A Geodatabase Covering Forest Service Lands in California

    NASA Astrophysics Data System (ADS)

    Elder, D.; de La Fuente, J. A.; Reichert, M.

    2010-12-01

    This digital database contains bedrock geologic mapping for Forest Service lands within California. This compilation began in 2004 and the first version was completed in 2005. Second publication of this geodatabase was completed in 2010 and filled major gaps in the southern Sierra Nevada and Modoc/Medicine Lake/Warner Mountains areas. This digital map database was compiled from previously published and unpublished geologic mapping, with source mapping and review from California Geological Survey, the U.S. Geological Survey and others. Much of the source data was itself compilation mapping. This geodatabase is huge, containing ~107,000 polygons and ~ 280,000 arcs. Mapping was compiled from more than one thousand individual sources and covers over 41,000,000 acres (~166,000 km2). It was compiled from source maps at various scales - from ~ 1:4,000 to 1:250,000 and represents the best available geologic mapping at largest scale possible. An estimated 70-80% of the source information was digitized from geologic mapping at 1:62,500 scale or better. Forest Service ACT2 Enterprise Team compiled the bedrock mapping and developed a geodatabase to store this information. This geodatabase supports feature classes for polygons (e.g, map units), lines (e.g., contacts, boundaries, faults and structural lines) and points (e.g., orientation data, structural symbology). Lookup tables provide detailed information for feature class items. Lookup/type tables contain legal values and hierarchical groupings for geologic ages and lithologies. Type tables link coded values with descriptions for line and point attributes, such as line type, line location and point type. This digital mapping is at the core of many quantitative analyses and derivative map products. Queries of the database are used to produce maps and to quantify rock types of interest. These include the following: (1) ultramafic rocks - where hazards from naturally occurring asbestos are high, (2) granitic rocks - increased erosion hazards, (3) limestone, chert, sedimentary rocks - paleontological resources (Potential Fossil Yield Classification maps), (4) calcareous rocks (cave resources, water chemistry), and (5) lava flows - lava tubes (more caves). Map unit groupings (e.g., belts, terranes, tectonic & geomorphic provinces) can also be derived from the geodatabase. Digital geologic mapping was used in ground water modeling to predict effects of tunneling through the San Bernardino Mountains. Bedrock mapping is used in models that characterize watershed sediment regimes and quantify anthropogenic influences. When combined with digital geomorphology mapping, this geodatabase helps to assess landslide hazards.

  9. 10 CFR 960.3-2-1 - Site screening for potentially acceptable sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that contain rock formations of suitable depth, thickness, and lateral extent and have structural... require diversity of geohydrologic settings and rock types and consideration of regionality, as specified... provisions for diversity of geohydrologic settings, diversity of rock types, and regionality (§§ 960.3-1-1...

  10. Alkaline magmatism in the Amambay area, NE Paraguay: The Cerro Sarambí complex

    NASA Astrophysics Data System (ADS)

    Gomes, C. B.; Velázquez, V. F.; Azzone, R. G.; Paula, G. S.

    2011-07-01

    The Early Cretaceous alkaline magmatism in the northeastern region of Paraguay (Amambay Province) is represented by stocks, plugs, dikes, and dike swarms emplaced into Carboniferous to Triassic-Jurassic sediments and Precambrian rocks. This magmatism is tectonically related to the Ponta Porã Arch, a NE-trending structural feature, and has the Cerro Sarambí and Cerro Chiriguelo carbonatite complexes as its most significant expressions. Other alkaline occurrences found in the area are the Cerro Guazú and the small bodies of Cerro Apuá, Arroyo Gasory, Cerro Jhú, Cerro Tayay, and Cerro Teyú. The alkaline rocks comprise ultramafic-mafic, syenitic, and carbonatitic petrographic associations in addition to lithologies of variable composition and texture occurring as dikes; fenites are described in both carbonatite complexes. Alkali feldspar and clinopyroxene, ranging from diopside to aegirine, are the most abundant minerals, with feldspathoids (nepheline, analcime), biotite, and subordinate Ti-rich garnet; minor constituents are Fe-Ti oxides and cancrinite as the main alteration product from nepheline. Chemically, the Amambay silicate rocks are potassic to highly potassic and have miaskitic affinity, with the non-cumulate intrusive types concentrated mainly in the saturated to undersaturated areas in silica syenitic fields. Fine-grained rocks are also of syenitic affiliation or represent more mafic varieties. The carbonatitic rocks consist dominantly of calciocarbonatites. Variation diagrams plotting major and trace elements vs. SiO 2 concentration for the Cerro Sarambí rocks show positive correlations for Al 2O 3, K 2O, and Rb, and negative ones for TiO 2, MgO, Fe 2O 3, CaO, P 2O 5, and Sr, indicating that fractional crystallization played an important role in the formation of the complex. Incompatible elements normalized to primitive mantle display positive spikes for Rb, La, Pb, Sr, and Sm, and negative for Nb-Ta, P, and Ti, as these negative anomalies are considerably more pronounced in the carbonatites. Chondrite-normalized REE patterns point to the high concentration of these elements and to the strong LRE/HRE fractionation. The Amambay rocks are highly enriched in radiogenic Sr and have TDM model ages that vary from 1.6 to 1.1 Ga, suggesting a mantle source enriched in incompatible elements by metasomatic events in Paleo-Mesoproterozoic times. Data are consistent with the derivation of the Cerro Sarambí rocks from a parental magma of lamprophyric (minette) composition and suggest an origin by liquid immiscibility processes for the carbonatites.

  11. Architecture of ductile-type, hyper-extended passive margins: Geological constraints from the inverted Cretaceous basin of the North-Pyrenean Zone ('Chaînons Béarnais', Western Pyrenees)

    NASA Astrophysics Data System (ADS)

    Corre, Benjamin; Lagabrielle, Yves; Labaume, Pierre; Lahfid, Abdeltif; Boulvais, Philippe; Bergamini, Geraldine; Fourcade, Serge; Clerc, Camille

    2017-04-01

    Sub-continental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust during plate separation. Remnants of the Northern Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and represent field analogues to study the processes of continental crust thinning and subcontinental mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. In the western NPZ, the 'Chaînons Béarnais' ranges display a fold-and-thrust structure involving the Mesozoic sedimentary cover, decoupled from its continental basement and associated with peridotite bodies in tectonic contact with Palaeozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the allochthonous Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of the northern Iberia paleo-margin. Field work confirms that the pre-rift Mesozoic cover is intimately associated to mantle rocks and to thin tectonic lenses of crustal basement. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the hyper-extended margin. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands defining a plurimetric phacoidal fabric at the top of the serpentinized mantle. The detachment is marked by a layer of metasomatic rocks, locally 20 meters thick, made of talc-chlorite-pyrite-rich rocks that developped under greenschist facies conditions. Raman Spectroscopy on Carbonaceous Materials (RSCM), performed on the Mesozoic cover reveal that the entire sedimentary pile underwent temperatures ranging between 200°C and 480°C. We show that: (i) at the site of mantle rocks exhumation, the boudinaged pre-rift sediments have undergone drastic syn-metamorphic thinning with the genesis of a S0/S1 foliation and, (ii) the Paleozoic basement has been ductilely deformed, into thin tectonic lenses that remained welded to the exhumed mantle rocks. Therefore the overall crustal rheology appears dominated by shallow levels having a ductile behavior. This rheology is related to the presence of a thick pre- and syn-rift decoupled cover acting as an efficient thermal blanket. This new geological data set highlights important characteristics of ductile-type hyper-extended passive margin that cannot be obtained from the study of seismic lines. Finally, we stress that studying field analogues represents a major tool to better understand the mechanisms of extreme crustal thinning associated with mantle exhumation and their structural inheritance during tectonic inversion.

  12. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua

    2015-05-01

    Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a Carboniferous back-arc basin formed as a result of slab rollback ascribed to northward subduction of the Niujuanzi oceanic lithosphere. Subduction of this back-arc basin probably took place in the early Carboniferous, generating the widespread arc-related granitoids including adakitic plutons, and overlapping earlier arc assemblages. The Beishan orogenic collage is not the eastern extension of the Chinese Central Tianshan, but it was generated by the same north-dipping subduction system separated by the Xingxingxia transform fault, as revealed by available regional data. This contribution implies that in addition to fore-arc accretion, back-arc accretion ascribed to opening and closure of a back-arc basin may also have been a common process in the construction of the CAOB, resembling that of the Mesozoic-Cenozoic subduction-accretion system in the SW pacific.

  13. The upper limit of maturity of natural gas generation and its implication for the Yacheng formation in the Qiongdongnan Basin, China

    NASA Astrophysics Data System (ADS)

    Su, Long; Zheng, Jianjing; Chen, Guojun; Zhang, Gongcheng; Guo, Jianming; Xu, Yongchang

    2012-08-01

    Vitrinite reflectance (VR, Ro%) measurements from residual kerogen of pyrolysis experiments were performed on immature Maoming Oil Shale substituted the samples for the gas-prone source rocks of Yacheng formation of the Qiongdongnan Basin in the South China Sea. The work was focused on determination an upper limit of maturity for gas generation (ULMGG) or "the deadline of natural gas generation". Ro values at given temperatures increase with increasing temperature and prolonged heating time, but ΔRo-value, given a definition of the difference of all values for VR related to higher temperature and adjacent lower temperature in open-system non-isothermal experiment at the heating rate of 20 °C/min, is better than VR. And representative examples are presented in this paper. It indicates that the range of natural gas generation for Ro in the main gas generation period is from 0.96% to 2.74%, in which ΔRo is in concordance with the stage for the onset and end of the main gas generation period corresponding to 0.02% up to 0.30% and from 0.30% up to 0.80%, respectively. After the main gas generation period of 0.96-2.74%, the evolution of VR approach to the ULMGG of the whole rock for type II kerogen. It is equal to 4.38% of VR, where the gas generation rates change little with the increase of maturation, ΔRo is the maximum of 0.83% corresponding to VR of 4.38%Ro, and the source rock does not nearly occur in the end process of hydrocarbon gas generation while Ro is over 4.38%. It shows that it is the same the ULMGG from the whole rock for type II kerogen as the method with both comparison and kinetics. By comparing to both the conclusions of pyrolysis experiments and the data of VR from the source rock of Yacheng formation on a series of selected eight wells in the shallow-water continental shelf area, it indicate that the most hydrocarbon source rock is still far from reaching ULMGG from the whole rock for type II kerogen. The source rock of Yacheng formation in the local areas of the deepwater continental slope basin have still preferable natural gas generative potential, especially in the local along the central depression belt (namely the Ledong, Lingshui, Songnan and Baodao sags from southwest to northeast) from the depocenter to both the margin and its adjacent areas. It help to evaluate the resource potential for oil and gas of the hydrocarbon source rock in the deepwater continental slope of the Qiongdongnan Basin or other basins with lower exploration in the northern of the South China Sea and to reduce the risk in exploration.

  14. Composition and sources of atmospheric dusts in snow at 3200 meters in the St. Elias Range, southeastern Alaska, USA

    USGS Publications Warehouse

    Hinkley, T.K.

    1994-01-01

    Dusts in snow from the accumulation zone in the St. Elias Range appear from their chemical compositions to have come from terranes of rocks of ferromagnesian composition. These dusts, with respect to their composition and to the moderate degree of variation that occurs through a depositional year, are similar those deposited in Greenland. The high portion of the St. Elias Range is isolated from dominance by any local dust source terranes, because of altitude and the extent of the surrounding glacierized and snow-covered region. In Greenland the altitude is typically lower, but local sources are even less likely to dominate the character of the dusts deposited into the ice record there. The similar compositions and moderate compositional variations of dusts from these two places bear on the question of whether the dusts that are transported over long distances by the atmosphere under modern and glacial-period conditions are uniform and representative of a broad regional or even hemispheric background dust. The dusts in the snow were measured by means of a suite of major, minor, and trace rock-forming metals chosen to give information about rock types, their constituent minerals, degree of degradation (weathering), and energies of atmospheric uptake from source. The variations in amounts of rock dust through the year in the St. Elias Range snowpack have no time-stratigraphic correspondence to the also large variations in concentrations of other species that are not constituents of rock-derived dusts, such the anions chloride, sulfate, and nitrate; the highs and lows of the two types of materials are apparently completely independent. The structure revealed by the moderately fine-scale sampling of the present study (??? 10 increments/y) serves as a background for the interpretation of analysis of ice core samples, in which annual layers may be too compressed to permit analysis of sub-annual samples. ?? 1994.

  15. Composition and sources of atmospheric dusts in snow at 3200 meters in the St. Elias Range, southeastern Alaska, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkley, T.K.

    1994-08-01

    Dusts in snow from the accumulation zone in the St. Elias Range appear from their chemical compositions to have come from terranes of rocks of ferromagnesian composition. These dusts, with respect to their composition and to the moderate degree of variation that occurs through a depositional year, are similar to those deposited in Greenland. The high portion of the St. Elias Range is isolated from dominance by any local dust source terranes, because of altitude and the extent of the surrounding glacierized and snow-covered region. In Greenland the altitude is typically lower, but local sources are even less likely tomore » dominate the character of the dusts deposited into the ice record there. The similar compositions and moderate compositional variations of dusts from these two places bear on the question of whether the dusts that are transported over long distances by the atmosphere under modern and glacial-period conditions are uniform and representative of a broad regional or even hemispheric background dust. The dusts in the snow were measured by means of a suite of major, minor, and track rock-forming metals chosen to give information about rock types, their constituent minerals, degree of degradation (weathering), and energies of atmospheric uptake from source. The variations in amounts of rock dust through the year in the St. Elias Range snowpack have no time-stratigraphic correspondence to the also-large variations in concentrations of other species that are not constituents of rock-derived dusts, such the anions chloride, sulfate, and nitrate; the highs and lows of the two types of materials are apparently completely independent. The structure revealed by the moderately fine-scale sampling of the present study ([approximately]10 increments/y) serves as a background for the interpretation of analysis of ice core samples, in which annual layers may be too compressed to permit analysis of sub-annual samples.« less

  16. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  17. Strontium and neodymium isotopic evidence for the heterogeneous nature and development of the mantle beneath Afar (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Betton, P. J.; Civetta, L.

    1984-11-01

    Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The 143Nd/ 144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the 87Sr/ 86Sr ratios display a distinctly greater range (0.70328-0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform 143Nd/ 144Nd ratios (ca. 0.5129) but varied 87Sr/ 86Sr ratios in the range 0.70427-0.70528. The Sr sbnd Nd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the "MORB-type" volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs. It is shown that the anomalous source with a high 87Sr/ 86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high 87Sr/ 86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high 87Sr/ 86Sr ratio.

  18. Heterogeneity in small aliquots of Apolllo 15 olivine-normative basalt: Implications for breccia clast studies

    NASA Astrophysics Data System (ADS)

    Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.

    1993-05-01

    Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.

  19. Heterogeneity in small aliquots of Apolllo 15 olivine-normative basalt: Implications for breccia clast studies

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.

  20. Dual origins for pantellerites, and other puzzles, at Mount Takahe volcano, Marie Byrd Land, West Antarctica

    NASA Astrophysics Data System (ADS)

    LeMasurier, Wesley; Choi, Sung Hi; Kawachi, Yosuke; Mukasa, Sam; Rogers, Nick

    2018-01-01

    Mt. Takahe is a large, late Quaternary trachyte shield volcano that rises through 2000 + m of the West Antarctic ice sheet. It is composed mostly of ne-trachyte, hy-ol-trachyte, and qz-trachyte flows, with subordinate basanite, intermediate rocks, and pantellerites. All rock types can be adequately modeled by fractional crystallization of basanite - the only basaltic rock exposed here. The ne-trachytes can be explained by a single stage of low-pressure fractionation near the base of the upper crust. Models of oversaturated rocks require a period of evolution at a depth of 35 km, below the stability field of plagioclase, where fractionation of kaersutite and associated high pressure minerals will yield silica oversaturated residual magmas. This is then followed by a period of fractionation at a depth of 3 km, where peralkalinity and Fe-enrichment are acquired. Pantellerite compositions span virtually the entire spectrum of peralkalinity, Fe-enrichment, LILE-enrichment, and SiO2 values, and seem to represent a range of residence times in upper crustal vs., upper mantle magma chambers. Mt. Takahe is unusual among Marie Byrd Land volcanoes for its geochemical anomalies. These include the lowest 143Nd/144Nd ratios in West Antarctica, and unusually high but unpredictable Ba values. These anomalies are believed to originate in a pre-85 Ma subduction mélange at the base of the lithosphere, which seems to be the source of Mt. Takahe basaltic rocks.

  1. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Bröcker, Michael; Ireland, Trevor; Holden, Peter; Kinsley, Leslie P. J.

    2015-01-01

    Compared to the well-documented Cenozoic magmatic and metamorphic rocks of the Cyclades, Aegean Sea, Greece, the geodynamic context of older meta-igneous rocks occurring in the marble-schist sequences and mélanges of the Cycladic Blueschist Unit is as yet not fully understood. Here, we report O-Hf isotopic compositions of zircons ranging in age from ca. 320 Ma to ca. 80 Ma from metamorphic rocks exposed on the islands of Andros, Ios, Sifnos, and Syros with special emphasis on Triassic source rocks. Ion microprobe (SHRIMP II) single spot oxygen isotope analysis of pre-Cretaceous zircons from various felsic gneisses and meta-gabbros representing both the marble-schist sequences and the mélanges of the study area yielded a large range in δ18O values, varying from 2.7 ‰ to 10.1 ‰ VSMOW, with one outlier at -0.4 %. Initial ɛHf values (-12.5 to +15.7) suggest diverse sources for melts formed between Late Carboniferous to Late Cretaceous time that record derivation from mantle and reworked older continental crust. In particular, variable δ18O and ɛHf( t) values for Triassic igneous zircons suggest that magmatism of this age is more likely rift- than subduction-related. The significant crustal component in 160 Ma meta-gabbros from Andros implies that some Jurassic gabbroic rocks of the Hellenides are not part of SSZ-type (supra-subduction zone) ophiolites that are common elsewhere along the margin of the Pelagonian zone.

  2. Quantitative Relationships Linking Rock Strength to Channel Morphology: A Case Study in Central Arizona

    NASA Astrophysics Data System (ADS)

    Larimer, J. E.; Yanites, B.

    2016-12-01

    River morphology is a consequence of the erosive forces acting on the channel boundary and the resisting forces that limit erosion. For bedrock rivers, the erosive forces are generated by the stresses exerted by impacting sediment and flowing water, while the resisting forces are controlled by the internal strength regime of the local rock. We investigate the susceptibility of different rock types to different erosional processes (i.e. abrasion and plucking) and how changes in channel morphology reflect rock strength properties across lithologic boundaries. The bedrock rivers in the Prescott National Forest, AZ flow over a number of rock types with variable strength including sedimentary, igneous, and metamorphic lithologies providing a natural experiment to quantify the influence of rock strength on channel morphology. We collected bedrock samples and channel surveys from 12 different rock types. Rock-strength and rock-mass properties include compressive strength, tensile strength, fatigue strength, decimeter scale P-wave velocity (varies by 8-fold), Schmidt rebound value, fracture spacing, fracture aperture, and slake durability (as a proxy for weathering susceptibility. Morphological measurements include channel width, channel steepness (varies by 10-fold), and grain size distribution. To distinguish between the major mechanisms of erosion we measure bedrock surface roughness factor at the centimeter scale. Preliminary results show that channel steepness (ksn) increases with P-wave velocity while normalized channel width (kwn) decreases with P-wave velocity. We use these data to quantify scaling relationships of channel geometry with rock strength properties. We consider the results in the context of the driving mechanistic process to develop new quantitative understandings of how rock strength properties influence the efficiency of erosion processes and how rock strength is reflected in river morphology. By comparing the results among different rock types in a landscape subject to spatially consistent tectonic and climatic influence, our work seeks to advance process-based river erosion models through field and laboratory measurements.

  3. Igneous activity, metamorphism, and deformation in the Mount Rogers area of SW Virginia and NW North Carolina: A geologic record of Precambrian tectonic evolution of the southern Blue Ridge Province

    USGS Publications Warehouse

    Tollo, Richard P.; Aleinikoff, John N.; Mundil, Roland; Southworth, C. Scott; Cosca, Michael A.; Rankin, Douglas W.; Rubin, Allison E.; Kentner, Adrienne; Parendo, Christopher A.; Ray, Molly S.

    2012-01-01

    Mesoproterozoic basement in the vicinity of Mount Rogers is characterized by considerable lithologic variability, including major map units composed of gneiss, amphibolite, migmatite, meta-quartz monzodiorite and various types of granitoid. SHRIMP U-Pb geochronology and field mapping indicate that basement units define four types of occurrences, including (1) xenoliths of ca. 1.33 to ≥1.18 Ga age, (2) an early magmatic suite including meta-granitoids of ca. 1185–1140 Ma age that enclose or locally intrude the xenoliths, (3) metasedimentary rocks represented by layered granofels and biotite schist whose protoliths were likely deposited on the older meta-granitoids, and (4) a late magmatic suite composed of younger, ca. 1075–1030 Ma intrusive rocks of variable chemical composition that intruded the older rocks. The magmatic protolith of granofels constituting part of a layered, map-scale xenolith crystallized at ca. 1327 Ma, indicating that the lithology represents the oldest, intact crust presently recognized in the southern Appalachians. SHRIMP U-Pb data indicate that periods of regional Mesoproterozoic metamorphism occurred at 1170–1140 and 1070–1020 Ma. The near synchroneity in timing of regional metamorphism and magmatism suggests that magmas were emplaced into crust that was likely at near-solidus temperatures and that melts might have contributed to the regional heat budget. Much of the area is cut by numerous, generally east- to northeast-striking Paleozoic fault zones characterized by variable degrees of ductile deformation and recrystallization. These high-strain fault zones dismember the terrane, resulting in juxtaposition of units and transformation of basement lithologies to quartz- and mica-rich tectonites with protomylonitic and mylonitic textures. Mineral assemblages developed within such zones indicate that deformation and recrystallization likely occurred at greenschist-facies conditions at ca. 340 Ma.

  4. Classification and Distribution of Mars Pathfinder Rocks Using Quantitative Morphologic Indices

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Biederman, K. L.; Monhead, A. M.; Haldemann, A. F. C.; Kowalczyk, M. R.

    2004-01-01

    The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder visible/near-infrared spectra, it has not been fully determined which of these stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique mineralogy's difficult. Efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, and the current understanding is such that many factors influencing spectral signatures cannot be quantified to a sufficient level so they may be removed. The result is that fundamental questions regarding information needed to reveal the present and past interactions between the rocks and rock surfaces and the Martian environment remain unanswered. But it is possible to approach the issue of identifying distinct rock and rock surface types from a different angle.

  5. Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin – A New Type of Cryptoendolithic Fungi

    PubMed Central

    Ivarsson, Magnus; Peckmann, Jörn; Tehler, Anders; Broman, Curt; Bach, Wolfgang; Behrens, Katharina; Reitner, Joachim; Böttcher, Michael E.; Norbäck Ivarsson, Lena

    2015-01-01

    Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (basanites) from the Vesteris Seamount in the Greenland Basin. Zygomycetes had not been reported from subseafloor basalt previously. Different stages in zygospore formation are documented in the studied samples, representing a reproduction cycle. Spore structures of both Zygomycetes and Ascomycetes are mineralized by romanechite-like Mn oxide phases, indicating an involvement in Mn(II) oxidation to form Mn(III,VI) oxides. Zygospores still exhibit a core of carbonaceous matter due to their resistance to degradation. The fungi are closely associated with fossiliferous marine sediments that have been introduced into the vesicles. At the contact to sediment infillings, fungi produced haustoria that penetrated and scavenged on the remains of fragmented marine organisms. It is most likely that such marine debris is the main carbon source for fungi in shallow volcanic rocks, which favored the establishment of vital colonies. PMID:26181773

  6. Diagenesis and evolution of microporosity of Middle-Upper Devonian Kee Scarp reefs, Norman Wells, Northwest Territories, Canada: Petrographic and chemical evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Aasm, I.S.; Azmy, K.K.

    The Middle-Upper Devonian Kee Scarp reef complexes of Norman Wells, Northwest Territories, Canada, are oil-producing, stromatoporoid-dominated carbonates. Episodic increases in the rate of sea level rise produced multiple cycles of reef growth that exhibit backstepping characteristics. These carbonates, composed of invariably altered limestones, have original interskeletal, intraskeletal, and intergranular porosity, mostly occluded by nonferroan, dull luminescent cements. Secondary porosity, represented by micropores of various types, developed during diagenesis by aggrading neomorphism and dissolution. The micropores represent the main reservoir porosity in the Kee Scarp limestone. Petrographic, chemical, and isotopic studies of Kee Scarp reef components reveal a complex diagenetic historymore » involving marine fluids modified by increasing water/rock interaction and burial. Neomorphic stabilization of skeletal components caused further depletion in {gamma}{sup 18}O but very little change in {gamma}{sup 13}C, an argument for modification of the original marine fluids with increasing burial. Variations in magnitude of water/rock interaction with depth, facies changes, and porosity modifications probably exerted some control on fractionation and distribution of stable isotopes and trace elements in reef components.« less

  7. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    NASA Astrophysics Data System (ADS)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning fluid-rock interaction processes in geothermal reservoirs, and their effects on rock properties, that will aid improved understanding of the evolution of high-temperature geothermal systems, provide constraints to parameterization of reservoir models and assist future well planning and design through prediction of rock properties in the context of drilling strategies.

  8. Microbial life associated with low-temperature alteration of ultramafic rocks in the Leka ophiolite complex.

    PubMed

    Daae, F L; Økland, I; Dahle, H; Jørgensen, S L; Thorseth, I H; Pedersen, R B

    2013-07-01

    Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions. © 2013 John Wiley & Sons Ltd.

  9. Effects of Climate on Co-evolution of Weathering Profiles and Hillscapes

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Rajaram, H.; Anderson, S. P.

    2017-12-01

    Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. It has recently been proposed that differences in the depths and patterns of weathering between landscapes in Colorado's Front Range and South Carolina's piedmont can be attributed to the state of stress in the rock imposed by the magnitude and orientation the regional stresses with respect to the ridgelines (St. Claire et al., 2016). We argue for the importance of the climate, and in particular, in temperate regions, the amount of recharge. We employ numerical models of hillslope evolution between bounding erosional channels, in which the degree of rock weathering governs the rate of transformation of rock to soil. As the water table drapes between the stream channels, fresh rock is brought into the weathering zone at a rate governed by the rate of incision of the channels. We track the chemical weathering of rock, represented by alteration of feldspar to clays, which in turn requires calculation of the concentration of reactive species in the water along hydrologic flow paths. We present results from analytic solutions to the flow field in which travel times can be efficiently assessed. Below the water table, flow paths are hyperbolic, taking on considerable lateral components as they veer toward the bounding channels that serve as drains to the hillslope. We find that if water is far from equilibrium with respect to weatherable minerals at the water table, as occurs in wet, slowly-eroding landscapes, deep weathering can occur well below the water table to levels approximating the base of the bounding channels. In dry climates, on the other hand, the weathering zone is limited to a shallow surface - parallel layer. These models capture the essence of the observed differences in depth to fresh rock in both wet and dry climates without appeal to the state of stress in the rock.

  10. HPC simulations of grain-scale spallation to improve thermal spallation drilling

    NASA Astrophysics Data System (ADS)

    Walsh, S. D.; Lomov, I.; Wideman, T. W.; Potter, J.

    2012-12-01

    Thermal spallation drilling and related hard-rock hole opening techniques are transformative technologies with the potential to dramatically reduce the costs associated with EGS well drilling and improve the productivity of new and existing wells. In contrast to conventional drilling methods that employ mechanical means to penetrate rock, thermal spallation methods fragment rock into small pieces ("spalls") without contact via the rapid transmission of heat to the rock surface. State-of-the-art constitutive models of thermal spallation employ Weibull statistical failure theory to represent the relationship between rock heterogeneity and its propensity to produce spalls when heat is applied to the rock surface. These models have been successfully used to predict such factors as penetration rate, spall-size distribution and borehole radius from drilling jet velocity and applied heat flux. A properly calibrated Weibull model would permit design optimization of thermal spallation drilling under geothermal field conditions. However, although useful for predicting system response in a given context, Weibull models are by their nature empirically derived. In the past, the parameters used in these models were carefully determined from laboratory tests, and thus model applicability was limited by experimental scope. This becomes problematic, for example, if simulating spall production at depths relevant for geothermal energy production, or modeling thermal spallation drilling in new rock types. Nevertheless, with sufficient computational resources, Weibull models could be validated in the absence of experimental data by explicit small-scale simulations that fully resolve rock grains. This presentation will discuss how high-fidelity simulations can be used to inform Weibull models of thermal spallation, and what these simulations reveal about the processes driving spallation at the grain-scale - in particular, the role that inter-grain boundaries and micro-pores play in the onset and extent of spallation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    PubMed

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  12. The doctor-patient relationship in rock and roll music.

    PubMed

    Lazarus, Arthur

    2006-01-01

    An analysis of rock songs in which physicians are central characters, combined with archival events and commentary from the singers and songwriters, sheds light on doctor-patient relationships as seen through popular culture. Rock and roll music attributes special psychological significance to physicians. Musicians project their personal problems through love songs and songs that deal with sex, drugs, and death. In rock songs, physicians frequently represent a cure for lovesickness. Rock musicians often die prematurely from self-inflicted behaviors, reaffirming the connection between their music and the medical profession.

  13. Microstructural controls on the macroscopic behavior of geo-architected rock samples

    NASA Astrophysics Data System (ADS)

    Mitchell, C. A.; Pyrak-Nolte, L. J.

    2017-12-01

    Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  14. Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust

    NASA Astrophysics Data System (ADS)

    Holm, Paul Martin; Søager, Nina; Dyhr, Charlotte Thorup; Nielsen, Mia Rohde

    2014-05-01

    Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr-Nd-high-precision Pb isotope data from the Quaternary arc volcanic centres of Maipo (NSVZ) and Infernillo and Laguna del Maule (TSVZ) are argued to reflect mainly their mantle source and its melting. For the C-T-NSVZ, we identify two types of source enrichment: one, represented by Antuco in CSVZ, but also present northward along the arc, was dominated by fluids which enriched a pre-metasomatic South Atlantic depleted MORB mantle type asthenosphere. The second enrichment was by melts having the characteristics of upper continental crust (UCC), distinctly different from Chile trench sediments. We suggest that granitic rocks entered the source mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb-Sr-Nd isotopes indicate a major crustal compositional change at the southern end of the NSVZ. Modelling suggests addition of around 2 % UCC for Infernillo and 5 % for Maipo.

  15. The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

    NASA Astrophysics Data System (ADS)

    Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari

    2011-04-01

    The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

  16. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Geologic maps of four test sites were compiled at 1/250,000. Band 7 prints enlarged to 1/500,000 scale are the best for the purpose, and negative prints provide a valuable supplement. More than 100 mapped lineaments represent most of the major faults of the area and a large number of suspected faults, including many of northeast trend. Under ideal conditions dip slopes may be recognized, laccoliths outlined, and axial traces drawn for narrow, plunging folds. Use of ERTS-1 imagery will greatly facilitate construction of a needed tectonic map of Montana. From ERTS-1 imagery alone, it was possible to identify up-turned undivided Paleozoic and Mesozoic strata and to map the boundaries of mountain glaciation, intermontane basins, a volcanic field, and an area of granitic rocks. It was also possible to outline clay pans associated with bentonite. However, widespread recognition of gross rock types will be difficult.

  17. Preliminary petrographic description and geologic implications of the Apollo 17 Station 7 boulder consortium samples

    USGS Publications Warehouse

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1974-01-01

    Preliminary petrographic description and mineral composition of four hand samples (77135, 77115, 77075 and 77215) are presented. 77135, 77115, and 77075 all crystallized from fragment-laden melts; they are similar in textures but differ in grain size. 77135 and 77115 are pigeonite feldspathic basalts. On the basis of geologic and petrographic evidence, 77115 and 77075 are related; they formed, cooled, and consolidated before being engulfed in the vesicular 77135. The impact or igneous origin of the melts from which these rocks crystallized cannot be determined. 77215 is a shocked, strongly sheared and granulated microbreccia consisting of three major lithologies dominated by mineral clasts of orthopyroxene and calcic plagioclase. The orthopyroxene clasts contain coarse exsolved blebs of augite, suggesting a deep-seated origin. The major, minor, and trace element compositions of 77135, 77115, and 77075 are in general similar. They represent a major highland rock type, perhaps more important than anorthosites. ?? 1974.

  18. Soap-stone in architecture of North European cities. A nomination as a candidate for a Global Heritage Stones Resource

    NASA Astrophysics Data System (ADS)

    Bulakh, Andrey

    2016-04-01

    Soap stone represents soft Proterozoic rock type from the deposit Nunnalahti situated on the western shore of the big Lake Pielinen in Eastern Finland. It consists of talc (40 - 50 %), magnesite MgCO3 (40 - 50 %), chlorite (5 - 8 %), dolomite, calcite, etc. The colour of the stone is very spectacular and varies from yellow and brownish-yellow to grey, greenish grey. The soft stone is a highly workable material for a sculptor's chisel. It was one of the most popular ornamental rocks used architecture of the Modern style in St Petersburg, Helsinki, Turku, Tampere and other North European cities lately in the XIX-th centuries. Examples are given and discussed. References: Bulakh, A.G., Abakumova, N.B., and Romanovsky, J.V. St Petersburg: a History in Stone. 2010. Print House of St Petersburg State University. 173 p. (In English).

  19. New technologies of mining stratal minerals and their computation

    NASA Astrophysics Data System (ADS)

    Beysembayev, K. M.; Reshetnikova, O. S.; Nokina, Z. N.; Teliman, I. V.; Asmagambet, D. K.

    2018-03-01

    The paper considers the systems of flat and volumetric modeling of controlling long-wall faces for schemes with rock collapse of the immediate and main roof and smooth lowering of the remaining layers, as well as in forming a vault over the face. Stress distributions are obtained for the reference pressure zone. They are needed for recognizing the active state of the long-wall face in the feedback mode. The project of the system “support - lateral rocks” is represented by a multidimensional network base. Its connections reflect the elements of the system or rocks, workings, supports with nodes and parts. The connections reflect the logic of the operation of machines, assemblies and parts, and the types of their mechanical connections. At the nodes of the base, there are built-in systems of object-oriented programming languages. This allows combining spatial elements of the system into a simple neural network.

  20. Clastic sedimentary rocks of the Michipicoten Volcanic-sedimentary belt, Wawa, Ontario

    NASA Technical Reports Server (NTRS)

    Ojakangas, R. W.

    1983-01-01

    The Wawa area, part of the Michipicoten greenstone belt, contains rock assemblages representative of volcanic sedimentary accumulations elsewhere on the shield. Three mafic to felsic metavolcanic sequences and cogenetic granitic rocks range in age from 2749 + or - 2Ma to 2696 + or - 2Ma. Metasedimentary rocks occur between the metavolcanic sequences. The total thickness of the supracrustal rocks may be 10,000 m. Most rocks have been metamorphosed under greenschist conditions. The belt has been studied earlier and is currently being remapped by Sage. The sedimentrologic work has been briefly summarized; two mainfacies associations of clastic sedimentary rocks are present - a Resedimented (Turbidite) Facies Association and a Nonmarine (Alluvial Fan Fluvial) Facies Association.

  1. Tales from the tomb: the microbial ecology of exposed rock surfaces.

    PubMed

    Brewer, Tess E; Fierer, Noah

    2018-03-01

    Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Petrogenesis of the western highlands of the moon - Evidence from a diverse group of whitlockite-rich rocks from the Fra Mauro formation

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.

    1992-01-01

    A group of KREEPy basalts has been discovered in Apollo 14 soils. These samples exhibit similarities to both HA and VHK basalts, albeit with much higher REE abundances, and contain up to 2 vol pct whitlockite and can be explained by assimilation of a K-, REE- and P-rich fluids by an original HA or VHK basalt. This KREEP component could have been produced late in the evolution of the lunar magma ocean and is similar in composition to QMD at Apollo 14. Two rocks have trace element compositions that are representative of actual KREEP. One of the samples appears to be petrographically pristine and could represent an actual KREEP basalt rock. Five subophitic high-Al basalts represent sampling of either a slowly cooled impact melt sheet or, more likely, the same basalt flow. Two 'quasi-pristine' highland rocks confirm the postulate of a connection between KREEP and the alkali suite. A newly discovered alkali anorthosite is a plagioclase cumulate with about 15 percent trapped KREEPy liquid.

  3. The Tuscarora Au-Ag district: Eocene volcanic-hosted epithermal deposits in the Carlin gold region, Nevada

    USGS Publications Warehouse

    Castor, S.B.; Boden, D.R.; Henry, C.D.; Cline, J.S.; Hofstra, A.H.; McIntosh, W.C.; Tosdal, R.M.; Wooden, J.P.

    2003-01-01

    The Tuscarora mining district contains the oldest and the only productive Eocene epithermal deposits in Nevada. The district is a particularly clear example of association of low-sulfidation deposits with igneous activity and structure, and it is unusual in that it consists of two adjoining but physically and chemically distinct types of low-sulfidation deposits. Moreover, Tuscarora deposits are of interest because they formed contemporaneously with nearby, giant Carlin-type gold deposits. The Tuscarora deposits formed within the 39.9 to 39.3 Ma Tuscarora volcanic field, along and just outside the southeastern margin of the caldera-like Mount Blitzen volcanic center. Both deposit types formed at 39.3 Ma, contemporaneous with the only major intrusive activity in the volcanic field. No deposits are known to have formed during any of the intense volcanic phases of the field. Intrusions were the apparent heat source, and structures related to the Mount Blitzen center were conduits for hydrothermal circulation. The ore-forming fluids interacted dominantly with Eocene igneous rocks. The two deposit types occur in a northern silver-rich zone that is characterized by relatively high Ag/Au ratios (110-150), narrow alteration zones, and quartz and carbonate veins developed mostly in intrusive dacite, and in a southern gold-rich zone that is typified by relatively low Ag/Au ratios (4-14), more widespread alteration, and quartz-fissure and stockwork veins commonly developed in tuffaceous sedimentary rocks. The deposit types have similar fluid inclusion and Pb and S isotope characteristics but different geochemical signatures. Quartz veins from both zones have similar thermal and paragenetic histories and contain fluid inclusions that indicate that fluids cooled from between 260?? and 230??C to less than 200??C. Fluid boiling may have contributed to precious-metal deposition. Veins in both zones have relatively high As and Sb and low Bi, Te, and W. The silver zone has high Ca, Pb, Mn, Zn, Cd, Tl, and Se. The gold zone has high Hg and Mo. A few samples from an area of overlap between the two zones share chemical characteristics of both deposit types. The deposit types could represent a single zoned or evolving system in which hydrothermal fluids rose along structures within the silver zone, preferentially deposited Ag and base metals, and then spread into the gold zone. Alternatively, the deposit types could represent two distinct but temporally indistinguishable hydrothermal cells that only narrowly overlapped spatially. As noted in previous studies, the hydrothermal fluids that generated the Tuscarora and other epithermal deposits could have evolved from Carlin-type fluids by boiling and mixing with meteoric water. If so, the Tuscarora deposit may represent epithermal conditions above Carlin-type deposits, and Carlin-type deposits may lie beneath the district.

  4. Geo-structural modelling for potential large rock slide in Machu Picchu

    NASA Astrophysics Data System (ADS)

    Spizzichino, D.; Delmonaco, G.; Margottini, C.; Mazzoli, S.

    2009-04-01

    The monumental complex of the Historical Sanctuary of Machu Picchu, declared as World Heritage Site by UNESCO in 1983, is located in the Andean chain at approx. 80 km from Cuzco (Peru) and at an elevation of 2430 m a.s.l. along the Urubamba River Valley. From a geological point of view, the Machu Picchu granitoid pluton, forming part of the larger "Quillabamba granite", is one of a series of plutons intruded along the axial zone of the high Eastern Cordillera Permo-Liassic rift system including a variety of rock types, dominantly granites and granodiorites. The most evident structures at the outcrop scale consist of planar joint sets that may be variably reactivated and exhibiting 4 main orientations. At present, the site is affected by geological risk due to frequent landslides that threaten security and tourist exploitation. In the last years, the international landslide scientific community has promoted a multi-discipline joint programme mainly finalised to slope deformation monitoring and analysis after the warning, launched in 2001, of a potential collapse of the citadel, caused by a huge rock slide. The contribute of the Italian research team was devoted to implement a landslide risk analysis and an innovative remote sensing techniques. The main scope of this work is to present the implementation of a geo-structural modelling aimed at defining present and potential slope stability conditions of the Machu Picchu Citadel. Data have been collected by geological, structural and geomechanical field surveys and laboratory tests in order to reconstruct the geomorphological evolution of the area. Landslide types and evolution are strictly controlled by regional tectonic uplift and structural setting. Several slope instability phenomena have been identified and classified according to mechanism, material involved and state of activity. Rock falls, debris flows, rock slides and debris slides are the main surveyed landslide types. Rock slides and rock falls may produce blocks with dimensions variable from 10-1 to 102m3 that form the toe accumulation on steeper slopes. The area of the citadel has also been interpreted as affected by a deep mass movement (>100m) that, if confirmed by the present day monitoring systems, could be referred to a deep-seated gravitational slope deformation (DSGSD), probably of the type of the compound bi-planar sagging (CB) described by Hutchinson (1988). The analysis of active strain processes (e.g. tension cracks) along with the damage pattern surveyed on archaeological structures (e.g. sinking, swelling, tilting) suggest that the potential failure of a large rock slide may be located at a depth of ca. 30m. The various data sets have been integrated in order to obtain a general geo-structural and geotechnical model (strength and deformation parameters, seismic input) of the citadel at the slope scale. This represents a first step in implementing a slope stability analysis capable of reconstructing present and potential landslide evolution under static and dynamic conditions. This multi-discipline study, based on geological and structural analysis integrated with geotechnical and geomechanical interpretation, will aid defining actual landslide hazard and risk levels, indispensable for the design of low impact mitigation measures to be applied at Machu Picchu Citadel.

  5. How do subcritical cracking rates and styles influence rock erosion? A test case from the Blue Ridge Mountains of Virginia.

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Hancock, G. S.; Dewers, T. A.; Chen, X.; Eichhubl, P.

    2017-12-01

    There is a disconnect between measured rates of rock erosion and regolith production and our understanding of the factors and processes that drive them. Here we examine the mechanical weathering (cracking) characteristics of natural, bare bedrock outcrops characterized by 10Be derived erosion rates that vary from 2 to 40 m/my in the Blue Ridge Mountains, VA. Observed erosion rate variance generally correlates with rock type; we seek to characterize and quantify to what extent the mechanical weathering properties of the different rock types drive erosion rates. We assert that subcritical cracking constitutes the primary mechanism by which the outcrops increase their porosity and subsequently weather and erode. We therefore hypothesize that rock parameters that control rates and styles of subcritical cracking set the outcrop erosion rates. For each outcrop, we measured crack characteristics along transects: for every crack >2 cm length, we measured its length, width, orientation, and weathering characteristics (rounded vs sharp edges); and we measured the thickness of all `steps' (spallation remnants) encountered in the transects. For most outcrops, we collected surface samples in order to characterize their mineralogy and microcracking characteristics through thin section analysis. For each rock type, we collected samples for which we measured fracture toughness, as well as the subcritical crack growth index under different moisture conditions. Preliminary analysis of the field crack data indicates that each rock type (granite, sandstone, quartzite) is characterized by unique macro- and micro-scale crack characteristics consistent with known generic subcritical cracking parameters for those rocks. Crack density and length correlate with erosion rates in faster eroding rock types, but not slowly eroding ones. Overall, we hope these data will help to shed light on the driving and limiting factors for the mechanical production of porosity in rock at and near Earth's surface.

  6. Microstructures in naturally deformed Upper Rotliegend salt rocks from Northern Germany

    NASA Astrophysics Data System (ADS)

    Henneberg, Mareike; Hammer, Jörg; Mertineit, Michael

    2017-04-01

    Permian and Meso-/Cenozoic salt formations are represented in wide parts of the German geologic underground (Reinhold & Hammer 2016). They are of interest for cavern storage of oil and gas as well as of renewable energies (in form of compressed air or hydrogen). For industrial exploration purposes, more detailed data about the composition, barrier properties, as well as the genesis and deformation of the rocks is needed. In central Northern Germany, salt rocks from the Upper Rotliegend are implemented in diapir structures together with salt formations from the Zechstein. Rotliegend salt rocks are characterized by halite that contains patches of detrital material which account for 5 to 60 vol.% of the rock. They show a characteristic red to purple color. Drill cores containing Rotliegend halite rocks from different locations were investigated in this study by using petrographical and microstructural methods. The halite shows different fabric types: (i) euhedral to hypidiomorphic grains with grain sizes up to several millimeters, (ii) polygonal grains with smaller grain sizes between 0.1 and 3 mm, and (iii) fibrous halite. Halite grain boundaries are decorated with fluid inclusions, especially around the contact to detrital material. Subgrains in halite are abundant in all investigated samples and show average sizes between 140 µm and 217 µm. These correspond to average differential stresses of 1 MPa to 1.45 MPa (Carter et al. 1993, Schléder & Urai 2005). The detrital material consists of clasts of quartz, feldspar, mica, carbonates and metal oxides with grain sizes of clay to silt fraction. In some samples, the detrital components show internal deformation by folding and fracturing. Depending on the location, different quantities of authigenic evaporite minerals, like carbonate and anhydrite, formed. Fractures are filled with halite, anhydrite and celestine. The different types of halite fabric are an indication of locally different deformational behavior of the rocks, which depends mainly on the amount and type of detrital material. The observed subgrain formation points to intracrystalline dislocation creep as a deformation mechanism, which has occurred in different types of halite fabric. However, the high amount of fluid inclusions around material boundaries also point to an interaction of the different material components, which locally might have enhanced fluid based grain boundary migration during deformation. It is still to be investigated, how the overall rheological behavior of Rotliegend halite is influenced by the detrital components. Carter, N.L., Horseman, S.T., Russel, J.E. & Handin, J. 1993. Rheology of rocksalt. J. Struct. Geol., 15 (9-10), 1257-1271. Reinhold, K. & Hammer, J. 2016. Steinsalzlager in den salinaren Formationen Deutschlands. Z. Dt. Ges. Geowiss. 167, 167-190. Schléder, Z. & Urai, J.L. 2005. Microstructual evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo. The Netherlands, Int. J. Earth Sci. 94, 941-955.

  7. Petrography and petrology of Smoky Butte intrusives, Garfield County, Montana

    USGS Publications Warehouse

    Matson, Robert E.

    1960-01-01

    The Smoky Butte intrusives are located in T. 18 N., R. 36 E. Garfield County, Montana on the extreme eastern edge of the petrographic province of Central Montana. They consist of dikes and plugs arranged in linear, en-echelon pattern with a northeast trend and intrude the Tullock member (Paleocene age) of the Fort Union formation. Extrusive rocks are absent. The rocks are potassium-rich volcanic types showing a disequilibrium mineral assemblage consisting of sanidine, leucite, biotite, olivine, pyroxene, magnetite plus. ilmenite, apatite, calcite, quartz, and a yellowish to dark greenish glassy groundmass. Two chemical analyses of Smoky Butte rocks show high magnesium, potassium, titanium, and phosphorous and low aluminum and sodium content. The two norm calculations show that the rocks are oversaturated with 1.3 and 3.1 per-cent excess silica. Because of the peculiar nature of the Smoky Butte rocks, descriptive names have been applied to them. They are divided into six different types. Three periods of intrusion are proposed for Smoky Butte quarry where three rock types crop out. Other evidence for multiple injection occurs in several multiple dikes. The upper contact of the intrusion is visible on a few plugs and dikes. Smoky Butte rocks show some similarities to the undersaturated potassium-rich rocks of the Highwood and Bearpaw Mountains of Montana, the rocks of the Leucite Hills of Wyoming, and the oversaturated rocks of the West Kimberly District of Australia.

  8. Spatial thermal radiometry contribution to the Massif Armoricain and the Massif Central France litho-structural study

    NASA Technical Reports Server (NTRS)

    Scanvic, J. Y. (Principal Investigator)

    1980-01-01

    Thermal zones delimited on HCMM images, by visual interpretation only, were correlated with geological units and carbonated rocks, granitic, and volcanic rocks were individualized rock signature is evolutive parameter and some distinctions were made by addition of day, night and seasonal thermal image interpretation. This analysis also demonstrated that forest cover does not mask the underlying rocks thermal signature. Thermal linears are associated with known tectonics but the observed thermal variations from day to night and from one to another represent a promising concept to be studied in function of neotectonics and hydrogeology. The thermal anomalies discovered represent a potential interest which is to be evaluated. Significant results were obtained in the Mont Dore area and additional geological targets were defined in the Paris Basin and the Montmarault granite.

  9. Modeling rock specimens through 3D printing: Tentative experiments and prospects

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Feng, Xiating; Song, Lvbo; Gong, Yahua; Zheng, Hong; Cui, Jie

    2016-02-01

    Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive manufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) compressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in producing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the simulation of similar material modeling experiments.

  10. Rheological stratification of the Hormuz Salt Formation in Iran - microstructural study of the dirty and pure rock salts from the Kuh-e-Namak (Dashti) salt diapir

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Desbois, Guillaume; Urai, Janos; Schulmann, Karel; Rahmati, Mahmoud; Lexa, Ondrej; Wollenberg, Uwe

    2014-05-01

    Significant viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' terrestrial debris bearing rock salt types and 'strong' pure rock salt types are questioned for deformation mechanisms using detailed quantitative microstructural study including crystallographic preferred orientation (CPO) mapping of halite grains. While the solid impurity rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts (debris free) reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although flow in both, the recrystallized dirty and clean salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS) and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts are explained by significantly slower rates of intergranular diffusion and piling up of dislocations at hematite inclusions in clean salt types. Porphyroclasts of clean salts deform by semi-brittle and plastic mechanisms with intra-crystalline damage being induced also by fluid inclusions that explode in the crystals at high fluid pressures. Boudins of clean salt types with coarse grained and original sedimentary microstructure suggest that clean rock salts are associated with dislocation creep dominated power law flow in the source layer and the diapiric stem. Rheological contrasts between both rock salt classes apply in general for the variegated and terrestrial debris rich ("dirty") Lower Hormuz and the "clean" rock salt forming the Upper Hormuz, respectively, and suggest that large strain rate gradients likely exist along horizons of mobilized salt types of different composition and microstructure.

  11. The vernon supersuite: Mesoproterozoic A-type granitoid rocks in the New Jersey highlands

    USGS Publications Warehouse

    Volkert, R.A.; Drake, Avery A.

    1998-01-01

    Abundant Mesoproterozoic A-type granitoid rocks of two intrusive suites underlie approximately 50 percent of the New Jersey Highlands. These rocks, the Byram Intrusive and Lake Hopatcong Intrusive Suites, consist of granite, alaskite, quartz monzonite, monzonite, and minor pegmatite. Byram and Lake Hopatcong rocks, although different mineralogically, are similar geochemically and contain overlapping abundances of most major and trace elements. Petrographic relationships, geochronology, field relationships, and geochemical similarities support a comagmatic origin for both suites. They constitute the here named Vernon Supersuite.

  12. General Approach for Rock Classification Based on Digital Image Analysis of Electrical Borehole Wall Images

    NASA Astrophysics Data System (ADS)

    Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.

    2005-12-01

    Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.

  13. The Age and Geodynamic Evolution of the Metamorphic sole rocks from Izmir-Ankara-Erzıncan suture zone (Northern-Turkey)

    NASA Astrophysics Data System (ADS)

    Melih Çörtük, Rahmi; Faruk Çelik, Ömer; Özkan, Mutlu; Sherlock, Sarah C.; Marzoli, Andrea; Altıntaş, İsmail Emir; Topuz, Gültekin

    2016-04-01

    The İzmir-Ankara-Erzincan suture zone in northern Turkey is one of the major tectonic zones separating the Pontides to the North from the Anatolide-Tauride block and Kı rşehir Massif to the South. The accretionary complex of the İzmir-Ankara-Erzincan suture zone, near Artova, is composed mainly of peridotites with varying degree serpentinization, metamorphic rocks, basalt, sandstones, pelagic and neritic limestones. The metamorphic rocks are represented by amphibolite, garnet micaschit, calc-schist and marble. The metamorphic rocks were interpreted as the metamorphic sole rocks. Because; (i) They are tectonically located beneath the serpentinized peridotites. (ii) Foliation planes of both the amphibolites and mantle tectonites are parallel to each other. (iii) The metamorphic rocks are crosscut by non-metamorphic dolerite dikes which exhibite Nb and Ta depletion relative to Th enrichment on the N-MORB normalized multi-element spider diagram. The dolerite dikes display flat REE patterns (LaN/YbN=0.85-1.24). These geochemical signatures of the dolerite dikes are indicative of subduction component during their occurrences. Geochemical observations of the amphibolites suggest E-MORB- and OIB-like signatures (LaN/SmN= 1.39-3.14) and their protoliths are represented by basalt and alkali basaltic rocks. Amphiboles from the amphibolites are represented by calcic amphiboles (magnesio-hornblende, tchermakite and tremolite) and they yielded 40Ar-39Ar ages between 157.8 ± 3.6 Ma and 139 ± 11 Ma. These cooling ages were interpreted to be the intra-oceanic subduction/thrusting time of the İzmir-Ankara-Erzincan oceanic domain. This study was funded by TÜBİTAK (Project no: 112Y123).

  14. The geochemistry of carbonatites revisited: Two major types of continental carbonatites and their trace-element signatures

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, A.

    2009-04-01

    There have been several attempts to systematize the geochemistry of carbonatites, most recently by Samoilov (1984), Nelson et al. (1988), Woolley and Kempe (1989), and Rass (1998). These studies revealed a number of important geochemical characteristics that can be used to track the evolutionary history of these rocks, distinguish them from modally similar metamorphic parageneses, and aid in mineral exploration for rare earths, niobium and other resources commonly associated with carbonatites. Important breakthroughs in the understanding of carbonatite petrogenesis and numerous reports of new carbonatite localities made in the past two decades lay the ground for a critical re-assessment of the geochemistry of these rocks. A new representative database of whole-rock carbonatite analyses was compiled from the post-1988 literature and various unpublished sources. The database contains 820 analyses encompassing calcio-, magnesio- and ferrocarbonatites from 174 localities (ca. one-third of the total number of carbonatites known worldwide) reduced to ca. 350 analyses following the approach of Woolley and Kempe (1989). Carbonatites emplaced in oceanic settings (e.g., Cape Verde), ophiolite belts (e.g., Oman), or those of uncertain tectonic affinity (e.g., El Picacho in Mexico) were not included. Two major types of continental carbonatites can be distinguished on the basis of their geological setting and trace-element geochemistry: (1) carbonatites emplaced in rifts and smaller-scale extensional structures developed in stable Archean cratons or paleo-orogenic belts, and (2) carbonatites emplaced in collisional settings following the orogenesis. In both settings, the most common and best-studied type of carbonatite is calcite carbonatite (predominantly intrusive with a small percentage of extrusive occurrences), which accounts for 62% of the analyses included in the database. Both types of carbonatite are typically associated with alkaline silicate lithologies (meleigites, nepheline syenites, etc.), but those associated with type-1 rocks are typically Na-rich and silica-undersaturated, whereas type-2 carbonatites are associated with K-rich silica-saturated to undersaturated syenites. Type-1 carbonatites are notably different from their type-2 counterparts in showing higher abundances of high-field-strength elements (HFSE = Ti, Zr, Hf, Nb, Ta), Rb, U and V, but lower levels of Sr, Ba, Pb, rare-earth elements, F and S. Key element ratios are also different in the two carbonatite types; in particular, Rb/K, Nb/Ta, Zr/Hf and Ga/Al values are consistently higher in type-1 samples. Notably, some element ratios (e.g., Co/Ni and Y/Ho) are very similar in both groups. Type-2 carbonatites commonly show a 13C-depleted signature relative to the "primary carbonatite" range (Deines, 1989). The observed differences in geological setting and geochemistry indicate the existence of two distinct carbonatite sources in the subcontinental lithosphere: amphibole-bearing lherzolite producing type-1 rocks (cf. Chakhmouradian, 2006), and subducted oceanic crust (rutile-bearing eclogite?) yielding type-2 melts depleted in HFSE, but enriched in light carbon, large-ion-incompatible elements, F and S. References: Chakhmouradian, A.R. (2006) High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol., 235, 138-160. Deines, P. (1989) Stable isotope variations in carbonatites. In: Carbonatites: Genesis and Evolution (K. Bell, Ed.). Unwin Hyman, London, 301-359. Nelson, D.R., Chivas, A.R., Chappell, B.V. and McCulloch, M.T. (1988) Geochemical and isotopic systematic in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta, 52, 1-17. Rass, I.T. (1998) Geochemical features of carbonatite indicative of the composition, evolution, and differentiation of their mantle magmas. Geochem. Int., 36, 107-116. Samoilov, V.S. (1984) Geochemistry of Carbonatites. Nauka, Moscow (in Russ.). Woolley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Carbonatites: Genesis and Evolution (K. Bell, Ed.). Unwin Hyman, London, 1-14.

  15. Rocks and geology in the San Francisco Bay region

    USGS Publications Warehouse

    Stoffer, Philip W.

    2002-01-01

    The landscape of the San Francisco Bay region is host to a greater variety of rocks than most other regions in the United States. This introductory guide provides illustrated descriptions of 46 common and important varieties of igneous, sedimentary, and metamorphic rock found in the region. Rock types are described in context of their identification qualities, how they form, and where they occur in the region. The guide also provides discussion about of regional geology, plate tectonics, the rock cycle, the significance of the selected rock types in relation to both earth history and the impact of mineral resources on the development in the region. Maps and text also provide information where rocks, fossils, and geologic features can be visited on public lands or in association with public displays in regional museums, park visitor centers, and other public facilities.

  16. Chronological evidence that the Moon is either young or did not have a global magma ocean.

    PubMed

    Borg, Lars E; Connelly, James N; Boyet, Maud; Carlson, Richard W

    2011-08-17

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 ± 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  17. Geologic framework of oil and gas genesis in main sedimentary basins from Romania Oprea Dicea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu, N.; Morariu, C.D.

    1991-03-01

    Oil and gas fields located in Moldavic nappes are encompassed in Oligocene and lower Miocene formations, mostly in the marginal folds nappe, where Kliwa Sandstone sequences have high porosity, and in the Black Sea Plateau. The origin of the hydrocarbon accumulations from the Carpathian foredeep seems to be connected to the Oligocene-lower Miocene bituminous formations of the marginal folds and sub-Carpathian nappes. In the Gethic depression, the hydrocarbon accumulations originate in Oligocene and Miocene source rocks and host in structural, stratigraphical, and lithological traps. The accumulations connected with tectonic lines that outline the areal extension of the Oligocene, Miocene, andmore » Pliocene formations are in the underthrusted Moesian platform. The hydrocarbon accumulations related to the Carpathian foreland represent about 40% of all known accumulations in Romania. Most of them are located in the Moesian platform. In this unit, the oil and gas fields present a vertical distribution at different stratigraphic levels, from paleozoic to Neogene, and in all types of reservoirs, suggesting multicycles of oleogenesis, migration, accumulation, and sealing conditions. The hydrocarbon deposits known so far on the Black Sea continental plateau are confined in the Albian, Cenomanian, Turonian-Senonian, and Eocene formations. The traps are of complex type structural, lithologic, and stratigraphic. The reservoirs are sandstones, calcareous sandstones, limestones, and sands. The hydrocarbon source rocks are pelitic and siltic Oligocene formations. Other older source rocks are probably Cretaceous.« less

  18. Chronological evidence that the Moon is either young or did not have a global magma ocean

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Connelly, James N.; Boyet, Maud; Carlson, Richard W.

    2011-09-01

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the 207Pb-206Pb, 147Sm-143Nd and 146Sm-142Nd isotopic systems to be 4,360+/-3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  19. Burial of Undersea Pipes and Cables State-of-the Art Assessment,

    DTIC Science & Technology

    1976-01-01

    rippable rocks." The biggest rippers can penetrate to a depth of over 6 ft, but working to this kind of depth in a single...34-’ " ....... ......................... •". . "-.’...........".-’-.. ... .--. ’’""’"..- % . . . ... ,.. types of rippers and tractors classify various rock types as " rippable ," "marginal," or "non- rippable " depending on seismic...highest velocity for consistently rippable conditions, and in some types of rock the same limit would occur at less

  20. Chemical, mineralogical and textural systematics of non-mare melt rocks: Implications for lunar impact and volcanic processes

    NASA Technical Reports Server (NTRS)

    Irving, A. J.

    1975-01-01

    Based on a synthesis of chemical data for over 200 samples, the nonmare rocks with fine grained melt textures can be classified into 7 major groups: anorthositic basalts, troctolitic basalts, VHA basalts, Apollo 14-type KREEP basalts, Apollo 15-type KREEP basalts, Apollo 17-type KREEP basalts, and aluminous mare basalts. Review of chemical, mineralogical, textural and experimental evidence leads to preferred hypotheses for the origins of these rocks; those hypotheses are discussed in detail.

  1. A new laboratory approach to shale analysis using NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically kerogen, thermally degraded kerogen, and char. Integrated peak areas from the LF-NMR results representative of kerogen and bitumen were found to be well correlated with S1 and S2 parameters from Rock-Eval programmed pyrolysis. This study demonstrates that LFNMR relaxometry can provide a wide range of information on shales and other reservoir rocks that goes well beyond porosity and pore-fluid analysis.

  2. Impact of Magmatism on the Geodynamic Evolution of Southern Georgia on the Example of the Lesser Caucasus Artvin-Bolnisi Block.

    NASA Astrophysics Data System (ADS)

    Sadradze, Nino; Adamia, Shota; Zakariadze, Guram; Beridze, Tamara; Khutsishvili, Sophio

    2017-04-01

    The Georgian region occupies the central part of the collisional zone between the Eurasian and Africa-Arabian continents and is actually a collage of lithospheric fragments of the Tethyan Ocean and its northern and southern continental margins. Magmatic evolution is an important event in the formation and development of the geological structure of Southern Georgia, where several reliably dated volcanogenic and volcanogenic-sedimentary formations are established. The region represents a modern analogue of continental collision zone, where subduction-related volcanic activity lasted from Paleozoic to the end of Paleogene. After the period of dormancy in the Early-Middle Miocene starting from the Late Miocene and as far as the end of the Pleistocene, primarily subaerial volcanic eruptions followed by formation of volcanic highlands and plateaus occurred in the reigon. The Upper Miocene to Holocene volcanic rocks are related to the transverse Van-Transcaucasian uplift and belong to post-collisional calc- alkaline basalt-andesite-dacite-rhyolite series. A system of island arc and intra-arc rift basins (Artvin-Bolnisi and Achara-Trialeti) have been interpreted as characteristic of the pre-collisional stage of the region development, while syn- post-collisional geodynamic events have been attributed to intracontinental stage. Outcrops of the postcollisional magmatic rocks are exposed along the boundaries of the major tectonic units of the region. The Artvin-Bolnisi unit forms the northwestern part of the Lesser Caucasus and represents an island arc domain of so called the Somkheto-Karabakh Island Arc or Baiburt-Garabagh-Kapan belt. It was formed mainly during the Jurassic-Eocene time interval on the southern margin of the Eurasian plate by nort-dipping subduction of the Neotethys Ocean and subsequent collision to the Anatolia-Iranian continental plate. The Artvin-Bolnisi unit, including the Bolnisi district, was developing as a relatively uplifted island arc-type unit with suprasubduction extrusive and intrusive events. Volcanogenic complexes are characterized by variable lateral and vertical regional stratigraphic relationships and are subdivided into several formations, dominated by volcanic rocks: basalts, andesites, dacites, and rhyolites of calc-alkaline-subalkaline series. Volcanic rocks are of shallow-marine to subaerial type. The peculiarities of magmatic activity and geodynamic development of the region stipulated synchronous formation of significant base and precious metals deposits of the Bolnisi ore district.

  3. Architecture of ductile-type passive margins: Geological constraints from the inverted Cretaceous basin of the North-Pyrenean Zone (`Chaînons Béarnais', Western Pyrenees)

    NASA Astrophysics Data System (ADS)

    Corre, B.; Lagabrielle, Y.; Labaume, P.; Lahfid, A.; Boulvais, P.; Bergamini, G.; Fourcade, S.; Clerc, C. N.; Asti, R.

    2017-12-01

    Subcontinental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust. The North-Pyrenean Zone (NPZ) exposes remnants of such extremely stretched paleo-passive margin that represent field analogues to study the processes of continental crust thinning and mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. The Chaînons Béarnais belt displays a fold-and-thrust structure involving the Mesozoic sedimentary cover associated with peridotite bodies in tectonic contact with Paleozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of this paleo-margin. Field work confirms that the Mesozoic cover is intimately associated with mantle rocks and thin tectonic lenses of middle crust. Micro-structural studies show that the greenschist facies ductile deformation in the crust produced a mylonitic foliation which is always parallel to the crust/mantle contact. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the margin. We show that: (i) the boudinaged pre-rift sediments have undergone drastic syn-metamorphic thinning with the genesis of a S0/S1 foliation and, (ii) the Paleozoic basement has been ductilely deformed, into thin tectonic lenses that remained welded to the exhumed mantle rocks. The ductile behavior is related to the presence of a thick pre- and syn-rift cover acting as an efficient thermal blanket. This new geological data set highlights important characteristics of ductile-type hyper-extended passive margin. Finally, we stress that studying field analogues represents a major tool to better understand the mechanisms of crustal thinning associated with mantle exhumation and their structural inheritance during tectonic inversion.

  4. Evaluation of kinetic uncertainty in numerical models of petroleum generation

    USGS Publications Warehouse

    Peters, K.E.; Walters, C.C.; Mankiewicz, P.J.

    2006-01-01

    Oil-prone marine petroleum source rocks contain type I or type II kerogen having Rock-Eval pyrolysis hydrogen indices greater than 600 or 300-600 mg hydrocarbon/g total organic carbon (HI, mg HC/g TOC), respectively. Samples from 29 marine source rocks worldwide that contain mainly type II kerogen (HI = 230-786 mg HC/g TOC) were subjected to open-system programmed pyrolysis to determine the activation energy distributions for petroleum generation. Assuming a burial heating rate of 1??C/m.y. for each measured activation energy distribution, the calculated average temperature for 50% fractional conversion of the kerogen in the samples to petroleum is approximately 136 ?? 7??C, but the range spans about 30??C (???121-151??C). Fifty-two outcrop samples of thermally immature Jurassic Oxford Clay Formation were collected from five locations in the United Kingdom to determine the variations of kinetic response for one source rock unit. The samples contain mainly type I or type II kerogens (HI = 230-774 mg HC/g TOC). At a heating rate of 1??C/m.y., the calculated temperatures for 50% fractional conversion of the Oxford Clay kerogens to petroleum differ by as much as 23??C (127-150??C). The data indicate that kerogen type, as defined by hydrogen index, is not systematically linked to kinetic response, and that default kinetics for the thermal decomposition of type I or type II kerogen can introduce unacceptable errors into numerical simulations. Furthermore, custom kinetics based on one or a few samples may be inadequate to account for variations in organofacies within a source rock. We propose three methods to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations: (1) use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution; (2) use source rock kinetics determined at several locations to describe different parts of the study area; and (3) use a weighted-average method that combines kinetics for samples from different locations in the source rock unit by giving the activation energy distribution for each sample a weight proportional to its Rock-Eval pyrolysis S2 yield (hydrocarbons generated by pyrolytic degradation of organic matter). Copyright ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  5. Excess Ar in biotites from the Broderick Falls (Webuye) area, western Kenya: implications for the tectonothermal history of the Mozambique Belt and its Archaean foreland

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Suwa, K.; Uchiumi, S.; Agata, T.

    1996-10-01

    RbSr whole rock and KAr mineral age determinations were made on rocks from the Broderick Falls (Webuye) area, western Kenya. Granitic rocks yielded a RbSr whole rock isochron age of 2555 ± 101 Ma with an initial {87Sr}/{86Sr} ratio of 0.70121 ± 0.00038. This age represents the time of granitoid emplacement. KAr mineral ages range from 574 to 3420 Ma, which is very variable with respect to mineral type and locality. Mylonitic granodiorite very close to the Nandi Escarpment gave a KAr age of 916 Ma from biotite, suggesting the time of the activity of the Nandi Fault, which may be an earlier phase of the Pan-African Orogeny. Ages of biotites in a zone between 4 and 6 km northeast of the Nandi Fault are anomalously high compared to those of coexisting hornblende and the RbSr isochron age, confirming the existence of excess 40Ar in biotite. Excess 40Ar was probably introduced into biotite under the appropriate temperature conditions prevailing near the Nandi Fault. Taramite, a rare sodic-calcic amphibole, was found in a cordierite-biotite gneiss of the Kavirondian Supergroup and gave a typical Pan-African KAr age of 574 Ma. The last Pan-African metamorphism occurred in the terrane east of the Surongai Thrust.

  6. Database Dictionary for Ethiopian National Ground-Water Database (ENGDA) Data Fields

    DTIC Science & Technology

    2007-01-01

    Coarse Sand Fine Sand Fine-Grained Sandstone Fractured Igneous and Metamorphic Rock Gravel Karst Limestone, Dolomite Medium Sand Medium-Grained...Coarse Sand; Fine Sand; Fine-Grained Sandstone; Fractured Igneous and Metamorphic Rock; Gravel; Karst Limestone/ Dolomite ; Medium Sand; Medium...aquifer lithology (rock type; Babcock and other, 2004). - 20 - Data Type: List, 1-character code C Consolidated porous sedimentary I Fractured

  7. Geology and Our Environment. Environmental Education Curriculum. Revised.

    ERIC Educational Resources Information Center

    Topeka Public Schools, KS.

    Rocks, and the soil formed from rock, play a major role in determining such particulars as the type of crops that can be grown in a specific area and the type of housing that can be constructed. Also, rocks may supply fuel and building materials, and provide information about the history of an area. This unit is constructed to expose secondary…

  8. Possible Diagenetic Connection Between the Dark Fe-rich Rocks at Gale Crater, Mars, and the Felsic JakeM Class Rocks

    NASA Astrophysics Data System (ADS)

    Gellert, R.; Berger, J. A.; Boyd, N.; O'Connell-Cooper, C.; Desouza, E.; Schmidt, M. E.; Thompson, L. M.; VanBommel, S.; Yen, A. S.; Arvidson, R. E.; Edgett, K. S.; Grotzinger, J. P.

    2016-12-01

    During its >13 km traverse so far, the Mars rover Curiosity encountered several dark, fine-grained float rocks. The first example investigated with the APXS, Et_Then (Sol 91), was found near the landing site. It has an enigmatic composition with very high 27% FeO, elevated Na and K, and low Mg. A boulder with nearly identical chemistry, called Secure (Sol 560), was found near the Kimberley waypoint, some 5 km southwest. Both rocks have a unique enrichment in Ga of about 70 ppm, significantly greater than the typical 20 ppm or lower that represents approximately the detection limit for Ga with the APXS. While the origin of these loose float rocks is still under discussion, a recent measurement of a boulder another 7 km southwest on lower Mount Sharp might shed light on the formation process. Two targets, named Sonneblom and Zambezi (Sols 1407 and 1409), were measured on a dark gray boulder in a blocky deposit overlying Murray formation mudstones. They share many of the compositional characteristics of the felsic Jake_M class rocks, also found along Curiosity's traverse, which have elevated alkaline elements and very low Cr, Ni, and Zn. The key difference relative to the original Jake_M rock is the higher Fe and Si and lower Al. Sonneblom and Zambezi are similar to several isolated rocks encountered earlier during the traverse and nearly identical to Oscar (Sol 515). The three rock classes, Jake_M, Oscar and Et_Then, all occurring as isolated float rocks separated by >10 km, seem to form a mixing line between Jake_M proper and Et_Then as endmembers, adding increasing amounts of iron oxides and possibly SiO2 as cement to fragments of Jake_M-like material. Another curious piece of evidence is that the rocks Sonneblom, Zambezi and Oscar have uniquely elevated Ga of about 40 ppm as well, connecting them to Et_Then. Whereas in-depth textural comparison of all these chemically related rocks is pending, based on the compositional trends these erosion-resistant rocks might have been part of an extensive formation that incorporated the felsic material into varying amounts of iron oxides and SiO2 as cement. A connection to the hematite ridge, expected to be reached in the near future with the rover on its traverse up Mount Sharp, could be possible as well. The elevated Fe/Mn ratio of Secure- and Oscar-type rocks indicates an elevated Fe3+ abundance.

  9. Modeling oil generation with time-temperature index graphs based on the Arrhenius equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, J.M.; Lewan, M.D.; Hennet, R.J.C.

    1991-04-01

    The time and depth of oil generation from petroleum source rocks containing type II kerogens can be determined using time-temperature index (TTI) graphs based on the Arrhenius equation. Activation energies (E) and frequency factors (A) used in the Arrhenius equation were obtained from hydrous pyrolysis experiments on rock samples in which the kerogens represent the range of type II kerogen compositions encountered in most petroleum basins. The E and A values obtained were used to construct graphs that define the beginning and end of oil generation for most type II kerogens having chemical compositions in the range of these standards.more » Activation energies of these standard kerogens vary inversely with their sulfur content. The kerogen with the highest sulfur content had the lowest E value and was the fastest in generating oil, whereas the kerogen with the lowest sulfur content had the highest E value and was the slowest in generating oil. These standard kerogens were designated as types IIA, B, C, and D on the basis of decreasing sulfur content and corresponding increasing time-temperature requirements for generating oil. The {Sigma}TTI{sub ARR} values determined graphically with these type II kerogen standards in two basin models were compared with a computer calculation using 2,000 increments. The graphical method came within {plus minus} 3% of the computer calculation. As type II kerogens are the major oil generators in the world, these graphs should have wide application in making preliminary evaluations of the depth of the oil window in exploration areas.« less

  10. Fluid and mass transfer at subduction interfaces-The field metamorphic record

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.; Penniston-Dorland, Sarah C.

    2016-01-01

    The interface between subducting oceanic slabs and the hanging wall is a structurally and lithologically complex region. Chemically disparate lithologies (sedimentary, mafic and ultramafic rocks) and mechanical mixtures thereof show heterogeneous deformation. These lithologies are tectonically juxtaposed at mm to km scales, particularly in more intensely sheared regions (mélange zones, which act as fluid channelways). This juxtaposition, commonly in the presence of a mobile fluid phase, offers up huge potential for mass transfer and related metasomatic alteration. Fluids in this setting appear capable of transporting mass over scales of kms, along flow paths with widely varying geometries and P-T trajectories. Current models of arc magmatism require km-scale migration of fluids from the interface into mantle wedge magma source regions and implicit in these models is the transport of any fluids generated in the subducting slab along and ultimately through the subduction interface. Field and geochemical studies of high- and ultrahigh-pressure metamorphic rocks elucidate the sources and compositions of fluids in subduction interfaces and the interplay between deformation and fluid and mass transfer in this region. Recent geophysical studies of the subduction interface - its thickness, mineralogy, density, and H2O content - indicate that its rheology greatly influences the ways in which the subducting plate is coupled with the hanging wall. Field investigation of the magnitude and styles of fluid-rock interaction in metamorphic rocks representing "seismogenic zone" depths (and greater) yields insight regarding the roles of fluids and elevated fluid pore pressure in the weakening of plate interface rocks and the deformation leading to seismic events. From a geochemical perspective, the plate interface contributes to shaping the "slab signature" observed in studies of the composition of arc volcanic rocks. Understanding the production of fluids with hybridized chemical/isotopic compositions could improve models aimed at identifying the relative contributions of end-member rock reservoirs through analyses of arc volcanic rocks. Production of rocks rich in hydrous minerals, along the subduction interface, could stabilize H2O to great depths in subduction zones and influence deep-Earth H2O cycling. Enhancement of decarbonation reactions and dissolution by fluid infiltration facilitated by deformation at the interface could influence the C flux from subducting slabs entering the sub-arc mantle wedge and various forearc reservoirs. In this paper, we consider records of fluid and mass transfer at localities representing various depths and structural expressions of evolving paleo-interfaces, ranging widely in structural character, the rock types involved (ultramafic, mafic, sedimentary), and the rheology of these rocks. We stress commonalities in styles of fluid and mass transfer as related to deformation style and the associated geometries of fluid mobility at subduction interfaces. Variations in thermal structure among individual margins will lead to significant differences in not only the rheology of subducting rocks, and thus seismicity, but also the profiles of devolatilization and melting, through the forearc and subarc, and the element/mineral solubilities in any aqueous fluids or silicate melts that are produced. One key factor in considering fluid and mass transfer in the subduction interface, influencing C cycling and other chemical additions to arcs, is the uncertain degree to which sub-crustal ultramafic rocks in downgoing slabs are hydrated and release H2O-rich fluids.

  11. Petrogenesis of the Alaskan-type mafic-ultramafic complex in the Makkah quadrangle, western Arabian Shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Habtoor, Abdelmonem; Ahmed, Ahmed Hassan; Harbi, Hesham

    2016-10-01

    The Makkah quadrangle is a part of the Jeddah terrane in the Precambrian basement, Western Arabian Shield of Saudi Arabia. Gabal Taftafan mafic-ultramafic complex lies within the central part of the Makkah quadrangle. The Taftafan mafic-ultramafic complex is a well-differentiated rock association which comprises of dunite core, hornblende- and plagioclase-bearing peridotites, troctolite, clinopyroxenite and marginal gabbro, in a distinctive zonal structure. The bulk-rock geochemistry of the Taftafan mafic-ultramafic rocks is characterized by a tholeiitic/sub-alkaline affinity with high Mg in the ultramafic core (0.84) and is systematically decreased towards the marginal gabbro (0.60). The patterns of trace elements show enrichment in the fluid-mobile elements (Sr, Ba) and a pronounced negative Nb anomaly which reflect a hydrous parental magma generated in a subduction tectonic setting. The mafic-ultramafic rocks of the Taftafan complex have low total rare earth elements (REE) displaying sub-parallel patterns leading to the assumption that these rocks are comagmatic and are formed by fractional crystallization from a common magma type. The platinum-group elements (PGE) content of all rock types in the Taftafan complex is very low, with ∑ PPGE > ∑ IPGE; displaying slightly positive slopes of the PGE distribution patterns. The chemistry of ferromagnesian minerals is characterized by a high forsterite (Fo) olivine with wide range (Fo91-67), from ultramafic core to the marginal gabbro, Ca-rich diopsidic clinopyroxene, and calcic hornblende. Orthopyroxene is almost absent from all rock types, or very rare when present. Hornblende and Ca-plagioclase possess the longest crystallization history since they are present in almost all rock types of the complex. Spinels in the dunite and hornblende-bearing peridotite core show homogeneous composition with intermediate Cr# (0.53-0.67). Plagioclase-bearing peridotite and troctolite have two exsolved types of spinel; Al-rich and Fe-rich varieties. All spinel varieties in the mafic-ultramafic rocks have high Fe3 + and TiO2 contents. The estimated melt composition in equilibrium with Gabal Taftafan complex is mostly similar to that of the SSZ boninitic magmas. The Taftafan mafic-ultramafic rocks show many similarities with the Alaskan-type mafic-ultramafic complexes, including the internal zonal lithology, bulk rock geochemistry, and mineral chemistry. Thus, it is neither related to a fragment of ophiolite sequence nor to the stratiform mafic-ultramafic intrusion. The location of the Taftafan complex along a major fracture zone parallel to the suture between Jeddah and Asir terranes in addition to the aforementioned striking similarities to the Alaskan-type complexes, suggests a formation in subduction-related setting from a common hydrous mafic magma.

  12. Organic metamorphism in the California petroleum basins; Chapter A, Rock-Eval and vitrinite reflectance

    USGS Publications Warehouse

    Price, Leigh C.; Pawlewicz, Mark J.; Daws, Ted A.

    1999-01-01

    The results of ROCK-EVAL and vitrinite reflectance analyses of a large sample base from more than 70 wells located in three oil-rich California petroleum basins are reported. The cores from these wells have a wide range of present-day burial temperatures (40 ? to 220 ? C). The rocks in these basins were deposited under highly variable conditions, sometimes resulting in substantially different organic matter (OM) types in rocks tens of meters vertically apart from each other in one well. The kinetic response of these different OM types to equivalent wellknown burial histories is a pivotal point of this study. In the Los Angeles and Ventura Basins, rock organic-richness significantly increased with depth, as did kerogen hydrogen content, and the percentage of fine-grained versus coarsegrained rocks. The shales in these basins are perceived as containing primarily hydrogen-rich amorphous OM. In actuality, the shallowest 2,000 to 3,000 m of rocks in the basins, and at least the upper 6,000 m of rocks in parts of the Los Angeles Basin central syncline, are dominated by type III/IV OM. In the Los Angeles Basin, mainstage hydrocarbon (HC) generation commences in the type III/IV OM at present-day burial temperatures of 85 ? to 110 ? C, most likely around 100 ? C, and is largely complete by 220 ? C. In the Southern San Joaquin Valley Basin, mainstage HC generation commences in type III/IV OM at 150 ? C and is also largely complete by 220 ? C. In the Ventura Basin, mainstage HC generation commences above 140 ? C in type III/IV OM. The apparent lower temperatures for commencement of HC generation in the Los Angeles Basin are attributed to the fact that parts of the basin were cooled from maximal burial temperatures by increased meteoric water flows during the last glaciations. All aspects of organic metamorphism, including mainstage HC generation, are strongly suppressed in rocks with hydrogenrich OM in these basins. For example, ROCK-EVAL data suggest that mainstage HC generation has not commenced in rocks with hydrogen-rich OM at present-day temperatures of 198?C. This observation is attributed to much stronger bonds in hydrogen- rich OM compared to types III and IV OM and, therefore, significantly higher burial temperatures are required to break these bonds. This difference in OM kinetics has profound ramifications for petroleum-geochemical exploration models. Organic-matter characteristics inherited from original depositional conditions were overlaid on, and at times confused interpretation of, characteristics from organic metamorphism in all study areas. In all the basins examined in this study, immature fine-grained rocks occasionally had high to very high carbon-normalized concentrations of pre-generation indigenous bitumen. This unusual characteristic may be due to unique depositional conditions in these basins.

  13. Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Niu, Yaoling; Li, Jiyong; Ye, Lei; Kong, Juanjuan; Chen, Shuo; Zhang, Yu; Zhang, Guorui

    2016-02-01

    We present zircon U-Pb ages and geochemical data on the late Triassic mafic dikes (diabase) and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in the East Kunlun Orogenic Belt (EKOB). These rocks give a small age window of 228-218 Ma. The mafic dikes represent evolved alkaline basaltic melts intruding ~ 8-9 Myrs older and volumetrically more abundant A-type granite batholith. Their rare earth element (REE) and multi-element patterns are similar to those of the present-day ocean island basalts (OIBs) except for a weak continental crustal signature (i.e., enrichment of Rb and Pb and weak depletion of Nb, Ta and Ti). Their trace element characteristics together with the high 87Sr/86Sr (0.7076-0.7104), low εNd(t) (- 2.18 to - 3.46), low εHf(t) (- 2.85 to - 4.59) and variable Pb isotopic ratios are consistent with melts derived from metasomatized subcontinental lithospheric mantle with crustal contamination. The felsic volcanic rocks are characterized by high LREE/HREE (e.g., [La/Yb]N of 5.71-17.00) with a negative Eu anomaly and strong depletion in Sr and P, resembling the model upper continental crust (UCC). Given the high 87Sr/86Sr (0.7213-0.7550) and less negative εNd(t) (- 3.83 to - 5.09) and εHf(t) (- 3.06 to - 3.83) than the UCC plus the overlapping isotopes with the mafic dikes and high Nb-Ta rhyolites, the felsic volcanic rocks are best interpreted as resulting from melting-induced mixing with 45-50% crustal materials and 50-55% mantle-derived mafic melts probably parental to the mafic dikes. Such mantle-derived melts underplated and intruded the deep crust as juvenile crustal materials. Partial melting of such juvenile crust produced felsic melts parental to the felsic volcanic rocks in the EKOB. We hypothesize that the late Triassic mafic dikes and felsic volcanic rocks are associated with post-collisional extension and related orogenic collapse. Such processes are probably significant in causing asthenospheric upwelling, decompression melting, induced melting of the prior metasomatized mantle lithosphere and the existing crust. This work represents our ongoing effort in understanding the origin of the juvenile crust and continental crustal accretion through magmatism in the broad context of orogenesis from seafloor subduction to continental collision and to post-collisional processes.

  14. Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation.

    PubMed

    Krüner, A; Byerly, G R; Lowe, D R

    1991-04-01

    We report precise 207Pb/206Pb single zircon evaporation ages for low-grade felsic metavolcanic rocks within the Onverwacht and Fig Tree Groups of the Barberton Greenstone Belt (BGB), South Africa, and from granitoid plutons bordering the belt. Dacitic tuffs of the Hooggenoeg Formation in the upper part of the Onverwacht Group yield ages between 3445 +/- 3 and 3416 +/- 5 Ma and contain older crustal components represented by a 3504 +/- 4 Ma old zircon xenocryst. Fig Tree dacitic tuffs and agglomerates have euhedral zircons between 3259 +/- 5 and 3225 +/- 3 Ma in age which we interpret to reflect the time of crystallization. A surprisingly complex xenocryst population in one sample documents ages from 3323 +/- 4 to 3522 +/- 4 Ma. We suspect that these xenocrysts were inherited, during the passage of the felsic melts to the surface, from various sources such as greenstones and granitoid rocks now exposed in the form of tonalite-trondhjemite plutons along the southern and western margins of the BGB, and units predating any of the exposed greenstone or intrusive rocks. Several of the granitoids along the southern margin of the belt have zircon populations with ages between 3490 and 3440 Ma. coeval with or slightly older than Onverwacht felsic volcanism, while the Kaap Valley pluton along the northwestern margin of the belt is coeval with Fig Tree dacitic volcanism. These results emphasize the comagmatic relationships between greenstone felsic volcanic units and the surrounding plutonic suites. Some of the volcanic plutonic units contain zircon xenocrysts older than any exposed rocks. These indicate the existence of still older units, possibly stratigraphically lower and older portions of the greenstone sequence itself, older granitoid intrusive rocks, or bodies of older, unrelated crustal material. Our data show that the Onverwacht and Fig Tree felsic units have distinctly different ages and therefore do not represent a single, tectonically repeated unit as proposed by others. Unlike the late Archaean Abitibi greenstone belt in Canada, which formed over about 30 Ma. exposed rocks in the BGB formed over a period of at least 220 Ma. The complex zircon populations encountered in this study imply that conventional multigrain zircon dating may not accurately identify the time of felsic volcanic activity in ancient greenstones. A surprising similarity in rock types, tectonic evolution, and ages of the BGB in the Kaapvaal craton of southern Africa and greenstones in the Pilbara Block of Western Australia suggests that these two terrains may have been part of a larger crustal unit in early Archaean times.

  15. Ultrasonic characterization of granites obtained from industrial quarries of Extremadura (Spain).

    PubMed

    del Río, L M; López, F; Esteban, F J; Tejado, J J; Mota, M; González, I; San Emeterio, J L; Ramos, A

    2006-12-22

    The industry of ornamental rocks, such as granites, represents one of the most important industrial activities in the region of Extremadura, SW Spain. A detailed knowledge of the intrinsic properties of this natural stone and its environmental evolution is a required goal in order to fully characterize its quality. In this work, two independent NDT acoustic techniques have been used to measure the acoustic velocity of longitudinal waves in different prismatic granitic-samples of industrial quarries. A low-frequency transceiver set-up, based on a high-voltage BPV Steinkamp instrument and two 50 kHz probes, has been used to measure pulse travel times by ultrasonic through-transmission testing. In complementary fashion, an Erudite MK3 test equipment with an electromagnetic vibrator and two piezoelectric sensors has also been employed to measure ultrasonic velocity by means of a resonance-based method, using the same types of granite varieties. In addition, a comprehensive set of physical/mechanical properties have also been analyzed, according to Spanish regulations in force, by means of alternative methods including destructive techniques such as strength, porosity, absorption, etc. A large number of samples, representing the most important varieties of granites from quarries of Extremadura, have been analyzed using the above-mentioned procedures. Some results obtained by destructive techniques have been correlated with those found using ultrasonic techniques. Our experimental setting allowed a complementary characterization of granite samples and a thorough validation of the different techniques employed, thus providing the industry of ornamental rocks with a non-destructive tool that will facilitate a more detailed insight on the properties of the rocks under study.

  16. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen

    USGS Publications Warehouse

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.

    2007-01-01

    The Neoproterozoic Ar Rayn terrane is exposed along the eastern margin of the Arabian shield. The terrane is bounded on the west by the Ad Dawadimi terrane across the Al Amar fault zone (AAF), and is nonconformably overlain on the east by Phanerozoic sedimentary rocks. The terrane is composed of a magmatic arc complex and syn- to post-orogenic intrusions. The layered rocks of the arc, the Al Amar group (>689 Ma to ???625 Ma), consist of tholeiitic to calc-alkaline basaltic to rhyolitic volcanic and volcaniclastic rocks with subordinate tuffaceous sedimentary rocks and carbonates, and are divided into an eastern and western sequence. Plutonic rocks of the terrane form three distinct lithogeochemical groups: (1) low-Al trondhjemite-tonalite-granodiorite (TTG) of arc affinity (632-616 Ma) in the western part of the terrane, (2) high-Al TTG/adakite of arc affinity (689-617 Ma) in the central and eastern part of the terrane, and (3) syn- to post-orogenic alkali granite (607-583 Ma). West-dipping subduction along a trench east of the terrane is inferred from high-Al TTG/adakite emplaced east of low-Al TTG. The Ar Rayn terrane contains significant resources in epithermal Au-Ag-Zn-Cu-barite, enigmatic stratiform volcanic-hosted Khnaiguiyah-type Zn-Cu-Fe-Mn, and orogenic Au vein deposits, and the potential for significant resources in Fe-oxide Cu-Au (IOCG), and porphyry Cu deposits. Khnaiguiyah-type deposits formed before or during early deformation of the Al Amar group eastern sequence. Epithermal and porphyry deposits formed proximal to volcanic centers in Al Amar group western sequence. IOCG deposits are largely structurally controlled and hosted by group-1 intrusions and Al Amar group volcanic rocks in the western part of the terrane. Orogenic gold veins are largely associated with north-striking faults, particularly in and near the AAF, and are presumably related to amalgamation of the Ar Rayn and Ad Dawadimi terranes. Geologic, structural, and metallogenic characteristics of the Ar Rayn terrane are analogous to the Andean continental margin of Chile, with opposite subduction polarity. The Ar Rayn terrane represents a continental margin arc that lay above a west-dipping subduction zone along a continental block represented by the Afif composite terrane. The concentration of epithermal, porphyry Cu and IOCG mineral systems, of central arc affiliation, along the AAF suggests that the AAF is not an ophiolitic suture zone, but originated as a major intra-arc fault that localized magmatism and mineralization. West-directed oblique subduction and ultimate collision with a land mass from the east (East Gondwana?) resulted in major transcurrent displacement along the AAF, bringing the eastern part of the arc terrane to its present exposed position, juxtaposed across the AAF against a back-arc basin assemblage represented by the Abt schist of the Ad Dawadimi terrane. Our findings indicate that arc formation and accretionary processes in the Arabian shield were still ongoing into the latest Neoproterozoic (Ediacaran), to about 620-600 Ma, and lead us to conclude that evolution of the Ar Rayn terrane (arc formation, accretion, syn- to postorogenic plutonism) defines a final stage of assembly of the Gondwana supercontinent along the northeastern margin of the East African orogen. ?? 2007 Elsevier B.V. All rights reserved.

  17. Preliminary geologic map of the Bowen Mountain quadrangle, Grand and Jackson Counties, Colorado

    USGS Publications Warehouse

    Cole, James C.; Braddock, William A.; Brandt, Theodore R.

    2011-01-01

    The map shows the geology of an alpine region in the southern Never Summer Mountains, including parts of the Never Summer Wilderness Area, the Bowen Gulch Protection Area, and the Arapaho National Forest. The area includes Proterozoic crystalline rocks in fault contact with folded and overturned Paleozoic and Mesozoic sedimentary rocks and Upper Cretaceous(?) and Paleocene Middle Park Formation. The folding and faulting appears to reflect a singular contractional deformation (post-Middle Park, so probably younger than early Eocene) that produced en echelon structural uplift of the Proterozoic basement of the Front Range. The geologic map indicates there is no through-going \\"Never Summer thrust\\" fault in this area. The middle Tertiary structural complex was intruded in late Oligocene time by basalt, quartz latite, and rhyolite porphyry plugs that also produced minor volcanic deposits; these igneous rocks are collectively referred to informally as the Braddock Peak intrusive-volcanic complex whose type area is located in the Mount Richthofen quadrangle immediately north (Cole and others, 2008; Cole and Braddock, 2009). Miocene boulder gravel deposits are preserved along high-altitude ridges that probably represent former gravel channels that developed during uplift and erosion in middle Tertiary time.

  18. The oldest rock of Ivory Coast

    NASA Astrophysics Data System (ADS)

    Kouamelan, Alain Nicaise; Djro, Sagbrou Chérubin; Allialy, Marc Ephrem; Paquette, Jean-Louis; Peucat, Jean-Jacques

    2015-03-01

    The tonalitic gneiss of Balmer (TGB), in the SASCA area of south-western Ivory Coast, previously dated at 3141 ± 2 Ma using the single zircon evaporation method, is regarded as a relic of Archean rock within the Paleoproterozoic (Birimian) formation of the West African Craton (WAC). We present new geochronological data for the TGB using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method. We obtain a U-Pb age of 3207 ± 7 Ma for abundant zircons extracted from the tonalitic gneiss, and interpret this age as that of the magmatic protolith because of the igneous-type homogeneous zircon population. Certain magmatic zircon edges and some round zircons define an upper intercept age of 3155 ± 17 Ma which could represent overgrowths during gneissification. It appears that the TGB was not affected by the events posterior to its genesis, i.e. the Liberian (2.9-2.7 Ga) and Eburnean (2.4-2.0 Ga) events. Additionally, the TGB proves to be a juvenile Leonian rock, as indicated by the Nd model age of 3456 Ma, and could also constitute the protolith of the granulitic grey gneisses and charnockites of the Man area, which are 150-400 Ma younger.

  19. The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Venkatasivappa, V.; Koizumi, T.; Chetty, T. R. K.; Santosh, M.; Tsunogae, T.

    2014-12-01

    Several Precambrian mafic-ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic-Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.

  20. The Accotink Schist, Lake Barcroft Metasandstone, and Popes Head Formation; keys to an understanding of the tectonic evolution of the northern Virginia Piedmont

    USGS Publications Warehouse

    Drake, Avery Ala; Lyttle, Peter T.

    1981-01-01

    The newly named Accotink Schist and Lake Barcroft Metasandstone of the Eastern Fairfax sequence are the structurally lowest metamorphic rocks in the northernmost Piedmont of Virginia. The Accotink consists of beds of pelitic schist that have thin basal intervals containing graded, very fine grained metasiltstone, as well as interbeds of metasandstone like that in the overlying Lake Barcroft Metasandstone. The unit is characterized by the Bouma turbidite sequences Te and Tde and can be assigned to turbidite facies D and E. The thickness of the Accotink is not known because its base is not exposed. The Accotink Schist grades up into the Lake Barcroft Metasandstone, which consists of two types of metasandstone. Type I metaarenite is quartzofeldspathic granofels which forms thick sequences of amalgamated beds that can best be described as belonging to the Bouma turbidite sequence Ta and to turbidite facies B 2 . Type II metagraywacke of the Lake Barcroft Metasandstone consists of micaceous metagraywacke in thin to medium beds, which can be described as belonging to the Buoma turbidite sequences Tabe and (or) Tae and to turbidite facies C. The Lake Barcroft Metasandstone appears to be about 400 m thick. It and the Accotink Schist are thought to represent a coarsening-upward sequence of an outer submarine-fan association of rocks. The Eastern Fairfax sequence is overlain by the Sykesville Formation. We believe that this contact is a movement surface upon which the Sykesville was emplaced by subaqueous sliding. The Sykesville contains isoclinally folded fragments, thought to be rip-ups, of Accotink and Lake Barcroft rocks. The Eastern Fairfax sequence is intruded by rocks of the Occoquan Granite batholith, which contains pendants of isoclinally folded schist and metagraywacke. Mter intrusion, the metasedimentary and plutonic rocks were folded together. Gamet and chlorite porphyroblasts within the Eastern Fairfax sequence appear to be related to the emplacement of the batholith. The minimum age of the Eastern Fairfax sequence is that of the Occoquan Granite batholith, currently thought to be about 560 m.y. The sequence, then, is considered to be of Early Cambrian age or older. The Accotink Schist and Lake Barcroft Metasandstone have some lithic similarity to the Loch Raven Schist and Oella Formation of Crowley (1976) of the Baltimore area, but a correlation is very uncertain at this time. The newly named Popes Head Formation overlies all other metasedimentary and transported meta-igneous rocks in northernmost Virginia west ofthe Occoquan Granite batholith and is intruded by the batholith. The Popes Head consists of a lower Old Mill Branch Metasiltstone Member and an upper Station Hills Phyllite Member. The Old Mill Branch consists largely of alternating coarser and finer grained strata that are mostly fine- to very fine grained, mineralogically quite mature graded metasiltstone, which can be described as belonging to Bouma turbidite sequence Tbde and (or) Tde, more rarely Tcde. The metasiltstone contains interbedded intervals in which both felsic and mafic metatuff contain pristine euhedral crystals of igneous minerals. We believe that the metatuff represents ash-fall deposits. The Old Mill Branch appears to be about 730 m thick. The Old Mill Branch grades up into the Station Hills Phyllite Member, which consists of thin- to medium-bedded pelitic phyllite and smaller amounts of very fine grained metasiltstone. The metasiltstone beds are graded, and many phyllite beds appear to have basal in- tervals containing graded, very fine grained metasiltstone. These beds can be described as belonging to Bouma turbidite sequence Tde. The Station Hills has intervals containing chlorite-rich phyllite, which probably represents mafic metatuff. No felsic metatuff has been recognized. The top of the Station Hills is not known, neither therefore, is its thickness. This unit appears to have a maximum thickness of about 300 m in northern

  1. Nonlinear Spatial Inversion Without Monte Carlo Sampling

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Nawaz, A.

    2017-12-01

    High-dimensional, nonlinear inverse or inference problems usually have non-unique solutions. The distribution of solutions are described by probability distributions, and these are usually found using Monte Carlo (MC) sampling methods. These take pseudo-random samples of models in parameter space, calculate the probability of each sample given available data and other information, and thus map out high or low probability values of model parameters. However, such methods would converge to the solution only as the number of samples tends to infinity; in practice, MC is found to be slow to converge, convergence is not guaranteed to be achieved in finite time, and detection of convergence requires the use of subjective criteria. We propose a method for Bayesian inversion of categorical variables such as geological facies or rock types in spatial problems, which requires no sampling at all. The method uses a 2-D Hidden Markov Model over a grid of cells, where observations represent localized data constraining the model in each cell. The data in our example application are seismic properties such as P- and S-wave impedances or rock density; our model parameters are the hidden states and represent the geological rock types in each cell. The observations at each location are assumed to depend on the facies at that location only - an assumption referred to as `localized likelihoods'. However, the facies at a location cannot be determined solely by the observation at that location as it also depends on prior information concerning its correlation with the spatial distribution of facies elsewhere. Such prior information is included in the inversion in the form of a training image which represents a conceptual depiction of the distribution of local geologies that might be expected, but other forms of prior information can be used in the method as desired. The method provides direct (pseudo-analytic) estimates of posterior marginal probability distributions over each variable, so these do not need to be estimated from samples as is required in MC methods. On a 2-D test example the method is shown to outperform previous methods significantly, and at a fraction of the computational cost. In many foreseeable applications there are therefore no serious impediments to extending the method to 3-D spatial models.

  2. A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production

    NASA Astrophysics Data System (ADS)

    Burton-Johnson, A.; Halpin, J. A.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.

    2017-06-01

    A new method for modeling heat flux shows that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial heat flux and that heat flux values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher heat flux on the east and south of the Peninsula (mean 81 mW m-2) where silicic rocks predominate, than on the west and north (mean 67 mW m-2) where volcanic arc and quartzose sediments are dominant. While the data supports the contribution of heat-producing element-enriched granitic rocks to high heat flux values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial heat flux must utilize a heterogeneous upper crust with variable radioactive heat production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and data set facilitate improved numerical model simulations of ice sheet dynamics.Plain Language SummaryAs the climate changes, the Antarctic ice sheet represents the single largest potential source of sea level rise. However, one key parameter controlling how the ice sheet flows remains poorly constrained: the effect of heat derived from the Earth's geology on the base of the ice sheet (known as subglacial heat flux). Although this may not seem like a lot of heat, under slow-flowing ice, this "heat flux" can control how well the ice sheet can flow over the rocks and even lead to melting of the ice at its base. Current models for Antarctica's heat flux use geophysics to determine how thin the crust is and consequently how easily heat from the Earth's mantle can warm the surface. We show here that heat produced by radioactive decay within the Earth's crust can have an even greater and much more variable contribution to the subglacial heat flux than estimated by these previous models. We present a new methodology allowing this crustal heat production to be calculated and combined with the geophysical models, producing a new map of heat flux on the Antarctic Peninsula highlighting the variations in heat flux caused by different rock types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014513','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014513"><span>Palladium, platinum, and rhodium contents of rocks near the lower margin of the Stillwater complex, Montana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zientek, M.L.; Foose, M.P.; Leung, Mei</p> <p>1986-01-01</p> <p>Statistical summaries are reported for Pd, Pt and Rh contents of rocks from the lower part of the Stillwater complex, the underlying contact-metamorphosed sediments, and post-metamorphic dykes and sills wholly within the hornfelses. Variability of the data among the rock types is attributed largely to differences in sulphide content. Non-correlation of sulphur with platinum-group assays of many rock types leads to the suggestion that the immiscible sulphide and silicate liquids did not completely equilibrate with respect to platinum-group elements. -G.J.N.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123.1143H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123.1143H"><span>Geophysical Signatures of Shear-Induced Damage and Frictional Processes on Rock Joints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hedayat, Ahmadreza; Haeri, Hadi; Hinton, John; Masoumi, Hossein; Spagnoli, Giovanni</p> <p>2018-02-01</p> <p>In this study, ultrasonic waves recorded during direct shear experiments on rock joints were employed to investigate the shear failure processes. Three types of wave attributes were systematically observed prior to the shear failure of the rock joints: (a) maximum in the amplitude of the transmitted wave, (b) maximum in the dominant frequency of the transmitted wave, and (c) maximum in the velocity of the wave. Different processes occurring during both frictional sliding and stick-slip oscillations were identified in this study: (a) interseismic phase and (b) preseismic phase. The interseismic phase is associated with elastic loading, very small local slip rate, and increasing ultrasonic transmission along the contact surfaces. The rock joint is considered locked, and the increase in ultrasonic transmission represents an increase in the real (true) area of contact because of interlocking and contact aging. The start of the preseismic phase is marked by the onset of precursors for different regions of the rock joint. Following the interseismic and preseismic phases, coseismic phase occurs. The coseismic phase begins with the reduction in the applied shear stress and is associated with an abrupt increase in the local slip rate. The reductions in transmitted amplitude, wave velocity, and dominant frequency all indicate the preseismic phase when the asperity contacts begin to fail before macroscopic frictional sliding. The observation of the preseismic phase in both the loading phase leading to stable sliding and stick-slip failure modes suggests that microphysical processes of fault weakening may share key features for these two failure modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6103003-depositional-environment-distribution-late-cretaceous-open-quotes-source-rocks-close-quotes-from-costa-rica-west-africa','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6103003-depositional-environment-distribution-late-cretaceous-open-quotes-source-rocks-close-quotes-from-costa-rica-west-africa"><span>Depositional environment and distribution of Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica to West Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Erlich, R.N.; Sofer, Z.; Pratt, L.M.</p> <p>1993-02-01</p> <p>Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica, western and eastern Venezuela, and Trinidad were studied using organic and inorganic geochemistry, biostratigraphy, and sedimentology in order to determine their depositional environments. Bulk mineralogy and major element geochemistry for 304 samples were combined with Rock Eval data and extract biomaker analysis to infer the types and distributions of the various Late Cretaceous productivity systems represented in the dataset. When data from this study are combined with published and proprietary data from offshore West Africa, Guyana/Suriname, and the central Caribbean, they show that these Late Cretaceous units can be correlated bymore » their biogeochemical characteristics to establish their temporal and spatial relationships. Paleogeographic maps constructed for the early to late Cenomanian, Turonian, Coniacian to middle Santonian, and late Santonian to latest Campanian show that upwelling and excessive fluvial runoff were probably the dominant sources of nutrient supply to the coastal productivity systems. The late Santonian to Maastrichtian rocks examined in this study indicate that organic material was poorly preserved after deposition, even though biologic productivity remained constant or changed only slightly. A rapid influx of oxygenated bottom water may have occurred following the opening of a deep water connection between the North and South Atlantic oceans, and/or separation of India from Africa and the establishment of an Antarctic oceanic connection. This study suggests that the most important factors that controlled source rock quality in northern South America were productivity, preservation, degree of clastic dilution, and subsurface diagenesis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780004997','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780004997"><span>The surface abundance and stratigraphy of lunar rocks from data about their albedo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shevchenko, V. V.</p> <p>1977-01-01</p> <p>The data pf ground-based studies and surveys of the lunar surface by the Zond and Apollo spacecraft have been used to construct an albedo map covering 80 percent of the lunar sphere. Statistical analysis of the distribution of areas with various albedos shows several types of lunar surface. Comparison of albedo data for maria and continental areas with the results of geochemical orbital surveys allows the identification of the types of surface with known types of lunar rock. The aluminum/silcon and magnesium/silicon ratios as measured by the geochemical experiments on the Apollo 15 and Apollo 16 spacecraft were used as an indication of the chemical composition of the rock. The relationship of the relative aluminum content to the age of crystalline rocks allows a direct dependence to be constructed between the mean albedo of areas and the age of the rocks of which they are composed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090025875','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090025875"><span>Characterization of Rock Types at Meridiani Planum, Mars using MER 13-Filter Pancam Spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nuding, D. L.; Cohen, B. A.</p> <p>2009-01-01</p> <p>The Mars Exploration Rover Opportunity has traversed more than 13 km across Meridiani Planum, finding evidence of ancient aqueous environments that, in the past, may have been suitable for life. Meridiani bedrock along the rover traverse is a mixture in composition and bulk mineralogy between a sulfate-rich sedimentary rock and hematite spherules ("blueberries"). On top of the bedrock, numerous loose rocks exist. These rocks consist of both local bedrock and "cobbles" of foreign origin. The cobbles provide a window into lithologic diversity and a chance to understand other types of martian rocks and meteorites. This study was also an attempt to establish a method to expand upon those of Mini-TES to remotely identify rocks of interest to make efficient use of the rover s current resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27714412','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27714412"><span>Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco</p> <p>2016-12-01</p> <p>The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain-caves and deep rock cracks-and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat-i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SciNa.103...88M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SciNa.103...88M"><span>Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Superficiel (MSS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mammola, Stefano; Giachino, Pier Mauro; Piano, Elena; Jones, Alexandra; Barberis, Marcel; Badino, Giovanni; Isaia, Marco</p> <p>2016-12-01</p> <p>The term Milieu Souterrain Superficiel (MSS) has been used since the early 1980s in subterranean biology to categorize an array of different hypogean habitats. In general terms, a MSS habitat represents the underground network of empty air-filled voids and cracks developing within multiple layers of rock fragments. Its origins can be diverse and is generally covered by topsoil. The MSS habitat is often connected both with the deep hypogean domain—caves and deep rock cracks—and the superficial soil horizon. A MSS is usually characterized by peculiar microclimatic conditions, and it can harbor specialized hypogean, endogean, and surface-dwelling species. In light of the many interpretations given by different authors, we reviewed 235 papers regarding the MSS in order to provide a state-of-the-art description of these habitats and facilitate their study. We have briefly described the different types of MSS mentioned in the scientific literature (alluvial, bedrock, colluvial, volcanic, and other types) and synthesized the advances in the study of the physical and ecological factors affecting this habitat—i.e., microclimate, energy flows, animal communities, and trophic interactions. We finally described and reviewed the available sampling methods used to investigate MSS fauna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026139','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026139"><span>Uranium adsorption on weathered schist - Intercomparison of modeling approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Payne, T.E.; Davis, J.A.; Ochs, M.; Olin, M.; Tweed, C.J.</p> <p>2004-01-01</p> <p>Experimental data for uranium adsorption on a complex weathered rock were simulated by twelve modelling teams from eight countries using surface complexation (SC) models. This intercomparison was part of an international project to evaluate the present capabilities and limitations of SC models in representing sorption by geologic materials. The models were assessed in terms of their predictive ability, data requirements, number of optimised parameters, ability to simulate diverse chemical conditions and transferability to other substrates. A particular aim was to compare the generalised composite (GC) and component additivity (CA) approaches for modelling sorption by complex substrates. Both types of SC models showed a promising capability to simulate sorption data obtained across a range of chemical conditions. However, the models incorporated a wide variety of assumptions, particularly in terms of input parameters such as site densities and surface site types. Furthermore, the methods used to extrapolate the model simulations to different weathered rock samples collected at the same field site tended to be unsatisfactory. The outcome of this modelling exercise provides an overview of the present status of adsorption modelling in the context of radionuclide migration as practised in a number of countries worldwide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1046/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1046/"><span>Geologic Mapping and Mineral Resource Assessment of the Healy and Talkeetna Mountains Quadrangles, Alaska Using Minimal Cloud- and Snow-Cover ASTER Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hubbard, Bernard E.; Rowan1, Lawrence C.; Dusel-Bacon, Cynthia; Eppinger, Robert G.</p> <p>2007-01-01</p> <p>On July 8, 2003, ASTER acquired satellite imagery of a 60 km-wide swath of parts of two 1:250,000 Alaska quadrangles, under favorable conditions of minimal cloud- and snow-cover. Rocks from eight different lithotectonic terranes are exposed within the swath of data, several of which define permissive tracts for various mineral deposit types such as: volcanic-hosted massive sulfides (VMS) and porphyry copper and molybdenum. Representative rock samples collected from 13 different lithologic units from the Bonnifield mining district within the Yukon-Tanana terrane (YTT), plus hydrothermally altered VMS material from the Red Mountain prospect, were analyzed to produce a spectral library spanning the VNIR-SWIR (0.4 - 2.5 ?m) through the TIR (8.1 - 11.7 ?m). Comparison of the five-band ASTER TIR emissivity and decorrelation stretch data to available geologic maps indicates that rocks from the YTT display the greatest range and diversity of silica composition of the mapped terranes, ranging from mafic rocks to silicic quartzites. The nine-band ASTER VNIR-SWIR reflectance data and spectral matched-filter processing were used to map several lithologic sequences characterized by distinct suites of minerals that exhibit diagnostic spectral features (e.g. chlorite, epidote, amphibole and other ferrous-iron bearing minerals); other sequences were distinguished by their weathering characteristics and associated hydroxyl- and ferric-iron minerals, such as illite, smectite, and hematite. Smectite, kaolinite, opaline silica, jarosite and/or other ferric iron minerals defined narrow (< 250 m diameter) zonal patterns around Red Mountain and other potential VMS targets. Using ASTER we identified some of the known mineral deposits in the region, as well as mineralogically similar targets that may represent potential undiscovered deposits. Some known deposits were not identified and may have been obscured by vegetation- or snow-cover, or were too small to be resolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001Geomo..41...37T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001Geomo..41...37T"><span>The chemical weathering regime of Kärkevagge, arctic-alpine Sweden</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thorn, Colin E.; Darmody, Robert G.; Dixon, John C.; Schlyter, Peter</p> <p>2001-11-01</p> <p>Kärkevagge is a valley located in Swedish Lapland at approximately 68°N and represents an arctic-alpine landscape. It is a presently periglacial, glaciated trough incised into essentially horizontal metamorphic rocks, some of which are presumably pyrite-rich. A set of coordinated studies was undertaken to investigate the nature of chemical weathering and pedogenesis in the valley and upon the abutting ridges. August 1996 water quality measures reveal considerable spatial variation in solute totals with the highest Total Dissolved Solute abundances being correlated with high sulfate abundances. Ridge-crest soils exhibited poor horizonation, but more extensive development of secondary clay minerals developed in situ than was found in valley-flank and valley-bottom soils. Valley soils exhibited multiple thin horizons, many of which were buried, and are taken to reflect great paraglacial and periglacial instability. Favorable microenvironments in the valley permit significant development of Spodosols. Coarse debris along and across the valley bears both weathering rinds and rock coatings. Rock coatings in the valley include several types of iron films, sulfate crusts, carbonate skins, and heavy metal skins. Kärkevagge represents a mild arctic environment, which does not preclude substantial chemical weathering in locations where abundant pyrite-rich bedrock and water coincide. This weathering follows pathways which are eminently expectable given that weathering of the pyrite-rich rock permits generation of sulfuric acid which, in turn, weathers muscovite mica and calcite in local schists and marble, respectively. Zones of intense chemical weathering also generate clearly visible deposits of gypsum and iron sulfate deposits such as jarosite. Not all arctic and/or alpine environments are likely to be so active chemically, but the results from Kärkevagge clearly show that dismissal of chemical weathering in cold regions on the basis of presumed first principles is erroneous. Consequently, chemical weathering in such environments merits substantially more attention than it has hitherto received.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012878','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012878"><span>Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fleck, R.J.; Criss, R.E.</p> <p>1985-01-01</p> <p>Regional variations in initial 87Sr/86Sr ratios (ri) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The ri values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type, diorite-tonalite-trondhjemite units to a weakly peraluminous, calcic to calcalkalic tonalite-granodiorite-granite suite (the Idaho batholith). Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. Plutons near the edge of Precambrian sialic crust represent simple mixtures of the Precambrian wall-rocks with melts derived from the upper mantle or subducted oceanic lithosphere with ri of 0.7035. Rb/Sr varies linearly with ri, producing "pseudoisochrons" with apparent "ages" close to the age of the wall rocks. Measured ??18O values of the wall rocks are less than those required for the assimilated end-member by Sr-O covariation in the plutons, however, indicating that wall-rock ??18O was reduced significantly by exchange with circulating fluids. Metasedimentary rocks of the Belt Supergroup are similarly affected near the batholith, documenting a systematic depletion in 18O as much as 50 km from the margin of the batholith. Plutons of the Bitterroot lobe of the Idaho batholith are remote from the accreted terranes and represent mixtures of Precambrian wall-rocks with melts dominated by continental lower crust (ri>0.708) rather than mantle. "Pseudoisochrons" resulting from these data are actually mixing lines that yield apparent "ages" less than the true age of the wall rocks and meaningless "ri". Assimilation/ fractional-crystallization models permit only insignificant amounts of crystal fractionation during anatexis and mixing for the majority of plutons of the region. ?? 1985 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.429...45S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.429...45S"><span>Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scambelluri, Marco; Pettke, Thomas; Cannaò, Enrico</p> <p>2015-11-01</p> <p>Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 103 PM (primitive mantle), ∼102 PM Tl, Ba, while Rb, B, Sr, Li, U concentrations are of the order of 101 PM, and alkalis are ∼2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24260170','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24260170"><span>Associations of green tea and rock tea consumption with risk of impaired fasting glucose and impaired glucose tolerance in Chinese men and women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Huibin; Guo, Qiuxuan; Qiu, Changsheng; Huang, Baoying; Fu, Xianguo; Yao, Jin; Liang, Jixing; Li, Liantao; Chen, Ling; Tang, Kaka; Lin, Lixiang; Lu, Jieli; Bi, Yufang; Ning, Guang; Wen, Junping; Lin, Caijing; Chen, Gang</p> <p>2013-01-01</p> <p>To explore the associations of green tea and rock tea consumption with risk of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). A multistage, stratified, cluster, random-sampling method was used to select a representative sample from Fujian Province in China. In total, 4808 subjects without cardiovascular disease, hypertension, cancer, or pancreatic, liver, kidney, or gastrointestinal diseases were enrolled in the study. A standard questionnaire was used to gather data on tea (green, rock, and black) consumption and other relevant factors. The assessment of impaired glucose regulation (IGR) was using 75-g oral glucose tolerance test (OGTT), the diagnostic criteria of normal glucose tolerance was according to American Diabetes Association. Green tea consumption was associated with a lower risk of IFG, while rock tea consumption was associated with a lower risk of IGT. The adjusted odds ratios for IFG for green tea consumption of <1, 1-15, 16-30, and >30 cups per week were 1.0 (reference), 0.42 (95% confidence intervals (CI) 0.27-0.65), 0.23 (95% CI, 0.12-0.46), and 0.41 (95% CI, 0.17-0.93), respectively. The adjusted odds ratios for IGT for rock tea consumption of <1, 1-15, 16-30, and >30 cups per week were 1.0 (reference), 0.69 (95% CI, 0.48-0.98), 0.59 (95% CI, 0.39-0.90), and 0.64 (95% CI, 0.43-0.97), respectively. A U-shaped association was observed, subjects who consumed 16-30 cups of green or rock tea per week having the lowest odds ratios for IFG or IGT. Consumption of green or rock tea may protect against the development of type 2 diabetes mellitus in Chinese men and women, particularly in those who drink 16-30 cups per week.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3832448','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3832448"><span>Associations of Green Tea and Rock Tea Consumption with Risk of Impaired Fasting Glucose and Impaired Glucose Tolerance in Chinese Men and Women</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Huibin; Guo, Qiuxuan; Qiu, Changsheng; Huang, Baoying; Fu, Xianguo; Yao, Jin; Liang, Jixing; Li, Liantao; Chen, Ling; Tang, Kaka; Lin, Lixiang; Lu, Jieli; Bi, Yufang; Ning, Guang; Wen, Junping; Lin, Caijing; Chen, Gang</p> <p>2013-01-01</p> <p>Objective To explore the associations of green tea and rock tea consumption with risk of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). Methods A multistage, stratified, cluster, random-sampling method was used to select a representative sample from Fujian Province in China. In total, 4808 subjects without cardiovascular disease, hypertension, cancer, or pancreatic, liver, kidney, or gastrointestinal diseases were enrolled in the study. A standard questionnaire was used to gather data on tea (green, rock, and black) consumption and other relevant factors. The assessment of impaired glucose regulation (IGR) was using 75-g oral glucose tolerance test (OGTT), the diagnostic criteria of normal glucose tolerance was according to American Diabetes Association. Results Green tea consumption was associated with a lower risk of IFG, while rock tea consumption was associated with a lower risk of IGT. The adjusted odds ratios for IFG for green tea consumption of <1, 1–15, 16–30, and >30 cups per week were 1.0 (reference), 0.42 (95% confidence intervals (CI) 0.27–0.65), 0.23 (95% CI, 0.12–0.46), and 0.41 (95% CI, 0.17–0.93), respectively. The adjusted odds ratios for IGT for rock tea consumption of <1, 1–15, 16–30, and >30 cups per week were 1.0 (reference), 0.69 (95% CI, 0.48–0.98), 0.59 (95% CI, 0.39–0.90), and 0.64 (95% CI, 0.43–0.97), respectively. A U-shaped association was observed, subjects who consumed 16–30 cups of green or rock tea per week having the lowest odds ratios for IFG or IGT. Conclusions Consumption of green or rock tea may protect against the development of type 2 diabetes mellitus in Chinese men and women, particularly in those who drink 16–30 cups per week. PMID:24260170</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.T31A0421L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.T31A0421L"><span>Rocks, when Stressed, turn into a Battery that is Rechargeable</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lau, B. T.; Takeuchi, A. H.; Freund, F. T.</p> <p>2006-12-01</p> <p>Igneous rocks, when subjected to deviatory stresses, turn into a battery. We report on gabbro (Shanxi, China). We use steel pistons to load repeatedly ~10 cm3 in the center of 30 x 30 x 0.9 cm3 tiles, from 0 to 60 MPa, 1/3 failure strength, at 0.2 MPa/sec with 20-30 min at constant load. Instantly upon loading, a current begins to flow, increasing to 200-300 pA, equivalent to 30,000 to 50,000 A/km3. Under constant load the current continues to flow for at least 24 hrs with barely 10-20% reduction. During unloading the current stops but resumes during repetitive loading-unloading cycles for at least 22 times. One part of the current is carried by electrons. The electrons flow from the stressed rock into the steel pistons, through the external circuit to the edges of the tile. The other part is carried by holes. The holes flow inside the rock, from the stressed to the unstressed rock and to the edges of the tile. There they meet the electrons, thereby closing the circuit. Both types of charge carriers, electrons and holes, are associated with oxygen anions that changed their valence from 2- to 1- (peroxy). An O- among O2- represents a defect electron in the O2- sublattice, known as positive hole or p-hole for short. In unstressed rocks the O- exist in an electrically inactive form as O- pairs, chemically equivalent to peroxy links, O3X-OO-XO3 with X = Si4+, Al3+ etc. Deviatory stresses cause the peroxy links to break, allowing electrons from neighboring O2- to jump in and p-holes to jump out. The p-holes can spread into and through the unstressed rock using energy levels in the valence band. To observe sustained currents the battery circuit has to close.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JAESc..31..479C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JAESc..31..479C"><span>Generation of Late Cretaceous silicic rocks in SE China: Age, major element and numerical simulation constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Cheng-Hong; Lee, Chi-Yu; Lu, Hsueh-Yu; Hsieh, Pei-Shan</p> <p>2008-01-01</p> <p>Rhyolite-dominating bimodal volcanic suites (rhyolite/basalt), mafic dikes and A-type granites distribute from N Zhejiang to S Fujian over 800 km in the Southeast Coast Magmatic Belt (SCMB) - the Late Yanshanian (LY) orogenic belt in SE China. Data of 40Ar/ 39Ar and K-Ar whole-rock ages and LA-ICPMS U-Pb zircon ages indicate that rhyolitic volcanism (101-72 Ma) is contemporaneous with the A-type granitic intrusions (100-90 Ma) and mafic dike injections (94-77 Ma). This time span is used to define the upper volcanic series in Zhejiang-Fujian areas. One striking feature of rhyolites in the SCMB is that many are strongly peraluminous (SP) and others, mostly restrict in Fujian, are peralkaline to mildly peraluminous (P-MP) and chemically resemble A-type granites. The SP character is unique among well-known large rhyolite provinces worldwide. Based on experimental works for a common thermal regime and inherited zircon age information, we suggest that SP and P-MP rhyolites represent low pressure melting of the felsic (quartzofeldspathic) granite (±metapelite) and the accompanied granodioritic, tonalitic and trondhjemitic member of the core complex assemblage, respectively, to account for the decreasing aluminosity. They could have also been contaminated by young igneous rocks, and ancient crust to a lesser degree, during ascent to the surface. Plate subduction and lithosphere extension processes, respectively, are numerically simulated for the magma generation of these rhyolites using the mafic underplating model. Results suggest that the most effective controlling factor to generate SP and associated P-MP (A-type) magmas during 95-80 Ma is thinning of the lithosphere thickness with a high exhumation rate. Under this circumstance, the core complex assemblage can be uplifted to lower level of the crust and match the constraint of experimental works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016LPICo1912.2079G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016LPICo1912.2079G"><span>Sensing Biosignatures Within Rocks of the Atacama Desert — An Analog for Mars Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gnanaprakasa, T. J.; Domanik, K.; DiRuggiero, J.; Zega, T. J.</p> <p>2016-05-01</p> <p>We have been investigating potential biosignatures and mineral microstructure alteration of rocks from the Atacama desert in Chile. These materials represent martian analogs and are known to contain colonizing bacteria, to establish biosignatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMMR41B2704B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMMR41B2704B"><span>Real-time noble gas release signaling rock deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bauer, S. J.; Gardner, W. P.; Lee, H.</p> <p>2016-12-01</p> <p>We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of rock deformation by relating real-time noble gas release to stress-strain state changes and acoustic emissions. We propose using noble gas release to also signal rock deformation in boreholes, mines and nuclear waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress/strain state, and or permanent deformation dependent. Such relationships, when calibrated, may be used to sense rock deformation and then develop predictive models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7468 A</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P44B..09W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P44B..09W"><span>A new moonquake catalog from Apollo 17 seismic data I: Lunar Seismic Profiling Experiment: Thermal moonquakes and implications for surface processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.</p> <p>2017-12-01</p> <p>Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAG...110...23L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAG...110...23L"><span>Carbonate pore system evaluation using the velocity-porosity-pressure relationship, digital image analysis, and differential effective medium theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lima Neto, Irineu A.; Misságia, Roseane M.; Ceia, Marco A.; Archilha, Nathaly L.; Oliveira, Lucas C.</p> <p>2014-11-01</p> <p>Carbonate reservoirs exhibit heterogeneous pore systems and a wide variety of grain types, which affect the rock's elastic properties and the reservoir parameter relationships. To study the Albian carbonates in the Campos Basin, a methodology is proposed to predict the amount of microporosity and the representative aspect ratio of these inclusions. The method assumes three pore-space scales in two representative inclusion scenarios: 1) a macro-mesopore median aspect ratio from the thin-section digital image analysis (DIA) and 2) a microporosity aspect ratio predicted based on the measured P-wave velocities. Through a laboratory analysis of 10 grainstone core samples of the Albian age, the P- and S-wave velocities (Vp and Vs) are evaluated at effective pressures of 0-10 MPa. The analytical theories in the proposed methodology are functions of the aspect ratios from the differential effective medium (DEM) theory, the macro-mesopore system recognized from the DIA, the amount of microporosity determined by the difference between the porosities estimated from laboratorial helium-gas and the thin-section petrographic images, and the P-wave velocities under dry effective pressure conditions. The DIA procedure is applied to estimate the local and global parameters, and the textural implications concerning ultrasonic velocities and image resolution. The macro-mesopore inclusions contribute to stiffer rocks and higher velocities, whereas the microporosity inclusions contribute to softer rocks and lower velocities. We observe a high potential for this methodology, which uses the microporosity aspect ratio inverted from Vp to predict Vs with a good agreement. The results acceptably characterize the Albian grainstones. The representative macro-mesopore aspect ratio is 0.5, and the inverted microporosity aspect ratio ranges from 0.01 to 0.07. The effective pressure induced an effect of slight porosity reduction during the triaxial tests, mainly in the microporosity inclusions, slightly changing the amount and the aspect ratio of the microporosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_45091.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_45091.htm"><span>Regional stratigraphic cross sections of Cretaceous rocks from east-central Arizona to the Oklahoma Panhandle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Molenaar, C.M.; Cobban, W.A.; Merewether, E.A.; Pillmore, C.L.; Wolfe, D.G.; Holbrook, J.M.</p> <p>2002-01-01</p> <p>Sedimentary rocks of Cretaceous age along Transect DD'' in eastern Arizona, northern New Mexico, southern Colorado, and western Oklahoma consist mainly of sandstone, siltstone, shale, limestone, and bentonite. They accumulated as sediments in continental, nearshore marine, and offshore marine environments on the west side of a north-trending epicontinental sea. The rocks record intermittent deposition and erosion as well as regional and local subsidence and uplift possibly beginning in Aptian time (about 121-112 Ma) and occurring in Albian through Maastrichtian time (about 112-65.4 Ma). Most of the Lower Cretaceous (Berriasian through Aptian, 142-112 Ma) in this transect is represented by a basal unconformity. The Cretaceous rocks and unconformities along the transect are depicted on the attached lithostratigraphic cross sections (sheets 1 and 2); one extending from the Mogollon Rim in eastern Arizona to Pagosa Springs in southwestern Colorado and the other from Pagosa Springs, Colorado, to Kenton in western Oklahoma. The same rocks and unconformities are also represented on the attached chronostratigraphic profile (sheet 3), which was prepared mainly from surface and subsurface data shown on the lithostratigraphic cross sections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800039566&hterms=How+soil+form&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DHow%2Bsoil%2Bform','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800039566&hterms=How+soil+form&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DHow%2Bsoil%2Bform"><span>Martian soil stratigraphy and rock coatings observed in color-enhanced Viking Lander images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strickland, E. L., III</p> <p>1979-01-01</p> <p>Subtle color variations of martian surface materials were enhanced in eight Viking Lander (VL) color images. Well-defined soil units recognized at each site (six at VL-1 and four at VL-2), are identified on the basis of color, texture, morphology, and contact relations. The soil units at the Viking 2 site form a well-defined stratigraphic sequence, whereas the sequence at the Viking 1 site is only partially defined. The same relative soil colors occur at the two sites, suggesting that similar soil units are widespread on Mars. Several types of rock surface materials can be recognized at the two sites; dark, relatively 'blue' rock surfaces are probably minimally weathered igneous rock, whereas bright rock surfaces, with a green/(blue + red) ratio higher than that of any other surface material, are interpreted as a weathering product formed in situ on the rock. These rock surface types are common at both sites. Soil adhering to rocks is common at VL-2, but rare at VL-1. The mechanism that produces the weathering coating on rocks probably operates planet-wide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780004999','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780004999"><span>Chemical composition of crystalline rock fragments from Luna 16 and Luna 20 fines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cimbalnikova, A.; Palivcova, M.; Frana, J.; Mastalka, A.</p> <p>1977-01-01</p> <p>The chemical composition (bulk, rare earth, and trace elements) of the Luna 16 mare regolith and luna 20 highland regolith is discussed. The rock samples considered are 14 basaltic rock fragments (Luna 16) and 13 rock fragments of the ANT suite (Luna 20). On the basis of bulk composition, two types of basaltic rocks have been differentiated and defined in the Luna 16 regolith: mare basalts (fundamental crystalline rocks of Mare Fecunditatis) and high-alumina basalts. The bulk analyses of rock fragments of the ANT suite also enabled distinction of two rock types: anorthositic norites and troctolites and/or spinal-troctolites (the most abundant crystalline rocks of the highland region, the landing site of luna 20), and anorthosites. The chemical compositions of Luna 16 and Luna 20 regolith samples are compared. Differences in the chemistry of the Luna 16 mare regolith and that of mare basalts are discussed. The chemical affinity between the Luna 20 highland regolith and (a) anorthositic norites and (b) troctolites and/or spinel-troctolites has been ascertained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816919C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816919C"><span>Asbestos quantification in track ballast, a complex analytical problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cavallo, Alessandro</p> <p>2016-04-01</p> <p>Track ballast forms the trackbeb upon which railroad ties are laid. It is used to bear the load from the railroad ties, to facilitate water drainage, and also to keep down vegetation. It is typically made of angular crushed stone, with a grain size between 30 and 60 mm, with good mechanical properties (high compressive strength, freeze - thaw resistance, resistance to fragmentation). The most common rock types are represented by basalts, porphyries, orthogneisses, some carbonatic rocks and "green stones" (serpentinites, prasinites, amphibolites, metagabbros). Especially "green stones" may contain traces, and sometimes appreciable amounts of asbestiform minerals (chrysotile and/or fibrous amphiboles, generally tremolite - actinolite). In Italy, the chrysotile asbestos mine in Balangero (Turin) produced over 5 Mt railroad ballast (crushed serpentinites), which was used for the railways in northern and central Italy, from 1930 up to 1990. In addition to Balangero, several other serpentinite and prasinite quarries (e.g. Emilia Romagna) provided the railways ballast up to the year 2000. The legal threshold for asbestos content in track ballast is established in 1000 ppm: if the value is below this threshold, the material can be reused, otherwise it must be disposed of as hazardous waste, with very high costs. The quantitative asbestos determination in rocks is a very complex analytical issue: although techniques like TEM-SAED and micro-Raman are very effective in the identification of asbestos minerals, a quantitative determination on bulk materials is almost impossible or really expensive and time consuming. Another problem is represented by the discrimination of asbestiform minerals (e.g. chrysotile, asbestiform amphiboles) from the common acicular - pseudo-fibrous varieties (lamellar serpentine minerals, prismatic/acicular amphiboles). In this work, more than 200 samples from the main Italian rail yards were characterized by a combined use of XRD and a special SEM-EDS analytical procedure. The first step consists in the macroscopic petrographic description of the rock fragments, in order to identify and quantify the "green stones". The second step is represented by the "self-grinding" of the clasts (Los Angeles rattle test), and the powders (< 2 mm) are characterized by XRD (main rock-forming minerals) and quantitative SEM-EDS. Especially in serpentinic clasts with superficial slip-fibre chrysotile mineralizations, the "self-grinding" procedure allows to release a large part of the fibers. The third and last step consists in the total grinding of the bulk ballast sample ("self grinding" powders + remaining rock fragments), followed by quantitative SEM-EDS procedure. The most important aspects in the SEM-EDS procedure are represented by an accurate sample preparation (e.g. using ultrasound and a surfactant to avoid fiber agglomeration), as well as effective criteria for the distinction of asbestos fibers and non-asbestiform/pseudo-fibrous varieties (presence of fibril bundles, fibril diameter, splayed ends). The results show a great variability in the lithological composition of the ballast samples, and some critical issues in serpentinite-rich ballast, sometimes exceeding the legal threshold of 1000 ppm. On the other hand, the presence of metabasites (prasinites, amphibolites) is much less critical, because the presence of asbestiform amphiboles (especially tremolite - actinolite) is really rare.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3598P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3598P"><span>Geochemical Aspects of Formation of Large Oil Deposits in the Volga-Ural Sedimentary Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plotnikova, I.; Nosova, F.; Pronin, N.; Nosova, J.; Budkevich, T.</p> <p>2012-04-01</p> <p>The study of the rocks domanikoid type in the territory of the Ural-Volga region has an almost century-long history, beginning with the first studies of A.D. Archangelsky in the late 20's of last century. But nevertheless the question of the source of oil that formed the industrial deposits of Volga-Ural oil and gas province (OGP), where Romashkinskoye oil field occupies a special place, remains unresolved and topical. According to the sedimentary-migration theory of origin of oil and gas, it is supposed that the primary source of hydrocarbons in this area are the deposits of domanikoid type that contain a large ammount of sapropel organic matter (OM). Semiluki (domanik) horizon of srednefranski substage of the Upper Devonian is considered to be a typical domanikoid stratum. Investigation of the OM of the rocks and oils of the sedimentary cover on the basis of chromato-mass spectrometry method allows us to study the correlations between rock and oil and to assess the location (or absence) of the sources of hydrocarbons in the Paleozoic sedimentary cover. The results of geochemical study of dispersed organic matter (DOM) of rocks from Semiluksky horizon of the Upper Devonian and of the oil from Pashiysky horizon of the Middle Devonian form the basis of this paper. The objectives of this study were the following: to determine the original organic matter of the rocks, which would indicate the conditions of sedimentation of the supposed rock-oil sources; the study of chemofossils (biomarkers) in oil from Pashiyskiy horizon; and the identification of genetic association of DOM rocks from Semiluksky horizon with this oil on the basis of the oil-DOM correlation. The study of biomarkers was carried out with the help of chromato-mass spectrometry in the Laboratory of Geochemistry of Fossil Fuels (Kazan Federal University). In this study we used several informative parameters characterizing the depositional environment, the type of source OM and its maturity: STER / PENT, hC35/hC34, GAM / HOP, S27/S28/S29 (steranes), DIA / REG, Ts / Tm, MOR / HOP, NOR / HOP, TET / TRI, C29SSR, C29BBAA, C31HSR, S30STER, TRI / PENT, TRI / HOP. Comparison in the rock-oil system was performed primarily according to the parameters indicating the depositional environment of the source rock that contains syngenetic DOM - according to the coefficients that determine lithological conditions for the formation of the supposed oil-source bed strata (DIA / REG, Ts / Tm, NOR / HOP, TRI / HOP and STER / PENT). Biomarker ratios indicate a different type of sedimentation basins. Sediments, which accumulated DOM from Semilukskiy horizon, can be characterized by low clay content, or its absence, that is consistent with the carbonate type of cut of the horizon. The bacterial material that was accumulated under reducing conditions of sedimentation appeared to be the source of syngenetic OM. Chemofossils found in oils from Pashiyskiy horizon are typical of sedimentary strata that contain clay - for clastic rocks, which in the study area are mainly represented by deposits and Eyfel Givetian layers of the Middle Devonian and lowfransk substage of the Upper Devonian. The study of correlations obtained for the different coefficients of OM and oils showed that only the relationships between Ts/Tm and DIA/REG and between NOR/HOP and TRI/HOP are characteristic of close, almost similar values of correlation both for the dispersed organic matter and for oil. In all other cases, the character of the correlation of OM is significantly different from that of oil. The differences in values and ranges of biomarker ratios as well as the character of their correlation indicates the absence of genetic connection between the oil from Pashiyskiy horizon for the dispersed organic matter from Semilukskiy horizon. This conclusion is based on the study of five biomarker parameters (DIA/REG, Ts/Tm, NOR/HOP, TRI/HOP and STER/PENT). The research results described in the article clearly indicate the need for further studies of geochemical features of the organic matter of the Paleozoic mantle rocks and the underlying sedimentary and crystalline complexes of Precambrian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917447P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917447P"><span>Quantifying porosity and permeability of fractured carbonates and fault rocks in natural groundwater reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pirmoradi, Reza; Wolfmayr, Mariella; Bauer, Helene; Decker, Kurt</p> <p>2017-04-01</p> <p>This study presents porosity and permeability data for a suite of different carbonate rocks from two major groundwater reservoirs in eastern Austria that supply more than 60% of Vienna`s drinking water. Data includes a set of lithologically different, unfractured host rocks, fractured rocks with variable fracture intensities, and fault rocks such as dilation breccias, different cataclasites and dissolution-precipitation fault rocks. Fault rock properties are of particular importance, since fault zones play an important role in the hydrogeology of the reservoirs. The reservoir rocks are exposed at two major alpine karst plateaus in the Northern Calcareous Alps. They comprise of various Triassic calcareous strata of more than 2 km total thickness that reflect facies differentiation since Anisian times. Rocks are multiply deformed resulting in a partly dense network of fractures and faults. Faults differ in scale, fault rock content, and fault rock volumes. Methods used to quantify the porosity and permeability of samples include a standard industry procedure that uses the weight of water saturated samples under hydrostatic uplift and in air to determine the total effective (matrix and fracture) porosity of rocks, measurements on plugs with a fully automated gas porosity- and permeameter using N2 gas infiltrating plugs under a defined confining pressure (Coreval Poro 700 by Vinci technologies), and percolation tests. The latter were conducted in the field along well known fault zones in order to test the differences in fractured rock permeability in situ and on a representative volume, which is not ensured with plug measurements. To calculate hydraulic conductivity by the Darcy equation the measured elapsed time for infiltrating a standard volume of water into a small borehole has been used. In general, undisturbed host rock samples are all of low porosity (average around 1%). The open porosity of the undisturbed rocks belonging to diverse formations vary from 0.18% to 2.35%. Klinkenberg permeabilities of plugs range from 0.001mD to about 0.6mD thus spreading over three orders of magnitude. Fractured rocks show significantly higher porosities (3% average) with respect to the undeformed country rocks. Plug measurements reveal quite low permeabilities (< 1mD) for this type of rock, which is owed to the measuring technique, where fractures are closed under confining pressure. A second important point is that intensely fractured rocks are underrepresented in the data as they cannot be plugged adequately. Percolation tests give better information for fractured rock permeabilities and revealed hydraulic conductivities of 10-6 m/sec for little fractured to 5x10-5 m/sec for intensely fractured rocks. Plug and rock sample data show that cataclastic fault rocks can have quite high porosities (up to 4.1%). However, plug permeabilities down to 0.03mD demonstrate that pores are too small to result in any significant permeability. Breccias show high porosities of 4% in average and very variable permeabilities between 2.2mD and 2214mD depending mainly on the degree of cementation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/35413','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/35413"><span>Rock-degrading endophytic bacteria in cacti</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>M. Esther Puente; Ching Y. Li; Yoav Bashan</p> <p>2009-01-01</p> <p>A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAfES.118..163E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAfES.118..163E"><span>Mineralogy and source rock evaluation of the marine Oligo-Miocene sediments in some wells in the Nile Delta and North Sinai, Egypt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El sheikh, Hassan; Faris, Mahmoud; Shaker, Fatma; Kumral, Mustafa</p> <p>2016-06-01</p> <p>This paper aims to study the mineralogical composition and determine the petroleum potential of source rocks of the Oligocene-Miocene sequence in the Nile Delta and North Sinai districts. The studied interval in the five wells can be divided into five rock units arranged from the top to base; Qawasim, Sidi Salem, Kareem, Rudeis, and Qantara formations. The bulk rock mineralogy of the samples was investigated using X-Ray Diffraction technique (XRD). The results showed that the sediments of the Nile Delta area are characterized by the abundance of quartz and kaolinite with subordinate amounts of feldspars, calcite, gypsum, dolomite, and muscovite. On the other hand, the data of the bulk rock analysis at the North Sinai wells showed that kaolinite, quartz, feldspar and calcite are the main constituents associated with minor amounts of dolomite, gypsum, mica, zeolite, and ankerite. Based on the organic geochemical investigations (TOC and Rock-Eval pyrolysis analyses), all studied formations in both areas are thermally immature but in the Nile delta area, Qawasim, Sidi Salem and Qantara formations (El-Temsah-2 Well) are organically-rich and have a good petroleum potential (kerogen Type II-oil-prone), while Rudeis Formation is a poor petroleum potential source rock (kerogen Type III-gas-prone). In the North Sinai area, Qantara Formation has a poor petroleum potential (kerogen Type III-gas-prone) and Sidi Salem Formation (Bardawil-1 Well) is a good petroleum potential source rock (kerogen Type II-oil-prone).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770008025','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770008025"><span>Apollo 15 coarse fines (4-10 mm): Sample classification, description and inventory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Powell, B. N.</p> <p>1972-01-01</p> <p>A particle by particle binocular microscopic examination of all of the Apollo 15 4-10 mm fines samples is reported. These particles are classified according to their macroscopic lithologic features in order to provide a basis for sample allocations and future study. The relatively large size of these particles renders them too vaulable to permit treatment along with the other bulk fines, yet they are too small (and numerous) to practically receive full individual descriptive treatment as given the larger rock samples. This examination, classification and description of subgroups represents a compromise treatment. In most cases and for many types of investigation the individual particles should be large enough to permit the application of more than one type of analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750003778&hterms=soils+inert&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsoils%2Binert','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750003778&hterms=soils+inert&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsoils%2Binert"><span>Problem of nature of inert gases in lunar surface material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levskiy, L. K.</p> <p>1974-01-01</p> <p>The origin of isotopes of inert gases in lunar surface material was investigated from the standpoint of the isotopic two-component status of inert gases in the solar system. Helium and neon represent the solar wind component, while krypton and xenon are planetary gases. Type A gases are trapped by the material of the regolith in the early stages of the existence of the solar system and were brought to the lunar surface together with dust. The material of the regolith therefore cannot be considered as the product of the erosion of the crystalline rocks of the moon and in this sense are extralunar. The regolith material containing type A gases must be identified with the high temperature minerals of the carbonaceous chondrites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.1759M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.1759M"><span>Empirical Assessment of the Mean Block Volume of Rock Masses Intersected by Four Joint Sets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morelli, Gian Luca</p> <p>2016-05-01</p> <p>The estimation of a representative value for the rock block volume ( V b) is of huge interest in rock engineering in regards to rock mass characterization purposes. However, while mathematical relationships to precisely estimate this parameter from the spacing of joints can be found in literature for rock masses intersected by three dominant joint sets, corresponding relationships do not actually exist when more than three sets occur. In these cases, a consistent assessment of V b can only be achieved by directly measuring the dimensions of several representative natural rock blocks in the field or by means of more sophisticated 3D numerical modeling approaches. However, Palmström's empirical relationship based on the volumetric joint count J v and on a block shape factor β is commonly used in the practice, although strictly valid only for rock masses intersected by three joint sets. Starting from these considerations, the present paper is primarily intended to investigate the reliability of a set of empirical relationships linking the block volume with the indexes most commonly used to characterize the degree of jointing in a rock mass (i.e. the J v and the mean value of the joint set spacings) specifically applicable to rock masses intersected by four sets of persistent discontinuities. Based on the analysis of artificial 3D block assemblies generated using the software AutoCAD, the most accurate best-fit regression has been found between the mean block volume (V_{{{{b}}_{{m}} }}) of tested rock mass samples and the geometric mean value of the spacings of the joint sets delimiting blocks; thus, indicating this mean value as a promising parameter for the preliminary characterization of the block size. Tests on field outcrops have demonstrated that the proposed empirical methodology has the potential of predicting the mean block volume of multiple-set jointed rock masses with an acceptable accuracy for common uses in most practical rock engineering applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title10-vol4/pdf/CFR-2010-title10-vol4-sec960-3-1-2.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title10-vol4/pdf/CFR-2010-title10-vol4-sec960-3-1-2.pdf"><span>10 CFR 960.3-1-2 - Diversity of rock types.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration shall be given to a variety of geologic media in which sites for the development of repositories may be...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018616','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018616"><span>Hydrothermal mineralization along submarine rift zones, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.</p> <p>1996-01-01</p> <p>Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019040','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019040"><span>Adjusting stream-sediment geochemical maps in the Austrian Bohemian Massif by analysis of variance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Davis, J.C.; Hausberger, G.; Schermann, O.; Bohling, G.</p> <p>1995-01-01</p> <p>The Austrian portion of the Bohemian Massif is a Precambrian terrane composed mostly of highly metamorphosed rocks intruded by a series of granitoids that are petrographically similar. Rocks are exposed poorly and the subtle variations in rock type are difficult to map in the field. A detailed geochemical survey of stream sediments in this region has been conducted and included as part of the Geochemischer Atlas der Republik O??sterreich, and the variations in stream sediment composition may help refine the geological interpretation. In an earlier study, multivariate analysis of variance (MANOVA) was applied to the stream-sediment data in order to minimize unwanted sampling variation and emphasize relationships between stream sediments and rock types in sample catchment areas. The estimated coefficients were used successfully to correct for the sampling effects throughout most of the region, but also introduced an overcorrection in some areas that seems to result from consistent but subtle differences in composition of specific rock types. By expanding the model to include an additional factor reflecting the presence of a major tectonic unit, the Rohrbach block, the overcorrection is removed. This iterative process simultaneously refines both the geochemical map by removing extraneous variation and the geological map by suggesting a more detailed classification of rock types. ?? 1995 International Association for Mathematical Geology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=rock+AND+music&pg=5&id=EJ322861','ERIC'); return false;" href="https://eric.ed.gov/?q=rock+AND+music&pg=5&id=EJ322861"><span>Mick Jagger as Herodotus and Billy Joel as Thucydides? A Rock Music Perspective 1950-1985.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Cooper, B. Lee</p> <p>1985-01-01</p> <p>Five "rock music as history" teaching units, each revolving around a particular socio-political theme, are presented. The themes are civil authorities, military involvements, the public education system, railroads, and representative government. (RM)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H12A..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H12A..02M"><span>A multidisciplinary approach to define the hydrogeological model of the carbonate aquifer system in the Versilia River basin (Tuscany, Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menichini, M.; Doveri, M.; Giannecchini, R.; Raco, B.; Rosi, M.</p> <p>2012-12-01</p> <p>A hydrogeological study was carried out on important fractured/karst aquifer systems located in the Versilia River basin (Tuscany, Italy), in order to optimize the groundwater resources management. The main aim was the individuation of the feeding areas of the most important springs by means of a multidisciplinary approach using geological, hydrogeological and geochemical-isotopic tools. Some hydrogeological sections were elaborated in order to define the geometry of the main hydrostructures and to individuate possible groundwater divides. The elaboration of geochemical data allowed at identifying 3 main chemical facies: Ca-HCO3, Ca-SO4 and Na-Cl. The first two highlight the interaction of water with limestone/dolostone and carbonate-evaporite rocks for a time sufficient to acquire these chemical compositions and to achieve saturation/supersaturation in calcite and dolomite. The Na-Cl groundwater shows low salinity and a composition similar to rainwater, indicating a circulation in rocks containing minerals not very reactive and/or short interaction time with carbonate rocks. These two main types of water-rock interaction are confirmed by the isotopic ratio δ13C: for the Ca-HCO3 and Ca-SO4 types, δ13C value requires a significant contribution of carbon derived from dissolution of calcite, while for Na-Cl water, δ13C values are consistent with the addition of biogenic CO2 in rainwater. Stable water isotopes (δ18O and δ2H) confirm that groundwaters have a meteoric origin and that the wide range of values essentially depends on the different average altitude of feeding zone. Comparing the geological and hydrogeological features with the results of the geochemical processing, it is reasonable to assume that: the Na-Cl springs are representative of the superficial circuits, with small feeding zones and very low residence times in aquifer; whereas the Ca-HCO3 and Ca-SO4 springs are representative of relatively deep circuits developed in extensive aquifers with high permeability. The first type of springs was used to obtain the relationship between the δ18O ratio and the altitude of rainwater infiltration. Taking into account that they drain a small basin and considering the regulator effect of the aquifers, the isotopic composition of these springs are very similar to the annual average isotopic values of the local meteoric water. This relationship was used to evaluate the average altitude of the feeding area of the second type of springs. All these elements, and some tracer test results available in literature, allowed us to delimit the hydrogeological basins likely drained by the most important springs under study. In addition, for each hydrogeological system, a simplified water balance using meteorological data and the effective infiltration coefficients reported in the literature was performed, verifying that the delimited catchment areas are entirely consistent with the flow rate data of the springs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412348P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412348P"><span>Rock falls landslides in Abruzzo (Central Italy) after recent earthquakes: morphostructural control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piacentini, T.; Miccadei, E.; Di Michele, R.; Esposito, G.</p> <p>2012-04-01</p> <p>Recent earthquakes show that damages due to collateral effects could, in some cases exceed the economic and social losses directly connected to the seismic shaking. The earthquake heavily damaged urban areas and villages and induced several coseismic deformations and geomorphologic effects, including different types of instability such as: rock falls, debris falls, sink holes, ground collapses, liquefaction, etc. Among the effects induced by the seismic energy release, landslides are one of the most significant in terms of hazard and related risk, owing to the occurrence of exposed elements. This work analyzes the geomorphological effects, and particularly the rock falls, which occurred in the L'Aquila area during and immediately after the April 2009 earthquake. The analysis is focused mainly on the rock fall distribution related to the local morphostructural setting. Rock falls occurred mostly on calcareous bedrock slopes or on scarps developed on conglomerates and breccias of Quaternary continental deposits. Geological and geomorphological surveys have outlined different types of rock falls on different morpho-structural settings, which can be summarized as follow: 1)rock falls on calcareous faulted homoclinal ridges; 2)rock falls on calcareous rock slopes of karst landforms; 3)rock falls on structural scarps on conglomerates and breccias of Quaternary continental deposits. The first type of rockfall occurred particularly along main gorges carved on calcareous rocks and characterised by very steep fault slopes and structural slopes (i.e. San Venanzio Gorges, along the Aterno river). In these cases already unstable slopes due to lithological and structural control were triggered as rockfalls also at high distance from the epicentre area. These elements provide useful indications both at local scale, for seismic microzonation studies and seismic risk prevention, and at regional scale, for updating studies and inventory of landslides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JAESc..20..567F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JAESc..20..567F"><span>Permian of Southeast Asia: an overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fontaine, Henri</p> <p>2002-08-01</p> <p>Permian rocks are widely distributed throughout Southeast Asia. Because of the tropical-equatorial climate the rocks are commonly deeply weathered and covered by dense vegetation over much of the region. Elsewhere, Permian rocks are well exposed and easy to access, particularly where limestone outcrops have weathered to form spectacular, castellated, tower karst. Many limestone outcrops, containing abundant fusulinaceans, were early recognized to be of Permian age, but many outcrops without fusulinaceans, erroneously assigned to the Permian, were found subsequently to be of Triassic age, and more careful studies have established the Permian age of rocks of other lithologies. It is now recognized that different depositional environments are represented by the Permian deposits in various parts of the region. Massive limestones, widespread throughout the region, represent extensive carbonate platforms; local occurrences of thick bedded cherts indicate deposition in deep marine environments, coal, bauxite and clastic sediments with vertebrate remains in North Vietnam and Laos indicate deposition in a continental environment, and pebbly mudstones in Myanmar, Peninsular Thailand, northwest Malaysia and Sumatra, are considered to have been formed in a glacial environment. Volcanic rocks are absent in northwest Peninsular Malaysia and Peninsular Thailand, but are extensively developed in North Vietnam, Sumatra, the eastern Malay Peninsula and Timor. Fossils, representing many fossil groups, are often prolific in Permian sediments, with fusulinaceans, for example, occurring in astronomical numbers in many limestone outcrops. Age-diagnostic fossils demonstrate that the whole of the Permian is represented in different areas of Southeast Asia. Fossil faunal and floral assemblages have been used to establish climatic conditions and environments of deposition, to define distinct crustal blocks and to provide the basis for reconstructing the palaeogeography during Permian times.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..820S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..820S"><span>Heritage stones and their deterioration in rock-cut monuments in India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Vinod K.</p> <p>2017-04-01</p> <p>India is dotted with thousands of rock- cut monuments of considerable antiquity having artwork of global importance. It is evident from the location of many of these monuments that knowledge of viable selection of site, geotechnical considerations and amenability to sculptures' chisel was vital for construction of rock-cut monuments and sculptures. These rock-cut structures also represent significant achievements of geotechnical and structural engineering and craftsmanship of contemporary period. The paper deals with some of the sites where natural rock-mass exposures were used to hew the monuments and highlight the deterioration owing to geological and climatic conditions. The Kailash temple in Ellora and Ajanta rock-cut caves are among the greatest architectural feats which owe their grandeur to amenability and consistency of basalt of Deccan Volcanic Province from which it is hewn. The Kailash Temple was created through a single, huge top-down excavation 100 feet deep down into the volcanic basaltic cliff rock. These ancient rock cut structures are amazing achievements of structural engineering and craftsmanship. The lava flows are nearly horizontal, competent rock medium facilitated the chiseling for the sculptures. The deterioration of these basalts are seen where the amygdule, vesicles and opening in rock discontinuity had the medium of construction or excavation. The monolithic rock- cut monuments of Mahabalipuram temples are constructed in the form of rathas or chriot and adjoining caves by excavating solid charnockite/granites. The large rock exposures are excavated and cut to perfection with wall decorations and sculptured art. The charnockites are the strongest and the most durable rock, yet quite amenable to fine dressing. These monolithic monuments in charnockite and are cut out of the hillock. The 7th Century monuments now exhibit somewhat rough surface probably due to weathering effect of salt laden winds from the sea side and alteration of feldspars. The Rock shelters of Bhimbetka, a World Heritage Site, are located within Vindhyan sandstone, yielded primitive tools and decorative rock paintings.The rock-cut caves in twin hills Udayagiri and Khandagiri , contain carvings sculptured in coarse grained grey to buff coloured sandstone of Gondwana group of rocks. The Badami cave temples constructed out of escarpment of the hill in sandstone represent some of the earliest known examples of Hindu temples. Utilizing in situ rock exposures, natural rocks and landscape of Deccan basalts, granites of peninsular shield, sandstones and limestone for rock cut architecture in India, thus, holds varied examples of rock-cut architectures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/20528','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/20528"><span>Rock Slope Design Criteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2010-06-01</p> <p>Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030110944&hterms=Theoretical+Study+Characteristic+Surface&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTheoretical%2BStudy%2BCharacteristic%2BSurface','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030110944&hterms=Theoretical+Study+Characteristic+Surface&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTheoretical%2BStudy%2BCharacteristic%2BSurface"><span>Martian and Terrestrial Rock Abrasion from Wind Tunnel and Field Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bridges, N. T.; Greeley, R.; Eddlemon, E.; Laity, J. E.; Meyer, C.; Phoreman, J.; White, B. R.</p> <p>2003-01-01</p> <p>Earth and Mars exhibit ventifacts, rocks that have been abraded by saltating sand. Previous theoretical and laboratory studies have determined abrasion susceptibilities of rocks as a function of sand type and impact angle and rock material strengths. For the last two years we have been engaged in wind tunnel and field studies to better understand the fundamental factors which control and influence rock abrasion and ventifact formation on Earth and Mars. In particular, we are examining: 1) What types of rocks (composition, texture, and shape) preferentially erode and what are the relative rates of one type vs. another? 2) What are the controlling factors of the aeolian sand cloud (flux, particle speed, surface roughness, etc) which favor rock abrasion?, 3) How do specific ventifact characteristics tie into their mode of formation and rock properties? We find several important factors: 1) Initial rock shape controls the rate of abrasion, with steeper faces abrading faster than shallower ones. The relationship is partly dependent on angle-dependent flux (proportional to sin[theta]) but exhibits additional non-linear effects from momentum transfer efficiency and rebound effects that vary with incidence angle. 2) Irregular targets with pits or grooves abrade at greater rates than targets with smooth surfaces, with indentations generally enlarging with time. Surfaces become rougher with time. 3) Targets also abrade via slope retreat, which is roughly dependent on the slope of the front face. The formation of basal sills is common, as observed on terrestrial and Martian ventifacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002921','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002921"><span>Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.</p> <p>2015-01-01</p> <p>The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/0942/ds942.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/0942/ds942.pdf"><span>Geochemical, modal, and geochronologic data for 1.4 Ga A-type granitoid intrusions of the conterminous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>du Bray, Edward A.; Holm-Denoma, Christopher S.; San Juan, Carma A.; Lund, Karen; Premo, Wayne R.; DeWitt, Ed</p> <p>2015-08-10</p> <p>In addition, Kisvarsanyi (1972) suggests that iron-copper deposits in the St. Francois Mountains of southeastern Missouri are petrogenetically associated with 1.4 Ga A-type granitoids that occur in that region. Similarly, Dall’Agnol and others (2012) summarize important global associations between A-type granitoid rocks and a variety of important ore deposit types, particularly tin, high-field-strength elements (Zr, Hf, Nb, Ta), rare-earth elements, and iron oxide-copper-gold deposits. Consequently, the need to better understand relations between A-type granitoid rocks, tectonic setting, and magma petrogenesis, as well as their genetic associations with important types of ore deposits, suggests that developing a definitive geochemical, modal, and geochronologic database for these rocks in the conterminous United States is of considerable value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70160523','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70160523"><span>Second Projet de Renforcement Institutionnel du Secteur Minier de la République Islamique de Mauritanie (PRISM-II) Phase V</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Taylor, Cliff D.</p> <p>2015-12-30</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5906536-stratigraphy-depositional-environment-early-mississippian-joana-limestone-east-central-nevada','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5906536-stratigraphy-depositional-environment-early-mississippian-joana-limestone-east-central-nevada"><span>Stratigraphy and depositional environment of early Mississippian Joana limestone of east-central Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gilmore, T.</p> <p>1987-08-01</p> <p>The Early Mississippian Joana Limestone in the southern Schell Creek and Egan Ranges of east-central Nevada is divided into nine rock types: mudstone, fossiliferous mudstone, wackestone, peloidal wackestone, pelmatozoan wackestone, pelmatozoan packstone, pelmatozoan grainstone, and ooid packstone. From the combined rock type and larger scale outcrop information, three depositional facies were identified: (1) unbedded subtidal, (2) bedded subtidal, and (3) restricted subtidal, each containing a unique set of diagnostic microfacies. Facies thicknesses, lithologies, and contacts with adjacent stratigraphic units indicate a highly varied paleotopography of localized highs and basins during Joana deposition. It is suggested that Waulsortian-type buildups occur downslopemore » of some paleohighs in the unbedded subtidal facies. An age of upper Kinderhookian to lowest Osagean within the Mississippian Period was determined for the Joana, based primarily on conodonts and foraminifera. In the middle beds of the Joana, the previously unreported upper Siphonodella crenulata conodont zone occurs and relates the timing of the Joana to regional geologic events. Color alteration indices of these conodonts are 1.5 to 2, and occur in the oil generation window. Additionally, oil staining was noted in numerous samples primarily from the lower half of the formation, represented by the unbedded subtidal facies. Porosities of the formation are varied, ranging from no visible porosity to over 20% interparticle porosity in some pelmatozoan grainstones.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1230.photos.011807p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1230.photos.011807p/"><span>78. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLEARCHED TYPE: DIMENSIONS, ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>78. PALMDALE WATER COMPANY, LITTLEROCK DAM, EASTWOOD MULTIPLE-ARCHED TYPE: DIMENSIONS, SECTION THROUGH ARCH RING, SHEET 5; OCTOBER 2, 1919. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA14298.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA14298.html"><span>Rock Types in Gale Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-07-22</p> <p>This oblique view of the mound in Gale crater shows several different rock types of interest to the Mars Science Laboratory mission. The Mars Science Laboratory rover, Curiosity, will use its full instrument suite to study these minerals and how they form</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7636K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7636K"><span>Hydraulic fracturing - an attempt of DEM simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech</p> <p>2017-04-01</p> <p>Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1346988','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1346988"><span>Evaluation of Used Fuel Disposition in Clay-Bearing Rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jove-Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn Edward</p> <p></p> <p>Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barriermore » system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive-transport and reaction path modeling. The focus of these investigations into the nature of sacrificial zones is to evaluate the chemical effects of heterogeneous chemical reactions at EBS interfaces. The difference in barrier material types and the extent of chemical reactions within these interfacial domains generates changes in mineral abundances. These mineralogical alterations also result in volume changes that, although small, could affect the interface bulk porosity. As in previous deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3511E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3511E"><span>Fracture distribution and porosity in a fault-bound hydrothermal system (Grimsel Pass, Swiss Alps)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Egli, Daniel; Küng, Sulamith; Baumann, Rahel; Berger, Alfons; Baron, Ludovic; Herwegh, Marco</p> <p>2017-04-01</p> <p>The spatial distribution, orientation and continuity of brittle and ductile structures strongly control fluid pathways in a rock mass by joining existing pores and creating new pore space (fractures, joints) but can also act as seals to fluid flow (e.g. ductile shear zones, clay-rich fault gouges). In long-lived hydrothermal systems, permeability and the related fluid flow paths are therefore dynamic in space and time. Understanding the evolution and behaviour of naturally porous and permeable rock masses is critical for the successful exploration and sustainable exploitation of hydrothermal systems and can advance methods for planning and implementation of enhanced geothermal systems. This study focuses on an active fault-bound hydrothermal system in the crystalline basement of the Aar Massif (hydrothermal field Grimsel Pass, Swiss Alps) that has been exhumed from few kilometres depth and which documents at least 3 Ma of hydrothermal activity. The explored rock unit of the Aar massif is part of the External Crystalline Massifs that hosts a multitude of thermal springs on its southern border in the Swiss Rhône valley and furthermore represents the exhumed equivalent of potentially exploitable geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland basin. This study combines structural data collected from a 125 m long drillhole across the hydrothermal zone, the corresponding drill core and surface mapping. Different methods are applied to estimate the porosity and the structural evolution with regard to porosity, permeability and fracture distribution. Analyses are carried out from the micrometre to decametre scale with main focus on the flow path evolution with time. This includes a large variety of porosity-types including fracture-porosity with up to cm-sized aperture down to grain-scale porosity. Main rock types are granitoid host rocks, mylonites, paleo-breccia and recent breccias. The porosity of the host rock as well as the cemented paleo-hydrothermal breccia is typically very low with values <1%. The high volume of mineralized fractures in the paleo-breccia indicates high porosity in former times, which is today closed by newly developed cements. The preservation of such paleo-breccias allow the investigation of contrasts between the fossil porosity/permeability and the present day active flow path, which is defined by fracture porosity that generally follows the regional deformation pattern and forms a wide network of interconnected fractures of variable orientation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970022566','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970022566"><span>The Complex Stratigraphy of the Highland Crust in the Serenitatis Region of the Moon Inferred from Mineral Fragment Chemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ryder, Graham; Norman, Marc D.; Taylor, G. Jeffrey</p> <p>1997-01-01</p> <p>Large impact basins are natural drill holes into the Moon, and their ejecta carries unique information about the rock types and stratigraphy of the lunar crust. We have conducted an electron microprobe study of mineral fragments in the poikilitic melt breccias collected from the Taurus Mountains at the Apollo 17 landing site. These breccias are virtually unanimously agreed to be impact melt produced in the Serenitatis impact event. They contain lithic fragments and much more abundant mineral fragments of crustal origin. We have made precise microprobe analyses of minor element abundances in fragments of olivine, pyroxene, and plagioclase to provide new information on the possible source rocks and the crustal stratigraphy in the Serenitatis region. These data were also intended to elucidate the nature of the cryptic geochemical component in breccias such as these with low-K Fra Mauro basalt compositions. We chose the finest-grained (i.e., most rapidly quenched) breccias for study, to avoid reacted and partly assimilated fragments as much as possible. Most of the mineral fragments appear to have been derived from rocks that would fall into the pristine igneous Mg-suite as represented by lithic fragments in the Apollo collection, or reasonable extensions of it. Gabbroic rocks were more abundant in the target stratigraphy than is apparent from the Apollo sample collection. Some pyroxene and plagiociase, but probably not much olivine, could be derived from feldspathic granulites, which are metamorphosed polymict breccias. Some mineral fragments are from previously unknown rocks. These include highly magnesian olivines (up to Fo(sub 94)), possibly volcanic in origin, that exacerbate the difficulty in explaining highly magnesian rocks in the lunar crust. It appears that some part of the lunar interior has an mg*(= 100 x Mg/(Mg/Fe) atomic) greater than the conventional bulk Moon value of 80-84. Other volcanic rocks, including mare basalts, and rapidly- cooled impact melt rocks do not contribute significantly to the fragment population. Nor do ferroan anorthosites contribute more than a tiny part of even the plagiociase fragment population. A few mineral fragments that are consistent with the cryptic low-K Fra Mauro chemical component were found, and these appear to be from gabbroic sources. The mineral fragment populations cannot be mixed in their observed proportions to produce the whole rock composition, because the fragments are more refractory and deficient in Ti, P, and alkalis. A preferential contribution to the melt from a rock similar to sodic ferrogabbro can partly resolve the discrepancy. The population of mineral fragments requires a very diverse population of igenous rocks that are not all related to each other, demonstrating the existence of a complex crust built of numerous separate igneous plutons. Many of these plutons may have crystallized at shallow depths. The chemical composition of the melt breccias, in combination with the mineral fragment data and an understanding of the cratering process, suggests that the deepest crust sampled by the Serenitatis impace (not necessarily the deepest crust) was basaltic in composition, including KREEP and gabbroic rocks like sodic ferrogabbro, and lacking abundant olivine-rich material. These were overlain by Mg-suite rocks of varied types, including norites and troctolites that supplied most of the olivine mineral fragments. Granulities, which are metamorphosed and more feldspathic breccias, were abundant near the surface. Remote sensing indicates that the entire Serenitatis region lacks ferroan anorthosite, consistent with the results of our study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P13A1246H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P13A1246H"><span>Alteration Mineralogy of Adirondack-class Rocks in Gusev Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamilton, V. E.; Ruff, S. W.</p> <p>2009-12-01</p> <p>The rock Adirondack is the type example of a class of basaltic rocks analyzed by the Mars Exploration Rover Spirit in Gusev crater. Thermal infrared spectra of Adirondack-class rocks acquired by the Mini-TES instrument are distinguishable from spectra of other rock classes by the presence of an emissivity peak at 430 cm-1 and a minimum near 510 cm-1, which are characteristic of olivine. This is the primary spectral class on the plains of Gusev, but spectra of rocks exhibiting similar low wavenumber spectral character have been acquired along the rover traverse in the Columbia Hills, and we have confirmed that these also are Adirondack-class. Linear mixture modeling of their infrared spectra (enabled by applying a correction for dust on the Mini-TES optics) suggests that they are mafic with sulfate minerals present as alteration phases (up to 25%) in the majority of these rocks, broadly consistent with APXS-measured chemistry. The RAT-brushed surface of an unusual plains rock referred to as Mazatzal exhibits a spectral shape and modeled mineralogy consistent with the absence of olivine and the presence of amorphous phases low in silica, and is a coating unlike any other observed on Mars. We have also used a previously-demonstrated factor analysis and target transformation (FATT) technique with Adirondack-class rock spectra to retrieve the spectral shapes of independently-varying components within the data set. Using this approach, we have identified four shapes attributable to two distinct surface components, fine particulate surface dust, and a second dust component similar to downwelling sky radiance and/or dust on the Mini-TES optics. The two surface shapes do not resemble those of the two canonical surface types measured from orbit. One of the surface shapes is very similar to that of the lherzolitic Shergottite ALH A77005. Preliminary linear mixture analysis of this shape shows that it is dominated by olivine (~57%, ~Fo45) and pyroxene (~28%), with minor amounts of oxides and basaltic glass (~15%). This ultramafic composition is similar to that derived from linear mixture modeling of the measured Mini-TES spectra, but differs in detail from the APXS-derived normative mineralogy and Mössbauer ol:px. These differences may be artifacts of the penetration depths and spot sizes of the measurements, or assumptions inherent in the conversions from chemistry and spectra to norms and abundances; work in progress is aimed at explaining these differences. The other shape is modeled with high-silica phases (29%), sulfates (~24%), olivine (~19%), pyroxene (~15%), and oxides (~12%), suggesting it represents a highly altered mineralogy. We linearly modeled the highest-quality measured spectra of Adirondack-class rocks using only the FATT-derived spectral shapes. Surface components are modeled by varying proportions of the two surface shapes, with all containing ≥40% of the ultramafic shape. These preliminary results suggest that Adirondack-class rocks are a single lithology exhibiting sulfate-bearing surface alteration that is variable from rock to rock. We are in the process of converting the mineralogies derived from measured and FATT-derived spectra into bulk oxides and will present quantitative comparisons with APXS data and qualitative comparisons with Mössbauer data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geote..52..312L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geote..52..312L"><span>Composition, Age, and Origin of Cretaceous Granitic Magmatism on the Eastern Chukchi Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luchitskaya, M. V.; Sokolov, S. D.; Pease, V.; Miller, E.; Belyatsky, B. V.</p> <p>2018-05-01</p> <p>New geochronological and isotopic geochemical data are given, which make it possible to recognize two types of granitic rocks on the eastern Chukchi Peninsula. Early Cretaceous Tkachen and Dolina granitic plutons with zircon ages (U-Pb SIMS) of 119-122 and 131-136 Ma are related to the first type. They cut through Devonian-Lower Carboniferous basement rocks and are overlain by the Aptian-Albian Etelkuyum Formation. Basal units of the latter contain fragments of granitic rocks. Late Cretaceous Provideniya and Rumilet granitic plutons, which contain zircons with ages of 94 and 85 Ma (U-Pb SIMS), respectively, belong to the second type. They cut through volcanic-sedimentary rocks of the Etelkuyum and Leurvaam formations pertaining to the Okhotsk-Chukotka Volcanic Belt. In petrographic and geochemical features, the Early Cretaceous granitic rocks of the Tkachen Pluton are commensurable with I-type granites, while Late Cretaceous granite of the Rumilet Pluton is comparable to A2-type granite. The Sr-Nd isotopic data provide evidence that from the Early Cretaceous Tkachen and Dolina plutons to the Late Cretaceous Provideniya and Rumilet plutons, the degree of crustal assimilation of suprasubduction mantle-derived melts increases up to partial melting of heterogeneous continental crust enriched in rubidium. An unconformity and various degrees of secondary alteration of volcanic-sedimentary rocks have been established in the Okhotsk-Chukotka Volcanic Belt, and this was apparently caused by transition of the tectonic setting from suprasubduction to a transform margin with local extension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bul/1077/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bul/1077/report.pdf"><span>Geology of the Lake Mary quadrangle, Iron County, Michigan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bayley, Richard W.</p> <p>1959-01-01</p> <p>The Lake Mary quadrangle is in eastern Iron County, in the west part of the Upper Peninsula of Michigan. The quadrangle is underlain by Lower and Middle Precambrian rocks, formerly designated Archean and Algonkian rocks, and is extensively covered by Pleistocene glacial deposits. A few Upper Precambrian (Keweenawan) diabase dikes and two remnants of sandstone and dolomite of early Paleozoic age are also found in the area. The major structural feature is the Holmes Lake anticline, the axis of which strikes northwest through the northeast part of the quadrangle. Most of the quadrangle, therefore, is underlain by rock of the west limb of the anticline. To the northwest along the fold axis, the Holmes Lake anticline is separated from the Amasa oval by a saddle of transverse folds in the vicinity of Michigamme Mountain in the Kiernan quadrangle. The Lower Precambrian rocks are represented by the Dickinson group and by porphyritic red granite whose relation to the Dickinson group is uncertain, but which may be older. The rocks of the Dickinson group are chiefly green to black metavolcanic schist and red felsite, some of the latter metarhyolite. The dark schist is commonly magnetic. The Dickinson group underlies the core area of the Holmes Lake anticline, which is flanked by steeply dipping Middle Precambrian formations of the Animikie series. A major unconformity separates the Lower Precambrian rocks from the overlying Middle Precambrian rocks. In ascending order the formations of the Middle Precambrian are the Randville dolomite, the Hemlock formation, which includes the Mansfield iron-bearing slate member, and the Michigamme slate. An unconformity occurs between the Hemlock formation and Michigamme slate. The post-Hemlock unconformity is thought to be represented in the Lake Mary quadrangle by the absence of iron-formation of the Amasa formation, which is known to lie between the Hemlock and the Michigamme to the northwest of the Lake Mary quadrangle in the Crystal Falls quadrangle. Post-Hemlock erosion may account also for the absence of iron-formation of the Fence River formation on the east limb of the Holmes Lake anticline within the Lake Mary quadrangle. The Randville dolomite is not exposed and is known only from diamond drilling in the northeast part of the area where it occurs in the east and west limbs of the Holmes Lake anticline. The formation has a maximum thickness of about 2,100 feet; this includes a lower arkosic phase, some of which is quartz pebble conglomerate, a medial dolomitic phase, and an upper slate phase. The triad is gradational. Included within the formation are a few beds of chloritic schist thought to be of volcanic origin. An unconformity between the Randville and the succeeding Hemlock is not indicated in the quadrangle, but is probably present. The Hemlock formation is best exposed in the northwest and south-central parts of the area. The apparent thickness of the formation is 10,000- 17,000 feet. It is composed mainly of mafic metavolcanic rocks and intercalated slate and iron-formation. In the north part of the quadrangle the volcanic rocks are greenstone, which includes altered basaltic flow rocks, volcanic breccia, tuff, and slate. Pillow structures are common in the metabasalt. It is not certain if any Hemlock rocks are present in the east limb of the Holmes Lake anticline. In the south part of the quadrangle, the rocks of the Hemlock are chiefly chlorite and hornblende schist and hornfels. Pyroxene hornfels is sparingly present. At least two sedimentary slate belts are included in the Hemlock formation. One of these, the Mansfield iron-bearing slate member, includes in its upper part an altered chert-siderite iron-formation 30 to over 150 feet thick from which iron ore has been mined at the Mansfield location. The position of the iron-bearing rocks has been determined magnetically, and past explorations for iron ore are discussed. Though probably; unconformable, the contact between the Hemlock and the Michigamme formations appears conformable. The Michigamme slate consists of at least 4,000 feet of interbedded mica schist and granulite, the altered equivalents of the slate and graywacke characteristic of the Michigamme in adjacent areas. The Michigamme rocks are best exposed in the south part of the quadrangle in the vicinity of Peavy Pond. Two periods of regional metamorphism have resulted in the alteration of almost all of the rocks of the quadrangle. The Lower Precambrian rocks underwent at least one period of metamorphism, uplift, and erosion before the deposition of the Randville dolomite. After the deposition of the Michigamme slate, a post-Middle Precambrian period of regional metamorphism occurred with attending deformation and igneous intrusion. The grade of metamorphism rises toward the south in the area. The rocks in the northern two-thirds of the quadrangle are representative of greenschist facies of regional metamorphism, whereas the rocks in the southern onethird of the quadrangle are representative of the albite-epidote-amphibolite, the amphibolite, and the pyroxene hornfels facies, the metamorphic node centering about the intrusive Peavy Pond complex in the Peavy Pond area. The Precambrian sedimentary and volcanic rocks are cut by intrusive igneous rocks of different types and several different ages. Gabbroic sills and dikes invaded the Hemlock rocks at some time after the Hemlock was deposited and before the post-Middle Precambrian orogeny and metamorphism. Some contact metamorphism attended the intrusion of the major sills. One of the sills, the West Kiernan sill, is well differentiated. A syntectonic igneous body, composed of gabbro and minor ultramafic parts and fringed with intermediate and felsic differentiates and hybrids, the Peavy; Pond complex, was intruded into the Hemlock and Michigamme formations during the post-Middle Precambrian orogeny. The complex is situated in the Peavy Pond area at the crest of the regional metamorphic node. Contact-altered sedimentary and volcanic rocks margin the complex. The effects of regional metamorphism have been superposed on the contact metamorphic rocks peripheral to the complex and on the igneous rocks of the complex as well. The mafic augite-bearing rocks of the complex emplaced early in the orogeny were deformed by granulation at the peak of the deformation and subsequently metamorphosed to hornblende rocks. Some of the intermediate and felsic rocks of the complex were foliated by the deformation, while the more fluid, felsic parts of the complex were intruded under orogenic stress and crystallized after the peak of deformation. The deformation culminated in major faulting during which the formations were dislocated, and some of the granite of the complex was extremely brecciated. A few diabase dikes, probably of Keweenawan age, have intruded the deformed and altered Animikie rocks. The only known metallic resource is iron ore. The Mansfield mine produced 1¥2 million tons of high-grade iron ore between the years 1890 and 1913. Sporadic exploration since 1913 has failed to reveal other ore deposits of economic importance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70142995','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70142995"><span>Use of the Biotic Ligand Model to predict metal toxicity to aquatic biota in areas of differing geology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, Kathleen S.</p> <p>2005-01-01</p> <p>This work evaluates the use of the biotic ligand model (BLM), an aquatic toxicity model, to predict toxic effects of metals on aquatic biota in areas underlain by different rock types. The chemical composition of water, soil, and sediment is largely derived from the composition of the underlying rock. Geologic source materials control key attributes of water chemistry that affect metal toxicity to aquatic biota, including: 1) potentially toxic elements, 2) alkalinity, 3) total dissolved solids, and 4) soluble major elements, such as Ca and Mg, which contribute to water hardness. Miller (2002) compiled chemical data for water samples collected in watersheds underlain by ten different rock types, and in a mineralized area in western Colorado. He found that each rock type has a unique range of water chemistry. In this study, the ten rock types were grouped into two general categories, igneous and sedimentary. Water collected in watersheds underlain by sedimentary rock has higher mean pH, alkalinity, and calcium concentrations than water collected in watersheds underlain by igneous rock. Water collected in the mineralized area had elevated concentrations of calcium and sulfate in addition to other chemical constituents. Miller's water-chemistry data were used in the BLM (computer program) to determine copper and zinc toxicity to Daphnia magna. Modeling results show that waters from watersheds underlain by different rock types have characteristic ranges of predicted LC 50 values (a measurement of aquatic toxicity) for copper and zinc, with watersheds underlain by igneous rock having lower predicted LC 50 values than watersheds underlain by sedimentary rock. Lower predicted LC 50 values suggest that aquatic biota in watersheds underlain by igneous rock may be more vulnerable to copper and zinc inputs than aquatic biota in watersheds underlain by sedimentary rock. For both copper and zinc, there is a trend of increasing predicted LC 50 values with increasing dissolved organic carbon (DOC) concentrations. Predicted copper LC 50 values are extremely sensitive to DOC concentrations, whereas alkalinity appears to have an influence on zinc toxicity at alkalinities in excess of about 100 mg/L CaCO 3 . These findings show promise for coupling the BLM (computer program) with measured water-chemistry data to predict metal toxicity to aquatic biota in different geologic settings and under different scenarios. This approach may ultimately be a useful tool for mine-site planning, mitigation and remediation strategies, and ecological risk assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980Tectp..67..221L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980Tectp..67..221L"><span>Petrogenesis of cataclastic rocks within the San Andreas fault zone of Southern California U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lawford Anderson, J.; Osborne, Robert H.; Palmer, Donald F.</p> <p>1980-08-01</p> <p>This paper petrologically characterizes cataclastic rocks derived from four sites within the San Andreas fault zone of southern California. In this area, the fault traverses an extensive plutonic and metamorphic terrane and the principal cataclastic rock formed at these upper crustal levels is unindurated gouge derived from a range of crystalline rocks including diorite, tonalite, granite, aplite, and pegmatite. The mineralogical nature of this gouge is decidedly different from the "clay gouge" reported by Wu (1975) for central California and is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote and oxide mineralogy representing the milled-down equivalent of the original rock. Clay development is minor (less than 4 wt. %) to nonexistent and is exclusively kaolinite. Alterations involve hematitic oxidation, chlorite alteration on biotite and amphibole, and local introduction of calcite. Electron microprobe analysis showed that in general the major minerals were not reequilibrated with the pressure—temperature regime imposed during cataclasis. Petrochemically, the form of cataclasis that we have investigated is largely an isochemical process. Some hydration occurs but the maximum amount is less than 2.2% added H 2O. Study of a 375 m deep core from a tonalite pluton adjacent to the fault showed that for Si, Al, Ti, Fe, Mg, Mn, K, Na, Li, Rb, and Ba, no leaching and/or enrichment occurred. Several samples experienced a depletion in Sr during cataclasis while lesser number had an enrichment of Ca (result of calcite veining). Texturally, the fault gouge is not dominated by clay-size material but consists largely of silt and fine sand-sized particles. An intriguing aspect of our work on the drill core is a general decrease in particulate size with depth (and confining pressure) with the predominate shifting sequentially from fine sand to silt-size material. The original fabric of these rocks is commonly not disrupted during the cataclasis. It is evident that the gouge development in these primarily igneous crystalline terranes is largely an in situ process with minimal mixing of rock types. Fabric analyses reveal that brecciation (shattering), not shearing, is the major deformational mechanism at these upper crustal levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110353F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110353F"><span>The main factors controlling petrophysical alteration in hydrothermal systems of the Kuril-Kamchatka island arch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frolova, J.; Ladygin, V.; Rychagov, S.; Shanina, V.; Blyumkina, M.</p> <p>2009-04-01</p> <p>This report is based on the results of petrophysical studies obtained on a number of hydrothermal systems in the Kuril-Kamchatka island arc (Pauzhetsky, Mutnovsky, Koshelevsky, Essovsky, a volcano of Ebeko, Oceansky). Mineral composition and pore-space structure of primary rocks change intensively during hydrothermal process, results in alteration of petrophysical properties - porosity, density, permeability, hygroscopy, sonic velocity, elastic modulus, mechanical properties, thermal and magnetic characteristics. Petrophysical alterations gradually lead to the change of the structure of hydrothermal system, and its hydrodynamic and temperature regime. The tendency of petrophysical alteration can be different. In some cases rocks "improvement" is observed i.e. consolidation, hardening, decrease of porosity and permeability, removal of hygroscopy. In other cases rocks "deterioration" occurs, i.e. formation of secondary porosity and permeability, a decrease of density, strength, and elastic modulus, and occurrence of hygroscopic moisture. The classical example of cardinal petrophysical alteration is the transformation of hard basalts to plastic clays. The opposite example is the transformation of only slightly consolidates porous tuffs to hard and dense secondary quartzite. The character of petrophysical alteration depends on a number of factors including peculiarities of primary rocks, temperature, pressure and composition of thermal fluids, duration of fluid-rock interaction, and condition of fluid (steam, water, boiling water). The contribution of each factor to change of volcanic rocks properties is considered and analyzed in details. In particular, primary rocks controls speed, intensity and character of petrophysical alterations. Factors favorable for alteration are high porosity and permeability, micro crakes, weak cementation, glassy structure, basaltic composition. Kuril-Kamchatka region represents the volcanic island arch so host rocks in hydrothermal systems are mainly volcanic or volcaniclastic types of Neogene-Quaternary age. Volcanic rocks (lava rocks) are dense with high strength and elastic modulus and low porosity and permeability. The speed of their alteration is low. Basically volcanic rocks form impermeable horizons in the structure of hydrothermal system. But sometimes they form fracture-type reservoir. The origin of fracturing can be various. Volcanoclastic rocks are characterized by lower physical and mechanical properties, higher porosity and permeability. Due to high porosity and permeability they are greatly exposed to thermal fluids so they are altered intensively. Volcaniclastic rocks are the most common host rocks of geothermal reservoirs. Typically they form porous or fracture-porous aquifers. But in some cases they form water confining layers. The well-studied example is Pauzhetskaya hydrothermal system. The main reservoir is composed of highly porous (30-40%) and permeable medium-grained tuffs. The caprock is composed of fine-grained argillized tuffs. They are highly porous but due to small pore size porosity is un-effective for fluid and permeability is low. The temperature and pressure in a hydrothermal system cardinally influence on rocks properties. High-temperature deep fluids (Т>200C) cause the perfect tendency of petrophysical alteration - consolidation, hardening, a decrease of porosity and permeability, and removal of a hygroscopic moisture. This petrophysical tendency is observed independently of composition of fluids. This is the result of the development of high-temperature secondary minerals, which fill pores and cracks, and substitute matrix and phenocrystals. The contacts between grains become strong and dense, intergranular porosity is disappeared that reinforces cementation of rock. The petrophysical alteration caused by low-temperature subsurface fluids (Т<150C) are more difficult and diverse. Depending on what process prevails - rocks leaching, sedimentation of secondary minerals in pores and cracks or replacement of primary minerals by secondary minerals, it can lead to both: an increase or a decrease in petrophysical properties. Financial support from RFBR (project 05-07-00118-a)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Litho.118..238S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Litho.118..238S"><span>Petrogenesis of Mesoproterozoic granitic plutons, eastern Llano Uplift, central Texas, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, R. K.; Gray, Walt; Gibbs, Tyson; Gallegos, M. A.</p> <p>2010-08-01</p> <p>The Llano Uplift of central Texas is a gentle structural dome exposing ˜ 1370 to 1230 Ma metaigneous and metasedimentary rocks of Grenville affinity along the southern margin of Laurentia. The metamorphic rocks were subsequently intruded by ˜ 1119 to 1070 Ma late syn- to post-tectonic granites collectively known as the Town Mountain Granite (TMG). The eastern most of the TMG, the Marble Falls (MF), Kingsland (KL), and Lone Grove (LG) plutons, are metaluminous to marginally peraluminous, high-K, calc-alkaline, ferroan, biotite-calcic amphibole granites [Fe/(Fe + Mg) = 0.71-0.92 and 0.78-0.91 for biotite and calcic amphibole, respectively] displaying distinct variation trends with increasing silica content. They are chemically and texturally zoned and have mineralogical and chemical characteristics similar to A-type granites; i.e., 1) Fe-rich biotites, calcic amphiboles, accessory fluorite, and sporadic rapakivi texture, 2) high K 2O (> 4 wt.%), 3) low Al 2O 3 (< 16 wt.%) and CaO (< 3 wt.%), 4) high Fe/(Fe + Mg), 5) enrichments in Zr, Nb, REE, Ga/Al, and 6) depleted Eu. However, in contrast to typical A-type granites (having low Sr and Ba) the MF, KL,and LG plutons are enriched in Sr and Ba; i.e., up to 229 ppm and 1090 ppm, respectively. On granite discrimination diagrams [(K 2O + Na 2O)/CaO vs. Zr + Nb + Ce + Y (ppm) and Zr (ppm) vs. Ga/Al*10,000] the KL and MF plutons plot within the A-type field, whereas the LG pluton compositions are divided between A-type and fractionated granite fields (I-, S- and M-types). On tectonic discrimination diagrams (Y vs. Nb ) the MF and KL granites plot in the "within-plate" granite field, but the LG pluton plots across several fields including "within-plate" and "volcanic arc plus syn-collisional" fields. Consequently the tectonic classification on a geochemical basis for the LG pluton is unclear. Based on thermal metamorphic mineral assemblages, normative Q-Ab-Or plots, and Q-Ab-Or-H 2O experimental data (Johannes and Holtz, 1996), crystallization temperatures and pressures are estimated to range from 750 to 850 °C and 200 to 500 MPa, respectively. The assemblage of titanite + magnetite + quartz suggests crystallization at low fO2 [confirmed by Fe/(Fe + Mg) vs. [4] Al microprobe analyses of calcic amphibole] and a water content of less than 1.5 wt.% (Wones, 1989). Like other Town Mountain-type plutons, the MF, KL, and LG granites display comparable iron contents at similar alkali and silica enrichments. Melting models (Ba vs. Sr) suggest the MF, KL, and LG plutons may have evolved from the partial melting (anatexis) of juvenile, tonalitic, lower crustal rocks, followed by plagioclase and pyroxene dominated fractionation. Nd isotopic data for the MF pluton ( ɛNd = + 3.4 at 1.06 Ga; Patchett and Ruiz, 1989) and whole-rock δ18O values for the MF, KL, and LG plutons (+ 7.0 < δ 18O >+10.1‰; Rangel et al., 2008) suggest that the magmas in the eastern Llano Uplift may contain a significant mantle component, whereas relatively high δ18O values (+ 9.3 to + 9.7‰; Bebout and Carlson, 1986) for other coeval TMG rocks suggest that a significant crustal component is involved. Whole-rock and trace-element chemistry indicate that the MF and KL plutons, along with the coarser grained textures of the LG pluton, are 'A-type' granites. However, with no coeval mafic dikes, syenitic compositions, or volcanic rocks it is clear that the TMG plutons do not represent anorogenic granites. The available evidence is most compatible with emplacement of the TMG plutons in a post-orogenic (Grenville), relaxation and extensional (i.e., slab breakoff) setting.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16410293','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16410293"><span>Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella</p> <p>2006-01-01</p> <p>Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..559..182S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..559..182S"><span>Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Svensson, Urban; Löfgren, Martin; Trinchero, Paolo; Selroos, Jan-Olof</p> <p>2018-04-01</p> <p>In sparsely fractured rock, the ubiquitous heterogeneity of the matrix, which has been observed in different laboratory and in situ experiments, has been shown to have a significant influence on retardation mechanisms that are of importance for the safety of deep geological repositories for nuclear waste. Here, we propose a conceptualisation of a typical heterogeneous granitic rock matrix based on micro-Discrete Fracture Networks (micro-DFN). Different sets of fractures are used to represent grain-boundary pores as well as micro fractures that transect different mineral grains. The micro-DFN model offers a great flexibility in the way inter- and intra-granular space is represented as the different parameters that characterise each fracture set can be fine tuned to represent samples of different characteristics. Here, the parameters of the model have been calibrated against experimental observations from granitic rock samples taken at Forsmark (Sweden) and different variant cases have been used to illustrate how the model can be tied to rock samples with different attributes. Numerical through-diffusion simulations have been carried out to infer the bulk properties of the model as well as to compare the computed mass flux with the experimental data from an analogous laboratory experiment. The general good agreement between the model results and the experimental observations shows that the model presented here is a reliable tool for the understanding of retardation mechanisms occurring at the mm-scale in the matrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bul/1359/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bul/1359/report.pdf"><span>Geology and Mineral Resources of the Northern Part of the North Cascades National Park, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Staatz, Mortimer Hay; Tabor, Rowland W.; Weis, Paul L.; Robertson, Jacques F.; Van Noy, Ronald M.; Pattee, Eldon C.</p> <p>1972-01-01</p> <p>The northern part of the North Cascades National Park in northern Washington is north of the Skagit River between Mount Shuksan on the West and Ross Lake on the east. The area occupies approximately 500 square miles of steep mountains and thickly forested valleys centered on the precipitous Picket Range. Old metamorphic rocks and young volcanic and sedimentary rocks are intruded by large masses of granitic rocks that together form a diverse, complicated, but well-exposed geologic section. The granitic rocks are the most abundant in the area; they intrude most of the other rocks, and they separate one suite of rocks in the eastern part of the area from a second suite in the western part. In the eastern part of the area, the oldest rocks are the Custer Gneiss of McTaggart and Thompson, a thick sequence of biotite and hornblende gneisses and schists. We have divided these rocks into three generalized units: light-colored gneiss, banded gneiss, and amphibole-rich gneiss. To the northeast of these rocks lies a metagabbro. This rock type is complex and is made up of several types of gabbro, diorite, amphibolite, ultramafic rocks, and quartz diorite that crop out along the Ross Lake fault zone. To the northeast of these rocks and also along the Ross Lake fault zone is the phyllite and schist of Ross Lake. These rocks are the highly sheared and metamorphosed equivalents of the plagioclase arkose and argillite sequence of Jurassic and Cretaceous age that is so widespread on the east side of Ross Lake. The Cretaceous Hozomeen Group of Cairnes lies along Ross Lake northeast of the phyllite and schist and consists mainly of slightly metamorphosed greenstones with subordinate chert and phyllite. The phyllite in this unit is similar to that in the underlying phyllite and schist of Ross Lake with which it appears to be interbedded. The youngest rocks in the eastern part of the area are the Skagit Volcanics a thick sequence of welded tuff-breccia with some flows and air-laid tuffs. These rocks, which are probably early Tertiary in age, overlie the Hozomeen Group and the Custer Gneiss along the Canadian border. In the western part of the area the oldest rocks are greenschist and phyllite of Mount Shuksan. These fine-grained foliated and crinkled rocks commonly contain narrow lenses or layers of quartz. They are unconformably overlain by the Chuckanut Formation in the southern part of the area. This formation, which is of Paleocene and Late Cretaceous age, is made up mainly of gently dipping plagioclase arkose with some interbedded black argillite and conglomerate. The Hannegan Volcanics overlie the Chuckanut in the northern part of the area and the greenschist and phyllite of Mount Shuksan in the central part. The Hannegan Volcanics which are of early Tertiary age, consist principally of air-laid volcanic breccias and tuffs, but also include some flows and one small porphyry stock. The Chilliwack composite batholith consists of several types of granitic rocks, which were intruded at different times in the Tertiary. The two principal rock types are granodiorite and quartz diorite, but small bodies of quartz monzonite diorite, and alaskite are found in many parts of the area. Contacts between the various rock types may be either abrupt or gradational. All rocks of the Chilliwack batholith are younger than the other rock types except the Skagit and Hannegan Volcanics, which are in part younger than rocks of the batholith. At least two periods of deformation are indicated by the tight folding of the older Custer Gneiss and the greenschist and phyllite of Mount Shuksan and the gentle folding of the younger Chuckanut Formation. At least three periods of faulting occurred, one before and two after the intrusion of the Chilliwack batholith. The two largest fault structures are the Ross Lake fault zone and a long northeast-striking fault that extends for 20 miles from Mount Shuksan down the Chilliwack Valley. The Ross Lake fault zone is pro</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40430','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40430"><span>Fire effects on rock images and similar cultural resources [Chapter 5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Roger E. Kelly; Daniel F. McCarthy</p> <p>2012-01-01</p> <p>Throughout human global history, people have purposely altered natural rock surfaces by drilling, drawing, painting, incising, pecking, abrading and chiseling images into stone. Some rock types that present suitable media surfaces for these activities are fine-grained sandstones and granites, basalts, volcanic tuff, dolomites, and limestones. Commonly called rock...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED193946.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED193946.pdf"><span>Rocks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lee, Alice</p> <p></p> <p>This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1117S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1117S"><span>Alteration Mineralogy and Geochemical Characteristics of Porphyry Cu-Mo Mineralization in Domaniç (Kütahya) Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sariiz, K.; Sendir, H.</p> <p>2012-04-01</p> <p>The study area is located at 30 km northwest of Domaniç (Kütahya) and covers on approximately 250 square kilometers. The Devonian (Paleozoic) schists which are composed of gneiss, mica schist and chlorite schist is the oldest unit of the study area. This units are overlain unconformably by the Permian Allıkaya Marbles. Eocene granodioritic intrusives cut other rock series and located as a batholite. Magmatic units present porphyric and holocrystalline textures. Granodioritic intrusions are represented by tonalite, tonalite porphyr, granodiorite, granodiorite porphyr, granite, diorite, diorite porphyries. Potassic, phyllitic and prophyllitic hydrothermal alteration zones are determined in host rocks and wallrocks. Mineralizations are observed as disseminated, and stockwork types within the granodioritic rocks. Ore minerals are pyrotine, pyrite, chalcopyrite, molybdenite, rutile, bornite, sphalerite, marcasite and limonite. Geochemically, it is of sub-alkaline affinity, belongs to the high-K, calc-alkaline series and displays features of typical I-type affinity. They show enrichment in large-ion lithophile elements (LIL) and depletion Nb and Ti indicating a subduction zone related magmatic signature for their origin. δ18O (quartz) values range from 8,8 to 12,1 ‰. δ18O (biotite) and δD (biotite) values range from 2,6 to 6,1 ‰ and -87 - -125 (SMOW). These values indicate that mixture magmatic-meteoric of hydrothermal solutions origin which are potassic to propylitic zones. δ13C (calcite) values range from 1,9 to 3,3 ‰ (PDB). Calcite values within the marine carbonates in the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/20529','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/20529"><span>Rock Slope Design Criteria : Executive Summary Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2010-06-01</p> <p>Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1983/0736/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1983/0736/report.pdf"><span>Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, Gordon R.</p> <p>1983-01-01</p> <p>Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_O1_deliverable_82-Algoma-_superior-_and%20oolitic-type_iron_deposits/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_O1_deliverable_82-Algoma-_superior-_and%20oolitic-type_iron_deposits/"><span>Permissive tracts for algoma-, superior-, and oolitic-type iron deposits in Mauritania (phase V, deliverable 82): Chapter O1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Taylor, Cliff D.; Horton, John D.</p> <p>2012-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017M%26PS...52..251B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017M%26PS...52..251B"><span>Chemical layering in the upper mantle of Mars: Evidence from olivine-hosted melt inclusions in Tissint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basu Sarbadhikari, A.; Babu, E. V. S. S. K.; Vijaya Kumar, T.</p> <p>2017-02-01</p> <p>Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine-hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine-phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76-70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66-55). REE-plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole-rock. Model calculations indicate two-stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in 10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole-rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE-rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA08698&hterms=Spirit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DSpirit','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA08698&hterms=Spirit&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DSpirit"><span>Spirit Discovers New Class of Igneous Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table. <p/> All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals. <p/> The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt. %' indicates that the numbers tell what percentage of the total weight of each rock is silica (on the horizontal scale) and what percentage is oxides of sodium and potassium (on the vertical scale). The thin lines separate volcanic rock types identified on Earth by different scientific names such as foidite and picrobasalt. Various classes of Gusev rocks (see box in upper right) all plot either on or to the left of the green lines, which define 'alkaline' and 'subalkaline' categories (subalkaline rocks have more silica than alkaline rocks). <p/> Members of the rover team have named different classes of rocks after specimens examined by Spirit that represent their overall character. During the rover's travels, Spirit discovered that Adirondack-class rocks littered the Gusev plains; that Backstay, Irvine, and Wishstone-class rocks occurred as loose blocks on the northwest slope of 'Husband Hill'; and that outcrops of Algonquin-class rocks protruded in several places on the southeast face. <p/> These rocks have less silica than all previously analyzed Mars samples, which are subalkaline. The previously analyzed Mars samples include Martian meteorites found on Earth and rocks analyzed by the Mars Pathfinder rover in 1997. Gusev is the first documented example of an alkaline igneous province on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..356....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..356....1B"><span>Non-Hawaiian lithostratigraphy of Louisville seamounts and the formation of high-latitude oceanic islands and guyots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buchs, David M.; Williams, Rebecca; Sano, Shin-ichi; Wright, V. Paul</p> <p>2018-05-01</p> <p>Guyots are large seamounts with a flat summit that is generally believed to form due to constructional biogenic and/or erosional processes during the formation of volcanic islands. However, despite their large abundance in the oceans, there are still very few direct constraints on the nature and formation of guyots, in particular those formed at high latitude that lack a thick cap of shallow-marine carbonate rocks. It is largely accepted based on geophysical constraints and surficial observations/sampling that the summit platform of these guyots is shaped by wave abrasion during post-volcanic subsidence of volcanic islands. Here we provide novel constraints on this hypothesis and the summit geology of guyots with a lithostratigraphic analysis of cores from three Louisville seamounts (South Pacific) collected during Expedition 330 of the Integrated Ocean Drilling Program (IODP). Thirteen lithofacies of sedimentary and volcanic deposits are described, which include facies not previously recognized on the top of guyots, and offer a new insight into the formation of high-latitude oceanic islands on a fast-moving plate. Our results reveal that the lithostratigraphy of Louisville seamounts preserves a very consistent record of the formation and drowning of volcanic islands, with from bottom to top: (i) volcaniclastic sequences with abundant lava-fed delta deposits, (ii) submarine to subaerial shield lava flows, (iii) post-volcanic shallow to deeper marine sedimentary rocks lacking thick reef deposits, (iv) post-erosional rejuvenated volcanic rocks, and (v) pelagic sediments. Recognition of erosional boundaries between subaerial lava flows and shallow-marine sedimentary rocks provides novel support for post-volcanic wave planation of guyots. However, the summit geology of Louisville seamounts is dissimilar to that of high-latitude Hawaiian-Emperor guyots that have emplaced in a similar tectonic and environmental setting and that include thicker lava stacks with apparently little lava-fed delta deposits. To explain observed lithostratigraphic discrepancy we propose that Louisville seamounts represent a distinct type of intraplate ocean volcano characterized by formation of a smaller island, with a central shield volcano surrounded by extended shallow-marine shelves formed by lava-fed deltas. In this interpretation the summit platform of Louisville-type guyots results from early (syn-volcanic) subaerial to shallow-marine constructional volcanic processes and marine erosion, enhanced by later (post-volcanic) wave planation. This contrasts with larger Hawaiian edifices that are capped by thicker shield volcanoes, and that develop an extended wave planation surface during post-volcanic subsidence (in the absence of efficient coral growth). The difference between Hawaiian- and Louisville-type volcanic islands and guyots can be explained by contrasted dynamic disequilibrium between magmatic growth, erosion, and subsidence during the island-building stage. Unlike Hawaiian-type volcanoes, Louisville seamounts are characterized by alkaline magmatism that extends from the late seamount to island stages. This supports more limited magmatic growth during the formation of Louisville islands, and we hypothesize that this promotes the formation of ephemeral shallow-marine platforms and extended lava-fed deltas. Hawaiian-type volcanoes and guyots are unusually large in the population of intraplate ocean volcanoes. Louisville-type guyots as defined in this study could therefore represent a very common but yet poorly documented mode of oceanic island formation in the Pacific Ocean and other similar fast-moving plate settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EnGeo..57.1299P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EnGeo..57.1299P"><span>Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui</p> <p>2009-05-01</p> <p>This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6819903-igneous-petrogenesis-tectonic-setting-granitic-rocks-from-eastern-blue-ridge-alabama-appalachians','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6819903-igneous-petrogenesis-tectonic-setting-granitic-rocks-from-eastern-blue-ridge-alabama-appalachians"><span>Igneous petrogenesis and tectonic setting of granitic rocks from the eastern Blue Ridge, Alabama Appalachians</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Drummond, M.S.; Allison, D.T.; Tull, J.F.</p> <p>1994-03-01</p> <p>A span of 150 my of orogenic activity is recorded within the granitic rocks of the eastern Blue Ridge of Alabama (EBR). Four discrete episodes of plutonism can be differentiated, each event exhibiting distinct field relations and geochemical signatures. (1) Penobscotian stage: this initial stage of plutonic activity is represented by the Elkahatchee Quartz Diorite (EQD), a premetamorphic (495 Ma) batholith and the largest intrusive complex (880 km[sup 2]) exposed in the Blue Ridge. Calc-alkaline I-type tonalite-granodiorite are the principal lithologies, with subordinate cumulate hbl-bt diorite, metadacite, granite and trondhjemite. The parental tonalitic magmas are interpreted to have been derivedmore » from a subducted MORB source under eclogite to get amphibolite conditions. (2) Taconic stage: the Kowaliga augen gneiss (KAG) and the Zana granite gneiss (ZG) are 460 Ma granitic bodies that reside in the SE extremity and structurally highest portion of the EBR. Both of these bodies are pre-metamorphic with strongly elongate sill- and pod-like shapes concordant with S[sub 1] foliation. Granite and granodiorite comprise the bulk of the KAG. (3) Acadian stage: Rockford Granite (RG), Bluff springs Granite (BSG, 366 Ma), and Almond Trondhjemite represent a suite of pre- to syn-metamorphic granitic intrusions. (4) late-Acadian stage: The Blakes Ferry pluton (BFP) is a post-kinematic pluton displaying spectacular by schlieren igneous flow structures, but no metamorphic fabric. The pluton's age can be bracketed between a 366 Ma age on the BSG and a 324 Ma K-Ar muscovite age on the BFP. BFP's petrogenesis has involved partial melting a MORB source followed by assimilation of metasedimentary host rock.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993LPI....24..369C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993LPI....24..369C"><span>The granulite suite: Impact melts and metamorphic breccias of the early lunar crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cushing, J. A.; Taylor, G. J.; Norman, M. D.; Keil, K.</p> <p>1993-03-01</p> <p>The granulite suite consists of two major types of rocks. One is coarse-grained and poikilitic with many euhedral crystals of olivine and plagioclase. These characteristics indicate crystallization from a melt; the poikilitic granulites are impact melt breccias. The other group is finer-grained and granoblastic, with numerous triple junctions; the granoblastic granulites are metamorphic rocks. Compositional groups identified by Lindstrom and Lindstrom contain both textural types. Two pyroxene thermometry indicates that both groups equilibrated at 1000 to 1150 C. Calculations suggest that the granoblastic group, which has an average grain size of about 80 microns, was annealed for less than 6 x 10 exp 4 y at 1000 C, and for less than 2500 y at 1150 C. Similar equilibration temperatures suggest that both groups were physically associated after impact events produced the poikilitic melts. Granulitic impactites hold important information about the pre-Nectarian bombardment history of the Moon, and the composition and thermal evolution of the early lunar crust. Granulitic impactites are widely considered to be an important rock type in the lunar crust, but how they formed is poorly understood. Metal compositions and elevated concentrations of meteoritic siderophile elements suggest that most lunar granulites are impact breccias. Their occurrence as clasts in approximately 3.9 Ga breccias, and Ar-(40-39) ages greater than or = 4.2 Ga for some granulites show that they represent a component of the lunar crust which formed prior to the Nectarian cataclysm. Petrographic characteristics of lunar granulites indicate at least two endmember textural variants which apparently formed in fundamentally different ways. One type has granoblastic textures consisting of equant, polygonal to rounded grains, and abundant triple junctions with small dispersions around 120 degrees indicating a close approach to textural equilibrium. As suggested by many authors, granoblastic granulites probably formed by subsolidus annealing and recrystallization of fragmental or glassy protoliths. Examples of this type include 15418, 78155, and 79215. The other textural type consists of poikilitic to poikiloblastic rocks with euhedral to subhedral plagioclase and olivine enclosed by interstitial pyroxene. In some cases, the texture resembles that of an orthocumulate. Examples of this type include 60035, 67955, and 77017. Rounding of grain edges is common in poikilitic granulites, but the regular crystal shapes and widely dispersed dihedral angles show they are far from textural equilibrium. <The textures of poikilitic granulites are more consistent with the formation of these rocks by crystallization from a melt than by subsolidus metamorphism. &A few samples have been recognized with textural characteristics transitional between those of the granoblastic and poikiloblastic endmembers (e.g., 72559, 78527). Pyroxene compositions taken from the literature and determined for this study by electron microprobe were used to calculate equilibration temperatures. The Kretz Ca transfer (solvus) thermometer and the Lindsley and Anderson graphical method both give similar temperatures, which range from approximately 1000 to 1150 C. There is no apparent temperature difference between granoblastic and poikilitic varieties, but there is a hint in these data that the more ferroan varieties equilibrated to lower temperatures. *Additional studies are in progress to test this possibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007725&hterms=Recrystallization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DRecrystallization','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007725&hterms=Recrystallization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DRecrystallization"><span>The granulite suite: Impact melts and metamorphic breccias of the early lunar crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cushing, J. A.; Taylor, G. J.; Norman, M. D.; Keil, K.</p> <p>1993-01-01</p> <p>The granulite suite consists of two major types of rocks. One is coarse-grained and poikilitic with many euhedral crystals of olivine and plagioclase. These characteristics indicate crystallization from a melt; the poikilitic granulites are impact melt breccias. The other group is finer-grained and granoblastic, with numerous triple junctions; the granoblastic granulites are metamorphic rocks. Compositional groups identified by Lindstrom and Lindstrom contain both textural types. Two pyroxene thermometry indicates that both groups equilibrated at 1000 to 1150 C. Calculations suggest that the granoblastic group, which has an average grain size of about 80 microns, was annealed for less than 6 x 10 exp 4 y at 1000 C, and for less than 2500 y at 1150 C. Similar equilibration temperatures suggest that both groups were physically associated after impact events produced the poikilitic melts. Granulitic impactites hold important information about the pre-Nectarian bombardment history of the Moon, and the composition and thermal evolution of the early lunar crust. Granulitic impactites are widely considered to be an important rock type in the lunar crust, but how they formed is poorly understood. Metal compositions and elevated concentrations of meteoritic siderophile elements suggest that most lunar granulites are impact breccias. Their occurrence as clasts in approximately 3.9 Ga breccias, and Ar-(40-39) ages greater than or = 4.2 Ga for some granulites show that they represent a component of the lunar crust which formed prior to the Nectarian cataclysm. Petrographic characteristics of lunar granulites indicate at least two endmember textural variants which apparently formed in fundamentally different ways. One type has granoblastic textures consisting of equant, polygonal to rounded grains, and abundant triple junctions with small dispersions around 120 degrees indicating a close approach to textural equilibrium. As suggested by many authors, granoblastic granulites probably formed by subsolidus annealing and recrystallization of fragmental or glassy protoliths. Examples of this type include 15418, 78155, and 79215. The other textural type consists of poikilitic to poikiloblastic rocks with euhedral to subhedral plagioclase and olivine enclosed by interstitial pyroxene. In some cases, the texture resembles that of an orthocumulate. Examples of this type include 60035, 67955, and 77017. Rounding of grain edges is common in poikilitic granulites, but the regular crystal shapes and widely dispersed dihedral angles show they are far from textural equilibrium. The textures of poikilitic granulites are more consistent with the formation of these rocks by crystallization from a melt than by subsolidus metamorphism. A few samples have been recognized with textural characteristics transitional between those of the granoblastic and poikiloblastic endmembers (e.g., 72559, 78527). Pyroxene compositions taken from the literature and determined for this study by electron microprobe were used to calculate equilibration temperatures. The Kretz Ca transfer (solvus) thermometer and the Lindsley and Anderson graphical method both give similar temperatures, which range from approximately 1000 to 1150 C. There is no apparent temperature difference between granoblastic and poikilitic varieties, but there is a hint in these data that the more ferroan varieties equilibrated to lower temperatures. Additional studies are in progress to test this possibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810064399&hterms=fossils&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfossils','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810064399&hterms=fossils&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfossils"><span>Nature of the fossil evidence - Moon and meteorites. [solar activity effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walker, R. M.</p> <p>1980-01-01</p> <p>The nature of the fossil evidence to be found in extraterrestrial materials concerning the history of solar activity is reviewed. The various types of lunar rocks and meteorites containing evidence of exposure to solar radiations are distinguished, including igneous rocks, breccias, glassy agglutinates, single mineral crystals, carbonaceous meteorites, and the Antarctic meteorites, some of which fell to earth as much as a million years ago. The characteristic effects of energetic particles from space in materials are then examined, including ion implantation and surface radiation damage to a depth of several hundred A by the solar wind, radioactivity, electron trapping and track production induced by solar flares to depths from millimeters to centimeters, and spallation due to galactic cosmic rays at depths from centimeters to meters. Complications in the interpretation of radiation exposure histories represented by dynamic surface processes, the nonsolar origin of some trapped elements, and difficulties in determining the duration and epoch of surface exposure of individual crystals are also noted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023864','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023864"><span>Diet of Crotalus lepidus klauberi (Banded Rock Rattlesnake)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Holycross, A.T.; Painter, C.W.; Prival, D.B.; Swann, D.E.; Schroff, M.J.; Edwards, T.; Schwalbe, C.R.</p> <p>2002-01-01</p> <p>We describe the diet of Crotalus lepidus klauberi (Banded Rock Rattlesnake) using samples collected in the field and from museum specimens, as well as several records from unpublished reports. Most records (approximately 91%) were from the northern Sierra Madrean Archipelago. Diet consisted of 55.4% lizards, 28.3% scolopendromorph centipedes, 13.8% mammals, 1.9% birds, and 0.6% snakes. Sceloporus spp. comprised 92.4% of lizards. Extrapolation suggests that Sceloporus jarrovii represents 82.3% of lizard records. Diet was independent of geographic distribution (mountain range), sex, source of sample (stomach vs. intestine/feces), and age class. However, predator snout-vent length differed significantly among prey types; snakes that ate birds were longest, followed in turn by those that ate mammals, lizards, and centipedes. Collection date also differed significantly among prey classes; the mean date for centipede records was later than the mean date for squamate, bird, or mammal records. We found no difference in the elevation of collection sites among prey classes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.V52A..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.V52A..07S"><span>High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.</p> <p>2007-05-01</p> <p>Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type rocks are part of a genetically linked suite rather than a distinct magma type. Their comparative scarcity in many subduction related associations is probably a function of tectonic environment rather than of fundamental petrological factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title30-vol1/pdf/CFR-2011-title30-vol1-sec33-4.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title30-vol1/pdf/CFR-2011-title30-vol1-sec33-4.pdf"><span>30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title30-vol1/pdf/CFR-2010-title30-vol1-sec33-4.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title30-vol1/pdf/CFR-2010-title30-vol1-sec33-4.pdf"><span>30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title30-vol1/pdf/CFR-2014-title30-vol1-sec33-4.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title30-vol1/pdf/CFR-2014-title30-vol1-sec33-4.pdf"><span>30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title30-vol1/pdf/CFR-2013-title30-vol1-sec33-4.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title30-vol1/pdf/CFR-2013-title30-vol1-sec33-4.pdf"><span>30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title30-vol1/pdf/CFR-2012-title30-vol1-sec33-4.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title30-vol1/pdf/CFR-2012-title30-vol1-sec33-4.pdf"><span>30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for which... specifically to prevent dissemination of airborne dust generated by drilling into coal-mine rock strata in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940012132','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940012132"><span>Preliminary analysis of thermal-infrared multispectral scanner data of the Iron Hill, Colorado carbonatite-alkalic rock complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rowan, Lawrence C.; Watson, Kenneth; Miller, Susanne H.</p> <p>1992-01-01</p> <p>The Iron Hill carbonatite-alkalic igneous rock complex is in the Powderhorn mining district, approximately 40 km south-southwest of Gunnison, Colorado. The complex, which occupies about 30 sq km, was emplaced in metasedimentay and metavolcanic rocks during the later Precambrian or early Cambrian. The main rock types in the complex, from oldest to youngest, are fenite, pyroxenite, uncompahgrite, ijolite, nepheline syenite, and dolomitic carbonatite. The carbonatite is limonitic and forms an elliptially shaped 4 sq km stock. Calcitic and dolomitic carbonatite dikes are also numerous throughout the complex and in the pre-existing rocks. Pyroxenite is the most widespread rock type within the complex, but pyroxene is extensively altered to biotite, phlogopite, and vermiculite. Fenite, which formed through Na, K-metasomatism of the country rocks, typically contains more feldspar and less quartz than the equivalent unaltered country rocks. The other alkalic rock types are less widespread and less well exposed. Parts of the complex are covered by Oligocene ash-flow tuff and alluvial, colluvial, and glacial deposits. Sagebrush and grass cover is moderately dense to very dense at low to intermediate elevations; coniferous tree cover is dense at high elevations and on some north-facing slopes at lower elevations. A new algorithm was used to compute spectral emissivity ratios, independent of any emissivity assumptions. This algorithm has the advantage that any of the possible emissivity ratios can be computed and, thus, a large variety of composite ratio images can be constructed, which permits examination of various geologic hypotheses based on the spectral properties of the surface materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6502F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6502F"><span>Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc</p> <p>2016-04-01</p> <p>In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was conclude that the same hydrothermal fluid in geothermal system was reached to the surface and interacted with the surface rocks. Our conceptual geothermal model for Cappadocia Geothermal Province based on our geochemical and hydrogeochemical data in combination with geological and geophysical information suggest that the geothermal resources in this region are controlled by primary (active fault) and secondary (buried fault) tectonic belts. Further, our geochemical data indicate the Paleozoic-Mesozoic marble and gneiss being the reservoir rocks. Geogradient and impending heat fluxes to the surface with a possible crustal thinning, which was developed after regional tectonic activities during the Late Pliocene-Quaternary period, constitutes the heat sources. In addition, our study suggest that the Quaternary tuff and ignimbrites of Cappadocia Volcanics represent the seal rock of the geothermal system. In conclusion this study provide evidence for a significant geothermal potential in the Cappadocia region with well-defined seal rocks. However, further studies are needed to resolve the geothermal fluid source problem. Keywords: Cappadocia, geothermal systems, geochemistry, rare earth elements, hydrogeochemistry, hydrothermal alteration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7835T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7835T"><span>Reactivation of pre-existing mechanical anisotropies during polyphase tectonic evolution: slip tendency analysis as a tool to constrain mechanical properties of rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Traforti, Anna; Bistacchi, Andrea; Massironi, Matteo; Zampieri, Dario; Di Toro, Giulio</p> <p>2017-04-01</p> <p>Intracontinental deformation within the upper crust is accommodated by nucleation of new faults (generally satisfying the Anderson's theory of faulting) or brittle reactivation of pre-existing anisotropies when certain conditions are met. How prone to reactivation an existing mechanical anisotropy or discontinuity is, depends on its mechanical strength compared to that of the intact rock and on its orientation with respect to the regional stress field. In this study, we consider how different rock types (i.e. anisotropic vs. isotropic) are deformed during a well-constrained brittle polyphase tectonic evolution to derive the mechanical strength of pre-existing anisotropies and discontinuities (i.e. metamorphic foliations and inherited faults/fractures). The analysis has been carried out in the Eastern Sierras Pampeanas of Central Argentina. These are a series of basement ranges of the Andean foreland, which show compelling evidence of a long-lasting brittle deformation history from the Early Carboniferous to Present time, with three main deformational events (Early Triassic to Early Jurassic NE-SW extension, Early Cretaceous NW-SE extension and Miocene to Present ENE-WNW compression). The study area includes both isotropic granitic bodies and anisotropic phyllosilicate-bearing rocks (gneisses and phyllites). In this environment, each deformation phase causes significant reactivation of the inherited structures and rheological anisotropies, or alternatively formation of neo-formed Andersonian faults, thus providing a multidirectional probing of mechanical properties of these rocks. A meso- and micro-structural analysis of brittle reactivation of metamorphic foliation or inherited faults/fractures revealed that different rock types present remarkable differences in the style of deformation (i.e., phyllite foliation is reactivated during the last compressional phase and cut by newly-formed Andersonian faults/fractures during the first two extensional regimes; instead, gneiss foliation is pervasively reactivated during all the tectonic phases). Considering these observations, we applied a Slip Tendency analysis to estimate the upper and lower bounds to the friction coefficient for slip along the foliations (μs) and along pre-existing faults/fractures (μf). If an hypothetical condition with simultaneous failure on the inherited mechanical discontinuity (foliation or pre-existing fault/fracture) and new Andersonian faults is assumed, the ratio between μsor μf and μ0(the average friction coefficient for intact isotropic rocks) can be calculated as μs (or μf) = NTs ṡ μ0(where NTs represents the normalized slip tendency of the analyzed discontinuity). When just reactivation of foliation/faults/fractures is observed (i.e. no newly-formed Andersonian faults are recognised), an upper bound to μsand μfcan be estimated as μs (or μf) < NTs ṡ μ0. By contrast, the lower bound to μsand μfcan be obtained as μs (or μf) > NTs ṡ μ0, when the mechanical anisotropies are not reactivated and new Andersonian faults nucleate. Applying the above analysis to multiple deformation phases and rock types, we were able to approximatively estimate μs < 0.4 (gneisses) and 0.1 < μs < 0.2 (phyllites) and μf ≈ 0.4 (phyllites) and 0.3 (gneisses).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1399569-co2-induced-chemo-mechanical-alteration-reservoir-rocks-assessed-via-batch-reaction-experiments-scratch-testing','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1399569-co2-induced-chemo-mechanical-alteration-reservoir-rocks-assessed-via-batch-reaction-experiments-scratch-testing"><span>CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.</p> <p></p> <p>Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSAES..82...16D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSAES..82...16D"><span>Petrogenesis of metaultramafic rocks from the Quadrilátero Ferrífero and adjacent terrains, Minas Gerais, Brazil: Two events of ultramafic magmatism?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Fonseca, Gabriela Magalhães; Jordt-Evangelista, Hanna; Queiroga, Gláucia Nascimento</p> <p>2018-03-01</p> <p>In the worldwide known Quadrilátero Ferrífero and the adjacent terrains, southeastern Brazil, many serpentinite and soapstone quarries, and some rare bodies of metaultramafic rocks that partially preserve minerals or textures from the original igneous protolith can be found. It is not known if the protoliths and the ages of the metaultramafic rocks found in the Quadrilátero Ferrífero (and its oriental basement) and Mineiro Belt regions are the same or if they represent distinct magmatic episodes. The petrogenetic investigation, specially concerning the REE contents, aimed to gather informations about the type of magmatism and the mantle source in order to compare the metaultramafic rocks of both regions. The interpretation of the data concerning petrography, mineral chemistry and geochemistry shows that the metaultramafic rocks are similar to komatiitic peridotites, with MgO contents > 22 wt % and TiO2 < 0.9 wt %. The plot of the REE for the lithotypes found in the Quadrilátero Ferrífero shows decrease in LREE possibly reflecting the depletion of the mantle source. On the other hand the samples from the Mineiro Belt are enriched in LREE suggesting a mantle source enriched in these elements. This enrichment may have been caused by mantle metassomatism that occurred during accretion of the Paleoproterozoic magmatic arc that generated the Mineiro belt. In this paper, we therefore suggest two periods of ultramafic magmatism. The first one found in the Archean basement of the Quadrilátero Ferrífero, with a depleted mantle source. The second occurred in the Paleoproterozoic basement of the Mineiro belt, having a metassomatized mantle as source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAESc.124..102M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAESc.124..102M"><span>Origin and geodynamic setting of Late Cenozoic granitoids in Sulawesi, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maulana, Adi; Imai, Akira; Van Leeuwen, Theo; Watanabe, Koichiro; Yonezu, Kotaro; Nakano, Takanori; Boyce, Adrian; Page, Laurence; Schersten, Anders</p> <p>2016-07-01</p> <p>Late Cenozoic granitoids are widespread in a 1600 km long belt forming the Western and Northern Sulawesi tectono-magmatic provinces. They can be divided into three rock series: shoshonitic (HK), high-K felsic calc-alkaline (CAK), and normal calc-alkaline to tholeiitic (CA-TH). Representative samples collected from eleven plutons, which were subjected to petrography, major element, trace element, Sr, Nd, Pb isotope and whole-rock δ18O analyses, are all I-type and metaluminous to weakly peraluminous. The occurrence of the two K-rich series is restricted to Western Sulawesi, where they formed in an extensional, post-subduction tectonic setting with astenospheric upwelling providing thermal perturbation and adiabatic decompression. Two parental magma sources are proposed: enriched mantle or lower crustal equivalent for HK magmas, and Triassic igneous rocks in a Gondwana-derived fragment thrust beneath the cental and northern parts of Western Sulawesi for CAK magmas. The latter interpretation is based on striking similarities in radiogenic isotope and trace element signatures. CA-TH granitoids are found mostly in Northern Sulawesi. Partial melting of lower-middle crust amphibolites in an active subduction environment is the proposed origin of these rocks. Fractional crystallization and crustal contamination have played a significant role in magma petrogenesis, particularly in the case of the HK and CAK series. Contamination by organic carbon-bearing sedimentary rocks of the HK and CAK granitoids in the central part of Western Sulawesi is suggested by their ilmenite-series (reduced) character. The CAK granitoids further to the north and CA-TH granitoids in Northern Sulawesi are typical magnetite-series (oxidized). This may explain differences in mineralization styles in the two regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSAES..71..201M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSAES..71..201M"><span>Post-collisional Ediacaran volcanism in oriental Ramada Plateau, southern Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matté, Vinícius; Sommer, Carlos Augusto; Lima, Evandro Fernandes de; Philipp, Ruy Paulo; Basei, Miguel Angelo Stipp</p> <p>2016-11-01</p> <p>Ediacaran volcanic sequences in southernmost Brazil are related to intense post-collisional magmatism of the Brasiliano Orogeny. A portion of this volcanism occurs in the oriental Ramada Plateau located in the center part of the Rio Grande Sul State and is correlated with Hilário and Acampamento Velho formations. The first one is represented dominantly by lava flows and dikes of shoshonitic andesitic composition, besides of volcanogenic sedimentary deposits. The acid rocks of the Acampamento Velho Formation are expressive in the area, comprising high-silica ignimbrites, usually densely welded. Dikes and domes are common too and rhyolitic lava flows occur at the top and intercalated to ignimbrites in the middle of the sequence. The acid rock association has a sodic alkaline affinity. In this unit we mapped a subvolcanic sill of trachyte showing evidence for magma mixing with the rhyolitic magma. It has sodic alkaline affinity, and FeOt/FeO + MgO ratios and agpaitic index lower than those recorded in the rhyolites/ignimbrites. The Acampamento Velho Formation includes in this area, subordinately, basalts as àà flows and dikes intercalated with acid rocks. They have sodic alkaline nature and characteristics of intraplate basic rocks. New zircon U-Pb dating indicates crystallization age of 560 ± 2 Ma in a densely welded ignimbrite, 560 ± 14 Ma for a mafic trachyte and 562 ± 2 Ma for a subvolcanic rhyolite. The sodic alkaline rocks in this region evolved by fractional crystallization processes and magma mixing with major crustal contribution at approximately 560 Ma. The chemical characteristics are similar to those of A-type granites associated with Neoproterozoic post-collision magmatism in the Sul-rio-grandense Shield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRB..11010201P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRB..11010201P"><span>Modeling magma flow and cooling in dikes: Implications for emplacement of Columbia River flood basalts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petcovic, Heather L.; Dufek, Josef D.</p> <p>2005-10-01</p> <p>The Columbia River flood basalts include some of the world's largest individual lava flows, most of which were fed by the Chief Joseph dike swarm. The majority of dikes are chilled against their wall rock; however, rare dikes caused their wall rock to undergo partial melting. These partial melt zones record the thermal history of magma flow and cooling in the dike and, consequently, the emplacement history of the flow it fed. Here, we examine two-dimensional thermal models of basalt injection, flow, and cooling in a 10-m-thick dike constrained by the field example of the Maxwell Lake dike, a likely feeder to the large-volume Wapshilla Ridge unit of the Grande Ronde Basalt. Two types of models were developed: static conduction simulations and advective transport simulations. Static conduction simulation results confirm that instantaneous injection and stagnation of a single dike did not produce wall rock melt. Repeated injection generated wall rock melt zones comparable to those observed, yet the regular texture across the dike and its wall rock is inconsistent with repeated brittle injection. Instead, advective flow in the dike for 3-4 years best reproduced the field example. Using this result, we estimate that maximum eruption rates for Wapshilla Ridge flows ranged from 3 to 5 km3 d-1. Local eruption rates were likely lower (minimum 0.1-0.8 km3 d-1), as advective modeling results suggest that other fissure segments as yet unidentified fed the same flow. Consequently, the Maxwell Lake dike probably represents an upper crustal (˜2 km) exposure of a long-lived point source within the Columbia River flood basalts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1399569-co2-induced-chemo-mechanical-alteration-reservoir-rocks-assessed-via-batch-reaction-experiments-scratch-testing','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1399569-co2-induced-chemo-mechanical-alteration-reservoir-rocks-assessed-via-batch-reaction-experiments-scratch-testing"><span>CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.; ...</p> <p>2017-09-22</p> <p>Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B23B0454A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B23B0454A"><span>Quantifying Biofilm in Porous Media Using Rock Physics Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alhadhrami, F. M.; Jaiswal, P.; Atekwana, E. A.</p> <p>2012-12-01</p> <p>Biofilm formation and growth in porous rocks can change their material properties such as porosity, permeability which in turn will impact fluid flow. Finding a non-intrusive method to quantify biofilms and their byproducts in rocks is a key to understanding and modeling bioclogging in porous media. Previous geophysical investigations have documented that seismic techniques are sensitive to biofilm growth. These studies pointed to the fact that microbial growth and biofilm formation induces heterogeneity in the seismic properties. Currently there are no rock physics models to explain these observations and to provide quantitative interpretation of the seismic data. Our objectives are to develop a new class of rock physics model that incorporate microbial processes and their effect on seismic properties. Using the assumption that biofilms can grow within pore-spaces or as a layer coating the mineral grains, P-wave velocity (Vp) and S-wave (Vs) velocity models were constructed using travel-time and waveform tomography technique. We used generic rock physics schematics to represent our rock system numerically. We simulated the arrival times as well as waveforms by treating biofilms either as fluid (filling pore spaces) or as part of matrix (coating sand grains). The preliminary results showed that there is a 1% change in Vp and 3% change in Vs when biofilms are represented discrete structures in pore spaces. On the other hand, a 30% change in Vp and 100% change in Vs was observed when biofilm was represented as part of matrix coating sand grains. Therefore, Vp and Vs changes are more rapid when biofilm grows as grain-coating phase. The significant change in Vs associated with biofilms suggests that shear velocity can be used as a diagnostic tool for imaging zones of bioclogging in the subsurface. The results obtained from this study have significant implications for the study of the rheological properties of biofilms in geological media. Other applications include assessing biofilms used as barriers in CO2 sequestration studies as well as assisting in evaluating microbial enhanced oil recovery methods (MEOR), where microorganisms are used to plug highly porous rocks for efficient oil production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014074','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014074"><span>EVALUATION OF LOW-SUN ILLUMINATED LANDSAT-4 THEMATIC MAPPER DATA FOR MAPPING HYDROTHERMALLY ALTERED ROCKS IN SOUTHERN NEVADA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Podwysocki, Melvin H.; Power, Marty S.; Salisbury, Jack; Jones, O.D.</p> <p>1984-01-01</p> <p>Landsat-4 Thematic Mapper (TM) data of southern Nevada collected under conditions of low-angle solar illumination were digitally processed to identify hydroxyl-bearing minerals commonly associated with hydrothermal alteration in volcanic terrains. Digital masking procedures were used to exclude shadow areas and vegetation and thus to produce a CRC image suitable for testing the new TM bands as a means to map hydrothermally altered rocks. Field examination of a masked CRC image revealed that several different types of altered rocks displayed hues associated with spectral characteristics common to hydroxyl-bearing minerals. Several types of unaltered rocks also displayed similar hues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B41F..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B41F..07B"><span>Biogeography of serpentinite-hosted microbial ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brazelton, W.; Cardace, D.; Fruh-Green, G.; Lang, S. Q.; Lilley, M. D.; Morrill, P. L.; Szponar, N.; Twing, K. I.; Schrenk, M. O.</p> <p>2012-12-01</p> <p>Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). To date, however, the "serpentinite microbiome" is poorly constrained- almost nothing is known about the microbial diversity endemic to rocks actively undergoing serpentinization. Through the Census of Deep Life, we have obtained 16S rRNA gene pyrotag sequences from fluids and rocks from serpentinizing ophiolites in California, Canada, and Italy. The samples include high pH serpentinite springs, presumably representative of deeper environments within the ophiolite complex, wells which directly access subsurface aquifers, and rocks obtained from drill cores into serpentinites. These data represent a unique opportunity to examine biogeographic patterns among a restricted set of microbial taxa that are adapted to similar environmental conditions and are inhabiting sites with related geological histories. In general, our results point to potentially H2-utilizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These general taxonomic and biogeochemical trends were also observed in seafloor Lost City hydrothermal chimneys, indicating that we are beginning to identify a core serpentinite microbial community that spans marine and continental settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJEaS.107..811P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJEaS.107..811P"><span>Petrogenetic and geodynamic origin of the Neoarchean Doré Lake Complex, Abitibi subprovince, Superior Province, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Woods, Ryan</p> <p>2018-04-01</p> <p>The Neoarchean (ca. 2728 Ma) anorthosite-bearing Doré Lake Complex in the northeastern Abitibi subprovince, Quebec, was emplaced into an association of intra-oceanic tholeiitic basalts and gabbros known as the Obatogamau Formation. The Obatogamau Formation constitutes the lower part of the Roy Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites, leucogabbros, gabbros and mafic dykes from the Doré Lake Complex and spatially associated basalts and gabbros of the Obatogamau Formation to assess their petrogenetic origin and geodynamic setting. Field and petrographic observations indicate that the Doré Lake Complex and associated volcanic rocks underwent extensive metamorphic alteration under greenschist facies conditions, resulting in widespread epidotization (20-40%) and chloritization (10-40%) of many rock types. Plagioclase recrystallized mainly to anorthite and albite endmembers, erasing intermediate compositions. Metamorphic alteration also led to the mobilization of many elements (e.g., LILE and transition metals) and to significant disturbance of the Rb-Sr and U-Pb isotope systems, resulting in 1935 ± 150 and 3326 ± 270 Ma errorchron ages, respectively. The Sm-Nd isotope system was less disturbed, yielding an errorchron age of 2624 ± 160 Ma. On many binary major and trace element diagrams, the least altered anorthosites and leucogabbros, and the gabbros and mafic dykes of the Doré Lake Complex plot in separate fields, signifying the presence of two distinct magma types in the complex. The gabbros and mafic dykes in the Doré Lake Complex share the geochemical characteristics of tholeiitic basalts and gabbros in the Obatogamau Formation, suggesting a possible genetic link between the two rock associations. Initial ɛNd (+2.6 to +5.0) and δ18O (+6.1 to +7.9‰) values for the Doré Lake Complex and gabbros of the Obatogamau Formation (ɛNd = +2.8 to +4.0; δ18O = +7.3 to 8.0‰) are consistent with depleted mantle sources. All rock types in the Doré Lake Complex and the Roy Group share the trace element characteristics of modern arc magmas, suggesting a suprasubduction zone setting for these two lithological associations. On the basis of regional geology and geochemical data, we suggest that the Doré Lake Complex and the Obatogamau Formation represent a dismembered fragment of a suture zone, like many Phanerozoic ophiolites, resulting from closure of a back-arc basin between 2703 and 2690 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJAsB..13..271S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJAsB..13..271S"><span>Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Heather D.; Baqué, Mickael; Duncan, Andrew G.; Lloyd, Christopher R.; McKay, Christopher P.; Billi, Daniela</p> <p>2014-05-01</p> <p>The Mojave Desert has been long considered a suitable terrestrial analogue to Mars in many geological and astrobiological aspects. The Silver Lake region in the Mojave Desert hosts several different rock types (talc, marble, quartz, white carbonate and red-coated carbonate) colonized by hypoliths within a few kilometres. This provides an opportunity to investigate the effect of rock type on hypolithic colonization in a given environment. Transmission measurements from 300 to 800 nm showed that the transmission of blue and UVA varied between rock types. The wavelength at which the transmission fell to 1% of the transmission at 600 nm was 475 nm for white carbonate and quartz, 425 nm for red-coated carbonate and talc and 380 nm for marble. The comparative analysis of the cyanobacterial component of hypoliths under different rocks, as revealed by sequencing 16S rRNA gene clone libraries, showed no significant variation with rock type; hypoliths were dominated by phylotypes of the genus Chroococcidiopsis, although less abundant phylotypes of the genus Loriellopsis, Leptolyngbya and Scytonema occurred. The comparison of the confocal laser scanning microscopy-λ (CLSM-λ) scan analysis of the spectral emission of the photosynthetic pigments of Chroococcidiopsis in different rocks with the spectrum of isolated Chroococcidiopsis sp. 029, revealed a 10 nm red shift in the emission fingerprinting for quartz and carbonate and a 5 nm red shift for talc samples. This result reflects the versatility of Chroococcidiopsis in inhabiting dry niches with different light availability for photosynthesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAfES.142...12A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAfES.142...12A"><span>Preliminary source rock evaluation and hydrocarbon generation potential of the early Cretaceous subsurface shales from Shabwah sub-basin in the Sabatayn Basin, Western Yemen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Al-Matary, Adel M.; Hakimi, Mohammed Hail; Al Sofi, Sadam; Al-Nehmi, Yousif A.; Al-haj, Mohammed Ail; Al-Hmdani, Yousif A.; Al-Sarhi, Ahmed A.</p> <p>2018-06-01</p> <p>A conventional organic geochemical study has been performed on the shale samples collected from the early Cretaceous Saar Formation from the Shabwah oilfields in the Sabatayn Basin, Western Yemen. The results of this study were used to preliminary evaluate the potential source-rock of the shales in the Saar Formation. Organic matter richness, type, and petroleum generation potential of the analysed shales were assessed. Total organic carbon content and Rock- Eval pyrolysis results indicate that the shale intervals within the early Cretaceous Saar Formation have a wide variation in source rock generative potential and quality. The analysed shale samples have TOC content in the range of 0.50 and 5.12 wt% and generally can be considered as fair to good source rocks. The geochemical results of this study also indicate that the analysed shales in the Saar Formation are both oil- and gas-prone source rocks, containing Type II kerogen and mixed Types II-III gradient to Type III kerogen. This is consistent with Hydrogen Index (HI) values between 66 and 552 mg HC/g TOC. The temperature-sensitive parameters such as vitrinite reflectance (%VRo), Rock-Eval pyrolysis Tmax and PI reveal that the analysed shale samples are generally immature to early-mature for oil-window. Therefore, the organic matter has not been altered by thermal maturity thus petroleum has not yet generated. Therefore, exploration strategies should focus on the known deeper location of the Saar Formation in the Shabwah-sub-basin for predicting the kitchen area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=75835&keyword=tribes+AND+clean+AND+water+AND+act&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=75835&keyword=tribes+AND+clean+AND+water+AND+act&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>TEMPORAL VARIATION IN OHIO RIVER MACROINVERTEBRATES: A HISTORICAL ROCK BASKET COMPARISON, 1960'S TO PRESENT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Collection of representative macroinvertebrate samples has historically been a problem for researchers working on the Ohio River. The USEPA utilized rock basket artificial substrates to sample benthic assemblages from 1964-1971. By this method, a steel basket (7" diameter, 11" ...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA602377','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA602377"><span>Computational and Experimental Investigation of Contaminant Plume Response to DNAPL Source Zone Architecture and Depletion in Porous and Fractured Media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-01</p> <p>Mass in the Rock Matrix. Table 4.8.5.1: Flow and Transport Parameters Used for TCE Dissolution Modeling in Discrete Fracture Approach. Table 4.8.5.2...represent the flow rate over time. Figure 4.8.4.5: The Profile of Estimated Diffusing TCE Front into the Rock Matrix. Figure 4.8.5.1: a) Mesh Used for TCE...fractured rocks . The work of Illman et al. (2009) motivates us to conduct a laboratory fractured rock block experiment in which a large number of pumping</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6250413-hardwood-gneiss-evidence-high-archean-metamorphism-southern-province-lake-superior-region','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6250413-hardwood-gneiss-evidence-high-archean-metamorphism-southern-province-lake-superior-region"><span>The Hardwood Gneiss: Evidence for high P-T Archean metamorphism in the southern province of the Lake Superior region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Peterson, J.W.; Geiger, C.A.</p> <p>1990-03-01</p> <p>The Hardwood Gneiss is an areally small unit of Precambrian granulite-grade rocks exposed in the Archean gneiss terrane of the southern Lake Superior region. The rocks are located in the southwestern portion of the Upper Peninsula of Michigan and consist of a structurally conformable package of quartzitic, metapelitic, amphibolitic, and metabasic units. Three texturally distinct garnet types are present in the metabasites and are interpreted to represent two metamorphic events. Geothermobarometry indicates conditions of {approximately}8.2-11.6 kbar and {approximately}770C for M1, and conditions of {approximately}6.0-10.1 kbar and {approximately}610-740C for M2. It is proposed that M1 was Archean and contemporaneous with amore » high-grade metamorphic event recorded in the Minnesota River Valley. The M2 event was probably Early Proterozoic and pre-Penokean, with metamorphic conditions more intense than those generally ascribed to the Penokean Orogeny in Michigan, but similar to the conditions reported for the Kapuskasing zone of Ontario. The high paleopressures and temperatures of the M1 event make the Hardwood Gneiss distinct from any rocks previously described in the southern Lake Superior region, and suggest intense tectonic activity during the Archean.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12815428','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12815428"><span>Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilson, A H; Shirey, S B; Carlson, R W</p> <p>2003-06-19</p> <p>Komatiites are ultramafic volcanic rocks containing more than 18 per cent MgO (ref. 1) that erupted mainly in the Archaean era (more than 2.5 gigayears ago). Although such compositions occur in later periods of Earth history (for example, the Cretaceous komatiites of Gorgona Island), the more recent examples tend to have lower MgO content than their Archaean equivalents. Komatiites are also characterized by their low incompatible-element content, which is most consistent with their generation by high degrees of partial melting (30-50 per cent). Current models for komatiite genesis include the melting of rock at great depth in plumes of hot, diapirically rising mantle or the melting of relatively shallow mantle rocks at less extreme, but still high, temperatures caused by fluxing with water. Here we report a suite of ultramafic lava flows from the Commondale greenstone belt, in the southern part of the Kaapvaal Craton, which represents a previously unrecognized type of komatiite with exceptionally high forsterite content of its igneous olivines, low TiO(2)/Al(2)O(3) ratio, high silica content, extreme depletion in rare-earth elements and low Re/Os ratio. We suggest a model for their formation in which a garnet-enriched residue left by earlier cratonic volcanism was melted by hydration from a subducting slab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1024/e/downloads/ofr2013-1024_e.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1024/e/downloads/ofr2013-1024_e.pdf"><span>Laboratory electrical resistivity analysis of geologic samples from Fort Irwin, California: Chapter E in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bloss, Benjamin R.; Bedrosian, Paul A.; Buesch, David C.</p> <p>2015-01-01</p> <p>Correlating laboratory resistivity measurements with geophysical resistivity models helps constrain these models to the geology and lithology of an area. Throughout the Fort Irwin National Training Center area, 111 samples from both cored boreholes and surface outcrops were collected and processed for laboratory measurements. These samples represent various lithologic types that include plutonic and metamorphic (basement) rocks, lava flows, consolidated sedimentary rocks, and unconsolidated sedimentary deposits that formed in a series of intermountain basins. Basement rocks, lava flows, and some lithified tuffs are generally resistive (≥100 ohm-meters [Ω·m]) when saturated. Saturated unconsolidated samples are moderately conductive to conductive, with resistivities generally less than 100 Ω·m, and many of these samples are less than 50 Ω·m. The unconsolidated samples can further be separated into two broad groups: (1) younger sediments that are moderately conductive, owing to their limited clay content, and (2) older, more conductive sediments with a higher clay content that reflects substantial amounts of originally glassy volcanic ash subsequently altered to clay. The older sediments are believed to be Tertiary. Time-domain electromagnetic (TEM) data were acquired near most of the boreholes, and, on the whole, close agreements between laboratory measurements and resistivity models were found. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009609','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009609"><span>Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 mm soil particles from 76503</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jolliff, Bradley L.; Bishop, Kaylynn M.; Haskin, Larry A.</p> <p>1992-01-01</p> <p>Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4721325','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4721325"><span>Radon potential, geologic formations, and lung cancer risk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hahn, Ellen J.; Gokun, Yevgeniya; Andrews, William M.; Overfield, Bethany L.; Robertson, Heather; Wiggins, Amanda; Rayens, Mary Kay</p> <p>2015-01-01</p> <p>Objective Exposure to radon is associated with approximately 10% of U.S. lung cancer cases. Geologic rock units have varying concentrations of uranium, producing fluctuating amounts of radon. This exploratory study examined the spatial and statistical associations between radon values and geological formations to illustrate potential population-level lung cancer risk from radon exposure. Method This was a secondary data analysis of observed radon values collected in 1987 from homes (N = 309) in Kentucky and geologic rock formation data from the Kentucky Geological Survey. Radon value locations were plotted on digital geologic maps using ArcGIS and linked to specific geologic map units. Each map unit represented a package of different types of rock (e.g., limestone and/or shale). Log-transformed radon values and geologic formation categories were compared using one-way analysis of variance. Results Observed radon levels varied significantly by geologic formation category. Of the 14 geologic formation categories in north central Kentucky, four were associated with median radon levels, ranging from 8.10 to 2.75 pCi/L. Conclusion Radon potential maps that account for geologic factors and observed radon values may be superior to using observed radon values only. Knowing radon-prone areas could help target population-based lung cancer prevention interventions given the inequities that exist related to radon. PMID:26844090</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAESc..65..107P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAESc..65..107P"><span>Enriched and depleted characters of the Amnay Ophiolite upper crustal section and the regionally heterogeneous nature of the South China Sea mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perez, Americus d. C.; Faustino-Eslava, Decibel V.; Yumul, Graciano P.; Dimalanta, Carla B.; Tamayo, Rodolfo A.; Yang, Tsanyao Frank; Zhou, Mei-Fu</p> <p>2013-03-01</p> <p>The volcanic section of the Middle Oligocene Amnay Ophiolite in Mindoro, Philippines has previously been shown to be of normalmid-oceanic ridge basalt (NMORB) composition. Here we report for the first time an enriched mantle component that is additionally recorded in this crustal section. New whole rock major and trace element data are presented for nine mafic volcanic rocks from a section of the ophiolite that has not been previously examined. These moderately evolved tholeiitic basalts were found to have resulted from the bulk mixing of ˜10% ocean island basalt components with depleted mantle. Drawing together various geochemical characteristics reported for different rock suites taken as representatives of the South China Sea crust, including the enriched MORB (EMORB) and NMORB of the East Taiwan Ophiolite, the NMORB from previous studies of the Amnay Ophiolite and the younger ocean floor eruptives of the Scarborough Seamount-Reed Bank region, a veined mantle model is proposed for the South China Sea mantle. The NMORB magmatic products are suggested to have been derived from the more depleted portions of the mantle whereas the ocean island basalt (OIB) and EMORB-type materials from the mixing of depleted and veined/enriched mantle regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMMR23D..07A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMMR23D..07A"><span>Hydromechanical modeling of clay rock including fracture damage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.</p> <p>2012-12-01</p> <p>Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi grid and associated nodes, where the scalar field quantities (e.g. temperature, pressure, and saturation) and the generalized displacements are obtained by an integral finite difference method (e.g., TOUGH2) and RBSN, respectively. Fractures propagate along Voronoi cell boundaries as induced stresses evolve and exceed the material strength. Examples of fracture propagation in clay rock are examined for the excavation disturbed zone and for cases in which hydraulic overpressure leads to hydraulic fracture. Fluid flow behavior in these evolving fracture networks and eventual fracture closing and self-sealing are investigated. Funding for this work was provided by the Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy under Contract NumberDE-AC02-05CH11231 with Berkeley Lab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800051136&hterms=space+mapping&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dspace%2Bmapping','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800051136&hterms=space+mapping&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dspace%2Bmapping"><span>Optimum thermal infrared bands for mapping general rock type and temperature from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holmes, Q. A.; Nueesch, D. R.; Vincent, R. K.</p> <p>1980-01-01</p> <p>A study was carried out to determine quantitatively the number and location of spectral bands required to perform general rock type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well-characterized homogeneous samples, a radiative transfer model was used to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account, analysis of these data revealed that three 1 micron wide spectral bands would permit independent estimations of rock type and sample temperature from a satellite infrared multispectral scanner. This study, which ignores the mixing of terrain elements within the instantaneous field of view of a satellite scanner, indicates that the location of three spectral bands at 8.1-9.1, 9.5-10.5, and 11.0-12.0 microns, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock type and temperature for a variety of atmospheric states and temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790003278','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790003278"><span>Optimum thermal infrared bands for mapping general rock type and temperature from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holmes, Q. A.; Nuesch, D. R.</p> <p>1978-01-01</p> <p>A study was carried out to determine quantitatively the number and locations of spectral bands required to perform general rock-type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well characterized, homogeneous samples, a radiative transfer model was employed to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account analysis of these data revealed that three 1 micrometer wide spectral bands would permit independent estimators of rock-type and sample temperature from a satellite infrared multispectral scanner. This study, indicates that the location of three spectral bands at 8.1-9.1 micrometers, 9.5-10.5 micrometers and 11.0-12.0 micrometers, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock-type and temperature for a variety of atmospheric states and temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAESc.138..588W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAESc.138..588W"><span>Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: Record of slab breakoff that triggered ca. 108-113 Ma magmatism in the western Qiangtang terrane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Shao-gang; Tang, Ju-xing; Song, Yang; Liu, Zhi-bo; Feng, Jun; Li, Yan-bo</p> <p>2017-05-01</p> <p>We report new zircon U-Pb ages and Hf isotope compositions, and whole-rock major and trace element and Sr-Nd isotope data for the Meiriqiecuo Formation (MF) bimodal volcanic rocks collected from the Duolong Cu mining district (DCMD) in the western Qiangtang terrane (QT), western Tibet. These data provide important constraints on the petrogenetic evolution and geodynamic setting of Early Cretaceous magmatism in the DCMD. The MF bimodal volcanic rocks are mainly basaltic andesite and andesite, with subordinate rhyolite. Four mafic samples yielded zircon U-Pb ages of ca. 108.2-113.0 Ma, and one silicic sample has an age of 109.3 ± 2.2 Ma, indicating that the mafic and silicic eruptions were contemporaneous. The MF bimodal volcanic rocks belong to the medium-K calc-alkaline to shoshonite series. The rocks show arc-type affinities characterized by significant enrichment in light rare earth (LaN/YbN = 7.74-12.60) and large-ion lithophile elements (Rb, Cs, K, and Pb), but depletions in the high-field-strength elements (Nb, Ta, and Ti), which geochemically resemble Andean arc basalts. Therefore, the MF bimodal volcanic rocks were likely emplaced at an Andean-type active continental margin and represent an Early Cretaceous magmatic arc that was located at the western QT margin. Moreover, the mafic volcanic rocks have high initial Sr isotopic ratios (0.705269-0.705413) and negative εNd(t) values of -1.5 to -0.6 compared with the silicic volcanic rocks ((87Sr/86Sr)i = 0.704770-0.704903; εNd(t) = +1.2 to +1.3). Zircons from silicic samples have significantly higher εHf(t) values (+11.6 to +15.5) and predominantly lower Paleoproterozoic Hf crustal model ages (TDMC = 180-428 Ma) than the mafic samples, which have variable εHf(t) values of +3.4 to +13.0 and TDMC ages of 346-952 Ma. These results indicate that the mafic and silicic end-members of the MF bimodal suite were generated from mantle and crustal sources, respectively. The basaltic andesite and andesite may have been derived from mantle enriched by the metasomatism of subducted fluids, whereas the rhyolite could have been derived by partial melting of mafic juvenile crust that originated from an older and more depleted mantle. In light of the geochemical characteristics and field relationships, we propose that breakoff of the Bangong-Nujiang oceanic lithosphere was responsible for the generation and emplacement of the MF bimodal volcanic rocks. The fact that the MF bimodal volcanic arc magmatism was active at ca. 108-113 Ma indicates that it was associated with closure of the Bangong-Nujiang Ocean via an arc-arc "soft" collision during the Early Cretaceous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA203775','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA203775"><span>Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Geotechnical Aspects of Rock Erosion in Emergency Spillway Channels. Report 3. Remediation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-09-01</p> <p>identified early and treated promptly. The same authors proposed that the rock-mass parameters that govern rippability , when combined with...lithostratigraphic continuity factors, may provide predictive erosion indices from a geotechnical point of view. 16. Rippability is a form of rock-mass...The rock-mass parameters from which a rippability rating (RR) is derived include rock type, hardness, weathering, structure (strike and dip orientation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006LPI....37.2016M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006LPI....37.2016M"><span>Effects of Weathering on TIR Spectra and Rock Classification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McDowell, M. L.; Hamilton, V. E.; Riley, D.</p> <p>2006-03-01</p> <p>Changes in mineralogy due to weathering are detectable in the TIR and cause misclassification of rock types. We survey samples over a range of lithologies and attempt to provide a method of correction for rock identification from weathered spectra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSMCG73B..03Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSMCG73B..03Z"><span>Sea Level and Paleoenvironment Control on Late Ordovician Source Rocks, Hudson Bay Basin, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, S.; Hefter, J.</p> <p>2009-05-01</p> <p>Hudson Bay Basin is one of the largest Paleozoic sedimentary basins in North America, with Southampton Island on its north margin. The lower part of the basin succession comprises approximately 180 to 300 m of Upper Ordovician strata including Bad Cache Rapids and Churchill River groups and Red Head Rapids Formation. These units mainly comprise carbonate rocks consisting of alternating fossiliferous limestone, evaporitic and reefal dolostone, and minor shale. Shale units containing extremely high TOC, and interpreted to have potential as petroleum source rocks, were found at three levels in the lower Red Head Rapids Formation on Southampton Island, and were also recognized in exploration wells from the Hudson Bay offshore area. A study of conodonts from 390 conodont-bearing samples from continuous cores and well cuttings from six exploration wells in the Hudson Bay Lowlands and offshore area (Comeault Province No. 1, Kaskattama Province No. 1, Pen Island No. 1, Walrus A-71, Polar Bear C-11 and Narwhal South O-58), and about 250 conodont-bearing samples collected from outcrops on Southampton Island allows recognition of three conodont zones in the Upper Ordovician sequence, namely (in ascendant sequence) Belodina confluens, Amorphognathus ordovicicus, and Rhipidognathus symmetricus zones. The three conodont zones suggest a cycle of sea level changes of rising, reaching the highest level, and then falling during the Late Ordovician. Three intervals of petroleum potential source rock are within the Rhipidognathus symmetricus Zone in Red Head Rapids Formation, and formed in a restricted anoxic and hypersaline condition during a period of sea level falling. This is supported by the following data: 1) The conodont Rhipidognathus symmetricus represents the shallowest Late Ordovician conodont biofacies and very shallow subtidal to intertidal and hypersaline condition. This species has the greatest richness within the three oil shale intervals to compare other parts of Red Head Rapids Formation. 2) Type I kerogen is normally formed in quiet, oxygen-deficient, shallow water environment. Rock-Eval6 data from 40 samples of the three oil shale intervals, collected from outcrops on Southampton Island, demonstrate that the proportion of Type I kerogen gradually increases in the mixed Type I-Type II kerogen from the lower to upper oil shale intervals. 3) Pristane/phytane ratio can be used as a paleoenvironment indicator. The low ratios in the three oil shale intervals range from 0.5 to 0.9 and indicate anoxic and hypersaline conditions. In addition, the presence of isorenieratene derivatives from green phototrophic sulfur bacteria (Chlorobiaceae), with highest relative concentrations in the lower oil shale intervals, points to anoxia reaching into the photic zone of the water column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeCoA..73..594H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeCoA..73..594H"><span>A chemical and thermodynamic model of oil generation in hydrocarbon source rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helgeson, Harold C.; Richard, Laurent; McKenzie, William F.; Norton, Denis L.; Schmitt, Alexandra</p> <p>2009-02-01</p> <p>Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ≳25 but ≲100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ˜1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO 2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO 2 gas, and a more mature (oxidized) kerogen with a lower H/C which in turn melts incongruently with further burial to produce more crude oil, CO 2 gas, and a kerogen with a lower H/C and so forth.The petroleum generated in the process progresses from heavy naphthenic crude oils at low temperatures to mature petroleum at ˜150 °C. For example, the results of Computer Experiment 27 (see below) indicate that the overall incongruent melting reaction in the water-absent region of the system C-H-O at 150 °C and a depth of ˜4.3 km of an immature type-II/III kerogen with a bulk composition represented by C 292H 288O 12(c) to produce a mature (oxidized) kerogen represented by C 128H 68O 7(c), together with a typical crude oil with an average metastable equilibrium composition corresponding to C 8.8H 16.9 (C 8.8H 16.9(l)) and CO 2 gas (CO 2(g)) can be described by writing CHO (kerogen,H/C=0.99O/C=0.041) →1.527CHO(kerogen,H/C=0.53O/C=0.055) +10.896CH(crude oil,H/C=1.92)+0.656CO which corresponds to a disproportionation reaction in the source rock representing the sum of a series of oxidation/reduction conservation reactions. Consideration of the stoichiometries of incongruent melting reactions analogous to Reaction (A) for reactant kerogens with different (H/C)s and/or atomic oxygen to carbon ratios (O/C)s, together with crude oil compositions corresponding to Gibbs free energy minima at specified temperatures and pressures permits calculation of the volume of oil (mole of reactant organic carbon (ROC)) -1 that can be generated in, as well as the volume of oil (mol ROC) -1 which exceeds the volume of kerogen pore space produced that must be expelled from hydrocarbon source rocks as a function of temperature, pressure, and the H/C and O/C of the reactant kerogen. These volumes and the reaction coefficients (mol ROC) -1 of the product kerogen, crude oil, and CO 2 gas in the incongruent melting reaction are linear functions of the H/C and O/C of the reactant kerogen at a given temperature and pressure. The slopes of the isopleths can be computed from power functions of temperature along a typical US Gulf Coast geotherm. All of these reactions and relations are consistent with the well-known observations that (1) the relative abundance of mature kerogen increases, and that of immature kerogen decreases with increasing burial of hydrocarbon source rocks and (2) that the volume of oil generated in a given source rock increases with increasing weight percent total organic carbon (TOC) and the H/C and (to a lesser extent) the O/C of the immature kerogen. They are also compatible with preservation of biomarkers and other polymerized hydrocarbons during the incongruent melting process. It can be deduced from Reaction (A) that nearly 11 mol of crude oil are produced from one mole of the reactant kerogen (rk), which increases to ˜39.5 mol (mol rk) -1 as the carbon content and H/C of the reactant kerogen increase to that in the hydrogen-rich type-I kerogen represented by C 415H 698O 22(c). The secondary porosities created in source rocks by Reaction (A) and others like it are of the order of 75-80 vol % of the oil generated, which requires expulsion of the remainder, together with the CO 2 gas produced by the reaction. The expulsion of the CO 2 gas and excess crude oil from the hydrocarbon source rock is facilitated by their buoyancy and the fact that the pressure in the source rocks is ⩾ the fluid pressure in the adjoining formations during progressive generation of the volume of crude oil that exceeds the kerogen pore volume produced by the incongruent melting process. The expelled CO 2 gas lowers the pH of the surrounding formation waters, which promotes the development of secondary porosity and diagenetic reaction of detrital silicates to form authigenic mineral assemblages. Hence, the expulsion process facilitates initial upward migration of the oil, which is further enhanced by expansion of the oil and its reaction with H 2O at the oil-water interface to generate methane gas. Mass transfer calculations indicate that the minimal volume of crude oil expelled into these formations is comparable to, or exceeds the volume of oil produced and in proven reserves in major oil fields such as the North Sea, the Paris and Los Angeles Basins, and those in Kuwait, Saudi Arabia, and elsewhere in the Middle East. For example, taking account of the average weight percent ( W%) organic carbon in the immature kerogen (3.4 wt%) with an average H/C of ˜1.04 in the hydrocarbon source rocks in Saudi Arabia, which have an average thickness of ˜43 m, it can be shown (see below) that all of the oil (and oil equivalent of natural gas) produced and in proven reserves in Saudi Arabia (374 billion barrels of oil or ˜1.9 million barrels of oil km -2) can be accounted for by minimal expulsion from the source rocks of oil generated at ˜125 °C solely by the incongruent melting process. Computer experiments indicate that this process can also account for all the petroleum that can be, and has been generated in the world's hydrocarbon source rocks. Of the latter, as much as 75-80% may still remain in these rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5394D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5394D"><span>Megascours: the morphodynamics of large river confluences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dixon, Simon; Sambrook Smith, Greg; Nicholas, Andrew; Best, Jim; Bull, Jon; Vardy, Mark; Goodbred, Steve; Haque Sarker, Maminul</p> <p>2015-04-01</p> <p>River confluences are wildly acknowledged as crucial controlling influences upon upstream and downstream morphology and thus landscape evolution. Despite their importance very little is known about their evolution and morphodynamics, and there is a consensus in the literature that confluences represent fixed, nodal points in the fluvial network. Confluences have been shown to generate substantial bed scours around five times greater than mean depth. Previous research on the Ganges-Jamuna junction has shown large river confluences can be highly mobile, potentially 'combing' bed scours across a large area, although the extent to which this is representative of large confluences in general is unknown. Understanding the migration of confluences and associated scours is important for multiple applications including: designing civil engineering infrastructure (e.g. bridges, laying cable, pipelines, etc.), sequence stratigraphic interpretation for reconstruction of past environmental and sea level change, and in the hydrocarbon industry where it is crucial to discriminate autocyclic confluence scours from widespread allocyclic surfaces. Here we present a wide-ranging global review of large river confluence planforms based on analysis of Landsat imagery from 1972 through to 2014. This demonstrates there is an array of confluence morphodynamic types: from freely migrating confluences such as the Ganges-Jamuna, through confluences migrating on decadal timescales and fixed confluences. Along with data from recent geophysical field studies in the Ganges-Brahmaputra-Meghna basin we propose a conceptual model of large river confluence types and hypothesise how these influence morphodynamics and preservation of 'megascours' in the rock record. This conceptual model has implications for sequence stratigraphic models and the correct identification of surfaces related to past sea level change. We quantify the abundance of mobile confluence types by classifying all large confluences in the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two basins have contrasting confluence morphodynamics. For the first time we show large river confluences have multiple scales of planform adjustment with important implications for infrastructure and interpretation of the rock record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2006/1230/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2006/1230/"><span>Physical properties of two core samples from Well 34-9RD2 at the Coso geothermal field, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morrow, C.A.; Lockner, D.A.</p> <p>2006-01-01</p> <p>The Coso geothermal field, located along the Eastern California Shear Zone, is composed of fractured granitic rocks above a shallow heat source. Temperatures exceed 640 ?F (~338 ?C) at a depth of less than 10000 feet (3 km). Permeability varies throughout the geothermal field due to the competing processes of alteration and mineral precipitation, acting to reduce the interconnectivity of faults and fractures, and the generation of new fractures through faulting and brecciation. Currently, several hot regions display very low permeability, not conducive to the efficient extraction of heat. Because high rates of seismicity in the field indicate that the area is highly stressed, enhanced permeability can be stimulated by increasing the fluid pressure at depth to induce faulting along the existing network of fractures. Such an Enhanced Geothermal System (EGS), planned for well 46A-19RD, would greatly facilitate the extraction of geothermal fluids from depth by increasing the extent and depth of the fracture network. In order to prepare for and interpret data from such a stimulation experiment, the physical properties and failure behavior of the target rocks must be fully understood. Various diorites and granodiorites are the predominant rock types in the target area of the well, which will be pressurized from 10000 feet measured depth (MD) (3048m MD) to the bottom of the well at 13,000 feet MD (3962 m MD). Because there are no core rocks currently available from well 46A-19RD, we report here on the results of compressive strength, frictional sliding behavior, and elastic measurements of a granodiorite and diorite from another well, 34-9RD2, at the Coso site. Rocks cored from well 34-9RD2 are the deepest samples to date available for testing, and are representative of rocks from the field in general.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PEPI..175..151K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PEPI..175..151K"><span>Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kern, H.; Mengel, K.; Strauss, K. W.; Ivankina, T. I.; Nikitin, A. N.; Kukkonen, I. T.</p> <p>2009-07-01</p> <p>The Outokumpu scientific deep drill hole intersects a 2500 m deep Precambrian crustal section comprising a 1300 m thick biotite-gneiss series (mica schists) at top, followed by a 200 m thick meta-ophiolite sequence, underlain again by biotite gneisses (mica schists) (500 m thick) with intercalations of amphibolite and meta-pegmatoids (pegmatitic granite). From 2000 m downward the dominating rock types are meta-pegmatoids (pegmatitic granite). Average isotropic intrinsic P- and S-wave velocities and densities of rocks were calculated on the basis of the volume fraction of the constituent minerals and their single crystal properties for 29 core samples covering the depth range 198-2491 m. The modal composition of the rocks is obtained from bulk rock (XRF) and mineral chemistry (microprobe), using least squares fitting. Laboratory seismic measurements on 13 selected samples representing the main lithologies revealed strong anisotropy of P- and S-wave velocities and shear wave splitting. Seismic anisotropy is strongly related to foliation and is, in particular, an important property of the biotite gneisses, which dominate the upper and lower gneiss series. At in situ conditions, velocity anisotropy is largely caused by oriented microcracks, which are not completely closed at the pressures corresponding to the relatively shallow depth drilled by the borehole, in addition to crystallographic preferred orientation (CPO) of the phyllosilicates. The contribution of CPO to bulk anisotropy is confirmed by 3D velocity calculations based on neutron diffraction texture measurements. For vertical incidence of the wave train, the in situ velocities derived from the lab measurements are significantly lower than the measured and calculated intrinsic velocities. The experimental results give evidence that the strong reflective nature of the ophiolite-derived rock assemblages is largely affected by oriented microcracks and preferred crystallographic orientation of major minerals, in addition to the lithologic control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032634','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032634"><span>Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rooney, A.D.; Selby, D.; Lewan, M.D.; Lillis, P.G.; Houzay, J.-P.</p> <p>2012-01-01</p> <p>Successful application of the 187Re–187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re–Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re–Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re–Os systematics in ORS as supported by various studies on natural systems. The elemental abundance data reveal limited transfer of Re and Os into the bitumen from a Type III kerogen in comparison to Type II-S kerogen (0.02% vs. 3.7%), suggesting that these metals are very tightly bound in Type III kerogen structure. The 187Os/188Os data from the pyrolysis generated Phosphoria bitumens display minor variation (4%) across the experimental temperatures, with values similar to that of the source rock. This indicates that the isotopic composition of the bitumen reflects the isotopic composition of the source rock at the time of petroleum generation. These data further support the premise that the Os isotopic composition of oils and bitumens can be used to fingerprint petroleum deposits to specific source rocks. Oil generated through the hydrous pyrolysis experiments does not contain appreciable quantities of Re or Os (~120 and ~3 ppt, respectively), in contrast to natural oils (2–50 ppb and 34–288 ppt for Re and Os, respectively), which may suggest that kinetic parameters are fundamental to the transfer of Re and Os from source rocks to oils. From this we hypothesise that, at the temperatures employed in hydrous pyrolysis, Re and Os are assimilated into the extracted rock as a result of cross-linking reactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeCoA..77..275R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeCoA..77..275R"><span>Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rooney, Alan D.; Selby, David; Lewan, Michael D.; Lillis, Paul G.; Houzay, Jean-Pierre</p> <p>2012-01-01</p> <p>Successful application of the 187Re-187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re-Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re-Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re-Os systematics in ORS as supported by various studies on natural systems. The elemental abundance data reveal limited transfer of Re and Os into the bitumen from a Type III kerogen in comparison to Type II-S kerogen (0.02% vs. 3.7%), suggesting that these metals are very tightly bound in Type III kerogen structure. The 187Os/188Os data from the pyrolysis generated Phosphoria bitumens display minor variation (4%) across the experimental temperatures, with values similar to that of the source rock. This indicates that the isotopic composition of the bitumen reflects the isotopic composition of the source rock at the time of petroleum generation. These data further support the premise that the Os isotopic composition of oils and bitumens can be used to fingerprint petroleum deposits to specific source rocks. Oil generated through the hydrous pyrolysis experiments does not contain appreciable quantities of Re or Os (∼120 and ∼3 ppt, respectively), in contrast to natural oils (2-50 ppb and 34-288 ppt for Re and Os, respectively), which may suggest that kinetic parameters are fundamental to the transfer of Re and Os from source rocks to oils. From this we hypothesise that, at the temperatures employed in hydrous pyrolysis, Re and Os are assimilated into the extracted rock as a result of cross-linking reactions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/bul/b2174-b/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/bul/b2174-b/"><span>Organic metamorphism in the California petroleum basins; Chapter B, Insights from extractable bitumen and saturated hydrocarbons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Price, Leigh C.</p> <p>2000-01-01</p> <p>Seventy-five shales from the Los Angeles, Ventura, and Southern San Joaquin Valley Basins were extracted and analyzed. Samples were chosen on the basis of ROCK-EVAL analyses of a much larger sample base. The samples ranged in burial temperatures from 40 ? to 220 ? C, and contained hydrogen-poor to hydrogen-rich organic matter (OM), based on OM visual typing and a correlation of elemental kerogen hydrogen to carbon ratios with ROCK-EVAL hydrogen indices. By extractable bitumen measurements, rocks with hydrogen- poor OM in the Los Angeles Basin began mainstage hydrocarbon (HC) generation by 90 ? C. The HC concentrations maximized by 165 ? C, and beyond 165 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all began decreasing to low values reached by 220 ? C, where HC generation was largely complete. Rocks with hydrogen-poor OM in the Southern San Joaquin Valley Basin commenced mainstage HC generation at 135 ? C and HC concentrations maximized by 180 ? C. Above 180 ? C, HC and bitumen concentrations and ROCK-EVAL hydrogen indices all decreased to low values reached by 214 ? C, again the process of HC generation being largely complete. In both cases, bell-shaped HC-generation curves were present versus depth (burial temperature). Mainstage HC generation had not yet begun in Ventura Basin rocks with hydrogen-poor OM by 140 ? C. The apparent lower temperature for initiation of mainstage generation in the Los Angeles Basin is attributed to very recent cooling in that basin from meteoric-water flow. Thus, HC generation there most probably occurred at higher burial temperatures. In contrast, mainstage HC generation, and all aspects of organic metamorphism, were strongly suppressed in rocks with hydrogen-rich OM at temperatures as high as 198 ? C. For example, shales from the Wilmington field (Los Angeles Basin) from 180 ? to 198 ? C retained ROCK-EVAL hydrogen indices of 550- 700 and had saturated-HC coefficients of only 4-15 mg/g organic carbon. The rocks with hydrogen-rich OM were subjected to the same burial conditions as the rocks with hydrogenpoor OM. We attribute this suppression of organic metamorphism in this study primarily to much stronger bonds in the hydrogen-rich OM compared to the bonds in hydrogen-poor OM. Trends in bitumen compositions (qualitative characteristics) versus burial temperature were also very different for rocks with hydrogen-poor OM compared to that in rocks with hydrogen- rich OM. This observation demonstrated that the two OM types also had significantly different reaction pathways, in addition to different reaction kinetics. Strong exploration implications arise from these observations. Above 40?C, but before mainstage HC generation, a lowtemperature (pre-mainstage) HC generation occurred in all rocks, and all OM types, studied. This low-temperature generation resulted in significant qualitative changes in the bitumen and HCS (hydrocarbons) from rocks of all OM types, especially in rocks with hydrogen-rich OM, from 40 ? to 70 ? C. This, and previous studies, document that very high carbon-normalized concentrations of indigenous bitumen and HCS occur in late Neogene immature rocks of any OM type in all southern California basins. This characteristic is attributed to the low-temperature generation occurring in both sulfur-poor and sulfur-rich kerogens, which originally had unusually high concentrations of weak (15-40 Kcal/mole) bonds. These observations and considerations have marked relevance to exploration regarding the possible formation of commercial oil deposits at immature ranks in these basins. Other significant geochemical observations also result from this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850029057&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddata%2Btypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850029057&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddata%2Btypes"><span>Statistical analysis of Thematic Mapper Simulator data for the geobotanical discrimination of rock types in southwest Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morrissey, L. A.; Weinstock, K. J.; Mouat, D. A.; Card, D. H.</p> <p>1984-01-01</p> <p>An evaluation of Thematic Mapper Simulator (TMS) data for the geobotanical discrimination of rock types based on vegetative cover characteristics is addressed in this research. A methodology for accomplishing this evaluation utilizing univariate and multivariate techniques is presented. TMS data acquired with a Daedalus DEI-1260 multispectral scanner were integrated with vegetation and geologic information for subsequent statistical analyses, which included a chi-square test, an analysis of variance, stepwise discriminant analysis, and Duncan's multiple range test. Results indicate that ultramafic rock types are spectrally separable from nonultramafics based on vegetative cover through the use of statistical analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4829884-uranium-rock-minerals-intrusion-kyzl-ompul-mountains-north-kirgisia','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4829884-uranium-rock-minerals-intrusion-kyzl-ompul-mountains-north-kirgisia"><span>URANIUM IN ROCK MINERALS OF THE INTRUSION OF KYZL-OMPUL MOUNTAINS (NORTH KIRGISIA) (in Russian)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leonova, L.L.; Pogiblova, L.S.</p> <p>1961-01-01</p> <p>The uranium distribution in rock minerals (syenites, granosyenites, and alaskite granites) of the Kyzyl-Ompul raassif is studied. Alaskite granites are characterized by the granite type of uranium distribution in minerals, about 50 percent of this element being connected with rockforming and about 50 percent with accessory uranium minerals. ln syenites uranium (about 70 percent) is bound to rockforming minerals. The same minerals from syenites and granites strongly differ by their uranium content and are constant in the ranges of each of those rock types. Granosyenites have aa intermediate (between syenites and granites) type of uranium distribution in minerals. (auth)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007Sci...315..980K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007Sci...315..980K"><span>Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kemp, , A. I. S.; Hawkesworth, , C. J.; Foster, , G. L.; Paterson, , B. A.; Woodhead, , J. D.; Hergt, , J. M.; Gray, , C. M.; Whitehouse, M. J.</p> <p>2007-02-01</p> <p>Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010065','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010065"><span>Crystallography of some lunar plagioclases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stewart, D.B.; Appleman, D.E.; Huebner, J.S.; Clark, J.R.</p> <p>1970-01-01</p> <p>Crystals of calcic bytownite from type B rocks have space group U with c ??? 14 angstroms. Bytownite crystals from type A rocks are more sodic and have space group C1, c ??? 7 angstroms. Cell parameters of eight bulk feldspar separates from crystalline rocks indicate that the range of angle gamma is about 23 times the standard error of measurement, and its value might be useful for estimation of composition. Cell parameters of seven ilmenites are close to those of pure FeTiO3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA265478','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA265478"><span>Media Habits of American Youth: Findings from the 1990 Youth Attitude Tracking Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-02-01</p> <p>NIGHT Q596. What types of radio programming do you usually listen to? 0 = NO MENTION 6 =SPORTS I I = NEWS 7 = TALK 2 = CLASSICAL 8 = CLASSIC /SOFT ROCK 3...by Program Category 3 Table 2.6 displays respondent radio listening habits by program category. " Classic /Soft Rock" generated the highest reach of all...section). _j Table 2.7 presents radio listening habits in terms of estimated listening hours by 3 program type. Rock ( Classic /Soft/Hard/Heavy Metal</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_45594.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_45594.htm"><span>Preliminary lithogeochemical map showing near-surface rock types in the Chesapeake Bay watershed, Virginia and Maryland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peper, John D.; McCartan, Lucy; Horton, J. Wright; Reddy, James E.</p> <p>2001-01-01</p> <p>This preliminary experimental lithogeochemical map shows the distribution of rock types in the Virginia and Maryland parts of the Chesapeake Bay watershed. The map was produced digitally by classifying geologic-map units according to composition, mineralogy, and texture; rather than by age and stratigraphic relationships as shown on traditional geologic maps. This map differs from most lithologic maps in that the lithogeochemical unit classification distinguishes those rock units having key water-reactive minerals that may induce acid neutralization, or reduction, of hosted water at the weathering interface. The validity of these rock units, however, is independent of water chemistry, because the rock units are derived from geologic maps and rock descriptions. Areas of high soil carbon content, and sulfide metal deposits are also shown. Water-reactive minerals and their weathering reactions yield five lithogeochemical unit classes: 1) carbonate rock and calcareous rocks and sediments, the most acid-neutralizing; 2)carbonaceous-sulfidic rocks and sediments, oxygen-depleting and reducing; 3) quartzofeldspathic rocks and siliciclastic sediments, relatively weakly reactive with water; 4) mafic silicate rocks/sediments, oxygen consuming and high solute-load delivering; and, 5) the rarer calcareous-sulfidic (carbonaceous) rocks, neutralizing and reducing. Earlier studies in some parts of the map area have related solute loads in ground and stream waters to some aspects of bedrock lithology. More recent preliminary tests of relationships between four of the classes of mapped lithogeochemical units and ground water chemistry, in the Mid-Atlantic area using this map, have focused on and verified the nitrate-reducing and acid-neutralizing properties of some bedrock and unconsolidated aquifer rock types. Sulfide mineral deposits and their mine-tailings effects on waters are beginning to be studied by others. Additional testing of relationships among the lithogeochemical units and aspects of ground and surface water chemistry could help to refine the lithogeochemical classification, and this map. The testing could also improve the usefulness of the map for assessing aquifer reactivity and the transport properties of reactive contaminants such as acid rain, and nitrate from agricultural sources, in the Chesapeake Bay watershed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V21A1963B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V21A1963B"><span>CUMULATE ROCKS ASSOCIATED WITH CARBONATE ASSIMILATION, HORTAVÆR COMPLEX, NORTH-CENTRAL NORWAY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnes, C. G.; Prestvik, T.; Li, Y.</p> <p>2009-12-01</p> <p>The Hortavær igneous complex intruded high-grade metamorphic rocks of the Caledonian Helgeland Nappe Complex at ca. 466 Ma. The complex is an unusual mafic-silicic layered intrusion (MASLI) because the principal felsic rock type is syenite and because the syenite formed in situ rather than by deep-seated partial melting of crustal rocks. Magma differentiation in the complex was by assimilation, primarily of calc-silicate rocks and melts with contributions from marble and semi-pelites, plus fractional crystallization. The effect of assimilation of calcite-rich rocks was to enhance stability of fassaitic clinopyroxene at the expense of olivine, which resulted in alkali-rich residual melts and lowering of silica activity. This combination of MASLI-style emplacement and carbonate assimilation produced three types of cumulate rocks: (1) Syenitic cumulates formed by liquid-crystal separation. As sheets of mafic magma were loaded on crystal-rich syenitic magma, residual liquid was expelled, penetrating the overlying mafic sheets in flame structures, and leaving a cumulate syenite. (2) Reaction cumulates. Carbonate assimilation, illustrated by a simple assimilation reaction: olivine + calcite + melt = clinopyroxene + CO2 resulted in cpx-rich cumulates such as clinopyroxenite, gabbro, and mela-monzodiorite, many of which contain igneous calcite. (3) Magmatic skarns. Calc-silicate host rocks underwent partial melting during assimilation, yielding a Ca-rich melt as the principal assimilated material and permitting extensive reaction with surrounding magma to form Kspar + cpx + garnet-rich ‘cumulate’ rocks. Cumulate types (2) and (3) do not reflect traditional views of cumulate rocks but instead result from a series of melt-present discontinuous (peritectic) reactions and partial melting of calc-silicate xenoliths. In the Hortavær complex, such cumulates are evident because of the distinctive peritectic cumulate assemblages. It is unclear whether assimilation of ‘normal’ silicate rocks results in peritectic assemblages, or whether they could be identified as such if they exist.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890023492&hterms=evolution+rock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Devolution%2Brock','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890023492&hterms=evolution+rock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Devolution%2Brock"><span>Apennine Front revisited - Diversity of Apollo 15 highland rock types</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lindstrom, Marilyn M.; Marvin, Ursula B.; Vetter, Scott K.; Shervais, John W.</p> <p>1988-01-01</p> <p>The Apollo 15 landing site is geologically the most complex of the Apollo sites, situated at a mare-highland interface within the rings of two of the last major basin-forming impacts. Few of the Apollo 15 samples are ancient highland rocks derived from the early differentiation of the moon, or impact melts from major basin impacts. Most of the samples are regolith breccias containing abundant clasts of younger volcanic mare and KREEP basalts. The early geologic evolution of the region can be understood only by examining the small fragments of highland rocks found in regolith breccias and soils. Geochemical and petrologic studies of clasts and matrices of three impact melt breccias and four regolith breccias are presented. Twelve igneous and metamorphic rocks show extreme diversity and include a new type of ferroan norite. Twenty-five samples of highland impact melt are divided into groups based on composition. These impact melts form nearly a continuum over more than an order of magnitude in REE concentrations. This continuum may result from both major basin impacts and younger local events. Highland rocks from the Apennine Front include most of the highland rock types found at all of the other sites. An extreme diversity of highland rocks is a fundamental characteristic of the Apennine Front and is a natural result of its complex geologic evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011Geomo.134..132P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011Geomo.134..132P"><span>A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parise, M.; Lollino, P.</p> <p>2011-11-01</p> <p>Natural and anthropogenic caves may represent a potential hazard for the built environment, due to the occurrence of instability within caves, that may propagate upward and eventually reach the ground surface, inducing the occurrence of sinkholes. In particular, when caves are at shallow depth, the effects at the ground surface may be extremely severe. Apulia region (southern Italy) hosts many sites where hazard associated with sinkholes is very serious due to presence of both natural karst caves and anthropogenic cavities, the latter being mostly represented by underground quarries. The Pliocene-Pleistocene calcarenite (a typical soft rock) was extensively quarried underground, by digging long and complex networks of tunnels. With time, these underground activities have progressively been abandoned and their memory lost, so that many Apulian towns are nowadays located just above the caves, due to urban expansion in the last decades. Therefore, a remarkable risk exists for society, which should not be left uninvestigated. The present contribution deals with the analysis of the most representative failure mechanisms observed in the field for such underground instability processes and the factors that seem to influence the processes, as for example those causing weathering of the rock and the consequent degradation of its physical and mechanical properties. Aimed at exploring the progression of instability of the cavities, numerical analyses have been developed by using both the finite element method for geological settings represented by continuous soft rock mass, and the distinct element method for jointed rock mass conditions. Both the effects of local instability processes occurring underground and the effects of the progressive enlargement of the caves on the overall stability of the rock mass have been investigated, along with the consequent failure mechanisms. In particular, degradation processes of the rock mass, as a consequence of wetting and weathering phenomena in the areas surrounding the caves, have been simulated. The results obtained from the numerical simulations have then been compared with what has been observed during field surveys and a satisfactory agreement between the numerical simulations and the instability processes, as detected in situ, has been noticed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21G1574J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21G1574J"><span>Core analysis of heterogeneous rocks using experimental observations and digital whole core simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, S. J.; Krevor, S. C.; Agada, S.</p> <p>2017-12-01</p> <p>A number of studies have demonstrated the prevalent impact that small-scale rock heterogeneity can have on larger scale flow in multiphase flow systems including petroleum production and CO2sequestration. Larger scale modeling has shown that this has a significant impact on fluid flow and is possibly a significant source of inaccuracy in reservoir simulation. Yet no core analysis protocol has been developed that faithfully represents the impact of these heterogeneities on flow functions used in modeling. Relative permeability is derived from core floods performed at conditions with high flow potential in which the impact of capillary heterogeneity is voided. A more accurate representation would be obtained if measurements were made at flow conditions where the impact of capillary heterogeneity on flow is scaled to be representative of the reservoir system. This, however, is generally impractical due to laboratory constraints and the role of the orientation of the rock heterogeneity. We demonstrate a workflow of combined observations and simulations, in which the impact of capillary heterogeneity may be faithfully represented in the derivation of upscaled flow properties. Laboratory measurements that are a variation of conventional protocols are used for the parameterization of an accurate digital rock model for simulation. The relative permeability at the range of capillary numbers relevant to flow in the reservoir is derived primarily from numerical simulations of core floods that include capillary pressure heterogeneity. This allows flexibility in the orientation of the heterogeneity and in the range of flow rates considered. We demonstrate the approach in which digital rock models have been developed alongside core flood observations for three applications: (1) A Bentheimer sandstone with a simple axial heterogeneity to demonstrate the validity and limitations of the approach, (2) a set of reservoir rocks from the Captain sandstone in the UK North Sea targeted for CO2 storage, and for which the use of capillary pressure hysteresis is necessary, and (3) a secondary CO2-EOR production of residual oil from a Berea sandstone with layered heterogeneities. In all cases the incorporation of heterogeneity is shown to be key to the ultimate derivation of flow properties representative of the reservoir system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAfES.118..301Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAfES.118..301Q"><span>Hydrocarbon potential evaluation of the source rocks from the Abu Gabra Formation in the Sufyan Sag, Muglad Basin, Sudan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qiao, Jinqi; Liu, Luofu; An, Fuli; Xiao, Fei; Wang, Ying; Wu, Kangjun; Zhao, Yuanyuan</p> <p>2016-06-01</p> <p>The Sufyan Sag is one of the low-exploration areas in the Muglad Basin (Sudan), and hydrocarbon potential evaluation of source rocks is the basis for its further exploration. The Abu Gabra Formation consisting of three members (AG3, AG2 and AG1 from bottom to top) was thought to be the main source rock formation, but detailed studies on its petroleum geology and geochemical characteristics are still insufficient. Through systematic analysis on distribution, organic matter abundance, organic matter type, organic matter maturity and characteristics of hydrocarbon generation and expulsion of the source rocks from the Abu Gabra Formation, the main source rock members were determined and the petroleum resource extent was estimated in the study area. The results show that dark mudstones are the thickest in the AG2 member while the thinnest in the AG1 member, and the thickness of the AG3 dark mudstone is not small either. The AG3 member have developed good-excellent source rock mainly with Type I kerogen. In the Southern Sub-sag, the AG3 source rock began to generate hydrocarbons in the middle period of Bentiu. In the early period of Darfur, it reached the hydrocarbon generation and expulsion peak. It is in late mature stage currently. The AG2 member developed good-excellent source rock mainly with Types II1 and I kerogen, and has lower organic matter abundance than the AG3 member. In the Southern Sub-sag, the AG2 source rock began to generate hydrocarbons in the late period of Bentiu. In the late period of Darfur, it reached the peak of hydrocarbon generation and its expulsion. It is in middle mature stage currently. The AG1 member developed fair-good source rock mainly with Types II and III kerogen. Throughout the geological evolution history, the AG1 source rock has no effective hydrocarbon generation or expulsion processes. Combined with basin modeling results, we have concluded that the AG3 and AG2 members are the main source rock layers and the Southern Sub-sag is the main source kitchen in the study area. The AG3 and AG2 source rocks have supplied 58.1% and 41.9% of the total hydrocarbon generation, respectively, and 54.9% and 45.1% of the total hydrocarbon expulsion, respectively. Their hydrocarbon expulsion efficiency ratios are 71.0% and 62.3%, respectively. The Southern Sub-sag has supplied more than 90% of the total amounts of hydrocarbon generation and its expulsion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7795V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7795V"><span>Fluvial reservoir characterization using topological descriptors based on spectral analysis of graphs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal</p> <p>2015-04-01</p> <p>Fluvial systems generate highly heterogeneous reservoir. These heterogeneities have major impact on fluid flow behaviors. However, the modelling of such reservoirs is mainly performed in under-constrained contexts as they include complex features, though only sparse and indirect data are available. Stochastic modeling is the common strategy to solve such problems. Multiple 3D models are generated from the available subsurface dataset. The generated models represent a sampling of plausible subsurface structure representations. From this model sampling, statistical analysis on targeted parameters (e.g.: reserve estimations, flow behaviors, etc.) and a posteriori uncertainties are performed to assess risks. However, on one hand, uncertainties may be huge, which requires many models to be generated for scanning the space of possibilities. On the other hand, some computations performed on the generated models are time consuming and cannot, in practice, be applied on all of them. This issue is particularly critical in: 1) geological modeling from outcrop data only, as these data types are generally sparse and mainly distributed in 2D at large scale but they may locally include high-resolution descriptions (e.g.: facies, strata local variability, etc.); 2) CO2 storage studies as many scales of investigations are required, from meter to regional ones, to estimate storage capacities and associated risks. Recent approaches propose to define distances between models to allow sophisticated multivariate statistics to be applied on the space of uncertainties so that only sub-samples, representative of initial set, are investigated for dynamic time-consuming studies. This work focuses on defining distances between models that characterize the topology of the reservoir rock network, i.e. its compactness or connectivity degree. The proposed strategy relies on the study of the reservoir rock skeleton. The skeleton of an object corresponds to its median feature. A skeleton is computed for each reservoir rock geobody and studied through a graph spectral analysis. To achieve this, the skeleton is converted into a graph structure. The spectral analysis applied on this graph structure allows a distance to be defined between pairs of graphs. Therefore, this distance is used as support for clustering analysis to gather models that share the same reservoir rock topology. To show the ability of the defined distances to discriminate different types of reservoir connectivity, a synthetic data set of fluvial models with different geological settings was generated and studied using the proposed approach. The results of the clustering analysis are shown and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CoMP..171....9H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CoMP..171....9H"><span>Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.</p> <p>2016-01-01</p> <p>Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal growth events rather than just recycling of old lithospheric materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.B54B..06P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.B54B..06P"><span>Phospholipid and Respiratory Quinone Analyses From Extreme Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfiffner, S. M.</p> <p>2008-12-01</p> <p>Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V44B..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V44B..01R"><span>Multiple Origins of Pyroclastic Obsidian and Implications for Changes in the Dynamics of the 1300 BP eruption of Newberry Volcano, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rust, A. C.; Cashman, K. V.</p> <p>2005-12-01</p> <p>Like many rhyolite tephras, the pyroclastic deposits of the 1300 B.P. eruption of Newberry Volcano, USA, contain minor amounts of obsidian. The H2O and CO2 contents and textures of these clasts vary considerably and provide information on eruption history and dynamics. Early in the eruption, obsidian probably derived from veins of vanguard magma or tuffisite that, together with wall rock fragments, were eroded and incorporated into the eruption column as the vent widened. Later, following a temporary cessation of activity, the proportion of obsidian to lithic fragments increased and new types of obsidian dominated, types that represent remnants of a shallow conduit plug and welded fallback material. Analysis of bubble geometries provide flow parameters and time scales operative for deformation within the shallow conduit. Furthermore, spatial variations in CO2 help constrain welding and wall rock assimilation time scales. Comparison of obsidian characteristics from the Newberry eruption with those of the well-studied Mono Craters eruption shows intriguing differences in obsidian formation that may relate to the nature of the conduit feeding the two events. From this comparison we conclude that obsidian is less likely to provide information on magmatic fragmentation than on time scales and mechanisms of pre-fragmentation magma ascent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34964','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34964"><span>Rock-colonizing plants: abundance of the endemic cactus Mammillaria fraileana related to rock type in the southern Sonoran Desert</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Blanca R. Lopez; Yoav Bashan; Macario Bacilio; Gustavo De la Cruz-Aguero</p> <p>2009-01-01</p> <p>Establishment, colonization, and permanence of plants affect biogenic and physical processes leading to development of soil. Rockiness, temperature, and humidity are accepted explanations to the influence and the presence of rock-dwelling plants, but the relationship between mineral and chemical composition of rocks with plant abundance is unknown in some regions. This...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70003851','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70003851"><span>Rocks above the clouds: A hiker's and climber's guide to Colorado mountain geology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reed, Jack; Ellis, Gene</p> <p>2008-01-01</p> <p>Rocks Above the Clouds is the first geology book written for climbers, scramblers and hikers. It is an exploration of how the nature of mountains and the challenges they present to the climber and hiker are influenced by the rocks that form them, in other words, by their geology. After describing the types of rocks found in mountains, the authors of Rocks Above the Clouds cover the geologic process from the big bang through the processes that continue to shape the mountains today. This mountain geology primer is a range-by-range description of what to expect in the Colorado mountains followed by some very curious information on the Colorado 14ers. Whether you travel in the mountains as a casual hiker, peak bagging scrambler, or technical climber, knowledge of mountain geology can help in planning your route, selecting your campsite and evaluating the hazards you face. Knowing something about different rock types might enable you to pick a route that avoids loose rock. Knowing that when wet, a particular rock surface will feel like oil might encourage you to forgo that siesta on the summit and head down before the afternoon thunderstorm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780006582&hterms=data+mining+techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddata%2Bmining%2Btechniques','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780006582&hterms=data+mining+techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddata%2Bmining%2Btechniques"><span>Alteration mapping at Goldfield, Nevada, by cluster and discriminant analysis of LANDSAT digital data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ballew, G.</p> <p>1977-01-01</p> <p>The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780030924&hterms=data+mining+techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddata%2Bmining%2Btechniques','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780030924&hterms=data+mining+techniques&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddata%2Bmining%2Btechniques"><span>Alteration mapping at Goldfield, Nevada, by cluster and discriminant analysis of Landsat digital data. [mapping of hydrothermally altered volcanic rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ballew, G.</p> <p>1977-01-01</p> <p>The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed using Johnson's HICLUS program. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70146540','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70146540"><span>Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lanza, Nina L.; Ollila, Ann M.; Cousin, Agnes; Wiens, Roger C.; Clegg, Samuel M.; Mangold, Nicolas; Bridges, Nathan; Cooper, Daniel; Schmidt, Mariek E.; Berger, Jeffrey; Arvidson, Raymond E.; Melikechi, Noureddine; Newsom, Horton E.; Tokar, Robert; Hardgrove, Craig; Mezzacappa, Alissa; Jackson, Ryan S.; Clark, Benton C.; Forni, Olivier; Maurice, Sylvestre; Nachon, Marion; Anderson, Ryan B.; Blank, Jennifer; Deans, Matthew; Delapp, Dorothea; Léveillé, Richard; McInroy, Rhonda; Martinez, Ronald; Meslin, Pierre-Yves; Pinet, Patrick</p> <p>2015-01-01</p> <p>Surface compositional features on rocks such as coatings and weathering rinds provide important information about past aqueous environments and water–rock interactions. The search for these features represents an important aspect of the Curiosity rover mission. With its unique ability to do fine-scale chemical depth profiling, the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) onboard Curiosity can be used to both identify and analyze rock surface alteration features. In this study we analyze a terrestrial manganese-rich rock varnish coating on a basalt rock in the laboratory with the ChemCam engineering model to determine the LIBS signature of a natural rock coating. Results show that there is a systematic decrease in peak heights for elements such as Mn that are abundant in the coating but not the rock. There is significant spatial variation in the relative abundance of coating elements detected by LIBS depending on where on the rock surface sampled; this is due to the variability in thickness and spatial discontinuities in the coating. Similar trends have been identified in some martian rock targets in ChemCam data, suggesting that these rocks may have coatings or weathering rinds on their surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5975628-stratigraphy-petrography-provenance-archean-sedimentary-rocks-nsuze-group-pongola-supergroup-wit-folozi-inlier-south-africa','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5975628-stratigraphy-petrography-provenance-archean-sedimentary-rocks-nsuze-group-pongola-supergroup-wit-folozi-inlier-south-africa"><span>Stratigraphy, petrography, and provenance of Archean sedimentary rocks of the Nsuze Group, Pongola Supergroup, in the Wit M'folozi Inlier, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gamero de Villarroel, H.; Lowe, D.R.</p> <p>1993-02-01</p> <p>The Upper Archean Pongola Supergroup is a succession of clastic and volcanic rocks that represents the oldest relatively unmetamorphosed sedimentary sequence deposited on the basement of the 3.5-3.2 Ga-old Kaapvaal Craton. The Pongola Supergroup includes two subdivisions, the Nsuze and the Mozaan Groups. The Nsuze Group is composed of clastic rocks, minor carbonate units, and basalt. Nsuze sandstones are dominated by granite-derived sediments, and minor basaltic-derived detritus. Most Nsuze sedimentary rocks are sandstones that include both quartz-fieldspar and lithic-rich varieties. The mineralogy of Nsuze sandstones reflects the mixing of debris derived from two distinctive sources: (1) a sialic plutonic sourcemore » yielding quartz and microcline and (2) a basaltic source yielding basaltic lithic detritus and plagioclase. The most likely source rocks for the Nsuze sandstones in the Wit M'folozi Inlier were Archean granitic basement, represented by the Mpuluzi batholith, and Nsuze basaltic volcanic rocks. Both continental arc and rift settings have been proposed for the Pongola Supergroup. Nsuze sandstones show similarities to continental arc sandstone suites. However, there is no report of the existence of high standing stratovolcanoes, calc-alkaline plutonism, or contact and regional metamorphism of the intruded volcanic-sedimentary and basement rocks in the Pongola basin, features that are typically associated with continental arcs. The dominance of continent-derived detritus in the Nsuze Group argues that volcanic rocks made up a minor part of the exposed source area and that volcanism was largely restricted to the basin of deposition. Collectively, available evidence favors an intracratonic rift for the depositional setting of the Nsuze Group.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112021Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112021Y"><span>Modelling of reactive fluid transport in deformable porous rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yarushina, V. M.; Podladchikov, Y. Y.</p> <p>2009-04-01</p> <p>One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a representative volume element and subsequent averaging of microscopic constitutive laws. Micromechanical and thermodynamic modelling is performed in such a way that the consistency of the obtained rheology and thermodynamically admissible closed system of equations with the exact Gassman's relationship and Terzaghi effective stress law in the simplified case of poroelasticity is guaranteed. In such environments as subduction zones or mid-ocean ridge, metamorphic rocks exhibit a lack of chemical homogenisation. Geochemistry suggests that in order to produce chemical heterogeneity, the fluids generated during high-pressure metamorphism must have been strongly channelled. The following three major mechanisms of fluid flow focusing have been proposed: fluid flow in open fractures and two different types of flow instabilities that do not require the pre-existing fracture network. Of the latter, the first represents a purely mechanical instability of Darcian flow through the deformable porous rock while the second is reactive infiltration instability. Both mechanical and reactive instabilities are expected to occur in the mantle and should probably reinforce each other. However, little research has been done in this direction. In order to investigate how the focusing of a fluid flow occurs, how mechanical and reactive infiltration instabilities influence each other, and what their relative importance in rocks with different rheologies is, linear and non-linear stability analysis is applied to derived governing equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1393236-characterization-differentiation-rock-varnish-types-from-different-environments-microanalytical-techniques','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1393236-characterization-differentiation-rock-varnish-types-from-different-environments-microanalytical-techniques"><span>Characterization and differentiation of rock varnish types from different environments by microanalytical techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Macholdt, D. S.; Jochum, K. P.; Pöhlker, C.</p> <p></p> <p>We investigated rock varnishes collected from several locations and environments worldwide by a wide range of microanalytical techniques. These techniques were selected to address the challenges posed by the chemical and structural complexity within the micrometer- to nanometer-sized structures in these geological materials. Femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS), scanning transmission X-ray microscopy-near edge X-ray adsorption fine structure spectroscopy (STXM-NEXAFS) in combination with scanning electron microscopy (SEM) of focused ion beam (FIB) ultra-thin (100–200 nm) sections, conventional and polarization microscopy, as well as electron paramagnetic resonance (EPR) measurements were used to obtain information about these rock varnishes. Rockmore » varnishes from different environments, which cannot readily be distinguished based on their macroscopic appearance, differ significantly in their constituent elemental mass fractions, e.g., of Mn, Fe, Ni, Co, Ba, and Pb, and their rare earth element (REE) patterns. Structural characteristics such as the particle sizes of embedded dust grains, internal structures such as layers of Mn-, Fe-, and Ca -rich material, and structures such as cavities varied between varnishes from different environments and regions in the world. The EPR spectra were consistent with aged biogenic Mn oxides in all samples, but showed subtle differences between samples of different origin. Our observations allow us to separate rock varnishes into different types, with differences that might be indicators of distinct geneses. Five different types of rock varnish could be distinguished, Type I–V, of which only Type I might be used as potential paleoclimate archive. Each varnish type has specific characteristics in terms of their elemental composition, element distribution, and structures. The combination of element ratios (Mn/Ba, Al/Ni, Mn/REY, Mn/Ce, Mn/Pb, La N /Yb N , and Ce/Ce*), total REE contents, and structures can be used to separate the different types of rock varnish from each other.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4148024','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4148024"><span>ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Coque, Emmanuelle; Raoul, Cédric; Bowerman, Mélissa</p> <p>2014-01-01</p> <p>Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice. PMID:25221469</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030748','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030748"><span>The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.</p> <p>2007-01-01</p> <p>Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA047642','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA047642"><span>A Quantitative Geochemical, Mineralogical and Physical Study of Some Selected Rock Weathering Profiles from Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1977-08-17</p> <p>weather to gibbsite (plus or minus iron oxides) in well-drained, and smectite in poorly-drained, environments. Kaolinite found in the vicinity of quartz...rock and completely weathered saprolite. Quartz-rich rock types exhibit wide, gradational weathered zones and usually form kaolinite or halloysite in...free rocks is either formed by re-silication of gibbsite , or is of secondary origin (transported). Texture of the rock (aphanitic vs. phaneric) has</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70074761','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70074761"><span>Quantitative models for aggregate: some types and examples from Oklahoma carbonate rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bliss, James D.</p> <p>1999-01-01</p> <p>Evaluation of data for three engineering variable--absorption, bulk specific gravity, and freeze-thaw durability (350 cycles)--was made for quarries in carbonate rocks in Oklahoma that supply aggregate. It was found that lower Palrozoic carbonate rocks (Cambrian through Devonian) are likely to make a better quality aggregate than upper Paleozoic (Mississippian to Permian) carbonate rocks. In addition, freeze-thaw durability can be forecast from absorption and is exemplary for lower Paleozoic carbonate rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA625872','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA625872"><span>Geologic Site Characterization of the North Korean Nuclear Test Site at Punggye-Ri: A Reconnaissance Mapping Redux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-11-30</p> <p>at the “South Portal”) is evidently located in host rock that is similar to that used in association with the latter two tests (but perhaps having... using image processing algorithms). As the authors point out: “Drainage patterns can provide substantial information on the nature of rock ... metamorphic rocks , with lesser amounts of sedimentary rocks . The metamorphic rocks are mostly schists, fewer types of gneiss, and some</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28940044','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28940044"><span>Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gu, Xiaomin; Xiao, Yong; Yin, Shiyang; Pan, Xingyao; Niu, Yong; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Hao, Qichen</p> <p>2017-09-22</p> <p>In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO 3 type in grass land to Ca·Na-Cl (+NO 3 ) type and Na (Ca)-Cl (+NO 3 +SO 4 ) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO 3 ) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1767R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1767R"><span>Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.</p> <p>2018-02-01</p> <p>Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060048276&hterms=fossils+form&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfossils%2Bform','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060048276&hterms=fossils+form&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfossils%2Bform"><span>Fossil Microorganisms in Archaean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.</p> <p>2006-01-01</p> <p>Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760040584&hterms=propylitic&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpropylitic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760040584&hterms=propylitic&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpropylitic"><span>Exploration for porphyry copper deposits in Pakistan using digital processing of Landsat-1 data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidt, R. G.</p> <p>1976-01-01</p> <p>Rock-type classification by digital-computer processing of Landsat-1 multispectral scanner data has been used to select 23 prospecting targets in the Chagai District, Pakistan, five of which have proved to be large areas of hydrothermally altered porphyry containing pyrite. Empirical maximum and minimum apparent reflectance limits were selected for each multispectral scanner band in each rock type classified, and a relatively unrefined classification table was prepared. Where the values for all four bands fitted within the limits designated for a particular class, a symbol for the presumed rock type was printed by the computer at the appropriate location. Drainage channels, areas of mineralized quartz diorite, areas of pyrite-rich rock, and the approximate limit of propylitic alteration were very well delineated on the computer-generated map of the test area. The classification method was used to evaluate 2,100 sq km in the Mashki Chah region. The results of the experiment show that outcrops of hydrothermally altered and mineralized rock can be identified from Landsat-1 data under favorable conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_R1_deliverable_88-Industrial_mineral_deposits/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_R1_deliverable_88-Industrial_mineral_deposits/"><span>Reported industrial minerals occurrences and permissive areas for other occurrences in the Islamic Republic of Mauritania (phase V deliverable 88): Chapter R1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Langer, William H.; Anderson, Eric D.; Horton, John D.</p> <p>2012-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_M1_deliverable_78-Iron_oxide_copper-gold_deposits_(IOCG)/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_M1_deliverable_78-Iron_oxide_copper-gold_deposits_(IOCG)/"><span>Permissive tracts for iron oxide copper-gold deposits in Mauritania (phase V, deliverable 78 ): Chapter M1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fernette, Gregory; Horton, John D.</p> <p>2012-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/ofr20131280','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/ofr20131280"><span>Geologic map of Mauritania (phase V, deliverables 51a, 51b, and 51c): Chapter A1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bradley, Dwight C.; Motts, Holly; Horton, John D.; Giles, Stuart A.; Taylor, Cliff D.</p> <p>2015-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_J1_deliverable_72-Sediment-hosted_lead-zinc-silver_deposits/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_J1_deliverable_72-Sediment-hosted_lead-zinc-silver_deposits/"><span>Permissive tracts for sediment-hosted lead-zinc-silver deposits in Mauritania (phase V, deliverable 72): Chapter J1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mauk, Jeffrey L.; Horton, John D.</p> <p>2012-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_H1_deliverable_68-Orogenic_Carlin-like_and_epithermal_gold_deposits/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_H1_deliverable_68-Orogenic_Carlin-like_and_epithermal_gold_deposits/"><span>Mineral potential tracts for orogenic, Carlin-like, and epithermal gold deposits in the Islamic Republic of Mauritania, (phase V, deliverable 68): Chapter H1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Goldfarb, Richard J.; Marsh, Erin; Horton, John D.</p> <p>2012-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_L1_deliverable_76-Volcanogenic_massive_sulfide_(VMS)_deposits/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_L1_deliverable_76-Volcanogenic_massive_sulfide_(VMS)_deposits/"><span>Permissive tracts for volcanogenic massive sulfide deposits in Mauritania (phase V, deliverable 76): Chapter L1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Taylor, Cliff D.; Horton, John D.</p> <p>2012-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_A2_deliverable_52-Structure/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_A2_deliverable_52-Structure/"><span>Structure map of Mauritania (phase V, deliverables 52a and 52b): Chapter A2 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bradley, Dwight C.; Horton, John D.; Motts, Holly A.; Taylor, Cliff D.</p> <p>2015-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_T_deliverable_92-Basemap_GIS/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_T_deliverable_92-Basemap_GIS/"><span>Geographic Information Systems (GIS) for la République Islamique de Mauritanie (PRISM-II) phase V (phase V, deliverable 92): Chapter T in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Horton, John D.; Taylor, Cliff D.</p> <p>2015-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_N1_deliverable_80-Uranium_deposits/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_N1_deliverable_80-Uranium_deposits/"><span>Permissive tracts for uranium deposits in Mauritania (phase V, deliverable 80): Chapter N1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fernette, Gregory; Horton, John D.</p> <p>2012-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_G1_deliverable_66-Nickel_copper_platinum_group_elements_(PGE)_and_chromium_deposits/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1280/GIS_and_Maps/Chapter_G1_deliverable_66-Nickel_copper_platinum_group_elements_(PGE)_and_chromium_deposits/"><span>Permissive tracts for nickel, copper, platinum group elements (PGE), and chromium deposits of Mauritania (phase V, deliverable 66): Chapter G1 in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Taylor, Cliff D.; Horton, John D.</p> <p>2012-01-01</p> <p>This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T43J..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T43J..05B"><span>Evidence for Crustal-Scale Imbrication and non-Equilibrium Topography in the Southern Central Range, Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrne, T. B.; Huang, C.; Ouimet, W. B.; Rau, R.; Hsieh, M.; Lee, Y.</p> <p>2011-12-01</p> <p>We integrate a suite of new and recently re-interpreted profiles of the 3-D crustal velocity structure from the southern Central Range of Taiwan with geomorphic data from the range and propose that the topography is supported by a crustal-scale, west-verging thrust. The extent and geometry of the thrust is indicated by contours of P-wave velocity that are progressively overturned from south to north, placing high Vp rocks above low Vp rocks. The interpreted thrust dips gently east (15-20 degrees) and carries pre-Tertiary metamorphic rocks and Eocene to Miocene rocks with a well-developed slaty cleavage in its hanging wall. The thrust is interpreted to cut up section to the west and link with the basal detachment of the fold-and-thrust belt. Leveling data1 along the South Cross-Island Highway also suggest that the thrust is active. Along-strike profiles suggest that the thrust is propagating southward, consistent with a progressive decrease in mean elevation and an increase in reset apatite fission track ages from north to south. The hanging wall of the propagating thrust also correlates with anomalous areas of low topographic relief that straddle the crest of the southern part of the range. The areas of low relief are fringed by stream channels with relatively high stream gradient indexes and do not appear related to weaker rock types, glacial erosion, or lower rock uplift rates along the range crest. We propose that the surfaces represent relict topography that formed prior to a recent acceleration in rock uplift rate, consistent with the presence of a propagating, crustal-scale thrust in the subsurface. Taken together, these results raise questions about the notion of steady state topography and critically tapered wedges in Taiwan. 1) Ching, Kuo-En, Hsieh, M.-L., Johnson, K. M., Chen, K-H., Rau, R.-J., Yang M., Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008, in press, JGR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PhDT........25W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PhDT........25W"><span>Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wyatt, Michael Bruce</p> <p>2002-11-01</p> <p>This dissertation comprises four separate parts that address the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) investigation objective of determining and mapping the composition and distribution of surface minerals and rocks on Mars from orbit. In Part 1, laboratory thermal infrared spectra (5 25 μm, at 2 cm-1 spectral sampling), deconvolved modal mineralogies, and derived mineral and bulk rock chemistries of basalt, basaltic andesite, andesite, and dacite were used to evaluate and revise volcanic rock classification schemes. Multiple steps of classification were required to distinguish volcanic rocks, reflecting the mineralogic diversity and continuum of compositions that exists in volcanic rock types. In Part 2, laboratory spectral data were convolved to TES 10 cm-1 sampling to ascertain whether adequate results for volcanic rock classification can be obtained with lower spectral resolution, comparable to that obtained from Mars orbit. Modeled spectra, modeled modal mineralogies, and derived bulk rock chemistries at low (10 cm-1) spectral sampling provide good matches to measured and high (2 cm-1) spectral sampling modeled values. These results demonstrate the feasibility of using similar techniques and classification schemes for the interpretation of terrestrial laboratory samples and TES-resolution data. In Part 3, new deconvolved mineral abundances from TES data and terrestrial basalts using a spectral end-member set representing minerals common in unaltered and low-temperature aqueously altered basalts were used to reclassify martian surface lithologies. The new formulations maintain the dominance of unaltered basalt in the southern highlands, but indicate the northern lowlands can be interpreted as weathered basalt. The coincidence between locations of altered basalt and a previously suggested northern ocean basin implies that lowland plains materials may be basalts altered under submarine conditions and/or weathered basaltic sediment transported into this depocenter. In Part 4, results from the previous parts are applied to examine the distribution of TES-derived surface compositions in the Oxia Palus region on Mars through high-spatial resolution mapping. Features of interest within Oxia Palus include volcanic/sedimentary materials in southern Acidalia Planitia, low-albedo crater floors and wind streaks in western Arabia Terra, and channel outflow deposits of the Mars Pathfinder (MP) landing site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T41A2901S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T41A2901S"><span>Investigating the Accuracy of Point Clouds Generated for Rock Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seker, D. Z.; Incekara, A. H.</p> <p>2016-12-01</p> <p>Point clouds which are produced by means of different techniques are widely used to model the rocks and obtain the properties of rock surfaces like roughness, volume and area. These point clouds can be generated by applying laser scanning and close range photogrammetry techniques. Laser scanning is the most common method to produce point cloud. In this method, laser scanner device produces 3D point cloud at regular intervals. In close range photogrammetry, point cloud can be produced with the help of photographs taken in appropriate conditions depending on developing hardware and software technology. Many photogrammetric software which is open source or not currently provide the generation of point cloud support. Both methods are close to each other in terms of accuracy. Sufficient accuracy in the mm and cm range can be obtained with the help of a qualified digital camera and laser scanner. In both methods, field work is completed in less time than conventional techniques. In close range photogrammetry, any part of rock surfaces can be completely represented owing to overlapping oblique photographs. In contrast to the proximity of the data, these two methods are quite different in terms of cost. In this study, whether or not point cloud produced by photographs can be used instead of point cloud produced by laser scanner device is investigated. In accordance with this purpose, rock surfaces which have complex and irregular shape located in İstanbul Technical University Ayazaga Campus were selected as study object. Selected object is mixture of different rock types and consists of both partly weathered and fresh parts. Study was performed on a part of 30m x 10m rock surface. 2D and 3D analysis were performed for several regions selected from the point clouds of the surface models. 2D analysis is area-based and 3D analysis is volume-based. Analysis conclusions showed that point clouds in both are similar and can be used as alternative to each other. This proved that point cloud produced using photographs which are both economical and enables to produce data in less time can be used in several studies instead of point cloud produced by laser scanner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T23A0590S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T23A0590S"><span>Frictional Behavior of Altered Basement Approaching the Nankai Trough</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.</p> <p>2017-12-01</p> <p>The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in intact rock-on-rock experiments. Our results show that basement alteration tends to reduce the tendency for unstable slip, but that the altered Nankai basement may still exhibit seismogenic behavior in the case of localized slip in competent rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSAES..62..195R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSAES..62..195R"><span>Serpentinization history of the Río Guanajibo serpentinite body, Puerto Rico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roehrig, Erin E.; Laó-Dávila, Daniel A.; Wolfe, Amy L.</p> <p>2015-10-01</p> <p>The Río Guanajibo serpentinite body (RGSB) near Mayagüez, Puerto Rico, is part of an ophiolite mélange thrust in an oceanic convergent zone. The aim of this study was to characterize the extent and chronology of serpentinization within this peridotite mass. Mineralogy, microstructures, and veining episodes within the RGSB were characterized using optical microscopy, x-ray diffraction (XRD), scanning electron microscopy (SEM), and structural analyses. This study identified, for the first time, all three serpentine polymorphs (i.e., antigorite, chrysotile, lizardite) in serpentinite samples collected from Puerto Rico. Lizardite, the initial serpentine mineral formed from widespread hydration of olivine, was found throughout serpentinite samples. Chrysotile was the most abundant polymorph observed in sheared serpentinite samples, consistent with conditions favoring low fluid to rock ratios, supersaturation and abundant porosity. Antigorite was observed as a replacement texture in serpentinites that were not exposed to greenschist facies metamorphic conditions, and were frequently found in veins with a shear component. The results indicate that metamorphic conditions do not exclusively dictate polymorph formation. The mineralogy and textures observed within the different vein generations reflect the formation conditions, and deformational mechanisms, that occurred during the serpentinization process; six veining episodes (V1 - V6) were identified and grouped into four stages of serpentinization. Stage one (V1 and V2 type veins) represents the earliest stages of serpentinization and was characterized by microscopic fracture networks that formed as a result of cracking during the initial hydration of olivine under low water/rock ratios. During stage two (V3 and V4 type veins), fibrous crack - seal veins formed to accommodate continued volume expansion, via incremental fracture openings, caused by continued hydration of olivine. The ascension of serpentinite into the upper lithosphere was inferred to occur during Stage three; V5 type veins are associated with this stage. Textures and vein morphologies, representing supersaturated conditions and a decrease in temperature, were observed. Stage 4 (V6 type veins) was characterized by shear deformation features, which formed as a result of thrusting associated with the emplacement of the RGSB or Late Eocene transpression and fault reactivation along the Caribbean plate boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.131...71O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.131...71O"><span>The estimation of uniaxial compressive strength conversion factor of trona and interbeds from point load tests and numerical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozturk, H.; Altinpinar, M.</p> <p>2017-07-01</p> <p>The point load (PL) test is generally used for estimation of uniaxial compressive strength (UCS) of rocks because of its economic advantages and simplicity in testing. If the PL index of a specimen is known, the UCS can be estimated using conversion factors. Several conversion factors have been proposed by various researchers and they are dependent upon the rock type. In the literature, conversion factors on different sedimentary, igneous and metamorphic rocks can be found, but no study exists on trona. In this study, laboratory UCS and field PL tests were carried out on trona and interbeds of volcano-sedimentary rocks. Based on these tests, PL to UCS conversion factors of trona and interbeds are proposed. The tests were modeled numerically using a distinct element method (DEM) software, particle flow code (PFC), in an attempt to guide researchers having various types of modeling problems (excavation, cavern design, hydraulic fracturing, etc.) of the abovementioned rock types. Average PFC parallel bond contact model micro properties for the trona and interbeds were determined within this study so that future researchers can use them to avoid the rigorous PFC calibration procedure. It was observed that PFC overestimates the tensile strength of the rocks by a factor that ranges from 22 to 106.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SolE....7..493H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SolE....7..493H"><span>The Mohr-Coulomb criterion for intact rock strength and friction - a re-evaluation and consideration of failure under polyaxial stresses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hackston, Abigail; Rutter, Ernest</p> <p>2016-04-01</p> <p>Darley Dale and Pennant sandstones were tested under conditions of both axisymmetric shortening and extension normal to bedding. These are the two extremes of loading under polyaxial stress conditions. Failure under generalized stress conditions can be predicted from the Mohr-Coulomb failure criterion under axisymmetric shortening conditions, provided the best form of polyaxial failure criterion is known. The sandstone data are best reconciled using the Mogi (1967) empirical criterion. Fault plane orientations produced vary greatly with respect to the maximum compressive stress direction in the two loading configurations. The normals to the Mohr-Coulomb failure envelopes do not predict the orientations of the fault planes eventually produced. Frictional sliding on variously inclined saw cuts and failure surfaces produced in intact rock samples was also investigated. Friction coefficient is not affected by fault plane orientation in a given loading configuration, but friction coefficients in extension were systematically lower than in compression for both rock types. Friction data for these and other porous sandstones accord well with the Byerlee (1978) generalization about rock friction being largely independent of rock type. For engineering and geodynamic modelling purposes, the stress-state-dependent friction coefficient should be used for sandstones, but it is not known to what extent this might apply to other rock types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/111371-changes-bacteria-recoverable-from-subsurface-volcanic-rock-samples-during-storage-degrees','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/111371-changes-bacteria-recoverable-from-subsurface-volcanic-rock-samples-during-storage-degrees"><span>Changes in bacteria recoverable from subsurface volcanic rock samples during storage at 4{degrees}C</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Haldeman, D.L.; Amy, P.S.; White, D.C.</p> <p>1994-08-01</p> <p>The abundance of viable microorganisms recovered from deep subsurface volcanic rock samples increased after rock perturbation and storage for 1 week at 4{degrees}C, while the diversity and evenness of recoverable heterotrophic bacterial communities generally decreased. One sample of each morphologically distinct colony type, recovered both before and after storage of U12n rock samples, was purified and characterized by fatty acid methyl ester (MIDI) and API rapid NFT strips. As determined by MIDI cluster analysis, the composition of the recoverable microbial communities changed with storage of rock samples; some groups of organisms were recovered only before, only after, or at bothmore » sample times. In general, the isolates recovered only after storage of rock samples had a greater ability to utilize the carbohydrates included in API test strips and had faster generation times than isolates recovered only on initial plating. The nutritional versatility and faster growth rates of organisms recovered in higher proportions after sample storage provide evidence that some microbial community changes may be due to the proliferation of a few bacterial types. However, because some new genera are recovered only after storage, the possibility also exists that dormant bacterial types are resuscitated during sample perturbation and storage. 30 refs., 1 fig., 5 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.8677L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.8677L"><span>The similarity of river evolution at the initial stage of channel erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Jiun-Chuan</p> <p>2014-05-01</p> <p>The study deals with a comparison study of two types of rocks at the initial stage of channel erosion in Taiwan. It is interesting that channel erosion at different types of rocks shows some similarity. There are two types of rocks: sandstone at Ta-an River, central Taiwan where river channel erosion from the nick point because of earthquake uplifting and mud rock at Tainan, southern Taiwan where rill erosion on a flat surface after artificial engineering. These two situations are both at the beginning stage of channel erosion, there are some similar landform appeared on channels. However the rate of erosion and magnitude of erosion are different. According to the using of photogrammetry method to reconstruct archive imageries and field surveying by total station and 3D scanner at different stages. The incision rate is high both at the Ta-an River and the bank erosion and it is even more obvious at mud rock area because of erodibility of mud rock. The results show that bank erosion and incision both are obvious processes. Bank erosion made channel into meander. The bank erosion cause slope in a asymmetric channel profile. The incision process will start at the site where land is relatively uplifted. This paper demonstrates such similarity and landform characters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V51C3046M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V51C3046M"><span>Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandler, B. E.; Grove, T. L.</p> <p>2015-12-01</p> <p>Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800005747','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800005747"><span>Space environment and lunar surface processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comstock, G. M.</p> <p>1979-01-01</p> <p>The development of a general rock/soil model capable of simulating in a self consistent manner the mechanical and exposure history of an assemblage of solid and loose material from submicron to planetary size scales, applicable to lunar and other space exposed planetary surfaces is discussed. The model was incorporated into a computer code called MESS.2 (model for the evolution of space exposed surfaces). MESS.2, which represents a considerable increase in sophistication and scope over previous soil and rock surface models, is described. The capabilities of previous models for near surface soil and rock surfaces are compared with the rock/soil model, MESS.2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=rocks+AND+minerals&pg=5&id=EJ216757','ERIC'); return false;" href="https://eric.ed.gov/?q=rocks+AND+minerals&pg=5&id=EJ216757"><span>Making "Rock Hounds" of "City Slickers."</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Fazio, Rosario P.; Nye, Osborne</p> <p>1980-01-01</p> <p>Described are ways in which urban "rocks" (building stones, curbstones, sidewalks, etc.) can be used as resources for earth science teachers. Discussed are such activities as: classifying buildings according to rock type and mineral composition, extrapolating geologic history by examining common building materials, economics of stone industry, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4348933','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4348933"><span>Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Junbo; He, Xue; Ma, Yueying; Liu, Yanli; Shi, Huaiyin; Guo, Weiwei; Liu, Liangfa</p> <p>2015-01-01</p> <p>Rho-associated coiled-coil containing protein kinase (ROCK) over-expression has been implicated in the progression of many tumor types. The aim of this study was to explore the roles of ROCK1 and ROCK2 in human laryngeal squamous cell carcinoma (LSCC). ROCK1 and ROCK2 expression levels were examined in 50 cases of human LSCC samples by immunohistochemistry. Effects of ROCK1 and ROCK2 on LSCC cell proliferation and motility were investigated in the presence of the ROCK inhibitor Y-27632. The results showed that ROCK1 expression was positively correlated with tumor size and lymph node metastasis (P < 0.05); ROCK2 positively correlated with tumor size (P < 0.05). Inhibition of ROCK1 and ROCK2 by Y-27632 significantly inhibits proliferation, migration, and invasion of LSCC cells. Our data indicate that expression of ROCK1 and ROCK2 are closely associated with tumor growth and lymph node metastasis of LSCC. Thus, these two ROCK isoforms may be useful as molecular makers for LSCC diagnosis and may be useful therapeutic targets as well. PMID:25755711</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24963803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24963803"><span>Surface complexation modeling of americium sorption onto volcanic tuff.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, M; Kelkar, S; Meijer, A</p> <p>2014-10-01</p> <p>Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021972','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021972"><span>A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clynne, M.A.</p> <p>1999-01-01</p> <p>The eruption of Lassen Peak in May 1915 produced four volcanic rock types within 3 days, and in the following order: (1) hybrid black dacite lava containing (2) undercooled andesitic inclusions, (3) compositionally banded pumice with dark andesite and light dacite bands, and (4) unbanded light dacite. All types represent stages of a complex mixing process between basaltic andesite and dacite that was interrupted by the eruption. They contain disequilibrium phenocryst assemblages characterized by the co-existence of magnesian olivine and quartz and by reacted and unreacted phenocrysts derived from the dacite. The petrography and crystal chemistry of the phenocrysts and the variation in rock compositions indicate that basaltic andesite intruded dacite magma and partially hybridized with it. Phenocrysts from the dacite magma were reacted. Cooling, cyrstallization, and vesiculation of the hybrid andesite magma converted it to a layer of mafic foam. The decreased density of the andesite magma destabilized and disrupted the foam. Blobs of foam rose into and were further cooled by the overlying dacite magma, forming the andesitic inclusions. Disaggregation of andesitic inclusions in the host dacite produced the black dacite and light dacite magmas. Formation of foam was a dynamic process. Removal of foam propagated the foam layer downward into the hybrid andesite magma. Eventually the thermal and compositional contrasts between the hybrid andesite and black dacite magmas were reduced. Then, they mixed directly, forming the dark andesite magma. About 40-50% andesitic inclusions were disaggregated into the host dacite to produce the hybrid black dacite. Thus, disaggregation of inclusions into small fragments and individual crystals can be an efficient magma-mixing process. Disaggregation of undercooled inclusions carrying reacted host-magma phenocrysts produces co-existing reacted and unreacted phenocrysts populations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SMSPS...4..177T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SMSPS...4..177T"><span>Provenance analysis and tectonic setting of the Triassic clastic deposits in Western Chukotka, Northeast Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tuchkova, M. I.; Sokolov, S.; Kravchenko-Berezhnoy, I. R.</p> <p>2009-09-01</p> <p>The study area is part of the Anyui subterrane of the Chukotka microplate, a key element in the evolution of the Amerasia Basin, located in Western Chukotka, Northeast Russia. The subterrane contains variably deformed, folded and cleaved rhythmic Triassic terrigenous deposits which represent the youngest stage of widespread marine deposition which form three different complexes: Lower-Middle Triassic, Upper Triassic (Carnian) and Upper Triassic (Norian). All of the complexes are represented by rhythmic interbeds of sandstone, siltstone and mudstone. Macrofaunas are not numerous, and in some cases deposits are dated by analogy to, or by their relationship with, other units dated with macrofaunas. The deposits are composed of pelagic sediments, low-density flows, high-density flows, and shelf facies associations suggesting that sedimentation was controlled by deltaic progradation on a continental shelf and subsequent submarine fan sedimentation at the base of the continental slope. Petrographic study of the mineral composition indicates that the sandstones are lithic arenites. Although the Triassic sandstones appear similar in outcrop and by classification, the constituent rock fragments are of diverse lithologies, and change in composition from lower grade metamorphic rocks in the Lower-Middle Triassic to higher grade metamorphic rocks in the Upper Triassic. This change suggests that the Triassic deposits represent an unroofing sequence as the source of the clastic material came from more deeply buried rocks with time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160005243','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160005243"><span>Moonrise: Sampling the South Pole-Aitken Basin to Address Problems of Solar System Significance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zeigler, R. A.; Jolliff, B. L.; Korotev, R. L.; Shearer, C. K.</p> <p>2016-01-01</p> <p>A mission to land in the giant South Pole-Aitken (SPA) Basin on the Moon's southern farside and return a sample to Earth for analysis is a high priority for Solar System Science. Such a sample would be used to determine the age of the SPA impact; the chronology of the basin, including the ages of basins and large impacts within SPA, with implications for early Solar System dynamics and the magmatic history of the Moon; the age and composition of volcanic rocks within SPA; the origin of the thorium signature of SPA with implications for the origin of exposed materials and thermal evolution of the Moon; and possibly the magnetization that forms a strong anomaly especially evident in the northern parts of the SPA basin. It is well known from studies of the Apollo regolith that rock fragments found in the regolith form a representative collection of many different rock types delivered to the site by the impact process (Fig. 1). Such samples are well documented to contain a broad suite of materials that reflect both the local major rock formations, as well as some exotic materials from far distant sources. Within the SPA basin, modeling of the impact ejection process indicates that regolith would be dominated by SPA substrate, formed at the time of the SPA basin-forming impact and for the most part moved around by subsequent impacts. Consistent with GRAIL data, the SPA impact likely formed a vast melt body tens of km thick that took perhaps several million years to cool, but that nonetheless represents barely an instant in geologic time that should be readily apparent through integrated geochronologic studies involving multiple chronometers. It is anticipated that a statistically significant number of age determinations would yield not only the age of SPA but also the age of several prominent nearby basins and large craters within SPA. This chronology would provide a contrast to the Imbrium-dominated chronology of the nearside Apollo samples and an independent test of the timing of the lunar cataclysm.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT.......117A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT.......117A"><span>Shock-induced damage in rocks: Application to impact cratering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ai, Huirong</p> <p></p> <p>Shock-induced damage beneath impact craters is studied in this work. Two representative terrestrial rocks, San Marcos granite and Bedford limestone, are chosen as test target. Impacts into the rock targets with different combinations of projectile material, size, impact angle, and impact velocity are carried out at cm scale in the laboratory. Shock-induced damage and fracturing would cause large-scale compressional wave velocity reduction in the recovered target beneath the impact crater. The shock-induced damage is measured by mapping the compressional wave velocity reduction in the recovered target. A cm scale nondestructive tomography technique is developed for this purpose. This technique is proved to be effective in mapping the damage in San Marcos granite, and the inverted velocity profile is in very good agreement with the result from dicing method and cut open directly. Both compressional velocity and attenuation are measured in three orthogonal directions on cubes prepared from one granite target impacted by a lead bullet at 1200 m/s. Anisotropy is observed from both results, but the attenuation seems to be a more useful parameter than acoustic velocity in studying orientation of cracks. Our experiments indicate that the shock-induced damage is a function of impact conditions including projectile type and size, impact velocity, and target properties. Combined with other crater phenomena such as crater diameter, depth, ejecta, etc., shock-induced damage would be used as an important yet not well recognized constraint for impact history. The shock-induced damage is also calculated numerically to be compared with the experiments for a few representative shots. The Johnson-Holmquist strength and failure model, initially developed for ceramics, is applied to geological materials. Strength is a complicated function of pressure, strain, strain rate, and damage. The JH model, coupled with a crack softening model, is used to describe both the inelastic response of rocks in the compressive field near the impact source and the tensile failure in the far field. The model parameters are determined either from direct static measurements, or from indirect numerical adjustment. The agreement between the simulation and experiment is very encouraging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70001459','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70001459"><span>Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnes, I.; Rapp, J.B.; O'Neil, J.R.; Sheppard, R.A.; Gude, A.J.</p> <p>1972-01-01</p> <p>Fluids related to Serpentinization are of at least three types. The first reported (Barnes and O'Neil, 1969) is a fluid of local meteoric origin, the chemical and thermodynamic properties of which are entirely controlled by olivine, orthopyroxene, brucite, and serpentine reactions. It is a Ca+2-OH-1 type and is shown experimentally to be capable of reacting with albite to yield calcium hydroxy silicates. Rodingites may form where the Ca+2-OH-1 type waters flow across the ultramafic contact and react with siliceous country rock. The second type of fluid has its chemical composition largely controlled before it enters the ultramafic rocks, but reactions within the ultramafic rocks fix the thermodynamic properties by reactions of orthopyroxene, olivine, calcite, brucite, and serpentine. The precipitation of brucite from this fluid clearly shows that fluid flow allows reaction products to be deposited at a distance from the point of solution. Thus, textural evidence for volume relations during Serpentinization may not be valid. The third type of fluid has its chemical properties fixed in part before the reactions with ultramafic rocks, in part by the reactions of orthopyroxene, olivine, and serpentine and in part by reactions with siliceous country rock at the contact. The reactions of the ultramafic rock and country rock with the fluid must be contemporaneous and require flow to be along the contact. This third type of fluid is grossly supersaturated with talc and tremolite, both found along the contact. The occurrence of magadiite, kenyaite, mountainite, and rhodesite along the contact is probably due to a late stage low-temperature reaction of fluids of the same thermodynamic properties as those that formed the talc and tremolite at higher temperatures. Oxygen isotope analyses of some of these minerals supports this conclusion. Rodingites form from Ca+2-rich fluids flowing across the contact; talc and tremolite form from silica-rich fluids flowing along the contact. Isotopic analyses of the fluids indicate varied origins including unaltered local meteoric water and connate water. Complexion Spring water may be a sample of only slightly altered Jurassic or Cretaceous sea water. ?? 1972 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5002/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5002/"><span>Simulation of Ground-Water Flow in the Shenandoah Valley, Virginia and West Virginia, Using Variable-Direction Anisotropy in Hydraulic Conductivity to Represent Bedrock Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yager, Richard M.; Southworth, Scott C.; Voss, Clifford I.</p> <p>2008-01-01</p> <p>Ground-water flow was simulated using variable-direction anisotropy in hydraulic conductivity to represent the folded, fractured sedimentary rocks that underlie the Shenandoah Valley in Virginia and West Virginia. The anisotropy is a consequence of the orientations of fractures that provide preferential flow paths through the rock, such that the direction of maximum hydraulic conductivity is oriented within bedding planes, which generally strike N30 deg E; the direction of minimum hydraulic conductivity is perpendicular to the bedding. The finite-element model SUTRA was used to specify variable directions of the hydraulic-conductivity tensor in order to represent changes in the strike and dip of the bedding throughout the valley. The folded rocks in the valley are collectively referred to as the Massanutten synclinorium, which contains about a 5-km thick section of clastic and carbonate rocks. For the model, the bedrock was divided into four units: a 300-m thick top unit with 10 equally spaced layers through which most ground water is assumed to flow, and three lower units each containing 5 layers of increasing thickness that correspond to the three major rock units in the valley: clastic, carbonate and metamorphic rocks. A separate zone in the carbonate rocks that is overlain by colluvial gravel - called the western-toe carbonate unit - was also distinguished. Hydraulic-conductivity values were estimated through model calibration for each of the four rock units, using data from 354 wells and 23 streamflow-gaging stations. Conductivity tensors for metamorphic and western-toe carbonate rocks were assumed to be isotropic, while conductivity tensors for carbonate and clastic rocks were assumed to be anisotropic. The directions of the conductivity tensor for carbonate and clastic rocks were interpolated for each mesh element from a stack of 'form surfaces' that provided a three-dimensional representation of bedrock structure. Model simulations were run with (1) variable strike and dip, in which conductivity tensors were aligned with the strike and dip of the bedding, and (2) uniform strike in which conductivity tensors were assumed to be horizontally isotropic with the maximum conductivity direction parallel to the N30 deg E axis of the valley and the minimum conductivity direction perpendicular to the horizontal plane. Simulated flow penetrated deeper into the aquifer system with the uniform-strike tensor than with the variable-strike-and-dip tensor. Sensitivity analyses suggest that additional information on recharge rates would increase confidence in the estimated parameter values. Two applications of the model were conducted - the first, to determine depth of recent ground-water flow by simulating the distribution of ground-water ages, showed that most shallow ground water is less than 10 years old. Ground-water age distributions computed by variable-strike-and-dip and uniform-strike models were similar, but differed beneath Massanutten Mountain in the center of the valley. The variable-strike-and-dip model simulated flow from west to east parallel to the bedding of the carbonate rocks beneath Massanutten Mountain, while the uniform-strike model, in which flow was largely controlled by topography, simulated this same area as an east-west ground-water divide. The second application, which delineated capture zones for selected well fields in the valley, showed that capture zones delineated with both models were similar in plan view, but differed in vertical extent. Capture zones simulated by the variable-strike-and-dip model extended downdip with the bedding of carbonate rock and were relatively shallow, while those simulated by the uniform-strike model extended to the bottom of the flow system, which is unrealistic. These results suggest that simulations of ground-water flow through folded fractured rock can be constructed using SUTRA to represent variable orientations of the hydraulic-conductivity tensor and produce a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810018057','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810018057"><span>Effect of type of explosives and physical-mechanical properties of explosive rock on formation of toxic gases in atmosphere of shafts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mindeli, E. O.; Khudyakov, M. Y.</p> <p>1981-01-01</p> <p>The quality of toxic gases formed during explosive work in underground shafts depends upon the type of explosives and the conditions of explosion. Several types of explosives and rocks were examined. All remaining conditions were maintained the same (sandy-argillaceous stemming, electrical method of explosions, diameter of blast holes, and the direct triggering of charges).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770046331&hterms=stratigraphy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dstratigraphy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770046331&hterms=stratigraphy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dstratigraphy"><span>Some petrological aspects of Imbrium stratigraphy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ridley, W. I.</p> <p>1977-01-01</p> <p>Descriptions are given of the petrochemistry of two Apennine Front breccias, both ejected to the surface during excavation of Spur Crater. The first clast type is breccia number 15445, a spinel pyroxenite whose mineralogy and petrochemistry are consistent with the original rock type being a garnet pyroxenite. The second rock, breccia 15459, is plutonic norite, in which coarsely exsolved inverted pigeonite is associated with anorthitic plagioclase. Application of mineral geothermometers indicates crystallization of these rocks below 1100 C; hence their textures probably developed largely by solid state recrystallization during impact-metamorphism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A33F2442Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A33F2442Z"><span>Dust input in the formation of rock varnish from the Dry Valleys (Antarctica)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zerboni, A.; Guglielmin, M.</p> <p>2017-12-01</p> <p>Rock varnish is a glossy, yellowish to dark brown coating that covers geomorphically stable, aerially exposed rock surfaces and landforms in warm and cold arid lands. In warm deserts, rock varnish consists of clay minerals, Mn-Fe oxides/hydroxides, and Si+alkalis dust; it occasionally containis sulphates, phosphates, and organic remains. In Antarctica, rock varnish developed on a variety of bedrocks and has been described being mostly formed of Si, Al, Fe, and sulphates, suggesting a double process in its formation, including biomineralization alternated to dust accretion. We investigated rock coatings developed on sandstones outcropping in the Dry Valleys of Antarctica and most of the samples highlithed an extremely complex varnish structure, alternating tihn layer of different chemical compostion. Optical microscope evidenced the occurrence of highly birefringent minerals, occasionally thinly laminated and consisitng of Si and Al-rich minerals (clays). These are interlayered by few micron-thick dark lenses and continous layers. The latter are well evident under the scanning electron microscope and chemical analysis confirmed that they consist of different kinds of sulphates; jarosite is the most represented species, but gypsum crystals were also found. Fe-rich hypocoatings and intergranula crusts were also detected, sometimes preserving the shape of the hyphae they have replaced. Moreover, small weathering pits on sandstone surface display the occurrence of an amorphous, dark Mn/Fe-rich rock varnish. The formation of rock varnish in the Dry Valleys is a complex process, which required the accretion of airborne dust of variable composition and subsequent recrystallization of some constituent, possibly promoted by microorganisms. In particualr, the formation of sulphates seems to preserve the memory of S-rich dust produced by volcanic eruptions. On the contrary, the formation of Mn-rich varnish should be in relation with the occurrence of higher environmental humidity within weathering pits. Rock varnish in the Dry Valleys represents a potential tool to reconstruct past water availability and changes in the aeolian fallout.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006NIMPB.251..496R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006NIMPB.251..496R"><span>Determination and distribution of rare earth elements in beach rock samples using instrumental neutron activation analysis (INAA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ravisankar, R.; Manikandan, E.; Dheenathayalu, M.; Rao, Brahmaji; Seshadreesan, N. P.; Nair, K. G. M.</p> <p>2006-10-01</p> <p>Beach rocks are a peculiar type of formation when compared to other types of rocks. Rare earth element (REE) concentrations in beach rock samples collected from the South East Coast of Tamilnadu, India, have been measured using the instrumental neutron activation analysis (INAA) single comparator K0 method. The irradiations were carried out using a thermal neutron flux of ˜10 11 n cm -2 s -1 at 20 kW power using the Kalpakkam mini reactor (KAMINI), IGCAR, Kalpakkam, Tamilnadu. Accuracy and precision were evaluated by assaying irradiated standard reference material (SRM 1646a estuarine sediment). The results being found to be in good agreement with certified values. REE elements have been determined from 15 samples using high-resolution gamma spectrometry. The geochemical behavior of REE in beach rock, in particular REE (chondrite-normalized) pattern has been studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10133372','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10133372"><span>Analysis of deep seismic reflection and other data from the southern Washington Cascades. Final report, September 15, 1992--December 31, 1993</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stanley, W.D.; Johnson, S.Y.; Nuccio, V.F.</p> <p>1993-12-01</p> <p>This report describes results of a synthesis of geological, geological, geophysical and geochemical data from a largely volcanic rock covered region in southwestern Washington that has been identified as a underlain by thick marine sedimentary rocks. The work was funded by the Deep Source Gas projects at the Morgantown Energy Technology Center (METC). The subproject which resulted in this report is centered in the Branch of Geophysics, US Geological Survey (USGS) has involved one task focused on the application of geophysical methods to the study of phenomena associated with fossil and active subduction zones and non-subduction suture zones that maymore » have deeply emplaced sedimentary rocks. This report represents a summary synthesis of several geophysical and geological data sets. The Southern Washington Cascades Conductor (SWCC) has been examined using several types of data in addition to MT, seismic, magnetic, and gravity Specific geological mapping tasks have been completed trough funding by the Department of Energy and the USGS in the western part of the proposed basin near Morton, WA. Other regional geological studies using wells and outcrops done as part of the USGS Evolution of Sedimentary Basins programs have added information that constraint the possible nature of the SWCC rocks and their tectonic setting. Recently, evaluation of patterns of seismicity in the SWCC region has demonstrated the likelihood of several parallel and step-over strike-slip faults that may have produced the proposed basin or altered its geometry. In addition, the seismicity patterns trace the axis of key anticlinal structures and thrusts.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016HydJ...24.1607F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016HydJ...24.1607F"><span>Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Figueiredo, Bruno; Tsang, Chin-Fu; Niemi, Auli; Lindgren, Georg</p> <p>2016-11-01</p> <p>Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. `Sparse channels' refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRF..123...97P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRF..123...97P"><span>The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poate, Tim; Masselink, Gerd; Austin, Martin J.; Dickson, Mark; McCall, Robert</p> <p>2018-01-01</p> <p>We present for the first time observations and model simulations of wave transformation across sloping (Type A) rock shore platforms. Pressure measurements of the water surface elevation using up to 15 sensors across five rock platforms with contrasting roughness, gradient, and wave climate represent the most extensive collected, both in terms of the range of environmental conditions, and the temporal and spatial resolution. Platforms are shown to dissipate both incident and infragravity wave energy as skewness and asymmetry develop and, in line with previous studies, surf zone wave heights are saturated and strongly tidally modulated. Overall, the observed properties of the waves and formulations derived from sandy beaches do not highlight any systematic interplatform variation, in spite of significant differences in platform roughness, suggesting that friction can be neglected when studying short wave transformation. Optimization of a numerical wave transformation model shows that the wave breaker criterion falls between the range of values reported for flat sandy beaches and those of steep coral fore reefs. However, the optimized drag coefficient shows significant scatter for the roughest sites and an alternative empirical drag model, based on the platform roughness, does not improve model performance. Thus, model results indicate that the parameterization of frictional drag using the bottom roughness length-scale may be inappropriate for the roughest platforms. Based on these results, we examine the balance of wave breaking to frictional dissipation for rock platforms and find that friction is only significant for very rough, flat platforms during small wave conditions outside the surf zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V43E0576C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V43E0576C"><span>Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, S. S.; Fan, W. M.; Shi, R. D.; Gong, X. H.</p> <p>2017-12-01</p> <p>During the latest Carboniferous to early Permian, a mantle plume initiated continental rifting along the northern Gondwana margin, which subsequently developed into the Meso-Tethys Ocean. However, the nature and timing of the embryonic oceanic crust of the Meso-Tethys Ocean remains poorly understood. Here, we present for the first time a combined analysis of petrological, geochronological, geochemical, and Sr-Nd isotopic data for mafic rocks from the Nagqu area, central Tibet. Zircons from the mafic rocks yield a concordant age of ca. 277.8±1.8 Ma, which is slightly younger than the age of mantle plume activity (ca. 300-279 Ma), as represented by the large igneous province (LIP) on the northern Gondwana margin. Geochemical features suggest that the Nagqu mafic rocks, which display normal mid ocean ridge basalt (N-MORB) affinities, are different from those of the LIP, which display oceanic island basalt (OIB)-type affinities. The Nagqu mafic rocks result from a relatively high degree of melting of depleted asthenospheric mantle. Combined with observations from previous studies, we suggest that the late early Permian Nagqu magmatism fully records processes of early stage rifting and incipient formation of oceanic crust. Moreover, the patterns of magmatism are consistent with patterns of rift-related sedimentation that records the transition from predominantly continental to marine deposition in the region during the Carboniferous-Permian. We therefore suggest that rifting of the eastern Cimmerian and northern Gondwana continents started at ca. 277.8 Ma, and the rifting culminated in the opening of the Meso-Tethys Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028756','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028756"><span>Soil grain analyses at Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Weitz, C.M.; Anderson, R.C.; Bell, J.F.; Farrand, W. H.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Morris, R.V.; Squyres, S. W.; Sullivan, R.J.</p> <p>2006-01-01</p> <p>Grain-size analyses of the soils at Meridiani Planum have been used to identify rock souces for the grains and provide information about depositional processes under past and current conditions. Basaltic sand, dust, millimeter-size hematite-rich spherules interpreted as concretions, spherule fragments, coated partially buried spherules, basalt fragments, sedimentary outcrop fragments, and centimeter-size cobbles are concentrated on the upper surfaces of the soils as a lag deposit, while finer basaltic sands and dust dominate the underlying soils. There is a bimodal distribution of soil grain sizes with one population representing grains <125 ??m and the other falling between 1-4.5 mm. Soils within craters like Eagle and Endurance show a much greater diversity of grain morphologies compared to the plains. The spherules found in the plains soils are approximately 1-2 mm smaller in size than those seen embedded in the outcrop rocks of Eagle and Endurance craters. The average major axis for all unfractured spherules measured in the soils and outcrop rocks is 2.87 ?? 1.18 mm, with a trend toward decreasing spherule sizes in both the soils and outcrop rocks as the rover drove southward. Wind ripples seen across the plains of Meridiani are dominated by similar size (1.3-1.7 mm) hematite-rich grains, and they match in size the larger grains on plains ripples at Gusev Crater. Larger clasts and centimeter-size cobbles that are scattered on the soils have several spectral and compositional types, reflecting multiple origins. The cobbles tend to concentrate within ripple troughs along the plains and in association with outcrop exposures. Copyright 2006 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012561','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012561"><span>Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.</p> <p>1979-01-01</p> <p>Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010431','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010431"><span>Specific heats of lunar surface materials from 90 to 350 degrees Kelvin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Robie, R.A.; Hemingway, B.S.; Wilson, W.H.</p> <p>1970-01-01</p> <p>The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA191550','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA191550"><span>Cultural Resources Investigations: Terrace Survey and Site Evaluation, Table Rock Lake, Missouri and Arkansas,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-12-01</p> <p>embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high...e Tl -’J. 39.1 37miA o= -0 38cvq 39 47am 0 0 . Unit 11 17N, 38E Unrt 12 I7N 39E Drsn by A ProjectAv. paint t WACe 0 Vh.wtewre sherd * 3u1t4oR 10-6...tape and transit method but because of the vegetation it was not possible to place the shovel tests at completely systematic intervals. Their location</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8467K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8467K"><span>Relict rock glaciers in alpine catchments: A regional study in Central Austria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kellerer-Pirklbauer, Andreas; Pauritsch, Marcus; Winkler, Gerfried</p> <p>2013-04-01</p> <p>Alpine catchments represent an important freshwater source in many regions. Catchments in the subalpine to nival altitudinal levels are generally characterised by higher precipitation, lower evapotranspiration and consequently higher discharge rates compared to lower elevated areas of the montane and foothill levels of the same region. Particularly in crystalline mountain regions in the mid- to high latitudes glacial and periglacial sediments cover larger areas and form important aquifers in alpine catchments. Typical periglacial landforms in mountain areas are rock glaciers. Relict rock glaciers consist of sediment accumulations without permafrost at present. This rock glacier type has a strong influence on water storage capacities and discharge behaviour of the catchments. The hydraulic properties of rock glaciers have a positive impact on flood-risk reduction and the riparian ecology below rock glacier springs during dry periods. Furthermore, the exceptional high discharge rates at springs at the front of relict rock glaciers compared to nearby non-rock glacier springs are also of economic interest. Knowledge about morphometric characteristics of rock glacier catchments helps to increase the understanding of the groundwater system and discharge dynamics of rock glaciers. In this context the main objectives of our study are (a) to assess and quantitatively describe rock glacier catchments at a regional scale by analysing different morphometric parameters of the catchments and (b) to combine the rock glacier catchment properties with water balance data. In doing so, at first an inventory of 295 rock glacier catchments was established for the 2440 km² large study area (Niedere Tauern Range, Styria) in Central Austria ranging from 590 to 2862 m a.s.l.. In a second step, the inventory data were combined with area-wide precipitation, discharge and evapotranspiration data. Results reveal that 108 km² or 4.4% of the entire study area belongs to rock glacier catchments. This proportion increases to 8.6% for areas above 1500 m a.s.l. and even to 23% for areas above 2000 m a.s.l.. Results for a 626 km² large subunit (Seckauer Tauern Range) reveal that even 15.6% of the area above 1500 m a.s.l. and more 42% above 2000 m a.s.l. are influenced by relict rock glaciers as aquifers. A total water volume of 4240 Mio m³ is precipitated annually (mean value for the normal period 1971-2000) in the entire study area. 22% of this water is evapotranspirated and the remaining water is the discharge of the catchments. Despite the fact that 8.6% of the entire Niedere Tauern Range above 1500 m a.s.l. belong to rock glacier catchments, about 9.5% of the total discharge and 9.2% of the total precipitation originates in the rock glacier catchments. In contrast, only 7.9% of all precipitated water is evapotranspirated in these catchments. In the subunit Seckauer Tauern Range the same figures for rock glacier catchments are substantially higher and more pronounced in their differences with 15.6% for area, 16.8% for precipitation, 14.5% for evapotranspiration and even 17.3% for discharge. These figures exemplarily show that rock glaciers and their catchments are highly relevant in the alpine water cycle of the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MinDe.tmp...16G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MinDe.tmp...16G"><span>Formation conditions and REY enrichment of the 2060 Ma phosphorus mineralization at Schiel (South Africa): geochemical and geochronological constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graupner, Torsten; Klemd, Reiner; Henjes-Kunst, Friedhelm; Goldmann, Simon; Behnsen, Helge; Gerdes, Axel; Dohrmann, Reiner; Barton, Jay M.; Opperman, Rehan</p> <p>2018-02-01</p> <p>Rocks of the rare-earth element (REY)-enriched apatite deposit in the eastern part of the Schiel Alkaline Complex (SAC; Southern Marginal Zone, Limpopo Belt) were studied for their whole-rock and mineral chemistry, REY mineral distribution and geochronology. Apart from phoscorite (sensu lato), pyroxenite and various syenitic rock types with quite variable apatite contents display P-REY enrichments. Field observations, mineralogical composition as well as major and trace element chemistry of soils make it possible to constrain the distribution of the hidden P-REY-rich rock types in the apatite deposit. Uranium-lead ages of zircon from phoscorite (sensu lato) and syenite are in the range of 2.06-2.05 Ga. Samarium-neodymium (ɛNd(t) -8.6 to -6.0) and in part Rb-Sr (87Sr/86Sr(t) 0.70819-0.70859) isotope data for whole-rock samples and mineral separates indicate an origin from an isotopically enriched and slightly variable source. Fluorapatite, early allanite and titanite are the main REY carriers at Schiel. Fluorapatite dominates the REY budget of pyroxenite and phoscorite, whereas early allanite hosts most of the REY in syenite. Three apatite types are distinguished based on their occurrence in the rocks, REYtotal contents and colouration in cathodoluminescence microscopy. Magmatic apatite in pyroxenite and in phoscorite (sensu lato) as well as early stage type I/II apatite in syenitic rocks have moderate to high REYtotal abundances (up to 3.2 wt%) with the mineral enriched in light REE. Early ferriallanite-(Ce) is strongly enriched in light REE and shows very high REYtotal values (13.7-26.4 wt%), while late allanite has lower REYtotal concentrations (6.9-14.9 wt%). Titanite is abundant in most syenitic rocks (REYtotal 1.7-6.4 wt%); chevkinite-(Ce) occurs locally and contributes to an REY enrichment in contact aureoles between syenite and different lithologies. Apatite-enriched rocks in the SAC in part contain significantly higher REYtotal concentrations in apatite grains compared to those in apatite-mineralized pyroxenite, phoscorite and carbonatite from Phalaborwa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820012837','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820012837"><span>Geochemical and spectral characterization of naturally altered rock surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chang, L. L. Y.; Sommer, S. E.; Buckingham, W. F.</p> <p>1981-01-01</p> <p>The possibility of using the visible-near infrared region for compositional analysis of remotely sensed rock surfaces is studied. This would allow mapping rock type both on the Earth's surface and on other planetary surfaces. Reflectance spectroscopy, economic geology, optical depth determination, and X-ray diffraction mineralogy are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=torrent&pg=3&id=ED068351','ERIC'); return false;" href="https://eric.ed.gov/?q=torrent&pg=3&id=ED068351"><span>Unit: Rocks from Sediments, Inspection Pack, National Trial Print.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Australian Science Education Project, Toorak, Victoria.</p> <p></p> <p>Four compulsory introductory activities, involving learning to use a stream tray, observing the relationship between water speed and entraining, transporting and depositing sediments, studying the formation of sedimentary rocks, and examining several types of sedimentary rocks, are completed by all students using the unit prepared for Australian…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=torrent&pg=3&id=ED058099','ERIC'); return false;" href="https://eric.ed.gov/?q=torrent&pg=3&id=ED058099"><span>Unit: Rocks from Sediments, Inspection Set, First Trial Materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Australian Science Education Project, Toorak, Victoria.</p> <p></p> <p>Four compulsory introductory activities involving learning to use a stream tray, observing the relationship between water speed and entraining, transporting and depositing sediments, studying the formation of sedimentary rocks, and examining several types of sedimentary rocks are completed by all students using the unit prepared for Australian…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>