Science.gov

Sample records for represses ebna1-mediated transforming

  1. TORC2 regulates germinal center repression of the TCL1 oncoprotein to promote B cell development and inhibit transformation.

    PubMed

    Kuraishy, Ali I; French, Samuel W; Sherman, Mara; Herling, Marco; Jones, Dan; Wall, Randolph; Teitell, Michael A

    2007-06-12

    Aberrant expression of the TCL1 oncoprotein promotes malignant transformation of germinal center (GC) B cells. Repression of TCL1 in GC B cells facilitates FAS-mediated apoptosis and prevents lymphoma formation. However, the mechanism for this repression is unknown. Here we show that the CREB coactivator TORC2 directly regulates TCL1 expression independent of CREB Ser-133 phosphorylation and CBP/p300 recruitment. GC signaling through CD40 or the BCR, which activates pCREB-dependent genes, caused TORC2 phosphorylation, cytosolic emigration, and TCL1 repression. Signaling via cAMP-inducible pathways inhibited TCL1 repression and reduced apoptosis, consistent with a prosurvival role for TCL1 before GC selection and supporting an initiating role for aberrant TCL1 expression during GC lymphomagenesis. Our data indicate that a novel CREB/TORC2 regulatory mode controls the normal program of GC gene activation and repression that promotes B cell development and circumvents oncogenic progression. Our results also reconcile a paradox in which signals that activate pCREB/CBP/p300 genes concurrently repress TCL1 to initiate its silencing.

  2. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  3. Transformation by homeobox genes can be mediated by selective transcriptional repression.

    PubMed Central

    Qin, X F; Luo, Y; Suh, H; Wayne, J; Misulovin, Z; Roeder, R G; Nussenzweig, M C

    1994-01-01

    Altered transcription is a recurrent theme in the field of cancer biology. But despite the central role of transcription in transformation, little is known about the mechanism by which dominant nuclear oncogenes induce malignancies. Homeobox family proteins are prominent examples of transcriptional regulators which control development and can function as oncogenes. Here we explore the molecular basis for transformation by this class of regulators using Oct-2 and Oct-1. We show that the DNA binding POU domains of these proteins are selective and sequence-specific transcriptional repressors that produce malignant lymphomas when they are expressed in T cells of transgenic mice. Mutagenesis experiments identified a specific set of promoters, those containing octamer regulatory elements, as the targets for transformation by selective inhibition of gene expression. Images PMID:7813434

  4. Ha-Ras transformation of MCF10A cells leads to repression of Singleminded-2s through NOTCH and C/EBPβ

    PubMed Central

    Gustafson, TL; Wellberg, E; Laffin, B; Schilling, L; Metz, RP; Zahnow, CA; Porter, WW

    2009-01-01

    We have previously shown that Singleminded-2s (SIM2s), a member of the basic helix-loop-helix Per-Arnt-Sim (bHLH/PAS) family of transcription factors, is downregulated in breast cancer samples and has tumor suppressor activity. However, the mechanism by which SIM2s is repressed in breast cancer cells has not been determined. In this study, we show that transformation of MCF10A cells by Harvey-Ras (Ha-Ras) induces CCAAT/enhance binding protein β (C/EBPβ) and activates the NOTCH signaling pathway to block SIM2s gene expression. NOTCH-mediated repression acts through a C-repeat binding factor 1 (CBF1)-independent mechanism, as introduction of CBF1 had no effect on SIM2s expression. Consistent with C/ebpβ-dependent inhibition of SIM2s, C/ebpβ−/−mouse mammary glands express high levels of SIM2s and reestablishment of C/ebpβ isoforms decreased SIM2s mRNA levels in C/ebpβ immortalized mammary epithelial cell lines. These studies illustrate a novel pathway of tumor suppressor gene silencing in Ha-Ras-transformed breast epithelial cells and identify SIM2s as a target of C/EBPβ and NOTCH signaling. PMID:19169276

  5. Repression of the Proapoptotic Cellular BIK/NBK Gene by Epstein-Barr Virus Antagonizes Transforming Growth Factor β1-Induced B-Cell Apoptosis

    PubMed Central

    Campion, Eva M.; Hakimjavadi, Roya; Loughran, Sinéad T.; Phelan, Susan; Smith, Sinéad M.; D'Souza, Brendan N.; Tierney, Rosemary J.; Bell, Andrew I.; Cahill, Paul A.

    2014-01-01

    ABSTRACT The Epstein-Barr virus (EBV) establishes a lifelong latent infection in humans. EBV infection of primary B cells causes cell activation and proliferation, a process driven by the viral latency III gene expression program, which includes EBV nuclear proteins (EBNAs), latent membrane proteins, and untranslated RNAs, including microRNAs. Some latently infected cells enter the long-lived memory B-cell compartment and express only EBNA1 transiently (Lat I) or no EBV protein at all (Lat 0). Targeting the molecular machinery that controls B-cell fate decisions, including the Bcl-2 family of apoptosis-regulating proteins, is crucial to the EBV cycle of infection. Here, we show that BIK (also known as NBK), which encodes a proapoptotic “sensitizer” protein, is repressed by the EBNA2-driven Lat III program but not the Lat I program. BIK repression occurred soon after infection of primary B cells by EBV but not by a recombinant EBV in which the EBNA2 gene had been knocked out. Ectopic BIK induced apoptosis in Lat III cells by a mechanism dependent on its BH3 domain and the activation of caspases. We show that EBNA2 represses BIK in EBV-negative B-cell lymphoma-derived cell lines and that this host-virus interaction can inhibit the proapoptotic effect of transforming growth factor β1 (TGF-β1), a key physiological mediator of B-cell homeostasis. Reduced levels of TGF-β1-associated regulatory SMAD proteins were bound to the BIK promoter in response to EBV Lat III or ectopic EBNA2. These data are evidence of an additional mechanism used by EBV to promote B-cell survival, namely, the transcriptional repression of the BH3-only sensitizer BIK. IMPORTANCE Over 90% of adult humans are infected with the Epstein-Barr virus (EBV). EBV establishes a lifelong silent infection, with its DNA residing in small numbers of blood B cells that are a reservoir from which low-level virus reactivation and shedding in saliva intermittently occur. Importantly, EBV DNA is found in some

  6. Musk xylene induces malignant transformation of human liver cell line L02 via repressing the TGF-β signaling pathway.

    PubMed

    Zhang, Youyu; Huang, Lixing; Zhao, Yujie; Hu, Tianhui

    2017-02-01

    Musk xylene (MX) is a widely used synthetic nitro musk. Although the persistence and bioaccumulation of the synthetic musks are of concern since the nineteenth century, knowledge concerning the toxicity and environmental risks, especially the carcinogenicity is still limited. In the present study, the normal human hepatic cell line L02 was used to investigate the long-term carcinogenicity of MX. L02 cells were exposed to MX with different concentrations (10, 100, and 1000 μg/L) for 24 h, then with conventional culture. After MX exposure for 24 h, some irregular fusiform, protuberances and multinucleated cells were observed. Indefinite cell proliferation, ability of anchorage-independent proliferation and increase of migration and invision were also observed in subsequent experiments, which suggested the positive effects of MX on cell malignant transformation in vitro. Moreover, the up-regulated protein expression of some oncogenes (C-myc and PCNA) in each time points furthermore supported this conclusion. Meanwhile, decreased protein expression level of TGF-β and the downstream proteins, SMAD4 coupled with P15 were observed in MX-treated cells. In addition, after culturing for 20 passages, the proportion of cells in the G0/G1 phase was decreased. These results demonstrated that the TGF-β signaling pathway regulated indefinite cell proliferation might be responsible for the oncogenesis of MX.

  7. Interferon-Tau has Antiproliferative effects, Represses the Expression of E6 and E7 Oncogenes, Induces Apoptosis in Cell Lines Transformed with HPV16 and Inhibits Tumor Growth In Vivo

    PubMed Central

    Padilla-Quirarte, Herbey Oswaldo; Trejo-Moreno, Cesar; Fierros-Zarate, Geny; Castañeda, Jhoseline Carnalla; Palma-Irizarry, Marie; Hernández-Márquez, Eva; Burguete-Garcia, Ana Isabel; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo

    2016-01-01

    Interferon tau (IFN-τ) is a promising alternative antiviral and immunotherapeutic agent in a wide variety of diseases including infectious, neurodegenerative, autoimmune and cancer due to its low toxicity in comparison with other type I interferon´s. The objective of our study was established the effect of the bovine IFN-τ on human (SiHa) and murine (BMK-16/myc) cells transformed with HPV 16 and evaluates the antitumor effect in a murine tumor model HPV 16 positive. We determine that bovine IFN-τ has antiproliferative effects, pro-apoptotic activity and induces repression of viral E6 and E7 oncogenes (time- and dose-dependent) on human and murine cells transformed with HPV 16 similar to the effects of IFN-β. However, IFN-τ induces greater antiproliferative effect, apoptosis and repression of both oncogenes in BMK-16/myc cells compared to SiHa cells. The differences were explained by the presence and abundance of the type I interferon receptor (IFNAR) in each cell line. On the other hand, we treated groups of tumor-bearing mice (HPV16 positive) with IFN-τ and showed the inhibition tumor growth effect in vivo. Our finding indicates that bovine IFN-τ may be a good candidate for immunotherapy against cervical cancer. PMID:27994659

  8. Bombyx mori E26 transformation-specific 2 (BmEts2), an Ets family protein, represses Bombyx mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in the silkworm Bombyx mori.

    PubMed

    Tanaka, H; Sagisaka, A; Suzuki, N; Yamakawa, M

    2016-10-01

    E26 transformation-specific (Ets) family transcription factors are known to play roles in various biological phenomena, including immunity, in vertebrates. However, the mechanisms by which Ets proteins contribute to immunity in invertebrates remain poorly understood. In this study, we identified a cDNA encoding BmEts2, which is a putative orthologue of Drosophila Yan and human translocation-ets-leukemia/Ets-variant gene 6, from the silkworm Bombyx mori. Expression of the BmEts2 gene was significantly increased in the fat bodies of silkworm larvae in response to injection with Escherichia coli and Staphylococcus aureus. BmEts2 overexpression dramatically repressed B. mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in silkworm cells. Conversely, gene knockdown of BmEts2 significantly enhanced BmRels activity. In addition, two κB sites located on the 5' upstream region of cecropin B1 were found to be involved in the repression of BmRels-mediated promoter activation. Protein-competition analysis further demonstrated that BmEts2 competitively inhibited binding of BmRels to κB sites. Overall, BmEts2 acts as a repressor of BmRels-mediated transactivation of antimicrobial protein genes by inhibiting the binding of BmRels to κB sites.

  9. Searching for repressed memory.

    PubMed

    McNally, Richard J

    2012-01-01

    This chapter summarizes the work of my research group on adults who report either repressed, recovered, or continuous memories of childhood sexual abuse (CSA) or who report no history of CSA. Adapting paradigms from cognitive psychology, we tested hypotheses inspired by both the "repressed memory" and "false memory" perspectives on recovered memories of CSA. We found some evidence for the false memory perspective, but no evidence for the repressed memory perspective. However, our work also suggests a third perspective on recovered memories that does not require the concept of repression. Some children do not understand their CSA when it occurs, and do not experience terror. Years later, they recall the experience, and understanding it as abuse, suffer intense distress. The memory failed to come to mind for years, partly because the child did not encode it as terrifying (i.e., traumatic), not because the person was unable to recall it.

  10. Racism and Surplus Repression.

    ERIC Educational Resources Information Center

    Johnson, Howard

    1983-01-01

    Explores the relationship between Herbert Marcuse's theory of "surplus repression" and Freud's theory of the "unconscious" with respect to latent, hidden, covert, or subliminal aspects of racism in the United States. Argues that unconscious racism, manifested in evasion/avoidance, acting out/projection, and attempted…

  11. The great repression

    PubMed Central

    Hennig, Bianca P.; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity. PMID:23665541

  12. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  13. The repressed and implicit knowledge.

    PubMed

    Talvitie, Vesa; Ihanus, Juhani

    2002-12-01

    The distinction between implicit (non-conscious) and explicit (conscious) knowledge made by cognitive scientists is applied to the psychoanalytic idea of repressed contents. The consequences of repression are suggested to have been caused by implicit representations. Repressed memories can also be treated in terms of explicit representations, which are prevented from becoming activated. Implicit knowledge cannot, however, be made conscious, and thus the idea of becoming conscious of the repressed desires and fears that have never been conscious is contradictory. This tension may be relieved by reconceptualising the idea of becoming conscious of the repressed. It is suggested that this could be seen as creating explicit knowledge about the effects of implicit representations. By applying the implicit/explicit knowledge distinction, psychoanalytic ideas concerning the repressed could be connected to current views in the domain of cognitive orientation.

  14. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  15. Transcription of Epstein-Barr virus-encoded nuclear antigen 1 promoter Qp is repressed by transforming growth factor-beta via Smad4 binding element in human BL cells.

    PubMed

    Liang, C L; Tsai, C N; Chung, P J; Chen, J L; Sun, C M; Chen, R H; Hong, J H; Chang, Y S

    2000-11-10

    In Epstein-Barr virus (EBV)-infected BL cells, the oncogenic EBV-encoded nuclear antigen 1 (EBNA 1) gene is directed from the latent promoter Qp. Yeast one-hybrid screen analysis using the -50 to -37 sequence of Qp as the bait was carried out to identify transcriptional factors that may control Qp activity. Results showed that Smad4 binds the -50 to -37 sequence of Qp, indicating that this promoter is potentially regulated by TGF-beta. The association of Smad4 with Qp was further confirmed by supershift of EMSA complexes using Smad4-specific antibody. The transfection of a Qp reporter construct in two EBV(+) BL cell lines, Rael and WW2, showed that Qp activity is repressed in response to the TGF-beta treatment. This repression involves the interaction of a Smad3/Smad4 complex and the transcriptional repressor TGIF, as determined by cotransfection assay and coimmunoprecipitation analysis. Results suggest that TGF-beta may transcriptionally repress Qp through the Smad4-binding site in human BL cells.

  16. Translational Repression in Malaria Sporozoites

    PubMed Central

    Turque, Oliver; Tsao, Tiffany; Li, Thomas; Zhang, Min

    2016-01-01

    Malaria is a mosquito-borne infectious disease of humans and other animals. It is caused by the parasitic protozoan, Plasmodium. Sporozoites, the infectious form of malaria parasites, are quiescent when they remain in the salivary glands of the Anopheles mosquito until transmission into a mammalian host. Metamorphosis of the dormant sporozoite to its active form in the liver stage requires transcriptional and translational regulations. Here, we summarize recent advances in the translational repression of gene expression in the malaria sporozoite. In sporozoites, many mRNAs that are required for liver stage development are translationally repressed. Phosphorylation of eukaryotic Initiation Factor 2α (eIF2α) leads to a global translational repression in sporozoites. The eIF2α kinase, known as Upregulated in Infectious Sporozoite 1 (UIS1), is dominant in the sporozoite. The eIF2α phosphatase, UIS2, is translationally repressed by the Pumilio protein Puf2. This translational repression is alleviated when sporozoites are delivered into the mammalian host.

  17. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  18. The unified theory of repression.

    PubMed

    Erdelyi, Matthew Hugh

    2006-10-01

    Repression has become an empirical fact that is at once obvious and problematic. Fragmented clinical and laboratory traditions and disputed terminology have resulted in a Babel of misunderstandings in which false distinctions are imposed (e.g., between repression and suppression) and necessary distinctions not drawn (e.g., between the mechanism and the use to which it is put, defense being just one). "Repression" was introduced by Herbart to designate the (nondefensive) inhibition of ideas by other ideas in their struggle for consciousness. Freud adapted repression to the defensive inhibition of "unbearable" mental contents. Substantial experimental literatures on attentional biases, thought avoidance, interference, and intentional forgetting exist, the oldest prototype being the work of Ebbinghaus, who showed that intentional avoidance of memories results in their progressive forgetting over time. It has now become clear, as clinicians had claimed, that the inaccessible materials are often available and emerge indirectly (e.g., procedurally, implicitly). It is also now established that the Ebbinghaus retention function can be partly reversed, with resulting increases of conscious memory over time (hypermnesia). Freud's clinical experience revealed early on that exclusion from consciousness was effected not just by simple repression (inhibition) but also by a variety of distorting techniques, some deployed to degrade latent contents (denial), all eventually subsumed under the rubric of defense mechanisms ("repression in the widest sense"). Freudian and Bartlettian distortions are essentially the same, even in name, except for motive (cognitive vs. emotional), and experimentally induced false memories and other "memory illusions" are laboratory analogs of self-induced distortions.

  19. Percept-genetic signs of repression in histrionic personality disorder.

    PubMed

    Rubino, I A; Saya, A; Pezzarossa, B

    1992-04-01

    Several types of perceptual distortions of two anxiety-arousing visual stimuli are coded as repression in the Defense Mechanism Test, a tachistoscopic, percept-genetic technique. Given the well-established correspondence between hysteria and repression, the study included a clinical validation of these variants of repression against the diagnosis of histrionic personality disorder. 41 subjects with evidence of this disorder on the Millon Clinical Multiaxial Inventory-II were compared with 41 nonhistrionic controls. Significantly more histrionics were coded for the type of repression in which the threatening figure is transformed into a harmless object (code 1:42), while animal- and statue-repressions, when combined (codes 1:1 and 1:2), were significantly more characteristic of the nonhistrionic group. As an unpredicted finding, significantly more histrionic subjects employed defensive strategies, currently coded as reaction formations (code 4:). Histrionic subjects without concomitant compulsive features were coded more frequently for introaggression (code 6:) compared both with nonhistrionic controls and with histrionic-compulsive subjects. The findings are discussed within the context of the available percept-genetic literature. It is suggested that the Defense Mechanism Test may be further employed to objectify and investigate the defense mechanisms of the DSM-III-R disorders.

  20. Repression of host RNA polymerase II transcription by herpes simplex virus type 1.

    PubMed Central

    Spencer, C A; Dahmus, M E; Rice, S A

    1997-01-01

    Lytic infection of mammalian cells with herpes simplex virus type 1 (HSV-1) results in rapid repression of host gene expression and selective activation of the viral genome. This transformation in gene expression is thought to involve repression of host transcription and diversion of the host RNA polymerase (RNAP II) transcription machinery to the viral genome. However, the extent of virus-induced host transcription repression and the mechanisms responsible for these major shifts in transcription specificities have not been examined. To determine how HSV-1 accomplishes repression of host RNAP II transcription, we assayed transcription patterns on several cellular genes in cells infected with mutant and wild-type HSV-1. Our results suggest that HSV-1 represses RNAP II transcription on most cellular genes. However, each cellular gene we examined responds differently to the transcription repressive effects of virus infection, both quantitatively and with respect to the involvement of viral gene products. Virus-induced shutoff of host RNAP II transcription requires expression of multiple immediate-early genes. In contrast, expression of delayed-early and late genes and viral DNA replication appear to contribute little to repression of host cell RNAP II transcription. Modification of RNAP II to the intermediately phosphorylated (II(I)) form appears unlinked to virus-induced repression of host cell transcription. However, full repression of host transcription is correlated with depletion of the hyperphosphorylated (IIO) form of RNAP II. PMID:9032335

  1. Addressing the repressed needs of the Arabic client.

    PubMed

    Dwairy, M

    1997-01-01

    In comparison to families in Western society, the traditional Arabic family plays a relatively greater role in providing support for adult progeny. This serves to condition adult offspring to continue to comply with the will and values of the family. Therefore, in exchange for familial support, Arabic individuals learn to repress authentic needs and emotions, and within that process they relinquish the need for self-actualization. Arabic society discourages individualism and opposes self-actualization by means of simultaneous punishment and moralization. Thus, there is a relatively greater development of the social value system (or superego) and comparatively less development of the self (or ego). In comparison to Western society, Arabic individuals continue to experience greater oppression during adulthood. Given these cultural differences, the processes of reliving and activating repressed needs and emotions, which ultimately serves to promote self-actualization, will transform intrapsychic conflicts into interpersonal and social ones. Thus, personal actions typically encouraged during Western psychotherapy are likely to produce significant social oppression. Indeed, promoting awareness of repressed needs and emotions often leads the Arabic client to become more helpless, because such wishes will rarely be socially sanctioned or satisfactorily fulfilled. Therefore, when addressing repressed needs and emotions in psychotherapy, ego strength, cultural identity, and degree of strictness of the client's family of origin must be considered.

  2. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.

    PubMed

    Wang, Yi; Zhang, Zhong-Tian; Seo, Seung-Oh; Lynn, Patrick; Lu, Ting; Jin, Yong-Su; Blaschek, Hans P

    2016-12-01

    CRISPR-Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR-Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR-dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR-dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65-97% through the fermentation process) on the activity in the transformant with CRISPR-dCas9 versus in the control. Our results provided essential references for engineering CRISPR-dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739-2743. © 2016 Wiley Periodicals, Inc.

  3. Multiple Gene Repression in Cyanobacteria Using CRISPRi.

    PubMed

    Yao, Lun; Cengic, Ivana; Anfelt, Josefine; Hudson, Elton P

    2016-03-18

    We describe the application of clustered regularly interspaced short palindromic repeats interference (CRISPRi) for gene repression in the model cyanobacterium Synechcocystis sp. PCC 6803. The nuclease-deficient Cas9 from the type-II CRISPR/Cas of Streptrococcus pyogenes was used to repress green fluorescent protein (GFP) to negligible levels. CRISPRi was also used to repress formation of carbon storage compounds polyhydroxybutryate (PHB) and glycogen during nitrogen starvation. As an example of the potential of CRISPRi for basic and applied cyanobacteria research, we simultaneously knocked down 4 putative aldehyde reductases and dehydrogenases at 50-95% repression. This work also demonstrates that tightly repressed promoters allow for inducible and reversible CRISPRi in cyanobacteria.

  4. Mitosis-associated repression in development

    PubMed Central

    Esposito, Emilia; Lim, Bomyi; Guessous, Ghita; Falahati, Hanieh; Levine, Michael

    2016-01-01

    Transcriptional repression is a pervasive feature of animal development. Here, we employ live-imaging methods to visualize the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm of early Drosophila embryos. Snail target enhancers were attached to an MS2 reporter gene, permitting detection of nascent transcripts in living embryos. The transgenes exhibit initially broad patterns of transcription but are refined by repression in the mesoderm following mitosis. These observations reveal a correlation between mitotic silencing and Snail repression. We propose that mitosis and other inherent discontinuities in transcription boost the activities of sequence-specific repressors, such as Snail. PMID:27401553

  5. Psychoanalytic transformations.

    PubMed

    Riolo, Fernando

    2007-12-01

    The author describes how Bion took Freud's conception of dreams as a form of thought and used it as the basis of his theory of transformations. Bion developed an expanded theory of 'dream thought', understood as a process of selection and transformation of sensory and emotional experiences. In this theory, the work of analysis is in turn conceived as a process not only of deciphering symbols, of revealing already existing unconscious meanings, but also of symbol production--of a process for generating thoughts and conferring meaning on experiences that have never been conscious and never been repressed because they have never been 'thought'. Analysis, in its specific operational sense, becomes a system of transformation whereby unconscious somatopsychic processes acquire the conditions for representability and become capable of translation into thoughts, words and interpretations. The rules of transformation applied by the patient in his representations and those applied by the analyst in his interpretations have the same importance for the analytic process as those described by Freud for the process of dreaming. The author discusses the broad categories of transformation adduced by Bion (rigid motion, projective, and in hallucinosis) and introduces some further distinctions within them.

  6. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression.

    PubMed

    Ohta, M; Matsui, K; Hiratsu, K; Shinshi, H; Ohme-Takagi, M

    2001-08-01

    We reported previously that three ERF transcription factors, tobacco ERF3 (NtERF3) and Arabidopsis AtERF3 and AtERF4, which are categorized as class II ERFs, are active repressors of transcription. To clarify the roles of these repressors in transcriptional regulation in plants, we attempted to identify the functional domains of the ERF repressor that mediates the repression of transcription. Analysis of the results of a series of deletions revealed that the C-terminal 35 amino acids of NtERF3 are sufficient to confer the capacity for repression of transcription on a heterologous DNA binding domain. This repression domain suppressed the intermolecular activities of other transcriptional activators. In addition, fusion of this repression domain to the VP16 activation domain completely inhibited the transactivation function of VP16. Comparison of amino acid sequences of class II ERF repressors revealed the conservation of the sequence motif (L)/(F)DLN(L)/(F)(x)P. This motif was essential for repression because mutations within the motif eliminated the capacity for repression. We designated this motif the ERF-associated amphiphilic repression (EAR) motif, and we identified this motif in a number of zinc-finger proteins from wheat, Arabidopsis, and petunia plants. These zinc finger proteins functioned as repressors, and their repression domains were identified as regions that contained an EAR motif.

  7. Molecular architecture of polycomb repressive complexes

    PubMed Central

    Chittock, Emily C.; Latwiel, Sebastian; Miller, Thomas C.R.

    2017-01-01

    The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin. PMID:28202673

  8. Transcription factor TFIID is a direct functional target of the adenovirus E1A transcription-repression domain.

    PubMed Central

    Song, C Z; Loewenstein, P M; Toth, K; Green, M

    1995-01-01

    The 243-amino acid adenovirus E1A oncoprotein both positively and negatively modulates the expression of cellular genes involved in the regulation of cell growth. The E1A transcription repression function appears to be linked with its ability to induce cellular DNA synthesis, cell proliferation, and cell transformation, as well as to inhibit cell differentiation. The mechanism by which E1A represses the transcription of various promoters has proven enigmatic. Here we provide several lines of evidence that the "TATA-box" binding protein (TBP) component of transcription factor TFIID is a cellular target of the E1A repression function encoded within the E1A N-terminal 80 amino acids. (i) The E1A N-terminal 80 amino acids [E1A-(1-80)protein] efficiently represses basal transcription from TATA-containing core promoters in vitro. (ii) TBP reverses completely E1A repression in vitro. (iii) TBP restores transcriptional activity to E1A-(1-80) protein affinity-depleted nuclear extracts. (iv) The N-terminal repression domain of E1A interacts directly and specifically with TBP in vitro. These results may help explain how E1A represses a set of genes that lack common upstream promoter elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479778

  9. Brinker requires two corepressors for maximal and versatile repression in Dpp signalling

    PubMed Central

    Hasson, Peleg; Müller, Bruno; Basler, Konrad; Paroush, Ze’ev

    2001-01-01

    decapentaplegic (dpp) encodes a Drosophila transforming growth factor-β homologue that functions as a morphogen in the developing embryo and in adult appendage formation. In the wing imaginal disc, a Dpp gradient governs patterning along the anteroposterior axis by inducing regional expression of diverse genes in a concentration-dependent manner. Recent studies show that responses to graded Dpp activity also require an input from a complementary and opposing gradient of Brinker (Brk), a transcriptional repressor protein encoded by a Dpp target gene. Here we show that Brk harbours a functional and transferable repression domain, through which it recruits the corepressors Groucho and CtBP. By analysing transcriptional outcomes arising from the genetic removal of these corepressors, and by ectopically expressing Brk variants in the embryo, we demonstrate that these corepressors are alternatively used by Brk for repressing some Dpp-responsive genes, whereas for repressing other distinct target genes they are not required. Our results show that Brk utilizes multiple means to repress its endogenous target genes, allowing repression of a multitude of complex Dpp target promoters. PMID:11598015

  10. Physical Interaction between MYCN Oncogene and Polycomb Repressive Complex 2 (PRC2) in Neuroblastoma

    PubMed Central

    Corvetta, Daisy; Chayka, Olesya; Gherardi, Samuele; D'Acunto, Cosimo W.; Cantilena, Sandra; Valli, Emanuele; Piotrowska, Izabela; Perini, Giovanni; Sala, Arturo

    2013-01-01

    CLU (clusterin) is a tumor suppressor gene that we have previously shown to be negatively modulated by the MYCN proto-oncogene, but the mechanism of repression was unclear. Here, we show that MYCN inhibits the expression of CLU by direct interaction with the non-canonical E box sequence CACGCG in the 5′-flanking region. Binding of MYCN to the CLU gene induces bivalent epigenetic marks and recruitment of repressive proteins such as histone deacetylases and Polycomb members. MYCN physically binds in vitro and in vivo to EZH2, a component of the Polycomb repressive complex 2, required to repress CLU. Notably, EZH2 interacts with the Myc box domain 3, a segment of MYC known to be essential for its transforming effects. The expression of CLU can be restored in MYCN-amplified cells by epigenetic drugs with therapeutic results. Importantly, the anticancer effects of the drugs are ablated if CLU expression is blunted by RNA interference. Our study implies that MYC tumorigenesis can be effectively antagonized by epigenetic drugs that interfere with the recruitment of chromatin modifiers at repressive E boxes of tumor suppressor genes such as CLU. PMID:23362253

  11. Ski represses BMP signaling in Xenopus and mammalian cells

    SciTech Connect

    kluo@lbl.gov

    2001-05-16

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-{beta} family members.

  12. zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression.

    PubMed

    Guven-Ozkan, Tugba; Robertson, Scott M; Nishi, Yuichi; Lin, Rueyling

    2010-10-01

    Specification of primordial germ cells requires global repression of transcription. In C. elegans, primordial germ cells are generated through four rounds of asymmetric divisions, starting from the zygote P0, each producing a transcriptionally repressed germline blastomere (P1-P4). Repression in P2-P4 requires PIE-1, which is provided maternally in oocytes and segregated to all germline blastomeres. We have shown previously that OMA-1 and OMA-2 repress global transcription in P0 and P1 by sequestering TAF-4, an essential component of TFIID. Soon after the first mitotic cycle, OMA proteins undergo developmentally regulated degradation. Here, we show that OMA proteins also repress transcription in P2-P4 indirectly, through a completely different mechanism that operates in oocytes. OMA proteins bind to both the 3' UTR of the zif-1 transcript and the eIF4E-binding protein, SPN-2, repressing translation of zif-1 mRNA in oocytes. zif-1 encodes the substrate-binding subunit of the E3 ligase for PIE-1 degradation. Inhibition of zif-1 translation in oocytes ensures high PIE-1 levels in oocytes and germline blastomeres. The two OMA protein functions are strictly regulated in both space and time by MBK-2, a kinase activated following fertilization. Phosphorylation by MBK-2 facilitates the binding of OMA proteins to TAF-4 and simultaneously inactivates their function in repressing zif-1 translation. Phosphorylation of OMA proteins displaces SPN-2 from the zif-1 3' UTR, releasing translational repression. We propose that MBK-2 phosphorylation serves as a developmental switch, converting OMA proteins from specific translational repressors in oocytes to global transcriptional repressors in embryos, together effectively repressing transcription in all germline blastomeres.

  13. The great repression: chromatin and cryptic transcription.

    PubMed

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  14. Repression: finding our way in the maze of concepts.

    PubMed

    Garssen, Bert

    2007-12-01

    Repression is associated in the literature with terms such as non-expression, emotional control, rationality, anti-emotionality, defensiveness and restraint. Whether these terms are synonymous with repression, indicate a variation, or are essentially different from repression is uncertain. To clarify this obscured view on repression, this paper indicates the similarities and differences between these concepts. Repression is the general term that is used to describe the tendency to inhibit the experience and the expression of negative feelings or unpleasant cognitions in order to prevent one's positive self-image from being threatened ('repressive coping style'). The terms self-deception versus other-deception, and socially related versus personally related repression refer to what is considered to be different aspects of repression. Defensiveness is a broader concept that includes both anxious defensiveness and repression; the essential difference is whether negative emotions are reported or not. Concepts that are sometimes associated with repression, but which are conceptually different, are also discussed in this paper: The act of suppression, 'repressed memories,' habitual suppression, concealment, type C coping pattern, type D personality, denial, alexithymia and blunting. Consequences for research: (1) When summarizing findings reported in the literature, it is essential to determine which concepts the findings represent. This is rarely made explicit, and failure to do so may lead to drawing the wrong conclusions (2) It is advisable to use scales based on different aspects of repression (3) Whether empirical findings substantiate the similarities and differences between concepts described in this paper will need to be shown.

  15. Repression and solidary cultures of resistance: Irish political prisoners on protest.

    PubMed

    O'Hearn, Denis

    2009-09-01

    Social activists and especially insurgents have created solidary cultures of resistance in conditions of high risk and repression. One such instance is an episode of contention by Irish political prisoners in the late 1970s. The "blanketmen" appropriated and then built a solidary culture within spaces that had been under official control. Their ability to maintain such a collective response was enhanced by an intensifying cycle of protest and violent reprisal, including extreme stripping of their material environment, in which the prisoners gained considerable initiative. This study uses interviews and contemporary writings by prisoners, prison authorities, visitors, and movement activists to examine how the dynamic of protest and repression transformed insurgent prison culture--through material, emotional, and perceptive changes--and the importance of leadership in the transformation. Special attention is given to prisoner activities in appropriated spaces that reinforced the culture of resistance: promoting the Irish language, cultural production, and the production of propaganda.

  16. Nuclear AXIN2 represses MYC gene expression

    SciTech Connect

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  17. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position.

    PubMed

    Shen, Manli; Mattox, William

    2012-01-01

    SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.

  18. Repression and substitutive formation: the relationship between Freud's concepts reconsidered.

    PubMed

    Zepf, Siegfried

    2012-06-01

    This paper examines Freud's concept of repression and the relationship between repression and substitutive formation as it presents itself in Freud's writings. The author shows that Freud gives at least four different meanings to the term "repression": Freud uses it interchangeably with defense, as a consciously intended forgetting, as a specific unconscious mechanism of defense, and to describe the consequence of defense mechanisms leading to substitutive formations. The inconsistencies in this relationship are discussed and clarified, and Freud's economic and linguistic attempts at founding repression are subjected to critique; the need of a primal repression as a necessary condition for repression proper is pointed out. In developing Freud's linguistic foundation of repression further, the author presents defense as a semantic displacement. Ideas are excluded from the realm of the concepts that belong to them historically. These presentations become unconscious, that is, repressed, in that they can no longer be identified as "cases" of these conceptual internal contents. At the same time they are displaced into the extensions of concepts whose internal contents do not belong to them originally. It is by virtue of the internal contents of these concepts that the displaced elements as substitutive formations once again attain consciousness, albeit a false one. The author suggests dismissing repression as a specific defense mechanism of its own; to reversing Freud's thesis that repression, as a rule, creates a substitutive formation into its opposite; and recognizing that the mechanisms used to build substitutes, as a rule, create repression.

  19. Dual mechanism of Rag gene repression by c-Myb during pre-B cell proliferation.

    PubMed

    Timblin, Greg A; Xie, Liangqi; Tjian, Robert; Schlissel, Mark S

    2017-04-03

    Developing B lymphocytes undergo clonal expansion following successful immunoglobulin heavy chain gene rearrangement. During this proliferative burst, expression of the Rag genes is transiently repressed to prevent the generation of dsDNA breaks in cycling large pre-B cells. The Rag genes are then re-expressed in small resting pre-B cells for immunoglobulin light chain gene rearrangement. We previously identified c-Myb as a repressor of Rag transcription during clonal expansion using Abelson murine leukemia virus-transformed B cells. Nevertheless, the molecular mechanisms by which c-Myb achieved precise spatiotemporal repression of Rag expression remained obscure. Here we identify two mechanisms by which c-Myb represses Rag transcription. First, c-Myb negatively regulates the expression of the Rag activator Foxo1, an activity dependent on M303 in c-Myb's transactivation domain and likely the recruitment of corepressors to the Foxo1 locus by c-Myb. Second, c-Myb represses Rag transcription directly by occupying the Erag enhancer and antagonizing Foxo1 binding to a consensus forkhead site in this cis regulatory element that we show is crucial for Rag expression in Abelson pre-B cell lines. This work provides important mechanistic insight into how spatiotemporal expression of the Rag genes is tightly controlled during B lymphocyte development to prevent mistimed dsDNA breaks and their deleterious consequences.

  20. Zeste maintains repression of Ubx transgenes: Support for a new model of polycomb repression

    SciTech Connect

    Hur, Man-Wook; Laney, Jeffrey D.; Jeon, Sang-Hack; Ali, Janann; Biggin, Mark D.

    2001-09-01

    During late embryogenesis, the expression domains of homeotic genes are maintained by two groups of ubiquitously expressed regulators: the Polycomb repressors and the Trithorax activators. It is not known how the activities of the two maintenance systems are initially targeted to the correct genes. Zeste and GAGA are sequence specific DNA binding proteins previously shown to be Trithorax group activators of the homeotic gene Ultrabithorax (Ubx). Here we demonstrate that Zeste and GAGA DNA binding sites at the proximal promoter are also required to maintain, but not to initiate, repression of Ubx. Further, the repression mediated by Zeste DNA binding site is abolished in zeste null embryos. These data imply that Zeste and probably GAGA mediate Polycomb repression. We present a model in which the dual transcriptional activities of Zeste and GAGA are an essential component of the mechanism that chooses which maintenance system is to be targeted to a given promoter.

  1. BEND3 mediates transcriptional repression and heterochromatin organization.

    PubMed

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  2. BEND3 mediates transcriptional repression and heterochromatin organization

    PubMed Central

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581

  3. Repression: Finding Our Way in the Maze of Concepts

    PubMed Central

    2007-01-01

    Repression is associated in the literature with terms such as non-expression, emotional control, rationality, anti-emotionality, defensiveness and restraint. Whether these terms are synonymous with repression, indicate a variation, or are essentially different from repression is uncertain. To clarify this obscured view on repression, this paper indicates the similarities and differences between these concepts. Repression is the general term that is used to describe the tendency to inhibit the experience and the expression of negative feelings or unpleasant cognitions in order to prevent one’s positive self-image from being threatened (‘repressive coping style’). The terms self-deception versus other-deception, and socially related versus personally related repression refer to what is considered to be different aspects of repression. Defensiveness is a broader concept that includes both anxious defensiveness and repression; the essential difference is whether negative emotions are reported or not. Concepts that are sometimes associated with repression, but which are conceptually different, are also discussed in this paper: The act of suppression, ‘repressed memories,’ habitual suppression, concealment, type C coping pattern, type D personality, denial, alexithymia and blunting. Consequences for research: (1) When summarizing findings reported in the literature, it is essential to determine which concepts the findings represent. This is rarely made explicit, and failure to do so may lead to drawing the wrong conclusions (2) It is advisable to use scales based on different aspects of repression (3) Whether empirical findings substantiate the similarities and differences between concepts described in this paper will need to be shown. PMID:17653842

  4. The regulation of transcriptional repression in hypoxia.

    PubMed

    Cavadas, Miguel A S; Cheong, Alex; Taylor, Cormac T

    2017-02-20

    A sufficient supply molecular oxygen is essential for the maintenance of physiologic metabolism and bioenergetic homeostasis for most metazoans. For this reason, mechanisms have evolved for eukaryotic cells to adapt to conditions where oxygen demand exceeds supply (hypoxia). These mechanisms rely on the modification of pre-existing proteins, translational arrest and transcriptional changes. The hypoxia inducible factor (HIF; a master regulator of gene induction in response to hypoxia) is responsible for the majority of induced gene expression in hypoxia. However, much less is known about the mechanism(s) responsible for gene repression, an essential part of the adaptive transcriptional response. Hypoxia-induced gene repression leads to a reduction in energy demanding processes and the redirection of limited energetic resources to essential housekeeping functions. Recent developments have underscored the importance of transcriptional repressors in cellular adaptation to hypoxia. To date, at least ten distinct transcriptional repressors have been reported to demonstrate sensitivity to hypoxia. Central among these is the Repressor Element-1 Silencing Transcription factor (REST), which regulates over 200 genes. In this review, written to honor the memory and outstanding scientific legacy of Lorenz Poellinger, we provide an overview of our existing knowledge with respect to transcriptional repressors and their target genes in hypoxia.

  5. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  6. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  7. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum

    PubMed Central

    2012-01-01

    Background The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol. Results We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization. Conclusion Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol. PMID:23181505

  8. Dream Recall And Repression: Evidence For An Alternative Hypothesis

    ERIC Educational Resources Information Center

    Cohen, David B.; Wolfe, Gary

    1973-01-01

    An "Inner-rejectant" life style committed to repressing dreams has been described in terms of external locus of control, field dependence, and "poor inner life." However, in empirical studies reported here, results do not provide strong support for the (repression) formulation. The results suggest a distinction between life-style variables related…

  9. Hypnotizability as a Function of Repression, Adaptive Regression, and Mood

    ERIC Educational Resources Information Center

    Silver, Maurice Joseph

    1974-01-01

    Forty male undergraduates were assessed in a personality assessment session and a hypnosis session. The personality traits studied were repressive style and adaptive regression, while the transitory variable was mood prior to hypnosis. Hypnotizability was a significant interactive function of repressive style and mood, but not of adaptive…

  10. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers.

    PubMed Central

    Chen, J D; Umesono, K; Evans, R M

    1996-01-01

    Transcriptional repression represents an important component in the regulation of cell differentiation and oncogenesis mediated by nuclear hormone receptors. Hormones act to relieve repression, thus allowing receptors to function as transcriptional activators. The transcriptional corepressor SMRT was identified as a silencing mediator for retinoid and thyroid hormone receptors. SMRT is highly related to another corepressor, N-CoR, suggesting the existence of a new family of receptor-interacting proteins. We demonstrate that SMRT is a ubiquitous nuclear protein that interacts with unliganded receptor heterodimers in mammalian cells. Furthermore, expression of the receptor-interacting domain of SMRT acts as an antirepressor, suggesting the potential importance of splicing variants as modulators of thyroid hormone and retinoic acid signaling. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8755515

  11. Promiscuous RNA binding by Polycomb Repressive Complex 2

    PubMed Central

    Davidovich, Chen; Zheng, Leon; Goodrich, Karen J.; Cech, Thomas R.

    2013-01-01

    Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Long non-coding RNAs (lncRNAs) recruit PRC2 to chromatin, but the general role of RNA in maintaining repressed chromatin is unknown. Here we measure the binding constant of human PRC2 to various RNAs and find comparable affinity for human lncRNAs targeted by PRC2 and irrelevant transcripts from ciliates and bacteria. PRC2 binding is size-dependent, with lower affinity for shorter RNAs. In vivo, PRC2 predominantly occupies repressed genes; PRC2 is also associated with active genes, but most of these are not regulated by PRC2. These findings support a model in which promiscuous binding of PRC2 to RNA transcripts allows it to scan for target genes that have escaped repression, leading to maintenance of the repressed state. Such RNAs may also provide a decoy for PRC2. PMID:24077223

  12. Dorsal-Mediated Repression Requires the Formation of a Multiprotein Repression Complex at the Ventral Silencer

    PubMed Central

    Valentine, Scott A.; Chen, Guoqing; Shandala, Tatiana; Fernandez, Joseph; Mische, Sheenah; Saint, Robert; Courey, Albert J.

    1998-01-01

    Dorsal functions as both an activator and repressor of transcription to determine dorsoventral fate in the Drosophila melanogaster embryo. Repression by Dorsal requires the corepressor Groucho (Gro) and is mediated by silencers termed ventral repression regions (VRRs). A VRR in zerknüllt (zen) contains Dorsal binding sites as well as an essential element termed AT2. We have identified and purified an AT2 DNA binding activity in embryos and shown it to consist of cut (ct) and dead ringer (dri) gene products. Studies of loss-of-function mutations in ct and dri demonstrate that both genes are required for the activity of the AT2 site. Dorsal and Dri both bind Gro, acting cooperatively to recruit it to the DNA. Thus, ventral repression may require the formation of a multiprotein complex at the VRR. This complex includes Dorsal, Gro, and additional DNA binding proteins, which appear to convert Dorsal from an activator to a repressor by enabling it to recruit Gro to the template. By showing how binding site context can dramatically alter transcription factor function, these findings help clarify the mechanisms responsible for the regulatory specificity of transcription factors. PMID:9774673

  13. Transformational Learners: Transformational Teachers

    ERIC Educational Resources Information Center

    Jones, Marguerite

    2009-01-01

    Transformational learning, according to Mezirow (1981), involves transforming taken-for-granted frames of reference into more discriminating, flexible "habits of mind". In teacher education, transformative learning impacts on the development of students' action theories, self-efficacy and professional attributes. Although considered…

  14. dRYBP Counteracts Chromatin-Dependent Activation and Repression of Transcription

    PubMed Central

    Mohd-Sarip, Adone; Verrijzer, C. Peter; Busturia, Ana

    2014-01-01

    Chromatin dependent activation and repression of transcription is regulated by the histone modifying enzymatic activities of the trithorax (trxG) and Polycomb (PcG) proteins. To investigate the mechanisms underlying their mutual antagonistic activities we analyzed the function of Drosophila dRYBP, a conserved PcG- and trxG-associated protein. We show that dRYBP is itself ubiquitylated and binds ubiquitylated proteins. Additionally we show that dRYBP maintains H2A monoubiquitylation, H3K4 monomethylation and H3K36 dimethylation levels and does not affect H3K27 trimethylation levels. Further we show that dRYBP interacts with the repressive SCE and dKDM2 proteins as well as the activating dBRE1 protein. Analysis of homeotic phenotypes and post-translationally modified histones levels show that dRYBP antagonizes dKDM2 and dBRE1 functions by respectively preventing H3K36me2 demethylation and H2B monoubiquitylation. Interestingly, our results show that inactivation of dBRE1 produces trithorax-like related homeotic transformations, suggesting that dBRE1 functions in the regulation of homeotic genes expression. Our findings indicate that dRYBP regulates morphogenesis by counteracting transcriptional repression and activation. Thus, they suggest that dRYBP may participate in the epigenetic plasticity important during normal and pathological development. PMID:25415640

  15. Blue light-mediated transcriptional activation and repression of gene expression in bacteria

    PubMed Central

    Jayaraman, Premkumar; Devarajan, Kavya; Chua, Tze Kwang; Zhang, Hanzhong; Gunawan, Erry; Poh, Chueh Loo

    2016-01-01

    Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes. PMID:27353329

  16. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    PubMed

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  17. dRYBP counteracts chromatin-dependent activation and repression of transcription.

    PubMed

    Fereres, Sol; Simón, Rocío; Mohd-Sarip, Adone; Verrijzer, C Peter; Busturia, Ana

    2014-01-01

    Chromatin dependent activation and repression of transcription is regulated by the histone modifying enzymatic activities of the trithorax (trxG) and Polycomb (PcG) proteins. To investigate the mechanisms underlying their mutual antagonistic activities we analyzed the function of Drosophila dRYBP, a conserved PcG- and trxG-associated protein. We show that dRYBP is itself ubiquitylated and binds ubiquitylated proteins. Additionally we show that dRYBP maintains H2A monoubiquitylation, H3K4 monomethylation and H3K36 dimethylation levels and does not affect H3K27 trimethylation levels. Further we show that dRYBP interacts with the repressive SCE and dKDM2 proteins as well as the activating dBRE1 protein. Analysis of homeotic phenotypes and post-translationally modified histones levels show that dRYBP antagonizes dKDM2 and dBRE1 functions by respectively preventing H3K36me2 demethylation and H2B monoubiquitylation. Interestingly, our results show that inactivation of dBRE1 produces trithorax-like related homeotic transformations, suggesting that dBRE1 functions in the regulation of homeotic genes expression. Our findings indicate that dRYBP regulates morphogenesis by counteracting transcriptional repression and activation. Thus, they suggest that dRYBP may participate in the epigenetic plasticity important during normal and pathological development.

  18. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).

    PubMed

    Hawkins, John S; Wong, Spencer; Peters, Jason M; Almeida, Ricardo; Qi, Lei S

    2015-01-01

    Clustered regularly interspersed short palindromic repeats (CRISPR) interference (CRISPRi) is a powerful technology for sequence-specifically repressing gene expression in bacterial cells. CRISPRi requires only a single protein and a custom-designed guide RNA for specific gene targeting. In Escherichia coli, CRISPRi repression efficiency is high (~300-fold), and there are no observable off-target effects. The method can be scaled up as a general strategy for the repression of many genes simultaneously using multiple designed guide RNAs. Here we provide a protocol for efficient guide RNA design, cloning, and assay of the CRISPRi system in E. coli. In principle, this protocol can be used to construct CRISPRi systems for gene repression in other species of bacteria.

  19. Human protein tau represses DNA replication in vitro.

    PubMed

    Li, Wen; Wang, Xing Sheng; Qu, M H; Liu, Ying; He, Rong Qiao

    2005-11-30

    Here, in the experiments of both PCR and real-time PCR, a repression of DNA amplification was observed in the presence of protein tau. Furthermore, a strong repression appeared when an in vitro DNA replication assay was performed at the physiological temperature (37 degrees C). The incorporation of dNTP was markedly decreased to approximately 12% of control by the presence of tau23 and to approximately 15% by tau40. In the competitive experiments, the PCR product could be restored when the competitor DNA was added, indicating that the association of tau with the template gave rise to the repression. However, tau did not repress the yield of RNA in transcription, suggesting that tau was replaced or ejected from the template by the elongating T7 RNA polymerase.

  20. Organic acid mediated repression of sugar utilization in rhizobia.

    PubMed

    Iyer, Bhagya; Rajput, Mahendrapal Singh; Jog, Rahul; Joshi, Ekta; Bharwad, Krishna; Rajkumar, Shalini

    2016-11-01

    Rhizobia are a class of symbiotic diazotrophic bacteria which utilize C4 acids in preference to sugars and the sugar utilization is repressed as long as C4 acids are present. This can be manifested as a diauxie when rhizobia are grown in the presence of a sugar and a C4 acid together. Succinate, a C4 acid is known to repress utilization of sugars, sugar alcohols, hydrocarbons, etc by a mechanism termed as Succinate Mediated Catabolite Repression (SMCR). Mechanism of catabolite repression determines the hierarchy of carbon source utilization in bacteria. Though the mechanism of catabolite repression has been well studied in model organisms like E. coli, B. subtilis and Pseudomonas sp., mechanism of SMCR in rhizobia has not been well elucidated. C4 acid uptake is important for effective symbioses while mutation in the sugar transport and utilization genes does not affect symbioses. Deletion of hpr and sma0113 resulted in the partial relief of SMCR of utilization of galactosides like lactose, raffinose and maltose in the presence of succinate. However, no such regulators governing SMCR of glucoside utilization have been identified till date. Though rhizobia can utilize multitude of sugars, high affinity transporters for many sugars are yet to be identified. Identifying high affinity sugar transporters and studying the mechanism of catabolite repression in rhizobia is important to understand the level of regulation of SMCR and the key regulators involved in SMCR.

  1. Chromatin Landscape Defined by Repressive Histone Methylation during Oligodendrocyte Differentiation

    PubMed Central

    Liu, Jia; Magri, Laura; Zhang, Fan; Marsh, Nidaa O.; Albrecht, Stefanie; Huynh, Jimmy L.; Kaur, Jasbir; Kuhlmann, Tanja; Zhang, Weijia; Slesinger, Paul A.

    2015-01-01

    In many cell types, differentiation requires an interplay between extrinsic signals and transcriptional changes mediated by repressive and activating histone modifications. Oligodendrocyte progenitors (OPCs) are electrically responsive cells receiving synaptic input. The differentiation of these cells into myelinating oligodendrocytes is characterized by temporal waves of gene repression followed by activation of myelin genes and progressive decline of electrical responsiveness. In this study, we used chromatin isolated from rat OPCs and immature oligodendrocytes, to characterize the genome-wide distribution of the repressive histone marks, H3K9me3 and H3K27me3, during differentiation. Although both marks were present at the OPC stage, only H3K9me3 marks (but not H3K27me3) were found to be increased during differentiation, at genes related to neuronal lineage and regulation of membrane excitability. Consistent with these findings, the levels and activity of H3K9 methyltransferases (H3K9 HMT), but not H3K27 HMT, increased more prominently upon exposure to oligodendrocyte differentiating stimuli and were detected in stage-specific repressive protein complexes containing the transcription factors SOX10 or YY1. Silencing H3K9 HMT, but not H3K27 HMT, impaired oligodendrocyte differentiation and functionally altered the response of oligodendrocytes to electrical stimulation. Together, these results identify repressive H3K9 methylation as critical for gene repression during oligodendrocyte differentiation. PMID:25568127

  2. Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development

    PubMed Central

    Vishwakarma, Bandana A.; Nguyen, Nhu; Makishima, Hideki; Hosono, Naoko; Gudmundsson, Kristbjorn O.; Negi, Vijay; Oakley, Kevin; Han, Yufen; Przychodzen, Bartlomiej; Maciejewski, Jaroslaw P.; Du, Yang

    2015-01-01

    Abnormal activation of SETBP1 through overexpression or missense mutations is highly recurrent in various myeloid malignancies; however, it is unclear whether such activation alone is able to induce leukemia development. Here we show that Setbp1 overexpression in mouse bone marrow progenitors through retroviral transduction is capable of initiating leukemia development in irradiated recipient mice. Before leukemic transformation, Setbp1 overexpression significantly enhances the self-renewal of hematopoietic stem cells (HSCs) and expands granulocyte macrophage progenitors (GMPs). Interestingly, Setbp1 overexpression also causes transcriptional repression of critical hematopoiesis regulator gene Runx1 and this effect is crucial for Setbp1-induced transformation. Runx1 repression is induced by Setbp1-mediated recruitment of a nucleosome remodeling deacetylase (NuRD) complex to Runx1 promoters and can be reversed by treatment with histone deacetylase (HDAC) inhibitors Entinostat and Vorinostat. Moreover, treatment with these inhibitors caused efficient differentiation of Setbp1 activation-induced leukemia cells in vitro, and significantly extended the survival of mice transplanted with such leukemias, suggesting that HDAC inhibition could be an effective strategy for treating myeloid malignancies with SETBP1 activation. PMID:26205084

  3. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2

    PubMed Central

    Pasini, Diego; Hansen, Klaus H.; Christensen, Jesper; Agger, Karl; Cloos, Paul A.C.; Helin, Kristian

    2008-01-01

    Polycomb group (PcG) proteins regulate important cellular processes such as embryogenesis, cell proliferation, and stem cell self-renewal through the transcriptional repression of genes determining cell fate decisions. The Polycomb-Repressive Complex 2 (PRC2) is highly conserved during evolution, and its intrinsic histone H3 Lys 27 (K27) trimethylation (me3) activity is essential for PcG-mediated transcriptional repression. Here, we show a functional interplay between the PRC2 complex and the H3K4me3 demethylase Rbp2 (Jarid1a) in mouse embryonic stem (ES) cells. By genome-wide location analysis we found that Rbp2 is associated with a large number of PcG target genes in mouse ES cells. We show that the PRC2 complex recruits Rbp2 to its target genes, and that this interaction is required for PRC2-mediated repressive activity during ES cell differentiation. Taken together, these results demonstrate an elegant mechanism for repression of developmental genes by the coordinated regulation of epigenetic marks involved in repression and activation of transcription. PMID:18483221

  4. Targeted manipulation of leaf form via local growth repression.

    PubMed

    Malinowski, Robert; Kasprzewska, Ania; Fleming, Andrew J

    2011-06-01

    A classical view is that leaf shape is the result of local promotion of growth linked to cell proliferation. However, an alternative hypothesis is that leaf form is the result of local repression of growth in an otherwise growing system. Here we show that leaf form can indeed be manipulated in a directed fashion by local repression of growth. We show that targeting expression of an inhibitor of a cyclin-dependent kinase (KRP1) to the sinus area of developing leaves of Arabidopsis leads to local growth repression and the formation of organs with extreme lobing, including generation of leaflet-like organs. Directing KRP1 expression to other regions of the leaf using an miRNA target sequence tagging approach also leads to predictable novel leaf forms, and repression of growth in the leaf margin blocks the outgrowth of lobes, leading to a smoother perimeter. In addition, we show that decreased growth around the perimeter and across the leaf abaxial surface leads to a change in 3D form, as predicted by mechanical models of leaf growth. Our analysis provides experimental evidence that local repression of growth influences leaf shape, suggesting that it could be part of the mechanism of morphogenesis in plants in the context of an otherwise growing system.

  5. Salt stress represses production of extracellular proteases in Bacillus pumilus.

    PubMed

    Liu, R F; Huang, C L; Feng, H

    2015-05-11

    Bacillus pumilus is able to secrete subtilisin-like prote-ases, one of which has been purified and characterized biochemically, demonstrating great potential for use in industrial applications. In the current study, the biosynthesis and transcription of extracellular pro-teases in B. pumilus (BA06) under salt stress were investigated using various methods, including a proteolytic assay, zymogram analysis, and real-time PCR. Our results showed that total extracellular proteolytic activity, both in fermentation broth and on milk-containing agar plates, was considerably repressed by salt in a dosage-dependent manner. As Bacillus species usually secret multiple extracellular proteases, a vari-ety of individual extracellular protease encoding genes were selected for real-time PCR analysis. It was shown that proteases encoded by the aprE and aprX genes were the major proteases in the fermentation broth in terms of their transcripts in B. pumilus. Further, transcription of aprE, aprX, and epr genes was indeed repressed by salt stress. In con-trast, transcription of other genes (e.g., vpr and wprA) was not repressed or significantly affected by the salt. Conclusively, salt stress represses total extracellular proteolytic activity in B. pumilus, which can largely be ascribed to suppression of the major protease-encoding genes (aprE, aprX) at the transcriptional level. In contrast, transcription of other pro-tease-encoding genes (e.g., vpr, wprA) was not repressed by salt stress.

  6. Ethical issues in the search for repressed memories.

    PubMed

    Merskey, H

    1996-01-01

    Currently, concepts of repression and dissociation are in flux. It has been pointed out that there is no scientific evidence for the occurrence of repression and that the whole notion is anecdotal. Dissociation, which is offered as an alternative to repression, cannot logically be held to operate without a motive force, as Freud argued, or a weakness of the organism, as Janet proposed. The concepts have been applied particularly to the idea that early childhood experience could be repressed but recovered many years later. This claim is at variance with established knowledge concerning human memory. Practices of subtle and overt suggestion, employed in recovered-memory treatments, give rise to a false-memory syndrome in which individuals, who have undergone various levels of suggestion, accuse their parents and others of childhood sexual abuse. The common phenomenon of childhood sexual abuse is contaminated by many cases that may be regarded on strong grounds as being false and have been retracted in more than 1,000 instances. Repressed-memory (RM) treatment is also at variance with traditional psychotherapy, which does not encourage confrontation on the basis of uncorroborated information; moreover, many cases of RM therapy seem to result in deterioration. Unlike traditional psychotherapy, some RM practitioners strongly encourage patients to hate individuals in their family circle. The consequences of these developments, the need for informed consent, and the development of legislative initiatives to challenge RM therapy are noted. The impact of these therapies and proposed legislation upon regular psychotherapy and psychiatry is outlined.

  7. Mechanism of promoter repression by Lac repressor-DNA loops.

    PubMed

    Becker, Nicole A; Peters, Justin P; Maher, L James; Lionberger, Troy A

    2013-01-07

    The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor delivered to the operator from remote auxiliary operators by DNA looping. Long-standing questions persist concerning the actual role of DNA looping in the mechanism of promoter repression. Here, we use experiments in living bacteria to resolve four of these questions. We show that the distance dependence of repression enhancement is comparable for upstream and downstream auxiliary operators, confirming the hypothesis that repressor concentration increase is the principal mechanism of repression loops. We find that as few as four turns of DNA can be constrained in a stable loop by Lac repressor. We show that RNA polymerase is not trapped at repressed promoters. Finally, we show that constraining a promoter in a tight DNA loop is sufficient for repression even when promoter and operator do not overlap.

  8. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis.

    PubMed

    Szemenyei, Heidi; Hannon, Mike; Long, Jeff A

    2008-03-07

    The transcriptional response to auxin is critical for root and vascular development during Arabidopsis embryogenesis. Auxin induces the degradation of AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors, freeing their binding partners, the AUXIN RESPONSE FACTOR (ARF) proteins, which can activate transcription of auxin response genes. We show that TOPLESS (TPL) can physically interact with IAA12/BODENLOS (IAA12/BDL) through an ETHYLENE RESPONSE FACTOR (ERF)-associated amphiphilic repression (EAR) motif. TPL can repress transcription in vivo and is required for IAA12/BDL repressive activity. In addition, tpl-1 can suppress the patterning defects of the bdl-1 mutant. Direct interaction between TPL and ARF5/MONOPTEROS, which is regulated by IAA12/BDL, results in a loss-of-function arf5/mp phenotype. These observations show that TPL is a transcriptional co-repressor and further our understanding of how auxin regulates transcription during plant development.

  9. The adenovirus E1A N-terminal repression domain represses transcription from a chromatin template in vitro

    PubMed Central

    Loewenstein, Paul M.; Wu, Shwu-Yuan; Chiang, Cheng-Ming

    2013-01-01

    The adenovirus repression domain of E1A 243R at the E1A N-terminus (E1A 1–80) transcriptionally represses genes involved in differentiation and cell cycle progression. E1A 1–80 represses transcription in vitro from naked DNA templates through its interaction with p300 and TFIID. E1A 1–80 can also interact with several chromatin remodeling factors and associates with chromatin in vivo. We show here that E1A 243R and E1A 1–80 can repress transcription from a reconstituted chromatin template in vitro. Temporal analysis reveals strong repression by E1A 1–80 when added at pre-activation, activation and early transcription stages. Interestingly, E1A 1–80 can greatly enhance transcription from chromatin templates, but not from naked DNA, when added at pre-initiation complex (PIC) formation and transcription-initiation stages. These data reveal a new dimension for E1A 1–80's interface with chromatin and may reflect its interaction with key players in PIC formation, p300 and TFIID, and/or possibly a role in chromatin remodeling. PMID:22521914

  10. The adenovirus E1A N-terminal repression domain represses transcription from a chromatin template in vitro.

    PubMed

    Loewenstein, Paul M; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Green, Maurice

    2012-06-20

    The adenovirus repression domain of E1A 243R at the E1A N-terminus (E1A 1-80) transcriptionally represses genes involved in differentiation and cell cycle progression. E1A 1-80 represses transcription in vitro from naked DNA templates through its interaction with p300 and TFIID. E1A 1-80 can also interact with several chromatin remodeling factors and associates with chromatin in vivo. We show here that E1A 243R and E1A 1-80 can repress transcription from a reconstituted chromatin template in vitro. Temporal analysis reveals strong repression by E1A 1-80 when added at pre-activation, activation and early transcription stages. Interestingly, E1A 1-80 can greatly enhance transcription from chromatin templates, but not from naked DNA, when added at pre-initiation complex (PIC) formation and transcription-initiation stages. These data reveal a new dimension for E1A 1-80's interface with chromatin and may reflect its interaction with key players in PIC formation, p300 and TFIID, and/or possibly a role in chromatin remodeling.

  11. Adenovirus Small E1A Employs the Lysine Acetylases p300/CBP and Tumor Suppressor Rb to Repress Select Host Genes and Promote Productive Virus Infection

    PubMed Central

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A.; Nava, Miguel; Su, Trent; Yousef, Ahmed F.; Zemke, Nathan R.; Pellegrini, Matteo; Kurdistani, Siavash K.; Berk, Arnold J.

    2015-01-01

    SUMMARY Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGFβ-, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. PMID:25525796

  12. Cyclic stretch of Embryonic Cardiomyocytes Increases Proliferation, Growth, and Expression While Repressing Tgf-β Signaling

    PubMed Central

    Banerjee, Indroneal; Carrion, Katrina; Serrano, Ricardo; Dyo, Jeffrey; Sasik, Roman; Lund, Sean; Willems, Erik; Aceves, Seema; Meili, Rudolph; Mercola, Mark; Chen, Ju; Zambon, Alexander; Hardiman, Gary; Doherty, Taylor A; Lange, Stephan; del Álamo, Juan C.; Nigam, Vishal

    2014-01-01

    Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-β (Tgf-β) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-β expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-β inhibitor resulted in increased EMCM size. Functionally, Tgf-β signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS. PMID:25446186

  13. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment.

    PubMed

    Read, Martin L; Lewy, Greg D; Fong, Jim C W; Sharma, Neil; Seed, Robert I; Smith, Vicki E; Gentilin, Erica; Warfield, Adrian; Eggo, Margaret C; Knauf, Jeffrey A; Leadbeater, Wendy E; Watkinson, John C; Franklyn, Jayne A; Boelaert, Kristien; McCabe, Christopher J

    2011-10-01

    Pituitary tumor transforming gene (PTTG)-binding factor (PBF or PTTG1IP) is a little characterized proto-oncogene that has been implicated in the etiology of breast and thyroid tumors. In this study, we created a murine transgenic model to target PBF expression to the thyroid gland (PBF-Tg mice) and found that these mice exhibited normal thyroid function, but a striking enlargement of the thyroid gland associated with hyperplastic and macrofollicular lesions. Expression of the sodium iodide symporter (NIS), a gene essential to the radioiodine ablation of thyroid hyperplasia, neoplasia, and metastasis, was also potently inhibited in PBF-Tg mice. Critically, iodide uptake was repressed in primary thyroid cultures from PBF-Tg mice, which could be rescued by PBF depletion. PBF-Tg thyroids exhibited upregulation of Akt and the TSH receptor (TSHR), each known regulators of thyrocyte proliferation, along with upregulation of the downstream proliferative marker cyclin D1. We extended and confirmed findings from the mouse model by examining PBF expression in human multinodular goiters (MNG), a hyperproliferative thyroid disorder, where PBF and TSHR was strongly upregulated relative to normal thyroid tissue. Furthermore, we showed that depleting PBF in human primary thyrocytes was sufficient to increase radioiodine uptake. Together, our findings indicate that overexpression of PBF causes thyroid cell proliferation, macrofollicular lesions, and hyperplasia, as well as repression of the critical therapeutic route for radioiodide uptake.

  14. Iron- and molybdenum-repressible outer membrane proteins in competent Azotobacter vinelandii.

    PubMed

    Page, W J; von Tigerstrom, M

    1982-07-01

    Azotobacter vinelandii produced three major proteins of 93,000, 85,000, and 81,000 daltons and a minor 77,000-dalton protein in the outer membrane of Fe-limited cells, and these cells were competent for transformation by DNA. The synthesis of these proteins was repressed in Fe-sufficient medium. Mo limitation of nitrogen-fixing cells resulted in the hyperproduction of a 44,000-dalton protein and the production of a minor 77,000-dalton protein in the outer membrane. Mo limitation enhanced competence in Fe-limited medium and induced competence in Fe-sufficient medium. The 44,000-dalton protein was replaced by a 45,000-dalton protein when Fe-sufficient medium also contained NH4+, but the cells were noncompetent. The synthesis of these proteins was repressed in Mo-sufficient medium and by NH4+ in Fe-limited medium. All of the culture supernatants contained a blue-white fluorescent material (absorbance maximum, 214 nm) which appeared to coordinate Fe3+, Fe2+, MoO4(2-), WO3(2-), and VO3(-).

  15. Impact of expert testimony on the believability of repressed memories.

    PubMed

    Sugarman, D B; Boney-McCoy, S

    1997-01-01

    Research suggests that people question the believability of trial testimony based on an alleged victim's previously repressed memories. Participants read one of six scenarios depicting the trial of a man accused of sexually assaulting a young girl. The alleged victim either reported the assault immediately (child witness) or waited 20 years to report it (adult witness). In the adult witness condition, the woman's memory for the event had either been repressed until recently or had always been available, and expert testimony was offered on behalf of the defense, the prosecution, both, or neither. Regression analyses revealed that women perceived the accuser's testimony as more believable and the defendant's testimony as less believable than men did. Similarly, the belief in the accuser's testimony decreased and the belief in the defendant's testimony increased when the accuser was an adult in contrast to a child, and when the defense offered expert testimony in contrast to its absence. In addition, guilty verdicts were associated with higher levels of accuser believability, lower levels of defendant believability and testimony based on repressed memories in contrast to testimony based on memories that were never repressed.

  16. PICKLE acts during germination to repress expression of embryonic traits

    PubMed Central

    Li, Hui-Chun; Chuang, King; Henderson, James T.; Rider, Stanley Dean; Bai, Yinglin; Zhang, Heng; Fountain, Matthew; Gerber, Jacob; Ogas, Joe

    2008-01-01

    SUMMARY PICKLE (PKL) codes for a CHD3 chromatin remodeling factor that plays multiple roles in Arabidopsis growth and development. Previous analysis of the expression of genes that exhibit PKL-dependent regulation suggested that PKL acts during germination to repress expression of embryonic traits. In this study, we examined the expression of PKL protein to investigate when and where PKL acts to regulate development. A PKL:eGFP translational fusion is preferentially localized in the nucleus of cells, consistent with the proposed role for PKL as a chromatin remodeling factor. A steroid-inducible version of PKL - a fusion of PKL to the glucocorticoid receptor (PKL:GR) - was used to examine when PKL acts to repress expression of embryonic traits. We found that activation of PKL:GR during germination was sufficient to repress expression of embryonic traits in the primary roots of pkl seedlings whereas activation of PKL:GR after germination had little effect. In contrast, we observed that PKL is required continuously after germination to repress expression of PHERES1, a type I MADS box gene that is normally expressed during early embryogenesis in wild-type plants. Thus PKL acts at multiple points during development to regulate patterns of gene expression in Arabidopsis. PMID:16359393

  17. Repression of p53 activity by Smyd2-mediated methylation.

    PubMed

    Huang, Jing; Perez-Burgos, Laura; Placek, Brandon J; Sengupta, Roopsha; Richter, Mario; Dorsey, Jean A; Kubicek, Stefan; Opravil, Susanne; Jenuwein, Thomas; Berger, Shelley L

    2006-11-30

    Specific sites of lysine methylation on histones correlate with either activation or repression of transcription. The tumour suppressor p53 (refs 4-7) is one of only a few non-histone proteins known to be regulated by lysine methylation. Here we report a lysine methyltransferase, Smyd2, that methylates a previously unidentified site, Lys 370, in p53. This methylation site, in contrast to the known site Lys 372, is repressing to p53-mediated transcriptional regulation. Smyd2 helps to maintain low concentrations of promoter-associated p53. We show that reducing Smyd2 concentrations by short interfering RNA enhances p53-mediated apoptosis. We find that Set9-mediated methylation of Lys 372 inhibits Smyd2-mediated methylation of Lys 370, providing regulatory cross-talk between post-translational modifications. In addition, we show that the inhibitory effect of Lys 372 methylation on Lys 370 methylation is caused, in part, by blocking the interaction between p53 and Smyd2. Thus, similar to histones, p53 is subject to both activating and repressing lysine methylation. Our results also predict that Smyd2 may function as a putative oncogene by methylating p53 and repressing its tumour suppressive function.

  18. A high-resolution map of transcriptional repression

    PubMed Central

    Liang, Ziwei; Brown, Karen E; Carroll, Thomas; Taylor, Benjamin; Vidal, Isabel Ferreirós; Hendrich, Brian; Rueda, David; Fisher, Amanda G; Merkenschlager, Matthias

    2017-01-01

    Turning genes on and off is essential for development and homeostasis, yet little is known about the sequence and causal role of chromatin state changes during the repression of active genes. This is surprising, as defective gene silencing underlies developmental abnormalities and disease. Here we delineate the sequence and functional contribution of transcriptional repression mechanisms at high temporal resolution. Inducible entry of the NuRD-interacting transcriptional regulator Ikaros into mouse pre-B cell nuclei triggered immediate binding to target gene promoters. Rapid RNAP2 eviction, transcriptional shutdown, nucleosome invasion, and reduced transcriptional activator binding required chromatin remodeling by NuRD-associated Mi2beta/CHD4, but were independent of HDAC activity. Histone deacetylation occurred after transcriptional repression. Nevertheless, HDAC activity contributed to stable gene silencing. Hence, high resolution mapping of transcriptional repression reveals complex and interdependent mechanisms that underpin rapid transitions between transcriptional states, and elucidates the temporal order, functional role and mechanistic separation of NuRD-associated enzymatic activities. DOI: http://dx.doi.org/10.7554/eLife.22767.001 PMID:28318487

  19. PICKLE acts during germination to repress expression of embryonic traits.

    PubMed

    Li, Hui-Chun; Chuang, King; Henderson, James T; Rider, Stanley Dean; Bai, Yinglin; Zhang, Heng; Fountain, Matthew; Gerber, Jacob; Ogas, Joe

    2005-12-01

    PICKLE (PKL) codes for a CHD3 chromatin remodeling factor that plays multiple roles in Arabidopsis growth and development. Previous analysis of the expression of genes that exhibit PKL-dependent regulation suggested that PKL acts during germination to repress expression of embryonic traits. In this study, we examined the expression of PKL protein to investigate when and where PKL acts to regulate development. A PKL:eGFP translational fusion is preferentially localized in the nucleus of cells, consistent with the proposed role for PKL as a chromatin remodeling factor. A steroid-inducible version of PKL [a fusion of PKL to the glucocorticoid receptor (PKL:GR)] was used to examine when PKL acts to repress expression of embryonic traits. We found that activation of PKL:GR during germination was sufficient to repress expression of embryonic traits in the primary roots of pkl seedlings, whereas activation of PKL:GR after germination had little effect. In contrast, we observed that PKL is required continuously after germination to repress expression of PHERES1, a type I MADS box gene that is normally expressed during early embryogenesis in wild-type plants. Thus, PKL acts at multiple points during development to regulate patterns of gene expression in Arabidopsis.

  20. Intellectual Performance as a Function of Repression and Menstrual Cycle.

    ERIC Educational Resources Information Center

    Englander-Golden, Paula; And Others

    Performance on complex (Space Relations and Verbal Reasoning) and simple (Digit Symbol) tests was investigated as a function of Byrne's Repression-Sensitization (RS) dimension, phase of menstrual cycle and premenstrual-menstrual (PM) symptomatology in a group of females not taking oral contraceptives. Two control groups, consisting of males and…

  1. Gene repression by minimal lac loops in vivo.

    PubMed

    Bond, Laura M; Peters, Justin P; Becker, Nicole A; Kahn, Jason D; Maher, L James

    2010-12-01

    The inflexibility of double-stranded DNA with respect to bending and twisting is well established in vitro. Understanding apparent DNA physical properties in vivo is a greater challenge. Here, we exploit repression looping with components of the Escherichia coli lac operon to monitor DNA flexibility in living cells. We create a minimal system for testing the shortest possible DNA repression loops that contain an E. coli promoter, and compare the results to prior experiments. Our data reveal that loop-independent repression occurs for certain tight operator/promoter spacings. When only loop-dependent repression is considered, fits to a thermodynamic model show that DNA twisting limits looping in vivo, although the apparent DNA twist flexibility is 2- to 4-fold higher than in vitro. In contrast, length-dependent resistance to DNA bending is not observed in these experiments, even for the shortest loops constraining <0.4 persistence lengths of DNA. As observed previously for other looping configurations, loss of the nucleoid protein heat unstable (HU) markedly disables DNA looping in vivo. Length-independent DNA bending energy may reflect the activities of architectural proteins and the structure of the DNA topological domain. We suggest that the shortest loops are formed in apical loops rather than along the DNA plectonemic superhelix.

  2. Repressed ghosts and dissociated vampires in the enacted dimension of psychoanalytic treatment.

    PubMed

    Katz, Gil

    2015-04-01

    One of the most evocative uses of the metaphor of a ghost in psychoanalytic writing was crafted by Hans Loewald in "On the Therapeutic Action of Psycho-Analysis" (1960). In this seminal work, Loewald likened the process of psychoanalytic change to that of transforming psychic ghosts into ancestors. In the present paper, the author supplements the metaphor of ghosts that haunt with the metaphor of vampires that menace, and links these two alien experiences to two psychological processes: repression and dissociation. Descriptions of ghosts and vampires in folklore, and the ways they are experienced in analytic treatment, are followed by an explication of the enacted dimension of analytic process-the arena of treatment in which all demons are inevitably revivified, "recognized," and ultimately laid to rest. The paper includes a clinical illustration of a dissociated vampire: a Holocaust trauma transmitted across three generations of survivors.

  3. The hnRNP-Htt axis regulates necrotic cell death induced by transcriptional repression through impaired RNA splicing.

    PubMed

    Mao, Y; Tamura, T; Yuki, Y; Abe, D; Tamada, Y; Imoto, S; Tanaka, H; Homma, H; Tagawa, K; Miyano, S; Okazawa, H

    2016-04-28

    In this study, we identify signaling network of necrotic cell death induced by transcriptional repression (TRIAD) by α-amanitin (AMA), the selective RNA polymerase II inhibitor, as a model of neurodegenerative cell death. We performed genetic screen of a knockdown (KD) fly library by measuring the ratio of transformation from pupa to larva (PL ratio) under TRIAD, and selected the cell death-promoting genes. Systems biology analysis of the positive genes mapped on protein-protein interaction databases predicted the signaling network of TRIAD and the core pathway including heterogeneous nuclear ribonucleoproteins (hnRNPs) and huntingtin (Htt). RNA sequencing revealed that AMA impaired transcription and RNA splicing of Htt, which is known as an endoplasmic reticulum (ER)-stabilizing molecule. The impairment in RNA splicing and PL ratio was rescued by overexpresion of hnRNP that had been also affected by transcriptional repression. Fly genetics with suppressor or expresser of Htt and hnRNP worsened or ameliorated the decreased PL ratio by AMA, respectively. Collectively, these results suggested involvement of RNA splicing and a regulatory role of the hnRNP-Htt axis in the process of the transcriptional repression-induced necrosis.

  4. Repression of Smad3 by Stat3 and c-Ski/SnoN induces gefitinib resistance in lung adenocarcinoma.

    PubMed

    Makino, Yojiro; Yoon, Jeong-Hwan; Bae, Eunjin; Kato, Mitsuyasu; Miyazawa, Keiji; Ohira, Tatsuo; Ikeda, Norihiko; Kuroda, Masahiko; Mamura, Mizuko

    2017-03-04

    Cancer-associated inflammation develops resistance to the epidermal growth-factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small cell lung cancers (NSCLCs) harboring oncogenic EGFR mutations. Stat3-mediated interleukin (IL)-6 signaling and Smad-mediated transforming growth factor-β (TGF-β) signaling pathways play crucial regulatory roles in cancer-associated inflammation. However, mechanisms how these pathways regulate sensitivity and resistance to EGFR-TKI in NSCLCs remain largely undetermined. Here we show that signal transducer and activator of transcription (Stat)3 represses Smad3 in synergy with the potent negative regulators of TGF-β signaling, c-Ski and SnoN, whereby renders gefitinib-sensitive HCC827 cells resistant. We found that IL-6 signaling via phosphorylated Stat3 induced gefitinib resistance as repressing transcription of Smad3, whereas TGF-β enhanced gefitinib sensitivity as activating transcription of Smad3 in HCC827 cells with gefitinib-sensitizing EGFR mutation. Promoter analyses showed that Stat3 synergized with c-Ski/SnoN to repress Smad2/3/4-induced transcription of the Smad3 gene. Smad3 was found to be an apoptosis inducer, which upregulated pro-apoptotic genes such as caspase-3 and downregulated anti-apoptotic genes such as Bcl-2. Our results suggest that derepression of Smad3 can be a therapeutic strategy to prevent gefitinib-resistance in NSCLCs with gefitinib-sensitizing EGFR mutation.

  5. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb.

    PubMed

    Zhao, Liang; Glazov, Evgeny A; Pattabiraman, Diwakar R; Al-Owaidi, Faisal; Zhang, Ping; Brown, Matthew A; Leo, Paul J; Gonda, Thomas J

    2011-06-01

    To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation.

  6. DNA ligand designed to antagonize EBNA1 represses Epstein-Barr virus-induced immortalization.

    PubMed

    Yasuda, Ai; Noguchi, Kohji; Minoshima, Masafumi; Kashiwazaki, Gengo; Kanda, Teru; Katayama, Kazuhiro; Mitsuhashi, Junko; Bando, Toshikazu; Sugiyama, Hiroshi; Sugimoto, Yoshikazu

    2011-12-01

    Epstein-Barr virus (EBV) transforms human B lymphocytes into immortalized cells in vitro and is associated with various malignancies in vivo. EBNA1, which is expressed in the majority of EBV-infected cells, recognizes specific DNA sequences at the cis-acting latent origin of plasmid replication (oriP) element of the EBV genome. EBNA1 plays a critical role in the viral episome maintenance and transactivates viral transforming genes in latently infected cells. Therefore, DNA-targeting agents that can disrupt the EBNA1-oriP interaction will offer novel functional inhibitors of EBNA1. Pyrrole-imidazole polyamides, sequence-specific DNA ligands, can be designed to interfere with the binding of various transcriptional factors. Here, we synthesized pyrrole-imidazole polyamides targeting EBNA1-bound DNA sequences and developed an inhibitor for the EBNA1-oriP interaction. A pyrrole-imidazole polyamide, designated as DSE-3, bound adjacent to the EBNA1 recognition sequences located in the dyad symmetry element of oriP, and selectively inhibited EBNA1-oriP binding both in vitro and in vivo. DSE-3 also inhibited the proliferation of established lymphoblastoid cell lines by eradicating EBV episomes from the cells. In addition, DSE-3 repressed the expression of viral transforming genes after infecting human peripheral blood mononuclear cells with EBV and, as a consequence, inhibited EBV-mediated B-cell immortalization. These results suggest that EBNA1 functions will be an attractive pharmacological target for EBV-associated diseases.

  7. Unintended Consequences of Repression: Alliance Formation in South Korea's Democracy Movement (1970-1979)

    ERIC Educational Resources Information Center

    Chang, Paul Y.

    2008-01-01

    Research regarding the impact of repression on social movements has yielded conflicting findings; some argue that repression decreases the total quantity of protest events while others argue that it motivates protest. To move beyond this impasse, various scholars have suggested exploring how repression influences the quality of social movements.…

  8. A new translational repression element and unusual transcriptional control regulate expression of don juan during Drosophila spermatogenesis.

    PubMed

    Blümer, Nicole; Schreiter, Kay; Hempel, Leonie; Santel, Ansgar; Hollmann, Martin; Schäfer, Mireille A; Renkawitz-Pohl, Renate

    2002-01-01

    The Drosophila don juan (dj) gene encodes a basic protein that is expressed solely in the male germline and shows structural similarities to the linker histone H1. Don Juan is located in two different subcellular structures: in the nucleus during the phase of chromatin condensation and later in the mitochondrial derivatives starting with spermatid individualization. The don juan gene is transcribed in primary spermatocytes under the control of 23 bp upstream in combination with downstream sequences. During meiotic stages and in early spermatid stages don juan mRNA is translationally repressed for several days. Analysis of male sterile mutants which fail to undergo meiosis shows that release of dj mRNA from translational repression is independent of meiosis. In gel retardation assays 60 nucleotides at the end of the dj leader form four major complexes with proteins that were extracted from testes but not with protein extracts from ovaries. Transformation studies prove that in vivo 35 bp within that region of the dj mRNA is essential to confer translational repression. UV cross-linking studies show that a 62 kDa protein specifically binds to the same region within the 5' untranslated region. The dj translational repression element, TRE, is distinct from the translational control element, TCE, described earlier for all members of the Mst(3)CGP gene family. Moreover, expression studies in several male sterile mutants reveal that don juan mRNA is translated in earlier developmental stages during sperm morphogenesis than the Mst(3)CGP mRNAs. This proves that translational activation of dormant mRNAs in spermatogenesis occurs at different time-points which are characteristic for each gene, an essential feature for coordinated sperm morphogenesis.

  9. Proto-oncogene FBI-1 represses transcription of p21CIP1 by inhibition of transcription activation by p53 and Sp1.

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Yun, Chae-Ok; Kim, Pyung-Hwan; Kim, Sung-Eun; Choi, Kang-Yell; Kim, Se Hoon; Hur, Man-Wook

    2009-05-08

    Aberrant transcriptional repression through chromatin remodeling and histone deacetylation has been postulated as the driving force for tumorigenesis. FBI-1 (formerly called Pokemon) is a member of the POK family of transcriptional repressors. Recently, FBI-1 was characterized as a critical oncogenic factor that specifically represses transcription of the tumor suppressor gene ARF, potentially leading indirectly to p53 inactivation. Our investigations on transcriptional repression of the p53 pathway revealed that FBI-1 represses transcription of ARF, Hdm2 (human analogue of mouse double minute oncogene), and p21CIP1 (hereafter indicated as p21) but not of p53. FBI-1 showed a more potent repressive effect on p21 than on p53. Our data suggested that FBI-1 is a master controller of the ARF-Hdm2-p53-p21 pathway, ultimately impinging on cell cycle arrest factor p21, by inhibiting upstream regulators at the transcriptional and protein levels. FBI-1 acted as a competitive transcriptional repressor of p53 and Sp1 and was shown to bind the proximal Sp1-3 GC-box and the distal p53-responsive elements of p21. Repression involved direct binding competition of FBI-1 with Sp1 and p53. FBI-1 also interacted with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylating Ac-H3 and Ac-H4 histones at the promoter. FBI-1 caused cellular transformation, promoted cell cycle proliferation, and significantly increased the number of cells in S phase. FBI-1 is aberrantly overexpressed in many human solid tumors, particularly in adenocarcinomas and squamous carcinomas. The role of FBI-1 as a master controller of the p53 pathway therefore makes it an attractive therapeutic target.

  10. Hox genes control vertebrate body elongation by collinear Wnt repression.

    PubMed

    Denans, Nicolas; Iimura, Tadahiro; Pourquié, Olivier

    2015-02-26

    In vertebrates, the total number of vertebrae is precisely defined. Vertebrae derive from embryonic somites that are continuously produced posteriorly from the presomitic mesoderm (PSM) during body formation. We show that in the chicken embryo, activation of posterior Hox genes (paralogs 9-13) in the tail-bud correlates with the slowing down of axis elongation. Our data indicate that a subset of progressively more posterior Hox genes, which are collinearly activated in vertebral precursors, repress Wnt activity with increasing strength. This leads to a graded repression of the Brachyury/T transcription factor, reducing mesoderm ingression and slowing down the elongation process. Due to the continuation of somite formation, this mechanism leads to the progressive reduction of PSM size. This ultimately brings the retinoic acid (RA)-producing segmented region in close vicinity to the tail bud, potentially accounting for the termination of segmentation and axis elongation.

  11. Construction of glucose-repressible yeast expression vectors.

    PubMed

    Yao, B; Marmur, J; Sollitti, P

    1993-12-31

    A set of two episomal yeast expression vectors, pYME1 and pYME2, were constructed. These Saccharomyces cerevisiae-Escherichia coli shuttle vectors each contain a modified yeast MAL6S (encoding maltase) promoter that is expressed constitutively, but is subject to carbon catabolite repression by glucose. Expression from this promoter is still dependent upon the presence of active MALR (regulatory) protein. These expression vectors are particularly useful because most S. cerevisiae strains are MAL+, thereby exhibiting a wider host range than GAL-based vector systems. These pYME1 and pYME2 vectors are capable of expression to levels comparable to GAL-based expression plasmids and much higher than a variety of other repressible promoter vectors. The vectors are identical, except that their multiple cloning sites (MCS) are in opposite orientations, making them convenient for inserting heterologous genes.

  12. BMP-dependent gene repression cascade in Drosophila eggshell patterning

    PubMed Central

    Charbonnier, Enrica; Fuchs, Alisa; Cheung, Lily S.; Chayengia, Mrinal; Veikkolainen, Ville; Seyfferth, Janine; Shvartsman, Stanislav Y.; Pyrowolakis, George

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) signal by activating Smad transcription factors to control a number of decisions during animal development. In Drosophila, signaling by the BMP ligand Decapentaplegic (Dpp) involves the activity of brinker (brk) which, in most contexts, is repressed by Dpp. Brk encodes a transcription factor which represses BMP signaling output by antagonizing Smad-dependent target gene activation. Here, we study BMP-dependent gene regulation during Drosophila oogenesis by following the signal transmission from Dpp to its target broad (br), a gene with a crucial function in eggshell patterning. We identify regulatory sequences that account for expression of both brk and br, and connect these to the transcription factors of the pathway. We show that Dpp directly regulates brk transcription through Smad- and Schnurri (Shn)-dependent repression. Brk is epistatic to Dpp in br expression and activates br indirectly, through removal of a repressor, which is yet to be identified. Our work provides first cis-regulatory insights into transcriptional interpretation of BMP signaling in eggshell morphogenesis and defines a transcriptional cascade that connects Dpp to target gene regulation. PMID:25704512

  13. Repression and activation by multiprotein complexes that alter chromatin structure.

    PubMed

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  14. Nitric oxide participates in plant flowering repression by ascorbate

    PubMed Central

    Senthil Kumar, Rajendran; Shen, Chin-Hui; Wu, Pei-Yin; Suresh Kumar, Subbiah; Hua, Moda Sang; Yeh, Kai-Wun

    2016-01-01

    In Oncidium, redox homeostasis involved in flowering is mainly due to ascorbic acid (AsA). Here, we discovered that Oncidium floral repression is caused by an increase in AsA-mediated NO levels, which is directed by the enzymatic activities of nitrate reductase (NaR) and nitrite reducatase (NiR). Through Solexa transcriptomic analysis of two libraries, ‘pseudobulb with inflorescent bud’ (PIB) and ‘pseudobulb with axillary bud’ (PAB), we identified differentially expressed genes related to NO metabolism. Subsequently, we showed a significant reduction of NaR enzymatic activities and NO levels during bolting and blooming stage, suggesting that NO controlled the phase transition and flowering process. Applying AsA to Oncidium PLB (protocorm-like bodies) significantly elevated the NO content and enzyme activities. Application of sodium nitroprusside (-NO donor) on Arabidopsis vtc1 mutant caused late flowering and expression level of flowering-associated genes (CO, FT and LFY) were reduced, suggesting NO signaling is vital for flowering repression. Conversely, the flowering time of noa1, an Arabidopsis NO-deficient mutant, was not altered after treatment with L-galacturonate, a precursor of AsA, suggesting AsA is required for NO-biosynthesis involved in the NO-mediated flowering-repression pathway. Altogether, Oncidium bolting is tightly regulated by AsA-mediated NO level and downregulation of transcriptional levels of NO metabolism genes. PMID:27731387

  15. Trans-inactivation: Repression in a wrong place.

    PubMed

    Shatskikh, Aleksei S; Abramov, Yuriy A; Lavrov, Sergey A

    2016-08-19

    Trans-inactivation is the repression of genes on a normal chromosome under the influence of a rearranged homologous chromosome demonstrating the position effect variegation (PEV). This phenomenon was studied in detail on the example of brown(Dominant) allele causing the repression of wild-type brown gene on the opposite chromosome. We have investigated another trans-inactivation-inducing chromosome rearrangement, In(2)A4 inversion. In both cases, brown(Dominant) and In(2)A4, the repression seems to be the result of dragging of the euchromatic region of the normal chromosome into the heterochromatic environment. It was found that cis-inactivation (classical PEV) and trans-inactivation show different patterns of distribution along the chromosome and respond differently to PEV modifying genes. It appears that the causative mechanism of trans-inactivation is de novo heterochromatin assembly on euchromatic sequences dragged into the heterochromatic nuclear compartment. Trans-inactivation turns out to be the result of a combination of heterochromatin-induced position effect and the somatic interphase chromosome pairing that is widespread in Diptera.

  16. Lysine methylation represses p53 activity in teratocarcinoma cancer cells

    PubMed Central

    Zhu, Jiajun; Dou, Zhixun; Sammons, Morgan A.; Levine, Arnold J.; Berger, Shelley L.

    2016-01-01

    TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53’s transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma. PMID:27535933

  17. Revisiting the Master-Signifier, or, Mandela and Repression.

    PubMed

    Hook, Derek; Vanheule, Stijn

    2015-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or "empty") signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.

  18. Revisiting the Master-Signifier, or, Mandela and Repression

    PubMed Central

    Hook, Derek; Vanheule, Stijn

    2016-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or “empty”) signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664

  19. Multiple mechanisms mediate glucose repression of the yeast GAL1 gene.

    PubMed Central

    Lamphier, M S; Ptashne, M

    1992-01-01

    Several mechanisms contribute to the glucose repression of the GAL1 gene in Saccharomyces cerevisiae. We show that one mechanism involves the transcriptional down-regulation of the GAL4 gene and a second requires the GAL80 gene. We also examine the contribution of cis-acting negative elements in the GAL1 promoter to glucose repression. In an otherwise wild-type strain disruption of any one of these three mechanisms alleviates repression of GAL1 only 2- to 4-fold. However, in the absence of the other two mechanisms the transcriptional down-regulation of GAL4 is sufficient to repress GAL1 expression 40- to 60-fold and the GAL80-dependent mechanism is sufficient to repress GAL1 expression 20- to 30-fold. These first two mechanisms constitute a functionally redundant system of repression and both must be disrupted in order to abolish glucose repression of GAL1. In contrast, negative elements in the GAL1 promoter are effective in repressing GAL1 expression 2- to 4-fold in glucose medium only when at least one of the other two mechanisms of repression is present. Thus, glucose repression of GAL1 is mediated primarily by the first two mechanisms, whereas the third mechanism supplements repression severalfold. PMID:1631075

  20. Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development

    PubMed Central

    Mu, Weipeng; Starmer, Joshua; Fedoriw, Andrew M.; Yee, Della; Magnuson, Terry

    2014-01-01

    Polycomb-repressive complex 2 (PRC2) catalyzes the methylation of histone H3 Lys27 (H3K27) and functions as a critical epigenetic regulator of both stem cell pluripotency and somatic differentiation, but its role in male germ cell development is unknown. Using conditional mutagenesis to remove the core PRC2 subunits EED and SUZ12 during male germ cell development, we identified a requirement for PRC2 in both mitotic and meiotic germ cells. We observed a paucity of mutant spermatogonial stem cells (SSCs), which appears independent of repression of the known cell cycle inhibitors Ink4a/Ink4b/Arf. Moreover, mutant spermatocytes exhibited ectopic expression of somatic lamins and an abnormal distribution of SUN1 proteins on the nuclear envelope. These defects were coincident with abnormal chromosome dynamics, affecting homologous chromosome pairing and synapsis. We observed acquisition of H3K27me3 on stage-specific genes during meiotic progression, indicating a requirement for PRC2 in regulating the meiotic transcriptional program. Together, these data demonstrate that transcriptional repression of soma-specific genes by PRC2 facilitates homeostasis and differentiation during mammalian spermatogenesis. PMID:25228648

  1. Role of Promyelocytic Leukemia Zinc Finger (PLZF) in Cell Proliferation and Cyclin-dependent Kinase Inhibitor 1A (p21WAF/CDKN1A) Gene Repression*

    PubMed Central

    Choi, Won-Il; Kim, Min-Young; Jeon, Bu-Nam; Koh, Dong-In; Yun, Chae-Ok; Li, Yan; Lee, Choong-Eun; Oh, Jiyoung; Kim, Kunhong; Hur, Man-Wook

    2014-01-01

    Promyelocytic leukemia zinc finger (PLZF) is a transcription repressor that was initially isolated as a fusion protein with retinoic acid receptor α. PLZF is aberrantly overexpressed in various human solid tumors, such as clear cell renal carcinoma, glioblastoma, and seminoma. PLZF causes cellular transformation of NIH3T3 cells and increases cell proliferation in several cell types. PLZF also increases tumor growth in the mouse xenograft tumor model. PLZF may stimulate cell proliferation by controlling expression of the genes of the p53 pathway (ARF, TP53, and CDKN1A). We found that PLZF can directly repress transcription of CDKN1A encoding p21, a negative regulator of cell cycle progression. PLZF binds to the proximal Sp1-binding GC-box 5/6 and the distal p53-responsive elements of the CDKN1A promoter to repress transcription. Interestingly, PLZF interacts with Sp1 or p53 and competes with Sp1 or p53. PLZF interacts with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylates Ac-H3 and Ac-H4 histones at the CDKN1A promoter, which indicated the involvement of the corepressor·HDACs complex in transcription repression by PLZF. Also, PLZF represses transcription of TP53 and also decreases p53 protein stability by ubiquitination. PLZF may act as a potential proto-oncoprotein in various cell types. PMID:24821727

  2. Amplification of Kp Elements Associated with the Repression of Hybrid Dysgenesis in Drosophila Melanogaster

    PubMed Central

    Jackson, M. S.; Black, D. M.; Dover, G. A.

    1988-01-01

    Mobile P elements in Drosophila melanogaster cause hybrid dysgenesis if their mobility is not repressed. One type of repression, termed P cytotype, is a complex interaction between chromosomes carrying P elements and cytoplasm and is transmitted through the cytoplasm only of females. Another type of repression is found in worldwide M' strains that contain approximately 30 copies per individual of one particular P element deletion-derivative termed the KP element. This repression is transmitted equally through both sexes. In the present study we show that biparentally transmitted repression increases in magnitude together with a rapid increase in KP copy-number in genotypes starting with one or a few KP elements and no other deletion-derivatives. Such correlated increases in repression and KP number per genome occur only in the presence of complete P elements, supporting the interpretation that they are probably a consequence of the selective advantage enjoyed by flies carrying the highest numbers of KP elements. Analysis of Q strains also reveals the presence of qualitative differences in the way the repression of dysgenesis is transmitted. In general, Q strains not containing KP elements have the P cytotype mode of repression, whereas Q strains with KP elements transmit repression through both sexes. This difference among Q strains further supports the existence of at least two types of repression of P-induced hybrid dysgenesis in natural populations of D. melanogaster. PMID:2852140

  3. Thrombospondin-1 Is a Transcriptional Repression Target of PRMT6*

    PubMed Central

    Michaud-Levesque, Jonathan; Richard, Stéphane

    2009-01-01

    Protein arginine methyltransferase 6 (PRMT6) is known to catalyze the generation of asymmetric dimethylarginine in polypeptides. Although the cellular role of PRMT6 is not well understood, it has been implicated in human immunodeficiency virus pathogenesis, DNA repair, and transcriptional regulation. PRMT6 is known to methylate histone H3 Arg-2 (H3R2), and this negatively regulates the lysine methylation of H3K4 resulting in gene repression. To identify in a nonbiased manner genes regulated by PRMT6 expression, we performed a microarray analysis on U2OS osteosarcoma cells transfected with control and PRMT6 small interfering RNAs. We identified thrombospondin-1 (TSP-1), a potent natural inhibitor of angiogenesis, as a transcriptional repression target of PRMT6. Moreover, we show that PRMT6-deficient U2OS cells exhibited cell migration defects that were rescued by blocking the secreted TSP-1 with a neutralizing peptide or blocking α-TSP-1 antibody. PRMT6 associates with the TSP-1 promoter and regulates the balance of methylation of H3R2 and H3K4, such that in PRMT6-deficient cells H3R2 was hypomethylated and H3K4 was trimethylated at the TSP-1 promoter. Using a TSP-1 promoter reporter gene, we further show that PRMT6 directly regulates the TSP-1 promoter activity. These findings show that TSP-1 is a transcriptional repression target of PRMT6 and suggest that neutralizing the activity of PRMT6 could inhibit tumor progression and therefore may be of cancer therapeutic significance. PMID:19509293

  4. Repression of death consciousness and the psychedelic trip.

    PubMed

    Dutta, Varsha

    2012-01-01

    Death is our most repressed consciousness, it inheres our condition as the primordial fear. Perhaps it was necessary that this angst be repressed in man or he would be hurled against the dark forces of nature. Modern ethos was built on this edifice, where the 'denial of death' while 'embracing one's symbolic immortality' would be worshipped, so this ideology simply overturned and repressed looking into the morass of the inevitable when it finally announced itself. Once this slowly pieced its way into all of life, 'death' would soon become a terminology in medicine too and assert its position, by giving a push to those directly dealing with the dying to shy away from its emotional and spiritual affliction. The need to put off death and prolong one's life would become ever more urgent. Research using psychedelics on the terminally ill which had begun in the 1950s and 1960s would coerce into another realm and alter the face of medicine; but the aggression with which it forced itself in the 1960s would soon be politically maimed, and what remained would be sporadic outpours that trickled its way from European labs and underground boot camps. Now, with the curtain rising, the question has etched itself again, about the use of psychedelic drugs in medicine, particularly psychedelic psychotherapy with the terminally ill. This study is an attempt to philosophically explore death anxiety from its existential context and how something that is innate in our condition cannot be therapeutically cured. Psychedelic use was immutably linked with ancient cultures and only recently has it seen its scientific revival, from which a scientific culture grew around psychedelic therapy. How much of what was threaded in the ritual and spiritual mores can be extricated and be interpreted in our own mechanized language of medicine is the question that nudges many.

  5. PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari.

    PubMed

    Lopes, Mateus Schreiner Garcez; Gosset, Guillermo; Rocha, Rafael Costa Santos; Gomez, José Gregório Cabrera; Ferreira da Silva, Luiziana

    2011-10-01

    Due to the effect of catabolite repression, sugar mixtures cannot be metabolized in a rapid and efficient way implicating in lower productivity in bioprocesses using lignocellulosic hydrolysates. In gram-negative bacteria, this mechanism is mediated by the phosphotransferase system (PTS), which concomitantly internalizes and phosphorylates sugars. In this study, we isolated a UV mutant of Burkholderia sacchari, called LFM828, which transports hexoses and pentoses by a non-PTS uptake system. This mutant presented released glucose catabolite repression over the pentoses. In mixtures of glucose, xylose, and arabinose, specific growth rates and the specific sugar consumption rates were, respectively, 10 and 23% higher in LFM828, resulting in a reduced time to exhaust all sugars in the medium. However, in polyhydroxybutyrate (PHB) biosynthesis experiments it was necessary the supplementation of yeast extract to maintain higher values of growth rate and sugar consumption rate. The deficient growth in mineral medium was partially recovered by replacing the ammonium nitrogen source by glutamate. It was demonstrated that the ammonium metabolism is not defective in LFM828, differently from ammonium, glutamate can also be used as carbon and energy allowing an improvement on the carbohydrates utilization for PHB production in LFM828. In contrast, higher rates of ammonia consumption and CO(2) production in LFM828 indicate altered fluxes through the central metabolism in LFM828 and the parental. In conclusion, PTS plays an important role in cell physiology and the elimination of its components has a significant impact on catabolite repression, carbon flux distribution, and PHB biosynthesis in B. sacchari.

  6. The Retinoblastoma Tumor Suppressor Transcriptionally Represses Pak1 in Osteoblasts

    PubMed Central

    Sosa-García, Bernadette; Vázquez-Rivera, Viviana; González-Flores, Jonathan N.; Engel, Brienne E.; Cress, W. Douglas; Santiago-Cardona, Pedro G.

    2015-01-01

    We previously characterized the retinoblastoma tumor suppressor protein (Rb) as a regulator of adherens junction assembly and cell-to-cell adhesion in osteoblasts. This is a novel function since Rb is predominantly known as a cell cycle repressor. Herein, we characterized the molecular mechanisms by which Rb performs this function, hypothesizing that Rb controls the activity of known regulators of adherens junction assembly. We found that Rb represses the expression of the p21-activated protein kinase (Pak1), an effector of the small Rho GTPase Rac1. Rac1 is a well-known regulator of adherens junction assembly whose increased activity in cancer is linked to perturbations of intercellular adhesion. Using nuclear run-on and luciferase reporter transcription assays, we found that Pak1 repression by Rb is transcriptional, without affecting Pak1 mRNA and protein stability. Pak1 promoter bioinformatics showed multiple E2F1 binding sites within 155 base pairs of the transcriptional start site, and a Pak1-promoter region containing these E2F sites is susceptible to transcriptional inhibition by Rb. Chromatin immunoprecipitations showed that an Rb-E2F complex binds to the region of the Pak1 promoter containing the E2F1 binding sites, suggesting that Pak1 is an E2F target and that the repressive effect of Rb on Pak1 involves blocking the trans-activating capacity of E2F. A bioinformatics analysis showed elevated Pak1 expression in several solid tumors relative to adjacent normal tissue, with both Pak1 and E2F increased relative to normal tissue in breast cancer, supporting a cancer etiology for Pak1 up-regulation. Therefore, we propose that by repressing Pak1 expression, Rb prevents Rac1 hyperactivity usually associated with cancer and related to cytoskeletal derangements that disrupt cell adhesion, consequently enhancing cancer cell migratory capacity. This de-regulation of cell adhesion due to Rb loss could be part of the molecular events associated with cancer progression

  7. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  8. Sensation in a single neuron pair represses male behavior in hermaphrodites

    PubMed Central

    White, Jamie Q.; Jorgensen, Erik M.

    2012-01-01

    Summary Pheromones elicit innate sex-specific mating behaviors in many species. We demonstrate that in C. elegans, male-specific sexual attraction behavior is programmed in both sexes but repressed in hermaphrodites. Repression requires a single sensory neuron pair, the ASIs. To represses attraction in adults, the ASIs must be present, active, and capable of sensing the environment during development. The ASIs release TGF-β, and ASI function can be bypassed by experimental activation of TGF-β signaling. Sexual attraction in de-repressed hermaphrodites requires the same sensory neurons as in males. The sexual identity of both these sensory neurons and a distinct subset of interneurons must be male to relieve repression and release attraction. TGF-β may therefore act to change connections between sensory- and interneurons during development to engage repression. Thus, sensation in a single sensory neuron pair during development reprograms a common neural circuit from male to female behavior. PMID:22920252

  9. Musashi mediates translational repression of the Drosophila hypoxia inducible factor

    PubMed Central

    Bertolin, Agustina P.; Katz, Maximiliano J.; Yano, Masato; Pozzi, Berta; Acevedo, Julieta M.; Blanco-Obregón, Dalmiro; Gándara, Lautaro; Sorianello, Eleonora; Kanda, Hiroshi; Okano, Hideyuki; Srebrow, Anabella; Wappner, Pablo

    2016-01-01

    Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3′ UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available. PMID:27141964

  10. Musashi mediates translational repression of the Drosophila hypoxia inducible factor.

    PubMed

    Bertolin, Agustina P; Katz, Maximiliano J; Yano, Masato; Pozzi, Berta; Acevedo, Julieta M; Blanco-Obregón, Dalmiro; Gándara, Lautaro; Sorianello, Eleonora; Kanda, Hiroshi; Okano, Hideyuki; Srebrow, Anabella; Wappner, Pablo

    2016-09-19

    Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.

  11. Repression of PES1 expression inhibits growth of gastric cancer.

    PubMed

    Li, Jieping; Zhou, Xiaodong; Lan, Xiaopeng; Zeng, Guobin; Jiang, Xuping; Huang, Zongming

    2016-03-01

    Gastric cancer is one of the leading causes of cancer death worldwide. However, precise molecular mechanisms underlining its development are far from clear. We recently reported that PES1 promoted development of breast cancer and ovarian cancer as an oncogene. In this study, we reported that ablation of endogenous PES1 resulted in significant suppression of cell proliferation and growth and led to cell cycle arrest in G2 or G1 phase, respectively, in two gastric cancer cell lines (AGS and N87) in vitro. Meanwhile, silencing of PES1 obviously decreased expressions of cyclin D1, HIF-1α, and vascular endothelial growth factor (VEGF) expressions and increased p21WAF1 expression. Re-expression of PES1 in these two kinds of PES1 knockdown cells rescued these effects. In vivo, repression of endogenous PES1 expression suppressed gastric tumor growth in nude mice. In addition, 40.7 % (24/59) of gastric cancer tissues showed PES1 expression via immunohistochemical (IHC) staining. However, there were not any positive PES1 stainings in matched adjacent tissues. Our results demonstrated that repression of PES1 changed expressions of some cell proliferation- and angiogenesis-related genes and inhibited gastric cancer growth, and PES1 expression increased in gastric cancer tissues. These results suggest that PES1 may play an important role in development of gastric cancer. PES1 may be a potential target for gastric cancer therapy.

  12. Transformational Events

    ERIC Educational Resources Information Center

    Denning, Peter J.; Hiles, John E.

    2006-01-01

    Transformational Events is a new pedagogic pattern that explains how innovations (and other transformations) happened. The pattern is three temporal stages: an interval of increasingly unsatisfactory ad hoc solutions to a persistent problem (the "mess"), an offer of an invention or of a new way of thinking, and a period of widespread adoption and…

  13. Reading Transformation

    ERIC Educational Resources Information Center

    Reeves, Melinda

    2006-01-01

    The parents of students who attend Decatur High School thought that there was little hope of their kids going on to college. After a year or so in Decatur's reading program, their sons and daughters were both transformed and college bound. In this article, the author describes how Decatur was able to successfully transform their students. Seven…

  14. Evidence that regulatory protein MarA of Escherichia coli represses rob by steric hindrance.

    PubMed

    McMurry, Laura M; Levy, Stuart B

    2010-08-01

    The MarA protein of Escherichia coli can both activate and repress the initiation of transcription, depending on the position and orientation of its degenerate 20-bp binding site ("marbox") at the promoter. For all three known repressed genes, the marbox overlaps the promoter. It has been reported that MarA represses the rob promoter via an RNA polymerase (RNAP)-DNA-MarA ternary complex. Under similar conditions, we found a ternary complex for the repressed purA promoter also. These findings, together with the backwards orientation of repressed marboxes, suggested a unique interaction of MarA with RNAP in repression. However, no repression-specific residues of MarA could be found among 38 single-alanine replacement mutations previously shown to retain activation function or among mutants from random mutagenesis. Mutations Thr12Ala, Arg36Ala, Thr95Ile, and Pro106Ala were more damaging for activation than for repression, some up to 10-fold, so these residues may play a specific role in activation. We found that nonspecific binding of RNAP to promoterless regions of DNA was presumably responsible for the ternary complexes seen previously. When RNAP binding was promoter specific, MarA reduced RNAP access to the rob promoter; there was little or no ternary complex. These findings strongly implicate steric hindrance as the mechanism of repression of rob by MarA.

  15. GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer

    PubMed Central

    Tessema, Mathewos; Yingling, Christin M.; Snider, Amanda M.; Do, Kieu; Juri, Daniel E.; Picchi, Maria A.; Zhang, Xiequn; Liu, Yushi; Leng, Shuguang; Tellez, Carmen S.; Belinsky, Steven A.

    2014-01-01

    Introduction GATA2 was recently described as a critical survival factor and therapeutic target for KRAS mutant non-small cell lung cancer (NSCLC). However, whether this role is affected by epigenetic repression of GATA2 in lung cancer is unclear. Methods GATA2 expression and promoter CpG island methylation were evaluated using human and mouse NSCLC cell lines and tumor-normal pairs. In vitro assays were used to study GATA2 repression on cell survival and during tobacco carcinogen-induced transformation. Results GATA2 expression in KRAS wild-type (n=15) and mutant (n=10) NSCLC cell lines and primary lung tumors (n=24) was significantly lower, 1.3–33.6-fold (p=2.2×10−9), compared to corresponding normal lung. GATA2 promoter was unmethylated in normal lung (0/10) but frequently methylated in lung tumors (96%, 159/165) and NSCLC cell lines (97%, 30/31). This highly prevalent aberrant methylation was independently validated using TCGA data for 369 NSCLC tumor-normal pairs. In vitro studies using an established carcinogen-induced pre-malignancy model revealed that GATA2 expression was initially repressed by chromatin remodeling followed by cytosine methylation during transformation. Similarly, expression of Gata2 in NNK-induced mouse lung tumors (n=6) and cell lines (n=5) was 5-fold and 100-fold lower, respectively, than normal mouse lung. Finally, siRNA-mediated knockdown of GATA2 in KRAS mutant [human (n=4) and murine (n=5)] and wild-type [human (n=4)] NSCLC cell lines showed that further reduction of expression (up to 95%) does not induce cell death. Conclusion GATA2 is epigenetically repressed in human and mouse lung tumors and its further inhibition is not a valid therapeutic strategy for KRAS mutant lung cancer. PMID:24807155

  16. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis.

    PubMed

    Hiratsu, Keiichiro; Matsui, Kyoko; Koyama, Tomotsugu; Ohme-Takagi, Masaru

    2003-06-01

    The redundancy of genes for plant transcription factors often interferes with efforts to identify the biologic functions of such factors. We show here that four different transcription factors fused to the EAR motif, a repression domain of only 12 amino acids, act as dominant repressors in transgenic Arabidopsis and suppress the expression of specific target genes, even in the presence of the redundant transcription factors, with resultant dominant loss-of-function phenotypes. Chimeric EIN3, CUC1, PAP1, and AtMYB23 repressors that included the EAR motif dominantly suppressed the expression of their target genes and caused insensitivity to ethylene, cup-shaped cotyledons, reduction in the accumulation of anthocyanin, and absence of trichomes, respectively. This chimeric repressor silencing technology (CRES-T), exploiting the EAR-motif repression domain, is simple and effective and can overcome genetic redundancy. Thus, it should be useful not only for the rapid analysis of the functions of redundant plant transcription factors but also for the manipulation of plant traits via the suppression of gene expression that is regulated by specific transcription factors.

  17. [Transformation toughening

    SciTech Connect

    Rafa, M.J.

    1993-04-19

    In NiAl, we have succeeded in determining the complete Ginzburg-Landau strain free energy function necessary to model the cubic to tetragonal martensite transformation in a sample of any size. We believe that this is the first time that the parameters of a Ginzburg-Landau functional and the complete strain spinodal for any three-dimensional displacive transformation were used in simulating the transformation near a crack tip under Mode I loading; the transformation pattern and toughening are different from standard transformation toughening theories. Furthermore, the strain spinodal has an approximately conical shape which can be specified by two material dependent experimentally accessible parameters, rather than the ellipsoidal shape in standard theories. Stress induced martensitic transformation in a polycrystalline sample of NiAl was simulated. In the ZrO[sub 2] system, first principles calculations to determine the semi-empirical potentials for simulating the cubic-tetragonal and tetragonal-monoclinic transformations have been started by doing a more elaborate total energy calculation.In the Al[sub 2]0[sub 3] system, we have discovered that the first principles calculations and semi-empirical potentials have just been completed byanother group in England which we will use instead to base our molecular dynamics simulations on.

  18. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression

    PubMed Central

    Greene, Trever T; Tokuyama, Maria; Knudsen, Giselle M; Kunz, Michele; Lin, James; Greninger, Alexander L; DeFilippis, Victor R; DeRisi, Joseph L; Raulet, David H; Coscoy, Laurent

    2016-01-01

    Natural Killer (NK) cells are essential for control of viral infection and cancer. NK cells express NKG2D, an activating receptor that directly recognizes NKG2D ligands. These are expressed at low level on healthy cells, but are induced by stresses like infection and transformation. The physiological events that drive NKG2D ligand expression during infection are still poorly understood. We observed that the mouse cytomegalovirus encoded protein m18 is necessary and sufficient to drive expression of the RAE-1 family of NKG2D ligands. We demonstrate that RAE-1 is transcriptionally repressed by histone deacetylase inhibitor 3 (HDAC3) in healthy cells, and m18 relieves this repression by directly interacting with Casein Kinase II and preventing it from activating HDAC3. Accordingly, we found that HDAC inhibiting proteins from human herpesviruses induce human NKG2D ligand ULBP-1. Thus our findings indicate that virally mediated HDAC inhibition can act as a signal for the host to activate NK-cell recognition. DOI: http://dx.doi.org/10.7554/eLife.14749.001 PMID:27874833

  19. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression.

    PubMed

    Greene, Trever T; Tokuyama, Maria; Knudsen, Giselle M; Kunz, Michele; Lin, James; Greninger, Alexander L; DeFilippis, Victor R; DeRisi, Joseph L; Raulet, David H; Coscoy, Laurent

    2016-11-22

    Natural Killer (NK) cells are essential for control of viral infection and cancer. NK cells express NKG2D, an activating receptor that directly recognizes NKG2D ligands. These are expressed at low level on healthy cells, but are induced by stresses like infection and transformation. The physiological events that drive NKG2D ligand expression during infection are still poorly understood. We observed that the mouse cytomegalovirus encoded protein m18 is necessary and sufficient to drive expression of the RAE-1 family of NKG2D ligands. We demonstrate that RAE-1 is transcriptionally repressed by histone deacetylase inhibitor 3 (HDAC3) in healthy cells, and m18 relieves this repression by directly interacting with Casein Kinase II and preventing it from activating HDAC3. Accordingly, we found that HDAC inhibiting proteins from human herpesviruses induce human NKG2D ligand ULBP-1. Thus our findings indicate that virally mediated HDAC inhibition can act as a signal for the host to activate NK-cell recognition.

  20. Triple transformation

    NASA Astrophysics Data System (ADS)

    Khan, Farrukh I.; Schinn, Dustin S.

    2013-08-01

    A new business plan that enables policy transformation and resource mobilization at the national and international level, while improving access to resources, will allow the Green Climate Fund to integrate development goals and action on climate change.

  1. Identification of protein interaction antagonists using the repressed transactivator two-hybrid system.

    PubMed

    Joshi, Phalgun B; Hirst, Martin; Malcolm, Tom; Parent, Jennifer; Mitchell, David; Lund, Karen; Sadowski, Ivan

    2007-05-01

    The repressed transactivator (RTA) yeast two-hybrid system was developed to enable genetic identification of interactions with transcriptional activator proteins. We have devised modifications of this system that enable its use in screening for inhibitors of protein interactions from small molecule compound libraries. We show that inhibition of protein interactions can be measured by monitoring growth in selective medium containing 3-aminotriazole (3-AT) and using this assay have identified inhibitors of four independent protein interactions in screens with a 23,000 small molecule compound library. Compounds found to inhibit one of the tested interactions between FKBP12 and the transforming growth factor beta receptor (TGFbeta-R) were validated in vivo and found to inhibit calcineurin-dependent signaling in T cells. One of these compounds was also found to cause elevated basal expression of a TGFbeta-R/SMAD-dependent reporter gene. These results demonstrate the capability of the RTA small molecule screening assay for discovery of potentially novel therapeutic compounds.

  2. The Breast Cancer Oncogene EMSY Represses Transcription of Antimetastatic microRNA miR-31

    PubMed Central

    Viré, Emmanuelle; Curtis, Christina; Davalos, Veronica; Git, Anna; Robson, Samuel; Villanueva, Alberto; Vidal, August; Barbieri, Isaia; Aparicio, Samuel; Esteller, Manel; Caldas, Carlos; Kouzarides, Tony

    2014-01-01

    Summary Amplification of the EMSY gene in sporadic breast and ovarian cancers is a poor prognostic indicator. Although EMSY has been linked to transcriptional silencing, its mechanism of action is unknown. Here, we report that EMSY acts as an oncogene, causing the transformation of cells in vitro and potentiating tumor formation and metastatic features in vivo. We identify an inverse correlation between EMSY amplification and miR-31 expression, an antimetastatic microRNA, in the METABRIC cohort of human breast samples. Re-expression of miR-31 profoundly reduced cell migration, invasion, and colony-formation abilities of cells overexpressing EMSY or haboring EMSY amplification. We show that EMSY is recruited to the miR-31 promoter by the DNA binding factor ETS-1, and it represses miR-31 transcription by delivering the H3K4me3 demethylase JARID1b/PLU-1/KDM5B. Altogether, these results suggest a pathway underlying the role of EMSY in breast cancer and uncover potential diagnostic and therapeutic targets in sporadic breast cancer. PMID:24582497

  3. Engineered Repressible Lethality for Controlling the Pink Bollworm, a Lepidopteran Pest of Cotton

    PubMed Central

    Morrison, Neil I.; Simmons, Gregory S.; Fu, Guoliang; O’Connell, Sinead; Walker, Adam S.; Dafa’alla, Tarig; Walters, Michelle; Claus, John; Tang, Guolei; Jin, Li; Marubbi, Thea; Epton, Matthew J.; Harris, Claire L.; Staten, Robert T.; Miller, Ernest; Miller, Thomas A.; Alphey, Luke

    2012-01-01

    The sterile insect technique (SIT) is an environmentally friendly method of pest control in which insects are mass-produced, irradiated and released to mate with wild counterparts. SIT has been used to control major pest insects including the pink bollworm (Pectinophora gossypiella Saunders), a global pest of cotton. Transgenic technology has the potential to overcome disadvantages associated with the SIT, such as the damaging effects of radiation on released insects. A method called RIDL (Release of Insects carrying a Dominant Lethal) is designed to circumvent the need to irradiate insects before release. Premature death of insects’ progeny can be engineered to provide an equivalent to sterilisation. Moreover, this trait can be suppressed by the provision of a dietary antidote. In the pink bollworm, we generated transformed strains using different DNA constructs, which showed moderate-to-100% engineered mortality. In permissive conditions, this effect was largely suppressed. Survival data on cotton in field cages indicated that field conditions increase the lethal effect. One strain, called OX3402C, showed highly penetrant and highly repressible lethality, and was tested on host plants where its larvae caused minimal damage before death. These results highlight a potentially valuable insecticide-free tool against pink bollworm, and indicate its potential for development in other lepidopteran pests. PMID:23226548

  4. Let-7b promotes alpaca hair growth via transcriptional repression of TGFβR I.

    PubMed

    Yan, Shen; Yu, Zhang; Ning, Liu; Hai-Dong, Wang; Jian-Shan, Xie; Shu-Yuan, Gao; Jia-Qi, Cheng; Xiu-Ju, Yu; Ting, Wang; Chang-Sheng, Dong; Xiao-Yan, He

    2016-02-10

    The young male alpaca ear and the back skins were used to investigate the effect of transforming growth factor receptor-β I (TGFβR I) on alpaca hair follicles and hair growth. The expression level and location of TGFβR I in alpaca ear and dorsal skin were detected through real-time quantitative PCR (RT-PCR) and paraffin section immunohistochemical technique (ICC-P). The results shown TGFβR I was lower expression in back skin compared to ear skin and the mean density of the positive reaction in ear skin was significantly higher than back skin. The targeted relationship with let-7b was detected using the dual-luciferase reporter vector of TGFβR I, which showed a significant target relationship between let-7b and TGFβR I. After transfection with let-7b eukaryotic expression vector, the relative mRNA expression of TGFβR I in alpaca skin fibroblasts did not differ, while the relative protein level was significantly decreased. In summary, a higher TGFβR I expression level in the ear skin suggests that TGFβR I may inhibit coat hair elongation. Further studies showed TGFβR I protein was downregulated by let-7b through transcriptional repression.

  5. Translational repression by RNA-binding protein TIAR.

    PubMed

    Mazan-Mamczarz, Krystyna; Lal, Ashish; Martindale, Jennifer L; Kawai, Tomoko; Gorospe, Myriam

    2006-04-01

    The RNA-binding protein TIAR has been proposed to inhibit protein synthesis transiently by promoting the formation of translationally silent stress granules. Here, we report the selective binding of TIAR to several mRNAs encoding translation factors such as eukaryotic initiation factor 4A (eIF4A) and eIF4E (translation initiation factors), eEF1B (a translation elongation factor), and c-Myc (which transcriptionally controls the expression of numerous translation regulatory proteins). TIAR bound the 3'-untranslated regions of these mRNAs and potently suppressed their translation, particularly in response to low levels of short-wavelength UV (UVC) irradiation. The UVC-imposed global inhibition of the cellular translation machinery was significantly relieved after silencing of TIAR expression. We propose that the TIAR-mediated inhibition of translation factor expression elicits a sustained repression of protein biosynthesis in cells responding to stress.

  6. Plant Callus: Mechanisms of Induction and Repression[OPEN

    PubMed Central

    Ikeuchi, Momoko; Sugimoto, Keiko; Iwase, Akira

    2013-01-01

    Plants develop unorganized cell masses like callus and tumors in response to various biotic and abiotic stimuli. Since the historical discovery that the combination of two growth-promoting hormones, auxin and cytokinin, induces callus from plant explants in vitro, this experimental system has been used extensively in both basic research and horticultural applications. The molecular basis of callus formation has long been obscure, but we are finally beginning to understand how unscheduled cell proliferation is suppressed during normal plant development and how genetic and environmental cues override these repressions to induce callus formation. In this review, we will first provide a brief overview of callus development in nature and in vitro and then describe our current knowledge of genetic and epigenetic mechanisms underlying callus formation. PMID:24076977

  7. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1.

    PubMed

    Volpert, Olga V; Pili, Roberto; Sikder, Hashmat A; Nelius, Thomas; Zaichuk, Tetiana; Morris, Chad; Shiflett, Clinton B; Devlin, Meghann K; Conant, Katherine; Alani, Rhoda M

    2002-12-01

    Id proteins are helix-loop-helix transcription factors that regulate tumor angiogenesis. In order to identify downstream effectors of Id1 involved in the regulation of angiogenesis, we performed PCR-select subtractive hybridization on wild-type and Id1 knockout mouse embryo fibroblasts (MEFs). Here we demonstrate that thrombospondin-1 (TSP-1), a potent inhibitor of angiogenesis, is a target of transcriptional repression by Id1. We also show that Id1-null MEFs secrete an inhibitor of endothelial cell migration, which is completely inactivated by depletion of TSP-1. Furthermore, in vivo studies revealed decreased neovascularization in matrigel assays in Id1-null mice compared to their wild-type littermates. This decrease was completely reversed by a TSP-1 neutralizing antibody. We conclude that TSP-1 is a major target for Id1 effects on angiogenesis.

  8. Brain feminization requires active repression of masculinization via DNA methylation

    PubMed Central

    Nugent, Bridget M.; Wright, Christopher L.; Shetty, Amol C.; Hodes, Georgia E.; Lenz, Kathryn M.; Mahurkar, Anup; Russo, Scott J.; Devine, Scott E.; McCarthy, Margaret M.

    2015-01-01

    The developing mammalian brain is destined for a female phenotype unless exposed to gonadal hormones during a perinatal sensitive period. It has been assumed that the undifferentiated brain is masculinized by direct induction of transcription by ligand-activated nuclear steroid receptors. We found that a primary effect of gonadal steroids in the highly sexually-dimorphic preoptic area (POA) is to reduce activity of DNA methyltransferase (Dnmt) enzymes, thereby decreasing DNA methylation and releasing masculinizing genes from epigenetic repression. Pharmacological inhibition of Dnmts mimicked gonadal steroids, resulting in masculinized neuronal markers and male sexual behavior in females. Conditional knockout of the de novo Dnmt isoform, Dnmt3a, also masculinized sexual behavior in female mice. RNA sequencing revealed gene and isoform variants modulated by methylation that may underlie the divergent reproductive behaviors of males versus females. Our data show that brain feminization is maintained by the active suppression of masculinization via DNA methylation. PMID:25821913

  9. Transformational leadership.

    PubMed

    Luzinski, Craig

    2011-12-01

    This month, the director of the Magnet Recognition Program® takes an in-depth look at the Magnet® model component transformational leadership. The author examines the expectations for Magnet organizations around this component. What are the qualities that make a nursing leader truly transformational, and what is the best approach to successfully lead a healthcare organization through today's volatile healthcare environment?

  10. BRCA1-mediated repression of select X chromosome genes

    PubMed Central

    Jazaeri, Amir A; Chandramouli, Gadisetti VR; Aprelikova, Olga; Nuber, Ulrike A; Sotiriou, Christos; Liu, Edison T; Ropers, H Hilger; Yee, Cindy J; Boyd, Jeff; Barrett, J Carl

    2004-01-01

    Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling). Significance was determined using parametric statistics with P < 0.005 as a cutoff. Forty of 178 total X-chromosome transcripts were differentially expressed between the BRCA1-associated tumors and sporadic cancers with a BRCA2-like molecular profile. Thirty of these 40 genes showed higher mean expression in the BRCA1-associated samples including all 11 transcripts that mapped to Xp11. In contrast, four of 178 total X chromosome transcripts showed significant differential expression between BRCA1-associated and sporadic tumors with a BRCA1-like molecular profile. All four mapped to Xp11 and showed higher mean expression in BRCA1-associated tumors. Re-expression of BRCA1 in HCC1937 BRCA1-deficient breast cancer cell resulted in the repression of 21 transcripts. Eleven of the 21 (54.5%) transcripts mapped to Xp11. However, there was no significant overlap between these Xp11 genes and those found to be differentially expressed between BRCA1-associated and sporadic ovarian cancer samples. These results demonstrate that BRCA1 mediates the repression of several X chromosome genes, many of which map to the Xp11 locus. PMID:15383145

  11. The Role of Bile Salt Export Pump Gene Repression in Drug-Induced Cholestatic Liver Toxicity

    PubMed Central

    Garzel, Brandy; Yang, Hui; Zhang, Lei; Huang, Shiew-Mei; Polli, James E.

    2014-01-01

    The bile salt export pump (BSEP, ABCB11) is predominantly responsible for the efflux of bile salts, and disruption of BSEP function is often associated with altered hepatic homeostasis of bile acids and cholestatic liver injury. Accumulating evidence suggests that many drugs can cause cholestasis through interaction with hepatic transporters. To date, a relatively strong association between drug-induced cholestasis and attenuated BSEP activity has been proposed. However, whether repression of BSEP transcription would contribute to drug-induced cholestasis is largely unknown. In this study, we selected 30 drugs previously reported as BSEP inhibitors to evaluate their effects on BSEP expression, farnesoid X receptor (FXR) activation, and correlations to clinically reported liver toxicity. Our results indicate that of the 30 BSEP inhibitors, five exhibited potent repression of BSEP expression (≥60% repression), ten were moderate repressors (20–60% repression), whereas others had negligible effects (≤20% repression). Of importance, two drugs (troglitazone and benzbromarone), previously withdrawn from the market because of liver injury, are among the potent repressors. Further investigation of the five potent repressors revealed that transcriptional repression of BSEP by lopinavir and troglitazone may occur through their interaction with FXR, whereas others are via FXR-independent yet unidentified pathways. Our data suggest that in addition to functional inhibition, repression of BSEP expression may play an important role in drug-induced cholestatic liver toxicity. Thus, a combination of the two would reveal a more accurate prediction of drug-induced cholestasis than does either repression or inhibition alone. PMID:24335466

  12. Repressive Coping, Emotional Adjustment, and Cognition in People Who Have Lost Loved Ones to Suicide

    ERIC Educational Resources Information Center

    Parker, Holly A.; McNally, Richard J.

    2008-01-01

    Research indicates that a repressive coping style is psychologically protective against the stress of trauma, yet it is unclear whether this finding generalizes to suicide bereavement. Thus, we assessed cognitive ability and mental health among individuals who lost a loved one to suicide. The results indicate that repressive coping may be…

  13. Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells

    PubMed Central

    Nishiyama, Akira; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Amano, Tomokazu; Hoang, Hien G.; Binder, Bernard Y.; Tapnio, Richard; Bassey, Uwem; Malinou, Justin N.; Correa-Cerro, Lina S.; Yu, Hong; Xin, Li; Meyers, Emily; Zalzman, Michal; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Qian, Yong; Dudekula, Dawood; Sheer, Sarah; Cadet, Jean S.; Hirata, Tetsuya; Yang, Hsih-Te; Goldberg, Ilya; Evans, Michele K.; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2013-01-01

    Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes. PMID:23462645

  14. MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression

    PubMed Central

    Jeon, Young-Jun; Fadda, Paolo; Alder, Hansjuerg; Croce, Carlo M.

    2015-01-01

    The transcription factor MYC is a proto-oncogene regulating cell proliferation, cell cycle, apoptosis and metabolism. The recent identification of MYC-regulated long noncoding RNAs (lncRNAs) expands our knowledge of the role of lncRNAs in MYC functions. Here, we identify MYC-repressed lncRNAs named MYCLo-4, -5 and -6 by comparing 3 categories of lncRNAs (downregulated in highly MYC-expressing colorectal cancer, up-regulated by MYC knockdown in HCT116, upregulated by MYC knockdown in RKO). The MYC-repressed MYCLos are implicated in MYC-modulated cell proliferation through cell cycle regulation. By screening cell cycle-related genes regulated by MYC and the MYC-repressed MYCLos, we identified the MYC-repressed gene GADD45A as a target gene of the MYC-repressed MYCLos such as MYCLo-4 and MYCLo-6. PMID:26003165

  15. The relationship between two types of impaired emotion processing: repressive coping and alexithymia

    PubMed Central

    Myers, Lynn B.; Derakshan, Nazanin

    2015-01-01

    The constructs of repressive coping and alexithymia are both related to impaired emotion processing, yet individuals with a repressive coping style (repressors) score lower than controls on standard self-report measures of alexithymia. A large body of evidence indicates that repressors avoid negative affect. Therefore, the current study examined the relationship between repressive coping and alexithymia by using independently-rated interviews with the aim of bypassing repressors’ tendency of avoiding negative affect. Results showed that repressors scored high on alexithymia, similar to anxious individuals on the independently-rated interview, but scored low on alexithymia on a questionnaire measure. Our findings confirm a link between alexithymia and repressive coping and stress the need for non-standard measures in exploring the nature of the relationship between repressive coping and alexithymia. PMID:26136706

  16. The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2

    PubMed Central

    Lodha, Mukesh; Marco, Cristina F.; Timmermans, Marja C.P.

    2013-01-01

    Polycomb-repressive complexes (PRCs) ensure the correct spatiotemporal expression of numerous key developmental regulators. Despite their pivotal role, how PRCs are recruited to specific targets remains largely unsolved, particularly in plants. Here we show that the Arabidopsis ASYMMETRIC LEAVES complex physically interacts with PRC2 and recruits this complex to the homeobox genes BREVIPEDICELLUS and KNAT2 to stably silence these stem cell regulators in differentiating leaves. The recruitment mechanism resembles the Polycomb response element-based recruitment of PRC2 originally defined in flies and provides the first such example in plants. Combined with recent studies in mammals, our findings reveal a conserved paradigm to epigenetically regulate homeobox gene expression during development. PMID:23468429

  17. DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells

    PubMed Central

    Zhang, Xiaotian; Su, Jianzhong; Jeong, Mira; Ko, Myunggon; Huang, Yun; Park, Hyun Jung; Guzman, Anna; Lei, Yong; Huang, Yung-Hsin; Rao, Anjana; Li, Wei; Goodell, Margaret A.

    2016-01-01

    Mutations in the epigenetic modifiers DNMT3A and TET2 non-randomly co-occur in lymphoma and leukemia despite their epistasis in the methylation-hydroxymethylation pathway. Using Dnmt3a and Tet2 double knock-out (DKO) mice in which malignancy development is accelerated, we show that the DKO methylome reflects regions of independent, competitive and cooperative activity. Expression of lineage-specific transcription factors, including the erythroid regulator Klf1 is upregulated in DKO HSCs. DNMT3A and TET2 both repress Klf1 suggesting a model of cooperative inhibition by the epigenetic modifiers. These data demonstrate a dual role for TET2 in promoting and inhibiting HSC differentiation, loss of which, along with DNMT3A, obstructs differentiation leading to transformation. PMID:27428748

  18. The Constitutive, Glucose-Repression-Insensitive Mutation of the Yeast MAL4 Locus Is an Alteration of the MAL43 Gene

    PubMed Central

    Charron, Maureen J.; Michels, Corinne A.

    1987-01-01

    Mutations resulting in constitutive production of maltase have been identified at each of the five MAL loci of Saccharomyces yeasts. Here we examine a dominant constitutive, glucose-repression-insensitive allele of the MAL4 locus (MAL4-C). Our results demonstrate that MAL4-C is an alteration in the MAL43 gene, which encodes the positive regulator of the MAL structural genes, and that its product is trans-acting. The MAL43 gene from the MAL4-C strain was cloned and integrated into a series of nonfermenting strains lacking a functional regulatory gene but carrying copies of the maltose permease and maltase structural genes. Expression of the maltase structural gene was both constitutive and insensitive to glucose repression in these transformants. The MAL4-C allele also results in constitutive expression of the unlinked MAL12 gene (encoding maltase) in this strain. In addition, the cloned MAL43 gene was shown to be dominant to the wild-type MAL63 gene. We also show that most of the glucose repression insensitivity of strains carrying the MAL4-C allele results from alteration of MAL43. PMID:3036644

  19. Political Repression Against Soviet Astronomers in the 1930s

    NASA Astrophysics Data System (ADS)

    Eremmeva, A. I.

    1993-12-01

    The Soviet government's repression of the Russian intelligentsia in the late 1930s had a devastating effect on astronomy. This period was marked by the strengthening of a rigid ideology in society and a growing atmosphere of suspicion, fear, and spy mania. Under these conditions the international nature of astronomy--in particular the need for foreign contacts--became the excuse for accusations of "wrecking" against astronomers. The fate of individual astronomers and institutions depended greatly, however, on local circumstances. For example, the general political repression of the 1930s began in Leningrad at a time when Pulkovo Observatory director B. P. Gerasimovich was engaged in a sharp conflict with a small group of junior staff led by V. A. Ambartsumian. In addition, the very first arrest of a Leningrad astronomer--namely the arrest of B. V. Numerov--appears to have initiated a cascading series of arrests that spread like an avalanche through the close-knit com- munity of Leningrad astronomers. These two factors led to the devastating ruin of Pulkovo. Completely different circumstances saved GAISh. This was a com- paratively young institute whose junior staff had spent its formative years at GAISh rather than joining the staff from out- side (as had been the case at Pulkovo). Thus the GAISh staff had a greater degree of homogeneity and solidarity, and this, in turn, may explain why the ideological department at GAISh (the "partburo") conducted itself in a manner that differed sharply from that of the "partburo" at Pulkovo. Thanks to these circum- stances not even one arrest occurred at GAISh. The directors of Pulkovo and GAISh came from very similar back- grounds, but the different conditions at Pulkovo and GAISh led to dramatic differences in their fates: execution for B. P. Gerasimovich in 1937 and "only" the persecution of GAISh director V. G. Fesenkov. The persecution of V. G. Fesenkov included his dismissal from the post of chairman of the Astronomical

  20. Transforming Schools.

    ERIC Educational Resources Information Center

    Cookson, Peter W., Jr., Ed.; Schneider, Barbara, Ed.

    The authors in this book address the issues that relate to the crisis in American education and review some of the proposed solutions. To transform education, schools must be examined as social systems that are interrelated with families, communities, and the world of work. Following the introduction, section 1, "Conditions for Educational…

  1. Transformation & Metamorphosis

    ERIC Educational Resources Information Center

    Lott, Debra

    2009-01-01

    The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…

  2. Transforming Curriculum.

    ERIC Educational Resources Information Center

    Cronin, C. H.; Feldman, Phillip

    1994-01-01

    Presents comparisons between the traditional curriculum and the essential learnings curriculum implemented at the Moss Point School District in Moss Point, Mississippi. Describes in detail the curriculum transformation process. Provides insight into the role of technology in the reading/language arts curriculum. (RS)

  3. Transformation Time

    ERIC Educational Resources Information Center

    Berry, John N., III

    2007-01-01

    The program for the march by librarians on America's capital for the American Library Association (ALA) conference is predictably loaded with lobbying, legislation, and DC tours. It also abounds with professional opportunity and reflects the impact of Leslie Burger, one of the most activist ALA presidents in recent history. Her "Transformation"…

  4. Transformative Assessment

    ERIC Educational Resources Information Center

    Popham, W. James

    2008-01-01

    If you're at all skeptical that "formative assessment" is just another buzzword, then here's a book that will change the way you think about the role that formative assessment can play in transforming education into a more powerful and positive process. Renowned expert W. James Popham clarifies what formative assessment really is, why…

  5. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes.

    PubMed

    Thapa, Mamata; Bommakanti, Ananth; Shamsuzzaman, Md; Gregory, Brian; Samsel, Leigh; Zengel, Janice M; Lindahl, Lasse

    2013-12-01

    The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle.

  6. A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.

    PubMed

    Wontakal, Sandeep N; Guo, Xingyi; Smith, Cameron; MacCarthy, Thomas; Bresnick, Emery H; Bergman, Aviv; Snyder, Michael P; Weissman, Sherman M; Zheng, Deyou; Skoultchi, Arthur I

    2012-03-06

    Two mechanisms that play important roles in cell fate decisions are control of a "core transcriptional network" and repression of alternative transcriptional programs by antagonizing transcription factors. Whether these two mechanisms operate together is not known. Here we report that GATA-1, SCL, and Klf1 form an erythroid core transcriptional network by co-occupying >300 genes. Importantly, we find that PU.1, a negative regulator of terminal erythroid differentiation, is a highly integrated component of this network. GATA-1, SCL, and Klf1 act to promote, whereas PU.1 represses expression of many of the core network genes. PU.1 also represses the genes encoding GATA-1, SCL, Klf1, and important GATA-1 cofactors. Conversely, in addition to repressing PU.1 expression, GATA-1 also binds to and represses >100 PU.1 myelo-lymphoid gene targets in erythroid progenitors. Mathematical modeling further supports that this dual mechanism of repressing both the opposing upstream activator and its downstream targets provides a synergistic, robust mechanism for lineage specification. Taken together, these results amalgamate two key developmental principles, namely, regulation of a core transcriptional network and repression of an alternative transcriptional program, thereby enhancing our understanding of the mechanisms that establish cellular identity.

  7. Osterix represses adipogenesis by negatively regulating PPARγ transcriptional activity.

    PubMed

    Han, Younho; Kim, Chae Yul; Cheong, Heesun; Lee, Kwang Youl

    2016-10-18

    Osterix is a novel bone-related transcription factor involved in osteoblast differentiation, and bone maturation. Because a reciprocal relationship exists between adipocyte and osteoblast differentiation of bone marrow derived mesenchymal stem cells, we hypothesized that Osterix might have a role in adipogenesis. Ablation of Osterix enhanced adipogenesis in 3T3-L1 cells, whereas overexpression suppressed this process and inhibited the expression of adipogenic markers including CCAAT/enhancer-binding protein alpha (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). Further studies indicated that Osterix significantly decreased PPARγ-induced transcriptional activity. Using co-immunoprecipitation and GST-pull down analysis, we found that Osterix directly interacts with PPARγ. The ligand-binding domain (LBD) of PPARγ was responsible for this interaction, which was followed by repression of PPARγ-induced transcriptional activity, even in the presence of rosiglitazone. Taken together, we identified the Osterix has an important regulatory role on PPARγ activity, which contributed to the mechanism of adipogenesis.

  8. Sp4-dependent repression of Neurotrophin-3 limits dendritic branching

    PubMed Central

    Ramos, Belén; Valín, Alvaro; Sun, Xinxin; Gill, Grace

    2009-01-01

    Regulation of neuronal gene expression is critical to establish functional connections in the mammalian nervous system. The transcription factor Sp4 regulates dendritic patterning during cerebellar granule neuron development by limiting branching and promoting activity-dependent pruning. Here, we investigate neurotrophin-3 (NT3) as a target gene important for Sp4-dependent dendritic morphogenesis. We found that Sp4 overexpression reduced NT3 promoter activity whereas knockdown of Sp4 increased NT3 promoter activity and mRNA. Moreover, Sp4 bound to the NT3 promoter in vivo, supporting a direct role for Sp4 as a repressor of NT3 expression. Addition of exogenous NT3 promoted dendritic branching in cerebellar granule neurons. Furthermore, sequestering NT3 blocked the continued addition of dendritic branches observed upon Sp4 knockdown, but had no effect on dendrite pruning. These findings demonstrate that, during cerebellar granule neuron development, Sp4-dependent repression of neurotrophin-3 is required to limit dendritic branching and thereby promote acquisition of the mature dendritic pattern. PMID:19555762

  9. MYB89 Transcription Factor Represses Seed Oil Accumulation1[OPEN

    PubMed Central

    Li, Dong; Jin, Changyu; Duan, Shaowei; Zhu, Yana; Qi, Shuanghui; Liu, Kaige; Gao, Chenhao; Ma, Haoli; Liao, Yuncheng

    2017-01-01

    In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:27932421

  10. ZBTB7A suppresses melanoma metastasis by transcriptionally repressing MCAM

    PubMed Central

    Liu, Xue-Song; Genet, Matthew D; Haines, Jenna E; Mehanna, Elie K; Wu, Shaowei; Chen, Hung-I Harry; Chen, Yidong; Qureshi, Abrar A; Han, Jiali; Chen, Xiang; Fisher, David E; Pandolfi, Pier Paolo; Yuan, Zhi-Min

    2015-01-01

    The excessive metastatic propensity of melanoma makes it the most deadly form of skin cancer, yet the underlying mechanism of metastasis remains elusive. Here, mining of cancer genome datasets discovered a frequent loss of chromosome 19p13.3 and associated down-regulation of the zinc finger transcription factor ZBTB7A in metastatic melanoma. Functional assessment of ZBTB7A-regulated genes identified MCAM, which encodes an adhesion protein key to melanoma metastasis. Using an integrated approach, it is demonstrated that ZBTB7A directly binds to the promoter and transcriptionally represses the expression of MCAM, establishing ZBTB7A as a bona fide transcriptional repressor of MCAM. Consistently, down-regulation of ZBTB7A results in marked upregulation of MCAM and enhanced melanoma cell invasion and metastasis. An inverse correlation of ZBTB7A and MCAM expression in association with melanoma metastasis is further validated with data from analysis of human melanoma specimens. Implications Together these results uncover a previously unrecognized role of ZBTB7A in negative regulation of melanoma metastasis and have important clinical implications. PMID:25995384

  11. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    PubMed

    Wang, Guang; Zhong, Shan; Zhang, Shi-yao; Ma, Zheng-lai; Chen, Jian-long; Lu, Wen-hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development.

  12. MarA-mediated transcriptional repression of the rob promoter.

    PubMed

    Schneiders, Thamarai; Levy, Stuart B

    2006-04-14

    The Escherichia coli transcriptional regulator MarA affects functions that include antibiotic resistance, persistence, and survival. MarA functions as an activator or repressor of transcription utilizing similar degenerate DNA sequences (marboxes) with three different binding site configurations with respect to the RNA polymerase-binding sites. We demonstrate that MarA down-regulates rob transcripts both in vivo and in vitro via a MarA-binding site within the rob promoter that is positioned between the -10 and -35 hexamers. As for the hdeA and purA promoters, which are repressed by MarA, the rob marbox is also in the "backward" orientation. Protein-DNA interactions show that SoxS and Rob, like MarA, bind the same marbox in the rob promoter. Electrophoretic mobility shift analyses with a MarA-specific antibody demonstrate that MarA and RNA polymerase form a ternary complex with the rob promoter DNA. Transcription experiments in vitro and potassium permanganate footprinting analysis show that MarA affects the RNA polymerase-mediated closed to open complex formation at the rob promoter.

  13. Repression of the Antioxidant NRF2 Pathway in Premature Aging.

    PubMed

    Kubben, Nard; Zhang, Weiqi; Wang, Lixia; Voss, Ty C; Yang, Jiping; Qu, Jing; Liu, Guang-Hui; Misteli, Tom

    2016-06-02

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare, invariably fatal premature aging disorder. The disease is caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A, leading, through unknown mechanisms, to diverse morphological, epigenetic, and genomic damage and to mesenchymal stem cell (MSC) attrition in vivo. Using a high-throughput siRNA screen, we identify the NRF2 antioxidant pathway as a driver mechanism in HGPS. Progerin sequesters NRF2 and thereby causes its subnuclear mislocalization, resulting in impaired NRF2 transcriptional activity and consequently increased chronic oxidative stress. Suppressed NRF2 activity or increased oxidative stress is sufficient to recapitulate HGPS aging defects, whereas reactivation of NRF2 activity in HGPS patient cells reverses progerin-associated nuclear aging defects and restores in vivo viability of MSCs in an animal model. These findings identify repression of the NRF2-mediated antioxidative response as a key contributor to the premature aging phenotype.

  14. LATS2 Positively Regulates Polycomb Repressive Complex 2

    PubMed Central

    Torigata, Kosuke; Daisuke, Okuzaki; Mukai, Satomi; Hatanaka, Akira; Ohka, Fumiharu; Motooka, Daisuke; Nakamura, Shota; Ohkawa, Yasuyuki; Yabuta, Norikazu; Kondo, Yutaka; Nojima, Hiroshi

    2016-01-01

    LATS2, a pivotal Ser/Thr kinase of the Hippo pathway, plays important roles in many biological processes. LATS2 also function in Hippo-independent pathway, including mitosis, DNA damage response and epithelial to mesenchymal transition. However, the physiological relevance and molecular basis of these LATS2 functions remain obscure. To understand novel functions of LATS2, we constructed a LATS2 knockout HeLa-S3 cell line using TAL-effector nuclease (TALEN). Integrated omics profiling of this cell line revealed that LATS2 knockout caused genome-wide downregulation of Polycomb repressive complex 2 (PRC2) and H3K27me3. Cell-cycle analysis revealed that downregulation of PRC2 was not due to cell cycle aberrations caused by LATS2 knockout. Not LATS1, a homolog of LATS2, but LATS2 bound PRC2 on chromatin and phosphorylated it. LATS2 positively regulates histone methyltransferase activity of PRC2 and their expression at both the mRNA and protein levels. Our findings reveal a novel signal upstream of PRC2, and provide insight into the crucial role of LATS2 in coordinating the epigenome through regulation of PRC2. PMID:27434182

  15. Possible roles for polycomb repressive complex 2 in cereal endosperm

    PubMed Central

    Tonosaki, Kaoru; Kinoshita, Tetsu

    2015-01-01

    The polycomb repressive complex 2 (PRC2) is an evolutionarily conserved multimeric protein complex in both plants and animals. In contrast to animals, plants have evolved a range of different components of PRC2 and form diverse complexes that act in the control of key regulatory genes at many stages of development during the life cycle. A number of studies, particularly in the model species Arabidopsis thaliana, have highlighted the role of PRC2 and of epigenetic controls via parent-of-origin specific gene expression for endosperm development. However, recent research in cereal plants has revealed that although some components of PRC2 show evolutionary conservation with respect to parent-of-origin specific gene expression patterns, the identity of the imprinted genes encoding PRC2 components is not conserved. This disparity may reflect the facts that cereal plant genomes have undergone different patterns of duplication during evolution compared to A. thaliana and that the endosperm development program is not identical in monocots and eudicots. In this context, we focus this review on the expression of imprinted PRC2 genes and their roles in endosperm development in cereals. PMID:25814998

  16. Andrei Sakharov Prize Talk: Supporting Repressed Scientists: Continuing Efforts

    NASA Astrophysics Data System (ADS)

    Birman, Joseph L.

    2010-02-01

    Some years ago, Max Perutz asked ``By What Right Do We Scientists Invoke Human Rights?" My presentation will start with mentioning actions of the international community which relate to this question. Such action as the creation in 1919 of the International Research Council, and continuing on to the present with the UN sanctioned International Council of Scientific Unions [ICSU], and other Committees such as those formed by APS, CCS, NYAS, AAAS which give support to repressed scientists around the world now. My own work has attempted to combine my individual initiatives with work as a member and officer of these groups. Together with like minded colleagues who are deeply affected when colleagues are discharged from their positions, exiled, imprisoned and subject to brutal treatment, often after mock ``trials", we react. On visits in 1968 to conferences in Budapest, and then in 1969 to Moscow, Tallin and Leningrad I became personally and deeply touched by the lives of colleagues who were seriously constrained by living under dictatorships. I could move freely into and out of their countries,speak openly about my work or any other matter. They could not, under penalty of possibly serious punishment. Yet, I felt these people were like my extended family. If my grandparents had not left Eastern Europe for the USA in the late 189Os our situations could have been reversed. A little later in the 197O's, ``refusenik" and ``dissident" scientists in the USSR needed support. Colleagues like Andrei Sakharov, Naum Meiman, Mark Azbel, Yakov Alpert, Yuri Orlov and others were being punished for exercising their rights under the UN sanctioned international protocals on ``Universality of Science and Free Circulation of Scientists". Their own governments [which signed these agreements] ignored the very protections they had supported. On frequent trips to the USSR during the 7Os,and 8Os I also seized the opportunity for ``individual initiative" to help these colleagues. I asked for

  17. Auto-phosphorylation Represses Protein Kinase R Activity

    PubMed Central

    Wang, Die; de Weerd, Nicole A.; Willard, Belinda; Polekhina, Galina; Williams, Bryan R. G.; Sadler, Anthony J.

    2017-01-01

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity. PMID:28281686

  18. Autoregulation of fos: the dyad symmetry element as the major target of repression.

    PubMed Central

    König, H; Ponta, H; Rahmsdorf, U; Büscher, M; Schönthal, A; Rahmsdorf, H J; Herrlich, P

    1989-01-01

    Fos and Jun co-operatively repress the fos promoter. Removal of all putative Fos/Jun binding sites from the fos promoter neither obliterates the repression by Fos/Jun in transient cotransfection experiments in NIH3T3 cells nor the turn-off kinetics of serum-induced fos expression in stably transfected NIH3T3 cells. The dyad symmetry element (DSE) suffices to subject a promoter to this type of repression. However, one of the putative Fos/Jun binding sites (-292 to -299 and thus located immediately adjacent to the DSE), determines the very low level of basal expression. Images PMID:2511006

  19. RF transformer

    DOEpatents

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  20. Transformation plasmonics

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Guenneau, Sébastien; Enoch, Stefan; Huidobro, Paloma A.; Martín-Moreno, Luis; García-Vidal, Francisco J.; Renger, Jan; Quidant, Romain

    2012-07-01

    Surface plasmons polaritons (SPPs) at metal/dielectric interfaces have raised lots of expectations in the on-going quest towards scaling down optical devices. SPP optics offers a powerful and flexible platform for real two-dimensional integrated optics, capable of supporting both light and electrons. Yet, a full exploitation of the features of SPPs is conditioned by an accurate control of their flow. Most efforts have so far focused on the extrapolation of concepts borrowed from guided optics. This strategy has already led to many important breakthroughs but a fully deterministic control of SPP modes remains a challenge. Recently, the field of optics was stimulated by a novel paradigm, transformation optics, which offers the capability to control light flow in any desired fashion. While it has already significantly contributed to the design of metamaterials with unprecedented optical properties, its versatility offers new opportunities towards a fully deterministic control of SPPs and the design of a new class of plasmonic functionalities. Here, we review recent progress in the application of transformation optics to SPPs. We first briefly describe the theoretical formalism of transformation plasmonics, focusing on its specificities over its three-dimensional optical counterpart. Numerical simulations are then used to illustrate its capability to tame SPP flows at a metal interface patterned with a dielectric load. Finally, we review recent experimental implementations leading to unique SPP functionalities at optical frequencies.

  1. Salidroside alleviates paraquat-induced rat acute lung injury by repressing TGF-β1 expression

    PubMed Central

    Zhang, Zhuoyi; Ding, Limin; Wu, Liqun; Xu, Liying; Zheng, Lanzhi; Huang, Xiaomin

    2014-01-01

    Objective: This study was designed to investigate the protective effects of salidroside (SDS) via suppressing the expression of transforming growth factor-β1 (TGF-β1) in rat acute lung injury (ALI) induced by paraquat (PQ) and to explore the potential molecular mechanisms. Methods: A total of 90 male rats (190-210 g) were randomly and evenly divided into 9 groups: control group, PQ groups (4 groups), and PQ + SDS groups (4 groups). The rats in control group were treated with equal volume of saline intraperitoneally. The rats in PQ groups were exposed to PQ solution (20 mg/kg) by gastric gavage for 1, 6, 24, and 72 hours, respectively. The rats in PQ + SDS groups were intraperitoneally injected once with SDS (10 mg/kg) every 12 hours after PQ perfusion. Pulmonary pathological changes were observed by hematoxylin and eosin (HE) staining. The expression of TGF-β1 and the mRNA were evaluated by immunohistochemical (IHC) scoring and real time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR), respectively. Results: SDS alleviated the symptoms of PQ induced ALI. Moreover, SDS reduced the expression of the inflammatory cytokine TGF-β1 including TGF-β1 IHC scores (at each time point from 6 to 72 hours after PQ perfusion) and mRNA level (at each time point from 1 to 72 hours after PQ perfusion) compared with PQ groups (P < 0.05). Conclusion: SDS alleviated the pulmonary symptoms of PQ-induced ALI, at least partially, by repressing inflammatory cell infiltration and the expression of TGF-β1 resulting in delayed lung fibrosis. PMID:25674253

  2. The retinoblastoma family of proteins directly represses transcription in Saccharomyces cerevisiae.

    PubMed

    Arnerić, Milica; Traven, Ana; Staresincić, Lidija; Sopta, Mary

    2002-03-15

    The retinoblastoma family of proteins are key cell cycle regulatory molecules important for the differentiation of various mammalian cell types. The retinoblastoma protein regulates transcription of a variety of genes either by blocking the activation domain of various activators or by active repression via recruitment to appropriate promoters. We show here that the retinoblastoma family of proteins functions as direct transcriptional repressors in a heterologous yeast system when fused to the DNA binding domain of Gal4. Mapping experiments indicate that either the A or the B domain of the pocket region is sufficient for repression in vivo. As is the case in mammalian cells, a phosphorylation site mutant of the retinoblastoma protein is a stronger transcriptional repressor than the wild type protein. We show that transcriptional repression by pRb is dependent on CLN3 in vivo. Furthermore, the yeast histone deacetylase components, RPD3 and SIN3, are required for transcriptional repression.

  3. Something Silent This Way Forms: The Functional Organization of the Repressive Nuclear Compartment

    PubMed Central

    Ritland Politz, Joan C.; Scalzo, David; Groudine, Mark

    2014-01-01

    The repressive compartment of the nucleus is comprised primarily of telomeric and centromeric regions, the silent portion of ribosomal RNA genes, the majority of transposable element repeats, and facultatively repressed genes specific to different cell types. This compartment localizes into three main regions: the peripheral heterochromatin, perinucleolar heterochromatin, and pericentromeric heterochromatin. Both chromatin remodeling proteins and transcription of noncoding RNAs are involved in maintenance of repression in these compartments. Global reorganization of the repressive compartment occurs at each cell division, during early development, and during terminal differentiation. Differential action of chromatin remodeling complexes and boundary element looping activities are involved in mediating these organizational changes. We discuss the evidence that heterochromatin formation and compartmentalization may drive nuclear organization. PMID:23834025

  4. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids.

    PubMed

    Turner, James M A; Mahadevaiah, Shantha K; Ellis, Peter J I; Mitchell, Michael J; Burgoyne, Paul S

    2006-04-01

    Transcriptional silencing of the sex chromosomes during male meiosis (MSCI) is conserved among organisms with limited sex chromosome synapsis, including mammals. Since the 1990s the prevailing view has been that MSCI in mammals is transient, with sex chromosome reactivation occurring as cells exit meiosis. Recently, we found that any chromosome region unsynapsed during pachytene of male and female mouse meiosis is subject to transcriptional silencing (MSUC), and we hypothesized that MSCI is an inevitable consequence of this more general meiotic silencing mechanism. Here, we provide direct evidence that asynapsis does indeed drive MSCI. We also show that a substantial degree of transcriptional repression of the sex chromosomes is retained postmeiotically, and we provide evidence that this postmeiotic repression is a downstream consequence of MSCI/MSUC. While this postmeiotic repression occurs after the loss of MSUC-related proteins at the end of prophase, other histone modifications associated with transcriptional repression have by then become established.

  5. Regulation of Breast Cancer Cell Repression and Differentiation by ErbB2 Ligand.

    DTIC Science & Technology

    1998-03-01

    Overexpression of erbB2 is known to correlate with poor prognosis in breast, ovarian, stomach and lung cancers (31,32,33). However, the clinical significance...Breast Cancer Cell Repression and Differentiation by ErbB2 Ligand PRINCIPAL INVESTIGATOR: C. Richter King, Ph.D. CONTRACTING ORGANIZATION: Georgetown...Final (1 Sep 94 - 28 Feb 98) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Regulation of Breast Cancer Cell Repression and Differentiation by ErbB2 Ligand

  6. Coordinate post-transcriptional repression of Dpp-dependent transcription factors attenuates signal range during development.

    PubMed

    Newton, Fay G; Harris, Robin E; Sutcliffe, Catherine; Ashe, Hilary L

    2015-10-01

    Precise control of the range of signalling molecule action is crucial for correct cell fate patterning during development. For example, Drosophila ovarian germline stem cells (GSCs) are maintained by exquisitely short-range BMP signalling from the niche. In the absence of BMP signalling, one GSC daughter differentiates into a cystoblast (CB) and this fate is stabilised by Brain tumour (Brat) and Pumilio (Pum)-mediated post-transcriptional repression of mRNAs, including that encoding the Dpp transducer, Mad. However, the identity of other repressed mRNAs and the mechanism of post-transcriptional repression are currently unknown. Here, we identify the Medea and schnurri mRNAs, which encode transcriptional regulators required for activation and/or repression of Dpp target genes, as additional Pum-Brat targets, suggesting that tripartite repression of the transducers is deployed to desensitise the CB to Dpp. In addition, we show that repression by Pum-Brat requires recruitment of the CCR4 and Pop2 deadenylases, with knockdown of deadenylases in vivo giving rise to ectopic GSCs. Consistent with this, Pum-Brat repression leads to poly(A) tail shortening and mRNA degradation in tissue culture cells, and we detect a reduced number of Mad and shn transcripts in the CB relative to the GSC based on single molecule mRNA quantitation. Finally, we show generality of the mechanism by demonstrating that Brat also attenuates pMad and Dpp signalling range in the early embryo. Together our data serve as a platform for understanding how post-transcriptional repression restricts interpretation of BMPs and other cell signals in order to allow robust cell fate patterning during development.

  7. Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.

    PubMed

    Santillán, Moisés; Mackey, Michael C

    2004-03-01

    A mathematical model of the lac operon which includes all of the known regulatory mechanisms, including external-glucose-dependent catabolite repression and inducer exclusion, as well as the time delays inherent to transcription and translation, is presented. With this model we investigate the influence of external glucose, by means of catabolite repression and the regulation of lactose uptake, on the bistable behavior of this system.

  8. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.

    PubMed

    Lawhorn, Ingrid E B; Ferreira, Joshua P; Wang, Clifford L

    2014-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) platform has been developed as a general method to direct proteins of interest to gene targets. While the native CRISPR system delivers a nuclease that cleaves and potentially mutates target genes, researchers have recently employed catalytically inactive CRISPR-associated 9 nuclease (dCas9) in order to target and repress genes without DNA cleavage or mutagenesis. With the intent of improving repression efficiency in mammalian cells, researchers have also fused dCas9 with a KRAB repressor domain. Here, we evaluated different genomic sgRNA targeting sites for repression of TP53. The sites spanned a 200-kb distance, which included the promoter, transcript sequence, and regions flanking the endogenous human TP53 gene. We showed that repression up to 86% can be achieved with dCas9 alone (i.e., without use of the KRAB domain) by targeting the complex to sites near the TP53 transcriptional start site. This work demonstrates that efficient transcriptional repression of endogenous human genes can be achieved by the targeted delivery of dCas9. Yet, the efficiency of repression strongly depends on the choice of the sgRNA target site.

  9. Mechanisms and consequences of ATMIN repression in hypoxic conditions: roles for p53 and HIF-1

    PubMed Central

    Leszczynska, Katarzyna B.; Göttgens, Eva-Leonne; Biasoli, Deborah; Olcina, Monica M.; Ient, Jonathan; Anbalagan, Selvakumar; Bernhardt, Stephan; Giaccia, Amato J.; Hammond, Ester M.

    2016-01-01

    Hypoxia-induced replication stress is one of the most physiologically relevant signals known to activate ATM in tumors. Recently, the ATM interactor (ATMIN) was identified as critical for replication stress-induced activation of ATM in response to aphidicolin and hydroxyurea. This suggests an essential role for ATMIN in ATM regulation during hypoxia, which induces replication stress. However, ATMIN also has a role in base excision repair, a process that has been demonstrated to be repressed and less efficient in hypoxic conditions. Here, we demonstrate that ATMIN is dispensable for ATM activation in hypoxia and in contrast to ATM, does not affect cell survival and radiosensitivity in hypoxia. Instead, we show that in hypoxic conditions ATMIN expression is repressed. Repression of ATMIN in hypoxia is mediated by both p53 and HIF-1α in an oxygen dependent manner. The biological consequence of ATMIN repression in hypoxia is decreased expression of the target gene, DYNLL1. An expression signature associated with p53 activity was negatively correlated with DYNLL1 expression in patient samples further supporting the p53 dependent repression of DYNLL1. Together, these data demonstrate multiple mechanisms of ATMIN repression in hypoxia with consequences including impaired BER and down regulation of the ATMIN transcriptional target, DYNLL1. PMID:26875667

  10. Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors.

    PubMed

    Snowden, Andrew W; Zhang, Lei; Urnov, Fyodor; Dent, Carolyn; Jouvenot, Yann; Zhong, Xiaohong; Rebar, Edward J; Jamieson, Andrew C; Zhang, H Steven; Tan, Siyuan; Case, Casey C; Pabo, Carl O; Wolffe, Alan P; Gregory, Philip D

    2003-12-15

    Angiogenic factors are necessary for tumor proliferation and thus are attractive therapeutic targets. In this study, we have used engineered zinc finger protein (ZFP) transcription factors (TFs) to repress expression of vascular endothelial growth factor (VEGF)-A in human cancer cell lines. We create potent transcriptional repressors by fusing a designed ZFP targeted to the VEGF-A promoter with either the ligand-binding domain of thyroid hormone receptor alpha or its viral relative, vErbA. Moreover, this ZFP-vErbA repressor binds its intended target site in vivo and mediates the specific deacetylation of histones H3 and H4 at the targeted promoter, a result that emulates the natural repression mechanism of these domains. The potential therapeutic relevance of ZFP-mediated VEGF-A repression was addressed using the highly tumorigenic glioblastoma cell line U87MG. Despite the aberrant overexpression of VEGF-A in this cell line, engineered ZFP TFs were able to repress the expression of VEGF-A by >20-fold. The VEGF-A levels observed after ZFP TF-mediated repression were comparable to those of a nonangiogenic cancer line (U251MG), suggesting that the degree of repression obtained with the ZFP TF would be sufficient to suppress tumor angiogenesis. Thus, engineered ZFP TFs are shown to be potent regulators of gene expression with therapeutic promise in the treatment of disease.

  11. Independence of Repressive Histone Marks and Chromatin Compaction during Senescent Heterochromatic Layer Formation

    PubMed Central

    Chandra, Tamir; Kirschner, Kristina; Thuret, Jean-Yves; Pope, Benjamin D.; Ryba, Tyrone; Newman, Scott; Ahmed, Kashif; Samarajiwa, Shamith A.; Salama, Rafik; Carroll, Thomas; Stark, Rory; Janky, Rekin’s; Narita, Masako; Xue, Lixiang; Chicas, Agustin; Nũnez, Sabrina; Janknecht, Ralf; Hayashi-Takanaka, Yoko; Wilson, Michael D.; Marshall, Aileen; Odom, Duncan T.; Babu, M. Madan; Bazett-Jones, David P.; Tavaré, Simon; Edwards, Paul A.W.; Lowe, Scott W.; Kimura, Hiroshi; Gilbert, David M.; Narita, Masashi

    2013-01-01

    SUMMARY The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into nonoverlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells, heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of presenescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks, nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events. PMID:22795131

  12. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation.

    PubMed

    Chandra, Tamir; Kirschner, Kristina; Thuret, Jean-Yves; Pope, Benjamin D; Ryba, Tyrone; Newman, Scott; Ahmed, Kashif; Samarajiwa, Shamith A; Salama, Rafik; Carroll, Thomas; Stark, Rory; Janky, Rekin's; Narita, Masako; Xue, Lixiang; Chicas, Agustin; Nũnez, Sabrina; Janknecht, Ralf; Hayashi-Takanaka, Yoko; Wilson, Michael D; Marshall, Aileen; Odom, Duncan T; Babu, M Madan; Bazett-Jones, David P; Tavaré, Simon; Edwards, Paul A W; Lowe, Scott W; Kimura, Hiroshi; Gilbert, David M; Narita, Masashi

    2012-07-27

    The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into nonoverlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells, heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of presenescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks, nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events.

  13. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis.

    PubMed

    Dean Rider, Stanley; Henderson, James T; Jerome, Ronald E; Edenberg, Howard J; Romero-Severson, Jeanne; Ogas, Joe

    2003-07-01

    In angiosperms, germination represents an important developmental transition during which embryonic identity is repressed and vegetative identity emerges. PICKLE (PKL) encodes a CHD3-chromatin-remodeling factor necessary for the repression of expression of LEAFY COTYLEDON1 (LEC1), a central regulator of embryogenesis. A candidate gene approach and microarray analysis identified nine additional genes that exhibit PKL-dependent repression of expression during germination. Transcripts for all three LEAFY COTYLEDON genes, LEC1, LEC2, and FUS3, exhibit PKL-dependent repression, and all three transcripts are elevated more than 100-fold in pkl primary roots that inappropriately express embryonic traits (pickle roots). Three other genes that exhibit PKL-dependent regulation have expression patterns correlated with zygotic or somatic embryogenesis, and one gene encodes a putative Lin-11, Isl-1, MEC-3 (LIM) domain transcriptional regulator that is preferentially expressed in siliques. Genes that exhibit PKL-dependent repression during germination are not necessarily regulated by PKL at other points in development. Our data suggest that PKL selectively regulates a suite of genes during germination to repress embryonic identity. In particular, we propose that PKL acts as a master regulator of the LEAFY COTYLEDON genes, and that joint derepression of these genes is likely to contribute substantially to expression of embryonic identity in pkl seedlings.

  14. Inducible Repression of Nuclear-Encoded Subunits of the Cytochrome b6f Complex in Tobacco Reveals an Extraordinarily Long Lifetime of the Complex1[W][OPEN

    PubMed Central

    Hojka, Marta; Thiele, Wolfram; Tóth, Szilvia Z.; Lein, Wolfgang; Bock, Ralph; Schöttler, Mark Aurel

    2014-01-01

    The biogenesis of the cytochrome b6f complex in tobacco (Nicotiana tabacum) seems to be restricted to young leaves, suggesting a high lifetime of the complex. To directly determine its lifetime, we employed an ethanol-inducible RNA interference (RNAi) approach targeted against the essential nuclear-encoded Rieske protein (PetC) and the small M subunit (PetM), whose function in higher plants is unknown. Young expanding leaves of both PetM and PetC RNAi transformants bleached rapidly and developed necroses, while mature leaves, whose photosynthetic apparatus was fully assembled before RNAi induction, stayed green. In line with these phenotypes, cytochrome b6f complex accumulation and linear electron transport capacity were strongly repressed in young leaves of both RNAi transformants, showing that the M subunit is as essential for cytochrome b6f complex accumulation as the Rieske protein. In mature leaves, all photosynthetic parameters were indistinguishable from the wild type even after 14 d of induction. As RNAi repression of PetM and PetC was highly efficient in both young and mature leaves, these data indicate a lifetime of the cytochrome b6f complex of at least 1 week. The switch-off of cytochrome b6f complex biogenesis in mature leaves may represent part of the first dedicated step of the leaf senescence program. PMID:24963068

  15. Hamlet's Transformation.

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    1997-12-01

    William Shakespeare's Hamlet has much evidence to suggest that the Bard was aware of the cosmological models of his time, specifically the geocentric bounded Ptolemaic and Tychonic models, and the infinite Diggesian. Moreover, Shakespeare describes how the Ptolemaic model is to be transformed to the Diggesian. Hamlet's "transformation" is the reason that Claudius, who personifies the Ptolemaic model, summons Rosencrantz and Guildenstern, who personify the Tychonic. Pantometria, written by Leonard Digges and his son Thomas in 1571, contains the first technical use of the word "transformation." At age thirty, Thomas Digges went on to propose his Perfit Description, as alluded to in Act Five where Hamlet's age is given as thirty. In Act Five as well, the words "bore" and "arms" refer to Thomas' vocation as muster-master and his scientific interest in ballistics. England's leading astronomer was also the father of the poet whose encomium introduced the First Folio of 1623. His oldest child Dudley became a member of the Virginia Company and facilitated the writing of The Tempest. Taken as a whole, such manifold connections to Thomas Digges support Hotson's contention that Shakespeare knew the Digges family. Rosencrantz and Guildenstern in Hamlet bear Danish names because they personify the Danish model, while the king's name is latinized like that of Claudius Ptolemaeus. The reason Shakespeare anglicized "Amleth" to "Hamlet" was because he saw a parallel between Book Three of Saxo Grammaticus and the eventual triumph of the Diggesian model. But Shakespeare eschewed Book Four, creating this particular ending from an infinity of other possibilities because it "suited his purpose," viz. to celebrate the concept of a boundless universe of stars like the Sun.

  16. Rotary Transformer

    NASA Technical Reports Server (NTRS)

    McLyman, Colonel Wm. T.

    1996-01-01

    None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.

  17. TRANSFORMER APPARATUS

    DOEpatents

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  18. Exhumation research concerning the victims of political repressions in 1945-1956 in Poland: A new direction in forensic medicine.

    PubMed

    Szleszkowski, Lukasz; Thannhäuser, Agata; Szwagrzyk, Krzysztof; Konczewski, Paweł; Kawecki, Jerzy; Swiątek, Barbara

    2014-02-01

    In 2011 in Wroclaw (Poland), the bodies of 223 prisoners were exhumed, including the victims of political repressions and prosecutions in the period 1949-1954, during which people fighting for the independence of Poland were executed and buried in unidentified graves in various graveyards. It was the first exhumation conducted in Poland on such a large scale. The aim of the present publication is to describe the new direction in forensic medicine employed in these exhumations, which resulted from the new opportunities created by the opening of the state archives after the political transformation of 1989. The authors describe the difficulties they encountered during their exploration of prisoners' burial grounds. The graveyards included in the investigation bear the marks of an intentional policy of confusion and secret burial methods. First, significant disorder in the logical (based on time of death) sequence of burials was observed. This made identification difficult. A substantial time lapse between death and burial in each case, along with the unavailability of comparative data, limited the use of identification methods widely employed in forensic medicine. For this reason, initial analysis had to be based on observations and confirmations made by forensic medicine about the sequence of burials as compared to cemetery documentation. Situations such as this clearly call for the cooperation of historians, archaeologists, anthropologists and forensic pathologists. Political transformations in Eastern Europe in the 1990s gave rise to hopes of exchanging experiences in this type of research as conducted in other countries of the former Eastern Bloc.

  19. Basic Pentacysteine Proteins Repress Abscisic Acid Insensitive4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development.

    PubMed

    Mu, Ying; Zou, Meijuan; Sun, Xuwu; He, Baoye; Xu, Xiumei; Liu, Yini; Zhang, Lixin; Chi, Wei

    2017-01-30

    Plant transcription factors generally act in complex regulatory networks that function at multiple levels to govern plant developmental programs. Dissection of the interconnections among different classes of transcription factors can elucidate these regulatory networks and thus improve our understanding of plant development. Here, we investigated the molecular and functional relationships of the transcription factors ABSCISIC ACID INSENSITIVE 4 (ABI4) and members of the BASIC PENTACYSTEINE (BPC) family in lateral root (LR) development of Arabidopsis thaliana Genetic analysis showed that BPCs promote LR development by repressing ABI4 expression. Molecular analysis showed that BPCs bind to the ABI4 promoter and repress ABI4 transcription in roots. BPCs directly recruit the Polycomb Repressive Complex 2 (PRC2) to the ABI4 locus and epigenetically repress ABI4 expression by catalyzing the trimethylation of histone H3 at lysine 27. In addition, BPCs and ABI4 coordinate their activities to fine-tune the levels of PIN-FORMED1, a component of the auxin signaling pathway, and thus modulate LR formation. These results establish a functional relationship between two universal and multiple-role transcription factors and provide insight into the mechanisms of the transcriptional regulatory networks that affect Arabidopsis organogenesis.

  20. Activator control of nucleosome occupancy in activation and repression of transcription.

    PubMed

    Bryant, Gene O; Prabhu, Vidya; Floer, Monique; Wang, Xin; Spagna, Dan; Schreiber, David; Ptashne, Mark

    2008-12-23

    The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose) and repression (by glucose) of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome "remodeler" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the action of SWI

  1. PTH and Vitamin D Repress DMP1 in Cementoblasts

    PubMed Central

    Wang, L.; Tran, A.B.; Nociti, F.H.; Thumbigere-Math, V.; Foster, B.L.; Krieger, C.C.; Kantovitz, K.R.; Novince, C.M.; Koh, A.J.; McCauley, L.K.; Somerman, M.J.

    2015-01-01

    A complex feedback mechanism between parathyroid hormone (PTH), 1,25(OH)2D3 (1,25D), and fibroblast growth factor 23 (FGF-23) maintains mineral homeostasis, in part by regulating calcium and phosphate absorption/reabsorption. Previously, we showed that 1,25D regulates mineral homeostasis by repressing dentin matrix protein 1 (DMP1) via the vitamin D receptor pathway. Similar to 1,25D, PTH may modulate DMP1, but the underlying mechanism remains unknown. Immortalized murine cementoblasts (OCCM.30), similar to osteoblasts and known to express DMP1, were treated with PTH (1–34). Real-time quantitative polymerase chain reaction (PCR) and Western blot revealed that PTH decreased DMP1 gene transcription (85%) and protein expression (30%), respectively. PTH mediated the downregulation of DMP1 via the cAMP/protein kinase A (PKA) pathway. Immunohistochemistry confirmed the decreased localization of DMP1 in vivo in cellular cementum and alveolar bone of mice treated with a single dose (50 µg/kg) of PTH (1–34). RNA-seq was employed to further identify patterns of gene expression shared by PTH and 1,25D in regulating DMP1, as well as other factors involved in mineral homeostasis. PTH and 1,25D mutually upregulated 36 genes and mutually downregulated 27 genes by ≥2-fold expression (P ≤ 0.05). Many identified genes were linked with the regulation of bone/tooth homeostasis, cell growth and differentiation, calcium signaling, and DMP1 transcription. Validation of RNA-seq results via PCR array confirmed a similar gene expression pattern in response to PTH and 1,25D treatment. Collectively, these results suggest that PTH and 1,25D share complementary effects in maintaining mineral homeostasis by mutual regulation of genes/proteins associated with calcium and phosphate metabolism while also exerting distinct roles on factors modulating mineral metabolism. Furthermore, PTH may modulate phosphate homeostasis by downregulating DMP1 expression via the cAMP/PKA pathway. Targeting

  2. Direct activation and anti-repression functions of GAL4-VP16 use distinct molecular mechanisms.

    PubMed Central

    Lyons, J G; Chambon, P

    1995-01-01

    In order to determine whether the molecular mechanisms used for direct activation by GAL4-VP16 are the same as those used for anti-repression, we have employed monoclonal antibodies specific for the VP16 activation domain. In the absence of added repressors, GAL4-VP16 was able to stimulate transcription from a template containing GAL4-binding sites, and the antibodies raised against the VP16 activation domain failed to inhibit this direct activation. GAL4-VP16 also was able to prevent histone H1-mediated repression by a mechanism that was strongly dependent on the presence of specific GAL4-binding elements in the promoter. However, in contrast to the assays conducted in the absence of repressors, the antibodies were strong inhibitors of GAL4-VP16-activated transcription in the presence of histone H1. Thus the binding of the antibodies distinguished between the direct activation and anti-repression functions of GAL4-VP16, indicating that these functions operate through distinct molecular mechanisms. The anti-repression-specific mechanism that is inhibitable by the antibodies acted at an early stage of preinitiation complex formation. Deletions of individual subdomains of the VP16 activation domain demonstrated that there was not a discrete subdomain responsible for the anti-repression function of GAL4-VP16. Thus, the inhibitory effect of the antibodies appeared to be due to the location of the epitope within the activator protein rather than to some inherent biochemical property of that region of the protein that is required specifically for anti-repression. The inhibitory effect of the antibodies also ruled out the possibility that steric exclusion of repressor proteins from the promoter was the sole means of anti-repression by the transcriptional activator. Images Figure 1 Figure 2 PMID:8554536

  3. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.

    PubMed

    del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Linares, Daniel M; Fernández, Maria; Martín, Maria Cruz; Alvarez, Miguel A

    2015-06-01

    Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains.

  4. Molecular functions of the TLE tetramerization domain in Wnt target gene repression

    PubMed Central

    Chodaparambil, Jayanth V; Pate, Kira T; Hepler, Margretta R D; Tsai, Becky P; Muthurajan, Uma M; Luger, Karolin; Waterman, Marian L; Weis, William I

    2014-01-01

    Wnt signaling activates target genes by promoting association of the co-activator β-catenin with TCF/LEF transcription factors. In the absence of β-catenin, target genes are silenced by TCF-mediated recruitment of TLE/Groucho proteins, but the molecular basis for TLE/TCF-dependent repression is unclear. We describe the unusual three-dimensional structure of the N-terminal Q domain of TLE1 that mediates tetramerization and binds to TCFs. We find that differences in repression potential of TCF/LEFs correlates with their affinities for TLE-Q, rather than direct competition between β-catenin and TLE for TCFs as part of an activation–repression switch. Structure-based mutation of the TLE tetramer interface shows that dimers cannot mediate repression, even though they bind to TCFs with the same affinity as tetramers. Furthermore, the TLE Q tetramer, not the dimer, binds to chromatin, specifically to K20 methylated histone H4 tails, suggesting that the TCF/TLE tetramer complex promotes structural transitions of chromatin to mediate repression. PMID:24596249

  5. Splicing repression allows the gradual emergence of new Alu-exons in primate evolution

    PubMed Central

    Attig, Jan; Ruiz de los Mozos, Igor; Haberman, Nejc; Wang, Zhen; Emmett, Warren; Zarnack, Kathi; König, Julian; Ule, Jernej

    2016-01-01

    Alu elements are retrotransposons that frequently form new exons during primate evolution. Here, we assess the interplay of splicing repression by hnRNPC and nonsense-mediated mRNA decay (NMD) in the quality control and evolution of new Alu-exons. We identify 3100 new Alu-exons and show that NMD more efficiently recognises transcripts with Alu-exons compared to other exons with premature termination codons. However, some Alu-exons escape NMD, especially when an adjacent intron is retained, highlighting the importance of concerted repression by splicing and NMD. We show that evolutionary progression of 3' splice sites is coupled with longer repressive uridine tracts. Once the 3' splice site at ancient Alu-exons reaches a stable phase, splicing repression by hnRNPC decreases, but the exons generally remain sensitive to NMD. We conclude that repressive motifs are strongest next to cryptic exons and that gradual weakening of these motifs contributes to the evolutionary emergence of new alternative exons. DOI: http://dx.doi.org/10.7554/eLife.19545.001 PMID:27861119

  6. Wnt-Mediated Repression via Bipartite DNA Recognition by TCF in the Drosophila Hematopoietic System

    PubMed Central

    Zhang, Chen U.; Blauwkamp, Timothy A.; Burby, Peter E.; Cadigan, Ken M.

    2014-01-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA. PMID:25144371

  7. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system.

    PubMed

    Zhang, Chen U; Blauwkamp, Timothy A; Burby, Peter E; Cadigan, Ken M

    2014-08-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA.

  8. Plant stem cell maintenance involves direct transcriptional repression of differentiation program.

    PubMed

    Yadav, Ram Kishor; Perales, Mariano; Gruel, Jérémy; Ohno, Carolyn; Heisler, Marcus; Girke, Thomas; Jönsson, Henrik; Reddy, G Venugopala

    2013-01-01

    In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.

  9. Induction Specificity and Catabolite Repression of the Early Enzymes in Camphor Degradation by Pseudomonas putida

    PubMed Central

    Hartline, Richard A.; Gunsalus, I. C.

    1971-01-01

    The ability of bornane and substituted bornanes to induce the early enzymes for d(+)-camphor degradation and control of these enzymes by catabolite repression were studied in a strain of a Pseudomonas putida. Bornane and 20 substituted bornane compounds showed induction. Of these 21 compounds, bornane and 8 of the substituted bornanes provided induction without supporting growth. Oxygen, but not nitrogen, enhanced the inductive potency of the unsubstituted bornane ring. All bornanedione isomers caused induction, and those with substituents on each of the three consecutive carbon atoms, including the methyl group at the bridgehead carbon, showed induction without supporting growth. Although it was not possible to obtain experimental data for a case of absolute gratuitous induction by compounds not supporting growth, indirect evidence in support of gratuitous induction is presented. It is proposed that the ability of P. putida to tolerate the unusually high degree of possible gratuitous induction observed for camphor catabolism may be related to the infrequent occurrence of bicyclic ring structures in nature. Survival of an organism with a broad specificity for gratuitous induction is discussed. Glucose and succinate, but not glutamate, produced catabolite repression of the early camphor-degrading enzymes. Pathway enzymes differ in their degree of sensitivity to succinate-provoked catabolite repression. The ability of a compound to produce catabolite repression is not, however, directly related to the duration of the lag period (diauxic lag) between growth on camphor and growth on the repressing compound. PMID:5573731

  10. XIST repression in the absence of DNMT1 and DNMT3B.

    PubMed

    Vasques, Luciana R; Stabellini, Raquel; Xue, Fei; Tian, X Cindy; Soukoyan, Marina; Pereira, Lygia V

    2005-01-01

    X chromosome inactivation (XCI) in human and mice involves XIST/Xist gene expression from the inactive X (Xi) and repression from the active X (Xa). Repression of the XIST/Xist gene on the Xa has been associated with methylation of its 5' region. In mice, Dnmt1 has been shown to be involved in the methylation and transcriptional repression of Xist on Xa. We examined maintenance of XIST gene repression on Xa in HCT116 cell lines knockout for either DNMT1 or DNMT3B and for DNMT1 and DNMT3B simultaneously. Methylation of the XIST promoter and XIST transcriptional repression is sustained in DNMT1-, DNMT3B- and DNMT1/DNMT3B knockout cells. Despite global DNA demethylation, the double knockout cells present only partial demethylation of the XIST promoter, which is not sufficient for gene reactivation. In contrast, global DNA demethylation with 5-aza-2'-deoxycytidine leads to XIST expression. Therefore, in these human cells maintenance of XIST methylation is controlled differently than global genomic methylation and in the absence of both DNMT1 and DNMT3B.

  11. The MOX promoter in Hansenula polymorpha is ultrasensitive to glucose-mediated carbon catabolite repression.

    PubMed

    Dusny, Christian; Schmid, Andreas

    2016-09-01

    Redesigning biology towards specific purposes requires a functional understanding of genetic circuits. We present a quantitative in-depth study on the regulation of the methanol-specific MOX promoter system (PMOX) at the single-cell level. We investigated PMOX regulation in the methylotrophic yeast Hansenula (Ogataea) polymorpha with respect to glucose-mediated carbon catabolite repression. This promoter system is particularly delicate as the glucose as carbon and energy source in turn represses MOX promoter activity. Decoupling single cells from population activity revealed a hitherto underrated ultrasensitivity of the MOX promoter to glucose repression. Environmental control with single-cell technologies enabled quantitative insights into the balance between activation and repression of PMOX with respect to extracellular glucose concentrations. While population-based studies suggested full MOX promoter derepression at extracellular glucose concentrations of ∼1 g L(-1), we showed that glucose-mediated catabolite repression already occurs at concentrations as low as 5 × 10(-4) g L(-1) These findings demonstrate the importance of uncoupling single cells from populations for understanding the mechanisms of promoter regulation in a quantitative manner.

  12. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α

    PubMed Central

    Zhu, Τao; Liang, Chen; Li, Dongdong; Tian, Miaomiao; Liu, Sanxiong; Gao, Guanjun; Guan, Ji-Song

    2016-01-01

    Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning. PMID:27229316

  13. Active Repression of Methylated Genes by the Chromosomal Protein MBD1

    PubMed Central

    Ng, Huck-Hui; Jeppesen, Peter; Bird, Adrian

    2000-01-01

    MBD1 belongs to a family of mammalian proteins that share a methyl-CpG binding domain. Previous work has shown that MBD1 binds to methylated sites in vivo and in vitro and can repress transcription from methylated templates in transcription extracts and in cultured cells. In the present study we established by several experimental criteria that, contrary to a previous report, MBD1 is not a component of the MeCP1 repressor complex. We identified a powerful transcriptional repression domain (TRD) at the C terminus of MBD1 that can actively repress transcription at a distance. Methylation-dependent repression in vivo depends on the presence of both the TRD and the methyl-CpG binding domain. The mechanism is likely to involve deacetylation, since the deacetylase inhibitor trichostatin A can overcome MBD1-mediated repression. Accordingly, we found that endogenous MBD1 is particularly concentrated at sites of centromeric heterochromatin, where acetylated histone H4 is deficient. Unlike MBD2 and MeCP2, MBD1 is not depleted by antibodies to the histone deacetylase HDAC1. Thus, the deacetylase-dependent pathway by which MBD1 actively silences methylated genes is likely to be different from that utilized by the methylation-dependent repressors MeCP1 and MeCP2. PMID:10648624

  14. TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1.

    PubMed

    Oh, Eunkyoo; Zhu, Jia-Ying; Ryu, Hojin; Hwang, Ildoo; Wang, Zhi-Yong

    2014-06-18

    Brassinosteroid (BR) regulates plant development by activating the transcription factor brassinazole resistant 1 (BZR1), which activates and represses different target genes to switch cellular programmes. The mechanisms that determine BZR1's transcriptional activities remain largely unknown. Here we show that BZR1 represses target genes by recruiting the Groucho/TUP1-like transcriptional corepressor TOPLESS (TPL). Specific deletion or mutation of an evolutionarily conserved ERF-associated amphiphilic repression (EAR) motif at the carboxy terminus abolishes BZR1's abilities to regulate gene expression and cell elongation, but these defects are rescued by TPL fusion to the EAR motif-mutated BZR1. The EAR motif in BZR1 mediates recruitment of TPL to BZR1-repressed promoters. A triple tpl mutant (tpl;tpr1;tpr4) shows reduced BR sensitivity and suppresses the gain-of-function bzr1-1D mutant phenotype. BR repression of gene expression also requires histone deacetylases that interact with TPL. Our study demonstrates key roles of the EAR motif and TPL in BR regulation of gene expression and plant growth.

  15. Steady-state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in Saccharomyces cerevisiae

    PubMed Central

    Verma, Malkhey; Bhat, Paike J.; Venkatesh, K. V.

    2005-01-01

    Glucose repression is a global transcriptional regulatory mechanism commonly observed in micro-organisms for the repression of enzymes that are not essential for glucose metabolism. In Saccharomyces cerevisiae, Mig1p, a homologue of Wilms' tumour protein, is a global repressor protein dedicated to glucose repression. Mig1p represses genes either by binding directly to the upstream repression sequence of structural genes or by indirectly repressing a transcriptional activator, such as Gal4p. In addition, some genes are repressed by both of the above mechanisms. This raises a fundamental question regarding the physiological relevance of the varied mechanisms of repression that exist involving Mig1p. We address this issue by comparing two well-known glucose-repression systems, that is, SUC2 and GAL gene expression systems, which encompass all the above three mechanisms. We demonstrate using steady-state analysis that these mechanisms lead to a hierarchical glucose repression profile of different family of genes. This switch over from one carbon source to another is well-calibrated as a function of glucose concentration through this hierarchical transcriptional response. The mechanisms prevailing in this repression system can achieve amplification and sensitivity, as observed in the well-characterized MAPK (mitogen-activated protein kinase) cascade system, albeit through a different structure. A critical feature of repression predicted by our steady-state model for the mutant strain of S. cerevisiae lacking Gal80p agrees well with the data reported here as well as that available in the literature. PMID:15698380

  16. Deletion of the N-terminal region of the AREA protein is correlated with a derepressed phenotype with respect to nitrogen metabolite repression.

    PubMed Central

    Lamb, H K; Dodds, A L; Swatman, D R; Cairns, E; Hawkins, A R

    1997-01-01

    The entire areA gene and a truncated version lacking the sequence encoding the N-terminal 389 amino acids were expressed from the qutE promoter and terminator in an Aspergillus nidulans strain with the endogenous areA gene deleted. This expression system was used to decouple the effects of transcription regulation and mRNA stability mediated by the native promoter and terminator from any posttranslational modulation of AREA activity. Both the full-length AREA protein and the truncated form were able to function in the deletion strain, conferring the ability to use alternate nitrogen sources. Transformants containing the entire areA gene had a repressible phenotype with respect to nitrogen metabolite repression, whereas those containing the truncated form of the areA gene had a derepressed phenotype. The truncated areA gene was expressed in an A. nidulans strain containing a normally regulated wild-type areA gene, and transformants displayed a quinate-inducible nitrogen metabolite derepressed phenotype. Northern blot analysis of transformed strains showed that areA-specific mRNAs of the expected sizes were being produced. The truncated AREA protein was overproduced in Escherichia coli as a fusion protein and purified to homogeneity by a single-step immobilized metal affinity chromatography, and the purified protein was shown to bind specifically to the niaD promoter. Revised sequences of the 5' region of the areA gene and the entire meaB gene are reported. PMID:9352912

  17. Prostate tumorigenesis induced by PTEN deletion involves estrogen receptor β repression.

    PubMed

    Mak, Paul; Li, Jiarong; Samanta, Sanjoy; Chang, Cheng; Jerry, D Joseph; Davis, Roger J; Leav, Irwin; Mercurio, Arthur M

    2015-03-31

    The role of ERβ in prostate cancer is unclear, although loss of ERβ is associated with aggressive disease. Given that mice deficient in ERβ do not develop prostate cancer, we hypothesized that ERβ loss occurs as a consequence of tumorigenesis caused by other oncogenic mechanisms and that its loss is necessary for tumorigenesis. In support of this hypothesis, we found that ERβ is targeted for repression in prostate cancer caused by PTEN deletion and that loss of ERβ is important for tumor formation. ERβ transcription is repressed by BMI-1, which is induced by PTEN deletion and important for prostate tumorigenesis. This finding provides a mechanism for how ERβ expression is regulated in prostate cancer. Repression of ERβ contributes to tumorigenesis because it enables HIF-1/VEGF signaling that sustains BMI-1 expression. These data reveal a positive feedback loop that is activated in response to PTEN loss and sustains BMI-1.

  18. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD.

    PubMed

    Ling, Jonathan P; Pletnikova, Olga; Troncoso, Juan C; Wong, Philip C

    2015-08-07

    Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43-deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.

  19. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition

    PubMed Central

    Lizama, Carlos O.; Hawkins, John S.; Schmitt, Christopher E.; Bos, Frank L.; Zape, Joan P.; Cautivo, Kelly M.; Borges Pinto, Hugo; Rhyner, Alexander M.; Yu, Hui; Donohoe, Mary E.; Wythe, Joshua D.; Zovein, Ann C.

    2015-01-01

    Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output. PMID:26204127

  20. Altered translational repression of an RNA-binding protein, Elav by AOA2-causative Senataxin mutation.

    PubMed

    Choudhury, Saumitra Dey; Vs, Ancy; Mushtaq, Zeeshan; Kumar, Vimlesh

    2017-05-01

    Mutations in Senataxin (SETX) gene causes two types of neurological disorders, Amyotrophic Lateral Sclerosis (ALS4) and Ataxia with Oculomotor Apraxia type 2 (AOA2). Recent studies in cultured cells suggest that SETX plays a crucial role at the interface of transcription and the DNA damage response. Whether SETX can alter translational of specific RNA is not known. In this study, we report that expressing AOA2-causative truncated form of human SETX in Drosophila neurons alters the development of neuromuscular junction (NMJ) synapses. Interestingly, we found that expressing this truncated form of SETX in Drosophila muscles resulted in an alteration of translational repression of an RNA-binding protein, Embryonic Lethal Abnormal Vision (Elav). Elav is transcribed in all tissues but remains translationally repressed except in neurons. Thus, our data suggest that an altered repression profile of RNA by SETX mutants could be one of the mechanisms underlying ALS4 or AOA2 pathogenesis.

  1. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    PubMed Central

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam; Schulz, Sarah; Daviter, Tina; Smollett, Katherine; Mahieu, Emilie; Erdmann, Susanne; Tinnefeld, Philip; Garrett, Roger; Grohmann, Dina; Rappsilber, Juri; Werner, Finn

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus two-tailed virus (ATV) forms a high-affinity complex with RNAP by binding inside the DNA-binding channel where it locks the flexible RNAP clamp in one position. This counteracts the formation of transcription pre-initiation complexes in vitro and represses abortive and productive transcription initiation, as well as elongation. Both host and viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP). PMID:27882920

  2. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition.

    PubMed

    Lizama, Carlos O; Hawkins, John S; Schmitt, Christopher E; Bos, Frank L; Zape, Joan P; Cautivo, Kelly M; Borges Pinto, Hugo; Rhyner, Alexander M; Yu, Hui; Donohoe, Mary E; Wythe, Joshua D; Zovein, Ann C

    2015-07-23

    Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output.

  3. Transforming giants.

    PubMed

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  4. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval–adult metamorphosis

    PubMed Central

    Kayukawa, Takumi; Jouraku, Akiya; Ito, Yuka; Shinoda, Tetsuro

    2017-01-01

    Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval–pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93. Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis. PMID:28096379

  5. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression

    PubMed Central

    Saha, Tusar T.; Shin, Sang Woon; Dou, Wei; Roy, Sourav; Zhao, Bo; Hou, Yuan; Wang, Xue-Li; Zou, Zhen; Girke, Thomas; Raikhel, Alexander S.

    2016-01-01

    The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box–like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met. PMID:26744312

  6. Saccharomyces cerevisiae mutants resistant to catabolite repression: use in cheese whey hydrolysate fermentation

    SciTech Connect

    Bailey, R.B.; Benitez, T.; Woodward, A.

    1982-09-01

    Mutants of an industrial-type strain of Saccharomyces cerevisiae which rapidly and completely fermented equimolar mixtures of glucose and galactose to ethanol were isolated. These mutants fell into two general phenotypic classes based upon their fermentation kinetics and enzyme induction patterns. One class apparently specifically effects the utilization of galactose and allows sequential utilization of first glucose and then galactose in an anaerobic fermentation. The second class of mutants was resistant to general catabolite repression and produced maltase, invertase, and galactokinase in the presence of repressive levels of glucose. These mutants were completely dominant and appear to represent an as yet undescribed class of mutant. (Refs. 23).

  7. Effects of Glucose Repression on the Transmission and Recombination of Mitochondrial Genes in Yeast (SACCHAROMYCES CEREVISIAE)

    PubMed Central

    Birky, C. William

    1975-01-01

    Matings of a number of Saccharomyces cerevisiae stocks give different output ratios of mitochondrial genotypes depending on whether the cells are glucose-repressed or derepressed. The effects of glucose repression are independent of cellular mating type and mitochondrial genotype, and take place at least in part after zygotes are formed. An explanation is proposed in terms of changes in the relative numbers of mitochondrial DNA molecules contributed by the a and α parents, modified by selective replication or destruction of molecules inside the zygote. PMID:1104405

  8. Contribution of glucose kinase to glucose repression of xylose utilization in Bacillus megaterium.

    PubMed Central

    Späth, C; Kraus, A; Hillen, W

    1997-01-01

    The glk gene from Bacillus megaterium, which encodes glucose kinase, was isolated and analyzed. Disruption by a transcriptional glk-luxAB fusion indicated that glk is the only glucose kinase gene in that strain but did not affect growth of that mutant on glucose. Determination of luciferase activity under various growth conditions revealed constitutive transcription of glk. Expression of a xylA-lacZ fusion was repressed by glucose in the strain with the glk disruption about twofold less efficiently than in the wild type. The potential contribution of glk expression to glucose repression is discussed. PMID:9393732

  9. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger.

    PubMed Central

    Kudla, B; Caddick, M X; Langdon, T; Martinez-Rossi, N M; Bennett, C F; Sibley, S; Davies, R W; Arst, H N

    1990-01-01

    The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans has been sequenced and its transcript mapped and orientated. A single ORF can encode a protein of 719 amino acids. A 52 amino acid region including a putative 'zinc finger' strongly resembles putative DNA binding regions of the major regulatory protein of erythroid cells. The derived protein sequence also contains a highly acidic region possibly involved in gene activation and 22 copies of the motif S(T)PXX, abundant in DNA binding proteins. Analysis of chromosomal rearrangements and transformation with deletion clones identified 342 N-terminal and 124 C-terminal residues as inessential and localized a C-terminal region required for nitrogen metabolite repressibility. A -1 frameshift eliminating the inessential 122 C-terminal amino acids is a surprising loss-of-function mutation. Extraordinary basicity of the replacement C terminus might explain its phenotype. Mutant sequencing also identified a polypeptide chain termination and several missense mutations, but most interesting are sequence changes associated with specificity mutations. A mutation elevating expression of some structural genes under areA control whilst reducing or not affecting expression of others is a leucine to valine change in the zinc finger loop. It reverts to a partly reciprocal phenotype by replacing the mutant valine by methionine. Images Fig.2 Fig.4 Fig.5 Fig. 8. Fig. 9. PMID:1970293

  10. Heterologous Protein Secretion Directed by a Repressible Acid Phosphatase System of Kluyveromyces lactis: Characterization of Upstream Region-Activating Sequences in the KIPHO5 Gene

    PubMed Central

    Fermiñán, Encarnación; Domínguez, Angel

    1998-01-01

    Transcription of the repressible acid phosphatase gene (KIPHO5) in Kluyveromyces lactis is strongly regulated in response to the level of inorganic phosphate (Pi) present in the growth medium. We have begun a study of the promoter region of this gene in order to identify sequences involved in the phosphate control of KIPHO5 expression and to design new expression-secretion systems in K. lactis. Deletion analysis and directed mutagenesis revealed two major identical upstream activating sequences (UAS) CACGTG at positions −430 (UAS1) and −192 (UAS2) relative to the ATG initiation codon. These sequences are identical to those described for Saccharomyces cerevisiae for the binding of Pho4p. Deletion or directed mutagenesis of either one or both UAS reduce KIPHO5 expression by the same amount (approximately 80%). When fused to the coding region of trout growth hormone cDNA (tGH-II), the promoter and signal peptide-encoding region of the phosphate-repressible KIPHO5 gene drives the expression of this gene and the secretion of the tGHII protein. Synthesis of tGHIIp in K. lactis transformants carrying this construct was found to be regulated by the Pi present in the medium; derepression of heterologous protein expression can therefore be achieved by lowering the Pi concentration. PMID:9647807

  11. Pro Isomerization in MLL1 PHD3-Bromo Cassette Connects H3K4me Readout to CyP33 and HDAC-Mediated Repression

    SciTech Connect

    Wang, Zhanxin; Song, Jikui; Milne, Thomas A.; Wang, Gang G.; Li, Haitao; Allis, C. David; Patel, Dinshaw J.

    2010-09-13

    The MLL1 gene is a frequent target for recurrent chromosomal translocations, resulting in transformation of hematopoietic precursors into leukemia stem cells. Here, we report on structure-function studies that elucidate molecular events in MLL1 binding of histone H3K4me3/2 marks and recruitment of the cyclophilin CyP33. CyP33 contains a PPIase and a RRM domain and regulates MLL1 function through HDAC recruitment. We find that the PPIase domain of CyP33 regulates the conformation of MLL1 through proline isomerization within the PHD3-Bromo linker, thereby disrupting the PHD3-Bromo interface and facilitating binding of the MLL1-PHD3 domain to the CyP33-RRM domain. H3K4me3/2 and CyP33-RRM target different surfaces of MLL1-PHD3 and can bind simultaneously to form a ternary complex. Furthermore, the MLL1-CyP33 interaction is required for repression of HOXA9 and HOXC8 genes in vivo. Our results highlight the role of PHD3-Bromo cassette as a regulatory platform, orchestrating MLL1 binding of H3K4me3/2 marks and cyclophilin-mediated repression through HDAC recruitment.

  12. Kinetic and Energetic Parameters of Carob Wastes Fermentation by Saccharomyces cerevisiae: Crabtree Effect, Ethanol Toxicity, and Invertase Repression.

    PubMed

    Rodrigues, B; Peinado, J M; Raposo, S; Constantino, A; Quintas, C; Lima-Costa, M E

    2015-06-01

    Carob waste is a useful raw material for the second-generation ethanol because 50% of its dry weight is sucrose, glucose, and fructose. To optimize the process, we have studied the influence of the initial concentration of sugars on the fermentation performance of Saccharomyces cerevisiae. With initial sugar concentrations (S0) of 20 g/l, the yeasts were derepressed and the ethanol produced during the exponential phase was consumed in a diauxic phase. The rate of ethanol consumption decreased with increasing S0 and disappeared at 250 g/l when the Crabtree effect was complete and almost all the sugar consumed was transformed into ethanol with a yield factor of 0.42 g/g. Sucrose hydrolysis was delayed at high S0 because of glucose repression of invertase synthesis, which was triggered at concentrations above 40 g/l. At S0 higher than 250 g/l, even when glucose had been exhausted, sucrose was hydrolyzed very slowly, probably due to an inhibition at this low water activity. Although with lower metabolic rates and longer times of fermentation, 250 g/l is considered the optimal initial concentration because it avoids the diauxic consumption of ethanol and maintains enough invertase activity to consume all the sucrose, and also avoids the inhibitions due to lower water activities at higher S0.

  13. Nuclear matrix attachment regions antagonize methylation-dependent repression of long-range enhancer–promoter interactions

    PubMed Central

    Forrester, William C.; Fernández, Luis A.; Grosschedl, Rudolf

    1999-01-01

    The immunoglobulin intragenic μ enhancer region acts as a locus control region that mediates transcriptional activation over large distances in germ line transformation assays. In transgenic mice, but not in transfected tissue culture cells, the activation of a variable region (VH) promoter by the μ enhancer is dependent on flanking nuclear matrix attachment regions (MARs). Here, we examine the effects of DNA methylation, which occurs in early mouse development, on the function of the μ enhancer and the MARs. We find that methylation of rearranged μ genes in vitro, before transfection, represses the ability of the μ enhancer to activate the VH promoter over the distance of 1.2 kb. However, methylation does not affect enhancer-mediated promoter activation over a distance of 150 bp. In methylated DNA templates, the μ enhancer alone induces only local chromatin remodeling, whereas in combination with MARs, the μ enhancer generates an extended domain of histone acetylation. These observations provide evidence that DNA methylation impairs the distance independence of enhancer function and thereby imposes a requirement for additional regulatory elements, such as MARs, which facilitate long-range chromatin remodeling. PMID:10580007

  14. Life in the cold: a proteomic study of cold-repressed proteins in the antarctic bacterium pseudoalteromonas haloplanktis TAC125.

    PubMed

    Piette, Florence; D'Amico, Salvino; Mazzucchelli, Gabriel; Danchin, Antoine; Leprince, Pierre; Feller, Georges

    2011-06-01

    The proteomes expressed at 4°C and 18°C by the psychrophilic Antarctic bacterium Pseudoalteromonas haloplanktis were compared using two-dimensional differential in-gel electrophoresis with special reference to proteins repressed by low temperatures. Remarkably, the major cold-repressed proteins, almost undetectable at 4°C, were heat shock proteins involved in folding assistance.

  15. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.

    PubMed

    Oliveri, Paola; Walton, Katherine D; Davidson, Eric H; McClay, David R

    2006-11-01

    The foxa gene is an integral component of the endoderm specification subcircuit of the endomesoderm gene regulatory network in the Strongylocentrotus purpuratus embryo. Its transcripts become confined to veg2, then veg1 endodermal territories, and, following gastrulation, throughout the gut. It is also expressed in the stomodeal ectoderm. gatae and otx genes provide input into the pregastrular regulatory system of foxa, and Foxa represses its own transcription, resulting in an oscillatory temporal expression profile. Here, we report three separate essential functions of the foxa gene: it represses mesodermal fate in the veg2 endomesoderm; it is required in postgastrular development for the expression of gut-specific genes; and it is necessary for stomodaeum formation. If its expression is reduced by a morpholino, more endomesoderm cells become pigment and other mesenchymal cell types, less gut is specified, and the larva has no mouth. Experiments in which blastomere transplantation is combined with foxa MASO treatment demonstrate that, in the normal endoderm, a crucial role of Foxa is to repress gcm expression in response to a Notch signal, and hence to repress mesodermal fate. Chimeric recombination experiments in which veg2, veg1 or ectoderm cells contained foxa MASO show which region of foxa expression controls each of the three functions. These experiments show that the foxa gene is a component of three distinct embryonic gene regulatory networks.

  16. Case report: an asthmatic adolescent and his "repressed cry" for his mother.

    PubMed

    Kaminski, Z

    1975-06-01

    A case of asthma in an adolescent male is presented. Involvement of the patient in individual, group and family psychotherapy is discussed in detail and particular emphasis placed on the use of family sessions as a therapeutic tool. Alexander's concept of the "repressed cry for the lost mother" is suggested as of aetiological importance.

  17. Trauma and Delayed Memory: A Review of the "Repressed Memories" Literature.

    ERIC Educational Resources Information Center

    Flathman, Marcus

    1999-01-01

    Article aims to draw a balanced conclusion about trauma and memory from current information on repressed memories. Research suggests that (1) emotion impacts memory, (2) psychogenic amnesia can result from unusual levels of trauma, and (3) delayed memories are prone to errors. Inaccuracies in traumatic memories occur more often in peripheral…

  18. MeCP2 repression of G9a in regulation of pain and morphine reward.

    PubMed

    Zhang, Zhi; Tao, Wenjuan; Hou, Yuan-Yuan; Wang, Wei; Kenny, Paul J; Pan, Zhizhong Z

    2014-07-02

    Opioids are commonly used for pain relief, but their strong rewarding effects drive opioid misuse and abuse. How pain affects the liability of opioid abuse is unknown at present. In this study, we identified an epigenetic regulating cascade activated by both pain and the opioid morphine. Both persistent pain and repeated morphine upregulated the transcriptional regulator MeCP2 in mouse central nucleus of the amygdala (CeA). Chromatin immunoprecipitation analysis revealed that MeCP2 bound to and repressed the transcriptional repressor histone dimethyltransferase G9a, reducing G9a-catalyzed repressive mark H3K9me2 in CeA. Repression of G9a activity increased expression of brain-derived neurotrophic factor (BDNF). Behaviorally, persistent inflammatory pain increased the sensitivity to acquiring morphine-induced, reward-related behavior of conditioned place preference in mice. Local viral vector-mediated MeCP2 overexpression, Cre-induced G9a knockdown, and CeA application of BDNF mimicked, whereas MeCP2 knockdown inhibited, the pain effect. These results suggest that MeCP2 directly represses G9a as a shared mechanism in central amygdala for regulation of emotional responses to pain and opioid reward, and for their behavioral interaction.

  19. MeCP2 Repression of G9a in Regulation of Pain and Morphine Reward

    PubMed Central

    Zhang, Zhi; Tao, Wenjuan; Hou, Yuan-Yuan; Wang, Wei; Kenny, Paul J.

    2014-01-01

    Opioids are commonly used for pain relief, but their strong rewarding effects drive opioid misuse and abuse. How pain affects the liability of opioid abuse is unknown at present. In this study, we identified an epigenetic regulating cascade activated by both pain and the opioid morphine. Both persistent pain and repeated morphine upregulated the transcriptional regulator MeCP2 in mouse central nucleus of the amygdala (CeA). Chromatin immunoprecipitation analysis revealed that MeCP2 bound to and repressed the transcriptional repressor histone dimethyltransferase G9a, reducing G9a-catalyzed repressive mark H3K9me2 in CeA. Repression of G9a activity increased expression of brain-derived neurotrophic factor (BDNF). Behaviorally, persistent inflammatory pain increased the sensitivity to acquiring morphine-induced, reward-related behavior of conditioned place preference in mice. Local viral vector-mediated MeCP2 overexpression, Cre-induced G9a knockdown, and CeA application of BDNF mimicked, whereas MeCP2 knockdown inhibited, the pain effect. These results suggest that MeCP2 directly represses G9a as a shared mechanism in central amygdala for regulation of emotional responses to pain and opioid reward, and for their behavioral interaction. PMID:24990928

  20. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4.

    PubMed

    Guven-Ozkan, Tugba; Nishi, Yuichi; Robertson, Scott M; Lin, Rueyling

    2008-10-03

    In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II after fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wild-type OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators.

  1. Translational control of ferritin synthesis: a study of repression using natural and synthetic mRNAs

    SciTech Connect

    Dickey, L.F.; Wang, Y.H.; Wortman, I.; Shull, G.E.; Theil, E.C.

    1987-05-01

    Ferritin synthesis is a dramatic example of mRNA repression: excess iron causes recruitment of ferritin mRNA, increasing synthesis less than or equal to 40 x. Using the iron-storing tadpole red cell as a simple and accessible model, isolated poly(A+) RNA directed the synthesis of ferritin and globin in cell-free extracts from wheat germ (WG); in contrast, ferritin mRNA was specifically repressed (72%) in extracts from rabbit reticulocytes (RR) as it is in vivo. Translatable and hybridizable ferritin mRNA did not enter polysomes of RR in contrast to globin mRNA and to both ferritin and globin mRNA in WG. Single-sequence mRNA, uncapped, was prepared in vitro for both a ferritin M chain and a globin beta chain; both were translated with similar efficiency in RR (164 +/- 66) x 10/sup -3/ and (205 +/- 144) x 10/sup -3/ cpm (/sup 3/H)leucine/h/..mu..g RNA for ferritin and globin, respectively). Ferritin with the expected immunoreactivity and mobility in SDS gel electrophoresis was obtained. The results suggest that ferritin mRNA repression may require a cap or factors present in poly(A+) RNA and that repression can be released in WG but not in RR.

  2. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis

    PubMed Central

    Gong, Fei-Ran; Zhou, Binhua P.; Lian, Lian; Shen, Bairong; Chen, Kai; Duan, Weiming; Wu, Meng-Yao; Tao, Min; Li, Wei

    2016-01-01

    The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation. PMID:27323403

  3. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression.

    PubMed

    Yang, Yong-Jin; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2010-01-01

    Parafibromin, a component of the RNA polymerase II-associated PAF1 complex, is a tumor suppressor linked to hyperparathyroidism-jaw tumor syndrome and sporadic parathyroid carcinoma. Parafibromin induces cell cycle arrest by repressing cyclin D1 via an unknown mechanism. Here, we show that parafibromin interacts with the histone methyltransferase, SUV39H1, and functions as a transcriptional repressor. The central region (128-227 amino acids) of parafibromin is important for both the interaction with SUV39H1 and transcriptional repression. Parafibromin associated with the promoter and coding regions of cyclin D1 and was required for the recruitment of SUV39H1 and the induction of H3 K9 methylation but not H3 K4 methylation. RNA interference analysis showed that SUV39H1 was critical for cyclin D1 repression. These data suggest that parafibromin plays an unexpected role as a repressor in addition to its widely known activity associated with transcriptional activation. Parafibromin as a part of the PAF1 complex might downregulate cyclin D1 expression by integrating repressive H3 K9 methylation during transcription.

  4. Structural limits of specificity of methylcholanthrene-repressible nitrosamine N-dealkylases. Inhibition by analog substrates.

    PubMed

    Arcos, J C; Bryant, G M; Pastor, K M; Argus, M F

    1976-06-15

    The dealkylation of dimethyl-, diethyl- and dipropylnitrosamine by hepatic microsomes of Sprague-Dawley rats is repressed by pretreatment of the animals with 3-methylcholanthrene (MC), and this repression progressively decreases with the increase of alkyl chain length. In contrast to its effect on the demethylation of dimethylnitrosamine (DMN), in vivo phenobarbital induces rather than represses the deethylation of diethylnitrosamine. The rates of demethylation of the DMN analog substrates (dimethylformamide, dimethylacetamide, dimethylpropionamide, and dimethylbutyramide), although low as compared to DMN, increase with the acyl chain length. These analogs are potent in vitro inhibitors of Dmn demethylation when used in combination with DMN as substrates, and the inhibition decreases with the length of the acyl chain. Dimethylaminoacetone, which corresponds to the insertion of a CH2 group between the N atom and the carbonyl group in dimethylacetamide, is not an in vitro inhibitor of DMN demethylation; the demethylation rates are additive when theis compound is used as substrate in combination with DMN. The rate of demethylation of dimethylaminoacetone is substantially higher than the rates of the dimethylacylamides, and is significantly repressed by MC-pretreatment. The rate of demethylation of methylphenylnitrosamine is not influenced by MC-pretreatment; the compound is, however, a potent inhibitor of demethylation when used as substrate in combination with DMN. The demethylation rates of 1,1-dimethylhydrazine (the reduction product of DMN) and dimethylaniline are not influenced by MC-pretreatment; neither do they affect the overall rate of demethylation when used as substrate in combination with DMN.

  5. Personality and Psychopathology in African Unaccompanied Refugee Minors: Repression, Resilience and Vulnerability

    ERIC Educational Resources Information Center

    Huemer, Julia; Volkl-Kernstock, Sabine; Karnik, Niranjan; Denny, Katherine G.; Granditsch, Elisabeth; Mitterer, Michaela; Humphreys, Keith; Plattner, Belinda; Friedrich, Max; Shaw, Richard J.; Steiner, Hans

    2013-01-01

    Examining personality and psychopathological symptoms among unaccompanied refugee minors (URMs), we measured intra-individual dimensions (repression and correlates thereof) usually associated with resilience. Forty-one URMs completed the Weinberger Adjustment Inventory (WAI), assessing personality, and the Youth Self-Report (YSR), describing…

  6. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    SciTech Connect

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  7. A vertex specific dorsal selector Dve represses the ventral appendage identity in Drosophila head.

    PubMed

    Kiritooshi, Naruto; Yorimitsu, Takeshi; Shirai, Tetsuya; Puli, Oorvashi Roy; Singh, Amit; Nakagoshi, Hideki

    2014-08-01

    Developmental fields are subdivided into lineage-restricted cell populations, known as compartments. In the eye imaginal disc of Drosophila, dorso-ventral (DV) lineage restriction is the primary event, whereas antero-posterior compartment boundary is the first lineage restriction in other imaginal discs. The Iroquois complex (Iro-C) genes function as dorsal selectors and repress the default, ventral, identity in the eye-head primordium. In Iro-C mutant clones, change of the dorsal identity to default ventral fate leads to generation of ectopic DV boundary, which results in dorsal eye enlargement, and duplication of ventral appendages like antenna and maxillary palp. Similar phenotypes were observed in heads with defective proventriculus (dve) mutant clones. Here, we show that the homeobox gene dve is a downstream effector of Iro-C in the dorsal head capsule (vertex) specification and represses the ventral (antennal) identity. Two homeodomain proteins Distal-less (Dll) and Homothorax (Hth) are known to be determinants of the antennal identity. Ectopic antenna formation in heads with dve mutant clones was associated with ectopic Dll expression and endogenous Hth expression in the vertex region. Interestingly, dve Dll double mutant clones could also induce ectopic antennae lacking the distal structures, suggesting that the Dve activity is crucial for repressing inappropriate antenna-forming potential in the vertex region. Our results clearly indicate that not only the activation of effector genes to execute developmental program but also the repression of inappropriate program is crucial for establishment of the organ identity.

  8. Repressive Adaptive Style and Self-Reported Psychological Functioning in Adolescent Cancer Survivors

    ERIC Educational Resources Information Center

    Erickson, Sarah J.; Gerstle, Melissa; Montague, Erica Q.

    2008-01-01

    Low levels of posttraumatic stress disorder (PTSD), posttraumatic stress symptoms (PTSS), and psychosocial distress have been reported in pediatric cancer survivors. One explanation is the relatively high prevalence of the repressive adaptive style (low distress, high restraint) in this population. We investigated the relationship between this…

  9. Hormone-induced repression of a peroxidase isozyme in plant tissue.

    PubMed

    Ockerse, R; Siegel, B Z; Galston, A W

    1966-01-28

    Young stem sections of dwarf peas (Progress No. 9) grown in light contain at least seven peroxidase isozymes separable by electrophoresis on starch gel. An eighth isozyme appears as the tissue elongates and ages, on or off the plant. The appearance of this isozyme in excised sections is repressed by application of the plant growth hormone, indole-3-acetic acid.

  10. NF-kappaB mediated transcriptional repression of acid modifying hormone gastrin.

    PubMed

    Datta De, Dipanjana; Datta, Arindam; Bhattacharjya, Sumana; Roychoudhury, Susanta

    2013-01-01

    Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within 15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFkB.

  11. A Symptom-Focused Hypnotic Approach to Accessing and Processing Previously Repressed/Dissociated Memories.

    ERIC Educational Resources Information Center

    Ratican, Kathleen L.

    1996-01-01

    The kinesthetic track back technique accesses the origins of current symptoms and may uncover previously repressed/dissociated material, if such material exists in the client's unconscious mind, is relevant to the symptoms, and is ready to be processed consciously. Case examples are given to illustrate proper use of this technique. (LSR)

  12. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    SciTech Connect

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  13. OprD Repression upon Metal Treatment Requires the RNA Chaperone Hfq in Pseudomonas aeruginosa

    PubMed Central

    Ducret, Verena; Gonzalez, Manuel R.; Scrignari, Tiziana; Perron, Karl

    2016-01-01

    The metal-specific CzcRS two-component system in Pseudomonas aeruginosa is involved in the repression of the OprD porin, causing in turn carbapenem antibiotic resistance in the presence of high zinc concentration. It has also been shown that CzcR is able to directly regulate the expression of multiple genes including virulence factors. CzcR is therefore an important regulator connecting (i) metal response, (ii) pathogenicity and (iii) antibiotic resistance in P. aeruginosa. Recent data have suggested that other regulators could negatively control oprD expression in the presence of zinc. Here we show that the RNA chaperone Hfq is a key factor acting independently of CzcR for the repression of oprD upon Zn treatment. Additionally, we found that an Hfq-dependent mechanism is necessary for the localization of CzcR to the oprD promoter, mediating oprD transcriptional repression. Furthermore, in the presence of Cu, CopR, the transcriptional regulator of the CopRS two-component system also requires Hfq for oprD repression. Altogether, these results suggest important roles for this RNA chaperone in the context of environment-sensing and antibiotic resistance in P. aeruginosa. PMID:27706108

  14. Repression activity of Tailless on h 1 and eve 1 pair-rule stripes.

    PubMed

    Andrioli, Luiz Paulo; Dos Santos, Wesley Silva; Aguiar, Francisco Dos Santos; Digiampietri, Luciano Antonio

    2016-10-20

    We investigated the hypothesis that several transcriptional repressors are necessary to set the boundaries of anterior pair-rule stripes in Drosophila. Specifically, we tested whether Tailless (Tll) is part of a repression mechanism that correctly sets the anterior boundaries of hairy 1 (h 1) and even-skipped 1 (eve 1) stripes. Single mutant tll embryos displayed subtle deviations from the normal positions of h 1 and eve 1 stripes. Moreover, we observed stronger stripe deviations in embryos lacking both Tll and Sloppy-paired 1 (Slp 1), a common repressor for anterior pair-rule stripes. Using h 1 and eve 1 reporter constructs in the genetic assays, we provided further evidence that interference with normal mechanisms of stripe expression is mediated by Tll repression. Indeed, Tll represses both h 1 and eve 1 reporter stripes when misexpressed. Investigating the expression of other anterior gap genes in different genetic backgrounds and in the misexpression assays strengthened Tll direct repression in the regulation of h 1 and eve 1. Our results are consistent with tll being a newly-identified component of a combinatorial network of repressor genes that control pair-rule stripe formation in the anterior blastoderm of Drosophila.

  15. Pluripotency Factors and Polycomb Group Proteins Repress Aryl Hydrocarbon Receptor Expression in Murine Embryonic Stem Cells

    PubMed Central

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development. PMID:24316986

  16. Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish

    PubMed Central

    Chew, Guo-Liang; Pauli, Andrea; Schier, Alexander F.

    2016-01-01

    Upstream open reading frames (uORFs) are ubiquitous repressive genetic elements in vertebrate mRNAs. While much is known about the regulation of individual genes by their uORFs, the range of uORF-mediated translational repression in vertebrate genomes is largely unexplored. Moreover, it is unclear whether the repressive effects of uORFs are conserved across species. To address these questions, we analyse transcript sequences and ribosome profiling data from human, mouse and zebrafish. We find that uORFs are depleted near coding sequences (CDSes) and have initiation contexts that diminish their translation. Linear modelling reveals that sequence features at both uORFs and CDSes modulate the translation of CDSes. Moreover, the ratio of translation over 5′ leaders and CDSes is conserved between human and mouse, and correlates with the number of uORFs. These observations suggest that the prevalence of vertebrate uORFs may be explained by their conserved role in repressing CDS translation. PMID:27216465

  17. Sleep paralysis in adults reporting repressed, recovered, or continuous memories of childhood sexual abuse.

    PubMed

    McNally, Richard J; Clancy, Susan A

    2005-01-01

    Sleep paralysis typically occurs as individuals awaken from rapid eye movement sleep before motor paralysis wanes. Many episodes are accompanied by tactile and visual hallucinations, often of threatening intruders in the bedroom. Pendergrast [Victims of Memory: Incest Accusations and Shattered Lives, HarperCollins, London, 1996] proposed that individuals who report repressed or recovered memories of childhood sexual abuse (CSA) may misinterpret episodes of sleep paralysis as reemerging fragments of dissociated ("repressed") memories of CSA. To investigate this issue, we administered a sleep paralysis questionnaire to people reporting either repressed (n = 18), recovered (n = 14), or continuous (n = 36) memories of CSA, or to a control group reporting no history of CSA (n = 16). The prevalence of sleep paralysis was: repressed memory group (44%), recovered memory group (43%), continuous memory group (47%), and control group (13%). Among the six individuals in the recovered memory group who had experienced sleep paralysis, one interpreted it as related to sexual abuse (i.e., a rate of 17%). All other participants who had reported sleep paralysis embraced other interpretations (e.g., saw a ghost). Dissociation and depressive symptoms were more common among those who had experienced sleep paralysis than among those who denied having experienced it.

  18. Clinical Characteristics of Adults Reporting Repressed, Recovered, or Continuous Memories of Childhood Sexual Abuse

    ERIC Educational Resources Information Center

    McNally, Richard J.; Perlman, Carol A.; Ristuccia, Carel S.; Clancy, Susan A.

    2006-01-01

    The authors assessed women and men who either reported continuous memories of their childhood sexual abuse (CSA, n = 92), reported recovering memories of CSA (n = 38), reported believing they harbored repressed memories of CSA (n = 42), or reported never having been sexually abused (n = 36). Men and women were indistinguishable on all clinical and…

  19. Universities in the Business of Repression: The Academic-Military-Industrial Complex and Central America.

    ERIC Educational Resources Information Center

    Feldman, Jonathan

    This book presents the thesis that U.S. universities have become part of an academic-military-industrial complex that support repression and murder in Central America. Part 1 explains how U.S. policies have been based on murder in Central America and examines the responsibility of transnational corporations and U.S. war planners in this…

  20. Neuron type-specific miRNA represses two broadly expressed genes to modulate an avoidance behavior in C. elegans

    PubMed Central

    Drexel, Tanja; Mahofsky, Katharina; Latham, Richard; Zimmer, Manuel

    2016-01-01

    Two broad gene classes are distinguished within multicellular organisms: cell type-specific genes, which confer particular cellular properties, and ubiquitous genes that support general cellular functions. However, certain so-called ubiquitous genes show functionally relevant cell type-specific repression. How such repression is achieved is poorly understood. MicroRNAs (miRNAs) are repressors, many of which are expressed with high cell type specificity. Here we show that mir-791, expressed exclusively in the CO2-sensing neurons in Caenorhabditis elegans, represses two otherwise broadly expressed genes. This repression is necessary for normal neuronal function and behavior of the animals toward CO2. miRNA-mediated repression of broadly transcribed genes is a previously unappreciated strategy for cellular specialization. PMID:27688400

  1. Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation

    PubMed Central

    Alinari, Lapo; Mahasenan, Kiran V.; Yan, Fengting; Karkhanis, Vrajesh; Chung, Ji-Hyun; Smith, Emily M.; Quinion, Carl; Smith, Porsha L.; Kim, Lisa; Patton, John T.; Lapalombella, Rosa; Yu, Bo; Wu, Yun; Roy, Satavisha; De Leo, Alessandra; Pileri, Stefano; Agostinelli, Claudio; Ayers, Leona; Bradner, James E.; Chen-Kiang, Selina; Elemento, Olivier; Motiwala, Tasneem; Majumder, Sarmila; Byrd, John C.; Jacob, Samson; Sif, Said; Li, Chenglong

    2015-01-01

    Epigenetic events that are essential drivers of lymphocyte transformation remain incompletely characterized. We used models of Epstein-Barr virus (EBV)–induced B-cell transformation to document the relevance of protein arginine methyltransferase 5 (PRMT5) to regulation of epigenetic-repressive marks during lymphomagenesis. EBV+ lymphomas and transformed cell lines exhibited abundant expression of PRMT5, a type II PRMT enzyme that promotes transcriptional silencing of target genes by methylating arginine residues on histone tails. PRMT5 expression was limited to EBV-transformed cells, not resting or activated B lymphocytes, validating it as an ideal therapeutic target. We developed a first-in-class, small-molecule PRMT5 inhibitor that blocked EBV-driven B-lymphocyte transformation and survival while leaving normal B cells unaffected. Inhibition of PRMT5 led to lost recruitment of a PRMT5/p65/HDAC3-repressive complex on the miR96 promoter, restored miR96 expression, and PRMT5 downregulation. RNA-sequencing and chromatin immunoprecipitation experiments identified several tumor suppressor genes, including the protein tyrosine phosphatase gene PTPROt, which became silenced during EBV-driven B-cell transformation. Enhanced PTPROt expression following PRMT5 inhibition led to dephosphorylation of kinases that regulate B-cell receptor signaling. We conclude that PRMT5 is critical to EBV-driven B-cell transformation and maintenance of the malignant phenotype, and that PRMT5 inhibition shows promise as a novel therapeutic approach for B-cell lymphomas. PMID:25742700

  2. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    SciTech Connect

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S.

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  3. ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12.

    PubMed

    Caldara, Marina; Minh, Phu Nguyen Le; Bostoen, Sophie; Massant, Jan; Charlier, Daniel

    2007-10-19

    In Escherichia coli L-arginine is taken up by three periplasmic binding protein-dependent transport systems that are encoded by two genetic loci: the artPIQM-artJ and argT-hisJQMP gene clusters. The transcription of the artJ, artPIQM and hisJQMP genes and operons is repressed by liganded ArgR, whereas argT, encoding the LAO (lysine, arginine, ornithine) periplasmic binding protein, is insensitive to the repressor. Here we characterize the repressible Esigma70 P artJ, P artP and P hisJ promoters and demonstrate that the cognate operators consist of two 18 bp ARG boxes separated by 3 bp. Determination of the energy landscape of the ArgR-operator contacts by missing contact probing and mutant studies indicated that each box of a pair contributes to complex formation in vitro and to the repressibility in vivo, but to a different extent. The organization of the ARG boxes and promoter elements in the control regions of the uptake genes is distinct from that of the arginine biosynthetic genes. The hisJQMP operon is the first member of the E. coli ArgR regulon, directly repressed by liganded ArgR, where none of the core promoter elements overlaps the ARG boxes. Single round in vitro transcription assays and DNase I footprinting experiments indicate that liganded ArgR inhibits P artJ and P artP promoter activity by steric exclusion of the RNA polymerase. In contrast, ArgR-mediated repression of P hisJ by inhibition of RNA polymerase binding appears to occur through topological changes of the promoter region.

  4. SUMO Modification Enhances p66-Mediated Transcriptional Repression of the Mi-2/NuRD Complex

    PubMed Central

    Gong, Zihua; Brackertz, Marc; Renkawitz, Rainer

    2006-01-01

    Human p66α and p66β are two potent transcriptional repressors that interact with the methyl-CpG-binding domain proteins MBD2 and MBD3. An analysis of the molecular mechanisms mediating repression resulted in the identification of two major repression domains in p66α and one in p66β. Both p66α and p66β are SUMO-modified in vivo: p66α at two sites (Lys-30 and Lys-487) and p66β at one site (Lys-33). Expression of SUMO1 enhanced the transcriptional repression activity of Gal-p66α and Gal-p66β. Mutation of the SUMO modification sites or using a SUMO1 mutant or a dominant negative Ubc9 ligase resulted in a significant decrease of the transcriptional repression of p66α and p66β. The Mi-2/NuRD components MBD3, RbAp46, RbAp48, and HDAC1 were found to bind to both p66α and p66β in vivo. Most of the interactions were not affected by the SUMO site mutations in p66α or p66β, with two exceptions. HDAC1 binding to p66α was lost in the case of a p66αK30R mutant, and RbAp46 binding was reduced in the case of a p66βK33R mutant. These results suggest that interactions within the Mi-2/NuRD complex as well as optimal repression are mediated by SUMOylation. PMID:16738318

  5. The Xenopus ELAV protein ElrB represses Vg1 mRNA translation during oogenesis.

    PubMed

    Colegrove-Otero, Lucy J; Devaux, Agathe; Standart, Nancy

    2005-10-01

    Xenopus laevis Vg1 mRNA undergoes both localization and translational control during oogenesis. We previously characterized a 250-nucleotide AU-rich element, the Vg1 translation element (VTE), in the 3'-untranslated region (UTR) of this mRNA that is responsible for the translational repression. UV-cross-linking and immunoprecipitation experiments, described here, revealed that the known AU-rich element binding proteins, ElrA and ElrB, and TIA-1 and TIAR interact with the VTE. The levels of these proteins during oogenesis are most consistent with a possible role for ElrB in the translational control of Vg1 mRNA, and ElrB, in contrast to TIA-1 and TIAR, is present in large RNP complexes. Immunodepletion of TIA-1 and TIAR from Xenopus translation extract confirmed that these proteins are not involved in the translational repression. Mutagenesis of a potential ElrB binding site destroyed the ability of the VTE to bind ElrB and also abolished translational repression. Moreover, multiple copies of the consensus motif both bind ElrB and support translational control. Therefore, there is a direct correlation between ElrB binding and translational repression by the Vg1 3'-UTR. In agreement with the reporter data, injection of a monoclonal antibody against ElrB into Xenopus oocytes resulted in the production of Vg1 protein, arguing for a role for the ELAV proteins in the translational repression of Vg1 mRNA during early oogenesis.

  6. SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter.

    PubMed

    Murakami, A; Ishida, S; Thurlow, J; Revest, J M; Dickson, C

    2001-08-15

    Fgf-3 is expressed in a complex pattern during mouse development. Previously, an essential regulatory element PS4A was identified in the promoter region, and shown to bind at least three factors. To identify the transcription factor(s), we used a yeast one-hybrid screen and obtained a novel Sox6 cDNA (SOX6D). When introduced into cells it strongly repressed activity from both an Fgf-3 reporter gene as well as an artificial promoter containing three PS4A elements. In situ hybridisation analysis showed that Sox6 and Fgf-3 are co-expressed in the otic vesicle of E9.5 mouse embryos in a mutually exclusive pattern, consistent with a repression of Fgf-3 transcription by SOX6. To characterise additional factor(s) involved in Fgf-3 gene repression, a yeast two-hybrid screen was used with the N-terminal portion of SOX6D. Mouse CtBP2 cDNA clones were isolated and shown to bind SOX6 in yeast and mammalian cells. Furthermore, mutational analysis of SOX6 showed that binding to CtBP2, and its responsiveness to this co-repressor, were dependent on a short amino acid sequence motif PLNLSS. Co-expression studies in NIH3T3 cells showed that SOX6 and CtBP2 co-operate to repress activity from the Fgf-3 promoter through the enhancer element PS4A. These results show that SOX6 can recruit CtBP2 to repress transcription from the Fgf-3 promoter.

  7. Ligand-induced repression of the glucocorticoid receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin interactions with intragenic glucocorticoid response elements.

    PubMed

    Ramamoorthy, Sivapriya; Cidlowski, John A

    2013-05-01

    Glucocorticoids are among the most potent and effective agents for treating inflammatory diseases and hematological cancers. However, subpopulations of patients are often resistant to steroid therapy, and determining the molecular mechanisms that contribute to glucocorticoid resistance is thus critical to addressing this clinical problem affecting patients with chronic inflammatory disorders. Since the cellular level of the glucocorticoid receptor (GR) is a critical determinant of glucocorticoid sensitivity and resistance, we investigated the molecular mechanisms mediating repression of glucocorticoid receptor gene expression. We show here that glucocorticoid-induced repression of GR gene expression is mediated by inhibition of transcription initiation. This process is orchestrated by the recruitment of agonist-bound GR to exon 6, followed by the assembly of a GR-NCoR1-histone deacetylase 3-containing repression complex at the transcriptional start site of the GR gene. A functional negative glucocorticoid response element (nGRE) in exon 6 of the GR gene and a long-range interaction occurring between this intragenic response element and the transcription start site appear to be instrumental in this repression. This autoregulatory mechanism of repression implies that the GR concentration can coordinate repression with excess ligand, regardless of the combinatorial associations of tissue-specific transcription factors. Consequently, the chronic nature of inflammatory conditions involving long-term glucocorticoid administration may lead to constitutive repression of GR gene transcription and thus to glucocorticoid resistance.

  8. The Funk transform as a Penrose transform

    NASA Astrophysics Data System (ADS)

    Bailey, Toby N.; Eastwood, Michael G.; Gover, A. Rod; Mason, Lionel J.

    1999-01-01

    The Funk transform is the integral transform from the space of smooth even functions on the unit sphere S2[subset or is implied by][open face R]3 to itself defined by integration over great circles. One can regard this transform as a limit in a certain sense of the Penrose transform from [open face C][open face P]2 to [open face C][open face P]*ast;2. We exploit this viewpoint by developing a new proof of the bijectivity of the Funk transform which proceeds by considering the cohomology of a certain involutive (or formally integrable) structure on an intermediate space. This is the simplest example of what we hope will prove to be a general method of obtaining results in real integral geometry by means of complex holomorphic methods derived from the Penrose transform.

  9. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis.

    PubMed

    Shyu, Christine; Figueroa, Pablo; Depew, Cody L; Cooke, Thomas F; Sheard, Laura B; Moreno, Javier E; Katsir, Leron; Zheng, Ning; Browse, John; Howe, Gregg A

    2012-02-01

    The lipid-derived hormone jasmonoyl-L-Ile (JA-Ile) initiates large-scale changes in gene expression by stabilizing the interaction of JASMONATE ZIM domain (JAZ) repressors with the F-box protein CORONATINE INSENSITIVE1 (COI1), which results in JAZ degradation by the ubiquitin-proteasome pathway. Recent structural studies show that the JAZ1 degradation signal (degron) includes a short conserved LPIAR motif that seals JA-Ile in its binding pocket at the COI1-JAZ interface. Here, we show that Arabidopsis thaliana JAZ8 lacks this motif and thus is unable to associate strongly with COI1 in the presence of JA-Ile. As a consequence, JAZ8 is stabilized against jasmonate (JA)-mediated degradation and, when ectopically expressed in Arabidopsis, represses JA-regulated growth and defense responses. These findings indicate that sequence variation in a hypervariable region of the degron affects JAZ stability and JA-regulated physiological responses. We also show that JAZ8-mediated repression depends on an LxLxL-type EAR (for ERF-associated amphiphilic repression) motif at the JAZ8 N terminus that binds the corepressor TOPLESS and represses transcriptional activation. JAZ8-mediated repression does not require the ZIM domain, which, in other JAZ proteins, recruits TOPLESS through the EAR motif-containing adaptor protein NINJA. These findings show that EAR repression domains in a subgroup of JAZ proteins repress gene expression through direct recruitment of corepressors to cognate transcription factors.

  10. Steerable Discrete Fourier Transform

    NASA Astrophysics Data System (ADS)

    Fracastoro, Giulia; Magli, Enrico

    2017-03-01

    Directional transforms have recently raised a lot of interest thanks to their numerous applications in signal compression and analysis. In this letter, we introduce a generalization of the discrete Fourier transform, called steerable DFT (SDFT). Since the DFT is used in numerous fields, it may be of interest in a wide range of applications. Moreover, we also show that the SDFT is highly related to other well-known transforms, such as the Fourier sine and cosine transforms and the Hilbert transforms.

  11. The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites.

    PubMed

    Martin, K; Huo, L; Schleif, R F

    1986-06-01

    Two sets of experiments have been performed to test the DNA loop model of repression of the araBAD operon of Escherichia coli. First, dimethyl sulfate methylation protection measurements on normally growing cells show that the AraC regulatory protein occupies the araI site in the presence and absence of the inducer arabinose. Similarly, the araO2 site is shown to be occupied by AraC protein in the presence and absence of arabinose; however, its occupancy by AraC is greatly reduced when araI and adjacent sequences are deleted. Thus, AraC protein binds to araO2 cooperatively with some other component of the ara system located at least 60 base pairs away. Second, the mutational analysis presented here shows that the DNA components required for repression of araBAD are araI, araO2, and perhaps the araBAD operon RNA polymerase binding site.

  12. Functional repression of PtSND2 represses growth and development by disturbing auxin biosynthesis, transport and signaling in transgenic poplar.

    PubMed

    Wang, Haihai; Tang, Renjie; Wang, Cuiting; Qi, Qi; Gai, Ying; Jiang, Xiangning; Zhang, Hongxia

    2015-01-01

    Using chimeric repressor silencing technology, we previously reported that functional repression of PtSND2 severely arrested wood formation in transgenic poplar (Populus). Here, we provide further evidence that auxin biosynthesis, transport and signaling were disturbed in these transgenic plants, leading to pleiotropic defects in their growth patterns, including inhibited leaf enlargement and vascular tissue development in the leaf central vein, suppressed cambial growth and fiber elongation in the stem, and arrested growth in the root system. Two transgenic lines, which displayed the most remarkable phenotypic deviation from the wild-type, were selected for detailed studies. In both transgenic lines, expression of genes for auxin biosynthesis, transport and signaling was down-regulated, and indole-3-acetic acid distribution was severely disturbed in the apical buds, leaves, stems and roots of field-grown transgenic plants. Transient transcription dual-luciferase assays of ProPtTYDC2::LUC, ProPttLAX2::LUC and ProPoptrIAA20.2::LUC in poplar protoplasts revealed that expression of auxin-related genes might be regulated by PtSND2 at the transcriptional level. All these results indicate that functional repression of PtSND2 altered auxin biosynthesis, transport and signaling, and thereby disturbed the normal growth and development of transgenic plants.

  13. Targeting of Polycomb Repressive Complex 2 to RNA by Short Repeats of Consecutive Guanines.

    PubMed

    Wang, Xueyin; Goodrich, Karen J; Gooding, Anne R; Naeem, Haroon; Archer, Stuart; Paucek, Richard D; Youmans, Daniel T; Cech, Thomas R; Davidovich, Chen

    2017-03-16

    Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that trimethylates H3K27, a mark of repressed chromatin. Mammalian PRC2 binds RNA promiscuously, with thousands of target transcripts in vivo. But what does PRC2 recognize in these RNAs? Here we show that purified human PRC2 recognizes G > C,U ≫ A in single-stranded RNA and has a high affinity for folded guanine quadruplex (G4) structures but little binding to duplex RNAs. Importantly, G-tract motifs are significantly enriched among PRC2-binding transcripts in vivo. DNA sequences coding for PRC2-binding RNA motifs are enriched at PRC2-binding sites on chromatin and H3K27me3-modified nucleosomes. Collectively, the abundance of PRC2-binding RNA motifs rationalizes the promiscuous RNA binding of PRC2, and their enrichment at Polycomb target genes provides a means for RNA-mediated regulation.

  14. Gfi1 and Gfi1b Repress Rag Transcription in Plasmacytoid Dendritic Cells In Vitro

    PubMed Central

    Chow, Kwan T.; Schulz, Danae; McWhirter, Sarah M.; Schlissel, Mark S.

    2013-01-01

    Growth factor independence genes (Gfi1 and Gfi1b) repress recombination activating genes (Rag) transcription in developing B lymphocytes. Because all blood lineages originate from hematopoietic stem cells (HSCs) and different lineage progenitors have been shown to share transcription factor networks prior to cell fate commitment, we hypothesized that GFI family proteins may also play a role in repressing Rag transcription or a global lymphoid transcriptional program in other blood lineages. We tested the level of Rag transcription in various blood cells when Gfi1 and Gfi1b were deleted, and observed an upregulation of Rag expression in plasmacytoid dendritic cells (pDCs). Using microarray analysis, we observed that Gfi1 and Gfi1b do not regulate a lymphoid or pDC-specific transcriptional program. This study establishes a role for Gfi1 and Gfi1b in Rag regulation in a non-B lineage cell type. PMID:24086657

  15. Severe paroxysmal hypertension. An automatic syndrome and its relationship to repressed emotions.

    PubMed

    Mann, S J

    1996-01-01

    In most patients with severe and symptomatic paroxysmal hypertension, a pheochromocytoma or other medical cause is rarely identified. This article presents the psychosocial assessment of 10 such patients, in whom the absence of any emotional distress preceding paroxysms had discouraged consideration of any psychological basis. However, a causative role of repressed unreported emotions was strongly suggested by 1) a history of unusually severe emotional trauma in 8 of 10 patients, 2) the absence of feelings related to the trauma, and 3) the prompt and sustained response of 3 patients to psychotherapeutic or psychopharmacologic intervention. These observations suggest that some cases of unexplained paroxysmal hypertension have a psychosomatic etiology and result from repressed rather than perceived and reported emotions. Treatment options are explored.

  16. Directed forgetting of trauma cues in adults reporting repressed or recovered memories of childhood sexual abuse.

    PubMed

    McNally, R J; Clancy, S A; Schacter, D L

    2001-02-01

    An item-cuing directed forgetting task was used to investigate whether women reporting repressed (n = 13) or recovered (n = 13) memories of childhood sexual abuse (CSA) exhibit an avoidant encoding style (and resultant impaired memory) for trauma cues relative to women reporting no CSA experience (n = 15). All participants viewed intermixed trauma (e.g., molested), positive (e.g., confident), and categorized neutral (e.g., mailbox) words on a computer screen and were instructed either to remember or to forget each word. The results provided no support for the hypothesis that people reporting either repressed or recovered memories of CSA are especially adept at forgetting words related to trauma. These groups recalled words they were instructed to remember more often than words they were instructed to forget regardless of whether they were trauma related.

  17. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin.

    PubMed

    Masuda, Takeshi; Wang, Xin; Maeda, Manami; Canver, Matthew C; Sher, Falak; Funnell, Alister P W; Fisher, Chris; Suciu, Maria; Martyn, Gabriella E; Norton, Laura J; Zhu, Catherine; Kurita, Ryo; Nakamura, Yukio; Xu, Jian; Higgs, Douglas R; Crossley, Merlin; Bauer, Daniel E; Orkin, Stuart H; Kharchenko, Peter V; Maeda, Takahiro

    2016-01-15

    Genes encoding human β-type globin undergo a developmental switch from embryonic to fetal to adult-type expression. Mutations in the adult form cause inherited hemoglobinopathies or globin disorders, including sickle cell disease and thalassemia. Some experimental results have suggested that these diseases could be treated by induction of fetal-type hemoglobin (HbF). However, the mechanisms that repress HbF in adults remain unclear. We found that the LRF/ZBTB7A transcription factor occupies fetal γ-globin genes and maintains the nucleosome density necessary for γ-globin gene silencing in adults, and that LRF confers its repressive activity through a NuRD repressor complex independent of the fetal globin repressor BCL11A. Our study may provide additional opportunities for therapeutic targeting in the treatment of hemoglobinopathies.

  18. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin

    PubMed Central

    Masuda, Takeshi; Wang, Xin; Maeda, Manami; Canver, Matthew C.; Sher, Falak; Funnell, Alister P. W.; Fisher, Chris; Suciu, Maria; Martyn, Gabriella E.; Norton, Laura J.; Zhu, Catherine; Kurita, Ryo; Nakamura, Yukio; Xu, Jian; Higgs, Douglas R.; Crossley, Merlin; Bauer, Daniel E.; Orkin, Stuart H.; Kharchenko, Peter V.; Maeda, Takahiro

    2016-01-01

    Genes encoding human β-type globin undergo a developmental switch from embryonic to fetal to adult-type expression. Mutations in the adult form cause inherited hemoglobinopathies or globin disorders, including sickle cell disease and thalassemia. Some experimental results have suggested that these diseases could be treated by induction of fetal-type hemoglobin (HbF). However, the mechanisms that repress HbF in adults remain unclear. We found that the LRF/ZBTB7A transcription factor occupies fetal γ-globin genes and maintains the nucleosome density necessary for γ-globin gene silencing in adults, and that LRF confers its repressive activity through a NuRD repressor complex independent of the fetal globin repressor BCL11A. Our study may provide additional opportunities for therapeutic targeting in the treatment of hemoglobinopathies. PMID:26816381

  19. [Deodorant effects of champignon extract and repressive effects on production of indole and tryptamine in vivo].

    PubMed

    Koizumi, I; Suzuki, Y; Shimura, S

    1997-01-01

    Champignon extract has potent deodorant effects, and its repressive effects on bad smells generated by the decomposition of fishery products are especially marked. Utilizing the amount of ammonical nitrogen, indoleacetic acid and tryptamine generated as the standard criteria, the deodorant effects of champingnon were evaluated. In an in vitro test, chicken liver homogenate was decomposed by incubating at 37 degrees C and with the progress of its decomposition, ammonical nitrogen was generated. Champignon extract was shown to have the ability to repress the generation of ammonical nitrogen. For an in vivo test, an excessive amount of tryptophan was orally administered to domestic rabbits resalting in an increase in blood levels of indoleacetic acid and tryptamine. Champignon extract given concomitantly rapidly reduced blood levels of the two compounds to negligible levels.

  20. A long noncoding RNA induced by TLRs mediates both activation and repression of immune response genes

    PubMed Central

    Carpenter, Susan; Atianand, Maninjay; Aiello, Daniel; Ricci, Emiliano; Gandhi, Pallavi; Hall, Lisa L.; Byron, Meg; Monks, Brian; Henry-Bezy, Meabh; O’Neill, Luke A.J; Lawrence, Jeanne B.; Moore, Melissa J.; Caffrey, Daniel R.; Fitzgerald, Katherine A.

    2015-01-01

    An inducible program of inflammatory gene expression is central to anti-microbial defenses. Signal-dependent activation of transcription factors, transcriptional co-regulators and chromatin modifying factors collaborate to control this response. Here we identify a long noncoding RNA that acts as a key regulator of this inflammatory response. Germline-encoded receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2 mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad acting regulatory component of the circuit that controls the inflammatory response. PMID:23907535

  1. The personality construct of hardiness, III: Relationships with repression, innovativeness, authoritarianism, and performance.

    PubMed

    Maddi, Salvatore R; Harvey, Richard H; Khoshaba, Deborah M; Lu, John L; Persico, Michele; Brow, Marnie

    2006-04-01

    Previous research has established hardiness as a dispositional factor in preserving and enhancing performance and health despite stressful circumstances. The present four studies continue this construct-validational process by (a) introducing a shortened version of the hardiness measure and (b) testing hypotheses concerning the relationship between hardiness and repressive coping, right-wing authoritarianism, innovative behavior, and billable hours (a measure of consulting effectiveness). Results of these studies suggest the adequate reliability and validity of the Personal Views Survey III-R, which is the shortened, 18-item measure of hardiness. Further, results support the hypothesis that the relationship of hardiness is negative with repressive coping and right-wing authoritarianism and positive with innovative behavior and billable hours. Hardiness also appears unrelated to socially desirable responding.

  2. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues.

  3. c-Fos Repression by Piwi Regulates Drosophila Ovarian Germline Formation and Tissue Morphogenesis

    PubMed Central

    Klein, Jonathon D.; Qu, Chunxu; Yang, Xiaoyang; Fan, Yiping; Tang, Chunlao; Peng, Jamy C.

    2016-01-01

    Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs. c-Fos is a proto-oncogene that influences many cell and developmental processes. In wild-type ovarian cells, c-Fos is post-transcriptionally repressed by Piwi, which destabilized the c-Fos mRNA by promoting the processing of its 3′ untranslated region (UTR) into Piwi-interacting RNAs (piRNAs). The c-Fos 3′ UTR was sufficient to trigger Piwi-dependent destabilization of a GFP reporter. Piwi represses c-Fos in the somatic niche to regulate GSC maintenance and differentiation and in the somatic follicle cells to affect somatic cell disorganization, tissue dysmorphogenesis, oocyte maturation arrest, and infertility. PMID:27622269

  4. Reversible and Rapid Transfer-RNA Deactivation as a Mechanism of Translational Repression in Stress

    PubMed Central

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-01-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3′-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs. PMID:24009533

  5. Secularization versus religious revival in Eastern Europe: Church institutional resilience, state repression and divergent paths.

    PubMed

    Northmore-Ball, Ksenia; Evans, Geoffrey

    2016-05-01

    Despite continuing for over two decades, the debate about the nature of the trends in religiosity in post-Communist Eastern Europe remains unresolved: some arguing that these countries are undergoing the same process of secularization as the West, while others insist that the entire region is experiencing a religious revival. Using national sample surveys from the early 1990s to 2007 to examine the change in demographic predictors of religiosity, we show that Catholic and Orthodox countries are experiencing different trends, the first group displaying evidence of secularization and the second of revival, and that these two different trends are likely to derive from the legacies of state repression and the differing abilities of the churches to resist such repression. We argue that the current literature has thus taken a mistakenly general approach, and that the post-Communist region consists of at least two distinct groups of societies with different trends in religiosity.

  6. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress.

    PubMed

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-08-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3'-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs.

  7. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides

    PubMed Central

    Farmer, Ryan M.

    2015-01-01

    In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase. PMID:26306848

  8. The New State of the Art: Cas9 for Gene Activation and Repression

    PubMed Central

    La Russa, Marie F.

    2015-01-01

    CRISPR-Cas9 technology has rapidly changed the landscape for how biologists and bioengineers study and manipulate the genome. Derived from the bacterial adaptive immune system, CRISPR-Cas9 has been coopted and repurposed for a variety of new functions, including the activation or repression of gene expression (termed CRISPRa or CRISPRi, respectively). This represents an exciting alternative to previously used repression or activation technologies such as RNA interference (RNAi) or the use of gene overexpression vectors. We have only just begun exploring the possibilities that CRISPR technology offers for gene regulation and the control of cell identity and behavior. In this review, we describe the recent advances of CRISPR-Cas9 technology for gene regulation and outline advantages and disadvantages of CRISPRa and CRISPRi (CRISPRa/i) relative to alternative technologies. PMID:26370509

  9. Military westernization and state repression in the post-Cold War era.

    PubMed

    Swed, Ori; Weinreb, Alexander

    2015-09-01

    The waves of unrest that have shaken the Arab world since December 2010 have highlighted significant differences in the readiness of the military to intervene in political unrest by forcefully suppressing dissent. We suggest that in the post-Cold War period, this readiness is inversely associated with the level of military westernization, which is a product of the acquisition of arms from western countries. We identify two mechanisms linking the acquisition of arms from western countries to less repressive responses: dependence and conditionality; and a longer-term diffusion of ideologies regarding the proper form of civil-military relations. Empirical support for our hypothesis is found in an analysis of 2523 cases of government response to political unrest in 138 countries in the 1996-2005 period. We find that military westernization mitigates state repression in general, with more pronounced effects in the poorest countries. However, we also identify substantial differences between the pre- and post-9/11 periods.

  10. Does base-pairing strength play a role in microRNA repression?

    PubMed Central

    Carmel, Ido; Shomron, Noam; Heifetz, Yael

    2012-01-01

    MicroRNAs (miRNAs) are short, single-stranded RNAs that silence gene expression by either degrading mRNA or repressing translation. Each miRNA regulates a specific set of mRNA “targets” by binding to complementary sequences in their 3′ untranslated region. In this study, we examined the importance of the base-pairing strength of the miRNA–target duplex to repression. We hypothesized that if base-pairing strength affects the functionality of miRNA repression, organisms with higher body temperature or that live at higher temperatures will have miRNAs with higher G/C content so that the miRNA–target complex will remain stable. In the nine model organisms examined, we found a significant correlation between the average G/C content of miRNAs and physiological temperature, supporting our hypothesis. Next, for each organism examined, we compared the average G/C content of miRNAs that are conserved among distant organisms and that of miRNAs that are evolutionarily recent. We found that the average G/C content of ancient miRNAs is lower than recent miRNAs in homeotherms, whereas the trend was inversed in poikilotherms, suggesting that G/C content is associated with temperature, thus further supporting our hypothesis. In the organisms examined, the average G/C content of miRNA “seed” sequences was higher than that of mature miRNAs, which was higher than pre-miRNA loops, suggesting an association between the degree of functionality of the sequence and its average G/C content. Our analyses show a possible association between the base-pairing strength of miRNA–targets and the temperature of an organism, suggesting that base-pairing strength plays a role in repression by miRNAs. PMID:23019592

  11. From Sensorimotor Inhibition to Freudian Repression: Insights from Psychosis Applied to Neurosis

    PubMed Central

    Bazan, Ariane

    2012-01-01

    First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud’s mental apparatus, we propose that the messages of discharge of the motor neurons, mobilized to direct perception, also called “indications of reality,” are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organization in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it – i.e., inhibition of an action – gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world, or processing language, structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of) the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called “phantoms,” which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor fragments

  12. The human and mouse sex-determining SRY genes repress the Rspol/beta-catenin signaling.

    PubMed

    Lau, Yun-Fai Chris; Li, Yunmin

    2009-04-01

    The sex-determining region Y (SRY) is the gene on the Y chromosome responsible for switching on male sex determination during mammalian embryogenesis. In its absence, ovaries develop in the embryo. Hence, ovarian determination and differentiation is considered to be a default, or passive, developmental pathway. Recently this classical paradigm of sex determination has been challenged with the discovery of the R-spondin 1 (RSPO1) as an active ovarian determinant. Mutations of RSPO1 cause a female-to-male sex reversal. RSPO1 synergizes with WNT4 in activating an ovarian development in the bipotential gonad via the canonical Wnt signaling. Early studies showed that SRY represses such Wnt signaling, but also generated discrepancies on whether only mouse Sry is capable of inhibiting such Wnt signaling and whether both human and mouse SRY proteins are able to interact with beta-catenin, the intracellular messenger responsible for executing the Wnt signals. Our studies show that both human SRY and mouse Sry are capable of repressing the Rspo1/Wnt/beta-catenin signaling. However, the repression activities vary among different SRY/Sry proteins and paradoxically related to the presence and/or size of an acidic/glutamine-rich domain. The HMG box of human SRY could bind directly to beta-catenin while the mouse Sry binds to beta-catenin via its HMG box and glutamine-rich domain. The results clarify some of the initial discrepancies, and raise the possibility that SRY interacts with beta-catenin in the nucleus and represses the transcriptional activation of the Rspo1/Wnt target genes involved in ovarian determination, thereby switching on testis determination.

  13. Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis.

    PubMed

    Attanasio, Catia; Nord, Alex S; Zhu, Yiwen; Blow, Matthew J; Biddie, Simon C; Mendenhall, Eric M; Dixon, Jesse; Wright, Crystal; Hosseini, Roya; Akiyama, Jennifer A; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Ren, Bing; Bernstein, Bradley E; Rubin, Edward M; Visel, Axel; Pennacchio, Len A

    2014-06-01

    The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4(FLAG) knock-in mouse line. Using ChIP-seq, we identified ∼51,000 SMARCA4-associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at mid-gestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up- or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4-associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.

  14. Global regulator Anr represses PlcH phospholipase activity in Pseudomonas aeruginosa when oxygen is limiting.

    PubMed

    Jackson, Angelyca A; Daniels, Emily F; Hammond, John H; Willger, Sven D; Hogan, Deborah A

    2014-10-01

    Haemolytic phospholipase C (PlcH) is a potent virulence and colonization factor that is expressed at high levels by Pseudomonas aeruginosa within the mammalian host. The phosphorylcholine liberated from phosphatidylcholine and sphingomyelin by PlcH is further catabolized into molecules that both support growth and further induce plcH expression. We have shown previously that the catabolism of PlcH-released choline leads to increased activity of Anr, a global transcriptional regulator that promotes biofilm formation and virulence. Here, we demonstrated the presence of a negative feedback loop in which Anr repressed plcH transcription and we proposed that this regulation allowed for PlcH levels to be maintained in a way that promotes productive host-pathogen interactions. Evidence for Anr-mediated regulation of PlcH came from data showing that growth at low oxygen (1%) repressed PlcH abundance and plcH transcription in the WT, and that plcH transcription was enhanced in an Δanr mutant. The plcH promoter featured an Anr consensus sequence that was conserved across all P. aeruginosa genomes and mutation of conserved nucleotides within the Anr consensus sequence increased plcH expression under hypoxic conditions. The Anr-regulated transcription factor Dnr was not required for this effect. The loss of Anr was not sufficient to completely derepress plcH transcription as GbdR, a positive regulator of plcH, was required for expression. Overexpression of Anr was sufficient to repress plcH transcription even at 21 % oxygen. Anr repressed plcH expression and phospholipase C activity in a cell culture model for P. aeruginosa-epithelial cell interactions.

  15. Inducing Alignment: The Dynamic Impact of Repression and Mobilizing Structures on Population Support

    DTIC Science & Technology

    2009-12-01

    Sociological Theory, 21(1), 44–68. Retrieved January 25, 2009, from JSTOR database , http://www.jstor.org/sTable/3108608 Eisenstadt, M., & White, J. (2005...Retrieved January 24, 2009, from JSTOR database , http://www.jstor.org/sTable/174207 Hess, D., & Martin, B. (2006). Repression, backfire, and the...once-deadliest region. The Christian Science Monitor, 1. Retrieved September 27, 2008, from ProQuest National Newspapers Core database . (Document ID

  16. Heat shock factor-4 (HSF-4a) represses basal transcription through interaction with TFIIF.

    PubMed

    Frejtag, W; Zhang, Y; Dai, R; Anderson, M G; Mivechi, N F

    2001-05-04

    The heat shock transcription factors (HSFs) regulate the expression of heat shock proteins (hsps), which are critical for normal cellular proliferation and differentiation. One of the HSFs, HSF-4, contains two alternative splice variants, one of which possesses transcriptional repressor properties in vivo. This repressor isoform inhibits basal transcription of hsps 27 and 90 in tissue culture cells. The molecular mechanisms of HSF-4a isoform-mediated transcriptional repression is unknown. Here, we present evidence that HSF-4a inhibits basal transcription in vivo when it is artificially targeted to basal promoters via the DNA-binding domain of the yeast transcription factor, GAL4. By using a highly purified, reconstituted in vitro transcription system, we show that HSF-4a represses basal transcription at an early step during preinitiation complex assembly, as pre-assembled preinitiation complexes are refractory to the inhibitory effect on transcription. This repression occurs by the HSF-4a isoform, but not by the HSF-4b isoform, which we show is capable of activating transcription from a heat shock element-driven promoter in vitro. The repression of basal transcription by HSF-4a occurs through interaction with the basal transcription factor TFIIF. TFIIF interacts with a segment of HSF-4a that is required for the trimerization of HSF-4a, and deletion of this segment no longer inhibits basal transcription. These studies suggest that HSF-4a inhibits basal transcription both in vivo and in vitro. Furthermore, this is the first report identifying an interaction between a transcriptional repressor with the basal transcription factor TFIIF.

  17. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis.

    PubMed

    Inácio, José Manuel; Costa, Carla; de Sá-Nogueira, Isabel

    2003-09-01

    The Bacillus subtilis proteins involved in the utilization of L-arabinose are encoded by the araABDLMNPQ-abfA metabolic operon and by the araE/araR divergent unit. Transcription from the ara operon, araE transport gene and araR regulatory gene is induced by L-arabinose and negatively controlled by AraR. Additionally, expression of both the ara operon and the araE gene is regulated at the transcriptional level by glucose repression. Here, by transcriptional fusion analysis in different mutant backgrounds, it is shown that CcpA most probably complexed with HPr-Ser46-P plays the major role in carbon catabolite repression of the ara regulon by glucose and glycerol. Site-directed mutagenesis and deletion analysis indicate that two catabolite responsive elements (cres) present in the ara operon (cre araA and cre araB) and one cre in the araE gene (cre araE) are implicated in this mechanism. Furthermore, cre araA located between the promoter region of the ara operon and the araA gene, and cre araB placed 2 kb downstream within the araB gene are independently functional and both contribute to glucose repression. In Northern blot analysis, in the presence of glucose, a CcpA-dependent transcript consistent with a message stopping at cre araB was detected, suggesting that transcription 'roadblocking' of RNA polymerase elongation is the most likely mechanism operating in this system. Glucose exerts an additional repression of the ara regulon, which requires a functional araR.

  18. Rhizobium japonicum mutants that are hypersensitive to repression of H2 uptake by oxygen.

    PubMed

    Maier, R J; Merberg, D M

    1982-04-01

    The synthesis of an H2 oxidation system in free-living Rhizobium japonicum wild-type strain SR is repressed by oxygen. Maximal H2 uptake rates were obtained in strain SR after derepression in 11 microM or less dissolved oxygen. Oxygen levels above 45 microM completely repressed H2 uptake in strain SR. Five R. japonicum mutant strains that are hypersensitive to repression or H2 oxidation by oxygen were derived from strain SR. The mutants were obtained by screening H2 uptake-negative mutants that retained the ability to oxidize H2 as bacteroids from soybean nodules. As bacteroids, the five mutant strains were capable of H2 oxidation rates comparable to that of the wild type. The mutants did not take up H2 when derepressed in 22 microM dissolved oxygen, whereas strain SR had substantial activity at this oxygen concentration. The O2 repression of H2 uptake in both the wild-type and two mutant strains, SR174 and SR200, was rapid and was similar to the effect of inhibiting synthesis of H2 uptake system components with rifampin. None of the mutant strains was able to oxidize H2 when the artificial electron acceptors methylene blue or phenazine methosulfate were provided. The mutant strains were not sensitive to killing by oxygen, they took up O2 at rates similar to strain SR, and they did not produce an H2 uptake system that was oxygen labile. Cyclic AMP levels were comparable in strain SR and the five mutant strains after subjection of the cultures to the derepression conditions.

  19. Rhizobium japonicum mutants that are hypersensitive to repression of H2 uptake by oxygen.

    PubMed Central

    Maier, R J; Merberg, D M

    1982-01-01

    The synthesis of an H2 oxidation system in free-living Rhizobium japonicum wild-type strain SR is repressed by oxygen. Maximal H2 uptake rates were obtained in strain SR after derepression in 11 microM or less dissolved oxygen. Oxygen levels above 45 microM completely repressed H2 uptake in strain SR. Five R. japonicum mutant strains that are hypersensitive to repression or H2 oxidation by oxygen were derived from strain SR. The mutants were obtained by screening H2 uptake-negative mutants that retained the ability to oxidize H2 as bacteroids from soybean nodules. As bacteroids, the five mutant strains were capable of H2 oxidation rates comparable to that of the wild type. The mutants did not take up H2 when derepressed in 22 microM dissolved oxygen, whereas strain SR had substantial activity at this oxygen concentration. The O2 repression of H2 uptake in both the wild-type and two mutant strains, SR174 and SR200, was rapid and was similar to the effect of inhibiting synthesis of H2 uptake system components with rifampin. None of the mutant strains was able to oxidize H2 when the artificial electron acceptors methylene blue or phenazine methosulfate were provided. The mutant strains were not sensitive to killing by oxygen, they took up O2 at rates similar to strain SR, and they did not produce an H2 uptake system that was oxygen labile. Cyclic AMP levels were comparable in strain SR and the five mutant strains after subjection of the cultures to the derepression conditions. PMID:6277861

  20. Identification of Ind transcription activation and repression domains required for dorsoventral patterning of the CNS

    PubMed Central

    Von Ohlen, Tonia L.; Moses, Cade

    2009-01-01

    Specification of cell fates across the dorsoventral axis of the central nervous system in Drosophila involves the subdivision of the neuroectoderm into three domains that give rise to three columns of neural precursor cells called neuroblasts. Ventral nervous system defective (Vnd), Intermediate neuroblasts defective (Ind) and Muscle segment homeobox (Msh) are expressed in the three columns from ventral to dorsal, respectively. The products of these genes play multiple important roles in formation and specification of the embryonic nervous system. Ind for example is known to play roles in two important processes. First, Ind is essential for formation of neuroblasts conjunction with SoxB class transcription factors. Sox class transcription factors are known to specify neural stem cells in vertebrates. Second, Ind plays an important role in patterning the CNS in conjunction with, vnd and msh, which is also similar to how vertebrates pattern their neural tube. This work focuses two important aspects of Ind function. First, we used multiple approaches to identify and characterize specific domains within the protein that confer repressor or activator ability. Currently, little is known about the presence of activation or repression domains within Ind. Here we show that transcriptional repression by Ind requires multiple conserved domains within the protein, and that Ind has a transcriptional activation domain. Specifically, we have identified a novel domain, the Pst domain, that has transcriptional repression ability and appears to act independent of interaction with the co-repressor Groucho. This domain is highly conserved among insect species, but is not found in vertebrate Gsh class homeodomain proteins. Second, we show that Ind can and does repress vnd expression, but does so in a stage specific manner. We conclude from this that the function of Ind in regulating vnd expression is one of refinement and maintenance of the dorsal border. PMID:19348939

  1. Distinct localizations and repression activities of MM-1 isoforms toward c-Myc.

    PubMed

    Hagio, Yuko; Kimura, Yumiko; Taira, Takahiro; Fujioka, Yuko; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2006-01-01

    MM-1 was identified as a c-Myc-binding protein and has been reported to repress the E-box-dependent transcription activity of c-Myc by recruiting HDAC1 complex via TIF1 beta/KAP1. In this study, originally isolated MM-1 was found to be a fusion protein comprised of the N-terminal 13 amino acids from the sequence of chromosome 14 and of the rest of the amino acids from that of chromosome 12 and was found to be expressed ubiquitously in all human tissues. Four splicing isoforms of MM-1, MM-1alpha, MM-1beta, MM-1gamma, and MM-1delta, which are derived from the sequence of chromosome 12, were then identified. Of these isoforms, MM-1alpha, MM-1gamma, and MM-1delta were found to be expressed in tissue-specific manners and MM-1beta was found to be expressed ubiquitously. Although all of the isoforms potentially possessed c-Myc- and TIF1beta-binding activities, MM-1beta and MM-1delta were found to be mainly localized in the cytoplasm and MM-1alpha and MM-1gamma were found to be localized in the nucleus together with both c-Myc and TIF1beta. Furthermore, when repression activities of MM-1 isoforms toward c-Myc transcription activity were examined by reporter gene assays in HeLa cells, MM-1alpha, MM-1gamma, and MM-1gamma, but not MM-1beta, were found to repress transcription activity of c-Myc, and the degrees of repression by MM-1gamma and MM-1delta were smaller than those by MM-1 and MM-1alpha. These results suggest that each MM-1 isoform distinctly regulates c-Myc transcription activity in respective tissues.

  2. From sensorimotor inhibition to freudian repression: insights from psychosis applied to neurosis.

    PubMed

    Bazan, Ariane

    2012-01-01

    First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud's mental apparatus, we propose that the messages of discharge of the motor neurons, mobilized to direct perception, also called "indications of reality," are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organization in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it - i.e., inhibition of an action - gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world, or processing language, structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of) the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called "phantoms," which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor fragments.

  3. The B-type lamin is required for somatic repression of testis-specific gene clusters

    PubMed Central

    Shevelyov, Y. Y.; Lavrov, S. A.; Mikhaylova, L. M.; Nurminsky, I. D.; Kulathinal, R. J.; Egorova, K. S.; Rozovsky, Y. M.; Nurminsky, D. I.

    2009-01-01

    Large clusters of coexpressed tissue-specific genes are abundant on chromosomes of diverse species. The genes coordinately misexpressed in diverse diseases are also found in similar clusters, suggesting that evolutionarily conserved mechanisms regulate expression of large multigenic regions both in normal development and in its pathological disruptions. Studies on individual loci suggest that silent clusters of coregulated genes are embedded in repressed chromatin domains, often localized to the nuclear periphery. To test this model at the genome-wide scale, we studied transcriptional regulation of large testis-specific gene clusters in somatic tissues of Drosophila. These gene clusters showed a drastic paucity of known expressed transgene insertions, indicating that they indeed are embedded in repressed chromatin. Bioinformatics analysis suggested the major role for the B-type lamin, LamDmo, in repression of large testis-specific gene clusters, showing that in somatic cells as many as three-quarters of these clusters interact with LamDmo. Ablation of LamDmo by using mutants and RNAi led to detachment of testis-specific clusters from nuclear envelope and to their selective transcriptional up-regulation in somatic cells, thus providing the first direct evidence for involvement of the B-type lamin in tissue-specific gene repression. Finally, we found that transcriptional activation of the lamina-bound testis-specific gene cluster in male germ line is coupled with its translocation away from the nuclear envelope. Our studies, which directly link nuclear architecture with coordinated regulation of tissue-specific genes, advance understanding of the mechanisms underlying both normal cell differentiation and developmental disorders caused by lesions in the B-type lamins and interacting proteins. PMID:19218438

  4. Cytokinin Response Factor 6 Represses Cytokinin-Associated Genes during Oxidative Stress1[OPEN

    PubMed Central

    Howton, Timothy C.; Hallmark, H. Tucker; Keshishian, Erika A.; Parish, Alyssa M.; Benkova, Eva; Mukhtar, M. Shahid

    2016-01-01

    Cytokinin is a phytohormone that is well known for its roles in numerous plant growth and developmental processes, yet it has also been linked to abiotic stress response in a less defined manner. Arabidopsis (Arabidopsis thaliana) Cytokinin Response Factor 6 (CRF6) is a cytokinin-responsive AP2/ERF-family transcription factor that, through the cytokinin signaling pathway, plays a key role in the inhibition of dark-induced senescence. CRF6 expression is also induced by oxidative stress, and here we show a novel function for CRF6 in relation to oxidative stress and identify downstream transcriptional targets of CRF6 that are repressed in response to oxidative stress. Analysis of transcriptomic changes in wild-type and crf6 mutant plants treated with H2O2 identified CRF6-dependent differentially expressed transcripts, many of which were repressed rather than induced. Moreover, many repressed genes also show decreased expression in 35S:CRF6 overexpressing plants. Together, these findings suggest that CRF6 functions largely as a transcriptional repressor. Interestingly, among the H2O2 repressed CRF6-dependent transcripts was a set of five genes associated with cytokinin processes: (signaling) ARR6, ARR9, ARR11, (biosynthesis) LOG7, and (transport) ABCG14. We have examined mutants of these cytokinin-associated target genes to reveal novel connections to oxidative stress. Further examination of CRF6-DNA interactions indicated that CRF6 may regulate its targets both directly and indirectly. Together, this shows that CRF6 functions during oxidative stress as a negative regulator to control this cytokinin-associated module of CRF6-dependent genes and establishes a novel connection between cytokinin and oxidative stress response. PMID:27550996

  5. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa

    PubMed Central

    Sonnleitner, Elisabeth; Abdou, Laetitia; Haas, Dieter

    2009-01-01

    In the metabolically versatile bacterium Pseudomonas aeruginosa, the RNA-binding protein Crc is involved in catabolite repression of a range of degradative genes, such as amiE (encoding aliphatic amidase). We found that a CA-rich sequence (termed CA motif) in the amiE translation initiation region was important for Crc binding. The small RNA CrcZ (407 nt) containing 5 CA motifs was able to bind the Crc protein with high affinity and to remove it from amiE mRNA in vitro. Overexpression of crcZ relieved catabolite repression in vivo, whereas a crcZ mutation pleiotropically prevented the utilization of several carbon sources. The sigma factor RpoN and the CbrA/CbrB two-component system, which is known to maintain a healthy carbon–nitrogen balance, were necessary for crcZ expression. During growth on succinate, a preferred carbon source, CrcZ expression was low, resulting in catabolite repression of amiE and other genes under Crc control. By contrast, during growth on mannitol, a poor carbon source, elevated CrcZ levels correlated with relief of catabolite repression. During growth on glucose, an intermediate carbon source, CrcZ levels and amiE expression were intermediate between those observed in succinate and mannitol media. Thus, the CbrA–CbrB–CrcZ–Crc system allows the bacterium to adapt differentially to various carbon sources. This cascade also regulated the expression of the xylS (benR) gene, which encodes a transcriptional regulator involved in benzoate degradation, in an analogous way, confirming this cascade's global role. PMID:20080802

  6. Multivalent Repression of Aspartic Semialdehyde Dehydrogenase in Escherichia coli K-12

    PubMed Central

    Boy, Emmanuelle; Patte, Jean-Claude

    1972-01-01

    Mutants of Escherichia coli in which the lysine-sensitive aspartokinase is feedback-resistant are described. In these strains, as well as in the wild type, aspartic semialdehyde dehydrogenase is subject to multivalent repression by lysine, threonine, and methionine. When these amino acids were added to a culture in minimal medium, the differential rate of synthesis of the enzyme dropped to zero and remained there for about one generation. PMID:4404058

  7. LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes.

    PubMed

    Elayyan, Jinan; Lee, Eun-Jin; Gabay, Odile; Smith, Christopher A; Qiq, Omar; Reich, Eli; Mobasheri, Ali; Henrotin, Yves; Kimber, Susan J; Dvir-Ginzberg, Mona

    2017-04-07

    Reduced SIRT1 activity and levels during osteoarthritis (OA), promotes gradual loss of cartilage. Loss of cartilage matrix is accompanied by an increase in matrix metalloproteinase (MMP) 13, partially because of enhanced LEF1 transcriptional activity. In this study, we assessed the role of SIRT1 in LEF1-mediated MMP13 gene expression in human OA chondrocytes. Results showed that MMP13 protein levels and enzymatic activity decreased significantly during SIRT1 overexpression or activation by resveratrol. Conversely, MMP13 gene expression was reduced in chondrocytes transfected with SIRT1 siRNA or treated with nicotinamide (NAM), a sirtuin inhibitor. Chondrocytes challenged with IL-1β, a cytokine involved in OA pathogenesis, enhanced LEF1 protein levels, and gene expression, resulting in increased MMP13 gene expression; however, overexpression of SIRT1 during IL-1β challenge impeded LEF1 levels and MMP13 gene expression. Previous reports showed that LEF1 binds to the MMP13 promoter and transactivates its expression, but we observed that SIRT1 repressed LEF1 protein and mRNA expression, ultimately reducing LEF1 transcriptional activity, as judged by luciferase assay. Finally, mouse articular cartilage from Sirt1(-/-) presented increased LEF1 and MMP13 protein levels, similar to human OA cartilage. Thus, demonstrating for the first time that SIRT1 represses MMP13 in human OA chondrocytes, which appears to be mediated, at least in part, through repression of the transcription factor LEF1, a known modulator of MMP13 gene expression.-Elayyan, J. Lee, E.-J., Gabay, O., Smith, C. A., Qiq, O., Reich, E., Mobasheri, A., Henrotin, Y., Kimber, S. J., Dvir-Ginzberg, M. LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes.

  8. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.

    PubMed Central

    Iuchi, S; Lin, E C

    1987-01-01

    In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. PMID:3301812

  9. Telomeric Trans-Silencing: An Epigenetic Repression Combining RNA Silencing and Heterochromatin Formation

    PubMed Central

    Josse, Thibaut; Teysset, Laure; Todeschini, Anne-Laure; Sidor, Clara M; Anxolabéhère, Dominique; Ronsseray, Stéphane

    2007-01-01

    The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequence or TAS) has the capacity to repress in trans in the female germline, a homologous transposon, or transgene located in euchromatin. TSE shows variegation among egg chambers in ovaries when silencing is incomplete. Here, we report that TSE displays an epigenetic transmission through meiosis, which involves an extrachromosomal maternally transmitted factor. We show that this silencing is highly sensitive to mutations affecting both heterochromatin formation (Su(var)205 encoding Heterochromatin Protein 1 and Su(var)3–7) and the repeat-associated small interfering RNA (or rasiRNA) silencing pathway (aubergine, homeless, armitage, and piwi). In contrast, TSE is not sensitive to mutations affecting r2d2, which is involved in the small interfering RNA (or siRNA) silencing pathway, nor is it sensitive to a mutation in loquacious, which is involved in the micro RNA (or miRNA) silencing pathway. These results, taken together with the recent discovery of TAS homologous small RNAs associated to PIWI proteins, support the proposition that TSE involves a repeat-associated small interfering RNA pathway linked to heterochromatin formation, which was co-opted by the P element to establish repression of its own transposition after its recent invasion of the D. melanogaster genome. Therefore, the study of TSE provides insight into the genetic properties of a germline-specific small RNA silencing pathway. PMID:17941712

  10. BMP signaling turns up in fragile X syndrome: FMRP represses BMPR2.

    PubMed

    Broihier, Heather T

    2016-06-07

    Fragile X syndrome is the most common inherited form of intellectual disability and results from a loss of function of the translational repressor FMRP. In this issue of Science Signaling, Kashima et al find that FMRP binds to and represses a specific isoform of BMPR2, a type II bone morphogenetic protein (BMP) receptor. Reducing signaling through this BMP pathway reverses neuroanatomical defects observed in fragile X models.

  11. Proposed roles for DNA methylation in Alu transcriptional repression and mutational inactivation.

    PubMed Central

    Liu, W M; Schmid, C W

    1993-01-01

    Methylation at CpG dinucleotides to produce 5 methyl cytosine (5me-C) has been proposed to regulate the transcriptional expression of human Alu repeats. Similarly, methylation has been proposed to indirectly favor the transpositional activity of young Alu repeats by transcriptionally inactivating older Alu's through the very rapid transition of 5me-C to T. Both hypotheses are examined here by RNA polymerase III (Pol III) in vitro transcription of Alu templates using HeLa cell extracts. A limiting factor represses the template activity of methylated Alu repeats. Competition by methylated prokaryotic vector DNA's relieves repression, showing that the factor is not sequence specific. This competitor has no effect on the activity of unmethylated templates showing that the repressor is highly specific toward methylated DNA. While methylation of a single pair of CpG dinucleotides in the A box of the Poll III promoter is sufficient to cause repression, methylation elsewhere within the template also causes repression. The repressor causing these effects on the Pol III directed transcription of Alu repeats is thought to be a previously reported, repressor for Pol II directed templates. Young Alu repeats are transcriptionally more active templates than a representative older Alu subfamily member. Also, younger Alu's form stable transcriptional complexes faster, potentially giving them an additional advantage. The mutation of three CpG's to CpA's within and near the A box drastically decreases both the template activity and rate of stable complex formation by a young Alu member. The sensitivity of Alu template activity to CpG transitions within the A box partially explains the selective transpositional advantage enjoyed by young Alu members. Images PMID:8464725

  12. FOXD3 AND GRG4 PHYSICALLY INTERACT TO REPRESS TRANSCRIPTION AND INDUCE MESODERM IN XENOPUS*

    PubMed Central

    Yaklichkin, Sergey; Steiner, Aaron B.; Lu, Qun; Kessler, Daniel S.

    2006-01-01

    FoxD3 is a forkhead-related transcriptional regulator that is essential for multiple developmental processes in the vertebrate embryo, including neural crest development and maintenance of mammalian stem cell lineages. Recent results demonstrate a requirement for FoxD3 in Xenopus mesodermal development. In the gastrula, FoxD3 functions as a transcriptional repressor in the Spemann organizer to maintain the expression of Nodal-related members of the TGFß superfamily that induce dorsal mesoderm formation. Here we report that the function of FoxD3 in mesoderm induction is dependent on the recruitment of transcriptional corepressors of the TLE/Groucho family. Structure-function analyses indicate that the transcriptional repression and mesoderm induction activities of FoxD3 are dependent on a C-terminal domain, as well as specific DNA-binding activity conferred by the forkhead domain. The C-terminal domain contains a heptapeptide similar to the eh1/GEH Groucho interaction motif. Deletion and point mutagenesis demonstrated that the FoxD3 eh1/GEH motif is required for both repression of transcription and induction of mesoderm, as well as the direct physical interaction of FoxD3 and Grg4 (Groucho-related gene-4). Consistent with a functional interaction of FoxD3 and Grg4, the transcriptional repression activity of FoxD3 is enhanced by Grg4, and reduced by Grg5, a dominant inhibitory Groucho protein. The results indicate that FoxD3 recruitment of Groucho corepressors is essential for the transcriptional repression of target genes and induction of mesoderm in Xenopus. PMID:17138566

  13. Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. [Bacteria

    SciTech Connect

    Ross, W.; Park, S.J.; Summers, A.O. )

    1989-07-01

    Transcription of the Tn21 mercury resistance operon (mer) is controlled by the toxic metal cation Hg(II). This control is mediated by the product of the merR gene, a 144-amino-acid protein which represses transcription of the structural genes (merTPCAD) in the absence of Hg(II) and activates transcription in the presence of Hg(II). We have used a mer-lac transcriptional fusion to obtain regulatory mutants in this metal-responsive system. Some mutants were defective in Hg(II)-induced activation while retaining repression function, others were defective in repression but not activation, and some had lost both functions. Mutations in three of the four cysteine residues of merR resulted in complete loss of Hg(II)-inducible activation but retention of the repressor function. Other lesions adjacent to or very near these cysteines exhibited severely reduced activation and also retained repressor function. There were two putative helix-turn-helix (HTH) domains in merR, and mutants in each had very different phenotypes. A partially dominant mutation in the more amino-terminal region of the two putative HTH regions resulted in loss of both activation and repression, consistent with a role for this region in DNA binding. Mutations in the more centrally located HTH region resulted only in loss of Hg(II)-induced activation. Lesions in the central and in the carboxy-terminal regions of merR exhibited both Hg(II)-independent and Hg(II)-dependent transcriptional activation. The sole cis-acting mutant obtained with this operon fusion strategy, a down-promoter mutation, lies in a highly conserved base in the -35 region of the merTPCAD promoter.

  14. Repression of Igf1 expression by Ezh2 prevents basal cell differentiation in the developing lung

    PubMed Central

    Galvis, Laura A.; Holik, Aliaksei Z.; Short, Kieran M.; Pasquet, Julie; Lun, Aaron T. L.; Blewitt, Marnie E.; Smyth, Ian M.; Ritchie, Matthew E.; Asselin-Labat, Marie-Liesse

    2015-01-01

    Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality. We show that Ezh2 is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in Ezh2 conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in Ezh2-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of Ezh2-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of Ezh2. We found that loss of Ezh2 de-represses insulin-like growth factor 1 (Igf1) expression and that modulation of IGF1 signaling ex vivo in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for Ezh2 in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of Igf1 expression. PMID:25790853

  15. Structural insights into gene repression by the orphan nuclear receptor SHP

    PubMed Central

    Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; Zechner, Christoph; Suino-Powell, Kelly M.; Kliewer, Steven A.; Melcher, Karsten; Mangelsdorf, David J.; Xu, H. Eric

    2014-01-01

    Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP–EID1 interface are highly conserved. Their mutation diminishes SHP–EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors. PMID:24379397

  16. Structural insights into gene repression by the orphan nuclear receptor SHP.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Zechner, Christoph; Suino-Powell, Kelly M; Kliewer, Steven A; Melcher, Karsten; Mangelsdorf, David J; Xu, H Eric

    2014-01-14

    Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP-EID1 interface are highly conserved. Their mutation diminishes SHP-EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors.

  17. Repression of the Drosophila proliferating-cell nuclear antigen gene promoter by zerknuellt protein

    SciTech Connect

    Yamaguchi, Masamitsu; Hirose, Fumiko; Nishida, Yasuyoshi; Matsukage, Akio )

    1991-10-01

    A 631-bp fragment containing the 5{prime}-flanking region of the Drosophila melanogaster proliferating-cell nuclear antigen (PCNA) gene was placed upstream of the chloramphenicol acetyltransferase (CAT) gene of a CAT vector. A transient expression assay of CAT activity in Drosophila Kc cells transfected with this plasmid and a set of 5{prime}-deletion derivatives revealed that the promoter function resided within a 192-bp region. Cotransfection with a zerknuellt (zen)-expressing plasmid specifically repressed CAT expression. However, cotransfection with expression plasmids for a nonfunctional zen mutation, even skipped, or bicoid showed no significant effect on CAT expression. RNase protection analysis revealed that the repression by zen was at the transcription step. The target sequence of zen was mapped within the 34-bp region of the PCNA gene promoter, even though it lacked zen protein-binding sites. Transgenic flies carrying the PCNA gene regulatory region fused with lacZ were established. These results indicate that zen indirectly represses PCNA gene expression, probably by regulating the expression of some transcription factor(s) that binds to the PCNA gene promoter.

  18. Smad4 suppresses the tumorigenesis and aggressiveness of neuroblastoma through repressing the expression of heparanase

    PubMed Central

    Qu, Hongxia; Zheng, Liduan; Jiao, Wanju; Mei, Hong; Li, Dan; Song, Huajie; Fang, Erhu; Wang, Xiaojing; Li, Shiwang; Huang, Kai; Tong, Qiangsong

    2016-01-01

    Heparanase (HPSE) is the only endo-β-D-glucuronidase that is correlated with the progression of neuroblastoma (NB), the most common extracranial malignancy in childhood. However, the mechanisms underlying HPSE expression in NB still remain largely unknown. Herein, through analyzing cis-regulatory elements and mining public microarray datasets, we identified SMAD family member 4 (Smad4) as a crucial transcription regulator of HPSE in NB. We demonstrated that Smad4 repressed the HPSE expression at the transcriptional levels in NB cells. Mechanistically, Smad4 suppressed the HPSE expression through directly binding to its promoter and repressing the lymphoid enhancer binding factor 1 (LEF1)-facilitated transcription of HPSE via physical interaction. Gain- and loss-of-function studies demonstrated that Smad4 inhibited the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. Restoration of HPSE expression prevented the NB cells from changes in these biological features induced by Smad4. In clinical NB specimens, Smad4 was under-expressed and inversely correlated with HPSE levels, while LEF1 was highly expressed and positively correlated with HPSE expression. Patients with high Smad4 expression, low LEF1 or HPSE levels had greater survival probability. These results demonstrate that Smad4 suppresses the tumorigenesis and aggressiveness of NB through repressing the HPSE expression. PMID:27595937

  19. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression

    PubMed Central

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A.; Ramaswamy, Suresh; Plant, Tony M.; Ojeda, Sergio R.

    2015-01-01

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty. PMID:26671628

  20. Repression of hla by rot is dependent on sae in Staphylococcus aureus.

    PubMed

    Li, Dongmei; Cheung, Ambrose

    2008-03-01

    The regulatory locus sae is a two-component system in Staphylococcus aureus that regulates many important virulence factors, including alpha-toxin (encoded by hla) at the transcriptional level. The SarA homologs Rot and SarT were previously shown to be repressors of hla in selected S. aureus backgrounds. To delineate the interaction of rot and sae and the contribution of sarT to hla expression, an assortment of rot and sae isogenic single mutants, a rot sae double mutant, and a rot sae sarT markerless triple mutant were constructed from wild-type strain COL. Using Northern blot analysis and transcriptional reporter gene green fluorescent protein, fusion, and phenotypic assays, we found that the repression of hla by rot is dependent on sae. A rot sae sarT triple mutant was not able to rescue the hla defect of the rot sae double mutant. Among the three sae promoters, the distal sae P3 promoter is the strongest in vitro. Interestingly, the sae P3 promoter activities correlate with hla expression in rot, rot sae, and rot sae sarT mutants of COL. Transcriptional study has also shown that rot repressed sae, especially at the sae P3 promoter. Collectively, our data implicated the importance of sae in the rot-mediated repression of hla in S. aureus.

  1. The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression.

    PubMed

    Minsky, Neri; Oren, Moshe

    2004-11-19

    Histone modifications play a pivotal role in regulating transcription and other chromatin-associated processes. In yeast, histone H2B monoubiquitylation affects gene silencing. However, mammalian histone ubiquitylation remains poorly understood. We report that the Mdm2 oncoprotein, a RING domain E3 ubiquitin ligase known to ubiquitylate the p53 tumor suppressor protein, can interact directly with histones and promote in vitro monoubiquitylation of histones H2A and H2B. Moreover, Mdm2 induces H2B monoubiquitylation in vivo. Endogenous Mdm2 is tethered in vivo, presumably via p53, to chromatin comprising the p53-responsive p21(waf1) promoter, and Mdm2 overexpression enhances protein ubiquitylation in the vicinity of a p53 binding site within that promoter. Moreover, when recruited to a promoter in the absence of p53, Mdm2 can repress transcription dependently on its RING domain, suggesting that its E3 activity contributes to repression. Histone ubiquitylation may thus constitute a novel mechanism of transcriptional repression by Mdm2, possibly underlying some of its oncogenic activities.

  2. Influence of feed type and its effect on repressing wool-biting behavior in housed sheep.

    PubMed

    Huang, Chen-Yu; Takeda, Ken-Ichi

    2016-08-01

    Sheep sometimes develop an abnormal behavior termed as wool-biting when kept in an indoor system; however, little is known about this behavior. As the provided feed type may affect the foraging behavior and repress abnormal behavior in animals, we tested the effect of feed type on repressing wool-biting behavior in this study. We used hay prepared in three forms, that is hay bales, rolls and cubes. The wool-biting frequency associated with hay bales was significantly higher than that associated with rolls (P < 0.05) and cubes (P < 0.05); however, there was no significant difference between rolls and cubes. For hay rolls, wool-biting significantly decreased after feeding (P < 0.05), suggesting that rolls may provide sheep with appropriate oral stimulation; thus, decreasing the post-feeding oral abnormal behavior. An individual difference of wool-biting behavior between sheep was also detected, and an unexpected bed-eating behavior was found in the hay cube treatment. We suggest that sheep performing movements that are similar to their natural foraging behavior while grazing would repress wool-biting behavior, which happened in hay roll and hay cube treatments. Considering sanitation and animal welfare, providing sheep with hay rolls may provide an easier method to control wool-biting behavior in housed sheep.

  3. Derepression and repression of the histidine operon: role of the feedback site of the first enzyme.

    PubMed Central

    Fernández, V M; Martíndelrío, R; Tébar, A R; Guisán, J M; Ballesteros, A O

    1975-01-01

    Thiazolealanine, a false feedback inhibitor, causes transient repression of the his operon previously derepressed by a severe histidine limitation in strains with a wild-type or feedback-hypersensitive first enzyme but not in feedback-resistant mutants. Since experiments reported here clearly demonstrate that thiazolealanine is not transferred to tRNAHis, it is proposed that this "transient repression" is effected through the interaction of thiazolealanine with the feedback site of the enzyme. Experiments in the presence of rifampin indicate that this thiazolealanine-mediated effect is exerted at the level of translation. We conclude that histidine (free), in addition to forming co-repressor, also represses the operon at the level of translation through feedback interaction with the first enzyme of the pathway (adenosine 5'-triphosphate phosphoribosyltransferase). Rates of derepression in feedback-resistant strains are roughly half of those observed in controls, suggesting a positive role played by a first enzyme with a normal but unoccupied feedback site. Some feedback-resistant mutants, in contrast to the wild type, were unable to exhibit derepression under histidine limitation caused by aminotriazole. PMID:1104584

  4. Repression of early lateral root initiation events by transient water deficit in barley and maize

    PubMed Central

    Babé, Aurélie; Lavigne, Tristan; Séverin, Jean-Philippe; Nagel, Kerstin A.; Walter, Achim; Chaumont, François; Batoko, Henri; Beeckman, Tom; Draye, Xavier

    2012-01-01

    The formation of lateral roots (LRs) is a key driver of root system architecture and developmental plasticity. The first stage of LR formation, which leads to the acquisition of founder cell identity in the pericycle, is the primary determinant of root branching patterns. The fact that initiation events occur asynchronously in a very small number of cells inside the parent root has been a major difficulty in the study of the molecular regulation of branching patterns. Inducible systems that trigger synchronous lateral formation at predictable sites have proven extremely valuable in Arabidopsis to decipher the first steps of LR formation. Here, we present a LR repression system for cereals that relies on a transient water-deficit treatment, which blocks LR initiation before the first formative divisions. Using a time-lapse approach, we analysed the dynamics of this repression along growing roots and were able to show that it targets a very narrow developmental window of the initiation process. Interestingly, the repression can be exploited to obtain negative control root samples where LR initiation is absent. This system could be instrumental in the analysis of the molecular basis of drought-responsive as well as intrinsic pathways of LR formation in cereals. PMID:22527396

  5. A mechanism for transcriptional repression dependent on the BRCA1 E3 ubiquitin ligase.

    PubMed

    Horwitz, Andrew A; Affar, El Bachir; Heine, George F; Shi, Yang; Parvin, Jeffrey D

    2007-04-17

    Loss of function of the tumor suppressor protein BRCA1 is responsible for a high percentage of familial and also sporadic breast cancers. Early work identified a stimulatory transcriptional coactivator function for the BRCA1 protein, and more recently, BRCA1 has been implicated in transcriptional repression, although few examples of repressed genes have been characterized. We recently used an in vitro transcription assay to identify a biochemical mechanism that explained the BRCA1 stimulatory activity. In this study, we identified an ubiquitin-dependent mechanism by which BRCA1 inhibits transcription. BRCA1 ubiquitinates the transcriptional preinitiation complex, preventing stable association of TFIIE and TFIIH, and thus blocks the initiation of mRNA synthesis. What is striking about this mechanism of regulation by BRCA1 is that the ubiquitination of the preinitiation complex is not targeting proteins for degradation by the proteasome, nor are ubiquitin receptors modifying the activity, but rather the ubiquitin moiety itself interferes with the assembly of basal transcription factors at the promoter. Using RNAi to knockdown expression of the endogenous BRCA1 protein, we assessed the level of repression dependent on BRCA1 in the cell, and we found that BRCA1 is at least as significant a transcriptional repressor as it is an activator. These results define a biochemical mechanism by which the BRCA1 enzymatic activity regulates a key cellular process.

  6. Genome-scale high-resolution mapping of activating and repressive nucleotides in regulatory regions

    PubMed Central

    Ernst, Jason; Melnikov, Alexandre; Zhang, Xiaolan; Wang, Li; Rogov, Peter; Mikkelsen, Tarjei S.; Kellis, Manolis

    2016-01-01

    Massively parallel reporter assays (MPRA) enable nucleotide-resolution dissection of transcriptional regulatory regions, such as enhancers, but only few regions at a time. Here, we present a combined experimental and computational approach, Sharpr-MPRA, that allows high-resolution analysis of thousands of regions simultaneously. Sharpr-MPRA combines dense tiling of overlapping MPRA constructs with a probabilistic graphical model to recognize functional regulatory nucleotides, and to distinguish activating and repressive nucleotides, using their inferred contribution to reporter gene expression. We use Sharpr-MPRA to test 4.6 million nucleotides spanning 15,000 putative regulatory regions tiled at 5-nucleotide resolution in two human cell types. Our results recover known cell type-specific regulatory motifs and evolutionarily-conserved nucleotides, and distinguish known activating and repressive motifs. Our results also show that endogenous chromatin state and DNA accessibility are both predictive of regulatory function in reporter assays, identify retroviral elements with activating roles, and uncover ‘attenuator’ motifs with repressive roles in active chromatin. PMID:27701403

  7. MBNL1 and PTB cooperate to repress splicing of Tpm1 exon 3

    PubMed Central

    Gooding, Clare; Edge, Christopher; Lorenz, Mike; Coelho, Miguel B.; Winters, Mikael; Kaminski, Clemens F.; Cherny, Dmitry; Eperon, Ian C.; Smith, Christopher W.J.

    2013-01-01

    Exon 3 of the rat α-tropomyosin (Tpm1) gene is repressed in smooth muscle cells, allowing inclusion of the mutually exclusive partner exon 2. Two key types of elements affect repression of exon 3 splicing: binding sites for polypyrimidine tract-binding protein (PTB) and additional negative regulatory elements consisting of clusters of UGC or CUG motifs. Here, we show that the UGC clusters are bound by muscleblind-like proteins (MBNL), which act as repressors of Tpm1 exon 3. We show that the N-terminal region of MBNL1, containing its four CCCH zinc-finger domains, is sufficient to mediate repression. The same region of MBNL1 can make a direct protein-to-protein interaction with PTB, and RNA binding by MBNL promotes this interaction, apparently by inducing a conformational change in MBNL. Moreover, single molecule analysis showed that MBNL-binding sites increase the binding of PTB to its own sites. Our data suggest that the smooth muscle splicing of Tpm1 is mediated by allosteric assembly of an RNA–protein complex minimally comprising PTB, MBNL and their cognate RNA-binding sites. PMID:23511971

  8. To suppress, or not to suppress? That is repression: controlling intrusive thoughts in addictive behaviour.

    PubMed

    Moss, Antony C; Erskine, James A K; Albery, Ian P; Allen, James Richard; Georgiou, George J

    2015-05-01

    Research to understand how individuals cope with intrusive negative or threatening thoughts suggests a variety of different cognitive strategies aimed at thought control. In this review, two of these strategies--thought suppression and repressive coping--are discussed in the context of addictive behaviour. Thought suppression involves conscious, volitional attempts to expel a thought from awareness, whereas repressive coping, which involves the avoidance of thoughts without the corresponding conscious intention, appears to be a far more automated process. Whilst there has been an emerging body of research exploring the role of thought suppression in addictive behaviour, there remains a dearth of research which has considered the role of repressive coping in the development of, and recovery from, addiction. Based on a review of the literature, and a discussion of the supposed mechanisms which underpin these strategies for exercising mental control, a conceptual model is proposed which posits a potential common mechanism. This model makes a number of predictions which require exploration in future research to fully understand the cognitive strategies utilised by individuals to control intrusive thoughts related to their addictive behaviour.

  9. A BEN-domain-containing protein associates with heterochromatin and represses transcription.

    PubMed

    Sathyan, Kizhakke M; Shen, Zhen; Tripathi, Vidisha; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2011-09-15

    In eukaryotes, higher order chromatin structure governs crucial cellular processes including DNA replication, transcription and post-transcriptional gene regulation. Specific chromatin-interacting proteins play vital roles in the maintenance of chromatin structure. We have identified BEND3, a quadruple BEN domain-containing protein that is highly conserved amongst vertebrates. BEND3 colocalizes with HP1 and H3 trimethylated at K9 at heterochromatic regions in mammalian cells. Using an in vivo gene locus, we have been able to demonstrate that BEND3 associates with the locus only when it is heterochromatic and dissociates upon activation of transcription. Furthermore, tethering BEND3 inhibits transcription from the locus, indicating that BEND3 is involved in transcriptional repression through its interaction with histone deacetylases and Sall4, a transcription repressor. We further demonstrate that BEND3 is SUMOylated and that such modifications are essential for its role in transcriptional repression. Finally, overexpression of BEND3 causes premature chromatin condensation and extensive heterochromatinization, resulting in cell cycle arrest. Taken together, our data demonstrate the role of a novel heterochromatin-associated protein in transcriptional repression.

  10. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor.

    PubMed

    Surjit, Milan; Ganti, Krishna Priya; Mukherji, Atish; Ye, Tao; Hua, Guoqiang; Metzger, Daniel; Li, Mei; Chambon, Pierre

    2011-04-15

    The glucocorticoid (GC) receptor (GR), when liganded to GC, activates transcription through direct binding to simple (+)GRE DNA binding sequences (DBS). GC-induced direct repression via GR binding to complex "negative" GREs (nGREs) has been reported. However, GR-mediated transrepression was generally ascribed to indirect "tethered" interaction with other DNA-bound factors. We report that GC-induces direct transrepression via the binding of GR to simple DBS (IR nGREs) unrelated to (+)GRE. These DBS act on agonist-liganded GR, promoting the assembly of cis-acting GR-SMRT/NCoR repressing complexes. IR nGREs are present in over 1000 mouse/human ortholog genes, which are repressed by GC in vivo. Thus variations in the levels of a single ligand can coordinately turn genes on or off depending in their response element DBS, allowing an additional level of regulation in GR signaling. This mechanism suits GR signaling remarkably well, given that adrenal secretion of GC fluctuates in a circadian and stress-related fashion.

  11. Translational repression by a miniature inverted-repeat transposable element in the 3′ untranslated region

    PubMed Central

    Shen, Jianqiang; Liu, Juhong; Xie, Kabin; Xing, Feng; Xiong, Fang; Xiao, Jinghua; Li, Xianghua; Xiong, Lizhong

    2017-01-01

    Transposable elements constitute a substantial portion of eukaryotic genomes and contribute to genomic variation, function, and evolution. Miniature inverted-repeat transposable elements (MITEs), as DNA transposons, are widely distributed in plant and animal genomes. Previous studies have suggested that retrotransposons act as translational regulators; however, it remains unknown how host mRNAs are influenced by DNA transposons. Here we report a translational repression mechanism mediated by a stowaway-like MITE (sMITE) embedded in the 3′-untranslated region (3′-UTR) of Ghd2, a member of the CCT (CONSTANS [CO], CO-LIKE and TIMING OF CAB1) gene family in rice. Ghd2 regulates important agronomic traits, including grain number, plant height and heading date. Interestingly, the translational repression of Ghd2 by the sMITE mainly relies on Dicer-like 3a (OsDCL3a). Furthermore, other MITEs in the 3′-UTRs of different rice genes exhibit a similar effect on translational repression, thus suggesting that MITEs may exert a general regulatory function at the translational level. PMID:28256530

  12. Not4-dependent translational repression is important for cellular protein homeostasis in yeast

    PubMed Central

    Preissler, Steffen; Reuther, Julia; Koch, Miriam; Scior, Annika; Bruderek, Michael; Frickey, Tancred; Deuerling, Elke

    2015-01-01

    Translation of aberrant or problematic mRNAs can cause ribosome stalling which leads to the production of truncated or defective proteins. Therefore, cells evolved cotranslational quality control mechanisms that eliminate these transcripts and target arrested nascent polypeptides for proteasomal degradation. Here we show that Not4, which is part of the multifunctional Ccr4–Not complex in yeast, associates with polysomes and contributes to the negative regulation of protein synthesis. Not4 is involved in translational repression of transcripts that cause transient ribosome stalling. The absence of Not4 affected global translational repression upon nutrient withdrawal, enhanced the expression of arrested nascent polypeptides and caused constitutive protein folding stress and aggregation. Similar defects were observed in cells with impaired mRNA decapping protein function and in cells lacking the mRNA decapping activator and translational repressor Dhh1. The results suggest a role for Not4 together with components of the decapping machinery in the regulation of protein expression on the mRNA level and emphasize the importance of translational repression for the maintenance of proteome integrity. PMID:25971775

  13. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis.

    PubMed

    Yang, Yang; Chen, Xiao-Xia; Li, Wan-Xia; Wu, Xiao-Qin; Huang, Cheng; Xie, Juan; Zhao, Yu-Xin; Meng, Xiao-Ming; Li, Jun

    2017-03-23

    EZH2, a histone H3 lysine-27-specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway-stimulated fibroblasts in vitro and in vivo by repressing Dkk-1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4 -induced rat liver and primary HSCs as well as TGF-β1-treated HSC-T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF-β1-induced proliferation of HSC-T6 cells and the expression of α-SMA. In addition, knockdown of Dkk1 promoted TGF-β1-induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk-1 through trimethylation of H3K27me3 in TGF-β1-treated HSC-T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2-mediated repression of Dkk1 promotes the activation of Wnt/β-catenin pathway, which is an essential event for HSC activation.

  14. The human cut homeodomain protein represses transcription from the c-myc promoter.

    PubMed Central

    Dufort, D; Nepveu, A

    1994-01-01

    Studies of the c-myc promoter have shown that efficient transcription initiation at the P2 start site as well as the block to elongation of transcription require the presence of the ME1a1 protein binding site upstream of the P2 TATA box. Following fractionation by size exclusion chromatography, three protein-ME1a1 DNA complexes, a, b, and c, were detected by electrophoretic mobility shift assay. A cDNA encoding a protein present in complex c was isolated by screening of an expression library with an ME1a1 DNA probe. This cDNA was found to encode the human homolog of the Drosophila Cut homeodomain protein. The bacterially expressed human Cut (hu-Cut) protein bound to the ME1a1 site, and antibodies against hu-Cut inhibited the ME1a1 binding activity c in nuclear extracts. In cotransfection experiments, the hu-Cut protein repressed transcription from the c-myc promoter, and this repression was shown to be dependent on the presence of the ME1a1 site. Using a reporter construct with a heterologous promoter, we found that c-myc exon 1 sequences were also necessary, in addition to the ME1a1 site, for repression by Cut. Taken together, these results suggest that the human homolog of the Drosophila Cut homeodomain protein is involved in regulation of the c-myc gene. Images PMID:8196661

  15. Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae.

    PubMed Central

    Bostian, K A; Lemire, J M; Halvorson, H O

    1983-01-01

    We have examined the regulation of repressible acid phosphatase (APase; orthophosphoric-monoester phosphohydrolase [acid optimum], EC 3.1.3.2) in Saccharomyces cerevisiae at the physiological and molecular levels, through a series of repression and derepression experiments. We demonstrated that APase synthesis is tightly regulated throughout the growth phase and is influenced by exogenous and endogenous Pi pools. During growth in a nonlimiting Pi medium, APase is repressed. When external Pi becomes limiting, there is a biphasic appearance of APase mRNA and enzyme. Our data on APase mRNA half-lives and on the flux of intracellular Pi and polyphosphate during derepression are consistent with a mechanism of transcriptional autoregulation for the biphasic appearance of APase mRNA. Accordingly, preculture concentrations of Pi control the level of corepressor generated from intracellular polyphosphate degradation. When cells are fully derepressed, APase mRNA levels are constant, and the maximal linear accumulation rate of APase is observed. A scheme to integrate phosphorus metabolism and phosphatase regulation in S. cerevisiae is proposed. Images PMID:6346058

  16. Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a

    PubMed Central

    Shields, Benjamin J.; Jackson, Jacob T.; Metcalf, Donald; Shi, Wei; Huang, Qiutong; Garnham, Alexandra L.; Glaser, Stefan P.; Beck, Dominik; Pimanda, John E.; Bogue, Clifford W.; Smyth, Gordon K.; Alexander, Warren S.; McCormack, Matthew P.

    2016-01-01

    Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF, which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal. PMID:26728554

  17. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants

    SciTech Connect

    Tsai, Fongying; Coruzzi, G. )

    1991-10-01

    Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a normal light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants.

  18. Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription

    PubMed Central

    Tapias, Angels; Fernández, Silvia; Alonso, Juan C.; Barbé, Jordi

    2002-01-01

    Transcription of the Rhodobacter sphaeroides recA promoter (PrecA) is induced upon DNA damage in a lexA-dependent manner. In vivo experiments demonstrate that LexA protein represses and might also activate transcription of PrecA. Purified R.sphaeroides LexA protein specifically binds the SOS boxes located within the PrecA region. In vitro transcription analysis, using Escherichia coli RNA polymerase (RNAP), indicated that the presence of LexA may stimulate and repress transcription of PrecA. EMSA and DNase I footprinting experiments show that LexA and RNAP can bind simultaneously to PrecA. At low LexA concentrations it enhances RNAP binding to PrecA, stimulates open complex formation and strand separation beyond the transcription start site. At high LexA concentrations, however, RNAP-promoted strand separation is not observed beyond the +5 region. LexA might repress transcription by interfering with the clearance process instead of blocking the access of RNAP to the promoter region. Based on these findings we propose that the R.sphaeroides LexA protein performs fine tuning of the SOS response, which might provide a physiological advantage by enhancing transcription of SOS genes and delaying full activation of the response. PMID:11917014

  19. Widespread Collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling Complexes in Transcriptional Repression

    PubMed Central

    Fazzio, Thomas G.; Kooperberg, Charles; Goldmark, Jesse P.; Neal, Cassandra; Basom, Ryan; Delrow, Jeffrey; Tsukiyama, Toshio

    2001-01-01

    The yeast Isw2 chromatin remodeling complex functions in parallel with the Sin3-Rpd3 histone deacetylase complex to repress early meiotic genes upon recruitment by Ume6p. For many of these genes, the effect of an isw2 mutation is partially masked by a functional Sin3-Rpd3 complex. To identify the full range of genes repressed or activated by these factors and uncover hidden targets of Isw2-dependent regulation, we performed full genome expression analyses using cDNA microarrays. We find that the Isw2 complex functions mainly in repression of transcription in a parallel pathway with the Sin3-Rpd3 complex. In addition to Ume6 target genes, we find that many Ume6-independent genes are derepressed in mutants lacking functional Isw2 and Sin3-Rpd3 complexes. Conversely, we find that ume6 mutants, but not isw2 sin3 or isw2 rpd3 double mutants, have reduced fidelity of mitotic chromosome segregation, suggesting that one or more functions of Ume6p are independent of Sin3-Rpd3 and Isw2 complexes. Chromatin structure analyses of two nonmeiotic genes reveals increased DNase I sensitivity within their regulatory regions in an isw2 mutant, as seen previously for one meiotic locus. These data suggest that the Isw2 complex functions at Ume6-dependent and -independent loci to create DNase I-inaccessible chromatin structure by regulating the positioning or placement of nucleosomes. PMID:11533234

  20. Dissecting miRNA gene repression on single cell level with an advanced fluorescent reporter system

    PubMed Central

    Lemus-Diaz, Nicolas; Böker, Kai O.; Rodriguez-Polo, Ignacio; Mitter, Michael; Preis, Jasmin; Arlt, Maximilian; Gruber, Jens

    2017-01-01

    Despite major advances on miRNA profiling and target predictions, functional readouts for endogenous miRNAs are limited and frequently lead to contradicting conclusions. Numerous approaches including functional high-throughput and miRISC complex evaluations suggest that the functional miRNAome differs from the predictions based on quantitative sRNA profiling. To resolve the apparent contradiction of expression versus function, we generated and applied a fluorescence reporter gene assay enabling single cell analysis. This approach integrates and adapts a mathematical model for miRNA-driven gene repression. This model predicts three distinct miRNA-groups with unique repression activities (low, mid and high) governed not just by expression levels but also by miRNA/target-binding capability. Here, we demonstrate the feasibility of the system by applying controlled concentrations of synthetic siRNAs and in parallel, altering target-binding capability on corresponding reporter-constructs. Furthermore, we compared miRNA-profiles with the modeled predictions of 29 individual candidates. We demonstrate that expression levels only partially reflect the miRNA function, fitting to the model-projected groups of different activities. Furthermore, we demonstrate that subcellular localization of miRNAs impacts functionality. Our results imply that miRNA profiling alone cannot define their repression activity. The gene regulatory function is a dynamic and complex process beyond a minimalistic conception of “highly expressed equals high repression”. PMID:28338079

  1. Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle.

    PubMed

    Gupte, Rebecca; Muse, Ginger W; Chinenov, Yurii; Adelman, Karen; Rogatsky, Inez

    2013-09-03

    Widespread anti-inflammatory actions of glucocorticoid hormones are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor of the nuclear receptor superfamily. In conjunction with its corepressor GR-interacting protein-1 (GRIP1), GR tethers to the DNA-bound activator protein-1 and NF-κB and represses transcription of their target proinflammatory cytokine genes. However, these target genes fall into distinct classes depending on the step of the transcription cycle that is rate-limiting for their activation: Some are controlled through RNA polymerase II (PolII) recruitment and initiation, whereas others undergo signal-induced release of paused elongation complexes into productive RNA synthesis. Whether these genes are differentially regulated by GR is unknown. Here we report that, at the initiation-controlled inflammatory genes in primary macrophages, GR inhibited LPS-induced PolII occupancy. In contrast, at the elongation-controlled genes, GR did not affect PolII recruitment or transcription initiation but promoted, in a GRIP1-dependent manner, the accumulation of the pause-inducing negative elongation factor. Consistently, GR-dependent repression of elongation-controlled genes was abolished specifically in negative elongation factor-deficient macrophages. Thus, GR:GRIP1 use distinct mechanisms to repress inflammatory genes at different stages of the transcription cycle.

  2. Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation

    PubMed Central

    Besse, Florence; López de Quinto, Sonia; Marchand, Virginie; Trucco, Alvar; Ephrussi, Anne

    2009-01-01

    Local translation of asymmetrically enriched mRNAs is a powerful mechanism for functional polarization of the cell. In Drosophila, exclusive accumulation of Oskar protein at the posterior pole of the oocyte is essential for development of the future embryo. This is achieved by the formation of a dynamic oskar ribonucleoprotein (RNP) complex regulating the transport of oskar mRNA, its translational repression while unlocalized, and its translational activation upon arrival at the posterior pole. We identified the nucleo–cytoplasmic shuttling protein PTB (polypyrimidine tract-binding protein)/hnRNP I as a new factor associating with the oskar RNP in vivo. While PTB function is largely dispensable for oskar mRNA transport, it is necessary for translational repression of the localizing mRNA. Unexpectedly, a cytoplasmic form of PTB can associate with oskar mRNA and repress its translation, suggesting that nuclear recruitment of PTB to oskar complexes is not required for its regulatory function. Furthermore, PTB binds directly to multiple sites along the oskar 3′ untranslated region and mediates assembly of high-order complexes containing multiple oskar RNA molecules in vivo. Thus, PTB is a key structural component of oskar RNP complexes that dually controls formation of high-order RNP particles and translational silencing. PMID:19131435

  3. IL-7 signalling represses Bcl-6 and the TFH gene program.

    PubMed

    McDonald, Paul W; Read, Kaitlin A; Baker, Chandra E; Anderson, Ashlyn E; Powell, Michael D; Ballesteros-Tato, André; Oestreich, Kenneth J

    2016-01-08

    The transcriptional repressor Bcl-6 is linked to the development of both CD4(+) T follicular helper (TFH) and central memory T (TCM) cells. Here, we demonstrate that in response to decreased IL-2 signalling, T helper 1 (TH1) cells upregulate Bcl-6 and co-initiate TFH- and TCM-like gene programs, including expression of the cytokine receptors IL-6Rα and IL-7R. Exposure of this potentially bi-potent cell population to IL-6 favours the TFH gene program, whereas IL-7 signalling represses TFH-associated genes including Bcl6 and Cxcr5, but not the TCM-related genes Klf2 and Sell. Mechanistically, IL-7-dependent activation of STAT5 contributes to Bcl-6 repression. Importantly, antigen-specific IL-6Rα(+)IL-7R(+) CD4(+) T cells emerge from the effector population at late time points post influenza infection. These data support a novel role for IL-7 in the repression of the TFH gene program and evoke a divergent regulatory mechanism by which post-effector TH1 cells may contribute to long-term cell-mediated and humoral immunity.

  4. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    SciTech Connect

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Sigma1 ligand treatment mediates decrease in tumor cell mass. Black-Right-Pointing-Pointer Identification of a Sigma1 ligand with reversible translational repressor actions. Black-Right-Pointing-Pointer Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  5. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  6. Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae.

    PubMed

    Bostian, K A; Lemire, J M; Halvorson, H O

    1983-05-01

    We have examined the regulation of repressible acid phosphatase (APase; orthophosphoric-monoester phosphohydrolase [acid optimum], EC 3.1.3.2) in Saccharomyces cerevisiae at the physiological and molecular levels, through a series of repression and derepression experiments. We demonstrated that APase synthesis is tightly regulated throughout the growth phase and is influenced by exogenous and endogenous Pi pools. During growth in a nonlimiting Pi medium, APase is repressed. When external Pi becomes limiting, there is a biphasic appearance of APase mRNA and enzyme. Our data on APase mRNA half-lives and on the flux of intracellular Pi and polyphosphate during derepression are consistent with a mechanism of transcriptional autoregulation for the biphasic appearance of APase mRNA. Accordingly, preculture concentrations of Pi control the level of corepressor generated from intracellular polyphosphate degradation. When cells are fully derepressed, APase mRNA levels are constant, and the maximal linear accumulation rate of APase is observed. A scheme to integrate phosphorus metabolism and phosphatase regulation in S. cerevisiae is proposed.

  7. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression

    PubMed Central

    Lyons, Shawn M.; Achorn, Chris; Kedersha, Nancy L.; Anderson, Paul J.; Ivanov, Pavel

    2016-01-01

    Stress-induced angiogenin (ANG)-mediated tRNA cleavage promotes a cascade of cellular events that starts with production of tRNA-derived stress-induced RNAs (tiRNAs) and culminates with enhanced cell survival. This stress response program relies on a subset tiRNAs that inhibit translation initiation and induce the assembly of stress granules (SGs), cytoplasmic ribonucleoprotein complexes with cytoprotective and pro-survival properties. SG-promoting tiRNAs bear oligoguanine motifs at their 5′-ends, assemble G-quadruplex-like structures and interact with the translational silencer YB-1. We used CRISPR/Cas9-based genetic manipulations and biochemical approaches to examine the role of YB-1 in tiRNA-mediated translational repression and SG assembly. We found that YB-1 directly binds to tiRNAs via its cold shock domain. This interaction is required for packaging of tiRNA-repressed mRNAs into SGs but is dispensable for tiRNA-mediated translational repression. Our studies reveal the functional role of YB-1 in the ANG-mediated stress response program. PMID:27174937

  8. Could repressive coping be a mediating factor in the symptom profile of individuals diagnosed with schizophrenia?

    PubMed

    Scholes, B; Martin, C R

    2010-06-01

    Despite a relatively high prevalence, and the enduring patronage of the disorder by psychiatry and the pharmaceutical industry, innovative conceptualization of schizophrenia in a client-empowering and quality of life-enhancing way appears to represent a vacuum within the clinical agenda, certainly taking second place to 'patient management'. However, against this bland background of medicalization of what is clearly a poorly understood and complex multifactorial syndrome, innovative treatment approaches aimed at symptom control, in particular, the stress vulnerability model (SVM), have been developed. However, the SVM is an incomplete model of patient experience and says little of aetiological note. One area of psychological function that may give further insight into the symptom experience associated with schizophrenia within the context of stress vulnerability concerns the mechanisms of repression. Ironically, the notion of repression will for many represent the epitome of nonevidence-based psychiatric theory and related psychodynamic therapy practice. However, more contemporary work within the psychological literature has aimed to make the concept both measurable and observable. No longer occluded by the context of psychoanalysis, cognitive science accounts of repression may be of value in facilitating understanding of the variability and predictability of symptoms of schizophrenia and may provide a dimension of therapeutic engagement allied to the SVM.

  9. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis

    PubMed Central

    Ciglar, Lucia; Girardot, Charles; Wilczyński, Bartek; Braun, Martina; Furlong, Eileen E. M.

    2014-01-01

    Molecular models of cell fate specification typically focus on the activation of specific lineage programs. However, the concurrent repression of unwanted transcriptional networks is also essential to stabilize certain cellular identities, as shown in a number of diverse systems and phyla. Here, we demonstrate that this dual requirement also holds true in the context of Drosophila myogenesis. By integrating genetics and genomics, we identified a new role for the pleiotropic transcriptional repressor Tramtrack69 in myoblast specification. Drosophila muscles are formed through the fusion of two discrete cell types: founder cells (FCs) and fusion-competent myoblasts (FCMs). When tramtrack69 is removed, FCMs appear to adopt an alternative muscle FC-like fate. Conversely, ectopic expression of this repressor phenocopies muscle defects seen in loss-of-function lame duck mutants, a transcription factor specific to FCMs. This occurs through Tramtrack69-mediated repression in FCMs, whereas Lame duck activates a largely distinct transcriptional program in the same cells. Lineage-specific factors are therefore not sufficient to maintain FCM identity. Instead, their identity appears more plastic, requiring the combination of instructive repressive and activating programs to stabilize cell fate. PMID:24961800

  10. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes

    PubMed Central

    Rose, Nathan R; King, Hamish W; Blackledge, Neil P; Fursova, Nadezda A; Ember, Katherine JI; Fischer, Roman; Kessler, Benedikt M; Klose, Robert J

    2016-01-01

    Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI: http://dx.doi.org/10.7554/eLife.18591.001 PMID:27705745

  11. Repression and catabolite gene activation in the araBAD operon.

    PubMed

    Lichenstein, H S; Hamilton, E P; Lee, N

    1987-02-01

    Catabolite gene activation of the araBAD operon was examined by using catabolite gene activator protein (CAP) site deletion mutants. A high-affinity CAP-binding site between the divergently orientated araBAD and araC operons has been previously identified by DNase I footprinting techniques. Subsequent experiments disagreed as to whether this site is directly involved in stimulating araBAD expression. In this paper, we present data showing that deletions generated by in vitro mutagenesis of the CAP site led to a five- to sixfold reduction in single-copy araBAD promoter activity in vivo. We concluded that catabolite gene activation of araBAD involves this CAP site. The hypothesis that CAP stimulates the araBAD promoter primarily by relieving repression was then tested. The upstream operator araO2 was required for repression, but we observed that the magnitude of CAP stimulation was unaffected by the presence or absence of araO2. We concluded that CAP plays no role in relieving repression. Other experiments showed that when CAP binds it induces a bend in the ara DNA; similar bending has been reported upon CAP binding to lac DNA. This conformational change in the DNA may be essential to the mechanism of CAP activation.

  12. GWT1 encoding an inositol acyltransferase homolog is required for laccase repression and stress resistance in the basidiomycete Cryptococcus neoformans.

    PubMed

    Zhao, Qiang; Wei, Dongsheng; Li, Zhongming; Wang, Yu; Zhu, Xiangyang; Zhu, Xudong

    2015-12-01

    The transcriptional expression of laccase, which has been confirmed to contribute to the virulence of Cryptococcus neoformans, is often repressed by a high concentration of glucose in many fungi, including C. neoformans. The underlying mechanism of the repression remains largely unknown. In this study, we found that a GWT1 gene that encodes a glycosylphosphatidylinositol (GPI) anchor biosynthesis-related protein is required for laccase repression by glucose in the basidiomycete C. neoformans. Disruption of GWT1 with the Agrobacterium tumefaciens-mediated T-DNA random insertional mutagenesis (ATMT) method resulted in constitutive expression of the laccase gene LAC1 and constant melanin formation. The loss of GWT1 also dramatically affected the cell membrane integrity and stress resistance. Our results revealed a GPI-dependent glucose repression mechanism in C. neoformans, and it may be helpful for understanding the virulence of C. neoformans.

  13. Sp1 mediates repression of the resistin gene by PPAR{gamma} agonists in 3T3-L1 adipocytes

    SciTech Connect

    Chung, S.S.; Choi, H.H.; Cho, Y.M.; Lee, H.K.; Park, K.S. . E-mail: kspark@snu.ac.kr

    2006-09-15

    Resistin is an adipokine related to obesity and insulin resistance. Expression of the resistin gene is repressed by the treatment of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists, thiazolidinediones (TZDs). In this study, we investigated the mechanism by which TZDs inhibit the resistin gene expression. Resistin gene expression was decreased by TZD in fully differentiated 3T3-L1 adipocytes, which was abolished after treatment of cycloheximide (a protein synthesis inhibitor). TZD could not repress the expression of the resistin gene in the presence of mithramycin A (an Sp1 binding inhibitor). Sp1 binding site of the resistin promoter (-122/-114 bp) was necessary for the repression. Further investigation of the effect of TZDs on the modification of Sp1 showed that the level of O-glycosylation of Sp1 was decreased in this process. These results suggest that PPAR{gamma} activation represses the expression of the resistin gene by modulating Sp1 activity.

  14. Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.

    PubMed

    Yuste, L; Rojo, F

    2001-11-01

    Expression of the alkane degradation pathway encoded in the OCT plasmid of Pseudomonas putida GPo1 is induced in the presence of alkanes by the AlkS regulator, and it is down-regulated by catabolic repression. The catabolic repression effect reduces the expression of the two AlkS-activated promoters of the pathway, named PalkB and PalkS2. The P. putida Crc protein participates in catabolic repression of some metabolic pathways for sugars and nitrogenated compounds. Here, we show that Crc has an important role in the catabolic repression exerted on the P. putida GPo1 alkane degradation pathway when cells grow exponentially in a rich medium. Interestingly, Crc plays little or no role on the catabolic repression exerted by some organic acids in a defined medium, which shows that these two types of catabolic repression can be genetically distinguished. Disruption of the crc gene led to a six- to sevenfold increase in the levels of the mRNAs arising from the AlkS-activated PalkB and PalkS2 promoters in cells growing exponentially in rich medium. This was not due to an increase in the half-lives of these mRNAs. Since AlkS activates the expression of its own gene and seems to be present in limiting amounts, the higher mRNA levels observed in the absence of Crc could arise from an increase in either transcription initiation or in the translation efficiency of the alkS mRNA. Both alternatives would lead to increased AlkS levels and hence to elevated expression of PalkB and PalkS2. High expression of alkS from a heterologous promoter eliminated catabolic repression. Our results indicate that catabolic repression in rich medium is directed to down-regulate the levels of the AlkS activator. Crc would thus modulate, directly or indirectly, the levels of AlkS.

  15. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  16. Equations For Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  17. Chemical Transformation Simulator

    EPA Science Inventory

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  18. Roles for the Saccharomyces cerevisiae SDS3, CBK1 and HYM1 genes in transcriptional repression by SIN3.

    PubMed Central

    Dorland, S; Deegenaars, M L; Stillman, D J

    2000-01-01

    The Saccharomyces cerevisiae Sin3 transcriptional repressor is part of a large multiprotein complex that includes the Rpd3 histone deacetylase. A LexA-Sin3 fusion protein represses transcription of promoters with LexA binding sites. To identify genes involved in repression by Sin3, we conducted a screen for mutations that reduce repression by LexA-Sin3. One of the mutations identified that reduces LexA-Sin3 repression is in the RPD3 gene, consistent with the known roles of Rpd3 in transcriptional repression. Mutations in CBK1 and HYM1 reduce repression by LexA-Sin3 and also cause defects in cell separation and altered colony morphology. cbk1 and hym1 mutations affect some but not all genes regulated by SIN3 and RPD3, but the effect on transcription is much weaker. Genetic analysis suggests that CBK1 and HYM1 function in the same pathway, but this genetic pathway is separable from that of SIN3 and RPD3. The remaining gene from this screen described in this report is SDS3, previously identified in a screen for mutations that increase silencing at HML, HMR, and telomere-linked genes, a phenotype also seen in sin3 and rpd3 mutants. Genetic analysis demonstrates that SDS3 functions in the same genetic pathway as SIN3 and RPD3, and coimmunoprecipitation experiments show that Sds3 is physically present in the Sin3 complex. PMID:10655212

  19. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System*

    PubMed Central

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. PMID:27226589

  20. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression.

    PubMed

    Kagale, Sateesh; Rozwadowski, Kevin

    2011-02-01

    Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLNxxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TOPLESS (TPL) and AtSAP18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA19, co-complex formation between TPL-related 1 (TPR1) and AtHDA19, as well as direct physical interaction between AtSAP18 and AtHDA19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR-mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors.

  1. Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation inducing stimulus

    PubMed Central

    Hu, Zhenbo; Negrotto, Soledad; Gu, Xiaorong; Mahfouz, Reda; Ng, Kwok Peng; Ebrahem, Quteba; Copelan, Edward; Singh, Harinder; Maciejewski, Jaroslaw P; Saunthararajah, Yogen

    2010-01-01

    The cytosine analogue decitabine alters hematopoietic differentiation. For example, decitabine treatment increases self-renewal of normal hematopoietic stem cells. The mechanisms underlying decitabine induced shifts in differentiation are poorly understood, but likely relate to the ability of decitabine to deplete the chromatin-modifying enzyme DNA methyl-transferase 1 (DNMT1) that plays a central role in transcription repression. HOXB4 is a transcription factor that promotes hematopoietic stem cell self-renewal. In hematopoietic precursors induced to differentiate by the lineage-specifying transcription factor Pu.1, or by the cytokine granulocyte-colony stimulating factor (G-CSF), there is rapid repression of HOXB4 and other stem cell genes. Depletion of DNMT1 using shRNA or decitabine prevents HOXB4 repression by Pu.1 or G-CSF, and maintains hematopoietic precursor self-renewal. In contrast, depletion of DNMT1 by decitabine six hours after the differentiation stimulus, that is, after repression of HOXB4 has occurred, augments differentiation. Therefore, DNMT1 is required for the early repression of stem cell genes that occurs in response to a differentiation stimulus, providing a mechanistic explanation for the observation that decitabine can maintain or increase hematopoietic stem cell self-renewal in the presence of a differentiation stimulus. Using decitabine to deplete DNMT1 after this early repression phase does not impair progressive differentiation. PMID:20501800

  2. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.

    PubMed

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-07-15

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon.

  3. Mechanisms of transformation toughening

    SciTech Connect

    Olson, G.B.

    1992-02-01

    Modelling the thermodynamics and kinetics of isothermal martensitic transformation under stress, transformation toughening in austenitic steels, and dispersed phase transformation plasticity in low alloy steels are discussed briefly in this progress report for Doe Grant DE-FG02-88ER45365.

  4. Ski prevents TGF-β-induced EMT and cell invasion by repressing SMAD-dependent signaling in non-small cell lung cancer.

    PubMed

    Yang, Haiping; Zhan, Lei; Yang, Tianjie; Wang, Longqiang; Li, Chang; Zhao, Jun; Lei, Zhe; Li, Xiangdong; Zhang, Hong-Tao

    2015-07-01

    Epithelial-mesenchymal transition (EMT) is a key event in cancer metastasis, which confers cancer cells with increased motility and invasiveness, and EMT is characterized by loss of epithelial marker E-cadherin and gain of mesenchymal marker N-cadherin. Transforming growth factor-β (TGF-β) signaling is a crucial inducer of EMT in various types of cancer. Ski is an important negative regulator of TGF-β signaling, which interacts with SMADs to repress TGF-β signaling activity. Although there is accumulating evidence that Ski functions as a promoter or suppressor in human types of cancer, the molecular mechanisms by which Ski affects TGF-β-induced EMT and invasion in non-small cell lung cancer (NSCLC) are not largely elucidated. In the present study, we investigated the mechanistic role of Ski in NSCLC metastasis. Ski was significantly reduced in metastatic NSCLC cells or tissues when compared with non-metastatic NSCLC cells or tissues. Moreover, following TGF-β stimulation Ski-silenced A549 cells had more significant features of EMT and a higher invasive activity when compared with A549 cells overexpressing Ski. Mechanistically, Ski-silenced and overexpressed A549 cells showed an increase and a reduction in the SMAD3 phosphorylation level, respectively. This was supported by plasminogen activator inhibitor-1 (PAI-1) promoter activity obtained in Ski-silenced and overexpressed A549 cells. However, after treatment of SIS3 (inhibitor of SMAD3 phosphorylation) followed by TGF-β1 stimulation, we did not observe any effect of Ski on TGF-β-induced EMT, and invasion in Ski-silenced and overexpressed A549 cells. In conclusion, our findings suggest that Ski represses TGF-β-induced EMT and invasion by inhibiting SMAD-dependent signaling in NSCLC.

  5. Methylation-independent repression of Dnmt3b contributes to oncogenic activity of Dnmt3a in mouse MYC-induced T-cell lymphomagenesis.

    PubMed

    Haney, S L; Hlady, R A; Opavska, J; Klinkebiel, D; Pirruccello, S J; Dutta, S; Datta, K; Simpson, M A; Wu, L; Opavsky, R

    2015-10-01

    DNA methyltransferase 3A (DNMT3A) catalyzes cytosine methylation of mammalian genomic DNA. In addition to myeloid malignancies, mutations in DNMT3A have been recently reported in T-cell lymphoma and leukemia, implying a possible involvement in the pathogenesis of human diseases. However, the role of Dnmt3a in T-cell transformation in vivo is poorly understood. Here we analyzed the functional consequences of Dnmt3a inactivation in a mouse model of MYC-induced T-cell lymphomagenesis (MTCL). Loss of Dnmt3a delayed tumorigenesis by suppressing cellular proliferation during disease progression. Gene expression profiling and pathway analysis identified upregulation of 17 putative tumor suppressor genes, including DNA methyltransferase Dnmt3b, in Dnmt3a-deficient lymphomas as molecular events potentially responsible for the delayed lymphomagenesis in Dnmt3a(Δ/Δ) mice. Interestingly, promoter and gene body methylation of these genes was not substantially changed between control and Dnmt3a-deficient lymphomas, suggesting that Dnmt3a may inhibit their expression in a methylation-independent manner. Re-expression of both wild type and catalytically inactive Dnmt3a in Dnmt3a(Δ/Δ) lymphoma cells in vitro inhibited Dnmt3b expression, indicating that Dnmt3b upregulation may be directly repressed by Dnmt3a. Importantly, genetic inactivation of Dnmt3b accelerated lymphomagenesis in Dnmt3a(Δ/Δ) mice, demonstrating that upregulation of Dnmt3b is a relevant molecular change in Dnmt3a-deficient lymphomas that inhibits disease progression. Collectively, our data demonstrate an unexpected oncogenic role for Dnmt3a in MTCL through methylation-independent repression of Dnmt3b and possibly other tumor suppressor genes.

  6. ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidification of the thylakoid lumen.

    PubMed

    Rott, Markus; Martins, Nádia F; Thiele, Wolfram; Lein, Wolfgang; Bock, Ralph; Kramer, David M; Schöttler, Mark A

    2011-01-01

    Tobacco (Nicotiana tabacum) plants strictly adjust the contents of both ATP synthase and cytochrome b(6)f complex to the metabolic demand for ATP and NADPH. While the cytochrome b(6)f complex catalyzes the rate-limiting step of photosynthetic electron flux and thereby controls assimilation, the functional significance of the ATP synthase adjustment is unknown. Here, we reduced ATP synthase accumulation by an antisense approach directed against the essential nuclear-encoded γ-subunit (AtpC) and by the introduction of point mutations into the translation initiation codon of the plastid-encoded atpB gene (encoding the essential β-subunit) via chloroplast transformation. Both strategies yielded transformants with ATP synthase contents ranging from 100 to <10% of wild-type levels. While the accumulation of the components of the linear electron transport chain was largely unaltered, linear electron flux was strongly inhibited due to decreased rates of plastoquinol reoxidation at the cytochrome b(6)f complex (photosynthetic control). Also, nonphotochemical quenching was triggered at very low light intensities, strongly reducing the quantum efficiency of CO(2) fixation. We show evidence that this is due to an increased steady state proton motive force, resulting in strong lumen overacidification, which in turn represses photosynthesis due to photosynthetic control and dissipation of excitation energy in the antenna bed.

  7. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO.

    PubMed

    Westra, Edze R; Pul, Umit; Heidrich, Nadja; Jore, Matthijs M; Lundgren, Magnus; Stratmann, Thomas; Wurm, Reinhild; Raine, Amanda; Mescher, Melina; Van Heereveld, Luc; Mastop, Marieke; Wagner, E Gerhart H; Schnetz, Karin; Van Der Oost, John; Wagner, Rolf; Brouns, Stan J J

    2010-09-01

    The recently discovered prokaryotic CRISPR/Cas defence system provides immunity against viral infections and plasmid conjugation. It has been demonstrated that in Escherichia coli transcription of the Cascade genes (casABCDE) and to some extent the CRISPR array is repressed by heat-stable nucleoid-structuring (H-NS) protein, a global transcriptional repressor. Here we elaborate on the control of the E. coli CRISPR/Cas system, and study the effect on CRISPR-based anti-viral immunity. Transformation of wild-type E. coli K12 with CRISPR spacers that are complementary to phage Lambda does not lead to detectable protection against Lambda infection. However, when an H-NS mutant of E. coli K12 is transformed with the same anti-Lambda CRISPR, this does result in reduced sensitivity to phage infection. In addition, it is demonstrated that LeuO, a LysR-type transcription factor, binds to two sites flanking the casA promoter and the H-NS nucleation site, resulting in derepression of casABCDE12 transcription. Overexpression of LeuO in E. coli K12 containing an anti-Lambda CRISPR leads to an enhanced protection against phage infection. This study demonstrates that in E. coli H-NS and LeuO are antagonistic regulators of CRISPR-based immunity.

  8. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    SciTech Connect

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  9. Influence of Repressive Coping Style on Cortical Activation during Encoding of Angry Faces

    PubMed Central

    Rauch, Astrid Veronika; ter Horst, Lena; Paul, Victoria Gabriele; Bauer, Jochen; Dannlowski, Udo; Konrad, Carsten; Ohrmann, Patricia; Kugel, Harald; Egloff, Boris; Arolt, Volker; Suslow, Thomas

    2014-01-01

    Background Coping plays an important role for emotion regulation in threatening situations. The model of coping modes designates repression and sensitization as two independent coping styles. Repression consists of strategies that shield the individual from arousal. Sensitization indicates increased analysis of the environment in order to reduce uncertainty. According to the discontinuity hypothesis, repressors are sensitive to threat in the early stages of information processing. While repressors do not exhibit memory disturbances early on, they manifest weak memory for these stimuli later. This study investigates the discontinuity hypothesis using functional magnetic resonance imaging (fMRI). Methods Healthy volunteers (20 repressors and 20 sensitizers) were selected from a sample of 150 students on the basis of the Mainz Coping Inventory. During the fMRI experiment, subjects evaluated and memorized emotional and neutral faces. Subjects performed two sessions of face recognition: immediately after the fMRI session and three days later. Results Repressors exhibited greater activation of frontal, parietal and temporal areas during encoding of angry faces compared to sensitizers. There were no differences in recognition of facial emotions between groups neither immediately after exposure nor after three days. Conclusions The fMRI findings suggest that repressors manifest an enhanced neural processing of directly threatening facial expression which confirms the assumption of hyper-responsivity to threatening information in repression in an early processing stage. A discrepancy was observed between high neural activation in encoding-relevant brain areas in response to angry faces in repressors and no advantage in subsequent memory for these faces compared to sensitizers. PMID:25502775

  10. Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells

    PubMed Central

    Jiajie, Tu; Yanzhou, Yang; Hoi-Hung, Albert Cheung; Zi-Jiang, Chen; Wai-Yee, Chan

    2017-01-01

    Granulosa cells (GCs) are essential somatic cells in the ovary and play an important role in folliculogenesis. Brain-derived neurotropic factor (BDNF) and the TGF-β pathway have been identified as a critical hormone and signalling pathway, respectively, in GCs. In this study, we found that a conserved microRNA family that includes miR-10a and miR-10b repressed proliferation and induced apoptosis in human, mouse, and rat GCs (hGCs, mGCs and rGCs, respectively). Moreover, essential hormones and growth factors in the follicle, such as FSH, FGF9 and some ligands in the TGF-β pathway (TGFβ1, Activin A, BMP4 and BMP15), inhibited miR-10a and miR-10b expression in GCs. In contrast, the miR-10 family suppressed many key genes in the TGF-β pathway, suggesting a negative feedback loop between the miR-10 family and the TGF-β pathway in GCs. By using bioinformatics approaches, RNA-seq, qPCR, FISH, immunofluorescence, Western blot and luciferase reporter assays, BDNF was identified as a direct target of the miR-10 family in GCs. Additionally, reintroduction of BDNF rescued the effects of miR-10a and miR-10b in GCs. Collectively, miR-10a and miR-10b repressed GC development during folliculogenesis by repressing BDNF and the TGF-β pathway. These effects by the miR-10 family on GCs are conserved among different species. PMID:28112253

  11. Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis.

    PubMed

    Choi, Jinyoung; Suzuki, Ken-Ichi T; Sakuma, Tetsushi; Shewade, Leena; Yamamoto, Takashi; Buchholz, Daniel R

    2015-02-01

    Thyroid hormone (TH) receptor (TR) expression begins early in development in all vertebrates when circulating TH levels are absent or minimal, yet few developmental roles for unliganded TRs have been established. Unliganded TRs are expected to repress TH-response genes, increase tissue responsivity to TH, and regulate the timing of developmental events. Here we examined the role of unliganded TRα in gene repression and development in Xenopus tropicalis. We used transcription activator-like effector nuclease gene disruption technology to generate founder animals with mutations in the TRα gene and bred them to produce F1 offspring with a normal phenotype and a mutant phenotype, characterized by precocious hind limb development. Offspring with a normal phenotype had zero or one disrupted TRα alleles, and tadpoles with the mutant hind limb phenotype had two truncated TRα alleles with frame shift mutations between the two zinc fingers followed by 40-50 mutant amino acids and then an out-of-frame stop codon. We examined TH-response gene expression and early larval development with and without exogenous TH in F1 offspring. As hypothesized, mutant phenotype tadpoles had increased expression of TH-response genes in the absence of TH and impaired induction of these same genes after exogenous TH treatment, compared with normal phenotype animals. Also, mutant hind limb phenotype animals had reduced hind limb and gill responsivity to exogenous TH. Similar results in methimazole-treated tadpoles showed that increased TH-response gene expression and precocious development were not due to early production of TH. These results indicate that unliganded TRα delays developmental progression by repressing TH-response genes.

  12. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment.

    PubMed

    Stewart, M David; Li, Jiwen; Wong, Jiemin

    2005-04-01

    Histone H3 lysine 9 (H3-K9) methylation has been shown to correlate with transcriptional repression and serve as a specific binding site for heterochromatin protein 1 (HP1). In this study, we investigated the relationship between H3-K9 methylation, transcriptional repression, and HP1 recruitment by comparing the effects of tethering two H3-K9-specific histone methyltransferases, SUV39H1 and G9a, to chromatin on transcription and HP1 recruitment. Although both SUV39H1 and G9a induced H3-K9 methylation and repressed transcription, only SUV39H1 was able to recruit HP1 to chromatin. Targeting HP1 to chromatin required not only K9 methylation but also a direct protein-protein interaction between SUV39H1 and HP1. Targeting methyl-K9 or a HP1-interacting region of SUV39H1 alone to chromatin was not sufficient to recruit HP1. We also demonstrate that methyl-K9 can suppress transcription independently of HP1 through a mechanism involving histone deacetylation. In an effort to understand how H3-K9 methylation led to histone deacetylation in both H3 and H4, we found that H3-K9 methylation inhibited histone acetylation by p300 but not its association with chromatin. Collectively, these data indicate that H3-K9 methylation alone can suppress transcription but is insufficient for HP1 recruitment in the context of chromatin exemplifying the importance of chromatin-associated factors in reading the histone code.

  13. Two cis elements collaborate to spatially repress transcription from a sea urchin promoter

    NASA Technical Reports Server (NTRS)

    Frudakis, T. N.; Wilt, F.

    1995-01-01

    The expression pattern of many territory-specific genes in metazoan embryos is maintained by an active process of negative spatial regulation. However, the mechanism of this strategy of gene regulation is not well understood in any system. Here we show that reporter constructs containing regulatory sequence for the SM30-alpha gene of Stronglyocentrotus purpuratus are expressed in a pattern congruent with that of the endogenous SM30 gene(s), largely as a result of active transcriptional repression in cell lineages in which the gene is not normally expressed. Chloramphenicol acetyl transferase assays of deletion constructs from the 2600-bp upstream region showed that repressive elements were present in the region from -1628 to -300. In situ hybridization analysis showed that the spatial fidelity of expression was severely compromised when the region from -1628 to -300 was deleted. Two highly repetitive sequence motifs, (G/A/C)CCCCT and (T/C)(T/A/C)CTTTT(T/A/C), are present in the -1628 to -300 region. Representatives of these elements were analyzed by gel mobility shift experiments and were found to interact specifically with protein in crude nuclear extracts. When oligonucleotides containing either sequence element were co-injected with a correctly regulated reporter as potential competitors, the reporter was expressed in inappropriate cells. When composite oligonucleotides, containing both sequence elements, were fused to a misregulated reporter, the expression of the reporter in inappropriate cells was suppressed. Comparison of composite oligonucleotides with oligonucleotides containing single constituent elements show that both sequence elements are required for effective spatial regulation. Thus, both individual elements are required, but only a composite element containing both elements is sufficient to function as a tissue-specific repressive element.

  14. Dimethylnitrosamine-demethylase: molecular size-dependence of repression by polynuclear hydrocarbons. Nonhydrocarbon repressors.

    PubMed

    Arcos, J C; Valle, R T; Bryant, G M; Buu-Hoi, N P; Argus, M F

    1976-01-01

    Studies with 58 polynuclear aromatic hydrocarbons have shown that to repress demethylation of dimethylnitrosamine (DMN) in rat liver, the hydrocarbons must satisfy specific requirements of molecular geometry regarding size, shape, and coplanarity. Expressing the molecular size of these planar compounds by the two-dimensional area occupied, the size for maximal repressor activity ranges between about 85 and 150 A2. In addition to being within the correct molecular size range the hydrocarbons must have an elongated-rather than compact-molecular shape; circularly shaped and/or highly symmetrical hydrocarbons, such as coronene, triphenylene, ovalene, and tetrabenzonaphthalene, have very low activity or are inactive, in spite of being in the optimum size range. Coplanarity of the molecule is a critical requirement; thus, the potent carcinogen, 9,10-dimethyl-1,2-benzanthracene, is inactive as repressor of DMN-demethylase synthesis. Two exceptions, fluoranthene and benzol[ghi] fluoranthene, showed significant induction of DMN-demethylase. The molecular size distribution of hydrocarbons that repress the DMN-demethylase shows a mirror-image relationship with respect to the earlier reported molecular size requirement for indcution of azo dye N-demethylase. Compounds other than hydrocarbons also show the mirror-image relationship in the sense that pregnenolene-16alpha-carbonitrile, alpha- and beta-naphthoflavone, and Aroclor 1254 (known to be inducers of various mixed-function oxidases) are strong repressors of DMN-demethylase. Aminoacetonitrile, a strong inhibitor of carcinogenesis by DMN, is also a potent repressor of DMN-demethylase. The enzyme is inhibited by pretreatment of the animals with cobaltous chloride, an inhibitor of the synthesis of cytochrome P-450. Pregnenolone-16alpha-carbonitrile and 3-methylcholanthrene, despite their similarity of action on DMN-demethylase, have different effects on azo reductase, which is repressed by the former and induced by the latter

  15. A vir-repressed gene of Bordetella pertussis is required for virulence.

    PubMed Central

    Beattie, D T; Shahin, R; Mekalanos, J J

    1992-01-01

    Coordinate regulation of gene expression in Bordetella pertussis is controlled by the products of the vir locus, BvgA and BvgS. In the presence of modulating signals such as MgSO4 and nicotinic acid, expression of vir-activated genes (vag) is reduced, while expression of vir-repressed genes (vrg) is maximal. We have cloned one of these vir-repressed genes, vrg-6, in Escherichia coli. DNA sequencing has shown that vrg-6 is contained on a single EcoRI restriction endonuclease fragment and is predicted to code for a protein of 105 amino acids with a molecular weight of 11,441. The predicted protein product appears to have two domains, one consisting of seven hydrophobic proline-rich pentameric repeats and the other consisting of five alkaline trimeric repeats. Southern blot analysis has revealed vrg-6-homologous sequences in the chromosomes of Bordetella bronchiseptica and Bordetella parapertussis, but, unlike Bordetella pertussis, these species do not express vrg-6-homologous RNA when grown under modulating conditions. In order to assess the role of vrg gene products in B. pertussis pathogenesis, two 18323 derivatives which harbor TnphoA insertions in vrg genes were analyzed in a mouse model of respiratory infection. Strain SK6, which carries a vrg-6::TnphoA mutation, failed to induce lymphocytosis and was significantly less able to colonize lungs and trachea than its parent strain 18323 or than SK18, which harbors a TnphoA fusion in the vrg-18 locus. This is the first evidence that a vir-repressed gene may play an important role in the virulence of B. pertussis and the pathogenesis of whooping cough. Images PMID:1730491

  16. TaVRT2 represses transcription of the wheat vernalization gene TaVRN1.

    PubMed

    Kane, Ndjido Ardo; Agharbaoui, Zahra; Diallo, Amadou Oury; Adam, Hélène; Tominaga, Yoko; Ouellet, François; Sarhan, Fathey

    2007-08-01

    In wheat, VRN1/TaVRN1 and VRN2/TaVRN2 determine the growth habit and flowering time. In addition, the MADS box transcription factor VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (TaVRT2) is also associated with the vernalization response in a manner similar to TaVRN2. However, the molecular relationship between these three genes and their products is unknown. Using transient expression assays in Nicotiana benthamiana, we show that TaVRT2 acts as a repressor of TaVRN1 transcription. TaVRT2 binds the CArG motif in the TaVRN1 promoter and represses its activity in vivo. In contrast, TaVRN2 does not bind the TaVRN1 promoter and has no direct effect on its activity, but it can enhance the repression effect of TaVRT2. This suggests that a repressor complex regulates the expression of TaVRN1. In winter wheat, TaVRT2, TaVRN2 and TaVRN1 transcripts accumulate in the shoot apical meristem and young leaves, and temporal expression is consistent with TaVRT2 and TaVRN2 being repressors of floral transition, whereas TaVRN1 is an activator. Non-vernalized spring wheat grown under a short-day photoperiod accumulates TaVRT2 and shows a delay in flowering, suggesting that TaVRT2 is regulated independently by photoperiod and low temperature. The data presented suggest that TaVRT2, in association with TaVRN2, represses the transcription of TaVRN1.

  17. miR-758 regulates cholesterol efflux through post-transcriptional repression of ABCA1

    PubMed Central

    Ramirez, Cristina M.; Dávalos, Alberto; Goedeke, Leigh; Salerno, Alessandro G.; Warrier, Nikhil; Cirera-Salinas, Daniel; Suárez, Yajaira; Fernández-Hernando, Carlos

    2012-01-01

    Objective The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of macrophage cholesterol efflux and protects cells from excess intracellular cholesterol accumulation, however the mechanism involved in posttranscriptional regulation of ABCA1 is poorly understood. We previously showed miR-33 was one regulator. Here we investigated the potential contribution of other microRNAs (miRNAs) to post-transcriptionally regulate ABCA1 and macrophage cholesterol efflux. Methods and Results We performed a bioinformatic analaysis for identifying miRNA target prediction sites in ABCA1 gene and an unbiased genome-wide screen to identify miRNAs modulated by cholesterol excess in mouse peritoneal macrophages. Quantitative real-time RT-PCR confirmed that miR-758 is repressed in cholesterol-loaded macrophages. Under physiological conditions, high dietary fat excess in mice repressed mir-758 both in peritoneal macrophages and, to a lesser extent in the liver. In mouse and human cells in vitro, miR-758 repressed the expression of ABCA1 and conversely the inhibition of this miRNA by using anti-miR-758 increased ABCA1 expression. In mouse cells, mir-758 reduced cellular cholesterol efflux to apoA1 and anti-miR-758 increased it. miR-758 directly targets the 3′UTR of Abca1 as assessed by 3′UTR luciferase reporter assays. Interestingly, miR-758 is highly expressed in the brain where also target several genes involved in neurological functions including SLC38A1, NTM, EPHA7 and MYT1L. Conclusion We identified miR-758 as a novel miRNA that post-transcriptionally controls ABCA1 levels in different cells and regulates macrophage cellular cholesterol efflux to apoA1, opening new avenues to increase apoA1 and raise HDL levels. PMID:21885853

  18. ATM mediates repression of DNA end-degradation in an ATP-dependent manner.

    PubMed

    Rahal, Elias A; Henricksen, Leigh A; Li, Yuling; Turchi, John J; Pawelczak, Katherine S; Dixon, Kathleen

    2008-03-01

    Ataxia telangiectasia mutated (ATM) is a PI3-kinase-like kinase (PIKK) associated with DNA double-strand break (DSB) repair and cell cycle control. We have previously reported comparable efficiencies of DSB repair in nuclear extracts from both ATM deficient (A-T) and control (ATM+) cells; however, the repair products from the A-T nuclear extracts contained deletions encompassing longer stretches of DNA compared to controls. These deletions appeared to result from end-joining at sites of microhomology. These data suggest that ATM hinders error-prone repair pathways that depend on degradation of DNA ends at a break. Such degradation may account for the longer deletions we formerly observed in A-T cell extracts. To address this possibility we assessed the degradation of DNA duplex substrates in A-T and control nuclear extracts under DSB repair conditions. We observed a marked shift in signal intensity from full-length products to shorter products in A-T nuclear extracts, and addition of purified ATM to A-T nuclear extracts restored full-length product detection. This repression of degradation by ATM was both ATP-dependent and inhibited by the PIKK inhibitors wortmannin and caffeine. Addition of pre-phosphorylated ATM to an A-T nuclear extract in the presence of PIKK inhibitors was insufficient in repressing degradation, indicating that kinase activities are required. These results demonstrate a role for ATM in preventing the degradation of DNA ends possibly through repressing nucleases implicated in microhomology-mediated end-joining.

  19. Role of ND10 nuclear bodies in the chromatin repression of HSV-1.

    PubMed

    Gu, Haidong; Zheng, Yi

    2016-04-05

    Herpes simplex virus (HSV) is a neurotropic virus that establishes lifelong latent infection in human ganglion sensory neurons. This unique life cycle necessitates an intimate relation between the host defenses and virus counteractions over the long course of infection. Two important aspects of host anti-viral defense, nuclear substructure restriction and epigenetic chromatin regulation, have been intensively studied in the recent years. Upon viral DNA entering the nucleus, components of discrete nuclear bodies termed nuclear domain 10 (ND10), converge at viral DNA and place restrictions on viral gene expression. Meanwhile the infected cell mobilizes its histones and histone-associated repressors to force the viral DNA into nucleosome-like structures and also represses viral transcription. Both anti-viral strategies are negated by various HSV countermeasures. One HSV gene transactivator, infected cell protein 0 (ICP0), is a key player in antagonizing both the ND10 restriction and chromatin repression. On one hand, ICP0 uses its E3 ubiquitin ligase activity to target major ND10 components for proteasome-dependent degradation and thereafter disrupts the ND10 nuclear bodies. On the other hand, ICP0 participates in de-repressing the HSV chromatin by changing histone composition or modification and therefore activates viral transcription. Involvement of a single viral protein in two seemingly different pathways suggests that there is coordination in host anti-viral defense mechanisms and also cooperation in viral counteraction strategies. In this review, we summarize recent advances in understanding the role of chromatin regulation and ND10 dynamics in both lytic and latent HSV infection. We focus on the new observations showing that ND10 nuclear bodies play a critical role in cellular chromatin regulation. We intend to find the connections between the two major anti-viral defense pathways, chromatin remodeling and ND10 structure, in order to achieve a better

  20. Dexamethasone Induces Cardiomyocyte Terminal Differentiation via Epigenetic Repression of Cyclin D2 Gene.

    PubMed

    Gay, Maresha S; Dasgupta, Chiranjib; Li, Yong; Kanna, Angela; Zhang, Lubo

    2016-08-01

    Dexamethasone treatment of newborn rats inhibited cardiomyocyte proliferation and stimulated premature terminal differentiation of cardiomyocytes in the developing heart. Yet mechanisms remain undetermined. The present study tested the hypothesis that the direct effect of glucocorticoid receptor-mediated epigenetic repression of cyclin D2 gene in the cardiomyocyte plays a key role in the dexamethasone-mediated effects in the developing heart. Cardiomyocytes were isolated from 2-day-old rats. Cells were stained with a cardiomyocyte marker α-actinin and a proliferation marker Ki67. Cyclin D2 expression was evaluated by Western blot and quantitative real-time polymerase chain reaction. Promoter methylation of CcnD2 was determined by methylated DNA immunoprecipitation (MeDIP). Overexpression of Cyclin D2 was conducted by transfection of FlexiCcnD2 (+CcnD2) construct. Treatment of cardiomyocytes isolated from newborn rats with dexamethasone for 48 hours significantly inhibited cardiomyocyte proliferation with increased binucleation and decreased cyclin D2 protein abundance. These effects were blocked with Ru486 (mifepristone). In addition, the dexamethasone treatment significantly increased cyclin D2 gene promoter methylation in newborn rat cardiomyocytes. 5-Aza-2'-deoxycytidine inhibited dexamethasone-mediated promoter methylation, recovered dexamethasone-induced cyclin D2 gene repression, and blocked the dexamethasone-elicited effects on cardiomyocyte proliferation and binucleation. In addition, the overexpression of cyclin D2 restored the dexamethasone-mediated inhibition of proliferation and increase in binucleation in newborn rat cardiomyocytes. The results demonstrate that dexamethasone acting on glucocorticoid receptors has a direct effect and inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via epigenetic repression of cyclin D2 gene.

  1. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons

    PubMed Central

    Kralovicova, Jana; Vorechovsky, Igor

    2017-01-01

    The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3′ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing. PMID:27566151

  2. SAFB1 Mediates Repression of Immune Regulators and Apoptotic Genes in Breast Cancer Cells*

    PubMed Central

    Hammerich-Hille, Stephanie; Kaipparettu, Benny A.; Tsimelzon, Anna; Creighton, Chad J.; Jiang, Shiming; Polo, Jose M.; Melnick, Ari; Meyer, Rene; Oesterreich, Steffi

    2010-01-01

    The scaffold attachment factors SAFB1 and SAFB2 are paralogs, which are involved in cell cycle regulation, apoptosis, differentiation, and stress response. They have been shown to function as estrogen receptor corepressors, and there is evidence for a role in breast tumorigenesis. To identify their endogenous target genes in MCF-7 breast cancer cells, we utilized a combined approach of chromatin immunoprecipitation (ChIP)-on-chip and gene expression array studies. By performing ChIP-on-chip on microarrays containing 24,000 promoters, we identified 541 SAFB1/SAFB2-binding sites in promoters of known genes, with significant enrichment on chromosomes 1 and 6. Gene expression analysis revealed that the majority of target genes were induced in the absence of SAFB1 or SAFB2 and less were repressed. Interestingly, there was no significant overlap between the genes identified by ChIP-on-chip and gene expression array analysis, suggesting regulation through regions outside the proximal promoters. In contrast to SAFB2, which shared most of its target genes with SAFB1, SAFB1 had many unique target genes, most of them involved in the regulation of the immune system. A subsequent analysis of the estrogen treatment group revealed that 12% of estrogen-regulated genes were dependent on SAFB1, with the majority being estrogen-repressed genes. These were primarily genes involved in apoptosis, such as BBC3, NEDD9, and OPG. Thus, this study confirms the primary role of SAFB1/SAFB2 as corepressors and also uncovers a previously unknown role for SAFB1 in the regulation of immune genes and in estrogen-mediated repression of genes. PMID:19901029

  3. Endocytosis of a maltose permease is induced when amylolytic enzyme production is repressed in Aspergillus oryzae.

    PubMed

    Hiramoto, Tetsuya; Tanaka, Mizuki; Ichikawa, Takanori; Matsuura, Yuka; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya

    2015-09-01

    In the filamentous fungus Aspergillus oryzae, amylolytic enzyme production is induced by the presence of maltose. Previously, we identified a putative maltose permease (MalP) gene in the maltose-utilizing cluster of A. oryzae. malP disruption causes a significant decrease in α-amylase activity and maltose consumption, indicating that MalP is a maltose transporter required for amylolytic enzyme production in A. oryzae. Although the expression of amylase genes and malP is repressed by the presence of glucose, the effect of glucose on the abundance of functional MalP is unknown. In this study, we examined the effect of glucose and other carbon sources on the subcellular localization of green fluorescence protein (GFP)-tagged MalP. After glucose addition, GFP-MalP at the plasma membrane was internalized and delivered to the vacuole. This glucose-induced internalization of GFP-MalP was inhibited by treatment with latrunculin B, an inhibitor of actin polymerization. Furthermore, GFP-MalP internalization was inhibited by repressing the HECT ubiquitin ligase HulA (ortholog of yeast Rsp5). These results suggest that MalP is transported to the vacuole by endocytosis in the presence of glucose. Besides glucose, mannose and 2-deoxyglucose also induced the endocytosis of GFP-MalP and amylolytic enzyme production was inhibited by the addition of these sugars. However, neither the subcellular localization of GFP-MalP nor amylolytic enzyme production was influenced by the addition of xylose or 3-O-methylglucose. These results imply that MalP endocytosis is induced when amylolytic enzyme production is repressed.

  4. Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells.

    PubMed

    Fan, Huitao; Zhang, Rui; Tesfaye, Dawit; Tholen, Ernst; Looft, Christian; Hölker, Michael; Schellander, Karl; Cinar, Mehmet Ulas

    2012-12-01

    Satellite cells function as skeletal muscle stem cells to support postnatal muscle growth and regeneration following injury or disease. There is great promise for the improvement of muscle performance in livestock and for the therapy of muscle pathologies in humans by the targeting of myostatin (MSTN) in this cell population. Human diet contains many histone deacetylase (HDAC) inhibitors, such as the bioactive component sulforaphane (SFN), whose epigenetic effects on MSTN gene in satellite cells are unknown. Therefore, we aimed to investigate the epigenetic influences of SFN on the MSTN gene in satellite cells. The present work provides the first evidence, which is distinct from the effects of trichostatin A (TSA), that SFN supplementation in vitro not only acts as a HDAC inhibitor but also as a DNA methyltransferase (DNMT) inhibitor in porcine satellite cells. Compared with TSA and 5-aza-2'-deoxycytidine (5-aza-dC), SFN treatment significantly represses MSTN expression, accompanied by strongly attenuated expression of negative feedback inhibitors of the MSTN signaling pathway. miRNAs targeting MSTN are not implicated in posttranscriptional regulation of MSTN. Nevertheless, a weakly enriched myoblast determination (MyoD) protein associated with diminished histone acetylation in the MyoD binding site located in the MSTN promoter region may contribute to the transcriptional repression of MSTN by SFN. These findings reveal a new mode of epigenetic repression of MSTN by the bioactive compound SFN. This novel pharmacological, biological activity of SFN in satellite cells may thus allow for the development of novel approaches to weaken the MSTN signaling pathway, both for therapies of human skeletal muscle disorders and for livestock production improvement.

  5. Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress.

    PubMed

    Persak, Helene; Pitzschke, Andrea

    2014-02-13

    In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR) motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance--the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.

  6. Bile Acids Function Synergistically To Repress Invasion Gene Expression in Salmonella by Destabilizing the Invasion Regulator HilD.

    PubMed

    Eade, Colleen R; Hung, Chien-Che; Bullard, Brian; Gonzalez-Escobedo, Geoffrey; Gunn, John S; Altier, Craig

    2016-08-01

    Salmonella spp. are carried by and can acutely infect agricultural animals and humans. After ingestion, salmonellae traverse the upper digestive tract and initiate tissue invasion of the distal ileum, a virulence process carried out by the type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1). Salmonellae coordinate SPI-1 expression with anatomical location via environmental cues, one of which is bile, a complex digestive fluid that causes potent repression of SPI-1 genes. The individual components of bile responsible for SPI-1 repression have not been previously characterized, nor have the bacterial signaling processes that modulate their effects been determined. Here, we characterize the mechanism by which bile represses SPI-1 expression. Individual bile acids exhibit repressive activity on SPI-1-regulated genes that requires neither passive diffusion nor OmpF-mediated entry. By using genetic methods, the effects of bile and bile acids were shown to require the invasion gene transcriptional activator hilD and to function independently of known upstream signaling pathways. Protein analysis techniques showed that SPI-1 repression by bile acids is mediated by posttranslational destabilization of HilD. Finally, we found that bile acids function synergistically to achieve the overall repressive activity of bile. These studies demonstrate a common mechanism by which diverse environmental cues (e.g., certain short-chain fatty acids and bile acids) inhibit SPI-1 expression. These data provide information relevant to Salmonella pathogenesis during acute infection in the intestine and during chronic infection of the gallbladder and inform the basis for development of therapeutics to inhibit invasion as a means of repressing Salmonella pathogenicity.

  7. The Drosophila eve insulator Homie promotes eve expression and protects the adjacent gene from repression by polycomb spreading.

    PubMed

    Fujioka, Miki; Sun, Guizhi; Jaynes, James B

    2013-10-01

    Insulators can block the action of enhancers on promoters and the spreading of repressive chromatin, as well as facilitating specific enhancer-promoter interactions. However, recent studies have called into question whether the activities ascribed to insulators in model transgene assays actually reflect their functions in the genome. The Drosophila even skipped (eve) gene is a Polycomb (Pc) domain with a Pc-group response element (PRE) at one end, flanked by an insulator, an arrangement also seen in other genes. Here, we show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of the adjacent gene, TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. When Homie is deleted in the context of a large transgene that mimics both eve and TER94 regulation, TER94 is repressed. This repression depends on the eve PRE. Ubiquitous TER94 expression is "replaced" by expression in an eve pattern when Homie is deleted, and this effect is reversed when the PRE is also removed. Repression of TER94 is attributable to spreading of the eve Pc domain into the TER94 locus, accompanied by an increase in histone H3 trimethylation at lysine 27. Other PREs can functionally replace the eve PRE, and other insulators can block PRE-dependent repression in this context. The full activity of the eve promoter is also dependent on Homie, and other insulators can promote normal eve enhancer-promoter communication. Our data suggest that this is not due to preventing promoter competition, but is likely the result of the insulator organizing a chromosomal conformation favorable to normal enhancer-promoter interactions. Thus, insulator activities in a native context include enhancer blocking and enhancer-promoter facilitation, as well as preventing the spread of repressive chromatin.

  8. Repression of telomere-associated genes by microglia activation in neuropsychiatric disease.

    PubMed

    Kronenberg, Golo; Uhlemann, Ria; Schöner, Johanna; Wegner, Stephanie; Boujon, Valérie; Deigendesch, Nikolas; Endres, Matthias; Gertz, Karen

    2016-11-28

    Microglia senescence may promote neuropsychiatric disease. This prompted us to examine the relationship between microglia activation states and telomere biology. A panel of candidate genes associated with telomere maintenance, mitochondrial biogenesis, and cell-cycle regulation were investigated in M1- and M2-polarized microglia in vitro as well as in MACS-purified CD11b+ microglia/brain macrophages from models of stroke, Alzheimer's disease, and chronic stress. M1 polarization, ischemia, and Alzheimer pathology elicited a strikingly similar transcriptomic profile with, in particular, reduced expression of murine Tert. Our results link classical microglia activation with repression of telomere-associated genes, suggesting a new mechanism underlying microglia dysfunction.

  9. Functional Association between Eyegone and HP1a Mediates wingless Transcriptional Repression during Development

    PubMed Central

    Salvany, Lara; Requena, David

    2012-01-01

    The eyegone (eyg) gene encodes Eyg, a transcription factor of the Pax family with multiple roles during Drosophila development. Although Eyg has been shown to act as a repressor, nothing is known about the mechanism by which it represses its target genes. Here, we show that Eyg forms a protein complex with heterochromatin protein 1a (HP1a). Both proteins bind to the same chromatin regions on polytene chromosomes and act cooperatively to suppress variegation and mediate gene silencing. In addition, Eyg binds to a wingless (wg) enhancer region, recruiting HP1a to assemble a closed, heterochromatin-like conformation that represses transcription of the wg gene. We describe here the evidence that suggests that Eyg, encoded by eyegone (eyg), represses wingless (wg) during eye development by association with HP1a. We show that Eyg forms a protein complex with HP1a and both proteins colocalize on salivary gland polytene chromosomes. Using position effect variegation (PEV) experiments, we demonstrated that eyg has a dose-dependent effect on heterochromatin gene silencing and identified a genetic interaction with HP1a in this process. We further demonstrated that HP1a binds to the same wg enhancer element as Eyg. DNase I sensitivity assays indicated that this enhancer region has a closed heterochromatin-like conformation, which becomes open in eyg mutants. In these mutants, much less HP1a binds to the wg enhancer region, as shown by ChIP experiments. Furthermore, as previously described for Eyg, a reduction in the amount of HP1a in the eye imaginal disc derepresses wg. Together, our results suggest a model in which Eyg specifically binds to the wg enhancer region, recruiting HP1a to that site. The recruitment of HP1a prevents transcription by favoring a closed, heterochromatin-like structure. Thus, for the first time, we show that HP1a plays a direct role in the repression of a developmentally regulated gene, wg, during Drosophila eye development. PMID:22547675

  10. Transformative environmental governance

    USGS Publications Warehouse

    Chaffin, Brian C.; Garmestani, Ahjond S.; Gunderson, Lance H.; Harm Benson, Melinda; Angeler, David G.; Arnold, Craig Anthony (Tony); Cosens, Barbara; Kundis Craig, Robin; Ruhl, J.B.; Allen, Craig R.

    2016-01-01

    Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to alternative, more desirable, or more functional regimes by altering the structures and processes that define the system. Transformative governance is rooted in ecological theories to explain cross-scale dynamics in complex systems, as well as social theories of change, innovation, and technological transformation. Similar to adaptive governance, transformative governance involves a broad set of governance components, but requires additional capacity to foster new social-ecological regimes including increased risk tolerance, significant systemic investment, and restructured economies and power relations. Transformative governance has the potential to actively respond to regime shifts triggered by climate change, and thus future research should focus on identifying system drivers and leading indicators associated with social-ecological thresholds.

  11. Steerable Discrete Cosine Transform

    NASA Astrophysics Data System (ADS)

    Fracastoro, Giulia; Fosson, Sophie M.; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms.

  12. Steerable Discrete Cosine Transform.

    PubMed

    Fracastoro, Giulia; Fosson, Sophie M; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely, a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms.

  13. The base pairing RNA Spot 42 participates in a multi-output feedforward loop to help enact catabolite repression in Escherichia coli

    PubMed Central

    Beisel, Chase L.; Storz, Gisela

    2011-01-01

    SUMMARY Bacteria selectively consume some carbon sources over others through a regulatory mechanism termed catabolite repression. Here, we show that the base pairing RNA Spot 42 plays a broad role in catabolite repression in Escherichia coli by directly repressing genes involved in central and secondary metabolism, redox balancing, and the consumption of diverse non-preferred carbon sources. Many of the genes repressed by Spot 42 are transcriptionally activated by the global regulator CRP. Since CRP represses Spot 42, these regulators participate in a specific regulatory circuit called a multi-output feedforward loop. We found that this loop can reduce leaky expression of target genes in the presence of glucose and can maintain repression of target genes under changing nutrient conditions. Our results suggest that base pairing RNAs in feedforward loops can help shape the steady-state levels and dynamics of gene expression. PMID:21292161

  14. Transformation Toughening of Ceramics

    DTIC Science & Technology

    1992-03-01

    TRANSFORMATION ZONE SHAPE EFFECTS IN CRACK SHIELDING IN CERIA-PARTIALLY STABILIZED ZIRCONIA (Ce-TZP). ALUMINA COMPOSITES to be published in J. Am. Ceram. Soc. 13 Cl...lS85HWejw TRANSFORMATION ZONE SHAPE EFFECTS ON CRACK SHIELDING IN CERIA-PARTIALLY-STABILIZED ZIRCONIA (Ce-TZP)- ALUMINA S..COMPOSITES Cheng-Sheng Yu...zones in Ce-TZP/Al203 composites, in which the transformation zone sizes were changed significantly by varying the sintering temperature to control

  15. Program Transformation in HATS

    SciTech Connect

    Winter, V.L.

    1999-02-24

    HATS is a general purpose syntax derivation tree based transformation system in which transformation sequences are described in special purpose language. A powerful feature of this language is that unification is an explicit operation. By making unification explicit, an elegant framework arises in which to express complex application conditions which in turn enables refined control strategies to be realized. This paper gives an overview of HATS, focusing especially on the framework provided by the transformation language and its potential with respect to control and general purpose transformation.

  16. Magnetically Controlled Variable Transformer

    NASA Technical Reports Server (NTRS)

    Kleiner, Charles T.

    1994-01-01

    Improved variable-transformer circuit, output voltage and current of which controlled by use of relatively small current supplied at relatively low power to control windings on its magnetic cores. Transformer circuits of this type called "magnetic amplifiers" because ratio between controlled output power and power driving control current of such circuit large. This ratio - power gain - can be as large as 100 in present circuit. Variable-transformer circuit offers advantages of efficiency, safety, and controllability over some prior variable-transformer circuits.

  17. High responsivity to threat during the initial stage of perception in repression: a 3 T fMRI study

    PubMed Central

    Paul, Victoria Gabriele; Rauch, Astrid Veronika; Kugel, Harald; ter Horst, Lena; Bauer, Jochen; Dannlowski, Udo; Ohrmann, Patricia; Lindner, Christian; Donges, Uta-Susan; Kersting, Anette; Egloff, Boris

    2012-01-01

    Repression designates coping strategies such as avoidance, or denial that aim to shield the organism from threatening stimuli. Derakshan et al. have proposed the vigilance–avoidance theory of repressive coping. It is assumed that repressors have an initial rapid vigilant response triggering physiological responses to threat stimuli. In the following second stage repressors manifest avoidant cognitive biases. Functional magnetic resonance imaging at 3T was used to study neural correlates of repressive coping during the first stages of perception of threat. Pictures of human faces bearing fearful, angry, happy and neutral expressions were briefly presented masked by neutral faces. Forty study participants (20 repressive and 20 sensitizing individuals) were selected from a sample of 150 female students on the basis of their scores on the Mainz Coping Inventory. Repressors exhibited stronger neural activation than sensitizers primarily in response to masked threatening faces (vs neutral baseline) in the frontal, parietal and temporal cortex as well as in the cingulate gyrus, basal ganglia and insula. There was no brain region in which sensitizers showed increased activation to emotion expression compared to repressors. The present results are in line with the vigilance–avoidance theory which predicts heightened automatic responsivity to threatening stimuli in repression. PMID:22133562

  18. Identification of essential nucleotides in an upstream repressing sequence of Saccharomyces cerevisiae by selection for increased expression of TRK2.

    PubMed Central

    Vidal, M; Buckley, A M; Yohn, C; Hoeppner, D J; Gaber, R F

    1995-01-01

    The TRK2 gene in Saccharomyces cerevisiae encodes a membrane protein involved in potassium transport and is expressed at extremely low levels. Dominant cis-acting mutations (TRK2D), selected by their ability to confer TRK2-dependent growth on low-potassium medium, identified an upstream repressor element (URS1-TRK2) in the TRK2 promoter. The URS1-TRK2 sequence (5'-AGCCGCACG-3') shares six nucleotides with the ubiquitous URS1 element (5'-AGCCGCCGA-3'), and the protein species binding URS1-CAR1 (URSF) is capable of binding URS1-TRK2 in vitro. Sequence analysis of 17 independent repression-defective TRK2D mutations identified three adjacent nucleotides essential for URS1-mediated repression in vivo. Our results suggest a role for context effects with regard to URS1-related sequences: several mutant alleles of the URS1 element previously reported to have little or no effect when analyzed within the context of a heterologous promoter (CYC1) [Luche, R.M., Sumrada, R. & Cooper, T.G. (1990) Mol. Cell. Biol. 10, 3884-3895] have major effects on repression in the context of their native promoters (TRK2 and CAR1). TRK2D mutations that abolish repression also reveal upstream activating sequence activity either within or adjacent to URS1. Additivity between TRK2D and sin3 delta mutations suggest that SIN3-mediated repression is independent of that mediated by URS1. Images Fig. 1 Fig. 4 PMID:7892273

  19. Regional repression of a Drosophila POU box gene in the endoderm involves inductive interactions between germ layers.

    PubMed

    Affolter, M; Walldorf, U; Kloter, U; Schier, A F; Gehring, W J

    1993-04-01

    An induction process occurring between the mesodermal and the endodermal germ layers has recently been described in the regulation of the Drosophila homeotic gene labial (lab). We report here that proper spatial regulation of the Drosophila POU box gene pdm-1 products also involves interaction between these two germ layers. pdm-1 transcripts are initially present in both the anterior and the posterior endodermal midgut primordia. Upon fusion of the two primordia, transcripts disappear from two regions in the endoderm, a central domain and an anterior domain. The anterior repression domain of pdm-1 is independent of the expression of known homeotic genes and genes encoding secreted signalling molecules in the visceral mesoderm, both for its positioning and its repression. Repression in the central domain requires both the homeotic gene Ultrabithorax (Ubx) and the decapentaplegic (dpp) gene, which encodes a secreted protein. Both of these genes are also required for lab induction. However, the analysis of pdm-1 expression in various mutant backgrounds indicates that the regulation of lab and pdm-1 across germ layers is controlled by different genetic cascades. Our study indicates that dpp is not the signal that dictates central pdm-1 repression across germ layers and suggests that in the same midgut region, different signalling pathways result in the differential activation or repression of potential transcription factors.

  20. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures

    PubMed Central

    Haikala, Heidi M.; Klefström, Juha; Eilers, Martin; Wiese, Katrin E.

    2016-01-01

    ABSTRACT Apoptosis caused by deregulated MYC expression is a prototype example of intrinsic tumor suppression. However, it is still unclear how supraphysiological MYC expression levels engage specific sets of target genes to promote apoptosis. Recently, we demonstrated that repression of SRF target genes by MYC/MIZ1 complexes limits AKT-dependent survival signaling and contributes to apoptosis induction. Here we report that supraphysiological levels of MYC repress gene sets that include markers of basal-like breast cancer cells, but not luminal cancer cells, in a MIZ1-dependent manner. Furthermore, repressed genes are part of a conserved gene signature characterizing the basal subpopulation of both murine and human mammary gland. These repressed genes play a role in epithelium and mammary gland development and overlap with genes mediating cell adhesion and extracellular matrix organization. Strikingly, acute activation of oncogenic MYC in basal mammary epithelial cells is sufficient to induce luminal cell identity markers. We propose that supraphysiological MYC expression impacts on mammary epithelial cell identity by repressing lineage-specific target genes. Such abrupt cell identity switch could interfere with adhesion-dependent survival signaling and thus promote apoptosis in pre-malignant epithelial tissue. PMID:26873145

  1. Mutations in the L-arabinose operon of Escherichia coli B-r that result in hypersensitivity to catabolite repression.

    PubMed

    Gendron, R P; Sheppard, D E

    1974-02-01

    Two independent mutants resistant to l-arabinose inhibition only in the presence of d-glucose were isolated from an l-arabinose-sensitive strain containing the araD139 mutation. Preliminary mapping studies indicate that these mutations are closely linked to the araIOC region. Addition of d-glucose to growing cultures of these mutants results in a 95 to 98% repression of ara operon expression, as compared to a 50% repression of the parental control. Since cultures of both mutant and parental strains undergo a 50% repression of lac operon expression upon addition of glucose, the hypersensitivity to catabolite repression exhibited by these mutants is specific for the ara operon. Addition of cyclic adenosine monophosphate reverses the catabolite repression of the ara operon in both mutant and parent strains to 70 to 80% of the control. It is suggested that in these mutants the affinity of the ara operon initiator region for the cAMP-catabolite-activator protein complex may have been altered.

  2. Polycomb Repressive Complex 2 Regulates MiR-200b in Retinal Endothelial Cells: Potential Relevance in Diabetic Retinopathy

    PubMed Central

    Ruiz, Michael Anthony; Feng, Biao; Chakrabarti, Subrata

    2015-01-01

    Glucose-induced augmented vascular endothelial growth factor (VEGF) production is a key event in diabetic retinopathy. We have previously demonstrated that downregulation of miR-200b increases VEGF, mediating structural and functional changes in the retina in diabetes. However, mechanisms regulating miR-200b in diabetes are not known. Histone methyltransferase complex, Polycomb Repressive Complex 2 (PRC2), has been shown to repress miRNAs in neoplastic process. We hypothesized that, in diabetes, PRC2 represses miR-200b through its histone H3 lysine-27 trimethylation mark. We show that human retinal microvascular endothelial cells exposed to high levels of glucose regulate miR-200b repression through histone methylation and that inhibition of PRC2 increases miR-200b while reducing VEGF. Furthermore, retinal tissue from animal models of diabetes showed increased expression of major PRC2 components, demonstrating in vivo relevance. This research established a repressive relationship between PRC2 and miR-200b, providing evidence of a novel mechanism of miRNA regulation through histone methylation. PMID:25884496

  3. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development.

    PubMed

    Miccio, Annarita; Wang, Yuhuan; Hong, Wei; Gregory, Gregory D; Wang, Hongxin; Yu, Xiang; Choi, John K; Shelat, Suresh; Tong, Wei; Poncz, Mortimer; Blobel, Gerd A

    2010-01-20

    GATA transcription factors interact with FOG proteins to regulate tissue development by activating and repressing transcription. FOG-1 (ZFPM1), a co-factor for the haematopoietic factor GATA-1, binds to the NuRD co-repressor complex through a conserved N-terminal motif. Surprisingly, we detected NuRD components at both repressed and active GATA-1/FOG-1 target genes in vivo. In addition, while NuRD is required for transcriptional repression in certain contexts, we show a direct requirement of NuRD also for FOG-1-dependent transcriptional activation. Mice in which the FOG-1/NuRD interaction is disrupted display defects similar to germline mutations in the Gata1 and Fog1 genes, including anaemia and macrothrombocytopaenia. Gene expression analysis in primary mutant erythroid cells and megakaryocytes (MKs) revealed an essential function for NuRD during both the repression and activation of select GATA-1/FOG-1 target genes. These results show that NuRD is a critical co-factor for FOG-1 and underscore the versatile use of NuRD by lineage-specific transcription factors to activate and repress gene transcription in the appropriate cellular and genetic context.

  4. Norepinephrine causes epigenetic repression of PKCε gene in rodent hearts by activating Nox1-dependent reactive oxygen species production.

    PubMed

    Xiong, Fuxia; Xiao, Daliao; Zhang, Lubo

    2012-07-01

    Heart disease is the leading cause of death in the United States. Recent studies demonstrate that fetal programming of PKCε gene repression results in ischemia-sensitive phenotype in the heart. The present study tests the hypothesis that increased norepinephrine causes epigenetic repression of PKCε gene in the heart via Nox1-dependent reactive oxygen species (ROS) production. Prolonged norepinephrine treatment increased ROS production in fetal rat hearts and embryonic ventricular myocyte H9c2 cells via a selective increase in Nox1 expression. Norepinephrine-induced ROS resulted in an increase in PKCε promoter methylation at Egr-1 and Sp-1 binding sites, leading to PKCε gene repression. N-acetylcysteine, diphenyleneiodonium, and apocynin blocked norepinephrine-induced ROS production and the promoter methylation, and also restored PKCε mRNA and protein to control levels in vivo in fetal hearts and in vitro in embryonic myocyte cells. Accordingly, norepinephrine-induced ROS production, promoter methylation, and PKCε gene repression were completely abrogated by knockdown of Nox1 in cardiomyocytes. These findings provide evidence of a novel interaction between elevated norepinephrine and epigenetic repression of PKCε gene in the heart mediated by Nox1-dependent oxidative stress and suggest new insights of molecular mechanisms linking the heightened sympathetic activity to aberrant cardioprotection and increased ischemic vulnerability in the heart.

  5. Lamin A/C sustains PcG protein architecture, maintaining transcriptional repression at target genes

    PubMed Central

    Cesarini, Elisa; Mozzetta, Chiara; Marullo, Fabrizia; Gregoretti, Francesco; Gargiulo, Annagiusi; Columbaro, Marta; Cortesi, Alice; Antonelli, Laura; Di Pelino, Simona; Squarzoni, Stefano; Palacios, Daniela; Zippo, Alessio; Bodega, Beatrice; Oliva, Gennaro

    2015-01-01

    Beyond its role in providing structure to the nuclear envelope, lamin A/C is involved in transcriptional regulation. However, its cross talk with epigenetic factors—and how this cross talk influences physiological processes—is still unexplored. Key epigenetic regulators of development and differentiation are the Polycomb group (PcG) of proteins, organized in the nucleus as microscopically visible foci. Here, we show that lamin A/C is evolutionarily required for correct PcG protein nuclear compartmentalization. Confocal microscopy supported by new algorithms for image analysis reveals that lamin A/C knock-down leads to PcG protein foci disassembly and PcG protein dispersion. This causes detachment from chromatin and defects in PcG protein–mediated higher-order structures, thereby leading to impaired PcG protein repressive functions. Using myogenic differentiation as a model, we found that reduced levels of lamin A/C at the onset of differentiation led to an anticipation of the myogenic program because of an alteration of PcG protein–mediated transcriptional repression. Collectively, our results indicate that lamin A/C can modulate transcription through the regulation of PcG protein epigenetic factors. PMID:26553927

  6. Melanie Klein and Repression: an examination of some unpublished Notes of 1934.

    PubMed

    Hinshelwood, R D

    2006-01-01

    Fifteen pages of unpublished Notes were found in the Melanie Klein Archives dating from early 1934, a crucial moment in Klein's development. She was at this time, 1934, moving away from child analysis, whilst also rethinking and revising her allegiance to Karl Abraham's theory of the phases of libidinal development. These Notes, entitled "Early Repression Mechanism," show Klein struggling to develop what became her characteristic theories of the depressive position and the paranoid-schizoid position. Although these Notes are precursors of the paper Klein gave later to the IPA Congress in 1934, they also show the origins of the emphasis she and her followers eventually gave to "splitting" rather than repression. The Notes give us an insight into the way that she worked clinically at the time. We see Klein's confidence develop as she diverged from the classical theories and technique. Her ideas were based on close attention to the detail of her clinical material, rather than attacking theoretical problems directly. The Notes show her method of struggling to her own conclusions, and they offer us a chance to grasp the roots of the subsequent controversy over Kleinian thought.

  7. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions.

    PubMed

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-12-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability.

  8. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation.

    PubMed Central

    Kline, M P; Morimoto, R I

    1997-01-01

    Heat shock transcription factor 1 (HSF1) is constitutively expressed in mammalian cells and negatively regulated for DNA binding and transcriptional activity. Upon exposure to heat shock and other forms of chemical and physiological stress, these activities of HSF1 are rapidly induced. In this report, we demonstrate that constitutive phosphorylation of HSF1 at serine residues distal to the transcriptional activation domain functions to repress transactivation. Tryptic phosphopeptide analysis of a collection of chimeric GAL4-HSF1 deletion and point mutants identified a region of constitutive phosphorylation encompassing serine residues 303 and 307. The significance of phosphorylation at serines 303 and 307 in the regulation of HSF1 transcriptional activity was demonstrated by transient transfection and assay of a chloramphenicol acetyltransferase reporter construct. Whereas the transfected wild-type GAL4-HSF1 chimera is repressed for transcriptional activity and derepressed by heat shock, mutation of serines 303 and 307 to alanine results in derepression to a high level of constitutive activity. Similar results were obtained with mutation of these serine residues in the context of full-length HSF1. These data reveal that constitutive phosphorylation of serines 303 and 307 has an important role in the negative regulation of HSF1 transcriptional activity at control temperatures. PMID:9121459

  9. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome

    PubMed Central

    Mifsud, Borbala; Dimitrova, Emilia; Matheson, Louise; Tavares-Cadete, Filipe; Furlan-Magaril, Mayra; Segonds-Pichon, Anne; Jurkowski, Wiktor; Wingett, Steven W.; Tabbada, Kristina; Andrews, Simon; Herman, Bram; LeProust, Emily; Osborne, Cameron S.; Koseki, Haruhiko; Fraser, Peter; Luscombe, Nicholas M.; Elderkin, Sarah

    2016-01-01

    The Polycomb Repressive Complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes1. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organisation2–9. We show that PRC1 functions as a master regulator of ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox network. In contrast, promoter-enhancer contacts are maintained, accompanied by widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional up-regulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that selective release of genes from this spatial network underlies cell fate specification during early embryonic development. PMID:26323060

  10. A common bacterial metabolite elicits prion-based bypass of glucose repression

    PubMed Central

    Garcia, David M; Dietrich, David; Clardy, Jon; Jarosz, Daniel F

    2016-01-01

    Robust preference for fermentative glucose metabolism has motivated domestication of the budding yeast Saccharomyces cerevisiae. This program can be circumvented by a protein-based genetic element, the [GAR+] prion, permitting simultaneous metabolism of glucose and other carbon sources. Diverse bacteria can elicit yeast cells to acquire [GAR+], although the molecular details of this interaction remain unknown. Here we identify the common bacterial metabolite lactic acid as a strong [GAR+] inducer. Transient exposure to lactic acid caused yeast cells to heritably circumvent glucose repression. This trait had the defining genetic properties of [GAR+], and did not require utilization of lactic acid as a carbon source. Lactic acid also induced [GAR+]-like epigenetic states in fungi that diverged from S. cerevisiae ~200 million years ago, and in which glucose repression evolved independently. To our knowledge, this is the first study to uncover a bacterial metabolite with the capacity to potently induce a prion. DOI: http://dx.doi.org/10.7554/eLife.17978.001 PMID:27906649

  11. Anchoring of Heterochromatin to the Nuclear Lamina Reinforces Dosage Compensation-Mediated Gene Repression

    PubMed Central

    Brouhard, Elizabeth A.; Jiang, Jianhao; Sifuentes, Margarita H.

    2016-01-01

    Higher order chromosome structure and nuclear architecture can have profound effects on gene regulation. We analyzed how compartmentalizing the genome by tethering heterochromatic regions to the nuclear lamina affects dosage compensation in the nematode C. elegans. In this organism, the dosage compensation complex (DCC) binds both X chromosomes of hermaphrodites to repress transcription two-fold, thus balancing gene expression between XX hermaphrodites and XO males. X chromosome structure is disrupted by mutations in DCC subunits. Using X chromosome paint fluorescence microscopy, we found that X chromosome structure and subnuclear localization are also disrupted when the mechanisms that anchor heterochromatin to the nuclear lamina are defective. Strikingly, the heterochromatic left end of the X chromosome is less affected than the gene-rich middle region, which lacks heterochromatic anchors. These changes in X chromosome structure and subnuclear localization are accompanied by small, but significant levels of derepression of X-linked genes as measured by RNA-seq, without any observable defects in DCC localization and DCC-mediated changes in histone modifications. We propose a model in which heterochromatic tethers on the left arm of the X cooperate with the DCC to compact and peripherally relocate the X chromosomes, contributing to gene repression. PMID:27690361

  12. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux.

    PubMed

    Fornalé, Silvia; Shi, Xinhui; Chai, Chenglin; Encina, Antonio; Irar, Sami; Capellades, Montserrat; Fuguet, Elisabet; Torres, Josep-Lluís; Rovira, Pere; Puigdomènech, Pere; Rigau, Joan; Grotewold, Erich; Gray, John; Caparrós-Ruiz, David

    2010-11-01

    Few regulators of phenylpropanoids have been identified in monocots having potential as biofuel crops. Here we demonstrate the role of the maize (Zea mays) R2R3-MYB factor ZmMYB31 in the control of the phenylpropanoid pathway. We determined its in vitro consensus DNA-binding sequence as ACC(T)/(A) ACC, and chromatin immunoprecipitation (ChIP) established that it interacts with two lignin gene promoters in vivo. To explore the potential of ZmMYB31 as a regulator of phenylpropanoids in other plants, its role in the regulation of the phenylpropanoid pathway was further investigated in Arabidopsis thaliana. ZmMYB31 downregulates several genes involved in the synthesis of monolignols and transgenic plants are dwarf and show a significantly reduced lignin content with unaltered polymer composition. We demonstrate that these changes increase cell wall degradability of the transgenic plants. In addition, ZmMYB31 represses the synthesis of sinapoylmalate, resulting in plants that are more sensitive to UV irradiation, and induces several stress-related proteins. Our results suggest that, as an indirect effect of repression of lignin biosynthesis, transgenic plants redirect carbon flux towards the biosynthesis of anthocyanins. Thus, ZmMYB31 can be considered a good candidate for the manipulation of lignin biosynthesis in biotechnological applications.

  13. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs.

    PubMed

    Bowman, Christopher John; Ayer, Donald E; Dynlacht, Brian David

    2014-12-01

    Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.

  14. [The wind prophylaxis. Repressive and sanitary institutions in Argentina's Patagonia, 1880-1940].

    PubMed

    Bohoslavsky, E; Silva di Liscia, M

    2008-01-01

    This article focuses on the study of some social control technologies and discourses, displayed in Argentina's provinces between 1880 and 1940, with particular reference to the so-called 'Territorios Nacionales' of La Pampa Río Negro and Neuquén, which were submitted to a direct federal authority. THe main purpose is to analyze - within these areas- - the building of repressive and sanitary institutions (i.e., police, prisons, asylums, hospitals) as well as the enforcement of positivists studying and classifying methodologies, intended to identify 'abnormality'. A straight and permanent rule of these "territorios Nacionales' on the federal State could have meant a longer attention to their social and economic development through a direct and intense presence of national, modernizing, positivist institutions. However, a deeper historical study of repressive and sanitary institutions allows to arrive to completely different conclusions. The sources show that these institutions had numerous daily problems, were frequently and severely under-budgeted and were obliged to develop not originally forseen functions and tasks. These situations imply revising not only these institutions' real regulation capacities but also the very existence of a generalized, efficient social control programme in Argentina at the beginning of the 20th century, as many scholars focused on Buenos Aires's study case have already argued.

  15. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  16. Pancreatic β cell identity requires continual repression of non–β cell programs

    PubMed Central

    Gutiérrez, Giselle Domínguez; Bender, Aaron S.; Cirulli, Vincenzo; Mastracci, Teresa L.; Kelly, Stephen M.; Tsirigos, Aristotelis; Kaestner, Klaus H.

    2016-01-01

    Loss of β cell identity, the presence of polyhormonal cells, and reprogramming are emerging as important features of β cell dysfunction in patients with type 1 and type 2 diabetes. In this study, we have demonstrated that the transcription factor NKX2.2 is essential for the active maintenance of adult β cell identity as well as function. Deletion of Nkx2.2 in β cells caused rapid onset of a diabetic phenotype in mice that was attributed to loss of insulin and downregulation of many β cell functional genes. Concomitantly, NKX2.2-deficient murine β cells acquired non–β cell endocrine features, resulting in populations of completely reprogrammed cells and bihormonal cells that displayed hybrid endocrine cell morphological characteristics. Molecular analysis in mouse and human islets revealed that NKX2.2 is a conserved master regulatory protein that controls the acquisition and maintenance of a functional, monohormonal β cell identity by directly activating critical β cell genes and actively repressing genes that specify the alternative islet endocrine cell lineages. This study demonstrates the highly volatile nature of the β cell, indicating that acquiring and sustaining β cell identity and function requires not only active maintaining of the expression of genes involved in β cell function, but also continual repression of closely related endocrine gene programs. PMID:27941248

  17. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells

    PubMed Central

    Walter, Marius; Teissandier, Aurélie; Pérez-Palacios, Raquel; Bourc'his, Déborah

    2016-01-01

    DNA methylation is extensively remodeled during mammalian gametogenesis and embryogenesis. Most transposons become hypomethylated, raising the question of their regulation in the absence of DNA methylation. To reproduce a rapid and extensive demethylation, we subjected mouse ES cells to chemically defined hypomethylating culture conditions. Surprisingly, we observed two phases of transposon regulation. After an initial burst of de-repression, various transposon families were efficiently re-silenced. This was accompanied by a reconfiguration of the repressive chromatin landscape: while H3K9me3 was stable, H3K9me2 globally disappeared and H3K27me3 accumulated at transposons. Interestingly, we observed that H3K9me3 and H3K27me3 occupy different transposon families or different territories within the same family, defining three functional categories of adaptive chromatin responses to DNA methylation loss. Our work highlights that H3K9me3 and, most importantly, polycomb-mediated H3K27me3 chromatin pathways can secure the control of a large spectrum of transposons in periods of intense DNA methylation change, ensuring longstanding genome stability. DOI: http://dx.doi.org/10.7554/eLife.11418.001 PMID:26814573

  18. TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling

    PubMed Central

    Ke, Xiquan; Zhao, Yan; Lu, Xinlan; Wang, Zhe; Liu, Yuanyuan; Ren, Mudan; Lu, Guifang; Zhang, Dan; Sun, Zhenguo; Xu, Zhipeng; Song, Jee Hoon; Cheng, Yulan; Meltzer, Stephen J.; He, Shuixiang

    2015-01-01

    Thymoquinone (TQ) has been reported to possess anti-tumor activity in various types of cancer. However, its effects and molecular mechanism of action in hepatocellular carcinoma (HCC) are still not completely understood. We observed that TQ inhibited tumor cell growth in vitro, where treatment with TQ arrested the cell cycle in G1 by upregulating p21 and downregulating cyclinD1 and CDK2 expression; moreover, TQ induced apoptosis by decreasing expression of Bcl-2 and increasing expression of Bax. Simultaneously, TQ demonstrated a suppressive impact on the Notch pathway, where overexpression of NICD1 reversed the inhibitory effect of TQ on cell proliferation, thereby attenuating the repressive effects of TQ on the Notch pathway, cyclinD1, CDK2 and Bcl-2, and also diminishing upregulation of p21 and Bax. In a xenograft model, TQ inhibited HCC growth in nude mice; this inhibitory effect in vivo, as well as of HCC cell growth in vitro, was associated with a discernible decline in NICD1 and Bcl-2 levels and a dramatic rise in p21 expression. In conclusion, TQ inhibits HCC cell growth by inducing cell cycle arrest and apoptosis, achieving these effects by repression of the Notch signaling pathway, suggesting that TQ represents a potential preventive or therapeutic agent in HCC patients. PMID:26416455

  19. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

    PubMed

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-07-17

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming.

  20. A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2

    PubMed Central

    Xu, Jianwen; Chen, Yihan; Qian, Luofeng; Mu, Rong; Yuan, Xi; Fang, Huimin; Huang, Xi; Xu, Enshun; Zhang, Hongsheng; Huang, Ji

    2017-01-01

    The Stress Associated RNA-binding protein 1 (SRP1) repressed by ABA, salt and cold encodes a C2C2-type zinc finger protein in Arabidopsis. The knock-out mutation in srp1 reduced the sensitivity of seed to ABA and salt stress during germination and post-germinative growth stages. In contrast, SRP1-overexpressing seedlings were more sensitive to ABA and salt compared to wild type plants. In the presence of ABA, the transcript levels of ABA signaling and germination-related genes including ABI3. ABI5. EM1 and EM6 were less induced in srp1 compared to WT. Interestingly, expression of ABI2 encoding a protein phosphatase 2C protein were significantly up-regulated in srp1 mutants. By in vitro analysis, SRP1 was identified as a novel RNA-binding protein directly binding to 3′UTR of ABI2 mRNA. Moreover, transient expression assay proved the function of SRP1 in reducing the activity of luciferase whose coding sequence was fused with the ABI2 3’UTR. Together, it is suggested that SRP1 is involved in the ABA signaling by post-transcriptionally repressing ABI2 expression in Arabidopsis. PMID:28174577

  1. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation

    PubMed Central

    Kerenyi, Marc A; Shao, Zhen; Hsu, Yu-Jung; Guo, Guoji; Luc, Sidinh; O'Brien, Kassandra; Fujiwara, Yuko; Peng, Cong; Nguyen, Minh; Orkin, Stuart H

    2013-01-01

    Here, we describe that lysine-specific demethylase 1 (Lsd1/KDM1a), which demethylates histone H3 on Lys4 or Lys9 (H3K4/K9), is an indispensible epigenetic governor of hematopoietic differentiation. Integrative genomic analysis, combining global occupancy of Lsd1, genome-wide analysis of its substrates H3K4 monomethylation and dimethylation, and gene expression profiling, reveals that Lsd1 represses hematopoietic stem and progenitor cell (HSPC) gene expression programs during hematopoietic differentiation. We found that Lsd1 acts at transcription start sites, as well as enhancer regions. Loss of Lsd1 was associated with increased H3K4me1 and H3K4me2 methylation on HSPC genes and gene derepression. Failure to fully silence HSPC genes compromised differentiation of hematopoietic stem cells as well as mature blood cell lineages. Collectively, our data indicate that Lsd1-mediated concurrent repression of enhancer and promoter activity of stem and progenitor cell genes is a pivotal epigenetic mechanism required for proper hematopoietic maturation. DOI: http://dx.doi.org/10.7554/eLife.00633.001 PMID:23795291

  2. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs

    PubMed Central

    Bowman, Christopher John; Ayer, Donald E.; Dynlacht, Brian David

    2014-01-01

    Summary Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes via Foxk-Sin3-mediated transcriptional control. PMID:25402684

  3. Cytotype Regulation Facilitates Repression of Hybrid Dysgenesis by Naturally Occurring KP Elements in Drosophila melanogaster

    PubMed Central

    Simmons, Michael J.; Grimes, Craig D.; Czora, Cody S.

    2016-01-01

    P elements inserted in the Telomere Associated Sequences (TAS) at the left end of the X chromosome are determiners of cytotype regulation of the entire P family of transposons. This regulation is mediated by Piwi-interacting (pi) RNAs derived from the telomeric P elements (TPs). Because these piRNAs are transmitted maternally, cytotype regulation is manifested as a maternal effect of the TPs. When a TP is combined with a transgenic P element inserted at another locus, this maternal effect is strengthened. However, when certain TPs are combined with transgenes that contain the small P element known as KP, stronger regulation arises from a zygotic effect of the KP element. This zygotic effect is observed with transgenic KP elements that are structurally intact, as well as with KP elements that are fused to an ancillary promoter from the hsp70 gene. Zygotic regulation by a KP element occurs only when a TP was present in the maternal germ line, and it is more pronounced when the TP was also present in the grand-maternal germ line. However, this regulation does not require zygotic expression of the TP. These observations can be explained if maternally transmitted piRNAs from TPs enable a polypeptide encoded by KP elements to repress P element transposition in zygotes that contain a KP element. In nature, repression by the KP polypeptide may therefore be facilitated by cytotype-mediating piRNAs. PMID:27172198

  4. Nuclear Receptor Corepressor Recruitment by Unliganded Thyroid Hormone Receptor in Gene Repression during Xenopus laevis Development

    PubMed Central

    Sachs, Laurent M.; Jones, Peter L.; Havis, Emmanuelle; Rouse, Nicole; Demeneix, Barbara A.; Shi, Yun-Bo

    2002-01-01

    Thyroid hormone receptors (TR) act as activators of transcription in the presence of the thyroid hormone (T3) and as repressors in its absence. While many in vitro approaches have been used to study the molecular mechanisms of TR action, their physiological relevance has not been addressed. Here we investigate how TR regulates gene expression during vertebrate postembryonic development by using T3-dependent amphibian metamorphosis as a model. Earlier studies suggest that TR acts as a repressor during premetamorphosis when T3 is absent. We hypothesize that corepressor complexes containing the nuclear receptor corepressor (N-CoR) are key factors in this TR-dependent gene repression, which is important for premetamorphic tadpole growth. To test this hypothesis, we isolated Xenopus laevis N-CoR (xN-CoR) and showed that it was present in pre- and metamorphic tadpoles. Using a chromatin immunoprecipitation assay, we demonstrated that xN-CoR was recruited to the promoters of T3 response genes during premetamorphosis and released upon T3 treatment, accompanied by a local increase in histone acetylation. Furthermore, overexpression of a dominant-negative N-CoR in tadpole tail muscle led to increased transcription from a T3-dependent promoter. Our data indicate that N-CoR is recruited by unliganded TR to repress target gene expression during premetamorphic animal growth, an important process that prepares the tadpole for metamorphosis. PMID:12446772

  5. Chromatin assembly factor CAF-1 represses priming of plant defence response genes.

    PubMed

    Mozgová, Iva; Wildhaber, Thomas; Liu, Qinsong; Abou-Mansour, Eliane; L'Haridon, Floriane; Métraux, Jean-Pierre; Gruissem, Wilhelm; Hofius, Daniel; Hennig, Lars

    2015-09-01

    Plants have evolved efficient defence systems against pathogens that often rely on specific transcriptional responses. Priming is part of the defence syndrome, by establishing a hypersensitive state of defence genes such as after a first encounter with a pathogen. Because activation of defence responses has a fitness cost, priming must be tightly controlled to prevent spurious activation of defence. However, mechanisms that repress defence gene priming are poorly understood. Here, we show that the histone chaperone CAF-1 is required to establish a repressed chromatin state at defence genes. Absence of CAF-1 results in spurious activation of a salicylic acid-dependent pathogen defence response in plants grown under non-sterile conditions. Chromatin at defence response genes in CAF-1 mutants under non-inductive (sterile) conditions is marked by low nucleosome occupancy and high H3K4me3 at transcription start sites, resembling chromatin in primed wild-type plants. We conclude that CAF-1-mediated chromatin assembly prevents the establishment of a primed state that may under standard non-sterile growth conditions result in spurious activation of SA-dependent defence responses and consequential reduction of plant vigour.

  6. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Baek, Seung-Ho; Kwon, Eunice Y.; Kim, Seon-Young; Hahn, Ji-Sook

    2016-01-01

    Improving lactic acid (LA) tolerance is important for cost-effective microbial production of LA under acidic fermentation conditions. Previously, we generated LA-tolerant D-LA-producing S. cerevisiae strain JHY5310 by laboratory adaptive evolution of JHY5210. In this study, we performed whole genome sequencing of JHY5310, identifying four loss-of-function mutations in GSF2, SYN8, STM1, and SIF2 genes, which are responsible for the LA tolerance of JHY5310. Among the mutations, a nonsense mutation in GSF2 was identified as the major contributor to the improved LA tolerance and LA production in JHY5310. Deletion of GSF2 in the parental strain JHY5210 significantly improved glucose uptake and D-LA production levels, while derepressing glucose-repressed genes including genes involved in the respiratory pathway. Therefore, more efficient generation of ATP and NAD+ via respiration might rescue the growth defects of the LA-producing strain, where ATP depletion through extensive export of lactate and proton is one of major reasons for the impaired growth. Accordingly, alleviation of glucose repression by deleting MIG1 or HXK2 in JHY5210 also improved D-LA production. GSF2 deletion could be applied to various bioprocesses where increasing biomass yield or respiratory flux is desirable. PMID:27708428

  7. Heterochromatin assembly and transcriptome repression by Set1 in coordination with a class II histone deacetylase.

    PubMed

    Lorenz, David R; Meyer, Lauren F; Grady, Patrick J R; Meyer, Michelle M; Cam, Hugh P

    2014-12-15

    Histone modifiers play essential roles in controlling transcription and organizing eukaryotic genomes into functional domains. Here, we show that Set1, the catalytic subunit of the highly conserved Set1C/COMPASS complex responsible for histone H3K4 methylation (H3K4me), behaves as a repressor of the transcriptome largely independent of Set1C and H3K4me in the fission yeast Schizosaccharomyces pombe. Intriguingly, while Set1 is enriched at highly expressed and repressed loci, Set1 binding levels do not generally correlate with the levels of transcription. We show that Set1 is recruited by the ATF/CREB homolog Atf1 to heterochromatic loci and promoters of stress-response genes. Moreover, we demonstrate that Set1 coordinates with the class II histone deacetylase Clr3 in heterochromatin assembly at prominent chromosomal landmarks and repression of the transcriptome that includes Tf2 retrotransposons, noncoding RNAs, and regulators of development and stress-responses. Our study delineates a molecular framework for elucidating the functional links between transcriptome control and chromatin organization.

  8. SUMOylation regulates the transcriptional repression activity of FOG-2 and its association with GATA-4.

    PubMed

    Perdomo, José; Jiang, Xing-Mai; Carter, Daniel R; Khachigian, Levon M; Chong, Beng H

    2012-01-01

    Friend of GATA 2 (FOG-2), a co-factor of several GATA transcription factors (GATA-4, -5 and 6), is a critical regulator of coronary vessel formation and heart morphogenesis. Here we demonstrate that FOG-2 is SUMOylated and that this modification modulates its transcriptional activity. FOG-2 SUMOylation occurs at four lysine residues (K324, 471, 915, 955) [corrected]. Three of these residues are part of the characteristic SUMO consensus site (ψKXE), while K955 is found in the less frequent TKXE motif. Absence of SUMOylation did not affect FOG-2's nuclear localization. However, mutation of the FOG-2 SUMOylation sites, or de-SUMOylation, with SENP-1 or SENP-8 resulted in stronger transcriptional repression activity in both heterologous cells and cardiomyocytes. Conversely, increased FOG-2 SUMOylation by overexpression of SUMO-1 or expression of a SUMO-1-FOG-2 fusion protein rendered FOG-2 incapable of repressing GATA-4-mediated activation of the B-type natriuretic peptide (BNP) promoter. Moreover, we demonstrate both increased interaction between a FOG-2 SUMO mutant and GATA-4 and enhanced SUMOylation of wild-type FOG-2 by co-expression of GATA-4. These data suggest a new dynamics in which GATA-4 may alter the activity of FOG-2 by influencing its SUMOylation status.

  9. BMI-1 promotes Ewing sarcoma tumorigenicity independent of CDKN2A-repression

    PubMed Central

    Douglas, Dorothea; Hsu, Jessie Hao-Ru; Hung, Long; Cooper, Aaron; Abdueva, Diana; van Doorninck, John; Peng, Grace; Shimada, Hiro; Triche, Timothy J.; Lawlor, Elizabeth R.

    2008-01-01

    Deregulation of the polycomb group gene BMI-1 is implicated in the pathogenesis of many human cancers. In this study, we have investigated if the Ewing's Sarcoma Family of Tumors (ESFT) express BMI-1 and whether it functions as an oncogene in this highly aggressive group of bone and soft tissue tumors. Our data show that BMI-1 is highly expressed by ESFT cells and that, although it does not significantly affect proliferation or survival, BMI-1 actively promotes anchorage independent growth in vitro and tumorigenicity in vivo. Moreover, we find that BMI-1 promotes the tumorigenicity of both p16-wild type and p16-null cell lines demonstrating that the mechanism of BMI-1 oncogenic function in ESFT is, at least in part, independent of CDKN2A repression. Expression profiling studies of ESFT cells following BMI-1 knockdown reveal that BMI-1 regulates the expression of hundreds of downstream target genes including, in particular, genes involved in both differentiation and development as well as cell:cell and cell:matrix adhesion. Gain and loss of function assays confirm that BMI-1 represses expression of the adhesion-associated basement membrane protein nidogen 1. In addition, while BMI-1 promotes ESFT adhesion, nidogen 1 inhibits cellular adhesion in vitro. Together these data support a pivotal role for BMI-1 ESFT pathogenesis and suggest that its oncogenic function in these tumors is in part mediated through modulation of adhesion pathways. PMID:18701473

  10. Transcriptional repression by MYB3R proteins regulates plant organ growth

    PubMed Central

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Nakamichi, Norihito; Suzuki, Takamasa; Chen, Poyu; Ohtani, Misato; Ishida, Takashi; Hosoya, Hanako; Müller, Sabine; Leviczky, Tünde; Pettkó-Szandtner, Aladár; Darula, Zsuzsanna; Iwamoto, Akitoshi; Nomoto, Mika; Tada, Yasuomi; Higashiyama, Tetsuya; Demura, Taku; Doonan, John H; Hauser, Marie-Theres; Sugimoto, Keiko; Umeda, Masaaki; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size. PMID:26069325

  11. UVB represses melanocyte cell migration and acts through β-catenin.

    PubMed

    Bertrand, Juliette U; Petit, Valérie; Hacker, Elke; Berlin, Irina; Hayward, Nicholas K; Pouteaux, Marie; Sage, Evelyne; Whiteman, David C; Larue, Lionel

    2017-02-13

    The exposure of skin to ultraviolet (UV) radiation can have both beneficial and deleterious effects: it can lead, for instance, to increased pigmentation and vitamin D synthesis but also to inflammation and skin cancer. UVB may induce genetic and epigenetic alterations, and have reversible effects associated with post-translational and gene regulation modifications. β-catenin is a main driver in melanocyte development; although infrequently mutated in melanoma, its cellular localization and activity is frequently altered. Here, we evaluate the consequence of UVB on β-catenin in the melanocyte lineage. We report that in vivo, UVB induces cytoplasmic/nuclear relocalization of β-catenin in melanocytes of newborn mice and adult human skin. In mouse melanocyte and human melanoma cell lines in vitro, UVB increases β-catenin stability, accumulation in the nucleus, and co-transcriptional activity, leading to the repression of cell motility and velocity. The activation of the β-catenin signaling pathway and its effect on migration by UVB are increased by an inhibitor of GSK3β, and decreased by an inhibitor of β-catenin. In conclusion, UVB represses melanocyte migration and does so by acting through the GSK3-β-catenin axis. This article is protected by copyright. All rights reserved.

  12. Fibroblast growth factor 10 represses premature cell differentiation during establishment of the intestinal progenitor niche.

    PubMed

    Nyeng, Pia; Bjerke, Maureen Ann; Norgaard, Gitte Anker; Qu, Xiaoling; Kobberup, Sune; Jensen, Jan

    2011-01-01

    Spatio-temporal regulation of the balance between cell renewal and cell differentiation is of vital importance for embryonic development and adult homeostasis. Fibroblast growth factor signaling relayed from the mesenchyme to the epithelium is necessary for progenitor maintenance during organogenesis of most endoderm-derived organs, but it is still ambiguous whether the signal is exclusively mitogenic. Furthermore, the downstream mechanisms are largely unknown. In order to elucidate these questions we performed a complementary analysis of fibroblast growth factor 10 (Fgf10), gain-of-function and loss-of-function in the embryonic mouse duodenum, where the progenitor niche is clearly defined and differentiation proceeds in a spatially organized manner. In agreement with a role in progenitor maintenance, FGF10 is expressed in the duodenal mesenchyme during early development while the cognate receptor FGFR2b is expressed in the epithelial progenitor niche. Fgf10 gain-of-function in the epithelium leads to spatial expansion of the progenitor niche and repression of cell differentiation, while loss-of-function results in premature cell differentiation and subsequent epithelial hypoplasia. We conclude that FGF10 mediated mesenchymal-to-epithelial signaling maintains the progenitor niche in the embryonic duodenum primarily by repressing cell differentiation, rather than through mitogenic signaling. Furthermore, we demonstrate that FGF10-signaling targets include ETS-family transcription factors, which have previously been shown to regulate epithelial maturation and tumor progression.

  13. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor

    PubMed Central

    Wang, Zhi-Wei; Wu, Zhe; Raitskin, Oleg; Sun, Qianwen; Dean, Caroline

    2014-01-01

    The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense–antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser2 phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene. PMID:24799695

  14. Repression of cell proliferation by miR319-regulated TCP4.

    PubMed

    Schommer, Carla; Debernardi, Juan M; Bresso, Edgardo G; Rodriguez, Ramiro E; Palatnik, Javier F

    2014-10-01

    Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery--a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation.

  15. Cell type-specific translational repression of Cyclin B during meiosis in males.

    PubMed

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I.

  16. The Pax gene eyegone facilitates repression of eye development in Tribolium

    PubMed Central

    2011-01-01

    Background The Pax transcription factor gene eyegone (eyg) participates in many developmental processes in Drosophila, including the Notch signaling activated postembryonic growth of the eye primordium, global development of the adult head and the development of the antenna. In contrast to other Pax genes, the functional conservation of eyg in species other than Drosophila has not yet been explored. Results We investigated the role of eyg during the postembryonic development of the red flour beetle Tribolium castaneum. Our results indicate conserved roles in antennal but not in eye development. Besides segmentation defects in the antenna, Tribolium eyg knockdown animals were characterized by eye enlargement due to the formation of surplus ommatidia at the central anterior edge of the compound eye. This effect resulted from the failure of the developing gena to locally repress retinal differentiation, which underlies the formation of the characteristic anterior notch in the Tribolium eye. Neither varying the induction time point of eyg knockdown nor knocking down components of the Janus kinase/Signal Transducer and Activators of Transcription signaling pathway in combination with eyg reduced eye size like in Drosophila. Conclusions Taken together, expression and knockdown data suggest that Tribolium eyg serves as a competence factor that facilitates the repression of retinal differentiation in response to an unknown signal produced in the developing gena. At the comparative level, our findings reveal diverged roles of eyg associated with the evolution of different modes of postembryonic head development in endopterygote insects as well as diversified head morphologies in darkling beetles. PMID:21463500

  17. Citrullination of Histone H3 Interferes with HP1-Mediated Transcriptional Repression

    PubMed Central

    Sharma, Priyanka; Azebi, Saliha; England, Patrick; Christensen, Tove; Møller-Larsen, Anné; Petersen, Thor; Batsché, Eric; Muchardt, Christian

    2012-01-01

    Multiple Sclerosis (MS) is an autoimmune disease associated with abnormal expression of a subset of cytokines, resulting in inappropriate T-lymphocyte activation and uncontrolled immune response. A key issue in the field is the need to understand why these cytokines are transcriptionally activated in the patients. Here, we have examined several transcription units subject to pathological reactivation in MS, including the TNFα and IL8 cytokine genes and also several Human Endogenous RetroViruses (HERVs). We find that both the immune genes and the HERVs require the heterochromatin protein HP1α for their transcriptional repression. We further show that the Peptidylarginine Deiminase 4 (PADI4), an enzyme with a suspected role in MS, weakens the binding of HP1α to tri-methylated histone H3 lysine 9 by citrullinating histone H3 arginine 8. The resulting de-repression of both cytokines and HERVs can be reversed with the PADI-inhibitor Cl-amidine. Finally, we show that in peripheral blood mononuclear cells (PBMCs) from MS patients, the promoters of TNFα, and several HERVs share a deficit in HP1α recruitment and an augmented accumulation of histone H3 with a double citrulline 8 tri-methyl lysine 9 modifications. Thus, our study provides compelling evidence that HP1α and PADI4 are regulators of both immune genes and HERVs, and that multiple events of transcriptional reactivation in MS patients can be explained by the deficiency of a single mechanism of gene silencing. PMID:23028349

  18. Retinoids repress Ah receptor CYP1A1 induction pathway through the SMRT corepressor.

    PubMed

    Fallone, Frédérique; Villard, Pierre-Henri; Sérée, Eric; Rimet, Odile; Nguyen, Quock Binh; Bourgarel-Rey, Véronique; Fouchier, Francis; Barra, Yves; Durand, Alain; Lacarelle, Bruno

    2004-09-17

    CYP1A1 isoform is mainly regulated by the transcription factor AhR and to a lesser extent by the nuclear receptor RAR. The effect of a coexposure with 3MC, a AhR ligand, and RA, a RAR ligand, which are, respectively, strong and weak CYP1A1 inducers, is poorly known. We showed in Caco-2 cells that addition of RA significantly decreased 3MC-induced CYP1A1 expression by -55% for mRNA level and -30% for promoter and enzymatic activities. We further showed that RA decreased AhR protein level. Moreover, a physical interaction between AhR and the RAR-corepressor SMRT has been described in vitro. Using the corepressor inhibitor TSA, transfected-cells with SMRT cDNA, and coimmunoprecipitation experiments, we demonstrated that RA addition repressed AhR function through a marked AhR/SMRT physical interaction. This interaction explains the decrease of 3MC-induced CYP1A1 expression. This new mechanism involving the repression of AhR-induced CYP1A1 expression by retinoids allows better knowledge of the CYP1A1 regulation.

  19. A Maternal System Initiating the Zygotic Developmental Program through Combinatorial Repression in the Ascidian Embryo

    PubMed Central

    Oda-Ishii, Izumi; Kubo, Atsushi; Kari, Willi; Suzuki, Nobuhiro; Rothbächer, Ute

    2016-01-01

    Maternal factors initiate the zygotic developmental program in animal embryos. In embryos of the chordate, Ciona intestinalis, three maternal factors—Gata.a, β-catenin, and Zic-r.a—are required to establish three domains of gene expression at the 16-cell stage; the animal hemisphere, vegetal hemisphere, and posterior vegetal domains. Here, we show how the maternal factors establish these domains. First, only β-catenin and its effector transcription factor, Tcf7, are required to establish the vegetal hemisphere domain. Second, genes specifically expressed in the posterior vegetal domain have additional repressive cis-elements that antagonize the activity of β-catenin/Tcf7. This antagonizing activity is suppressed by Zic-r.a, which is specifically localized in the posterior vegetal domain and binds to DNA indirectly through the interaction with Tcf7. Third, Gata.a directs specific gene expression in the animal hemisphere domain, because β-catenin/Tcf7 weakens the Gata.a-binding activity for target sites through a physical interaction in the vegetal cells. Thus, repressive regulation through protein-protein interactions among the maternal transcription factors is essential to establish the first distinct domains of gene expression in the chordate embryo. PMID:27152625

  20. A Cell-Autonomous Molecular Cascade Initiated by AMP-Activated Protein Kinase Represses Steroidogenesis

    PubMed Central

    Abdou, Houssein S.; Bergeron, Francis

    2014-01-01

    Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production. PMID:25225331

  1. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression.

    PubMed

    Borirak, Orawan; Rolfe, Matthew D; de Koning, Leo J; Hoefsloot, Huub C J; Bekker, Martijn; Dekker, Henk L; Roseboom, Winfried; Green, Jeffrey; de Koster, Chris G; Hellingwerf, Klaas J

    2015-10-01

    Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs.

  2. Age at earliest reported memory: associations with personality traits, behavioral health, and repression.

    PubMed

    Spirrison, C L; McCarley, N G

    2001-09-01

    The present study examined relationships between the age at earliest memory and the personality traits and behavioral health of 107 undergraduates. Participants answered questions on their earliest memory and completed the Myers-Briggs Type Indicator (MBTI) and a medical history form. Analyses indicated that continuous scores on two MBTI scales (Sensing-Intuition and Judging-Perceiving) were inversely related to age at earliest memory as were participant's self-reported drug and alcohol problems, emotional and psychological symptoms, accident rates, physical symptoms, and satisfaction with health. Respondents who reported first memories at or after 7 years of age (i.e., approximately 1 SD above the mean age at recalled memory) were classified as repressors. Repressors scored in the Sensing and Judging directions on the MBTI and reported significantly fewer emotional symptoms, accidents, psychological symptoms, and less health satisfaction than nonrepressors. Results are consistent with the age at earliest memory and repression literature and support the use of earliest memory age as an index of repression.

  3. Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization

    PubMed Central

    Wu, Tse-Hsiang; Kuo, Yuan-Yeh; Lee, Hsiao-Hui; Kuo, Jean-Cheng; Ou, Meng-Hsin; Chang, Zee-Fen

    2016-01-01

    It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of a dominant-active form of ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress. PMID:27350000

  4. CHES1/FOXN3 regulates cell proliferation by repressing PIM2 and protein biosynthesis.

    PubMed

    Huot, Geneviève; Vernier, Mathieu; Bourdeau, Véronique; Doucet, Laurent; Saint-Germain, Emmanuelle; Gaumont-Leclerc, Marie-France; Moro, Alejandro; Ferbeyre, Gerardo

    2014-03-01

    The expression of the forkhead transcription factor checkpoint suppressor 1 (CHES1), also known as FOXN3, is reduced in many types of cancers. We show here that CHES1 decreases protein synthesis and cell proliferation in tumor cell lines but not in normal fibroblasts. Conversely, short hairpin RNA-mediated depletion of CHES1 increases tumor cell proliferation. Growth suppression depends on the CHES1 forkhead DNA-binding domain and correlates with the nuclear localization of CHES1. CHES1 represses the expression of multiple genes, including the kinases PIM2 and DYRK3, which regulate protein biosynthesis, and a number of genes in cilium biogenesis. CHES1 binds directly to the promoter of PIM2, and in cells expressing CHES1 the levels of PIM2 are reduced, as well as the phosphorylation of the PIM2 target 4EBP1. Overexpression of PIM2 or eIF4E partially reverses the antiproliferative effect of CHES1, indicating that PIM2 and protein biosynthesis are important targets of the antiproliferative effect of CHES1. In several human hematopoietic cancers, CHES1 and PIM2 expressions are inversely correlated, suggesting that repression of PIM2 by CHES1 is clinically relevant.

  5. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation

    PubMed Central

    Hanse, Eric A.; Mashek, Douglas G.; Mashek, Mara T.; Hendrickson, Anna M.; Mullany, Lisa K.; Albrecht, Jeffrey H.

    2016-01-01

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation. PMID:27351284

  6. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation.

    PubMed

    Kamarajugadda, Sushama; Becker, Jennifer R; Hanse, Eric A; Mashek, Douglas G; Mashek, Mara T; Hendrickson, Anna M; Mullany, Lisa K; Albrecht, Jeffrey H

    2016-07-26

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.

  7. LASS5 Interacts with SDHB and Synergistically Represses p53 and p21 Activity

    PubMed Central

    Jiang, Z.; Li, F.; Wan, Y.; Han, Z.; Yuan, W.; Cao, L.; Deng, Y.; Peng, X.; Chen, F.; Fan, X.; Liu, X.; Dai, G.; Wang, Y.; Zeng, Q.; Shi, Y.; Zhou, Z.; Chen, Y.; Xu, W.; Luo, S.; Chen, S.; Ye, X.; Mo, X.; Wu, X.; Li, Y.

    2017-01-01

    Longevity Assurance 5 (LASS5), a member of the LASS/Ceramide Synthases family, synthesizes C16-ceramide and is implicated in tumor biology. However, its precise role is not yet well understood. A yeast two-hybrid screen was performed using a human cDNA library to identify potential LASS5-interaction partners. One identified clone encodes succinate dehydrogenase subunit B (SDHB). Mammalian two-hybrid assays showed that LASS5 interacts with SDHB, and the result was also confirmed by GST pull-down and co-immunoprecipitation assays. The C-terminal fragment of SDHB was required for the interaction. LASS5 and SDHB were co-localized in COS-7 cells. LASS5 and SDHB expressions were found to be up-regulated in neuroglioma tissue. Transfection assays showed that LASS5 or SDHB expression repressed p53 or p21 reporter activity, respectively. Simultaneous LASS5 and SDHB expression resulted in stronger repression of p53 and p21 reporter activity, suggesting that LASS5 and SDHB interaction may synergistically affect transcriptional regulation of p53 and p21. Our data provide new molecular insights into potential roles of LASS5 and SDHB in tumor biology. PMID:27280497

  8. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs.

    PubMed

    Fayyad-Kazan, Mohammad; Feller, A; Bodo, E; Boeckstaens, M; Marini, A M; Dubois, E; Georis, I

    2016-01-01

    Nitrogen catabolite repression (NCR) is a wide transcriptional regulation program enabling baker's yeast to downregulate genes involved in the utilization of poor nitrogen sources when preferred ones are available. Nowadays, glutamine and glutamate, the major nitrogen donors for biosyntheses, are assumed to be key metabolic signals regulating NCR. NCR is controlled by the conserved TORC1 complex, which integrates nitrogen signals among others to regulate cell growth. However, accumulating evidence indicate that the TORC1-mediated control of NCR is only partial, arguing for the existence of supplementary regulatory processes to be discovered. In this work, we developed a genetic screen to search for new players involved in NCR signaling. Our data reveal that the NADP-glutamate dehydrogenase activity of Gdh1 negatively regulates NCR-sensitive gene transcription. By determining the total, cytoplasmic and vacuolar pools of amino acids, we show that there is no positive correlation between glutamine/glutamate reservoirs and the extent of NCR. While our data indicate that glutamine could serve as initial trigger of NCR, they show that it is not a sufficient signal to sustain repression and point to the existence of yet unknown signals. Providing additional evidence uncoupling TORC1 activity and NCR, our work revisits the dogmas underlying NCR regulation.

  9. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae.

    PubMed

    Lodi, T; Goffrini, P; Ferrero, I; Donnini, C

    1995-09-01

    Two mutants carrying different deletions of the IMP2 coding sequence of Saccharomyces cerevisiae, delta T1, which encodes a protein lacking the last 26 C-terminal amino acids, and delta T2, which completely lacks the coding region, were analysed for derepression of glucose-repressible maltose, galactose, raffinose and ethanol utilization pathways in response to glucose limitation. The role of the IMP2 gene product in the regulation of carbon catabolite repressible enzymes maltase, invertase, alcohol dehydrogenase, NAD-dependent glutamate dehydrogenase (NAD-GDH) and L-lactate:ferricytochrome-c oxidoreductase (L-LCR) was also analysed. The IMP2 gene product is required for the rapid glucose derepression of all above-mentioned carbon source utilization pathways and of all the enzymes except for L-LCR. NAD-GDH is regulated by IMP2 in the opposite way and, in fact, this enzyme was released at higher levels in both imp2 mutants than in the wild-type strain. Therefore, the product of IMP2 appears to be involved in positive and negative regulation. Both deletions result in growth and catalytic defects; in some cases partial modification of the gene product yielded more dramatic effects than its complete absence. Moreover, evidence is provided that the IMP2 gene product regulates galactose- and maltose-inducible genes at the transcriptional level and is a positive regulator of maltase, maltose permease and galactose permease gene expression.

  10. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN.

    PubMed

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-06

    DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  11. Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2

    PubMed Central

    Bell, Karen F.S.; Al-Mubarak, Bashayer; Martel, Marc-André; McKay, Sean; Wheelan, Nicola; Hasel, Philip; Márkus, Nóra M.; Baxter, Paul; Deighton, Ruth F.; Serio, Andrea; Bilican, Bilada; Chowdhry, Sudhir; Meakin, Paul J.; Ashford, Michael L.J.; Wyllie, David J.A.; Scannevin, Robert H.; Chandran, Siddharthan; Hayes, John D.; Hardingham, Giles E.

    2015-01-01

    Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2's inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development. PMID:25967870

  12. Lamin A/C sustains PcG protein architecture, maintaining transcriptional repression at target genes.

    PubMed

    Cesarini, Elisa; Mozzetta, Chiara; Marullo, Fabrizia; Gregoretti, Francesco; Gargiulo, Annagiusi; Columbaro, Marta; Cortesi, Alice; Antonelli, Laura; Di Pelino, Simona; Squarzoni, Stefano; Palacios, Daniela; Zippo, Alessio; Bodega, Beatrice; Oliva, Gennaro; Lanzuolo, Chiara

    2015-11-09

    Beyond its role in providing structure to the nuclear envelope, lamin A/C is involved in transcriptional regulation. However, its cross talk with epigenetic factors--and how this cross talk influences physiological processes--is still unexplored. Key epigenetic regulators of development and differentiation are the Polycomb group (PcG) of proteins, organized in the nucleus as microscopically visible foci. Here, we show that lamin A/C is evolutionarily required for correct PcG protein nuclear compartmentalization. Confocal microscopy supported by new algorithms for image analysis reveals that lamin A/C knock-down leads to PcG protein foci disassembly and PcG protein dispersion. This causes detachment from chromatin and defects in PcG protein-mediated higher-order structures, thereby leading to impaired PcG protein repressive functions. Using myogenic differentiation as a model, we found that reduced levels of lamin A/C at the onset of differentiation led to an anticipation of the myogenic program because of an alteration of PcG protein-mediated transcriptional repression. Collectively, our results indicate that lamin A/C can modulate transcription through the regulation of PcG protein epigenetic factors.

  13. Pectin lyase overproduction by Penicillium griseoroseum mutants resistant to catabolite repression.

    PubMed

    Lima, Juliana Oliveira; Pereira, Jorge Fernando; Araújo, Elza Fernandes de; Queiroz, Marisa Vieira de

    2017-02-09

    Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL) if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG) that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different) that were also studied. The mutants were analyzed for pectinases production on pectinase-agar plates and five mutants and two sectors showing larger clearing zones than the wild type were selected for quantitative assay. Although PL production higher than the wild type has been found, phenotype instability was observed for most of the mutants and, after transfers to nonselective medium, the DG resistance was no longer present. Only mutants M03 and M04 were stable maintaining the DG-resistance phenotype. When growing for 120h in liquid medium containing glucose with or without pectin, both mutants showed higher PL production. In the presence of glucose as sole carbon source, the mutant M03 produced 7.8-fold more PL than the wild type. Due its phenotypic stability and PL overproduction, the mutant M03 presents potential for industrial applications.

  14. Drosophila poised enhancers are generated during tissue patterning with the help of repression

    PubMed Central

    Koenecke, Nina; Johnston, Jeff; He, Qiye; Meier, Samuel; Zeitlinger, Julia

    2017-01-01

    Histone modifications are frequently used as markers for enhancer states, but how to interpret enhancer states in the context of embryonic development is not clear. The poised enhancer signature, involving H3K4me1 and low levels of H3K27ac, has been reported to mark inactive enhancers that are poised for future activation. However, future activation is not always observed, and alternative reasons for the widespread occurrence of this enhancer signature have not been investigated. By analyzing enhancers during dorsal-ventral (DV) axis formation in the Drosophila embryo, we find that the poised enhancer signature is specifically generated during patterning in the tissue where the enhancers are not induced, including at enhancers that are known to be repressed by a transcriptional repressor. These results suggest that, rather than serving exclusively as an intermediate step before future activation, the poised enhancer state may be a mark for spatial regulation during tissue patterning. We discuss the possibility that the poised enhancer state is more generally the result of repression by transcriptional repressors. PMID:27979994

  15. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes.

    PubMed

    Wong, Piu; Hattangadi, Shilpa M; Cheng, Albert W; Frampton, Garrett M; Young, Richard A; Lodish, Harvey F

    2011-10-20

    It is unclear how epigenetic changes regulate the induction of erythroid-specific genes during terminal erythropoiesis. Here we use global mRNA sequencing (mRNA-seq) and chromatin immunoprecipitation coupled to high-throughput sequencing (CHIP-seq) to investigate the changes that occur in mRNA levels, RNA polymerase II (Pol II) occupancy, and multiple posttranslational histone modifications when erythroid progenitors differentiate into late erythroblasts. Among genes induced during this developmental transition, there was an increase in the occupancy of Pol II, the activation marks H3K4me2, H3K4me3, H3K9Ac, and H4K16Ac, and the elongation methylation mark H3K79me2. In contrast, genes that were repressed during differentiation showed relative decreases in H3K79me2 levels yet had levels of Pol II binding and active histone marks similar to those in erythroid progenitors. We also found that relative changes in histone modification levels, in particular, H3K79me2 and H4K16ac, were most predictive of gene expression patterns. Our results suggest that in terminal erythropoiesis both promoter and elongation-associated marks contribute to the induction of erythroid genes, whereas gene repression is marked by changes in histone modifications mediating Pol II elongation. Our data map the epigenetic landscape of terminal erythropoiesis and suggest that control of transcription elongation regulates gene expression during terminal erythroid differentiation.

  16. Repression of p63 and induction of EMT by mutant Ras in mammary epithelial cells

    PubMed Central

    Yoh, Kathryn E.; Regunath, Kausik; Guzman, Asja; Lee, Seung-Min; Pfister, Neil T.; Akanni, Olutosin; Kaufman, Laura J.; Prives, Carol; Prywes, Ron

    2016-01-01

    The p53-related transcription factor p63 is required for maintenance of epithelial cell differentiation. We found that activated forms of the Harvey Rat Sarcoma Virus GTPase (H-RAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) oncogenes strongly repress expression of ∆Np63α, the predominant p63 isoform in basal mammary epithelial cells. This regulation occurs at the transcriptional level, and a short region of the ∆Np63 promoter is sufficient for repression induced by H-RasV12. The suppression of ∆Np63α expression by these oncogenes concomitantly leads to an epithelial-to-mesenchymal transition (EMT). In addition, the depletion of ∆Np63α alone is sufficient to induce EMT. Both H-RasV12 expression and ∆Np63α depletion induce individual cell invasion in a 3D collagen gel in vitro system, thereby demonstrating how Ras can drive the mammary epithelial cell state toward greater invasive ability. Together, these results suggest a pathway by which RAS and PIK3CA oncogenes induce EMT through regulation of ∆Np63α. PMID:27681615

  17. Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana.

    PubMed

    Numa, Hisataka; Kim, Jong-Myong; Matsui, Akihiro; Kurihara, Yukio; Morosawa, Taeko; Ishida, Junko; Mochizuki, Yoshiki; Kimura, Hiroshi; Shinozaki, Kazuo; Toyoda, Tetsuro; Seki, Motoaki; Yoshikawa, Manabu; Habu, Yoshiki

    2010-01-20

    RNA-directed modification of histones is essential for the maintenance of heterochromatin in higher eukaryotes. In plants, cytosine methylation is an additional factor regulating inactive chromatin, but the mechanisms regulating the coexistence of cytosine methylation and repressive histone modification remain obscure. In this study, we analysed the mechanism of gene silencing mediated by MORPHEUS' MOLECULE1 (MOM1) of Arabidopsis thaliana. Transcript profiling revealed that the majority of up-regulated loci in mom1 carry sequences related to transposons and homologous to the 24-nt siRNAs accumulated in wild-type plants that are the hallmarks of RNA-directed DNA methylation (RdDM). Analysis of a single-copy gene, SUPPRESSOR OF drm1 drm2 cmt3 (SDC), revealed that mom1 activates SDC with concomitant reduction of di-methylated histone H3 lysine 9 (H3K9me2) at the tandem repeats in the promoter region without changes in siRNA accumulation and cytosine methylation. The reduction of H3K9me2 is not observed in regions flanking the tandem repeats. The results suggest that MOM1 transduces RdDM signals to repressive histone modification in the core region of RdDM.

  18. Small yet effective: the ethylene responsive element binding factor-associated amphiphilic repression (EAR) motif.

    PubMed

    Kagale, Sateesh; Rozwadowski, Kevin

    2010-06-01

    The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif is a small yet distinct regulatory motif that is conserved in many plant transcriptional regulator (TR) proteins associated with diverse biological functions. We have previously established a list of high-confidence Arabidopsis EAR repressors, the EAR repressome, comprising 219 TRs belonging to 21 different TR families. This class of proteins and the sequence context of the EAR motif exhibited a high degree of conservation across evolutionarily diverse plant species. Our comprehensive genome-wide analysis enabled refining EAR motifs as comprising either LxLxL or DLNxxP. Comparing the representation of these sequence signatures in TRs to that of other repressor motifs we show that the EAR motif is the one most frequently represented, detected in 10 to 25% of the TRs from diverse plant species. The mechanisms involved in regulation of EAR motif function and the cellular fates of EAR repressors are currently not well understood. Our earlier analysis had implicated amino acid residues flanking the EAR motifs in regulation of their functionality. Here, we present additional evidence supporting possible regulation of EAR motif function by phosphorylation of integral or adjacent Ser and/or Thr residues. Additionally, we discuss potential novel roles of EAR motifs in plant-pathogen interaction and processes other than transcriptional repression.

  19. Transforming Growth Factor β Suppresses Peroxisome Proliferator-Activated Receptor γ Expression via Both SMAD Binding and Novel TGF-β Inhibitory Elements.

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C

    2017-01-18

    Transforming growth factor β (TGF-β) contributes to wound healing and, when dysregulated, to pathological fibrosis. TGF-β and the anti-fibrotic nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) repress each other's expression, and such PPARγ downregulation is prominent in fibrosis and mediated, via previously unknown mechanisms, by SMAD signaling. Here we show that TGF-β induces association of SMAD3 with both SMAD4, needed for translocation of the complex into the nucleus, and the essential context-sensitive corepressors E2F4 and p107. The complex mediates TGF-β-induced repression by binding to regulatory elements in the target promoter. In the PPARG promoter, we found that the SMAD3-SMAD4 complex binds both to a previously unknown consensus TGF-β inhibitory element (TIE) and also to canonical SMAD-binding elements (SBEs). Furthermore, the TIE and SBEs independently mediated partial repression of PPARG transcription, the first demonstration of a TIE and SBEs functioning within the same promoter. Also, TGF-β-treated fibroblasts contained SMAD complexes that activated a SMAD target gene in addition to those repressing PPARG transcription, the first finding of such dual activity within the same cell. These findings describe in detail novel mechanisms by which TGF-β represses PPARG transcription, thereby facilitating its own pro-fibrotic activity.

  20. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  1. Two Different Squeeze Transformations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.

    1996-01-01

    Lorentz boosts are squeeze transformations. While these transformations are similar to those in squeezed states of light, they are fundamentally different from both physical and mathematical points of view. The difference is illustrated in terms of two coupled harmonic oscillators, and in terms of the covariant harmonic oscillator formalism.

  2. Genetic Transformation of Bacteria.

    ERIC Educational Resources Information Center

    Moss, Robert.

    1991-01-01

    An activity in which students transform an ampicillin-sensitive strain of E. coli with a plasmid containing a gene for ampicillin resistance is described. The procedure for the preparation of competent cells and the transformation of competent E. coli is provided. (KR)

  3. Transformer design tradeoffs

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    Technical memorandum includes transformer area product numbers, which are used to summarize dimensional and electrical properties of C-cores, pot cores, lamination, powder cores, and tape-wound cores. To aid in core selection, comparison of five common core materials is presented to indicate their influence on overall transformer efficiency and weight.

  4. Direct current transformer

    NASA Technical Reports Server (NTRS)

    Khanna, S. M.; Urban, E. W. (Inventor)

    1979-01-01

    A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.

  5. Transformation optics and metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Huanyang; Chan, C. T.; Sheng, Ping

    2010-05-01

    Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

  6. Support Principals, Transform Schools

    ERIC Educational Resources Information Center

    Aguilar, Elena; Goldwasser, Davina; Tank-Crestetto, Kristina

    2011-01-01

    The Transformational Coaching Team in Oakland Unified School District provides differentiated, sustained, job-embedded support to the district's school leaders. In this article, members of the team describe how they work with principals to transform the culture of schools. Student achievement data show above-average improvement in schools in which…

  7. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  8. Metamaterials and Transformation Optics

    DTIC Science & Technology

    2011-07-01

    Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches Yaroslav A Urzhumov, Nathan B Kundtz ...B82, 205109, (2010). 9. Electromagnetic design with transformation optics Nathan B. Kundtz , David R. Smith, and John B. Pendry Proceedings of the

  9. Transformative environmental governance

    EPA Science Inventory

    Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to ...

  10. Transformative Learning and Identity

    ERIC Educational Resources Information Center

    Illeris, Knud

    2014-01-01

    Transformative learning has usually been defined as transformations of meaning perspectives, frames of reference, and habits of mind--as proposed initially by Jack Mezirow. However, several authors have found this definition too narrow and too cognitively oriented, and Mezirow has later emphasized that emotional and social conditions are also…

  11. Adaptive Wavelet Transforms

    SciTech Connect

    Szu, H.; Hsu, C.

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  12. Deployment & Market Transformation (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

  13. Fourteen Ways to Reroute Cooperative Communication in the Lactose Repressor: Engineering Regulatory Proteins with Alternate Repressive Functions.

    PubMed

    Richards, David H; Meyer, Sarai; Wilson, Corey J

    2017-01-20

    The lactose repressor (LacI) is a classic genetic switch that has been used as a fundamental component in a host of synthetic genetic networks. To expand the function of LacI for use in the development of novel networks and other biotechnological applications, we engineered alternate communication in the LacI scaffold via laboratory evolution. Here we produced 14 new regulatory elements based on the LacI topology that are responsive to isopropyl β-d-1-thiogalactopyranoside (IPTG) with variation in repression strengths and ligand sensitivities-on solid media. The new variants exhibit repressive as well as antilac (i.e., inverse-repression + IPTG) functions and variations in the control of gene output upon exposure to different concentrations of IPTG. In addition, examination of this collection of variants in solution results in the controlled output of a canonical florescent reporter, demonstrating the utility of this collection of new regulatory proteins under standard conditions.

  14. Repression of Essential Chloroplast Genes Reveals New Signaling Pathways and Regulatory Feedback Loops in Chlamydomonas[W

    PubMed Central

    Ramundo, Silvia; Rahire, Michèle; Schaad, Olivier; Rochaix, Jean-David

    2013-01-01

    Although reverse genetics has been used to elucidate the function of numerous chloroplast proteins, the characterization of essential plastid genes and their role in chloroplast biogenesis and cell survival has not yet been achieved. Therefore, we developed a robust repressible chloroplast gene expression system in the unicellular alga Chlamydomonas reinhardtii based mainly on a vitamin-repressible riboswitch, and we used this system to study the role of two essential chloroplast genes: ribosomal protein S12 (rps12), encoding a plastid ribosomal protein, and rpoA, encoding the α-subunit of chloroplast bacterial-like RNA polymerase. Repression of either of these two genes leads to the arrest of cell growth, and it induces a response that involves changes in expression of nuclear genes implicated in chloroplast biogenesis, protein turnover, and stress. This response also leads to the overaccumulation of several plastid transcripts and reveals the existence of multiple negative regulatory feedback loops in the chloroplast gene circuitry. PMID:23292734

  15. High-resolution mapping of architectural DNA binding protein facilitation of a DNA repression loop in Escherichia coli.

    PubMed

    Becker, Nicole A; Maher, L James

    2015-06-09

    Double-stranded DNA is a locally inflexible polymer that resists bending and twisting over hundreds of base pairs. Despite this, tight DNA bending is biologically important for DNA packaging in eukaryotic chromatin and tight DNA looping is important for gene repression in prokaryotes. We and others have previously shown that sequence nonspecific DNA kinking proteins, such as Escherichia coli heat unstable and Saccharomyces cerevisiae non-histone chromosomal protein 6A (Nhp6A), facilitate lac repressor (LacI) repression loops in E. coli. It has been unknown if this facilitation involves direct protein binding to the tightly bent DNA loop or an indirect effect promoting global negative supercoiling of DNA. Here we adapt two high-resolution in vivo protein-mapping techniques to demonstrate direct binding of the heterologous Nhp6A protein at a LacI repression loop in living E. coli cells.

  16. Transformation optics and cloaking

    NASA Astrophysics Data System (ADS)

    McCall, Martin

    2013-11-01

    Invisibility, a long sought-for speculation in science fiction, has been turned into reality in the laboratory through the use of a theoretical technique called Transformation Optics. The principles of transformation optics show that any desired smooth deformation of the electromagnetic field can be implemented exactly by an appropriately engineered metamaterial. All demonstrations of cloaking to date have had limitations, however, reflecting our technological inability to implement the transformation optics algorithm exactly. However, the scientific principles leading to perfect invisibility are now established, and practical improvements on the initial designs are now occurring very rapidly. Most recently, researchers have re-examined transformation optics to include time as well as space, describing and then implementing the concept of a cloak that hides events, a conceptual breakout that promises many new applications. This review describes the general ideas underlying transformation optics, and how the various types of cloak based on these ideas have been implemented practically to date.

  17. Glucocorticoid receptor and histone deacetylase-2 mediate dexamethasone-induced repression of MUC5AC gene expression.

    PubMed

    Chen, Yajun; Watson, Alan M; Williamson, Chad D; Rahimi, Michael; Liang, Chong; Colberg-Poley, Anamaris M; Rose, Mary C

    2012-11-01

    Airway occlusion in obstructive airway diseases is caused in part by the overproduction of secretory mucin glycoproteins through the up-regulation of mucin (MUC) genes by inflammatory mediators. Some pharmacological agents, including the glucocorticoid dexamethasone (Dex), repress mucin concentrations in lung epithelial cancer cells. Here, we show that Dex reduces the expression of MUC5AC, a major airway mucin gene, in primary differentiated normal human bronchial epithelial (NHBE) cells in a dose-dependent and time-dependent manner, and that the Dex-induced repression is mediated by the glucocorticoid receptor (GR) and two glucocorticoid response elements (GREs) in the MUC5AC promoter. The pre-exposure of cells to RU486, a GR antagonist, and mutations in either the GRE3 or GRE5 cis-sites abolished the Dex-induced repression. Chromatin immunoprecipitation (ChIP) assays showed a rapid temporal recruitment of GR to the GRE3 and GRE5 cis-elements in the MUC5AC promoter in NHBE and in A549 cells. Immunofluorescence showed nuclear colocalization of GR and histone deacetylase-2 (HDAC2) in MUC5AC-expressing NHBE cells. ChIP also showed a rapid temporal recruitment of HDAC2 to the GRE3 and GRE5 cis-elements in the MUC5AC promoter in both cell types. The knockdown of HDAC2 by HDAC2-specific short interfering RNA prevented the Dex-induced repression of MUC5AC in NHBE and A549 cells. These data demonstrate that GR and HDAC2 are recruited to the GRE3 and GRE5 cis-sites in the MUC5AC promoter and mediate the Dex-induced cis repression of MUC5AC gene expression. A better understanding of the mechanisms whereby glucocorticoids repress MUC5AC gene expression may be useful in formulating therapeutic interventions in chronic lung diseases.

  18. Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6

    PubMed Central

    Poornima, Gopalakrishna; Shah, Shanaya; Vignesh, Venkadasubramanian; Parker, Roy; Rajyaguru, Purusharth I.

    2016-01-01

    Regulation of translation plays a critical role in determining mRNA fate. A new role was recently reported for a subset of RGG-motif proteins in repressing translation initiation by binding eIF4G1. However the signaling mechanism(s) that leads to spatial and temporal regulation of repression activity of RGG-motif proteins remains unknown. Here we report the role of arginine methylation in regulation of repression activity of Scd6, a conserved RGG-motif protein. We demonstrate that Scd6 gets arginine methylated at its RGG-motif and Hmt1 plays an important role in its methylation. We identify specific methylated arginine residues in the Scd6 RGG-motif in vivo. We provide evidence that methylation augments Scd6 repression activity. Arginine methylation defective (AMD) mutant of Scd6 rescues the growth defect caused by overexpression of Scd6, a feature of translation repressors in general. Live-cell imaging of the AMD mutant revealed that it is defective in inducing formation of stress granules. Live-cell imaging and pull-down results indicate that it fails to bind eIF4G1 efficiently. Consistent with these results, a strain lacking Hmt1 is also defective in Scd6-eIF4G1 interaction. Our results establish that arginine methylation augments Scd6 repression activity by promoting eIF4G1-binding. We propose that arginine methylation of translation repressors with RGG-motif could be a general modulator of their repression activity. PMID:27613419

  19. ChREBP mediates glucose repression of peroxisome proliferator-activated receptor alpha expression in pancreatic beta-cells.

    PubMed

    Boergesen, Michael; Poulsen, Lars la Cour; Schmidt, Søren Fisker; Frigerio, Francesca; Maechler, Pierre; Mandrup, Susanne

    2011-04-15

    Chronic exposure to elevated levels of glucose and fatty acids leads to dysfunction of pancreatic β-cells by mechanisms that are only partly understood. The transcription factor peroxisome proliferator-activated receptor α (PPARα) is an important regulator of genes involved in fatty acid metabolism and has been shown to protect against lipid-induced β-cell dysfunction. We and others have previously shown that expression of the PPARα gene in β-cells is rapidly repressed by glucose. Here we show that the PPARα gene is transcribed from five alternative transcription start sites, resulting in three alternative first exons that are spliced to exon 2. Expression of all PPARα transcripts is repressed by glucose both in insulinoma cells and in isolated pancreatic islets. The observation that the dynamics of glucose repression of PPARα transcription are very similar to those of glucose activation of target genes by the carbohydrate response element-binding protein (ChREBP) prompted us to investigate the potential role of ChREBP in the regulation of PPARα expression. We show that a constitutively active ChREBP lacking the N-terminal domain efficiently represses PPARα expression in insulinoma cells and in rodent and human islets. In addition, we demonstrate that siRNA-mediated knockdown of ChREBP abrogates glucose repression of PPARα expression as well as induction of well established ChREBP target genes in insulinoma cells. In conclusion, this work shows that ChREBP is a critical and direct mediator of glucose repression of PPARα gene expression in pancreatic β-cells, suggesting that ChREBP may be important for glucose suppression of the fatty acid oxidation capacity of β-cells.

  20. Can the Neural Basis of Repression Be Studied in the MRI Scanner? New Insights from Two Free Association Paradigms

    PubMed Central

    Kessler, Henrik; Do Lam, Anne T. A.; Fell, Juergen; Schmidt, Anna-Christine; Axmacher, Nikolai

    2013-01-01

    Background The psychodynamic theory of repression suggests that experiences which are related to internal conflicts become unconscious. Previous attempts to investigate repression experimentally were based on voluntary, intentional suppression of stimulus material. Unconscious repression of conflict-related material is arguably due to different processes, but has never been studied with neuroimaging methods. Methods We used functional magnetic resonance imaging (fMRI) in addition with skin conductance recordings during two free association paradigms to identify the neural mechanisms underlying forgetting of freely associated words according to repression theory. Results In the first experiment, free association to subsequently forgotten words was accompanied by increases in skin conductance responses (SCRs) and reaction times (RTs), indicating autonomic arousal, and by activation of the anterior cingulate cortex. These findings are consistent with the hypothesis that these associations were repressed because they elicited internal conflicts. To test this idea more directly, we conducted a second experiment in which participants freely associated to conflict-related sentences. Indeed, these associations were more likely to be forgotten than associations to not conflict-related sentences and were accompanied by increases in SCRs and RTs. Furthermore, we observed enhanced activation of the anterior cingulate cortex and deactivation of hippocampus and parahippocampal cortex during association to conflict-related sentences. Conclusions These two experiments demonstrate that high autonomic arousal during free association predicts subsequent memory failure, accompanied by increased activation of conflict-related and deactivation of memory-related brain regions. These results are consistent with the hypothesis that during repression, explicit memory systems are down-regulated by the anterior cingulate cortex. PMID:23638050

  1. Snail-dependent repression of the RhoGEF pebble is required for gastrulation consistency in Drosophila melanogaster.

    PubMed

    Murray, Michael J; Southall, Tony D; Liu, Wenjie; Fraval, Hamilton; Lorensuhewa, Nirmal; Brand, Andrea H; Saint, Robert

    2012-11-01

    The Rho GTP exchange factor, Pebble (Pbl), long recognised as an essential activator of Rho during cytokinesis, also regulates mesoderm migration at gastrulation. Like other cell cycle components, pbl expression patterns broadly correlate with proliferative tissue. Surprisingly, in spite of its role in the early mesoderm, pbl is downregulated in the presumptive mesoderm before ventral furrow formation. Here, we show that this mesoderm-specific repression of pbl is dependent on the transcriptional repressor Snail (Sna). pbl repression was lost in sna mutants but was unaffected when Sna was ectopically expressed, showing that Sna is necessary, but not sufficient, for pbl repression. Using DamID, the first intron of pbl was identified as a Sna-binding region. Nine sites with the Sna-binding consensus motif CAGGT[GA] were identified in this intron. Mutating these to TAGGC[GA] abolished the ventral repression of pbl. Surprisingly, Sna-dependent repression of pbl was not essential for viability or fertility. Loss of repression did, however, increase the frequency of low-penetrance gastrulation defects. Consistent with this, expression of a pbl-GFP transgene in the presumptive mesoderm generated similar gastrulation defects. Finally, we show that a cluster of Snail-binding sites in the middle of the first intron of pbl orthologues is a conserved feature in the other 11 sequenced Drosophila species. We conclude that pbl levels are precisely regulated to ensure that there is enough protein available for its role in early mesoderm development but not so much as to inhibit the orderly progression of gastrulation.

  2. Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate.

    PubMed

    Rajput, Mahendrapal Singh; Naresh Kumar, G; Rajkumar, Shalini

    2013-02-01

    Two strains of Klebsiella (SM6 and SM11) were isolated from rhizospheric soil that solubilized mineral phosphate by secretion of oxalic acid from glucose. Activities of enzymes for periplasmic glucose oxidation (glucose dehydrogenase) and glyoxylate shunt (isocitrate lyase and glyoxylate oxidase) responsible for oxalic acid production were estimated. In presence of succinate, phosphate solubilization was completely inhibited, and the enzymes glucose dehydrogenase and glyoxylate oxidase were repressed. Significant activity of isocitrate lyase, the key enzyme for carbon flux through glyoxylate shunt and oxalic acid production during growth on glucose suggested that it could be inducible in nature, and its inhibition by succinate appeared to be similar to catabolite repression.

  3. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    PubMed

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors.

  4. Transformer design tradeoffs

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1976-01-01

    Material was presented to assist transformer designers in the transition from long-used English units to the less familiar metric equivalents. A coordination between the area product numbers ap (product of window and core cross-section areas) and current density J was developed for a given regulation and temperature rise. Straight-line relationships for Ap and Volume, Ap and surface area At and, Ap and weight were developed. These relationships can now be used as new tools to simplify and standardize the process of transformer design. They also made it possible to design transformers of small bulk and volume or to optimize efficiency.

  5. Biolistics Transformation of Wheat

    NASA Astrophysics Data System (ADS)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  6. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation.

    PubMed

    Almeida, Luciana O; Garcia, Cristiana B; Matos-Silva, Flavia A; Curti, Carlos; Leopoldino, Andréia M

    2014-02-28

    SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET-hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  7. miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN amplified neuroblastoma

    PubMed Central

    Swarbrick, Alexander; Woods, Susan L.; Shaw, Alexander; Balakrishnan, Asha; Phua, Yuwei; Nguyen, Akira; Chanthery, Yvan; Lim, Lionel; Ashton, Lesley J.; Judson, Robert L.; Huskey, Noelle; Blelloch, Robert; Haber, Michelle; Norris, Murray D.; Lengyel, Peter; Hackett, Christopher S.; Preiss, Thomas; Chetcuti, Albert; Sullivan, Christopher S.; Marcusson, Eric G.; Weiss, William; L'Etoile, Noelle; Goga, Andrei

    2010-01-01

    Inactivation of the p53 tumor-suppressor pathway occurs in many human cancers, however some cancers such as neuroblastoma and normal stem cells maintain wild-type p53. Here we describe a microRNA, miR-380-5p, that represses p53 expression via a conserved sequence in the p53 3′UTR. miR-380-5p is highly expressed in embryonic stem cells and neuroblastomas and high expression correlates with poor outcome in neuroblastomas with MYCN amplification. miR-380 overexpression cooperates with activated RAS to transform primary cells, form tumors in mice, and block oncogene induced senescence. In contrast, inhibition of endogenous miR-380-5p in embryonic stem or neuroblastoma cells results in induction of miR-380-5p targets including p53 and extensive apoptotic cell death. In vivo delivery of a miR-380-5p antagonist decreases tumor size in an orthotopic mouse model of neuroblastoma. We demonstrate a new mechanism of p53 regulation in cancer and stem cells and uncover a potential therapeutic target for neuroblastoma. PMID:20871609

  8. The cohesin subunit Rad21 is a negative regulator of hematopoietic self-renewal through epigenetic repression of HoxA7 and HoxA9

    PubMed Central

    Fisher, Joseph B.; Peterson, Jonathan; Reimer, Michael; Stelloh, Cary; Pulakanti, Kirthi; Gerbec, Zachary J.; Abel, Alex M.; Strouse, Jennifer Miksanek; Strouse, Christopher; McNulty, Maureen; Malarkannan, Subramaniam; Crispino, John D.; Milanovich, Samuel; Rao, Sridhar

    2016-01-01

    Acute myelogenous leukemia (AML) is a high-risk hematopoietic malignancy caused by a variety of mutations, including genes encoding the cohesin complex. Recent studies have demonstrated that reduction in cohesin complex levels leads to enhanced self-renewal in hematopoietic stem and progenitors (HSPCs). We sought to delineate the molecular mechanisms by which cohesin mutations promote enhanced HSPC self-renewal since this represents a critical initial step during leukemic transformation. We verified that RNAi against the cohesin subunit Rad21 causes enhanced self-renewal of HSPCs in vitro through derepression of Polycomb Repressive Complex 2 (PRC2) target genes, including Hoxa7 and Hoxa9. Importantly, knockdown of either Hoxa7 or Hoxa9 suppressed self-renewal, implying both are critical downstream effectors of reduced cohesin levels. We further demonstrate that the cohesin and PRC2 complexes interact and are bound in close proximity to Hoxa7 and Hoxa9. Rad21 depletion resulted in decreased levels of H3K27me3 at the Hoxa7 and Hoxa9 promoters, consistent with Rad21 being critical to proper gene silencing by recruiting the PRC2 complex. Our data demonstrates that the cohesin complex regulates PRC2 targeting to silence Hoxa7 and Hoxa9 and negatively regulate self-renewal. Our studies identify a novel epigenetic mechanism underlying leukemogenesis in AML patients with cohesin mutations. PMID:27554164

  9. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation

    SciTech Connect

    Almeida, Luciana O.; Garcia, Cristiana B.; Matos-Silva, Flavia A.; Curti, Carlos; Leopoldino, Andréia M.

    2014-02-28

    Highlights: • hnRNPK is a new target of SET. • SET regulates hnRNPK. • SET and hnRNPK accumulation promotes tumorigenesis. • SET accumulation is a potential model to study genes regulated by SET-hnRNPK. - Abstract: SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  10. An operator at -280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression.

    PubMed

    Dunn, T M; Hahn, S; Ogden, S; Schleif, R F

    1984-08-01

    A site has been found that is required for repression of the Escherichia coli araBAD operon. This site was detected by the in vivo properties of deletion mutants. In vitro protection studies with DNase I and dimethylsulfate showed that araC protein can specifically bind in this area to nucleotides lying at position -265 to -294 with respect to the araBAD operon promoter (PBAD) transcription start point. The previously known sites of protein binding in the ara operon lie between +20 and -160. Since the properties of deletion strains show that all the sites required for araBAD induction lie between +20 and -110, the new site at -280 exerts its repressive action over an unusually large distance along the DNA. Insertions of -16, -8, 0, 5, 11, 15, 24, and 31 base pairs of DNA between the new site and PBAD were constructed. Repression was impaired in those cases in which half-integral turns of the DNA helix were introduced, but repression was nearly normal for the insertions of 0, +11, and +31 base pairs.

  11. Repression of Rgg But Not Upregulation of LacD.1 in emm1-type covS Mutant Mediates the SpeB Repression in Group A Streptococcus

    PubMed Central

    Chiang-Ni, Chuan; Chu, Teng-Ping; Wu, Jiunn-Jong; Chiu, Cheng-Hsun

    2016-01-01

    CovR/CovS is an important two-component regulatory system in human pathogen group A Streptococcus (GAS). Epidemiological studies have shown that inactivation of the sensor kinase CovS is correlated with invasive clinical manifestations. The phosphorylation level of response regulator CovR decreases dramatically in the absence of CovS, resulting in the derepression of virulence factor expression and an increase in bacterial invasiveness. Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease and is negatively regulated by CovR; however, the expression of SpeB is almost completely repressed in the covS mutant. The present study found that in the emm1-type A20 strain, non-phosphorylated CovR acts as a transcriptional repressor for SpeB-positive regulator Rgg. In addition, the expression of Rgg-negative regulator LacD.1 is upregulated in the covS mutant. These results suggest that inactivation of Rgg in the covS mutant would directly mediate speB repression. The current study showed that overexpression of rgg but not inactivation of lacD.1 in the covS mutant partially restores speB expression, indicating that only rgg repression, but not lacD.1 upregulation, contributes to the speB repression in the covS mutant. PMID:27965655

  12. MacroH2A in stem cells: a story beyond gene repression.

    PubMed

    Creppe, Catherine; Posavec, Melanija; Douet, Julien; Buschbeck, Marcus

    2012-04-01

    The importance of epigenetic mechanisms is most clearly illustrated during early development when a totipotent cell goes through multiple cell fate transitions to form the many different cell types and tissues that constitute the embryo and the adult. The exchange of a canonical H2A histone for the 'repressive' macroH2A variant is one of the most striking epigenetic chromatin alterations that can occur at the level of the nucleosome. Here, we discuss recent data on macroH2A in zebrafish and mouse embryos, in embryonic and adult stem cells and also in nuclear reprogramming. We highlight the role of macroH2A in the establishment and maintenance of differentiated states and we discuss its still poorly recognized function in transcriptional activation.

  13. The structure of nucleosomal core particles within transcribed and repressed gene regions.

    PubMed Central

    Studitsky, V M; Belyavsky, A V; Melnikova, A F; Mirzabekov, A D

    1988-01-01

    The arrangement of histones along DNA in nucleosomal core particles within transcribed heat shock gene (hsp 70) region and repressed insertion within ribosomal genes of Drosophila was analysed by using protein-DNA crosslinking methods combined with hybridization tests. In addition, two-dimensional gel electrophoresis was employed to compare the overall nucleosomal shape and the nucleosomal DNA size. The arrangement of histones along DNA and general compactness of nucleosomes were shown to be rather similar in transcriptionally active and inactive genomic regions. On the other hand, nucleosomes within transcriptionally active chromatin are characterized by a larger size of nucleosomal DNA produced by micrococcal nuclease digestion and some peculiarity in electrophoretic mobility. Images PMID:3144704

  14. Trauma and Delayed Memory: A Review of the "Repressed Memories" Literature.

    PubMed

    Flathman, Marcus

    1999-10-29

    This review aims to draw balanced conclusions about trauma and memory from the intensely polarized debate currently raging over "repressed" memories, or better, delayed memories (hereafter DM). Research suggests that: emotion impacts memory; psychogenic amnesia can be a reaction to unusual levels of trauma; memory is malleable and delayed memories are prone to errors; however, inaccuracies in traumatic memories are more likely to be in peripheral details than central details. Also reviewed are infantile amnesia, clinical surveys on DM, and two psychoanalytic perspectives on DM. Treatment recommendations are culled from the literature. In order that the debate over adult DM not divert attention from the reality of child abuse and its damage, child abuse issues begin and end the review.

  15. Polycomb repressive complex 2 contributes to DNA double-strand break repair

    PubMed Central

    Campbell, Stuart; Ismail, Ismail Hassan; Young, Leah C; Poirier, Guy G; Hendzel, Michael J

    2013-01-01

    Polycomb protein histone methyltransferase, enhancer of Zeste homolog 2 (EZH2), is frequently overexpressed in human malignancy and is implicated in cancer cell proliferation and invasion. However, it is largely unknown whether EZH2 has a role in modulating the DNA damage response. Here, we show that polycomb repressive complex 2 (PRC2) is recruited to sites of DNA damage. This recruitment is independent of histone 2A variant X (H2AX) and the PI-3-related kinases ATM and DNA-PKcs. We establish that PARP activity is required for retaining PRC2 at sites of DNA damage. Furthermore, depletion of EZH2 in cells decreases the efficiency of DSB repair and increases sensitivity of cells to gamma-irradiation. These data unravel a crucial role of PRC2 in determining cancer cellular sensitivity following DNA damage and suggest that therapeutic targeting of EZH2 activity might serve as a strategy for improving conventional chemotherapy in a given malignancy. PMID:23907130

  16. Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling

    PubMed Central

    Mirzamohammadi, Fatemeh; Papaioannou, Garyfallia; Inloes, Jennifer B.; Rankin, Erinn B.; Xie, Huafeng; Schipani, Ernestina; Orkin, Stuart H.; Kobayashi, Tatsuya

    2016-01-01

    Polycomb repressive complex 2 (PRC2) controls maintenance and lineage determination of stem cells by suppressing genes that regulate cellular differentiation and tissue development. However, the role of PRC2 in lineage-committed somatic cells is mostly unknown. Here we show that Eed deficiency in chondrocytes causes severe kyphosis and a growth defect with decreased chondrocyte proliferation, accelerated hypertrophic differentiation and cell death with reduced Hif1a expression. Eed deficiency also causes induction of multiple signalling pathways in chondrocytes. Wnt signalling overactivation is responsible for the accelerated hypertrophic differentiation and kyphosis, whereas the overactivation of TGF-β signalling is responsible for the reduced proliferation and growth defect. Thus, our study demonstrates that PRC2 has an important regulatory role in lineage-committed tissue cells by suppressing overactivation of multiple signalling pathways. PMID:27329220

  17. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress.

    PubMed

    Kim, Nam Hee; Cha, Yong Hoon; Lee, Jueun; Lee, Seon-Hyeong; Yang, Ji Hye; Yun, Jun Seop; Cho, Eunae Sandra; Zhang, Xianglan; Nam, Miso; Kim, Nami; Yuk, Young-Su; Cha, So Young; Lee, Yoonmi; Ryu, Joo Kyung; Park, Sunghyouk; Cheong, Jae-Ho; Kang, Sang Won; Kim, Soo-Youl; Hwang, Geum-Sook; Yook, Jong In; Kim, Hyun Sil

    2017-02-08

    Dynamic regulation of glucose flux between aerobic glycolysis and the pentose phosphate pathway (PPP) during epithelial-mesenchymal transition (EMT) is not well-understood. Here we show that Snail (SNAI1), a key transcriptional repressor of EMT, regulates glucose flux toward PPP, allowing cancer cell survival under metabolic stress. Mechanistically, Snail regulates glycolytic activity via repression of phosphofructokinase, platelet (PFKP), a major isoform of cancer-specific phosphofructokinase-1 (PFK-1), an enzyme involving the first rate-limiting step of glycolysis. The suppression of PFKP switches the glucose flux towards PPP, generating NADPH with increased metabolites of oxidative PPP. Functionally, dynamic regulation of PFKP significantly potentiates cancer cell survival under metabolic stress and increases metastatic capacities in vivo. Further, knockdown of PFKP rescues metabolic reprogramming and cell death induced by loss of Snail. Thus, the Snail-PFKP axis plays an important role in cancer cell survival via regulation of glucose flux between glycolysis and PPP.

  18. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants.

    PubMed

    Tang, Xu; Lowder, Levi G; Zhang, Tao; Malzahn, Aimee A; Zheng, Xuelian; Voytas, Daniel F; Zhong, Zhaohui; Chen, Yiyi; Ren, Qiurong; Li, Qian; Kirkland, Elida R; Zhang, Yong; Qi, Yiping

    2017-02-17

    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cpf1 has emerged as an effective genome editing tool in animals. Here we compare the activity of Cpf1 from Acidaminococcus sp. BV3L6 (As) and Lachnospiraceae bacterium ND2006 (Lb) in plants, using a dual RNA polymerase II promoter expression system. LbCpf1 generated biallelic mutations at nearly 100% efficiency at four independent sites in rice T0 transgenic plants. Moreover, we repurposed AsCpf1 and LbCpf1 for efficient transcriptional repression in Arabidopsis, and demonstrated a more than tenfold reduction in miR159b transcription. Our data suggest promising applications of CRISPR-Cpf1 for editing plant genomes and modulating the plant transcriptome.

  19. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis.

    PubMed

    Liu, Xue-Song; Haines, Jenna E; Mehanna, Elie K; Genet, Matthew D; Ben-Sahra, Issam; Asara, John M; Manning, Brendan D; Yuan, Zhi-Min

    2014-09-01

    Elevated glycolysis is a common metabolic trait of cancer, but what drives such metabolic reprogramming remains incompletely clear. We report here a novel transcriptional repressor-mediated negative regulation of glycolysis. ZBTB7A, a member of the POK (POZ/BTB and Krüppel) transcription repressor family, directly binds to the promoter and represses the transcription of critical glycolytic genes, including GLUT3, PFKP, and PKM. Analysis of The Cancer Genome Atlas (TCGA) data sets reveals that the ZBTB7A locus is frequently deleted in many human tumors. Significantly, reduced ZBTB7A expression correlates with up-regulation of the glycolytic genes and poor survival in colon cancer patients. Remarkably, while ZBTB7A-deficient tumors progress exceedingly fast, they exhibit an unusually heightened sensitivity to glycolysis inhibition. Our study uncovers a novel tumor suppressor role of ZBTB7A in directly suppressing glycolysis.

  20. Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection.

    PubMed

    Shuai-Cheng, Wu; Ben-Dong, Fu; Xiu-Ling, Chu; Jian-Qing, Su; Yun-Xing, Fu; Zhen-Qiang, Cui; Dao-Xiu, Xu; Zong-Mei, Wu

    2016-11-01

    Phloretin, a natural component of many fruits, exhibits anti-virulence effects and provides a new alternative to counter bacterial infection. The aim of this study was to determine the effect of subinhibitory concentrations of phloretin on the virulence of Salmonella typhimurium. At concentrations where growth of Salmonella was not inhibited, phloretin significantly inhibited bacteria biofilm formation and motility. Subinhibitory concentrations of phloretin repressed eight genes involved in the Salmonella pathogenicity island 1 and 3 genes involved in flagella production. Furthermore, subinhibitory concentrations of phloretin inhibited the adhesion and invasion of Salmonella in IEC-6 cells and reduced the LDH levels of S. typhimurium-infected IEC-6 cells. Additionally, phloretin significantly decreased the cecum bacterial loads of the mice infected with live S. typhimurium containing subinhibitory concentrations of phloretin by gavage. These results suggested that subinhibitory concentrations of phloretin attenuate the virulence of S. typhimurium and protect against S. typhimurium infection.

  1. Ethanol from Whey: Continuous Fermentation with a Catabolite Repression-Resistant Saccharomyces cerevisiae Mutant.

    PubMed

    Terrell, S L; Bernard, A; Bailey, R B

    1984-09-01

    An alternative method for the conversion of cheese whey lactose into ethanol has been demonstrated. With the help of continuous-culture technology, a catabolite repression-resistant mutant of Saccharomyces cerevisiae completely fermented equimolar mixtures of glucose and galactose into ethanol. The first step in this process was a computer-controlled fed-batch operation based on the carbon dioxide evolution rate of the culture. In the absence of inhibitory ethanol concentrations, this step allowed us to obtain high biomass concentrations before continuous fermentation. The continuous anaerobic process successfully incorporated a cell-recycle system to optimize the fermentor productivity. Under conditions permitting a low residual sugar concentration (

  2. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns

    PubMed Central

    Zhang, Linlin; Reed, Robert D.

    2016-01-01

    Butterfly eyespot colour patterns are a key example of how a novel trait can appear in association with the co-option of developmental patterning genes. Little is known, however, about how, or even whether, co-opted genes function in eyespot development. Here we use CRISPR/Cas9 genome editing to determine the roles of two co-opted transcription factors that are expressed during early eyespot determination. We found that deletions in a single gene, spalt, are sufficient to reduce or completely delete eyespot colour patterns, thus demonstrating a positive regulatory role for this gene in eyespot determination. Conversely, and contrary to previous predictions, deletions in Distal-less (Dll) result in an increase in the size and number of eyespots, illustrating a repressive role for this gene in eyespot development. Altogether our results show that the presence, absence and shape of butterfly eyespots can be controlled by the activity of two co-opted transcription factors. PMID:27302525

  3. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns.

    PubMed

    Zhang, Linlin; Reed, Robert D

    2016-06-15

    Butterfly eyespot colour patterns are a key example of how a novel trait can appear in association with the co-option of developmental patterning genes. Little is known, however, about how, or even whether, co-opted genes function in eyespot development. Here we use CRISPR/Cas9 genome editing to determine the roles of two co-opted transcription factors that are expressed during early eyespot determination. We found that deletions in a single gene, spalt, are sufficient to reduce or completely delete eyespot colour patterns, thus demonstrating a positive regulatory role for this gene in eyespot determination. Conversely, and contrary to previous predictions, deletions in Distal-less (Dll) result in an increase in the size and number of eyespots, illustrating a repressive role for this gene in eyespot development. Altogether our results show that the presence, absence and shape of butterfly eyespots can be controlled by the activity of two co-opted transcription factors.

  4. Polycomb repression in the regulation of growth and development in Arabidopsis.

    PubMed

    Xiao, Jun; Wagner, Doris

    2015-02-01

    Chromatin state is critical for cell identity and development in multicellular eukaryotes. Among the regulators of chromatin state, Polycomb group (PcG) proteins stand out because of their role in both establishment and maintenance of cell identity. PcG proteins act in two major complexes in metazoans and plants. These complexes function to epigenetically-in a mitotically heritable manner-prevent expression of important developmental regulators at the wrong stage of development or in the wrong tissue. In Arabidopsis, PcG function is required throughout the life cycle from seed germination to embryo formation. Recent studies have expanded our knowledge regarding the biological roles and the regulation of the activity of PcG complexes. In this review, we discuss novel functions of Polycomb repression in plant development as well as advances in understanding PcG complex recruitment, activity regulation and removal in Arabidopsis and other plant species.

  5. miR-128 represses L1 retrotransposition by binding directly to L1 RNA.

    PubMed

    Hamdorf, Matthias; Idica, Adam; Zisoulis, Dimitrios G; Gamelin, Lindsay; Martin, Charles; Sanders, Katie J; Pedersen, Irene M

    2015-10-01

    Long interspersed element 1 (LINE-1 or L1) retrotransposons compose 17% of the human genome. Active L1 elements are capable of replicative transposition (mobilization) and can act as drivers of genetic diversity. However, this mobilization is mutagenic and may be detrimental to the host, and therefore it is under strict control. Somatic cells usually silence L1 activity by DNA methylation of the L1 promoter. In hypomethylated cells, such as cancer cells and induced pluripotent stem cells (iPSCs), a window of opportunity for L1 reactivation emerges, and with it comes an increased risk of genomic instability and tumorigenesis. Here we show that miR-128 represses new retrotransposition events in human cancer cells and iPSCs by binding directly to L1 RNA. Thus, we have identified and characterized a new function of microRNAs: mediating genomic stability by suppressing the mobility of endogenous retrotransposons.

  6. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress

    PubMed Central

    Kim, Nam Hee; Cha, Yong Hoon; Lee, Jueun; Lee, Seon-Hyeong; Yang, Ji Hye; Yun, Jun Seop; Cho, Eunae Sandra; Zhang, Xianglan; Nam, Miso; Kim, Nami; Yuk, Young-Su; Cha, So Young; Lee, Yoonmi; Ryu, Joo Kyung; Park, Sunghyouk; Cheong, Jae-Ho; Kang, Sang Won; Kim, Soo-Youl; Hwang, Geum-Sook; Yook, Jong In; Kim, Hyun Sil

    2017-01-01

    Dynamic regulation of glucose flux between aerobic glycolysis and the pentose phosphate pathway (PPP) during epithelial–mesenchymal transition (EMT) is not well-understood. Here we show that Snail (SNAI1), a key transcriptional repressor of EMT, regulates glucose flux toward PPP, allowing cancer cell survival under metabolic stress. Mechanistically, Snail regulates glycolytic activity via repression of phosphofructokinase, platelet (PFKP), a major isoform of cancer-specific phosphofructokinase-1 (PFK-1), an enzyme involving the first rate-limiting step of glycolysis. The suppression of PFKP switches the glucose flux towards PPP, generating NADPH with increased metabolites of oxidative PPP. Functionally, dynamic regulation of PFKP significantly potentiates cancer cell survival under metabolic stress and increases metastatic capacities in vivo. Further, knockdown of PFKP rescues metabolic reprogramming and cell death induced by loss of Snail. Thus, the Snail-PFKP axis plays an important role in cancer cell survival via regulation of glucose flux between glycolysis and PPP. PMID:28176759

  7. Repression versus sensitization in response to media violence as predictors of cognitive avoidance and vigilance.

    PubMed

    Krahé, Barbara; Möller, Ingrid; Berger, Anja; Felber, Juliane

    2011-02-01

    Repression and sensitization as situational modes of coping with anxiety were examined as predictors of trait measures of cognitive avoidance and vigilance. In this study, 303 undergraduates saw a violent film clip to elicit anxiety. Increases in skin conductance level (SCL) and state anxiety (STA) from baseline were measured to identify repressors (high SCL, low STA) and contrast them with sensitizers (low SCL, high STA) and genuinely low anxious individuals (low SCL, low STA). State anger was also recorded. Trait measures of vigilance and cognitive avoidance were collected 2 weeks earlier. Significant SCL × STA interactions indicated that repressors scored higher on cognitive avoidance and lower on vigilance compared to sensitizers and low anxious participants. Repressors were less likely than sensitizers to report gaze avoidance during the clip. The anger by SCL interaction was nonsignificant, suggesting that repressors and sensitizers differ specifically in the processing of anxiety rather than negative affect in general.

  8. The Practice of Transformative Pedagogy

    ERIC Educational Resources Information Center

    Ukpokodu, Omiunota

    2009-01-01

    The author examined the practice of transformative pedagogy in an undergraduate teacher education program. The research was guided by two questions: What is the impact of transformative pedagogy on fostering preservice teachers' transformative learning? and What practices of transformative pedagogy impact student transformative learning?…

  9. Overview of transformer platform showing three original stepup transformer (center), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of transformer platform showing three original step-up transformer (center), steel switchback (right), and modern step-down transformer (foreground), view to northwest - Morony Hydroelectric Facility, Dam and Powerhouse, Morony Dam Road, Great Falls, Cascade County, MT

  10. MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma

    PubMed Central

    Chen, Jiamin; Feilotter, Harriet E.; Paré, Geneviève C.; Zhang, Xiao; Pemberton, Joshua G.W.; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A.

    2010-01-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by ≥50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3′untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development. PMID:20304954

  11. The glycosyltransferase LARGE2 is repressed by Snail and ZEB1 in prostate cancer.

    PubMed

    Huang, Qin; Miller, Michael R; Schappet, James; Henry, Michael D

    2015-01-01

    Reductions in both expression of the dystroglycan core protein and functional glycosylation of the α-dystroglycan (αDG) subunit have been reported in a number of cancers and may contribute to disease progression. In the case of prostate cancer, one mechanism that contributes to αDG hypoglycosylation is transcriptional down-regulation of LARGE2 (GYLTY1B), a glycosyltransferase that produces the functional (laminin-binding) glycan on αDG, but the mechanism(s) underlying reduction of LARGE2 mRNA remain unclear. Here, we show that αDG hypoglycosylation is associated with epithelial-to-mesenchymal transition (EMT)-like status. We examined immunoreactivity for both functionally-glycosylated αDG and E-cadherin by flow cytometry and the relative expression of ZEB1 mRNA and the αDG glycosyltransferase LARGE2 mRNA in prostate and other cancer cell lines by quantitative RT-PCR. To study the role of ZEB1 and other transcription factors in the regulation of LARGE2, we employed overexpression and knockdown approaches. Snail- or ZEB1-driven EMT caused αDG hypoglycosylation by repressing expression of the LARGE2 mRNA, with both ZEB1-dependent and -independent mechanisms contributing to Snail-mediated LARGE2 repression. To examine the direct regulation of LARGE2 by Snail and ZEB1 we employed luciferase reporter and chromatin immunoprecipitation assays. Snail and ZEB1 were found to bind directly to the LARGE2 promoter, specifically to E/Z-box clusters. Furthermore, analysis of gene expression profiles of clinical samples in The Cancer Genome Atlas reveals negative correlation of LARGE2 and ZEB1 expression in various cancers. Collectively, our results suggest that LARGE2 is negatively regulated by Snail and/or ZEB1, revealing a mechanistic basis for αDG hypoglycosylation during prostate cancer progression and metastasis.

  12. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription.

    PubMed

    Vanti, Manuela; Gallastegui, Edurne; Respaldiza, Iñaki; Rodríguez-Gil, Alfonso; Gómez-Herreros, Fernando; Jimeno-González, Silvia; Jordan, Albert; Chávez, Sebastián

    2009-01-01

    Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR), which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

  13. Polycomb Repressive Complex 2-Dependent and -Independent Functions of Jarid2 in Transcriptional Regulation in Drosophila

    PubMed Central

    Herz, Hans-Martin; Mohan, Man; Garrett, Alexander S.; Miller, Caitlynn; Casto, David; Zhang, Ying; Seidel, Christopher; Haug, Jeffrey S.; Florens, Laurence; Washburn, Michael P.; Yamaguchi, Masamitsu; Shiekhattar, Ramin

    2012-01-01

    Jarid2 was recently identified as an important component of the mammalian Polycomb repressive complex 2 (PRC2), where it has a major effect on PRC2 recruitment in mouse embryonic stem cells. Although Jarid2 is conserved in Drosophila, it has not previously been implicated in Polycomb (Pc) regulation. Therefore, we purified Drosophila Jarid2 and its associated proteins and found that Jarid2 associates with all of the known canonical PRC2 components, demonstrating a conserved physical interaction with PRC2 in flies and mammals. Furthermore, in vivo studies with Jarid2 mutants in flies demonstrate that among several histone modifications tested, only methylation of histone 3 at K27 (H3K27), the mark implemented by PRC2, was affected. Genome-wide profiling of Jarid2, Su(z)12 (Suppressor of zeste 12), and H3K27me3 occupancy by chromatin immunoprecipitation with sequencing (ChIP-seq) indicates that Jarid2 and Su(z)12 have very similar distribution patterns on chromatin. However, Jarid2 and Su(z)12 occupancy levels at some genes are significantly different, with Jarid2 being present at relatively low levels at many Pc response elements (PREs) of certain Homeobox (Hox) genes, providing a rationale for why Jarid2 was never identified in Pc screens. Gene expression analyses show that Jarid2 and E(z) (Enhancer of zeste, a canonical PRC2 component) are not only required for transcriptional repression but might also function in active transcription. Identification of Jarid2 as a conserved PRC2 interactor in flies provides an opportunity to begin to probe some of its novel functions in Drosophila development. PMID:22354997

  14. Political repression, civil society and the politics of responding to AIDS in the BRICS nations.

    PubMed

    Gómez, Eduardo J; Harris, Joseph

    2016-02-01

    The policy responses to human immunodeficiency virus/acquired immune deficiency syndrome (AIDS) in the Brazil, Russia, India, China and South Africa (BRICS) nations have played out amid radically different political environments that have shaped state-civil society relations in critical ways. In contrasting these different environments, this article offers the first comparison of the policy response to AIDS in the BRICS nations and seeks to understand the way in which political context matters for conditioning the response to a major epidemic. Using a comparative historical approach, we find that while collaborative state-civil society relations have produced an aggressive response and successful outcomes in Brazil, democratic openness and state-civil society engagement has not necessarily correlated with an aggressive response or better outcomes in the other cases. Response to the epidemic has been worst by far in democratic South Africa, followed by Russia, where in the former, denialism and antagonistic state-civil society relations fuelled a delayed response and proved extremely costly in terms of human lives. In Russia, a lack of civil societal opportunity for mobilization and non-governmental organization (NGO) growth, political centralization and the state's unwillingness to work with NGOs led to an ineffective government response. Top-down bureaucratic rule and a reluctance to fully engage civil society in democratic India substantially delayed the state's efforts to engage in a successful partnership with NGOs. Nevertheless, China has done surprisingly well, in spite of its repressive approach and narrow engagement with civil society. And in all cases, we find the relationship between state and civil society to be evolving over time in important ways. These findings suggest the need for more research on the links between democratic openness, political repression and policy responses to epidemics.

  15. The Paf1 complex represses small RNA-mediated epigenetic gene silencing

    PubMed Central

    Flury, Valentin; Stadler, Michael Beda; Batki, Julia; Bühler, Marc

    2015-01-01

    RNA interference (RNAi) refers to the ability of exogenously introduced double-stranded RNA (dsRNA) to silence expression of homologous sequences. Silencing is initiated when the enzyme Dicer processes the dsRNA into small interfering RNAs (siRNAs). Small RNA molecules are incorporated into Argonaute protein-containing effector complexes, which they guide to complementary targets to mediate different types of gene silencing, specifically post-transcriptional gene silencing (PTGS) and chromatin-dependent gene silencing1. Although endogenous small RNAs play critical roles in chromatin-mediated processes across kingdoms, efforts to initiate chromatin modifications in trans by using siRNAs have been inherently difficult to achieve in all eukaryotic cells. Using fission yeast, we show that RNAi-directed heterochromatin formation is negatively controlled by the highly conserved RNA polymerase-associated factor 1 complex (Paf1C). Temporary expression of a synthetic hairpin RNA in Paf1C mutants triggers stable heterochromatin formation at homologous loci, effectively silencing genes in trans. This repressed state is propagated across generations by continual production of secondary siRNAs, independently of the synthetic hairpin RNA. Our data support a model where Paf1C prevents targeting of nascent transcripts by the siRNA-containing RNA-induced transcriptional silencing (RITS) complex and thereby epigenetic gene silencing, by promoting efficient transcription termination and rapid release of the RNA from the site of transcription. We show that although compromised transcription termination is sufficient to initiate the formation of bi-stable heterochromatin by trans-acting siRNAs, impairment of both transcription termination and nascent transcript release is imperative to confer stability to the repressed state. Our work uncovers a novel mechanism for small RNA- mediated epigenome regulation and highlights fundamental roles for Paf1C and the RNAi machinery in building

  16. FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice

    PubMed Central

    Takasawa, Kei; Kashimada, Kenichi; Pelosi, Emanuele; Takagi, Masatoshi; Morio, Tomohiro; Asahara, Hiroshi; Schlessinger, David; Mizutani, Shuki; Koopman, Peter

    2014-01-01

    Steroidogenic factor 1 (SF1; Ad4BP/NR5A1) plays key roles in gonadal development. Initially, the Sf1 gene is expressed in mouse fetal gonads of both sexes, but later is up-regulated in testes and down-regulated in ovaries. While Sf1 expression is activated and maintained by Wilms tumor 1 (WT1) and LIM homeobox 9 (LHX9), the mechanism of sex-specific regulation remains unclear. We hypothesized that Sf1 is repressed by the transcription factor Forkhead box L2 (FOXL2) during ovarian development. In an in vitro system (TM3 cells), up-regulation of Sf1 by the WT1 splice variant WT1-KTS was antagonized by FOXL2, as determined by quantitative RT-PCR. Using reporter assays, we localized the Sf1 proximal promoter region involved in this antagonism to a 674-bp interval. A conserved FOXL2 binding site was identified in this interval by in vitro chromatin immunoprecipitation. Introducing mutations into this site abolished negative regulation by FOXL2 in reporter assays. Finally, in Foxl2-null mice, Sf1 expression was increased 2-fold relative to wild-type XX fetal gonads. Our results support the hypothesis that FOXL2 negatively regulates Sf1 expression by antagonizing WT1-KTS during early ovarian development in mice.—Takasawa, K., Kashimada, K., Pelosi, E., Takagi, M., Morio, T., Asahara, H., Schlessinger, D., Mizutani, S., Koopman, P. FOXL2 transcriptionally represses Sf1 expression by antagonizing WT1 during ovarian development in mice. PMID:24451388

  17. Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

    PubMed Central

    Bouyer, Daniel; Roudier, Francois; Heese, Maren; Andersen, Ellen D.; Gey, Delphine; Nowack, Moritz K.; Goodrich, Justin; Renou, Jean-Pierre; Grini, Paul E.; Colot, Vincent; Schnittger, Arp

    2011-01-01

    Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. PMID:21423668

  18. Mariner Transposons Contain a Silencer: Possible Role of the Polycomb Repressive Complex 2

    PubMed Central

    Beauclair, Linda; Moiré, Nathalie; Arensbuger, Peter; Bigot, Yves

    2016-01-01

    Transposable elements are driving forces for establishing genetic innovations such as transcriptional regulatory networks in eukaryotic genomes. Here, we describe a silencer situated in the last 300 bp of the Mos1 transposase open reading frame (ORF) which functions in vertebrate and arthropod cells. Functional silencers are also found at similar locations within three other animal mariner elements, i.e. IS630-Tc1-mariner (ITm) DD34D elements, Himar1, Hsmar1 and Mcmar1. These silencers are able to impact eukaryotic promoters monitoring strong, moderate or low expression as well as those of mariner elements located upstream of the transposase ORF. We report that the silencing involves at least two transcription factors (TFs) that are conserved within animal species, NFAT-5 and Alx1. These cooperatively act with YY1 to trigger the silencing activity. Four other housekeeping transcription factors (TFs), neuron restrictive silencer factor (NRSF), GAGA factor (GAF) and GTGT factor (GTF), were also found to have binding sites within mariner silencers but their impact in modulating the silencer activity remains to be further specified. Interestingly, an NRSF binding site was found to overlap a 30 bp motif coding a highly conserved PHxxYSPDLAPxD peptide in mariner transposases. We also present experimental evidence that silencing is mainly achieved by co-opting the host Polycomb Repressive Complex 2 pathway. However, we observe that when PRC2 is impaired another host silencing pathway potentially takes over to maintain weak silencer activity. Mariner silencers harbour features of Polycomb Response Elements, which are probably a way for mariner elements to self-repress their transcription and mobility in somatic and germinal cells when the required TFs are expressed. At the evolutionary scale, mariner elements, through their exaptation, might have been a source of silencers playing a role in the chromatin configuration in eukaryotic genomes. PMID:26939020

  19. Amino Acid Catabolism in Staphylococcus aureus and the Function of Carbon Catabolite Repression

    PubMed Central

    Halsey, Cortney R.; Lei, Shulei; Wax, Jacqueline K.; Lehman, Mckenzie K.; Nuxoll, Austin S.; Steinke, Laurey; Sadykov, Marat

    2017-01-01

    ABSTRACT Staphylococcus aureus must rapidly adapt to a variety of carbon and nitrogen sources during invasion of a host. Within a staphylococcal abscess, preferred carbon sources such as glucose are limiting, suggesting that S. aureus survives through the catabolism of secondary carbon sources. S. aureus encodes pathways to catabolize multiple amino acids, including those that generate pyruvate, 2-oxoglutarate, and oxaloacetate. To assess amino acid catabolism, S. aureus JE2 and mutants were grown in complete defined medium containing 18 amino acids but lacking glucose (CDM). A mutation in the gudB gene, coding for glutamate dehydrogenase, which generates 2-oxoglutarate from glutamate, significantly reduced growth in CDM, suggesting that glutamate and those amino acids generating glutamate, particularly proline, serve as the major carbon source in this medium. Nuclear magnetic resonance (NMR) studies confirmed this supposition. Furthermore, a mutation in the ackA gene, coding for acetate kinase, also abrogated growth of JE2 in CDM, suggesting that ATP production from pyruvate-producing amino acids is also critical for growth. In addition, although a functional respiratory chain was absolutely required for growth, the oxygen consumption rate and intracellular ATP concentration were significantly lower during growth in CDM than during growth in glucose-containing media. Finally, transcriptional analyses demonstrated that expression levels of genes coding for the enzymes that synthesize glutamate from proline, arginine, and histidine are repressed by CcpA and carbon catabolit