Sample records for repressor controls nephron

  1. Kif3a Controls Murine Nephron Number Via GLI3 Repressor, Cell Survival, and Gene Expression in a Lineage-Specific Manner

    PubMed Central

    Chi, Lijun; Galtseva, Alevtina; Chen, Lin; Mo, Rong; Hui, Chi-chung; Rosenblum, Norman D.

    2013-01-01

    The primary cilium is required during early embryo patterning, epithelial tubulogenesis, and growth factor-dependent signal transduction. The requirement for primary cilia during renal epithelial-mesenchymal tissue interactions that give rise to nephrons is undefined. Here, we used Cre-mediated recombination to generate mice with Kif3a deficiency targeted to the ureteric and/or metanephric mesenchyme cell lineages in the embryonic kidney. Gradual loss of primary cilia in either lineage leads to a phenotype of reduced nephron number. Remarkably, in addition to cyst formation, loss of primary cilia in the ureteric epithelial cell leads to decreased expression of Wnt11 and Ret and reduced ureteric branching. Constitutive expression of GLI3 repressor (Gli3Δ699/+) rescues these abnormalities. In embryonic metanephric mesenchyme cells, Kif3a deficiency limits survival of nephrogenic progenitor cells and expression of genes required for nephron formation. Together, our data demonstrate that Kif3a controls nephron number via distinct cell lineage-specific mechanisms. PMID:23762375

  2. Sall1 Maintains Nephron Progenitors and Nascent Nephrons by Acting as Both an Activator and a Repressor

    PubMed Central

    Kanda, Shoichiro; Tanigawa, Shunsuke; Ohmori, Tomoko; Taguchi, Atsuhiro; Kudo, Kuniko; Suzuki, Yutaka; Sato, Yuki; Hino, Shinjiro; Sander, Maike; Perantoni, Alan O.; Sugano, Sumio; Nakao, Mitsuyoshi

    2014-01-01

    The balanced self-renewal and differentiation of nephron progenitors are critical for kidney development and controlled, in part, by the transcription factor Six2, which antagonizes canonical Wnt signaling-mediated differentiation. A nuclear factor, Sall1, is expressed in Six2-positive progenitors as well as differentiating nascent nephrons, and it is essential for kidney formation. However, the molecular functions and targets of Sall1, especially the functions and targets in the nephron progenitors, remain unknown. Here, we report that Sall1 deletion in Six2-positive nephron progenitors results in severe progenitor depletion and apoptosis of the differentiating nephrons in mice. Analysis of mice with an inducible Sall1 deletion revealed that Sall1 activates genes expressed in progenitors while repressing genes expressed in differentiating nephrons. Sall1 and Six2 co-occupied many progenitor-related gene loci, and Sall1 bound to Six2 biochemically. In contrast, Sall1 did not bind to the Wnt4 locus suppressed by Six2. Sall1-mediated repression was also independent of its binding to DNA. Thus, Sall1 maintains nephron progenitors and their derivatives by a unique mechanism, which partly overlaps but is distinct from that of Six2: Sall1 activates progenitor-related genes in Six2-positive nephron progenitors and represses gene expression in Six2-negative differentiating nascent nephrons. PMID:24744442

  3. Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment.

    PubMed

    Cain, Jason E; Di Giovanni, Valeria; Smeeton, Joanna; Rosenblum, Norman D

    2010-08-01

    Renal hypoplasia, defined as abnormally small kidneys with normal morphology and reduced nephron number, is a common cause of pediatric renal failure and adult-onset disease. Genetic studies performed in humans and mutant mice have implicated a number of critical genes, in utero environmental factors and molecular mechanisms that regulate nephron endowment and kidney size. Here, we review current knowledge regarding the genetic contributions to renal hypoplasia with particular emphasis on the mechanisms that control nephron endowment in humans and mice.

  4. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron.

    PubMed

    Lindström, Nils O; Lawrence, Melanie L; Burn, Sally F; Johansson, Jeanette A; Bakker, Elvira R M; Ridgway, Rachel A; Chang, C-Hong; Karolak, Michele J; Oxburgh, Leif; Headon, Denis J; Sansom, Owen J; Smits, Ron; Davies, Jamie A; Hohenstein, Peter

    2015-02-03

    The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.

  5. Adult renal size is not a suitable marker for nephron numbers: an individual patient data meta-analysis.

    PubMed

    Bueters, Ruud Rg; van de Kar, Nicole Caj; Schreuder, Michiel F

    2013-01-01

    Renal size is often used as a marker for nephron numbers as estimation of glomerular numbers is not yet possible in vivo. However, the validity of an association between the two is questionable. As a proper marker for nephron number in an individual is needed in clinical practice, this study was designed to assess the association between renal size and nephron numbers. An individual patient data meta-analysis was performed on data retrieved with a PubMed and Embase search. Only studies were included that described individual human data on kidney size and nephron numbers determined by stereology, the gold standard methodology to estimate nephron numbers. As renal size increases until the end of puberty, and nephron numbers decline after the age of 60 years, only data from individuals aged 18-60 years without renal disease were included. Six papers were identified that provided data on renal weight and nephron numbers from 114 individuals. Backward linear regression identified kidney weight and race as the only 2 significant factors explaining nephron numbers (R square 0.085, p=0.007). Controlling for race, there was a significant correlation between nephron number and kidney weight (r=0.231, r square=0.053, p=0.01). These data indicate that only ∼5% of the variation in nephron numbers is explained by differences in renal size. Renal size in adulthood should not be used as a marker for nephron numbers in an individual. © 2013 S. Karger AG, Basel.

  6. Compensatory Growth of Congenital Solitary Kidneys in Pigs Reflects Increased Nephron Numbers Rather Than Hypertrophy

    PubMed Central

    van Vuuren, Stefan H.; Sol, Chalana M.; Broekhuizen, Roel; Lilien, Marc R.; Oosterveld, Michiel J. S.; Nguyen, Tri Q.

    2012-01-01

    Background Patients with unilateral MultiCystic Kidney Dysplasia (MCKD) or unilateral renal agenesis (URA) have a congenital solitary functioning kidney (CSFK) that is compensatory enlarged. The question whether this enlargement is due to increased nephron numbers and/or to nephron hypertrophy is unresolved. This question is of utmost clinical importance, since hypertrophy is associated with a risk of developing hypertension and proteinuria later in life with consequent development of CKD and cardiovascular disease. Methodology/Principal Findings In a cohort of 32,000 slaughter pigs, 7 congenital solitary functioning kidneys and 7 control kidneys were identified and harvested. Cortex volume was measured and with a 3-dimensional stereologic technique the number and volume of glomeruli was determined and compared. The mean total cortex volume was increased by more than 80% and the mean number of glomeruli per kidney was 50% higher in CSFKs than in a single control kidney, equaling 75% of the total nephron number in both kidneys of control subjects. The mean total glomerular volume in the CSFKs was not increased relative to the controls. Conclusions/Significance Thus, in pigs, compensatory enlargement of a CSFK is based on increased nephron numbers. Extrapolation of these findings to the human situation suggests that patients with a CSFK might not be at increased risk for developing hyperfiltration-associated renal and cardiovascular disease in later life due to a lower nephron number. PMID:23185419

  7. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron

    PubMed Central

    Lindström, Nils O; Lawrence, Melanie L; Burn, Sally F; Johansson, Jeanette A; Bakker, Elvira RM; Ridgway, Rachel A; Chang, C-Hong; Karolak, Michele J; Oxburgh, Leif; Headon, Denis J; Sansom, Owen J; Smits, Ron; Davies, Jamie A; Hohenstein, Peter

    2015-01-01

    The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning. DOI: http://dx.doi.org/10.7554/eLife.04000.001 PMID:25647637

  8. Bim gene dosage is critical in modulating nephron progenitor survival in the absence of microRNAs during kidney development.

    PubMed

    Cerqueira, Débora M; Bodnar, Andrew J; Phua, Yu Leng; Freer, Rachel; Hemker, Shelby L; Walensky, Loren D; Hukriede, Neil A; Ho, Jacqueline

    2017-08-01

    Low nephron endowment at birth has been associated with an increased risk for developing hypertension and chronic kidney disease. We demonstrated in an earlier study that conditional deletion of the microRNA (miRNA)-processing enzyme Dicer from nephron progenitors results in premature depletion of the progenitors and increased expression of the proapoptotic protein Bim (also known as Bcl-2L11). In this study, we generated a compound mouse model with conditional deletion of both Dicer and Bim , to determine the biologic significance of increased Bim expression in Dicer -deficient nephron progenitors. The loss of Bim partially restored the number of nephron progenitors and improved nephron formation. The number of progenitors undergoing apoptosis was significantly reduced in kidneys with loss of a single allele, or both alleles, of Bim compared to mutant kidneys. Furthermore, 2 miRNAs expressed in nephron progenitors ( miR-17 and miR-106b) regulated Bim levels in vitro and in vivo Together, these data suggest that miRNA-mediated regulation of Bim controls nephron progenitor survival during nephrogenesis, as one potential means of regulating nephron endowment.-Cerqueira, D. M., Bodnar, A. J., Phua, Y. L., Freer, R., Hemker, S. L., Walensky, L. D., Hukriede, N. A., Ho, J. Bim gene dosage is critical in modulating nephron progenitor survival in the absence of microRNAs during kidney development. © FASEB.

  9. Fibroblast growth factor receptor-Frs2α signaling is critical for nephron progenitors.

    PubMed

    Di Giovanni, Valeria; Walker, Kenneth A; Bushnell, Daniel; Schaefer, Caitlin; Sims-Lucas, Sunder; Puri, Pawan; Bates, Carlton M

    2015-04-01

    Previous studies using transgenic Pax3cre mice have revealed roles for fibroblast growth factor receptors (Fgfrs) and Fgfr substrate 2α (Frs2α) signaling in early metanephric mesenchyme patterning and in ureteric morphogenesis. The role of Fgfr/Frs2α signaling in nephron progenitors is unknown. Thus, we generated mouse models using BAC transgenic Six2EGFPcre (Six2cre) mediated deletion of Fgfrs and/or Frs2α in nephron progenitors. Six2cre mediated deletion of Fgfr1 or Fgfr2 alone led to no obvious kidney defects. Six2creFgfr1(flox/flox)Fgfr2(flox/flox) (Fgfr1/2(NP-/-)) mice generate a discernable kidney; however, they develop nephron progenitor depletion starting at embryonic day 12.5 (E12.5) and later demonstrate severe cystic dysplasia. To determine the role of Frs2α signaling downstream of Fgfr2 in Fgfr1/2(NP-/-) mice, we generated Six2cre(,)Fgfr1(flox/flox)Fgfr2(LR/LR) (Fgfr1(NP-/-)Fgfr2(LR/LR)) mice that have point mutations in the Frs2α binding site of Fgfr2. Like Fgfr1/2(NP-/-) mice, Fgfr1(NP-/-)Fgfr2(LR/LR) develop nephron progenitor depletion, but it does not start until E14.5 and older mice have less severe cystic dysplasia than Fgfr1/2(NP-/-) To determine the role of Frs2α alone in nephron progenitors, we generated Six2creFrs2'A(flox/flox) (Frs2a(NP-/-)) mice. Frs2a(NP-/-)mice also develop nephron progenitor depletion and renal cysts, although these occurred later and were less severe than in the other Six2cre mutant mice. The nephron progenitor loss in all Six2cre mutant lines was associated with decreased Cited1 expression and increased apoptosis versus controls. FAC-sorted nephron progenitors in Six2cre Frs2'A(flox/flox) mice demonstrated evidence of increased Notch activity versus controls, which likely drives the progenitor defects. Thus, Fgfr1 and Fgfr2 have synergistic roles in maintaining nephron progenitors; furthermore, Fgfr signaling in nephron progenitors appears to be mediated predominantly by Frs2α. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number.

    PubMed

    Combes, Alexander N; Wilson, Sean; Phipson, Belinda; Binnie, Brandon B; Ju, Adler; Lawlor, Kynan T; Cebrian, Cristina; Walton, Sarah L; Smyth, Ian M; Moritz, Karen M; Kopan, Raphael; Oshlack, Alicia; Little, Melissa H

    2018-03-01

    The regulation of final nephron number in the kidney is poorly understood. Cessation of nephron formation occurs when the self-renewing nephron progenitor population commits to differentiation. Transcription factors within this progenitor population, such as SIX2, are assumed to control expression of genes promoting self-renewal such that homozygous Six2 deletion results in premature commitment and an early halt to kidney development. In contrast, Six2 heterozygotes were assumed to be unaffected. Using quantitative morphometry, we found a paradoxical 18% increase in ureteric branching and final nephron number in Six2 heterozygotes, despite evidence for reduced levels of SIX2 protein and transcript. This was accompanied by a clear shift in nephron progenitor identity with a distinct subset of downregulated progenitor genes such as Cited1 and Meox1 while other genes were unaffected. The net result was an increase in nephron progenitor proliferation, as assessed by elevated EdU (5-ethynyl-2'-deoxyuridine) labeling, an increase in MYC protein, and transcriptional upregulation of MYC target genes. Heterozygosity for Six2 on an Fgf20-/- background resulted in premature differentiation of the progenitor population, confirming that progenitor regulation is compromised in Six2 heterozygotes. Overall, our studies reveal a unique dose response of nephron progenitors to the level of SIX2 protein in which the role of SIX2 in progenitor proliferation versus self-renewal is separable. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Modeling of Kidney Hemodynamics: Probability-Based Topology of an Arterial Network.

    PubMed

    Postnov, Dmitry D; Marsh, Donald J; Postnov, Dmitry E; Braunstein, Thomas H; Holstein-Rathlou, Niels-Henrik; Martens, Erik A; Sosnovtseva, Olga

    2016-07-01

    Through regulation of the extracellular fluid volume, the kidneys provide important long-term regulation of blood pressure. At the level of the individual functional unit (the nephron), pressure and flow control involves two different mechanisms that both produce oscillations. The nephrons are arranged in a complex branching structure that delivers blood to each nephron and, at the same time, provides a basis for an interaction between adjacent nephrons. The functional consequences of this interaction are not understood, and at present it is not possible to address this question experimentally. We provide experimental data and a new modeling approach to clarify this problem. To resolve details of microvascular structure, we collected 3D data from more than 150 afferent arterioles in an optically cleared rat kidney. Using these results together with published micro-computed tomography (μCT) data we develop an algorithm for generating the renal arterial network. We then introduce a mathematical model describing blood flow dynamics and nephron to nephron interaction in the network. The model includes an implementation of electrical signal propagation along a vascular wall. Simulation results show that the renal arterial architecture plays an important role in maintaining adequate pressure levels and the self-sustained dynamics of nephrons.

  12. The PI3K Pathway Balances Self-Renewal and Differentiation of Nephron Progenitor Cells through β-Catenin Signaling

    PubMed Central

    Lindström, Nils Olof; Carragher, Neil Oliver; Hohenstein, Peter

    2015-01-01

    Summary Nephron progenitor cells differentiate to form nephrons during embryonic kidney development. In contrast, self-renewal maintains progenitor numbers and premature depletion leads to impaired kidney function. Here we analyze the PI3K pathway as a point of convergence for the multiple pathways that are known to control self-renewal in the kidney. We demonstrate that a reduction in PI3K signaling triggers premature differentiation of the progenitors and activates a differentiation program that precedes the mesenchymal-to-epithelial transition through ectopic activation of the β-catenin pathway. Therefore, the combined output of PI3K and other pathways fine-tunes the balance between self-renewal and differentiation in nephron progenitors. PMID:25754203

  13. Mechanisms of tubular sodium chloride transport.

    PubMed

    Venkatesh, S; Schrier, R W; Andreoli, T E

    1998-11-01

    Extracellular fluid volume is determined by sodium and its accompanying anions. There are control mechanisms which regulate sodium balance in the body. These include high and low pressure baroreceptors, intrarenal baroreceptors, renal autoregulation, tubuloglomerular feedback, aldosterone, and numerous other physical and hormonal factors. Sodium transport by the nephron involves active and passive processes which occur in several different nephron segments. Mechanisms of cotransport, Na(+)-H+ exchange, antiporters and ion-specific channels are all utilized by the nephron to maintain sodium balance. These regulatory factors and transport mechanisms for sodium in the kidney will he discussed in detail.

  14. Oncologic results of nephron sparing endoscopic approach for upper tract low grade transitional cell carcinoma in comparison to nephroureterectomy - a case control study.

    PubMed

    Hoffman, Azik; Yossepowitch, Ofer; Erlich, Yaron; Holland, Ronen; Lifshitz, David

    2014-12-02

    There is paucity of data as to the results of the endoscopic approach in comparison to the golden standard of nephro-ureterectomy in elective, low grade TCC, patients. Our purpose is to report our results of a nephron sparing approach compared to nephro-ureterectomy in those patients. From a retrospective data base we identified 25 patients and 23 patients who underwent a nephron sparing ureterosocpic resection and nephro-reterectomy for low grade UT-TCC, respectively. The endoscopic technique included endoscopic tumor biopsy followed by primary resection and/or fulguration. The nephron sparing group was followed by bi-annual ureteroscopy and upper tract imaging, timely cystoscopy and urine cytology collection. Data for overall and disease related mortality, bladder and ureteral TCC recurrence and renal function are reported in both groups. Median follow - up time was 26 months. 11 (44%) patients developed bladder recurrence at a median period of 9 months after initial ureteroscopy, compared to 9 (39%) in the NUx group (P < 0.05). Recurrent ureteral low grade TCC was observed in 9 patients (median: 9 months). All were treated endoscopicaly successfully. Renal function remained stable in the nephron sparing group. No disease related mortality was recorded in the nephron-sparing group while one patient died of his disease following NUx. Disease related mortality following a nephron sparing endoscopic approach or nephroureterectomy for low grade upper tract TCC is excellent. However, the nephron sparing approach is associated with a relatively high rate of ureteral and bladder recurrence. Therefore, a stringent follow-up protocol is required.

  15. Eya1 Interacts with Six2 and Myc to Regulate Expansion of the Nephron Progenitor Pool during Nephrogenesis

    PubMed Central

    Xu, Jinshu; Wong, Elaine Y.M.; Cheng, Chunming; Li, Jun; Sharkar, Mohammad T.K.; Xu, Chelsea Y.; Chen, Binglai; Sun, Jianbo; Jing, Dongzhu; Xu, Pin-Xian

    2014-01-01

    SUMMARY Self-renewal and proliferation of nephron progenitor cells and the decision to initiate nephrogenesis are crucial events directing kidney development. Despite recent advancements in defining lineage and regulators for the progenitors, fundamental questions about mechanisms driving expansion of the progenitors remain unanswered. Here we show that Eya1 interacts with Six2 and Myc to control self-renewing cell activity. Cell fate tracing reveals a developmental restriction of the Eya1+ population within the intermediate mesoderm to nephron-forming cell fates and a common origin shared between caudal mesonephric and metanephric nephrons. Conditional inactivation of Eya1 leads to loss of Six2 expression and premature epithelialization of the progenitors. Six2 mediates translocation of Eya1 to the nucleus, where Eya1 uses its threonine phosphatase activity to control Myc phosphorylation/dephosphorylation and function in the progenitor cells. Our results reveal a functional link between Eya1, Six2, and Myc in driving the expansion and maintenance of the multipotent progenitors during nephrogenesis. PMID:25458011

  16. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis.

    PubMed

    Xu, Jinshu; Wong, Elaine Y M; Cheng, Chunming; Li, Jun; Sharkar, Mohammad T K; Xu, Chelsea Y; Chen, Binglai; Sun, Jianbo; Jing, Dongzhu; Xu, Pin-Xian

    2014-11-24

    Self-renewal and proliferation of nephron progenitor cells and the decision to initiate nephrogenesis are crucial events directing kidney development. Despite recent advancements in defining lineage and regulators for the progenitors, fundamental questions about mechanisms driving expansion of the progenitors remain unanswered. Here we show that Eya1 interacts with Six2 and Myc to control self-renewing cell activity. Cell fate tracing reveals a developmental restriction of the Eya1(+) population within the intermediate mesoderm to nephron-forming cell fates and a common origin shared between caudal mesonephric and metanephric nephrons. Conditional inactivation of Eya1 leads to loss of Six2 expression and premature epithelialization of the progenitors. Six2 mediates translocation of Eya1 to the nucleus, where Eya1 uses its threonine phosphatase activity to control Myc phosphorylation/dephosphorylation and function in the progenitor cells. Our results reveal a functional link between Eya1, Six2, and Myc in driving the expansion and maintenance of the multipotent progenitors during nephrogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles.

    PubMed

    Liu, Hongbing; Chen, Shaowei; Yao, Xiao; Li, Yuwen; Chen, Chao-Hui; Liu, Jiao; Saifudeen, Zubaida; El-Dahr, Samir S

    2018-05-18

    Nephron progenitor cells (NPCs) are Six2-positive metanephric mesenchyme cells, which undergo self-renewal and differentiation to give rise to nephrons until the end of nephrogenesis. Histone deacetylases (HDACs) are a group of epigenetic regulators that control cell fate, but their role in balancing NPC renewal and differentiation is unknown. Here, we report that NPC-specific deletion of Hdac1 and Hdac2 genes in mice results in early postnatal lethality owing to renal hypodysplasia and loss of NPCs. HDAC1/2 interact with the NPC renewal regulators Six2, Osr1 and Sall1, and are co-bound along with Six2 on the Six2 enhancer. Although the mutant NPCs differentiate into renal vesicles (RVs), Hdac1/2 mutant kidneys lack nascent nephrons or mature glomeruli, a phenocopy of Lhx1 mutants. Transcriptional profiling and network analysis identified disrupted expression of Lhx1 and its downstream genes, Dll1 and Hnf1a/4a , as key mediators of the renal phenotype. Finally, although HDAC1/2-deficient NPCs and RVs overexpress hyperacetylated p53, Trp53 deletion failed to rescue the renal dysgenesis. We conclude that the epigenetic regulators HDAC1 and HDAC2 control nephrogenesis via interactions with the transcriptional programs of nephron progenitors and renal vesicles. © 2018. Published by The Company of Biologists Ltd.

  18. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron.

    PubMed

    Horster, M; Gundlach, H

    1979-12-01

    The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.

  19. The pathologic physiology of chronic Bright's disease. An exposition of the "intact nephron hypothesis".

    PubMed

    Bricker, N S; Morrin, P A; Kime, S W

    1997-09-01

    Clinical and experimental data relating to the functional capacity of the surviving nephrons of the chronically diseased kidney for the most part support the thesis that these nephrons retain their essential functional integrity regardless of the nature of the underlying form of chronic Bright's disease. There are instances in which specific alterations of function correlate with pathologic involvement of a particular site of the nephron but these appear to represent the exceptions, and in general the more advanced the disease becomes, the less evident are the differentiating features. Studies on dogs with unilateral renal disease indicate that the functional capacity of the nephrons of the diseased kidney parallels that of the nephrons of the contralateral normal kidney. These data tend to exclude widespread intrinsic damage to the functioning nephrons by the underlying pathologic processes. From these observations, as well as from certain supporting clinical and experimental observations, it is suggested that the majority of surviving nephrons in the patient with bilateral renal disease similarly are functionally intact. Concepts of the pathologic physiology of the kidney, based on the "intact nephron hypothesis", are presented. Within the framework of this hypothesis it is concluded that (1) the diseased kidney consists of a diminished number of nephrons, most of which retain essentially normal functional abilities; (2) certain of the apparent abnormalities in function in bilateral renal disease may relate to adaptive changes imposed by the decreased nephron population and the attendant derangements in body fluids rather than to structural distortion of nephrons; (3) the over-all flexibility of the diseased kidney decreases as the number of constituent nephrons decreases; but (4) there is an orderly and predictable pattern of excretion for all substances.

  20. Successful Endovascular Control of Renal Artery in a Transplant Kidney During Nephron Sparing Surgery (NSS) for Large Centrally Located Tumor.

    PubMed

    Shprits, Sagi; Moskovits, Boaz; Sachner, Robert; Nativ, Ofer

    2016-05-01

    Renal cell carcinoma in a transplant kidney is a rare condition. Nephron Sparing Surgery (NSS) is the treatment of choice. One of the main technical challenges is obtaining adequate vascular control. We present a rare case of large centrally located hillar tumor in a kidney 18 years after transplantation treated with NSS. Vascular control was achieved by using a novel approach. Post-operative course was uneventful with minimal decrease in renal function. We believe that this unique choice of treatment can be used in cases of NSS where the access to the renal pedicle is limited.

  1. Nephron segment-specific gene expression using AAV vectors.

    PubMed

    Asico, Laureano D; Cuevas, Santiago; Ma, Xiaobo; Jose, Pedro A; Armando, Ines; Konkalmatt, Prasad R

    2018-02-26

    AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na + /glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Conserved and Divergent Molecular and Anatomic Features of Human and Mouse Nephron Patterning.

    PubMed

    Lindström, Nils O; Tran, Tracy; Guo, Jinjin; Rutledge, Elisabeth; Parvez, Riana K; Thornton, Matthew E; Grubbs, Brendan; McMahon, Jill A; McMahon, Andrew P

    2018-03-01

    The nephron is the functional unit of the kidney, but the mechanism of nephron formation during human development is unclear. We conducted a detailed analysis of nephron development in humans and mice by immunolabeling, and we compared human and mouse nephron patterning to describe conserved and divergent features. We created protein localization maps that highlight the emerging patterns along the proximal-distal axis of the developing nephron and benchmark expectations for localization of functionally important transcription factors, which revealed unanticipated cellular diversity. Moreover, we identified a novel nephron subdomain marked by Wnt4 expression that we fate-mapped to the proximal mature nephron. Significant conservation was observed between human and mouse patterning. We also determined the time at which markers for mature nephron cell types first emerge-critical data for the renal organoid field. These findings have conceptual implications for the evolutionary processes driving the diversity of mammalian organ systems. Furthermore, these findings provide practical insights beyond those gained with mouse and rat models that will guide in vitro efforts to harness the developmental programs necessary to build human kidney structures. Copyright © 2018 by the American Society of Nephrology.

  3. Nephron blood flow dynamics measured by laser speckle contrast imaging

    PubMed Central

    Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V.; Pavlov, Alexey N.; Cupples, William A.; Sorensen, Charlotte Mehlin

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney. PMID:21048025

  4. Progressive Recruitment of Mesenchymal Progenitors Reveals a Time-Dependent Process of Cell Fate Acquisition in Mouse and Human Nephrogenesis.

    PubMed

    Lindström, Nils O; De Sena Brandine, Guilherme; Tran, Tracy; Ransick, Andrew; Suh, Gio; Guo, Jinjin; Kim, Albert D; Parvez, Riana K; Ruffins, Seth W; Rutledge, Elisabeth A; Thornton, Matthew E; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-06-04

    Mammalian nephrons arise from a limited nephron progenitor pool through a reiterative inductive process extending over days (mouse) or weeks (human) of kidney development. Here, we present evidence that human nephron patterning reflects a time-dependent process of recruitment of mesenchymal progenitors into an epithelial nephron precursor. Progressive recruitment predicted from high-resolution image analysis and three-dimensional reconstruction of human nephrogenesis was confirmed through direct visualization and cell fate analysis of mouse kidney organ cultures. Single-cell RNA sequencing of the human nephrogenic niche provided molecular insights into these early patterning processes and predicted developmental trajectories adopted by nephron progenitor cells in forming segment-specific domains of the human nephron. The temporal-recruitment model for nephron polarity and patterning suggested by direct analysis of human kidney development provides a framework for integrating signaling pathways driving mammalian nephrogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A Shunt Model of the Inner Medullary Nephron with Pre-Bend Transitions

    NASA Astrophysics Data System (ADS)

    Gonzalez, M. T.; Hegarty, A. F.; Thomas, S. R.

    2009-09-01

    Mathematical models of the renal medulla face the problem of representing water and solute transfer among tens of thousands of nephrons and blood vessels of various lengths, arranged in countercurrent fashion. Published models fall into two broad categories with respect to this issue: multi-nephron models, which explicitly represent a large number of individual nephrons, or lumped models with virtual shunts that represent the turning back of nephrons and vessels at varying depths. Shunt models have the advantage of a compact description and relatively rapid execution time but are ill-suited to faithfully represent features such as prebend transitions of epithelial permeabilities in nephrons of different lengths. A new shunt model approach that can accommodate pre-bend transitions of nephrons at all medullary depths is presented in this work together with the results of simulation of predicted flows and concentrations.

  6. LIM kinase function and renal growth: Potential role for LIM kinases in fetal programming of kidney development.

    PubMed

    Sparrow, Alexander J; Sweetman, Dylan; Welham, Simon J M

    2017-10-01

    Maternal dietary restriction during pregnancy impairs nephron development and results in offspring with fewer nephrons. Cell turnover in the early developing kidney is altered by exposure to maternal dietary restriction and may be regulated by the LIM-kinase family of enzymes. We set out to establish whether disturbance of LIM-kinase activity might play a role in the impairment of nephron formation. E12.5 metanephric kidneys and HK2 cells were grown in culture with the pharmacological LIM-kinase inhibitor BMS5. Organs were injected with DiI, imaged and cell numbers measured over 48h to assess growth. Cells undergoing mitosis were visualised by pH3 labelling. Growth of cultured kidneys reduced to 83% of controls after exposure to BMS5 and final cell number to 25% of control levels after 48h. Whilst control and BMS5 treated organs showed cells undergoing mitosis (100±11 cells/field vs 113±18 cells/field respectively) the proportion in anaphase was considerably diminished with BMS5 treatment (7.8±0.8% vs 0.8±0.6% respectively; P<0.01). This was consistent with effects on HK2 cells highlighting a severe impact of BMS5 on formation of the mitotic spindle and centriole positioning. DiI labelled cells migrated in 100% of control cultures vs 0% BMS5 treated organs. The number of nephrogenic precursor cells appeared depleted in whole organs and formation of new nephrons was blocked by exposure to BMS5. Pharmacological blockade of LIM-kinase function in the early developing kidney results in failure of renal development. This is likely due to prevention of dividing cells from completion of mitosis with their resultant loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Repair after nephron ablation reveals limitations of neonatal neonephrogenesis

    PubMed Central

    Tögel, Florian; Freedman, Benjamin S.; Iatrino, Rossella; Grinstein, Mor; Bonventre, Joseph V.

    2017-01-01

    The neonatal mouse kidney retains nephron progenitor cells in a nephrogenic zone for 3 days after birth. We evaluated whether de novo nephrogenesis can be induced postnatally beyond 3 days. Given the long-term implications of nephron number for kidney health, it would be useful to enhance nephrogenesis in the neonate. We induced nephron reduction by cryoinjury with or without contralateral nephrectomy during the neonatal period or after 1 week of age. There was no detectable compensatory de novo nephrogenesis, as determined by glomerular counting and lineage tracing. Contralateral nephrectomy resulted in additional adaptive healing, with little or no fibrosis, but did not also stimulate de novo nephrogenesis. In contrast, injury initiated at 1 week of age led to healing with fibrosis. Thus, despite the presence of progenitor cells and ongoing nephron maturation in the newborn mouse kidney, de novo nephrogenesis is not inducible by acute nephron reduction. This indicates that additional nephron progenitors cannot be recruited after birth despite partial renal ablation providing a reparative stimulus and suggests that nephron number in the mouse is predetermined at birth. PMID:28138555

  8. Renal blood flow and oxygenation drive nephron progenitor differentiation.

    PubMed

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder

    2014-08-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.

  9. Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets

    PubMed Central

    Bhikha, Charita; Andreasen, Arne; Christensen, Erik I.; Letts, Robyn F. R.; Pantanowitz, Adam; Rubin, David M.; Thomsen, Jesper S.; Zhai, Xiao-Yue

    2015-01-01

    An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron. PMID:26170896

  10. Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets.

    PubMed

    Bhikha, Charita; Andreasen, Arne; Christensen, Erik I; Letts, Robyn F R; Pantanowitz, Adam; Rubin, David M; Thomsen, Jesper S; Zhai, Xiao-Yue

    2015-01-01

    An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron.

  11. Podocyte is the major culprit accounting for the progression of chronic renal disease.

    PubMed

    Kriz, Wilhelm

    2002-05-15

    The concept that the podocyte is the major culprit underlying development and progression of glomerular diseases leading to chronic renal failure is well established. The essential steps in this process are (1) the establishment of tuft adhesions to Bowman's capsule; (2) the formation by capillaries contained in a tuft adhesion of a filtrate that is delivered, instead into Bowman's space, towards the interstitium; and (3) the spreading of this filtrate on the outer aspect of the affected nephron leading to the degeneration of this nephron. The present review summarizes the pros and cons concerning the relevance of misdirected filtration for a nephron-to-nephron transfer of the disease at the level of the tubular interstitium. Surprisingly, the histopathology clearly shows that interstitial proliferation surrounding degenerating nephrons tends to encapsulate the degenerative process, confining it to the already affected nephron. No evidence is available that the disease, mediated by interstitial proliferation and matrix deposition, may jump to a neighboring, so far unaffected, nephron. It appears that the process that leads to the degeneration of a nephron in the context of "classic" FSGS always starts separately in the respective glomerulus by severe podocyte injury. Copyright 2002 Wiley-Liss, Inc.

  12. A computational model for simulating solute transport and oxygen consumption along the nephrons

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    The goal of this study was to investigate water and solute transport, with a focus on sodium transport (TNa) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (QO2) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in TNa may alter QO2 in different nephron segments and how shifting the TNa sites alters overall kidney QO2. Under baseline conditions, the model predicted a whole kidney TNa/QO2, which denotes the number of moles of Na+ reabsorbed per moles of O2 consumed, of ∼15, with TNa efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The TNa/QO2 ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where TNa/QO2 was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect TNa/QO2 in the proximal tubules but generally increases TNa/QO2 along downstream segments. The latter result can be attributed to the generally higher luminal [Na+], which raises paracellular TNa. Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in QO2 under pathophysiological conditions. PMID:27707705

  13. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease.

    PubMed

    Coca, Steven G; Nadkarni, Girish N; Huang, Yuan; Moledina, Dennis G; Rao, Veena; Zhang, Jane; Ferket, Bart; Crowley, Susan T; Fried, Linda F; Parikh, Chirag R

    2017-09-01

    Biomarkers of diverse pathophysiologic mechanisms may improve risk stratification for incident or progressive diabetic kidney disease (DKD) in persons with type 2 diabetes. To evaluate such biomarkers, we performed a nested case-control study ( n =190 cases of incident DKD and 190 matched controls) and a prospective cohort study ( n =1156) using banked baseline plasma samples from participants of randomized, controlled trials of early (ACCORD) and advanced (VA NEPHRON-D) DKD. We assessed the association and discrimination obtained with baseline levels of plasma TNF receptor-1 (TNFR-1), TNFR-2, and kidney injury molecule-1 (KIM-1) for the outcomes of incident DKD (ACCORD) and progressive DKD (VA-NEPHRON-D). At baseline, median concentrations of TNFR-1, TNFR-2, and KIM-1 were roughly two-fold higher in the advanced DKD population (NEPHRON-D) than in the early DKD population (ACCORD). In both cohorts, patients who reached the renal outcome had higher baseline levels than those who did not reach the outcome. Associations between doubling in TNFR-1, TNFR-2, and KIM-1 levels and risk of the renal outcomes were significant for both cohorts. Inclusion of these biomarkers in clinical models increased the area under the curve (SEM) for predicting the renal outcome from 0.68 (0.02) to 0.75 (0.02) in NEPHRON-D. Systematic review of the literature illustrated high consistency in the association between these biomarkers of inflammation and renal outcomes in DKD. In conclusion, TNFR-1, TNFR-2, and KIM-1 independently associated with higher risk of eGFR decline in persons with early or advanced DKD. Moreover, addition of these biomarkers to clinical prognostic models significantly improved discrimination for the renal outcome. Copyright © 2017 by the American Society of Nephrology.

  14. Selective In Vitro Propagation of Nephron Progenitors Derived from Embryos and Pluripotent Stem Cells.

    PubMed

    Tanigawa, Shunsuke; Taguchi, Atsuhiro; Sharma, Nirmala; Perantoni, Alan O; Nishinakamura, Ryuichi

    2016-04-26

    Nephron progenitors in the embryonic kidney propagate while generating differentiated nephrons. However, in mice, the progenitors terminally differentiate shortly after birth. Here, we report a method for selectively expanding nephron progenitors in vitro in an undifferentiated state. Combinatorial and concentration-dependent stimulation with LIF, FGF2/9, BMP7, and a WNT agonist is critical for expansion. The purified progenitors proliferated beyond the physiological limits observed in vivo, both for cell numbers and lifespan. Neonatal progenitors were maintained for a week, while progenitors from embryonic day 11.5 expanded 1,800-fold for nearly 20 days and still reconstituted 3D nephrons containing glomeruli and renal tubules. Furthermore, progenitors generated from mouse embryonic stem cells and human induced pluripotent cells could be expanded with retained nephron-forming potential. Thus, we have established in vitro conditions for promoting the propagation of nephron progenitors, which will be essential for dissecting the mechanisms of kidney organogenesis and for regenerative medicine. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Chronic Kidney Disease and Exposure to Nephrotoxic Metals

    PubMed Central

    Orr, Sarah E.; Bridges, Christy C.

    2017-01-01

    Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of functional nephrons. As injured nephrons become sclerotic and die, the remaining healthy nephrons undergo numerous structural, molecular, and functional changes in an attempt to compensate for the loss of diseased nephrons. These compensatory changes enable the kidney to maintain fluid and solute homeostasis until approximately 75% of nephrons are lost. As CKD continues to progress, glomerular filtration rate decreases, and remaining nephrons are unable to effectively eliminate metabolic wastes and environmental toxicants from the body. This inability may enhance mortality and/or morbidity of an individual. Environmental toxicants of particular concern are arsenic, cadmium, lead, and mercury. Since these metals are present throughout the environment and exposure to one or more of these metals is unavoidable, it is important that the way in which these metals are handled by target organs in normal and disease states is understood completely. PMID:28498320

  16. The Fate of Nephrons in Congenital Obstructive Nephropathy: Adult Recovery is Limited by Nephron Number Despite Early Release of Obstruction

    PubMed Central

    Sergio, Maria; Galarreta, Carolina I.; Thornhill, Barbara A.; Forbes, Michael S.; Chevalier, Robert L.

    2015-01-01

    Purpose Urinary tract obstruction and reduced nephron number often occur together as a result of maldevelopment of kidneys and urinary tract. We wished to determine the role of nephron number on the adaptation of remaining nephrons of mice subjected to neonatal partial unilateral ureteral obstruction (UUO) and followed through adulthood. Materials and Methods Wild-type (WT) and Os/+ mice (with 50% fewer nephrons) were subjected to sham operation or partial UUO in the first 2 days of life. Additional mice underwent release of UUO at 7 days. All kidneys were harvested at 3 weeks (weaning) or 6 weeks (adulthood). Glomerular number and area, glomerulotubular junction integrity, proximal tubular volume fraction, and interstitial fibrosis were measured by histomorphometry. Results In the obstructed kidney, UUO caused additional nephron loss in Os/+ but not WT mice. Glomerular growth from 3 to 6 weeks was impaired by ipsilateral UUO and was not preserved by release in WT or Os/+. Proximal tubular growth was impaired and interstitial collagen was increased by ipsilateral UUO in all mice. These were attenuated by release of UUO in WT mice, but were not restored in Os/+ mice. UUO increased interstitial collagen in the contralateral kidney; release of UUO enhanced tubular growth and reduced interstitial collagen. Conclusions We conclude that UUO in early postnatal development impairs adaptation to reduced nephron number and induces additional nephron loss despite release of obstruction. Premature and low birth weight infants with congenital obstructive nephropathy are likely at increased risk for progression of chronic kidney disease. PMID:25912494

  17. Low Birth Weight due to Intrauterine Growth Restriction and/or Preterm Birth: Effects on Nephron Number and Long-Term Renal Health

    PubMed Central

    Zohdi, Vladislava; Sutherland, Megan R.; Lim, Kyungjoon; Gubhaju, Lina; Zimanyi, Monika A.; Black, M. Jane

    2012-01-01

    Epidemiological studies have clearly demonstrated a strong association between low birth weight and long-term renal disease. A potential mediator of this long-term risk is a reduction in nephron endowment in the low birth weight infant at the beginning of life. Importantly, nephrons are only formed early in life; during normal gestation, nephrogenesis is complete by about 32–36 weeks, with no new nephrons formed after this time during the lifetime of the individual. Hence, given that a loss of a critical number of nephrons is the hallmark of renal disease, an increased severity and acceleration of renal disease is likely when the number of nephrons is already reduced prior to disease onset. Low birth weight can result from intrauterine growth restriction (IUGR) or preterm birth; a high proportion of babies born prematurely also exhibit IUGR. In this paper, we describe how IUGR and preterm birth adversely impact on nephrogenesis and how a subsequent reduced nephron endowment at the beginning of life may lead to long-term risk of renal disease, but not necessarily hypertension. PMID:22970368

  18. The Fate of Nephrons in Congenital Obstructive Nephropathy: Adult Recovery is Limited by Nephron Number Despite Early Release of Obstruction.

    PubMed

    Sergio, Maria; Galarreta, Carolina I; Thornhill, Barbara A; Forbes, Michael S; Chevalier, Robert L

    2015-11-01

    Urinary tract obstruction and reduced nephron number often occur together as a result of maldevelopment of the kidneys and the urinary tract. We determined the role of nephron number on adaptation of the remaining nephrons of mice subjected to neonatal partial unilateral ureteral obstruction followed through adulthood. Wild-type and Os/+ mice (the latter with 50% fewer nephrons) underwent sham operation or partial unilateral ureteral obstruction in the first 2 days of life. Additional mice underwent release of unilateral ureteral obstruction at 7 days. All kidneys were harvested at 3 weeks (weaning) or 6 weeks (adulthood). Glomerular number and area, glomerulotubular junction integrity, proximal tubular volume fraction and interstitial fibrosis were measured by histomorphometry. In the obstructed kidney unilateral ureteral obstruction caused additional nephron loss in Os/+ but not in wild-type mice. Glomerular growth from 3 to 6 weeks was impaired by ipsilateral obstruction and not preserved by release in wild-type or Os/+ mice. Proximal tubular growth was impaired and interstitial collagen was increased by ipsilateral obstruction in all mice. These conditions were attenuated by release of unilateral ureteral obstruction in wild-type mice but were not restored in Os/+ mice. Unilateral ureteral obstruction increased interstitial collagen in the contralateral kidney while release of obstruction enhanced tubular growth and reduced interstitial collagen. Unilateral ureteral obstruction in early postnatal development impairs adaptation to reduced nephron number and induces additional nephron loss despite release of obstruction. Premature and low birth weight infants with congenital obstructive nephropathy are likely at increased risk for progression of chronic kidney disease. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. NEW NEPHRON DEVELOPMENT IN FISH FROM POLLUTED WATERS: A POSSIBLE BIOMARKER

    EPA Science Inventory

    Recent evidence has shown that fish have the ability to develop new nephrons following renal injury. This study evaluated the usefulness of quantifying developing nephrons in mature fish as an ecotoxicological assessment tool. Histological sections of kidney were prepared from At...

  20. Development of the zebrafish mesonephros

    PubMed Central

    Diep, Cuong Q.; Peng, Zhenzhen; Ukah, Tobechukwu K.; Kelly, Paul M.; Daigle, Renee V.; Davidson, Alan J.

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. PMID:25677367

  1. Renal handling of sodium and water in the hypothyroid rat

    PubMed Central

    Michael, Ulrich F.; Barenberg, Robert L.; Chavez, Rafaelita; Vaamonde, Carlos A.; Papper, Solomon

    1972-01-01

    Hypothyroid rats were examined with conventional renal clearance and micropuncture techniques to elicit the mechanism and site within the nephron responsible for the increased salt and water excretion observed in these animals. When compared with age-matched control rats, a decrease in inulin clearance of 30% (P < 0.001) and in Hippuran clearance of 32% (P < 0.005) was observed in the hypothyroid rats. Absolute excretion of sodium and water was increased 3-fold (P < 0.02) and 2-fold (P < 0.025), respectively, while fractional excretion of sodium and water was increased 4.3-fold (P < 0.02) and 2.9-fold (P < 0.05), respectively, in the hypothyroid animals. Fractional proximal reabsorption of sodium as assessed from proximal tubular fluid to plasma ratios of inulin ([TF/P]IN) was found to be decreased by 28% (P < 0.001) in the hypothyroid rats. Superficial single nephron filtration rate was reduced proportionately to the decrease in total filtration rate in the hypothyroid rats. These data indicate that the proximal tubule is one of the sites of diminished sodium and water reabsorption in the hypothyroid rat. The data also suggest that the observed decrease in glomerular filtration rate in the hypothyroid animals is not caused by a decrease in the number of functioning nephrons and that the observed increase in sodium and water excretion is not caused by a redistribution of filtrate from juxtamedullary to superficial nephrons. Although the exact mechanisms of the observed changes in proximal tubular function remain unknown, the data suggest that they are probably related to the lack of thyroid hormone. Whatever their mechanism, it appears that the enhanced sodium and water excretion observed in the hypothyroid animals must be determined by further reduction in tubular sodium reabsorption in the distal nephron. PMID:5024038

  2. Integrated Control of Na Transport along the Nephron

    PubMed Central

    Schnermann, Jürgen

    2015-01-01

    The kidney filters vast quantities of Na at the glomerulus but excretes a very small fraction of this Na in the final urine. Although almost every nephron segment participates in the reabsorption of Na in the normal kidney, the proximal segments (from the glomerulus to the macula densa) and the distal segments (past the macula densa) play different roles. The proximal tubule and the thick ascending limb of the loop of Henle interact with the filtration apparatus to deliver Na to the distal nephron at a rather constant rate. This involves regulation of both filtration and reabsorption through the processes of glomerulotubular balance and tubuloglomerular feedback. The more distal segments, including the distal convoluted tubule (DCT), connecting tubule, and collecting duct, regulate Na reabsorption to match the excretion with dietary intake. The relative amounts of Na reabsorbed in the DCT, which mainly reabsorbs NaCl, and by more downstream segments that exchange Na for K are variable, allowing the simultaneous regulation of both Na and K excretion. PMID:25098598

  3. Development of the zebrafish mesonephros.

    PubMed

    Diep, Cuong Q; Peng, Zhenzhen; Ukah, Tobechukwu K; Kelly, Paul M; Daigle, Renee V; Davidson, Alan J

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. © 2015 Wiley Periodicals, Inc.

  4. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development.

    PubMed

    Barker, Nick; Rookmaaker, Maarten B; Kujala, Pekka; Ng, Annie; Leushacke, Marc; Snippert, Hugo; van de Wetering, Marc; Tan, Shawna; Van Es, Johan H; Huch, Meritxell; Poulsom, Richard; Verhaar, Marianne C; Peters, Peter J; Clevers, Hans

    2012-09-27

    Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The appearance and localization of Lgr5(+ve) cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle's loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Increased Endothelin Activity Mediates Augmented Distal Nephron Acidification Induced by Dietary Protein

    PubMed Central

    Khanna, Apurv; Simoni, Jan; Hacker, Callenda; Duran, Marie-Josée; Wesson, Donald E

    2005-01-01

    We tested the hypothesis that increased dietary protein augments distal nephron acidification through an endothelin-dependent mechanism. Munich-Wistar rats ate minimum electrolyte diets of 50% (HiPro) and 20% (CON) casein-provided protein, the latter comparable to standard chow. HiPro vs. CON had higher distal nephron H+ secretion (41.3 ± 4.0 vs. 23.0 ± 2.1 pmol/mm.min, p < 0.002) mediated by augmented Na+/H+ exchange and H+-ATPase activity. Renal cortex of HiPro vs. CON had higher ET-1 addition to microdialysate and higher ET-1 mRNA, consistent with increased renal ET-1 production. Bosentan, an endothelin A/B receptor antagonist, decreased HiPro distal nephron H+ secretion (28.4 ± 2.4 vs. 41.3 ± 4.0 pmol/mm.min, p < 0.016) through decreased Na+/H+ exchange and decreased H+-ATPase activity. Increased dietary protein augments distal nephron acidification through an endothelin-sensitive increase in Na+/H+ exchange and H+-ATPase activity, supporting an endothelin role in the distal nephron response to this common challenge to acid-base status. PMID:16555618

  6. Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats

    NASA Technical Reports Server (NTRS)

    Tucker, B. J.; Anderson, C. M.; Thies, R. S.; Collins, R. C.; Blantz, R. C.

    1992-01-01

    Treatment of insulin dependent diabetes invariably requires exogenous insulin to control blood glucose. Insulin treatment, independent of other factors associated with insulin dependent diabetes, may induce changes that affect glomerular function. Due to exogenous delivery of insulin in insulin dependent diabetes entering systemic circulation prior to the portal vein, plasma levels of insulin are often in excess of that observed in non-diabetics. The specific effects of hyperinsulinemia on glomerular hemodynamics have not been previously examined. Micropuncture studies were performed in control (non-diabetic), untreated diabetic and insulin-treated diabetic rats 7 to 10 days after administration of 65 mg/kg body weight streptozotocin. After the first period micropuncture measurements were obtained, 5 U of regular insulin (Humulin-R) was infused i.v., and glucose clamped at euglycemic values (80 to 120 mg/dl). Blood glucose concentration in non-diabetic controls was 99 +/- 6 mg/dl. In control rats, insulin infusion and glucose clamp increased nephron filtration rate due to decreases in both afferent and efferent arteriolar resistance (afferent greater than efferent) resulting in increased plasma flow and increased glomerular hydrostatic pressure gradient. However, insulin infusion and glucose clamp produced the opposite effect in both untreated and insulin-treated diabetic rats with afferent arteriolar vasoconstriction resulting in decreases in plasma flow, glomerular hydrostatic pressure gradient and nephron filtration rate. Thromboxane A2 (TX) synthetase inhibition partially decreased the vasoconstrictive response due to acute insulin infusion in diabetic rats preventing the decrease in nephron filtration rate.(ABSTRACT TRUNCATED AT 250 WORDS).

  7. Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium.

    PubMed

    Wade, James B; Fang, Liang; Coleman, Richard A; Liu, Jie; Grimm, P Richard; Wang, Tong; Welling, Paul A

    2011-06-01

    ROMK channels are well-known to play a central role in renal K secretion, but the absence of highly specific and avid-ROMK antibodies has presented significant roadblocks toward mapping the extent of expression along the entire distal nephron and determining whether surface density of these channels is regulated in response to physiological stimuli. Here, we prepared new ROMK antibodies verified to be highly specific, using ROMK knockout mice as a control. Characterization with segmental markers revealed a more extensive pattern of ROMK expression along the entire distal nephron than previously thought, localizing to distal convoluted tubule regions, DCT1 and DCT2; the connecting tubule (CNT); and cortical collecting duct (CD). ROMK was diffusely distributed in intracellular compartments and at the apical membrane of each tubular region. Apical labeling was significantly increased by high-K diet in DCT2, CNT1, CNT2, and CD (P < 0.05) but not in DCT1. Consistent with the large increase in apical ROMK, dramatically increased mature glycosylation was observed following dietary potassium augmentation. We conclude 1) our new antibody provides a unique tool to characterize ROMK channel localization and expression and 2) high-K diet causes a large increase in apical expression of ROMK in DCT2, CNT, and CD but not in DCT1, indicating that different regulatory mechanisms are involved in K diet-regulated ROMK channel functions in the distal nephron.

  8. Differential nephrotoxicity of low molecular weight proteins including Bence Jones proteins in the perfused rat nephron in vivo.

    PubMed Central

    Sanders, P W; Herrera, G A; Chen, A; Booker, B B; Galla, J H

    1988-01-01

    To investigate the pathogenetic mechanisms of tubule nephrotoxicity of low molecular weight proteins (LMWP), proximal tubules (PT) of rats were perfused in vivo with artificial tubule fluid (ATF) containing one of five LMWPs: three human Bence Jones proteins (BJP), beta-lactoglobulin (BLG), and rabbit myoglobin (MYG). Volume (JV), chloride (JCl) and glucose (JG) fluxes in these perfused PTs were compared with those determined using ATF alone. In separate experiments, perfused nephrons were examined with electron and immunoelectron microscopy. After exposure to BJP1 or BLG, JV, JCl, and JG were less (P less than 0.05) than corresponding control fluxes. Cell damage of these perfused PTs, along with cellular debris in the distal tubules, was prominent. The PT lysosomes often appeared atypical and contained crystals. In contrast, perfusion with BJP2, BJP3, or MYG did not alter JV, JCl, or JG. These findings were corroborated by the normal ultrastructure of these PTs despite immunohistochemical evidence of endocytosis of the BJPs. Isoelectric point, molecular form, and isotype were not factors associated with PT damage. In addition, proteins with pI less than 7.4 precipitated in the distal nephron, forming acellular casts. Thus, certain nephrotoxic LMWPs damaged the PT, while others precipitated in the distal tubule, obstructing the nephron. These two pathogenetic mechanisms may independently be responsible for tubulointerstitial nephropathy of LMWPs in humans. Images PMID:3198767

  9. Detection and Clinical Patterns of Nephron Hypertrophy and Nephrosclerosis Among Apparently Healthy Adults.

    PubMed

    Denic, Aleksandar; Alexander, Mariam P; Kaushik, Vidhu; Lerman, Lilach O; Lieske, John C; Stegall, Mark D; Larson, Joseph J; Kremers, Walter K; Vrtiska, Terri J; Chakkera, Harini A; Poggio, Emilio D; Rule, Andrew D

    2016-07-01

    Even among ostensibly healthy adults, there is often mild pathology in the kidney. The detection of kidney microstructural variation and pathology by imaging and the clinical pattern associated with these structural findings is unclear. Cross-sectional (clinical-pathologic correlation). Living kidney donors at Mayo Clinic (Minnesota and Arizona sites) and Cleveland Clinic 2000 to 2011. Predonation kidney function, risk factors, and contrast computed tomographic scan of the kidneys. These scans were segmented for cortical volume and medullary volume, reviewed for parenchymal cysts, and scored for kidney surface roughness. Nephrosclerosis (glomerulosclerosis, interstitial fibrosis/tubular atrophy, and arteriosclerosis) and nephron size (glomerular volume, mean profile tubular area, and cortical volume per glomerulus) determined from an implantation biopsy of the kidney cortex at donation. Among 1,520 living kidney donors, nephrosclerosis associated with increased kidney surface roughness, cysts, and smaller cortical to medullary volume ratio. Larger nephron size (nephron hypertrophy) associated with larger cortical volume. Nephron hypertrophy and larger cortical volume associated with higher systolic blood pressure, glomerular filtration rate, and urine albumin excretion; larger body mass index; higher serum uric acid level; and family history of end-stage renal disease. Both nephron hypertrophy and nephrosclerosis associated with older age and mild hypertension. The net effect of both nephron hypertrophy and nephrosclerosis associating with cortical volume was that nephron hypertrophy diminished volume loss with age-related nephrosclerosis and fully negated volume loss with mild hypertension-related nephrosclerosis. Kidney donors are selected on health, restricting the spectrum of pathologic findings. Kidney biopsies in living donors are a small tissue sample leading to imprecise estimates of structural findings. Among apparently healthy adults, the microstructural findings of nephron hypertrophy and nephrosclerosis differ in their associations with kidney function, macrostructure, and risk factors. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. The relationship between nephron number, kidney size and body weight in two inbred mouse strains.

    PubMed

    Murawski, Inga J; Maina, Rita W; Gupta, Indra R

    2010-01-01

    While some reports in humans have shown that nephron number is positively correlated with height, body weight or kidney weight, other studies have not reproduced these findings. To understand the impact of genetic and environmental variation on these relationships, we examined whether nephron number correlates with body weight, kidney planar surface area, or kidney weight in two inbred mouse strains with contrasting kidney sizes but no overt renal pathology: C3H/HeJ and C57BL/6J. C3H/HeJ mice had smaller kidneys at birth and larger kidneys by adulthood, however there was no significant difference in nephron number between the two strains. We did observe a correlation between kidney size and body weight at birth and at adulthood for both strains. However, there was no relationship between nephron number and body weight or between nephron number and kidney size. From other studies, it appears that a greater than two-fold variation is required in each of these parameters in order to demonstrate these relationships, suggesting they are highly dependent on scale. Our results are therefore not surprising since there was a less than two-fold variation in each of the parameters examined. In summary, the relationship between nephron number and body or kidney size is most likely to be demonstrated when there is greater phenotypic variation either from genetic and/or environmental factors.

  11. Direct physical contact between intercalated cells in the distal convoluted tubule and the afferent arteriole in mouse kidneys.

    PubMed

    Ren, Hao; Liu, Ning-Yu; Andreasen, Arne; Thomsen, Jesper S; Cao, Liu; Christensen, Erik I; Zhai, Xiao-Yue

    2013-01-01

    Recent physiological studies in the kidney proposed the existence of a secondary feedback mechanism termed 'crosstalk' localized after the macula densa. This newly discovered crosstalk contact between the nephron tubule and its own afferent arteriole may potentially revolutionize our understanding of renal vascular resistance and electrolyte regulation. However, the nature of such a crosstalk mechanism is still debated due to a lack of direct and comprehensive morphological evidence. Its exact location along the nephron, its prevalence among the different types of nephrons, and the type of cells involved are yet unknown. To address these issues, computer assisted 3-dimensional nephron tracing was applied in combination with direct immunohistochemistry on plastic sections and electron microscopy. 'Random' contacts in the cortex were identified by the tracing and excluded. We investigated a total of 168 nephrons from all cortical regions. The results demonstrated that the crosstalk contact existed, and that it was only present in certain nephrons (90% of the short-looped and 75% of the long-looped nephrons). The crosstalk contacts always occurred at a specific position--the last 10% of the distal convoluted tubule. Importantly, we demonstrated, for the first time, that the cells found in the tubule wall at the contact site were always type nonA-nonB intercalated cells. In conclusion, the present work confirmed the existence of a post macula densa physical crosstalk contact.

  12. A tool for multi-scale modelling of the renal nephron

    PubMed Central

    Nickerson, David P.; Terkildsen, Jonna R.; Hamilton, Kirk L.; Hunter, Peter J.

    2011-01-01

    We present the development of a tool, which provides users with the ability to visualize and interact with a comprehensive description of a multi-scale model of the renal nephron. A one-dimensional anatomical model of the nephron has been created and is used for visualization and modelling of tubule transport in various nephron anatomical segments. Mathematical models of nephron segments are embedded in the one-dimensional model. At the cellular level, these segment models use models encoded in CellML to describe cellular and subcellular transport kinetics. A web-based presentation environment has been developed that allows the user to visualize and navigate through the multi-scale nephron model, including simulation results, at the different spatial scales encompassed by the model description. The Zinc extension to Firefox is used to provide an interactive three-dimensional view of the tubule model and the native Firefox rendering of scalable vector graphics is used to present schematic diagrams for cellular and subcellular scale models. The model viewer is embedded in a web page that dynamically presents content based on user input. For example, when viewing the whole nephron model, the user might be presented with information on the various embedded segment models as they select them in the three-dimensional model view. Alternatively, the user chooses to focus the model viewer on a cellular model located in a particular nephron segment in order to view the various membrane transport proteins. Selecting a specific protein may then present the user with a description of the mathematical model governing the behaviour of that protein—including the mathematical model itself and various simulation experiments used to validate the model against the literature. PMID:22670210

  13. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism.

    PubMed

    Layton, Anita T; Vallon, Volker

    2018-05-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors enhance urinary glucose, Na + and fluid excretion, and lower hyperglycemia in diabetes by targeting Na + and glucose reabsorption along the proximal convoluted tubule. A goal of this study was to predict the effects of SGLT2 inhibitors in diabetic and nondiabetic patients with chronic kidney disease. To that end, we employed computational rat kidney models to explore how SGLT2 inhibition affects renal solute transport and metabolism when nephron populations are normal or reduced. Model simulations suggested that in a nondiabetic rat, acute and chronic SGLT2 inhibition induces glucosuria, diuresis, natriuresis, and kaliuresis. Those effects were stronger with chronic SGLT2 inhibition (due to SGLT1 downregulation) and tempered by nephron loss. In a diabetic rat with normal nephron number, acute SGLT2 inhibition similarly elevated urine fluid, Na + , and K + excretion, whereas the urinary excretory effects of chronic SGLT2 inhibition were attenuated in proportion to its plasma glucose level lowering effect. Nephron loss in a diabetic kidney was predicted to lower the glucosuric and blood glucose-reducing effect of chronic SGLT2 inhibition, but due to the high luminal glucose delivery in the remaining hyperfiltering nephrons, nephron loss enhanced proximal tubular paracellular Na + secretion, thereby augmenting the natriuretic, diuretic, and kaliuretic effects. A proposed shift in oxygen-consuming active transport to the outer medulla, which may simulate systemic hypoxia and enhance erythropoiesis, was also preserved with nephron loss. These effects may contribute to the protective effects of SGLT2 inhibitors on blood pressure and heart failure observed in diabetic patients with chronic kidney diseases.

  14. Micropuncture studies of the recovery phase of myohemoglobinuric acute renal failure in the rat

    PubMed Central

    Oken, Donald E.; DiBona, Gerald F.; McDonald, Franklin D.

    1970-01-01

    Micropuncture studies of the recovery phase of glycerol-induced myohemoglobinuric acute renal failure were performed in rats whose blood urea nitrogen (BUN) had fallen at least 20% below its peak value. The glomerular filtration rate (GFR) of individual nephrons in a single kidney in the recovery period generally either was in the normal range or minimal. Each animal's BUN concentration at the time of the study was inversely related to the proportion of functioning surface nephrons, but did not correlate with individual nephron GFR values. Proximal tubule fractional water absorption was significantly depressed as manifested by both depressed inulin (TF/P) values and supernormal volumes of collections, a finding which, in the absence of a urea-induced osmotic diuresis, suggests impaired sodium transport by the damaged nephron. The mean proximal tubule hydrostatic pressure in recovery was normal and there was little variation in pressure among functioning nephrons. It is concluded that recovery from this model of acute renal failure reflects the progressive recruitment of increasing numbers of functioning nephrons. The recovery of individual nephron glomerular filtration, once begun, was rapid and complete. No evidence could be adduced that the gradual return of renal function towards normal reflects a slow release of tubular obstruction or repair of disrupted tubular epithelium. Rather, recovery appeared to be directly attributable to the return of an adequate effective glomerular filtration pressure. Significant limitation in proximal tubule water absorption persisted after individual nephron GFR had returned to normal or supernormal values in this model of experimental acute renal failure in the rat, a finding which readily accounts for the diuresis associated with the recovery phase of this syndrome. PMID:5443173

  15. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.

    PubMed

    Nagalakshmi, Vidya K; Yu, Jing

    2015-03-01

    The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney. © 2015 Wiley Periodicals, Inc.

  16. Using Zebrafish to Study Podocyte Genesis During Kidney Development and Regeneration

    PubMed Central

    Kroeger, Paul T.; Wingert, Rebecca A.

    2014-01-01

    SUMMARY During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. PMID:24920186

  17. Nonmuscle Myosin II Regulates the Morphogenesis of Metanephric Mesenchyme–Derived Immature Nephrons

    PubMed Central

    Recuenco, Mariam C.; Ohmori, Tomoko; Tanigawa, Shunsuke; Taguchi, Atsuhiro; Fujimura, Sayoko; Conti, Mary Anne; Wei, Qize; Kiyonari, Hiroshi; Abe, Takaya; Adelstein, Robert S.

    2015-01-01

    The kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud. The mesenchyme transforms into epithelia and forms complicated nephron structures, whereas the ureteric bud extends its pre-existing epithelial ducts. Although the roles are well established for extracellular stimuli, such as Wnt and Notch, it is unclear how the intracellular cytoskeleton regulates these morphogenetic processes. Myh9 and Myh10 encode nonmuscle myosin II heavy chains, and Myh9 mutations in humans are implicated in congenital kidney diseases and focal segmental glomerulosclerosis in adults. Here, we analyzed the roles of Myh9 and Myh10 in the developing kidney. Ureteric bud-specific depletion of Myh9 resulted in no apparent phenotypes, whereas mesenchyme-specific Myh9 deletion caused proximal tubule dilations and renal failure. Mesenchyme-specific Myh9/Myh10 mutant mice died shortly after birth and showed a severe defect in nephron formation. The nascent mutant nephrons failed to form a continuous lumen, which likely resulted from impaired apical constriction of the elongating tubules. In addition, nephron progenitors lacking Myh9/Myh10 or the possible interactor Kif26b were less condensed at midgestation and reduced at birth. Taken together, nonmuscle myosin II regulates the morphogenesis of immature nephrons derived from the metanephric mesenchyme and the maintenance of nephron progenitors. Our data also suggest that Myh9 deletion in mice results in failure to maintain renal tubules but not in glomerulosclerosis. PMID:25168025

  18. Estimated Nephron Number of the Donor Kidney: Impact on Allograft Kidney Outcomes.

    PubMed

    Schachtner, T; Reinke, P

    Low birth weights have been associated with a reduction in nephron number with compensatory hypertrophy of existing glomeruli. The impact of donor birth weight as an estimate of nephron number on allograft function, however, has not been examined. We collected donor birth weight, kidney weight, and volume from 91 living kidney donor-recipient pairs before nephrectomy and after 12, 36, and 60 months. Nephron number was calculated from donor birth weight and age. Donor birth weight, kidney weight/body surface area (BSA), and kidney volume showed a moderate positive correlation with allograft estimated glomerular filtration rate (eGFR) at 12 months (P < .05). Donor age showed a negative moderate correlation with allograft eGFR at 12 months (P = .015). The strongest correlation with allograft eGFR was observed for calculated donor kidney nephron number at 12, 36, and 60 months (R, 0.340, 0.305, and 0.476, respectively; P < .05). No impact was observed on allograft daily proteinuria of any investigated marker (P > .05). Recipients of donors with birth weight <2.5 kg had need of a significantly greater number of antihypertensive drugs (P < .05). Calculated nephron number from donor birth weight and age is suggested to be superior to donor kidney weight/BSA and volume regarding allograft function. Calculated nephron number could estimate expected eGFR and guide decision making in cases of impaired allograft function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?

    PubMed

    Bertinat, Romina; Nualart, Francisco; Yáñez, Alejandro J

    2016-08-01

    At present, diabetes mellitus is the main cause of end-stage renal disease. Effective glycaemic management is the most powerful tool to delay the establishment of diabetic complications, such as diabetic kidney disease. Together with reducing blood glucose levels, new anti-diabetic agents are expected not only to control the progression but also to restore known defects of the diabetic kidney. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising anti-diabetic agents that reduce hyperglycaemia by impairing glucose reabsorption in proximal tubule of the kidney and increasing glucosuria. SGLT2 inhibitors have shown to reduce glucotoxicity in isolated proximal tubule cells and also to attenuate expression of markers of overall kidney damage in experimental animal models of diabetes, but the actual renoprotective effect for downstream nephron segments is still unknown and deserves further attention. Here, we briefly discuss possible undesired effects of enhanced glucosuria and albuminuria in nephron segments beyond the proximal tubule after SGLT2 inhibitor treatment, offering new lines of research to further understand the renoprotective action of these anti-diabetic agents. Strategies blocking glucose reabsorption by renal proximal tubule epithelial cells (RPTEC) may be protective for RPTEC, but downstream nephron segments will still be exposed to high glucose and albumin levels through the luminal face. The actual effect of constant enhanced glucosuria over distal nephron segments remains to be established. J. Cell. Physiol. 231: 1635-1637, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Resistant Hypertension On Treatment (ResHypOT): sequential nephron blockade compared to dual blockade of the renin-angiotensin-aldosterone system plus bisoprolol in the treatment of resistant arterial hypertension - study protocol for a randomized controlled trial.

    PubMed

    Cestário, Elizabeth do Espirito Santo; Fernandes, Letícia Aparecida Barufi; Giollo-Júnior, Luiz Tadeu; Uyemura, Jéssica Rodrigues Roma; Matarucco, Camila Suemi Sato; Landim, Manoel Idelfonso Paz; Cosenso-Martin, Luciana Neves; Tácito, Lúcia Helena Bonalume; Moreno, Heitor; Vilela-Martin, José Fernando; Yugar-Toledo, Juan Carlos

    2018-02-12

    Resistant hypertension is characterized when the blood pressure (BP) remains above the recommended goal after taking three antihypertensive drugs with synergistic actions at their maximum recommended tolerated doses, preferably including a diuretic. Identifying the contribution of intravascular volume and serum renin in maintaining BP levels could help tailor more effective hypertension treatment, whether acting on the control of intravascular volume or sodium balance, or acting on the effects of the renin-angiotensin-aldosterone system (RAAS) on the kidney. This is a randomized, open-label, clinical trial is designed to compare sequential nephron blockade and its contribution to the intravascular volume component with dual blockade of the RAAS plus bisoprolol and the importance of serum renin in maintaining BP levels. The trial has two arms: sequential nephron blockade versus dual blockade of the RAAS (with an angiotensin converting enzyme (ACE) inhibitor plus a beta-blocker) both added-on to a thiazide diuretic, a calcium-channel blocker and an angiotensin receptor-1 blocker (ARB). Sequential nephron blockade consists in a progressive increase in sodium depletion using a thiazide diuretic, an aldosterone-receptor blocker, furosemide and, finally, amiloride. On the other hand, the dual blockade of the RAAS consists of the progressive addition of an ACE inhibitor until the maximum dose and then the administration of a beta-blocker until the maximum dose. The primary outcomes will be reductions in the systolic BP, diastolic BP, mean BP and pulse pressure (PP) after 20 weeks of treatment. The secondary outcomes will evaluate treatment safety and tolerability, biochemical changes, evaluation of renal function and recognition of hypotension (ambulatory BP monitoring (ABPM)). The sample size was calculated assuming an alpha error of 5% to reject the null hypothesis with a statistical power of 80% giving a total of 40 individuals per group. In recent years, the cost of resistant hypertension (RH) treatment has increased. Thus, identifying the contribution of intravascular volume and serum renin in maintaining BP levels could help tailor more effective hypertension treatment, whether by acting on the control of intravascular volume or sodium balance, or by acting on the effects of the RAAS on the kidney. Sequential Nephron Blockade vs. Dual Blockade Renin-angiotensin System + Bisoprolol in Resistant Arterial Hypertension (ResHypOT). ClinicalTrials.gov, ID: NCT02832973 . Registered on 14 July 2016. First received: 12 June 2016. Last updated: 18 July 2016.

  1. Bifurcation analysis of nephron pressure and flow regulation

    NASA Astrophysics Data System (ADS)

    Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, Niels-Henrik

    1996-09-01

    One- and two-dimensional continuation techniques are applied to study the bifurcation structure of a model of renal flow and pressure control. Integrating the main physiological mechanisms by which the individual nephron regulates the incoming blood flow, the model describes the interaction between the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain becomes sufficiently strong, and how a further increase of this parameter produces a folded structure of overlapping period-doubling cascades. Similar phenomena arise in response to increasing blood pressure. The numerical analyses are supported by existing experimental results on anesthetized rats.

  2. Current Status of Nephron-Sparing Surgery (NSS) in the Management of Renal Tumours.

    PubMed

    Venkatramani, Vivek; Swain, Sanjaya; Satyanarayana, Ramgopal; Parekh, Dipen J

    2017-06-01

    Nephron-sparing surgery has emerged as the surgical treatment of choice for small renal masses over the past two decades, replacing the traditional teaching of radical nephrectomy for renal cell carcinoma. With time, there has been an evolution in the techniques and indications for partial nephrectomy. This review summarizes the current status of nephron-sparing surgery for renal carcinoma and also deals with the future of this procedure.

  3. Distribution of volumes of individual glomeruli in kidneys at autopsy: association with age, nephron number, birth weight and body mass index.

    PubMed

    Hoy, W E; Hughson, M D; Zimanyi, M; Samuel, T; Douglas-Denton, R; Holden, L; Mott, S; Bertram, J F

    2010-11-01

    Glomerular hypertrophy occurs in a number of normal and pathological states. Glomerular volume in kidneys at autopsy is usually indirectly derived from estimates of total glomerular mass and nephron number, and provides only a single value per kidney, with no indication of the range of volumes of glomeruli within the kidney of any given subject. We review findings of the distribution of volumes of different glomeruli within subjects without kidney disease, and their correlations with age, nephron number, birth weight and body mass index (BMI). The study describes findings from autopsy kidneys of selected adult white males from the Southeast USA who had unexpected deaths, and who did not have renal scarring or renal disease. Total glomerular (nephron) number and total glomerular volume were estimated using the disector/fractionator combination, and mean glomerular volume (Vglom) was derived. The volumes of 30 individual glomeruli (IGV) in each subject were determined using the disector/Cavalieri method. IGV values were compared by categories of age, nephron number, birth weight and BMI. There was substantial variation in IGV within subjects. Older age, lower nephron number, lower birth weight and gross obesity were associated with higher mean IGV and with greater IGV heterogeneity. High Vglom and high IGVs were associated with more glomerulosclerosis. However, amongst the generally modest numbers of sclerosed glomeruli, the pattern was uniformly of ischemic collapse of the glomerular tuft. There was no detectable focal segmental glomerular tuft injury. In this series of people without overt renal disease, greater age, nephron deficit, lower birth weight and obesity were marked by glomerular enlargement and greater glomerular volume heterogeneity within individuals.

  4. Combining new tools to assess renal function and morphology: a holistic approach to study the effects of aging and a congenital nephron deficit.

    PubMed

    Geraci, Stefania; Chacon-Caldera, Jorge; Cullen-McEwen, Luise; Schad, Lothar R; Sticht, Carsten; Puelles, Victor G; Bertram, John F; Gretz, Norbert

    2017-09-01

    Recently, new methods for assessing renal function in conscious mice (transcutaneous assessment) and for counting and sizing all glomeruli in whole kidneys (MRI) have been described. In the present study, these methods were used to assess renal structure and function in aging mice, and in mice born with a congenital low-nephron endowment. Age-related nephron loss was analyzed in adult C57BL/6 mice (10-50 wk of age), and congenital nephron deficit was assessed in glial cell line-derived neurotrophic factor heterozygous (GDNF HET)-null mutant mice. Renal function was measured through the transcutaneous quantitation of fluorescein isothiocyanate-sinistrin half-life ( t 1/2 ) in conscious mice. MRI was used to image, count, and size cationic-ferritin labeled glomeruli in whole kidneys ex vivo. Design-based stereology was used to validate the MRI measurements of glomerular number and mean volume. In adult C57BL/6 mice, older age was associated with fewer and larger glomeruli, and a rightward shift in the glomerular size distribution. These changes coincided with a decrease in renal function. GNDF HET mice had a congenital nephron deficit that was associated with glomerular hypertrophy and exacerbated by aging. These findings suggest that glomerular hypertrophy and hyperfiltration are compensatory processes that can occur in conjunction with both age-related nephron loss and congenital nephron deficiency. The combination of measurement of renal function in conscious animals and quantitation of glomerular number, volume, and volume distribution provides a powerful new tool for investigating aspects of renal aging and functional changes. Copyright © 2017 the American Physiological Society.

  5. Augmenting kidney mass at transplantation abrogates chronic renal allograft injury in rats.

    PubMed

    Mackenzie, H S; Azuma, H; Troy, J L; Rennke, H G; Tilney, N L; Brenner, B M

    1996-03-01

    Conventional renal transplantation, which substitutes a single allograft for two native kidneys, imposes an imbalance between nephron supply and the metabolic and excretory demands of the recipient. This discrepancy, which stimulates hyperfunction and hypertrophy of viable allograft nephrons, may be intensified by nephron loss through ischemia-reperfusion injury or acute rejection episodes occurring soon after transplantation. In other settings where less than 50% of the total renal mass remains, progressive glomerular injury develops through mechanisms associated with compensatory nephron hyperfiltration and hypertrophy. To determine whether responses to nephron loss contribute to chronic injury in renal allografts, nephron supply was restored to near-normal levels by transplanting Lewis recipients with two Fisher 344 kidneys (group 2A) compared with the standard single allograft F344 --> LEW rat model of late renal allograft failure (group 1A). At 20 weeks, indices of injury were observed in 1A but not 2A rats. These indices included proteinuria (1A: 45 +/- 13; 2A: 4.0 +/- 0.29 mg/day) and glomerulosclerosis (1A: 23 +/- 4.9%, 2A: 0.7 +/- 0.3%) (p < .05). Double-allograft recipients maintained near normal renal structure and function, whereas 1A rats showed evidence of compensatory hyperfiltration (single-nephron glomerular filtration rate of 63 +/- 10 versus 44 +/- 2.0 nl/min in 2A rats) and hypertrophy (mean glomerular volume of 2.64 +/- 0.15 versus 1.52 +/- 0.05 microns3 x 10(6) in 2A rats) (p < .05). Thus, we conclude that a major component of late allograft injury is attributable to processes associated with inadequate transplanted renal mass, a finding that has major implications for kidney transplantation biology and policy.

  6. Repressor logic modules assembled by rolling circle amplification platform to construct a set of logic gates

    PubMed Central

    Wei, Hua; Hu, Bo; Tang, Suming; Zhao, Guojie; Guan, Yifu

    2016-01-01

    Small molecule metabolites and their allosterically regulated repressors play an important role in many gene expression and metabolic disorder processes. These natural sensors, though valuable as good logic switches, have rarely been employed without transcription machinery in cells. Here, two pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various logic computations based on these basic modules, we designed series and parallel strategies of circular templates, which can further assemble these repressor modules in an RCA platform to realize twelve two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled platform was proved to be easy and flexible for complex logic processes and might have application potential in molecular computing and synthetic biology. PMID:27869177

  7. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration

    PubMed Central

    Gerlach, Gary F.; Wingert, Rebecca A.

    2012-01-01

    Vertebrates form a progressive series of up to three kidney organs during development—the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways. PMID:24014448

  8. Myocardial, smooth muscle, nephron, and collecting duct gene targeting reveals the organ sites of endothelin A receptor antagonist fluid retention.

    PubMed

    Stuart, Deborah; Chapman, Mark; Rees, Sara; Woodward, Stephanie; Kohan, Donald E

    2013-08-01

    Endothelin-1 binding to endothelin A receptors (ETA) elicits profibrogenic, proinflammatory, and proliferative effects that can promote a wide variety of diseases. Although ETA antagonists are approved for the treatment of pulmonary hypertension, their clinical utility in several other diseases has been limited by fluid retention. ETA blocker-induced fluid retention could be due to inhibition of ETA activation in the heart, vasculature, and/or kidney; consequently, the current study was designed to define which of these sites are involved. Mice were generated with absence of ETA specifically in cardiomyocytes (heart), smooth muscle, the nephron, the collecting duct, or no deletion (control). Administration of the ETA antagonist ambrisentan or atrasentan for 2 weeks caused fluid retention in control mice on a high-salt diet as assessed by increases in body weight, total body water, and extracellular fluid volume (using impedance plethysmography), as well as decreases in hematocrit (hemodilution). Mice with heart ETA knockout retained fluid in a similar manner as controls when treated with ambrisentan or atrasentan. Mice with smooth muscle ETA knockout had substantially reduced fluid retention in response to either ETA antagonist. Mice with nephron or collecting duct ETA disruption were completely prevented from ETA blocker-induced fluid retention. Taken together, these findings suggest that ETA antagonist-induced fluid retention is due to a direct effect of this class of drug on the collecting duct, is partially related to the vascular action of the drugs, and is not due to alterations in cardiac function.

  9. Interplay of protein and DNA structure revealed in simulations of the lac operon.

    PubMed

    Czapla, Luke; Grosner, Michael A; Swigon, David; Olson, Wilma K

    2013-01-01

    The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.

  10. [Modern biomaterials as hemostatic dressings in kidney nephron sparing surgery (NSS)--murine model. A preliminary report].

    PubMed

    Nowacki, Maciej; Jundziłł, Arkadiusz; Bieniek, Miłosz; Kowalczyk, Tomasz; Kloskowski, Tomasz; Drewa, Tomasz

    2012-01-01

    Kidney cancer is now days, one of the main problems in oncological urology. More frequent cases detection of this type of cancer and the implementation of modern methods of treatment, involves the public and good diagnostic radiological imaging methods. Approximately 40% of renal tumors are detected clinically as a changes in T1N0M0 stage. This means that in these patients, surgery can be performed using the method of nephron sparing surgery (NSS), far from consisting the implementation of radical nephrectomy. Unfortunately, despite the saving nature of this type of treatment, NSS methods are associated with local recurrence of tumor formation. Another problem is intra operative bleeding, that's why in order to stop this negative process surgeons currently use hemostatic dressings. Potentially and clinically significant solution could be a combination of this two main problematics points of concern, through the use of modern biomaterials coated on oncostatic substances as a haemostatic dressings, to the prevention of tumor recurrence. The aim of this work, was to present preliminary report of the use of advanced biomaterials, as haemostatic dressings in an experimental technique of nephron sparing surgery on an murine model. In the experiment we use two types of biomaterials and the standard haemostatic dressing used in the nephron sparing surgery (NSS) as a control. We use a polycaprolactone biomaterial obtained by electrospinning. As a second type of biomaterial, we use a homogeneous material with a structure similar to wool, also obtained from medical polycaprolactone by electrospinning. As an murine (in vivo) model in the study, we use 10 C57BL/J mice (with the local ethical committee permission). 8 mice were used in the present study, 2 mice were constituted as a separate control for obtaining the bleeding data. Kidney melanoma cells were implanted under the C57B1/J B16 mouse kidney fibrous capsule, one week before NSS. After 3 weeks the animals were sacrificed for comparison of hemostatic dressings function. Used biomaterials fulfilled their role as a hameostatic dresings. The material (Type I) was convenient and good for suturing. Haemostatic action times were as follows: (Type I) - 30 seconds. (Type III) - 50 seconds. In the control group were also observed, a proper hemostatic function after 30 seconds. In sectional observation was also found in 3 kidneys section preparation samples, a local tumor recurrence and metastasis to the other tissues of the abdomen. The tested biomaterials fulfill their hemostatic effect on kidney after NSS, without any significant difference acording to a standard hemostatic dressing used clinically. This data may be a potential factor for use in further studies to determine their continued relevance in the prevention of local tumor recurrence after nephron sparing surgery.

  11. SPOROCYTELESS is a novel embryophyte-specific transcription repressor that interacts with TPL and TCP proteins in Arabidopsis.

    PubMed

    Chen, Guang-Hui; Sun, Jia-Ying; Liu, Man; Liu, Jie; Yang, Wei-Cai

    2014-12-20

    Germlines in plants are formed de novo during post-embryonic development, while little is known about the mechanism that controls this process. In Arabidopsis, the earliest gene controlling this process is SPOROCYTELESS (SPL). A decade ago, we showed that loss of SPL function abolished sporogenesis in both male and female organs of Arabidopsis. However, its function is unclear up to now. In this study, we showed that SPL belongs to a novel transcription repressor family specific in embryophyte, which consists of 173 members in the land plants so far. All of them contain a conserved SPL-motif in their N-terminal and an ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif in the C-terminal, therefore designated as SPL-like, EAR-containing proteins (SPEARs). Consistently, SPL acts as a transcriptional repressor in yeast and tobacco cells, and SPEAR proteins are able to form homodimer and/or heterodimer with each other in vitro. Furthermore, SPEARs interact with the TOPLESS (TPL) co-repressors via the EAR motif and TCP family transcription factors in yeast cells. Together, we propose that SPL and SPEARs most likely belong to a novel transcription repressor family in land plants which may play a variety of developmental roles in plants. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  12. Cytotype Control of Drosophila Melanogaster P Element Transposition: Genomic Position Determines Maternal Repression

    PubMed Central

    Misra, S.; Buratowski, R. M.; Ohkawa, T.; Rio, D. C.

    1993-01-01

    P element transposition in Drosophila is controlled by the cytotype regulatory state: in P cytotype, transposition is repressed, whereas in M cytotype, transposition can occur. P cytotype is determined by a combination of maternally inherited factors and chromosomal P elements in the zygote. Transformant strains containing single elements that encoded the 66-kD P element protein zygotically repressed transposition, but did not display the maternal repression characteristic of P cytotype. Upon mobilization to new genomic positions, some of these repressor elements showed significant maternal repression of transposition in genetic assays, involving a true maternal effect. Thus, the genomic position of repressor elements can determine the maternal vs. zygotic inheritance of P cytotype. Immunoblotting experiments indicate that this genomic position effect does not operate solely by controlling the expression level of the 66-kD repressor protein during oogenesis. Likewise, P element derivatives containing the hsp26 maternal regulator sequence expressed high levels of the 66-kD protein during oogenesis, but showed no detectable maternal repression. These data suggest that the location of a repressor element in the genome may determine maternal inheritance of P cytotype by a mechanism involving more than the overall level of expression of the 66-kD protein in the ovary. PMID:8293979

  13. Evidence of In Vitro Preservation of Human Nephrogenesis at the Single-Cell Level.

    PubMed

    Pode-Shakked, Naomi; Gershon, Rotem; Tam, Gal; Omer, Dorit; Gnatek, Yehudit; Kanter, Itamar; Oriel, Sarit; Katz, Guy; Harari-Steinberg, Orit; Kalisky, Tomer; Dekel, Benjamin

    2017-07-11

    During nephrogenesis, stem/progenitor cells differentiate and give rise to early nephron structures that segment to proximal and distal nephron cell types. Previously, we prospectively isolated progenitors from human fetal kidney (hFK) utilizing a combination of surface markers. However, upon culture nephron progenitors differentiated and could not be robustly maintained in vitro. Here, by culturing hFK in a modified medium used for in vitro growth of mouse nephron progenitors, and by dissection of NCAM + /CD133 - progenitor cells according to EpCAM expression (NCAM + /CD133 - /EpCAM - , NCAM + /CD133 - /EpCAM dim , NCAM + /CD133 - /EpCAM bright ), we show at single-cell resolution a preservation of uninduced and induced cap mesenchyme as well as a transitioning mesenchymal-epithelial state. Concomitantly, differentiating and differentiated epithelial lineages are also maintained. In vitro expansion of discrete stages of early human nephrogenesis in nephron stem cell cultures may be used for drug screening on a full repertoire of developing kidney cells and for prospective isolation of mesenchymal or epithelial renal lineages for regenerative medicine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Caudal migration and proliferation of renal progenitors regulates early nephron segment size in zebrafish.

    PubMed

    Naylor, Richard W; Dodd, Rachel C; Davidson, Alan J

    2016-10-19

    The nephron is the functional unit of the kidney and is divided into distinct proximal and distal segments. The factors determining nephron segment size are not fully understood. In zebrafish, the embryonic kidney has long been thought to differentiate in situ into two proximal tubule segments and two distal tubule segments (distal early; DE, and distal late; DL) with little involvement of cell movement. Here, we overturn this notion by performing lineage-labelling experiments that reveal extensive caudal movement of the proximal and DE segments and a concomitant compaction of the DL segment as it fuses with the cloaca. Laser-mediated severing of the tubule, such that the DE and DL are disconnected or that the DL and cloaca do not fuse, results in a reduction in tubule cell proliferation and significantly shortens the DE segment while the caudal movement of the DL is unaffected. These results suggest that the DL mechanically pulls the more proximal segments, thereby driving both their caudal extension and their proliferation. Together, these data provide new insights into early nephron morphogenesis and demonstrate the importance of cell movement and proliferation in determining initial nephron segment size.

  15. Kidney Disease and Diabetes - What You Need to Know

    MedlinePlus

    ... of the spine. Their main job is to filter your blood to remove wastes that could damage ... healthy. Each kidney contains about one million tiny filters called nephrons. Inside each nephron are tiny blood ...

  16. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation

    NASA Astrophysics Data System (ADS)

    Sosnovtseva, O. V.; Pavlov, A. N.; Mosekilde, E.; Holstein-Rathlou, N.-H.; Marsh, D. J.

    2004-09-01

    Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double-wavelet analysis we propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by the presence of a slower mode. Our method is applied both to experimental data from normotensive and hypertensive rats showing different oscillatory patterns and to simulation results obtained from a physiologically based model of the nephron pressure and flow control. We reveal a nonlinear interaction between the two mechanisms that regulate the renal blood flow in the form of frequency and amplitude modulation of the myogenic oscillations.

  17. Pathways to nephron loss starting from glomerular diseases-insights from animal models.

    PubMed

    Kriz, Wilhelm; LeHir, Michel

    2005-02-01

    Studies of glomerular diseases in animal models show that progression toward nephron loss starts with extracapillary lesions, whereby podocytes play the central role. If injuries remain bound within the endocapillary compartment, they will undergo recovery or be repaired by scaring. Degenerative, inflammatory and dysregulative mechanisms leading to nephron loss are distinguished. In addition to several other unique features, the dysregulative mechanisms leading to collapsing glomerulopathy are particular in that glomeruli and tubules are affected in parallel. In contrast, in degenerative and inflammatory diseases, tubular injury is secondary to glomerular lesions. In both of the latter groups of diseases, the progression starts in the glomerulus with the loss of the separation between the tuft and Bowman's capsule by forming cell bridges (parietal cells and/or podocytes) between the glomerular and the parietal basement membranes. Cell bridges develop into tuft adhesions to Bowman's capsule, which initiate the formation of crescents, either by misdirected filtration (proteinaceous crescents) or by epithelial cell proliferation (cellular crescents). Crescents may spread over the entire circumference of the glomerulus and, via the glomerulotubular junction, may extend onto the tubule. Two mechanisms concerning the transfer of a glomerular injury onto the tubulointerstitium are discussed: (1) direct encroachment of extracapillary lesions and (2) protein leakage into tubular urine, resulting in injury to the tubule and the interstitium. There is evidence that direct encroachment is the crucial mechanism. Progression of chronic renal disease is underlain by a vicious cycle which passes on the damage from lost and/or damaged nephrons to so far healthy nephrons. Presently, two mechanisms are discussed: (1) the loss of nephrons leads to compensatory mechanisms in the remaining nephrons (glomerular hypertension, hyperfiltration, hypertrophy) which increase their vulnerability to any further challenge (overload hypothesis); and (2) a proteinuric glomerular disease leads, by some way or another, to tubulointerstitial inflammation and fibrosis, accounting for the further deterioration of renal function (fibrosis hypothesis). So far, no convincing evidence has been published that in primary glomerular diseases fibrosis is harmful to healthy nephrons. The potential of glomerular injuries to regenerate or to be repaired by scaring is limited. The only option for extracapillary injuries with tuft adhesion is repair by formation of a segmental adherent scar (i.e., segmental glomerulosclerosis).

  18. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    NASA Astrophysics Data System (ADS)

    Hobbs, Robert F.; Song, Hong; Huso, David L.; Sundel, Margaret H.; Sgouros, George

    2012-07-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the human and murine models. The renal cortex and medulla S-values were also calculated and the results compared to traditional absorbed fraction calculations. The nephron model enables a more optimal implementation of treatment and is a critical step in understanding toxicity for human translation of targeted α-particle therapy. The S-values established here will enable a MIRD-type application of α-particle dosimetry for α-emitters, i.e. measuring the TIA in the kidney (or renal cortex) will provide meaningful and accurate nephron-level dosimetry.

  19. Role of renal sympathetic nerve activity in prenatal programming of hypertension.

    PubMed

    Baum, Michel

    2018-03-01

    Prenatal insults, such as maternal dietary protein deprivation and uteroplacental insufficiency, lead to small for gestational age (SGA) neonates. Epidemiological studies from many different parts of the world have shown that SGA neonates are at increased risk for hypertension and early death from cardiovascular disease as adults. Animal models, including prenatal administration of dexamethasone, uterine artery ligation and maternal dietary protein restriction, result in SGA neonates with fewer nephrons than controls. These models are discussed in this educational review, which provides evidence that prenatal insults lead to altered sodium transport in multiple nephron segments. The factors that could result in increased sodium transport are discussed, focusing on new information that there is increased renal sympathetic nerve activity that may be responsible for augmented renal tubular sodium transport. Renal denervation abrogates the hypertension in programmed rats but has no effect on control rats. Other potential factors that could cause hypertension in programmed rats, such as the renin-angiotensin system, are also discussed.

  20. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development.

    PubMed

    Brown, Aaron C; Adams, Derek; de Caestecker, Mark; Yang, Xuehui; Friesel, Robert; Oxburgh, Leif

    2011-12-01

    Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.

  1. On the use of the T-REx tetracycline-inducible gene expression system in vivo.

    PubMed

    Dobrovolsky, Vasily N; Heflich, Robert H

    2007-10-15

    Components of the commercially available T-REx system were used to create two types of transgenic mice. The first contained the tetracycline-repressor transgene under the control of the CMV promoter/enhancer; the second type contained a green fluorescent protein (GFP) reporter transgene under the control of the CMV promoter/enhancer with a tetracycline repressor operator sequence. Transgene expression was unpredictable in animals containing the individual transgenes. Animals with the reporter transgene expressed GFP in only some tissues (e.g., pancreas, kidney), and one line of reporter transgenic animals developed kidney disease, presumably due to expression of the transgene. The two types of transgenic animals were crossbred to produce double-transgenic animals with the object of regulating the expression of the reporter in vivo. When a similar double-transgenic system was constructed in cultured cells, the repressor protein suppressed the transcription of the reporter transgene. The presence of the repressor in double-transgenic animals had no effect on the expression of the reporter; double transgenic animals developed the same kidney disease that was seen in singly transgenic mice with the reporter. Our results indicate that transgenes under the control of the CMV promoter in the T-REx system express somewhat unpredictably and in only a limited number of tissues, making the use of this system for the development of in vivo models problematical. Copyright 2007 Wiley Periodicals, Inc.

  2. A comparison of nephron number, glomerular volume and kidney weight in Senegalese Africans and African Americans

    PubMed Central

    McNamara, Bridgette J.; Diouf, Boucar; Douglas-Denton, Rebecca N.; Hughson, Michael D.; Hoy, Wendy E.; Bertram, John F.

    2010-01-01

    Background. Low nephron number is determined in utero and is a proposed risk for essential hypertension. Glomerular volume is inversely correlated with nephron number, and genetic and environmental factors that determine nephron number are thought to determine glomerular volume. This study compared total glomerular (nephron) number (Nglom), mean glomerular volume (Vglom) and kidney weight in two geographically separated black populations with significant common genetic ancestry. Methods. Unbiased stereology was used to determine Nglom and Vglom in kidneys collected at coronial autopsy in an age- and sex-matched sample of 39 adult Africans from Dakar in Senegal, West Africa and 39 African Americans from Mississippi in the USA. Results. African Americans were taller and heavier than their Senegalese counterparts. Nglom was remarkably similar—with a geometric mean of 937 967 in Senegalese and 904 412 in African Americans (P = 0.62). Vglom was correlated inversely with Nglom and directly with body surface area in both groups, but Vglom was 54% greater in African Americans than in Senegalese Africans [8.30 ± 2.92 (SD) and 5.38 ± 1.25  μm3 × 106, respectively] and remained significantly larger (38%) after adjustment for body size. Vglom increased with age in African Americans, but not in the Senegalese. Kidney weight was larger in African Americans (P < 0.0001), but kidney-to-body weight ratio was not different between groups. Conclusions. Despite similar nephron numbers, a common genetic constitution, and even in relation to current body size, African Americans have larger Vglom than Senegalese subjects. This may mark exposure to environmental stressors or hereditary traits concentrated in the population's relocation to North America. PMID:20154008

  3. A comparison of nephron number, glomerular volume and kidney weight in Senegalese Africans and African Americans.

    PubMed

    McNamara, Bridgette J; Diouf, Boucar; Douglas-Denton, Rebecca N; Hughson, Michael D; Hoy, Wendy E; Bertram, John F

    2010-05-01

    Low nephron number is determined in utero and is a proposed risk for essential hypertension. Glomerular volume is inversely correlated with nephron number, and genetic and environmental factors that determine nephron number are thought to determine glomerular volume. This study compared total glomerular (nephron) number (N(glom)), mean glomerular volume (V(glom)) and kidney weight in two geographically separated black populations with significant common genetic ancestry. Unbiased stereology was used to determine N(glom) and V(glom) in kidneys collected at coronial autopsy in an age- and sex-matched sample of 39 adult Africans from Dakar in Senegal, West Africa and 39 African Americans from Mississippi in the USA. African Americans were taller and heavier than their Senegalese counterparts. N(glom) was remarkably similar-with a geometric mean of 937 967 in Senegalese and 904 412 in African Americans (P = 0.62). V(glom) was correlated inversely with N(glom) and directly with body surface area in both groups, but V(glom) was 54% greater in African Americans than in Senegalese Africans [8.30 +/- 2.92 (SD) and 5.38 +/- 1.25 microm(3) x 10(6), respectively] and remained significantly larger (38%) after adjustment for body size. V(glom) increased with age in African Americans, but not in the Senegalese. Kidney weight was larger in African Americans (P < 0.0001), but kidney-to-body weight ratio was not different between groups. Despite similar nephron numbers, a common genetic constitution, and even in relation to current body size, African Americans have larger V(glom) than Senegalese subjects. This may mark exposure to environmental stressors or hereditary traits concentrated in the population's relocation to North America.

  4. The role of repressor kinetics in relief of transcriptional interference between convergent promoters

    PubMed Central

    Hao, Nan; Palmer, Adam C.; Ahlgren-Berg, Alexandra; Shearwin, Keith E.; Dodd, Ian B.

    2016-01-01

    Transcriptional interference (TI), where transcription from a promoter is inhibited by the activity of other promoters in its vicinity on the same DNA, enables transcription factors to regulate a target promoter indirectly, inducing or relieving TI by controlling the interfering promoter. For convergent promoters, stochastic simulations indicate that relief of TI can be inhibited if the repressor at the interfering promoter has slow binding kinetics, making it either sensitive to frequent dislodgement by elongating RNA polymerases (RNAPs) from the target promoter, or able to be a strong roadblock to these RNAPs. In vivo measurements of relief of TI by CI or Cro repressors in the bacteriophage λ PR–PRE system show strong relief of TI and a lack of dislodgement and roadblocking effects, indicative of rapid CI and Cro binding kinetics. However, repression of the same λ promoter by a catalytically dead CRISPR Cas9 protein gave either compromised or no relief of TI depending on the orientation at which it binds DNA, consistent with dCas9 being a slow kinetics repressor. This analysis shows how the intrinsic properties of a repressor can be evolutionarily tuned to set the magnitude of relief of TI. PMID:27378773

  5. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  6. Recent Advances in Elucidating the Genetic Mechanisms of Nephrogenesis Using Zebrafish

    PubMed Central

    Cheng, Christina N.; Verdun, Valerie A.; Wingert, Rebecca A.

    2015-01-01

    The kidney is comprised of working units known as nephrons, which are epithelial tubules that contain a series of specialized cell types organized into a precise pattern of functionally distinct segment domains. There is a limited understanding of the genetic mechanisms that establish these discrete nephron cell types during renal development. The zebrafish embryonic kidney serves as a simplified yet conserved vertebrate model to delineate how nephron segments are patterned from renal progenitors. Here, we provide a concise review of recent advances in this emerging field, and discuss how continued research using zebrafish genetics can be applied to gain insightsabout nephrogenesis. PMID:26024215

  7. Development of a Manipulative for Nephron Physiology Education

    ERIC Educational Resources Information Center

    Giffen, Zane C.; Carvalho, Helena

    2015-01-01

    Some physiological concepts, such as physiology of filtration and absorption in the different nephron segments, are so detailed that they can be a challenge to be memorized. This article describes an exercise that solidifies learning as students manipulate, using paper models, "transporters" and "electrolytes" in the…

  8. EXPERIMENTAL STUDIES IN ACUTE RENAL FAILURE

    PubMed Central

    Menefee, Max G.; Mueller, C. Barber; Miller, Tracy B.; Myers, Joseph K.; Bell, Allen L.

    1964-01-01

    When purified human globin is injected intravenously into rats it produces acute renal failure characterized by tubular casts and oliguria. The globin is identifiable within vesicles and channels in the cytoplasm of the proximal tubules, through which it passes from lumen to basal side with no apparent serious effect on the cells. When a very minimal amount of globin is taken up by cells of the distal limb of Henle's loop or distal tubules (lower nephron), a markedly deleterious effect is apparent and the cells die within a short time. The mixture of cell debris and precipitated globin forms plugs within the confines of the basement membranes of the former distal limbs and distal tubules. After a number of lower nephrons are plugged a disruption of proximal tubules is found, which apparently results from the effect of back pressure in the obstructed nephrons. We suggest that any amount in excess of a low threshold of globin, either alone or combined with heme or related material, has a toxic effect on lower nephron cells. Once initiated, the toxic effect is not reversible and the resulting plug of debris and precipitate will occlude the lumen. If a sufficient number of nephrons are made non-functional the animal becomes anuric; otherwise it is oliguric. A high rate of urine flow will protect against the excess absorption of material and thus against acute renal failure. PMID:14238931

  9. Control of developmentally primed erythroid genes by combinatorial co-repressor actions

    PubMed Central

    Stadhouders, Ralph; Cico, Alba; Stephen, Tharshana; Thongjuea, Supat; Kolovos, Petros; Baymaz, H. Irem; Yu, Xiao; Demmers, Jeroen; Bezstarosti, Karel; Maas, Alex; Barroca, Vilma; Kockx, Christel; Ozgur, Zeliha; van Ijcken, Wilfred; Arcangeli, Marie-Laure; Andrieu-Soler, Charlotte; Lenhard, Boris; Grosveld, Frank; Soler, Eric

    2015-01-01

    How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. PMID:26593974

  10. Multi‐layered inhibition of Streptomyces development: BldO is a dedicated repressor of whiB

    PubMed Central

    Chandra, Govind; Findlay, Kim C.; Buttner, Mark J.

    2017-01-01

    Summary BldD‐(c‐di‐GMP) sits on top of the regulatory network that controls differentiation in Streptomyces, repressing a large regulon of developmental genes when the bacteria are growing vegetatively. In this way, BldD functions as an inhibitor that blocks the initiation of sporulation. Here, we report the identification and characterisation of BldO, an additional developmental repressor that acts to sustain vegetative growth and prevent entry into sporulation. However, unlike the pleiotropic regulator BldD, we show that BldO functions as the dedicated repressor of a single key target gene, whiB, and that deletion of bldO or constitutive expression of whiB is sufficient to induce precocious hypersporulation. PMID:28271577

  11. Regulation of blood pressure and renal function by NCC and ENaC: lessons from genetically engineered mice.

    PubMed

    Verouti, Sophia N; Boscardin, Emilie; Hummler, Edith; Frateschi, Simona

    2015-04-01

    The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Renal echo-3D and microalbuminuria in children of diabetic mothers: a preliminary study.

    PubMed

    Cappuccini, B; Torlone, E; Ferri, C; Arnone, S; Troiani, S; Bini, V; Bellomo, G; Barboni, G; Di Renzo, G

    2013-08-01

    Maternal diabetes has assumed epidemic relevance in recent years and animal studies have provided some evidence that it may cause abnormalities in renal development and a reduction in nephron endowment in the offspring; however, human data are lacking. The renal cortex contains ∼95% of the glomeruli and its volume could be taken as a surrogate measure of glomerular number; based on this assumption, we measured renal cortex volume and in addition, microalbuminuria in a homogeneous sample of 42 children of diabetic (pregestational, n = 13, and gestational, n = 29) mothers, compared with 21 healthy children born of non-diabetic mothers. The offspring of diabetic mothers showed a significant reduction of renal cortex volume and higher albumin excretion compared with controls, possibly attributable to a reduction in the number of nephrons and the difference was statistically significant (P < 0.001). Although further studies on a larger sample are necessary, our preliminary findings suggest that maternal diabetes may affect renal development with sequelae later in life, requiring closer monitoring and follow-up. Furthermore, the importance of strict maternal diabetes management and control must be emphasized.

  13. Segmental analysis of renal glucose transport in young female rats.

    PubMed Central

    McSherry, N R; Wen, S F

    1984-01-01

    Free-flow micropuncture studies were performed on twenty-seven young female Sprague-Dawley rats before and after 10% extracellular volume expansion to evaluate glucose reabsorption at the accessible sites of both surface and papillary nephrons. In the distal nephron segments no significant glucose reabsorption was observed for the distal tubule and papillary collecting duct but significant difference in fractional glucose delivery was demonstrated between the bend of the Henle's loop and early distal tubule and between the late distal tubule and the base of the collecting duct. Comparison of the fractional glucose delivery within the same nephron group for both superficial and juxtamedullary nephrons indicated that glucose reabsorption occurred at some sites beyond the bend of the Henle's loop. Volume expansion inhibited glucose reabsorption in the proximal convoluted tubule, enhanced it in the segment between the late proximal and early distal tubules, but had no effect on glucose transport at further distal sites. It is concluded that, in addition to the proximal tubule, the ascending loop of Henle or cortical collecting tubule may play a role in maintaining glucose-free urine under physiological conditions. PMID:6394745

  14. Evolutionary Nephrology.

    PubMed

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  15. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  16. Morphological and functional characteristics of the kidney of cartilaginous fishes: with special reference to urea reabsorption.

    PubMed

    Hyodo, Susumu; Kakumura, Keigo; Takagi, Wataru; Hasegawa, Kumi; Yamaguchi, Yoko

    2014-12-15

    For adaptation to high-salinity marine environments, cartilaginous fishes (sharks, skates, rays, and chimaeras) adopt a unique urea-based osmoregulation strategy. Their kidneys reabsorb nearly all filtered urea from the primary urine, and this is an essential component of urea retention in their body fluid. Anatomical investigations have revealed the extraordinarily elaborate nephron system in the kidney of cartilaginous fishes, e.g., the four-loop configuration of each nephron, the occurrence of distinct sinus and bundle zones, and the sac-like peritubular sheath in the bundle zone, in which the nephron segments are arranged in a countercurrent fashion. These anatomical and morphological characteristics have been considered to be important for urea reabsorption; however, a mechanism for urea reabsorption is still largely unknown. This review focuses on recent progress in the identification and mapping of various pumps, channels, and transporters on the nephron segments in the kidney of cartilaginous fishes. The molecules include urea transporters, Na(+)/K(+)-ATPase, Na(+)-K(+)-Cl(-) cotransporters, and aquaporins, which most probably all contribute to the urea reabsorption process. Although research is still in progress, a possible model for urea reabsorption in the kidney of cartilaginous fishes is discussed based on the anatomical features of nephron segments and vascular systems and on the results of molecular mapping. The molecular anatomical approach thus provides a powerful tool for understanding the physiological processes that take place in the highly elaborate kidney of cartilaginous fishes. Copyright © 2014 the American Physiological Society.

  17. The testicular sperm ducts and genital kidney of male Ambystoma maculatum (Amphibia, Urodela, Ambystomatidae).

    PubMed

    Siegel, Dustin S; Aldridge, Robert D; Rheubert, Justin L; Gribbins, Kevin M; Sever, David M; Trauth, Stanley E

    2013-03-01

    The ducts associated with sperm transport from the testicular lobules to the Wolffian ducts in Ambystoma maculatum were examined with transmission electron microscopy. Based on the ultrastructure and historical precedence, new terminology for this network of ducts is proposed that better represents primary hypotheses of homology. Furthermore, the terminology proposed better characterizes the distinct regions of the sperm transport ducts in salamanders based on anatomy and should, therefore, lead to more accurate comparisons in the future. While developing the above ontology, we also tested the hypothesis that nephrons from the genital kidney are modified from those of the pelvic kidney due to the fact that the former nephrons function in sperm transport. Our ultrastructural analysis of the genital kidney supports this hypothesis, as the basal plasma membrane of distinct functional regions of the nephron (proximal convoluted tubule, distal convoluted tubule, and collecting tubule) appear less folded (indicating decreased surface area and reduced reabsorption efficiency) and the proximal convoluted tubule possesses ciliated epithelial cells along its entire length. Furthermore, visible luminal filtrate is absent from the nephrons of the genital kidney throughout their entire length. Thus, it appears that the nephrons of the genital kidney have reduced reabsorptive capacity and ciliated cells of the proximal convoluted tubule may increase the movement of immature sperm through the sperm transport ducts or aid in the mixing of seminal fluids within the ducts. Copyright © 2012 Wiley Periodicals, Inc.

  18. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.

    PubMed

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-04-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. © 2015. Published by The Company of Biologists Ltd.

  19. Repressive coping and self-reports of parenting.

    PubMed

    Myers, L B; Brewin, C R; Winter, D A

    1999-03-01

    To investigate whether women who possess a repressive coping style (repressors) self-report more positive judgments of their childhood on questionnaire and repertory grid measures compared with non-repressors. Repressors (low anxiety-high defensiveness) were compared with a composite group of non-repressors, containing some low anxious (low anxiety-low defensiveness), some high anxious (high anxiety-low defensiveness), some defensive high anxious (high anxiety-high defensiveness) and some non-extreme scorers. Participants completed the Parental Bonding Instrument (PBI; Parker, Tupling & Brown, 1979) and a 10 x 10 repertory grid, Self-Identification Form. On the PBI, repressors scored significantly higher than non-repressors on paternal care and significantly lower on paternal overprotection. There were no group differences for maternal measures. On the repertory grid, repressors compared with non-repressors perceived (a) themselves as significantly closer to their father, a woman they like, and their ideal partner, and significantly further from a woman they dislike, and a man they dislike; and (b) their father as significantly closer to a woman they like, a partner/person they admire, and an ideal partner. In addition, repressors were significantly tighter on construing than non-repressors. The results supported the hypothesis that repressors would rate their interactions with their fathers more positively than non-repressors when allowed to do so on self-report measures.

  20. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    PubMed

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a constitutive promoter). We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain.

  1. The relationship between two types of impaired emotion processing: repressive coping and alexithymia

    PubMed Central

    Myers, Lynn B.; Derakshan, Nazanin

    2015-01-01

    The constructs of repressive coping and alexithymia are both related to impaired emotion processing, yet individuals with a repressive coping style (repressors) score lower than controls on standard self-report measures of alexithymia. A large body of evidence indicates that repressors avoid negative affect. Therefore, the current study examined the relationship between repressive coping and alexithymia by using independently-rated interviews with the aim of bypassing repressors’ tendency of avoiding negative affect. Results showed that repressors scored high on alexithymia, similar to anxious individuals on the independently-rated interview, but scored low on alexithymia on a questionnaire measure. Our findings confirm a link between alexithymia and repressive coping and stress the need for non-standard measures in exploring the nature of the relationship between repressive coping and alexithymia. PMID:26136706

  2. An Active Learning Exercise to Facilitate Understanding of Nephron Function: Anatomy and Physiology of Renal Transporters

    ERIC Educational Resources Information Center

    Dirks-Naylor, Amie J.

    2016-01-01

    Renal transport is a central mechanism underlying electrolyte homeostasis, acid base balance and other essential functions of the kidneys in human physiology. Thus, knowledge of the anatomy and physiology of the nephron is essential for the understanding of kidney function in health and disease. However, students find this content difficult to…

  3. Teaching the Renal Tubular Reabsorption of Glucose Using Two Classic Papers by Shannon et al.

    ERIC Educational Resources Information Center

    Braga, Valdir A.

    2011-01-01

    Most of the transport along the nephron uses membrane proteins and exhibits the three characteristics of mediated transport: saturation, specificity, and competition. Glucose reabsorption in the nephron is an excellent example of the consequences of saturation. Two classic papers by James A. Shannon and colleagues clearly show the ability of the…

  4. DWARF 53 acts as a repressor of strigolactone signalling in rice

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; Liu, Xue; Xiong, Guosheng; Liu, Huihui; Chen, Fulu; Wang, Lei; Meng, Xiangbing; Liu, Guifu; Yu, Hong; Yuan, Yundong; Yi, Wei; Zhao, Lihua; Ma, Honglei; He, Yuanzheng; Wu, Zhongshan; Melcher, Karsten; Qian, Qian; Xu, H. Eric; Wang, Yonghong; Li, Jiayang

    2013-12-01

    Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCFD3 ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCFD3 ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14-D3 complex.

  5. The biotin repressor: modulation of allostery by corepressor analogs.

    PubMed

    Brown, Patrick H; Cronan, John E; Grøtli, Morten; Beckett, Dorothy

    2004-04-02

    The Escherichia coli biotin repressor functions in biotin retention and regulation of biotin biosynthesis. Biotin retention is accomplished via the two-step biotinylation of the biotin-dependent enzyme, acetyl-CoA carboxylase. In the first step of this reaction the substrates biotin and ATP are utilized in synthesis of the activated biotin, biotinyl-5'-AMP, while in the second step this activated biotin is transferred to a unique lysine residue of the biotin carboxyl carrier protein subunit of the carboxylase. Regulation of biotin biosynthesis is accomplished through binding of the repressor to the transcription control region of the biotin biosynthetic operon. The adenylated or activated biotin functions as the corepressor in this DNA binding process. The activated biotin is a mixed anhydride and thus labile. In efforts to develop tools for structural and thermodynamic studies of the biotin regulatory interactions, two analogs of the adenylate, a sulfamoyl derivative and an ester derivative, have been synthesized and functionally characterized. Results of fluorescence measurements indicate that both analogs bind with high affinity to the repressor and that both are inactive in biotin transfer to the acceptor protein. Functional studies of their corepressor properties indicate that while the sulfamoyl is a weak allosteric activator, the ester closely mimics the physiological corepressor in activation of assembly of the transcription repression complex. Results of these studies also provide further insight into the allosteric mechanism of the biotin repressor.

  6. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney.

    PubMed

    Camarata, Troy; Howard, Alexis; Elsey, Ruth M; Raza, Sarah; O'Connor, Alice; Beatty, Brian; Conrad, Jack; Solounias, Nikos; Chow, Priscilla; Mukta, Saima; Vasilyev, Aleksandr

    2016-01-01

    New nephron formation (nephrogenesis) ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds) and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles) may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates) showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population.

  7. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney

    PubMed Central

    Camarata, Troy; Howard, Alexis; Elsey, Ruth M.; Raza, Sarah; O’Connor, Alice; Beatty, Brian; Conrad, Jack; Solounias, Nikos; Chow, Priscilla; Mukta, Saima; Vasilyev, Aleksandr

    2016-01-01

    New nephron formation (nephrogenesis) ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds) and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles) may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates) showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population. PMID:27144443

  8. Reduced nephron endowment in the neonates of Indigenous Australian peoples.

    PubMed

    Kandasamy, Y; Smith, R; Wright, I M R; Lumbers, E R

    2014-02-01

    Rates of chronic kidney disease (CKD) among Indigenous groups in Australia exceed non-Indigenous rates eight-fold. Using kidney volume as a surrogate for nephron number, we carried out a study to determine if Indigenous neonates have a smaller kidney volume (and thus a reduced nephron number) from birth compared with non-Indigenous neonates. We recruited term and preterm neonates (<32 weeks) at a tertiary care neonatal unit over a 12 months period. Preterm neonates were assessed (renal sonography and renal function measurement) at 32 weeks corrected age (CA) and again at 38 weeks CA when blood pressure was also measured. All term neonates were assessed in the first post-natal week, including renal sonography, renal function and blood pressure measurement. The primary outcome measured was total kidney volume (TKV) and estimated glomerular filtration rate (eGFR) was a secondary outcome. Data was available for 44 preterm (11 Indigenous) and 39 term (13 Indigenous) neonates. TKV of Indigenous neonates was significantly lower at 32 weeks [12.0 (2.0) v. 15.4 (5.1) ml; P=0.03] and 38 weeks CA [18.6 (4.0) v. 22.6 (5.9) ml; P=0.04] respectively. Term Indigenous neonates also had smaller kidney volumes compared with non-Indigenous neonates. Despite a smaller kidney volume (and reduced nephron number), Indigenous neonates did not have a significantly lower eGFR. Indigenous neonates achieve similar eGFRs to Non-Indigenous neonates, presumably through a higher single nephron filtration rate. This places Indigenous neonates at a greater risk of long-term kidney damage later in life.

  9. Standardized reporting of resection technique during nephron-sparing surgery: the surface-intermediate-base margin score.

    PubMed

    Minervini, Andrea; Carini, Marco; Uzzo, Robert G; Campi, Riccardo; Smaldone, Marc C; Kutikov, Alexander

    2014-11-01

    A standardized reporting system of nephron-sparing surgery resection techniques is lacking. The surface-intermediate-base scoring system represents a formal reporting instrument to assist in interpretation of reported data and to facilitate comparisons in the urologic literature. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  10. Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells.

    PubMed

    Pode-Shakked, Naomi; Pleniceanu, Oren; Gershon, Rotem; Shukrun, Rachel; Kanter, Itamar; Bucris, Efrat; Pode-Shakked, Ben; Tam, Gal; Tam, Hadar; Caspi, Revital; Pri-Chen, Sara; Vax, Einav; Katz, Guy; Omer, Dorit; Harari-Steinberg, Orit; Kalisky, Tomer; Dekel, Benjamin

    2016-03-29

    When assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1(+)CD133(-) marks SIX2(+) multipotent renal stem cells transiting to NCAM1(+)CD133(+) differentiating segment-specific SIX2(-) epithelial progenitors and NCAM1(-)CD133(+) differentiated nephron cells. In tumorigenesis, NCAM1(+)CD133(-) marks SIX2(+) blastema that includes the ALDH1(+) WT cancer stem/initiating cells, while NCAM1(+)CD133(+) and NCAM1(-)CD133(+) specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1(+) nephron stem cells in normal and malignant nephrogenesis.

  11. Relationship between the retinal microvasculature and renal volume in low-birth-weight babies.

    PubMed

    Kandasamy, Yogavijayan; Smith, Roger; Wright, Ian M R

    2013-06-01

    We performed a study to assess whether the development of the retinal microvasculature reflects nephron growth and therefore nephron number. In our study, we determined the association between kidney volume (nephron number) and the retinal microvasculature of term low-birth-weight (LBW) and normal-birth-weight (NBW) infants (11 LBW and 27 NBW). LBW infants had significantly larger retinal arteriolar and venular diameters (104.2 ± 21.4 versus 87.0 ± 12.7 μm; p = 0.004; 146.8 ± 19.5 versus 128.0 ± 19.5 μm; p = 0.01, respectively) compared with NBW infants. LBW infants also had smaller mean renal volumes (9.3 ± 2.3 versus 12.2 ± 3.1 ml; p = 0.008). There were negative correlations between retinal arteriolar and venular diameters and renal volumes (r = -0.34, p < 0.05; r = -0.37, p < 0.05, respectively). The larger the kidney (and, by implication, the greater the nephron number), the smaller are the diameters of retinal arterioles and venules. Thus, the degree of dilation of the retinal microvasculature provides an indirect index of renal growth. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Purification of bacteriophage lambda repressor

    PubMed Central

    Gao, Ning; Shearwin, Keith; Mack, John; Finzi, Laura; Dunlap, David

    2013-01-01

    Bacteriophage lambda repressor controls the lysogeny/lytic growth switch after infection of E. coli by lambda phage. In order to study in detail the looping of DNA mediated by the protein, tag-free repressor and a loss-of-cooperativity mutant were expressed in E.coli and purified by (1) ammonium sulfate fractionation, (2) anion-exchange chromatography and (3) heparin affinity chromatography. This method employs more recently developed and readily available chromatography resins to produce highly pure protein in good yield. In tethered particle motion looping assays and atomic force microscopy “footprinting” assays, both the wild-type protein and a C-terminal His-tagged variant, purified using immobilized metal affinity chromatography, bound specifically to high affinity sites to mediate loop formation. In contrast the G147D loss-of-cooperativity mutant bound specifically but did not secure loops. PMID:23831434

  13. Adaptor proteins GIR1 and GIR2. II. Interaction with the co-repressor TOPLESS and promotion of histone deacetylation of target chromatin.

    PubMed

    Wu, Renhong; Citovsky, Vitaly

    2017-07-08

    Understanding how root hair development is controlled is important for understanding of many fundamental aspects of plant biology. Previously, we identified two plant-specific adaptor proteins GIR1 and GIR2 that interact with the major regulator of root hair development GL2 and suppress formation of root hair. Here, we show that GIR1 and GIR2 also interact with the co-repressor TOPLESS (TPL). This interaction required the GIR1 protein EAR motif, and was essential for the transcriptional repressor activity of GIR1. Both GIR1 and GIR2 promoted histone hypoacetylation of their target chromatin. Potentially, GIR1 and GIR2 might may link TPL to and participate in epigenetic regulation of root hair development. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

    PubMed

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

    2016-03-14

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

  15. A Large Drawing of a Nephron for Teaching Medical Students Renal Physiology, Histology, and Pharmacology

    ERIC Educational Resources Information Center

    Robinson, Philip G.; Newman, David; Reitz, Cara L.; Vaynberg, Lena Z.; Bahga, Dalbir K.; Levitt, Morton H.

    2018-01-01

    The purpose of this study is to see whether a large drawing of a nephron helped medical students in self-directed learning groups learn renal physiology, histology, and pharmacology before discussing clinical cases. The end points were the grades on the renal examination and a student survey. The classes in the fall of 2014 and 2015 used the…

  16. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum.

    PubMed

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum , the purple pigment violacein is under positive regulation by the N -acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.

  17. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F. William

    2010-07-20

    A bacterial growth medium for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a lac repressor. Also disclosed is a bacterial growth medium for improving the production of a selenomethionine-containing protein or polypeptide in a bacterial cell, the protein or polypeptide being produced by recombinant DNA techniques from a lac or T7lac promoter, the bacterial cell encoding a vitamin B12-dependent homocysteine methylase. Finally, disclosed is a bacterial growth medium for suppressing auto-induction of expression in cultures of bacterial cells grown batchwise, said transcription being under the control of lac repressor.

  18. Associations between age, body size and nephron number with individual glomerular volumes in urban West African males.

    PubMed

    McNamara, Bridgette J; Diouf, Boucar; Hughson, Michael D; Hoy, Wendy E; Bertram, John F

    2009-05-01

    Glomerulomegaly has been associated with an increased risk of renal disease. Few reports have investigated the heterogeneity of glomerular size within kidneys and associated risk factors. This study measured the individual glomerular volume (IGV) of 720 non-sclerotic glomeruli in kidneys of adult West African males, and investigated associations of IGV with age, total glomerular (nephron) number and body surface area (BSA). IGVs were determined in the kidneys of 24 Senegalese males from two age groups (12 subjects aged 20- 30 years and 12 subjects aged 50-70 years). Subjects were randomly chosen at autopsies performed at Le Dantec Hospital in Dakar. Volumes of 30 glomeruli per subject were determined using the disector/Cavalieri stereological method. IGVs ranged from 1.31 x 10(6) microm3 to 12.40 x 10(6) microm3 (a 9.4-fold variation). IGV varied up to 5.3-fold within single kidneys. The trimmed range of IGV within subjects (10th to 90th percentile of IGV) was directly correlated with median glomerular size. The mean and standard deviation (SD) of IGV did not differ significantly between age groups or between subjects with higher (> or =1.78 m2) and lower BSA (<1.78 m2). In older subjects the SD of IGV was significantly and directly correlated with BSA. Kidneys with less than 1 million nephrons had significantly larger mean IGV than kidneys with more than 1 million nephrons, and the trimmed range of IGVs within subjects was inversely correlated with total glomerular number. There was a considerable variation in IGV within kidneys of Senegalese males at autopsy. The heterogeneity of IGV was increased in association with low nephron number and increased BSA, with more pronounced effects in older subjects.

  19. Transgenerational programming of nephron deficits and hypertension.

    PubMed

    Briffa, Jessica F; Wlodek, Mary E; Moritz, Karen M

    2018-06-07

    Exposure to a sub-optimal environment in the womb can result in poor fetal growth and impair the normal development of organs. The kidney, specifically the process of nephrogenesis, has been shown to be impacted by many common pregnancy exposures including an inadequate diet, poor placental function, maternal stress as well as maternal smoking and alcohol consumption. This can result in offspring being born with a reduced nephron endowment, which places these individuals at increased risk of hypertension and chronic kidney disease (CKD). Of recent interest is whether this disease risk can be passed on to subsequent generations and, if so, what are the mechanisms and pathways involved. In this review, we highlight the growing body of evidence that a low birth weight and hypertension, which are both major risk factors for cardiovascular and CKD, can be transmitted across generations. However, as yet there is little data as to whether a low nephron endowment contributes to this disease transmission. The emerging data suggests transmission can occur both through both the maternal and paternal lines, which likely involves epigenetic mechanisms such chromatin remodelling (DNA methylation and histone modification) and non-coding RNA modifications. In addition, females who were born small and/or have a low nephron endowment are at an increased risk for pregnancy complications, which can influence the growth and development of the next generation. Future animal studies in this area should include examining nephron endowment across multiple generations and determining adult renal function. Clinically, long term follow-up studies of large birth cohorts need to be undertaken to more clearly determine the impact a sub-optimal environment in one generation has on the health outcomes in the second, and subsequent, generation. Copyright © 2018. Published by Elsevier Ltd.

  20. Renal effects of continuous negative pressure breathing

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.

    1975-01-01

    Continuous negative pressure breathing (CNPB) was utilized to simulate the thoracic vascular distension of zero G in 11 anesthetized rats. The animals underwent renal clearance and micropuncture renal nephron studies before, during, and after CNPB. Four rats were pretreated with a high salt diet and I-M desoxycorticosterone (DOCA) in excess. None of these rats diuresed with CNPB. In contrast, five of the seven remaining rats increased the fraction of the filtered sodium excreted and their urinary flow rate. Potassium excretion increased. End proximal tubular fluid specimen's TF/P inulin ratios were unchanged. Whole kidney and single nephron glomerular filtration rates fell 10%. CNPB, a mechanism for atrial distension, appears to cause in the rat a decrease in distal tubular sodium and water reabsorption. Exogenous mineral-corticoid prevents the diuresis, saluresis, and kaluresis. The adequacy of other nonatrial volume control mechanisms in regulating renal salt and water conservation in opposition to the studied atrial-renal (Henry-Gauer) reflex of thoracic vascular distension is confirmed.

  1. [Renal physiology].

    PubMed

    Gueutin, Victor; Deray, Gilbert; Isnard-Bagnis, Corinne

    2012-03-01

    The kidneys are responsible for the urinary excretion of uremic toxins and the regulation of several body systems such as intra and extracellular volume status, acid-base status, calcium and phosphate metabolism or erythropoiesis. They adapt quantitative and qualitative composition of the urine to keep these systems in balance. The flow of plasma is filtered in the range of 120 mL/min, and depends on the systemic and renal hemodynamics which is subject to self-regulation. The original urine will then be modified in successive segments of the nephron. The proximal nephron is to lead the massive reabsorption of water and essential elements such as sodium, bicarbonates, amino-acids and glucose. The distal nephron includes the distal convoluted tubule, the connector tube and the collecting duct. Its role is to adapt the quality composition of urine to the needs of the body.

  2. Loss of floral repressor function adapts rice to higher latitudes in Europe

    PubMed Central

    Gómez-Ariza, Jorge; Galbiati, Francesca; Goretti, Daniela; Brambilla, Vittoria; Shrestha, Roshi; Pappolla, Andrea; Courtois, Brigitte; Fornara, Fabio

    2015-01-01

    The capacity to discriminate variations in day length allows plants to align flowering with the most favourable season of the year. This capacity has been altered by artificial selection when cultivated varieties became adapted to environments different from those of initial domestication. Rice flowering is promoted by short days when HEADING DATE 1 (Hd1) and EARLY HEADING DATE 1 (Ehd1) induce the expression of florigenic proteins encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Repressors of flowering antagonize such induction under long days, maintaining vegetative growth and delaying flowering. To what extent artificial selection of long day repressor loci has contributed to expand rice cultivation to Europe is currently unclear. This study demonstrates that European varieties activate both Hd3a and RFT1 expression regardless of day length and their induction is caused by loss-of-function mutations at major long day floral repressors. However, their contribution to flowering time control varies between locations. Pyramiding of mutations is frequently observed in European germplasm, but single mutations are sufficient to adapt rice to flower at higher latitudes. Expression of Ehd1 is increased in varieties showing reduced or null Hd1 expression under natural long days, as well as in single hd1 mutants in isogenic backgrounds. These data indicate that loss of repressor genes has been a key strategy to expand rice cultivation to Europe, and that Ehd1 is a central node integrating floral repressive signals. PMID:25732533

  3. A Set of Activators and Repressors Control Peripheral Glucose Pathways in Pseudomonas putida To Yield a Common Central Intermediate▿

    PubMed Central

    del Castillo, Teresa; Duque, Estrella; Ramos, Juan L.

    2008-01-01

    Pseudomonas putida KT2440 channels glucose to the central Entner-Doudoroff intermediate 6-phosphogluconate through three convergent pathways. The genes for these convergent pathways are clustered in three independent regions on the host chromosome. A number of monocistronic units and operons coexist within each of these clusters, favoring coexpression of catabolic enzymes and transport systems. Expression of the three pathways is mediated by three transcriptional repressors, HexR, GnuR, and PtxS, and by a positive transcriptional regulator, GltR-2. In this study, we generated mutants in each of the regulators and carried out transcriptional assays using microarrays and transcriptional fusions. These studies revealed that HexR controls the genes that encode glucokinase/glucose 6-phosphate dehydrogenase that yield 6-phosphogluconate; the genes for the Entner-Doudoroff enzymes that yield glyceraldehyde-3-phosphate and pyruvate; and gap-1, which encodes glyceraldehyde-3-phosphate dehydrogenase. GltR-2 is the transcriptional regulator that controls specific porins for the entry of glucose into the periplasmic space, as well as the gtsABCD operon for glucose transport through the inner membrane. GnuR is the repressor of gluconate transport and gluconokinase responsible for the conversion of gluconate into 6-phosphogluconate. PtxS, however, controls the enzymes for oxidation of gluconate to 2-ketogluconate, its transport and metabolism, and a set of genes unrelated to glucose metabolism. PMID:18245293

  4. Reduced Abd-B Hox function during kidney development results in lineage infidelity.

    PubMed

    Magella, Bliss; Mahoney, Robert; Adam, Mike; Potter, S Steven

    2018-06-15

    Hox genes can function as key drivers of segment identity, with Hox mutations in Drosophila often resulting in dramatic homeotic transformations. In addition, however, they can serve other essential functions. In mammals, the study of Hox gene roles in development is complicated by the presence of four Hox clusters with a total of 39 genes showing extensive functional overlap. In this study, in order to better understand shared core Hox functions, we examined kidney development in mice with frameshift mutations of multiple Abd-B type Hox genes. The resulting phenotypes included dramatically reduced branching morphogenesis of the ureteric bud, premature depletion of nephron progenitors and abnormal development of the stromal compartment. Most unexpected, however, we also observed a cellular level lineage infidelity in nephron segments. Scattered cells within the proximal tubules, for example, expressed genes normally expressed only in collecting ducts. Multiple combinations of inappropriate nephron segment specific marker expression were found. In some cases, cells within a tubule showed incorrect identity, while in other cases cells showed ambiguous character, with simultaneous expression of genes associated with more than one nephron segment. These results give evidence that Hox genes have an overlapping core function at the cellular level in driving and/or maintaining correct differentiation decisions. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Concise Review: Kidney Generation with Human Pluripotent Stem Cells.

    PubMed

    Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V

    2017-11-01

    Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.

  6. [The morphometric characteristics of the main structural components of renal nephrons in the white rats with experimentally induced acute and chronic alcohol intoxication].

    PubMed

    Shcherbakova, V M

    2016-01-01

    The objective of the present work was to study the morphometric characteristics of the main structural components of renal nephrons in the white rats with the experimentally induced acute and chronic alcohol intoxication. We undertook the morphometric examination of the structural elements of rat kidneys with the subsequent statistical analysis of the data obtained. The results of the study give evidence of the toxic action of ethanol on all structural components of the nephron in the case of both acute and chronic alcohol intoxication. The study revealed some specific features of the development of pathological process in the renal tissue structures at different stages of alcohol intoxication. The most pronounced morphological changes were observed in the renal proximal tubules and the least pronounced ones in the structure of the renal glomeruli. The earliest morphological changes become apparent in distal convoluted tubules of the nephron; in the case of persistent alcoholemia, they first develop in the renal corpuscles and thereafter in the distal proximal tubules. The maximum changes occur in the case of acute alcohol intoxication and between 2 weeks and 2 months of chronic intoxication; they become less conspicuous during a later period.

  7. CaAP2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum.

    PubMed

    Borovsky, Yelena; Sharma, Vinod K; Verbakel, Henk; Paran, Ilan

    2015-06-01

    The APETALA2 transcription factor homolog CaAP2 is a candidate gene for a flowering repressor in pepper, as revealed by induced-mutation phenotype, and a candidate underlying a major QTL controlling natural variation in flowering time. To decipher the genetic control of transition to flowering in pepper (Capsicum spp.) and determine the extent of gene function conservation compared to model species, we isolated and characterized several ethyl methanesulfonate (EMS)-induced mutants that vary in their flowering time compared to the wild type. In the present study, we report on the isolation of an early-flowering mutant that flowers after four leaves on the primary stem compared to nine leaves in the wild-type 'Maor'. By genetic mapping and sequencing of putative candidate genes linked to the mutant phenotype, we identified a member of the APETALA2 (AP2) transcription factor family, CaAP2, which was disrupted in the early-flowering mutant. CaAP2 is a likely ortholog of AP2 that functions as a repressor of flowering in Arabidopsis. To test whether CaAP2 has an effect on controlling natural variation in the transition to flowering in pepper, we performed QTL mapping for flowering time in a cross between early and late-flowering C. annuum accessions. We identified a major QTL in a region of chromosome 2 in which CaAP2 was the most significant marker, explaining 52 % of the phenotypic variation of the trait. Sequence comparison of the CaAP2 open reading frames in the two parents used for QTL mapping did not reveal significant variation. In contrast, significant differences in expression level of CaAP2 were detected between near-isogenic lines that differ for the flowering time QTL, supporting the putative function of CaAP2 as a major repressor of flowering in pepper.

  8. Conditional ablation of the prorenin receptor in nephron progenitor cells results in developmental programming of hypertension.

    PubMed

    Song, Renfang; Kidd, Laura; Janssen, Adam; Yosypiv, Ihor V

    2018-04-01

    Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells (NPCs) of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump V-ATPase. Previously, we demonstrated that conditional ablation of the PRR in Six2 + NPCs in mice (Six2 PRR -/- ) causes early neonatal death. Here, we identified genes that are regulated by PRR in Six2 + NPCs FACS-isolated from Six2 PRR -/- and control kidneys on embryonic day E15.5 using whole-genome expression analysis. Seven genes with expression in CM cells previously shown to direct kidney development, including Notch1, β-catenin, Lef1, Lhx1, Jag1, and p53, were downregulated. The functional groups within the downregulated gene set included genes involved in embryonic and cellular development, renal regeneration, cellular assembly and organization, cell morphology, death and survival. Double-transgenic Six2 PRR -/- /BatGal + mice, a reporter strain for β-catenin transcriptional activity, showed decreased β-catenin activity in the UB in vivo. Reduced PRR gene dosage in heterozygous Six2 PRR +/- mice was associated with decreased glomerular number, segmental thickening of the glomerular basement membrane with focal podocyte foot process effacement, development of hypertension and increased soluble PRR (sPRR) levels in the urine at 2 months of age. Together, these data demonstrate that NPC PRR performs essential functions during nephrogenesis via control of hierarchy of genes that regulate critical cellular processes. Both reduced nephron endowment and augmented urine sPRR likely contribute to programming of hypertension in Six2 PRR +/- mice. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Physiological roles of claudins in kidney tubule paracellular transport.

    PubMed

    Muto, Shigeaki

    2017-01-01

    The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport. Copyright © 2017 the American Physiological Society.

  10. Bilateral renal dysplasia with nephron hypoplasia in a foal.

    PubMed

    Zicker, S C; Marty, G D; Carlson, G P; Madigan, J E; Smith, J M; Goetzman, B W

    1990-06-15

    Bilateral renal dysplasia and nephron hypoplasia was diagnosed in a Quarter Horse foal with clinical signs of lethargy, convulsions, and diarrhea. Laboratory evaluation revealed anemia, hypoproteinemia, leukopenia, hyponatremia, hypochloremia, and hyposmolality. The foal also had high concentrations of serum creatinine, BUN, and phosphorus. Evaluation of urinary indices revealed a high ratio of urinary gamma-glutamyl-transferase activity to concentration of creatinine, as well as a high fractional clearance ratio of sodium and potassium. Intravenous treatment with saline solution (0.9% NaCl) and antimicrobials provided only temporary resolution of some of the abnormalities. Diagnosis was partly established by histologic evaluation of renal tissue obtained via an ultrasonographically guided biopsy and was confirmed at necropsy. Pathologic changes in the kidney were unique in that the size of the kidneys, along with the appearance and number of glomeruli, were essentially normal despite marked hypoplasia of nephron tubules in the medulla.

  11. Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron.

    PubMed

    Borissova, A; Goltz, G E; Kavanagh, J P; Wilkins, T A

    2010-07-01

    Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 mum. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.

  12. Simultaneous laparoscopic adrenalectomy and laparoscopic nephron-sparing surgery – new experience with port placement

    PubMed Central

    Panek, Wojciech; Lewandowski, Jaroslaw; Tuchendler, Tomasz; Urbańczyk, Grzegorz; Litarski, Adam; Apoznański, Wojciech

    2013-01-01

    The aim of the study was to describe simultaneous laparoscopic adrenalectomy and laparoscopic nephron-sparing surgery, to discuss the details of a convenient laparoscopic approach and the way of port placement, as well as to present a review of the literature concerning combined laparoscopic procedures. A 72-year-old woman was admitted to our department because of a tumor of the right adrenal gland and a small tumor of the right kidney. The patient underwent simultaneous laparoscopic adrenalectomy and laparoscopic nephron-sparing surgery. The postoperative period was uncomplicated. The patient was discharged from the hospital on the 4th postoperative day. We believe that the proposed way of trocar placement would help to avoid a ‘rollover’ problem between the laparoscope and a Satinsky clamp or a ‘crossing swords’ problem between a Satinsky clamp and manipulators. PMID:24501608

  13. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum

    PubMed Central

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control. PMID:28326068

  14. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone.

    PubMed

    Astapova, Inna

    2016-04-01

    Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3 binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3 target genes and hypothalamic-pituitary-thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis. © 2016 Society for Endocrinology.

  15. Structures of ω repressors bound to direct and inverted DNA repeats explain modulation of transcription

    PubMed Central

    Weihofen, Wilhelm Andreas; Cicek, Aslan; Pratto, Florencia; Alonso, Juan Carlos; Saenger, Wolfram

    2006-01-01

    Repressor ω regulates transcription of genes required for copy number control, accurate segregation and stable maintenance of inc18 plasmids hosted by Gram-positive bacteria. ω belongs to homodimeric ribbon-helix-helix (RHH2) repressors typified by a central, antiparallel β-sheet for DNA major groove binding. Homodimeric ω2 binds cooperatively to promotors with 7 to 10 consecutive non-palindromic DNA heptad repeats (5′-A/TATCACA/T-3′, symbolized by →) in palindromic inverted, converging (→←) or diverging (←→) orientation and also, unique to ω2 and contrasting other RHH2 repressors, to non-palindromic direct (→→) repeats. Here we investigate with crystal structures how ω2 binds specifically to heptads in minimal operators with (→→) and (→←) repeats. Since the pseudo-2-fold axis relating the monomers in ω2 passes the central C–G base pair of each heptad with ∼0.3 Å downstream offset, the separation between the pseudo-2-fold axes is exactly 7 bp in (→→), ∼0.6 Å shorter in (→←) but would be ∼0.6 Å longer in (←→). These variations grade interactions between adjacent ω2 and explain modulations in cooperative binding affinity of ω2 to operators with different heptad orientations. PMID:16528102

  16. A large drawing of a nephron for teaching medical students renal physiology, histology, and pharmacology.

    PubMed

    Robinson, Philip G; Newman, David; Reitz, Cara L; Vaynberg, Lena Z; Bahga, Dalbir K; Levitt, Morton H

    2018-06-01

    The purpose of this study is to see whether a large drawing of a nephron helped medical students in self-directed learning groups learn renal physiology, histology, and pharmacology before discussing clinical cases. The end points were the grades on the renal examination and a student survey. The classes in the fall of 2014 and 2015 used the drawing, but not those of 2012 and 2013. The Charles E. Schmidt College of Medicine at Florida Atlantic University is a newly formed Florida medical school, which enrolled its first class in the fall of 2011. The school relies on self-directed problem-based learning in year 1 and changes over to a case inquiry method in the latter part of year 1 and throughout year 2. At the start of the renal course, each student group received a poster of a nephron with the objective of learning the cell functions of the different nephron parts. During the first year of using the drawing, there was no improvement in grades. After a student suggested adjustment to the drawing, there was a statistically significant difference in the total test score in the second year ( P < 0.001). An unexpected finding was lower grades in all 4 yr in the area of acid-base balance and electrolytes compared with the other four areas tested. In the survey, the students found the drawing useful.

  17. Potential roles of high salt intake and maternal malnutrition in the development of hypertension in disadvantaged populations.

    PubMed

    Thrift, Amanda G; Srikanth, Velandai; Fitzgerald, Sharyn M; Kalyanram, Kartik; Kartik, Kamakshi; Hoppe, Chantal C; Walker, Karen Z; Evans, Roger G

    2010-02-01

    1. It has been argued that all major risk factors for cardiovascular disease have been identified. Yet, epidemiological studies undertaken to identify risk factors have largely focused on populations in developed nations or on the urban or relatively affluent rural populations of developing countries. Poor rural populations are seldom studied. 2. Somewhat different risk factors may operate in poor rural populations. Evidence for this is provided by the finding that, in disadvantaged rural India, the prevalence of hypertension is greater than would be expected based on established risk factors in these populations. One risk factor to be considered is a poor intrauterine environment. 3. In animals, maternal macro- and micronutrient malnutrition can lead to reduced nephron endowment. Nephron deficiency, in turn, can render blood pressure salt sensitive. The combination of nephron deficiency and excessive salt intake will predispose to hypertension. 4. Human malnutrition may have similar effects, particularly in regions of the world where malnutrition is endemic and where women are disadvantaged by existing social practices. 5. Moreover, high salt intake is endemic in many parts of Asia, including India. Therefore, we propose that maternal malnutrition (leading to reduced nephron endowment), when combined with excessive salt intake postnatally, will account, at least in part, for the unexpectedly high prevalence of hypertension in disadvantaged rural communities in India and elsewhere.

  18. Basolateral membrane K+ channels in renal epithelial cells

    PubMed Central

    Devor, Daniel C.

    2012-01-01

    The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K+ channels play critical roles in normal physiology. Over 90 different genes for K+ channels have been identified in the human genome. Epithelial K+ channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K+ channels is to recycle K+ across the basolateral membrane for proper function of the Na+-K+-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K+ channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a “K+ channel gene family” approach in presenting the representative basolateral K+ channels of the nephron. The basolateral K+ channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. PMID:22338089

  19. Coupled CFD-PBE Predictions of Renal Stone Size Distributions in the Nephron in Microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Griffin, Elise; Thompson, David

    2016-01-01

    In this paper, a deterministic model is developed to assess the risk of critical renal stone formation for astronauts during space travel. A Population Balance Equation (PBE) model is used to compute the size distribution of a population of nucleating, growing and agglomerating renal calculi as they are transported through different sections of the nephron. The PBE model is coupled to a Computational Fluid Dynamics (CFD) model that solves for steady state flow of urine and transport of renal calculi along with the concentrations of ionic species, calcium and oxalate, in the nephron using an Eulerian two-phase mathematical framework. Parametric simulation are performed to study stone size enhancement and steady state volume fraction distributions in the four main sections of the nephron under weightlessness conditions. Contribution of agglomeration to the stone size distribution and effect of wall friction on the stone volume fraction distributions are carefully examined. Case studies using measured astronaut urinary calcium and oxalate concentrations in microgravity as input indicate that under nominal conditions the largest stone sizes developed in Space will be still considerably below the critical range for problematic stone development. However, results also indicate that the highest stone volume fraction occurs next to the tubule and duct walls. This suggests that there is an increased potential for wall adhesion with the possibility of evolution towards critical stone sizes.

  20. Developmental Programming of Branching Morphogenesis in the Kidney

    PubMed Central

    Schneider, Laura; Al-Awqati, Qais

    2015-01-01

    The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. PMID:25644110

  1. Developmental Programming of Branching Morphogenesis in the Kidney.

    PubMed

    Sampogna, Rosemary V; Schneider, Laura; Al-Awqati, Qais

    2015-10-01

    The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. Copyright © 2015 by the American Society of Nephrology.

  2. Evolving concepts on regulation and function of renin in distal nephron

    PubMed Central

    Prieto, Minolfa C.; Gonzalez, Alexis A.

    2012-01-01

    Sustained stimulation of the intrarenal/intratubular renin–angiotensin system in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis, and eventual renal injury. Activation of luminal AT1 receptors in proximal and distal nephron segments by local Ang II formation stimulates various transport systems. Augmented angiotensinogen (AGT) production by proximal tubule cells increases AGT secretion contributing to increased proximal Ang II levels and leading to spillover of AGT into the distal nephron segments, as reflected by increased urinary AGT excretion. The increased distal delivery of AGT provides substrate for renin, which is expressed in principal cells of the collecting tubule and collecting ducts, and is also stimulated by AT1 receptor activation. Renin and prorenin are secreted into the tubular lumen and act on the AGT delivered from the proximal tubule to form more Ang I. The catalytic actions of renin and or prorenin may be enhanced by binding to prorenin receptors on the intercalated cells or soluble prorenin receptor secreted into the tubular fluid. There is also increased luminal angiotensin converting enzyme in collecting ducts facilitating Ang II formation leading to stimulation of sodium reabsorption via sodium channel and sodium/chloride co-transporter. Thus, increased collecting duct renin contributes to Ang II-dependent hypertension by augmenting distal nephron intra-tubular Ang II formation leading to sustained stimulation of sodium reabsorption and progression of hypertension. PMID:22990760

  3. Membrane permeability as a cause of transport defects in experimental Fanconi syndrome. A new hypothesis.

    PubMed Central

    Bergeron, M; Dubord, L; Hausser, C; Schwab, C

    1976-01-01

    The injection of sodium maleate (200-400 mg/kg) into rats produces aminoaciduria along with glycosuria and phosphaturia, resembling the Fanconi syndrome. This experimental model was studied by means of microinjections into proximal convoluted tubules of the kidney, stop-flow diuresis, and microperfusion of single nephrons. Our results show that, in maleate-treated rats, competition between amino acids or related structures (L-proline, L-OH-proline, and glycine) possesses the same characteristics, and net influx of amino acids appear normal at the proximal nephron. Data obtained by classical stop-flow techniques and single nephron microperfusions also indicate a normal entry of labeled amino acids (L-lysine, glycine, L-valine, L-proline, L-cystine), and 3-0-methyl-D-[3H]glucose and [32P]phosphate from the luminal side of the proximal tubule cell. However, the efflux of molecules from the cell appears enhanced throughout the proximal and distal tubule; molecules that exit at this site are excreted directly into the urine. Our results suggest that the phosphaturia, aminoaciduria, and glycosuria of the experimental Fanconi syndrome can be explained by a modification of the cell membrane permeability (increased efflux) at distal sites of the nephron rather than by a modification of the membrane transport (decreased influx) at the proximal sites, as is currently accepted. Our data also stress the importance of efflux phenomena in membrane transport. PMID:1262464

  4. Improved laparoscopic nephron-sparing surgery for renal cell carcinoma based on the precise anatomy of the nephron.

    PubMed

    Guo, Gang; Cai, Wei; Zhang, Xu

    2016-11-01

    The aim of the present study was to investigate a method of laparoscopic nephron-sparing surgery (LNSS) for renal cell carcinoma (RCC) based on the precise anatomy of the nephron, and to decrease the incidence of hemorrhage and urinary leakage. Between January 2012 and December 2013, 31 patients who presented to the General Hospital of the People's Liberation Army (Beijing, China) were treated for RCC. The mean tumor size was 3.4±0.7 cm in diameter (range, 1.2-6.0 cm). During surgery, the renal artery was blocked, and subsequently, an incision in the renal capsule and renal cortex was performed, at 3-5 mm from the tumor edge. Subsequent to the incision of the renal parenchyma, scissors with blunt and sharp edge were used to separate the base of the tumor from the normal renal medulla, in the direction of the ray medullary in the renal pyramids. The basal blood vessels were incised following the hemostasis of the region using bipolar coagulation. The minor renal calyces were stripped carefully and the wound was closed with an absorbable sutures. The arterial occlusion time, duration of surgery, intraoperative bleeding volume, post-operative drainage volume, pathological results and complications were recorded. The surgery was successful for all patients. The estimated average intraoperative bleeding volume was 55.7 ml, the average surgical duration was 95.5 min, the average arterial occlusion time was 21.2 min, the average post-operative drainage volume was 92.3 ml and the average post-operative length of hospital stay was 6.1 days. No hemorrhage or urinary leakage was observed in the patients following the surgery. LNSS for RCC based on the precise anatomy of the nephron was concluded to be effective and feasible. The surgery is useful for the complete removal of tumors and guarantees a negative margin, which may also decrease the incidence of hemorrhage and urinary leakage following surgery.

  5. Associations between age, body size and nephron number with individual glomerular volumes in urban West African males

    PubMed Central

    McNamara, Bridgette J.; Diouf, Boucar; Hughson, Michael D.; Hoy, Wendy E.; Bertram, John F.

    2009-01-01

    Background. Glomerulomegaly has been associated with an increased risk of renal disease. Few reports have investigated the heterogeneity of glomerular size within kidneys and associated risk factors. This study measured the individual glomerular volume (IGV) of 720 non-sclerotic glomeruli in kidneys of adult West African males, and investigated associations of IGV with age, total glomerular (nephron) number and body surface area (BSA). Methods. IGVs were determined in the kidneys of 24 Senegalese males from two age groups (12 subjects aged 20– 30 years and 12 subjects aged 50–70 years). Subjects were randomly chosen at autopsies performed at Le Dantec Hospital in Dakar. Volumes of 30 glomeruli per subject were determined using the disector/Cavalieri stereological method. Results. IGVs ranged from 1.31 × 106 μm3 to 12.40 × 106 μm3 (a 9.4-fold variation). IGV varied up to 5.3-fold within single kidneys. The trimmed range of IGV within subjects (10th to 90th percentile of IGV) was directly correlated with median glomerular size. The mean and standard deviation (SD) of IGV did not differ significantly between age groups or between subjects with higher (≥1.78 m2) and lower BSA (<1.78 m2). In older subjects the SD of IGV was significantly and directly correlated with BSA. Kidneys with less than 1 million nephrons had significantly larger mean IGV than kidneys with more than 1 million nephrons, and the trimmed range of IGVs within subjects was inversely correlated with total glomerular number. Conclusion. There was a considerable variation in IGV within kidneys of Senegalese males at autopsy. The heterogeneity of IGV was increased in association with low nephron number and increased BSA, with more pronounced effects in older subjects. PMID:19028752

  6. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate.

    PubMed

    Dawes, H E; Berlin, D S; Lapidus, D M; Nusbaum, C; Davis, T L; Meyer, B J

    1999-06-11

    In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.

  7. Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer.

    PubMed

    Bowring, Janine; Neamah, Maan M; Donderis, Jorge; Mir-Sanchis, Ignacio; Alite, Christian; Ciges-Tomas, J Rafael; Maiques, Elisa; Medmedov, Iltyar; Marina, Alberto; Penadés, José R

    2017-08-08

    Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature's most fascinating subcellular parasites.

  8. Stem cells in nephrology: present status and future.

    PubMed

    Watorek, Ewa; Klinger, Marian

    2006-01-01

    Stem cell biology is currently developing rapidly because of the potential therapeutic utility of stem cells. The ability to acquire any desired phenotype raises hope for regenerative therapies. Manipulation of these cells is a potentially valuable tool; however, the mechanisms of stem cell differentiation and plasticity are currently beyond our control. In the field of nephrology, the presence of adult kidney stem cells has been debated. Renal adult stem cells may be descendants of some early kidney progenitors, or may be derived from bone marrow. Evidence of a hematopoietic stem-cell contribution to renal repair encourages the possibility of bone marrow or stem cell transplantation as a means of treating autoimmune glomerulopathies. The transplantation of fetal kidney tissue containing renal progenitors, which then develop into functional nephrons, is a step towards renal regeneration. According to recent reports, the development of functional nephrons from human mesenchymal stem cells in rodent whole-embryo culture is possible. Establishing in vitro self organs from autologous stem cells would be a promising therapeutic solution in light of the shortage of allogenic organs and the unresolved problem of chronic allograft rejection.

  9. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control.

    PubMed

    Féraille, E; Doucet, A

    2001-01-01

    Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.

  10. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  11. Tight Junction Proteins and Oxidative Stress in Heavy Metals-Induced Nephrotoxicity

    PubMed Central

    Reyes, José L.; Molina-Jijón, Eduardo; Rodríguez-Muñoz, Rafael; Bautista-García, Pablo; Debray-García, Yazmin; Namorado, María del Carmen

    2013-01-01

    Kidney is a target organ for heavy metals. They accumulate in several segments of the nephron and cause profound alterations in morphology and function. Acute intoxication frequently causes acute renal failure. The effects of chronic exposure have not been fully disclosed. In recent years increasing awareness of the consequences of their presence in the kidney has evolved. In this review we focus on the alterations induced by heavy metals on the intercellular junctions of the kidney. We describe that in addition to the proximal tubule, which has been recognized as the main site of accumulation and injury, other segments of the nephron, such as glomeruli, vessels, and distal nephron, show also deleterious effects. We also emphasize the participation of oxidative stress as a relevant component of the renal damage induced by heavy metals and the beneficial effect that some antioxidant drugs, such as vitamin A (all-trans-retinoic acid) and vitamin E (α-tocopherol), depict on the morphological and functional alterations induced by heavy metals. PMID:23710457

  12. Nephron sparing by partial median nephrectomy for treatment of renal hemangioma in a dog.

    PubMed

    Mott, J C; McAnulty, J F; Darien, D L; Steinberg, H

    1996-04-15

    A 6-year-old neutered male Golden Retriever was admitted for evaluation of intermittent hematuria of 2 months' duration. A 3-cm heterogeneous mass causing distortion of the caudomedial aspect of the left kidney was detected via ultrasonography. Histologic examination of a renal tissue sample obtained by ultrasound-guided biopsy revealed a telangiectatic vascular plexus of unknown origin. Low glomerular filtration rate was identified by a modified exogenous creatinine clearance test. Excretory urography revealed a filling defect in the medial aspect of the caudal pole of the kidney, near the hilus. Because total renal function was low, a decision was made to perform nephron-sparing surgery involving resection of centrally located renal parenchymal and pelvic tissue by en bloc resection in the median plane, instead of radical nephrectomy. After surgery, the hematuria resolved and further decrease in renal function was not evident. Nephron-sparing surgery is a viable option for dogs with compromised renal function when there is concern that radical nephrectomy may precipitate uremia.

  13. Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney.

    PubMed

    Drake, Keri A; Adam, Mike; Mahoney, Robert; Potter, S Steven

    2018-04-20

    Hox genes are important regulators of development. The 39 mammalian Hox genes have considerable functional overlap, greatly confounding their study. In this report, we generated mice with multiple combinations of paralogous and flanking Abd-B Hox gene mutations to investigate functional redundancies in kidney development. The resulting mice developed a number of kidney abnormalities, including hypoplasia, agenesis, and severe cysts, with distinct Hox functions observed in early metanephric kidney formation and nephron progenitor maintenance. Most surprising, however, was that extensive removal of Hox shared function in these kidneys resulted in cellular level lineage infidelity. Strikingly, mutant nephron tubules consisted of intermixed cells with proximal tubule, loop of Henle, and collecting duct identities, with some single cells expressing markers associated with more than one nephron segment. These results indicate that Hox genes are required for proper lineage selection/maintenance and full repression of genes involved in cell fate restriction in the developing kidney.

  14. The renal response to potassium stress: integrating past with present.

    PubMed

    Boyd-Shiwarski, Cary R; Subramanya, Arohan R

    2017-09-01

    The current review combines past findings with recent advances in our understanding of the homeostatic response to potassium imbalance. Following the ingestion of a dietary potassium load, a combination of extrarenal and renal mechanisms act to maintain extracellular K+ within a tight window. Through hormonal regulation and direct K+ sensing, the nephron is ideally suited to respond to wide shifts in external K+ balance. Current evidence indicates that dietary K+ loading triggers a coordinated kaliuretic response that appears to involve voltage-dependent changes in sodium transport across multiple nephron segments, including the proximal tubule, medullary loop of Henle, and distal tubule. Inhibition of sodium transport in these segments would accomplish the final goal of enhancing distal NaCl delivery, luminal flow, and K+ secretion in the aldosterone sensitive distal nephron (ASDN). Ongoing research seeks to define the relationship between potassium and volume homeostasis by elucidating pathways that couple renal K+ sensing and tubular function during the potassium stress response.

  15. Successful Establishment of Plasmids R1 and pMV158 in a New Host Requires the Relief of the Transcriptional Repression of Their Essential rep Genes

    PubMed Central

    Ruiz-Masó, José Á.; Luengo, Luis M.; Moreno-Córdoba, Inmaculada; Díaz-Orejas, Ramón; del Solar, Gloria

    2017-01-01

    Although differing in size, encoded traits, host range, and replication mechanism, both narrow-host-range theta-type conjugative enterobacterial plasmid R1 and promiscuous rolling-circle-type mobilizable streptococcal plasmid pMV158 encode a transcriptional repressor protein, namely CopB in R1 and CopG in pMV158, involved in replication control. The gene encoding CopB or CopG is cotranscribed with a downstream gene that encodes the replication initiator Rep protein of the corresponding plasmid. However, whereas CopG is an auto-repressor that inhibits transcription of the entire copG-repB operon, CopB is expressed constitutively and represses a second, downstream promoter that directs transcription of repA. As a consequence of the distinct regulatory pathways implied by CopB and CopG, these repressor proteins play a different role in control of plasmid replication during the steady state: while CopB has an auxiliary role by keeping repressed the regulated promoter whenever the plasmid copy number is above a low threshold, CopG plays a primary role by acting coordinately with RNAII. Here, we have studied the role of the regulatory circuit mediated by these transcriptional repressors during the establishment of these two plasmids in a new host cell, and found that excess Cop repressor molecules in the recipient cell result in a severe decrease in the frequency and/or the velocity of appearance of transformant colonies for the cognate plasmid but not for unrelated plasmids. Using the pMV158 replicon as a model system, together with highly sensitive real-time qPCR and inverse PCR methods, we have also analyzed the effect of CopG on the kinetics of repopulation of the plasmid in Streptococcus pneumoniae. We show that, whereas in the absence of CopG pMV158 repopulation occurs mainly during the first 45 min following plasmid transfer, the presence of the transcriptional repressor in the recipient cell severely impairs the replicon repopulation and makes the plasmid replicate at approximately the same rate as the chromosome at any time after transformation, which results in maximal plasmid loss rate in the absence of selection. Overall, these findings indicate that unrepressed activity of the Cop-regulated promoter is crucial for the successful colonization of the recipient bacterial cells by the plasmid. PMID:29250051

  16. Differential temporal control of Foxa.a and Zic-r.b specifies brain versus notochord fate in the ascidian embryo.

    PubMed

    Ikeda, Tatsuro; Satou, Yutaka

    2017-01-01

    In embryos of an invertebrate chordate, Ciona intestinalis, two transcription factors, Foxa.a and Zic-r.b, are required for specification of the brain and the notochord, which are derived from distinct cell lineages. In the brain lineage, Foxa.a and Zic-r.b are expressed with no temporal overlap. In the notochord lineage, Foxa.a and Zic-r.b are expressed simultaneously. In the present study, we found that the temporally non-overlapping expression of Foxa.a and Zic-r.b in the brain lineage was regulated by three repressors: Prdm1-r.a (formerly called BZ1), Prdm1-r.b (BZ2) and Hes.a. In morphant embryos of these three repressor genes, Foxa.a expression was not terminated at the normal time, and Zic-r.b was precociously expressed. Consequently, Foxa.a and Zic-r.b were expressed simultaneously, which led to ectopic activation of Brachyury and its downstream pathways for notochord differentiation. Thus, temporal controls by transcriptional repressors are essential for specification of the two distinct fates of brain and notochord by Foxa.a and Zic-r.b Such a mechanism might enable the repeated use of a limited repertoire of transcription factors in developmental gene regulatory networks. © 2017. Published by The Company of Biologists Ltd.

  17. Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney.

    PubMed

    Yang, T; Michele, D E; Park, J; Smart, A M; Lin, Z; Brosius, F C; Schnermann, J B; Briggs, J P

    1999-12-01

    The discovery that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is a ligand for the gamma-isoform of peroxisome proliferator-activated receptor (PPAR) suggests nuclear signaling by prostaglandins. Studies were undertaken to determine the nephron localization of PPAR isoforms and their heterodimer partners, retinoid X receptors (RXR), and to evaluate the function of this system in the kidney. PPARalpha mRNA, determined by RT-PCR, was found predominately in cortex and further localized to proximal convoluted tubule (PCT); PPARgamma was abundant in renal inner medulla, localized to inner medullary collecting duct (IMCD) and renal medullary interstitial cells (RMIC); PPARbeta, the ubiquitous form of PPAR, was abundant in all nephron segments examined. RXRalpha was localized to PCT and IMCD, whereas RXRbeta was expressed in almost all nephron segments examined. mRNA expression of acyl-CoA synthase (ACS), a known PPAR target gene, was stimulated in renal cortex of rats fed with fenofibrate, but the expression was not significantly altered in either cortex or inner medulla of rats fed with troglitazone. In cultured RMIC cells, both troglitazone and 15d-PGJ2 significantly inhibited cell proliferation and dramatically altered cell shape by induction of cell process formation. We conclude that PPAR and RXR isoforms are expressed in a nephron segment-specific manner, suggesting distinct functions, with PPARalpha being involved in energy metabolism through regulating ACS in PCT and with PPARgamma being involved in modulating RMIC growth and differentiation.

  18. The contribution of Notch1 to nephron segmentation in the developing kidney is revealed in a sensitized Notch2 background and can be augmented by reducing Mint dosage

    PubMed Central

    Surendran, Kameswaran; Boyle, Scott; Barak, Hila; Kim, Mijin; Stromberski, Colin; McCright, Brent; Kopan, Raphael

    2009-01-01

    We previously determined that Notch2, and not Notch1 was required for forming proximal nephron segments. The dominance of Notch2 may be conserved in humans, since Notch2 mutations occur in Alagille syndrome (ALGS) 2 patients, which includes renal complications. To test whether mutations in Notch1 could increase the severity of renal complications in ALGS, we inactivated conditional Notch1 and Notch2 alleles in mice using a Six2-GFP∷Cre. This BAC transgene is expressed mosaically in renal epithelial progenitors but uniformly in cells exiting the progenitor pool to undergo mesenchymal to epithelial transition. Although delaying Notch2 inactivation had a marginal effect on nephron numbers, it created a sensitized background in which the inactivation of Notch1 severely compromised nephron formation, function and survival. These and additional observations indicate that Notch1 in concert with Notch2 contributes to the morphogenesis of renal vesicles into S-shaped bodies in a RBP-J dependent manner. A significant implication is that elevating Notch1 activity could improve renal functions in ALGS2 patients. As proof of principle, we determined that conditional inactivation of Mint, an inhibitor of Notch-RBP-J interaction, resulted in a moderate rescue of Notch2 null kidneys, implying that temporal blockage of Notch signaling inhibitors downstream of receptor activation may have therapeutic benefits for ALGS patients. PMID:19914235

  19. Progression of renal fibrosis in congenital CKD model rats with reduced number of nephrons.

    PubMed

    Yasuda, Hidenori; Tochigi, Yuki; Katayama, Kentaro; Suzuki, Hiroetsu

    2017-06-14

    A congenital reduction in the number of nephrons is a critical risk factor for both onset of chronic kidney disease (CKD) and its progression to end-stage kidney disease (ESKD). Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and show progressive CKD. This study used an immunohistological method to assess glomerular and interstitial pathogenesis in male HPK rats aged 35-210days. CD68 positive-macrophages were found to infiltrate into glomeruli in HPK rats aged 35 and 70days and to infiltrate into interstitial tissue in rats aged 140 and 210days. HPK rats aged 35 and 70days showed glomerular hypertrophy, loss of normal linear immunostaining of podocine, and increased expression of PDGFr-β, TGF-β, collagens, and fibronectin, with all of these alterations gradually deteriorating with age. α-SMA-positive myofibroblasts were rarely detected in glomerular tufts, whereas α-SMA-positive glomerular parietal epithelium (GPE) cells were frequently observed along Bowman's capsular walls. The numbers of PDGFr-β-positive fibroblasts in interstitial tissue were increased in rats aged 35days and older, whereas interstitial fibrosis, characterized by the increased expression of tubular PDGF-BB, the appearance of myofibroblasts doubly positive for PDGFr-β and α-SMA, and increased expression of collagens and fibronectin, were observed in rats aged 70 and older. These results clearly indicate that congenital CKD with only 20% of nephrons cause renal fibrosis in rats. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M., E-mail: spotheim@cnrs-orleans.fr

    2009-08-21

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro {gamma}-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucinemore » residues of the tetramerization domain.« less

  1. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes.

    PubMed

    Fan, Rongrong; Toubal, Amine; Goñi, Saioa; Drareni, Karima; Huang, Zhiqiang; Alzaid, Fawaz; Ballaire, Raphaelle; Ancel, Patricia; Liang, Ning; Damdimopoulos, Anastasios; Hainault, Isabelle; Soprani, Antoine; Aron-Wisnewsky, Judith; Foufelle, Fabienne; Lawrence, Toby; Gautier, Jean-Francois; Venteclef, Nicolas; Treuter, Eckardt

    2016-07-01

    Humans with obesity differ in their susceptibility to developing insulin resistance and type 2 diabetes (T2D). This variation may relate to the extent of adipose tissue (AT) inflammation that develops as their obesity progresses. The state of macrophage activation has a central role in determining the degree of AT inflammation and thus its dysfunction, and these states are driven by epigenomic alterations linked to gene expression. The underlying mechanisms that regulate these alterations, however, are poorly defined. Here we demonstrate that a co-repressor complex containing G protein pathway suppressor 2 (GPS2) crucially controls the macrophage epigenome during activation by metabolic stress. The study of AT from humans with and without obesity revealed correlations between reduced GPS2 expression in macrophages, elevated systemic and AT inflammation, and diabetic status. The causality of this relationship was confirmed by using macrophage-specific Gps2-knockout (KO) mice, in which inappropriate co-repressor complex function caused enhancer activation, pro-inflammatory gene expression and hypersensitivity toward metabolic-stress signals. By contrast, transplantation of GPS2-overexpressing bone marrow into two mouse models of obesity (ob/ob and diet-induced obesity) reduced inflammation and improved insulin sensitivity. Thus, our data reveal a potentially reversible disease mechanism that links co-repressor-dependent epigenomic alterations in macrophages to AT inflammation and the development of T2D.

  2. Phosphorylation of Trihelix Transcriptional Repressor ASR3 by MAP KINASE4 Negatively Regulates Arabidopsis Immunity

    PubMed Central

    Li, Bo; Jiang, Shan; Yu, Xiao; Cheng, Cheng; Chen, Sixue; Cheng, Yanbing; Yuan, Joshua S.; Jiang, Daohong; He, Ping; Shan, Libo

    2015-01-01

    Proper control of immune-related gene expression is crucial for the host to launch an effective defense response. Perception of microbe-associated molecular patterns (MAMPs) induces rapid and profound transcriptional reprogramming via unclear mechanisms. Here, we show that ASR3 (ARABIDOPSIS SH4-RELATED3) functions as a transcriptional repressor and plays a negative role in regulating pattern-triggered immunity (PTI) in Arabidopsis thaliana. ASR3 belongs to a plant-specific trihelix transcription factor family for which functional studies are lacking. MAMP treatments induce rapid phosphorylation of ASR3 at threonine 189 via MPK4, a mitogen-activated protein kinase that negatively regulates PTI responses downstream of multiple MAMP receptors. ASR3 possesses transcriptional repressor activity via its ERF-associated amphiphilic repression motifs and negatively regulates a large subset of flg22-induced genes. Phosphorylation of ASR3 by MPK4 enhances its DNA binding activity to suppress gene expression. Importantly, the asr3 mutant shows enhanced disease resistance to virulent bacterial pathogen infection, whereas transgenic plants overexpressing the wild-type or phospho-mimetic form of ASR3 exhibit compromised PTI responses. Our studies reveal a function of the trihelix transcription factors in plant innate immunity and provide evidence that ASR3 functions as a transcriptional repressor regulated by MAMP-activated MPK4 to fine-tune plant immune gene expression. PMID:25770109

  3. Effects of transgenic sterilization constructs and their repressor compounds on hatch, developmental rate and early survival of electroporated channel catfish embryos and fry.

    PubMed

    Su, Baofeng; Shang, Mei; Li, Chao; Perera, Dayan A; Pinkert, Carl A; Irwin, Michael H; Peatman, Eric; Grewe, Peter; Patil, Jawahar G; Dunham, Rex A

    2015-04-01

    Channel catfish (Ictalurus punctatus) embryos were electroporated with sterilization constructs targeting primordial germ cell proteins or with buffer. Some embryos then were treated with repressor compounds, cadmium chloride, copper sulfate, sodium chloride or doxycycline, to prevent expression of the transgene constructs. Promoters included channel catfish nanos and vasa, salmon transferrin (TF), modified yeast Saccharomyces cerevisiae copper transport protein (MCTR) and zebrafish racemase (RM). Knock-down systems were the Tet-off (nanos and vasa constructs), MCTR, RM and TF systems. Knock-down genes included shRNAi targeting 5' nanos (N1), 3' nanos (N2) or dead end (DND), or double-stranded nanos RNA (dsRNA) for overexpression of nanos mRNA. These constructs previously were demonstrated to knock down nanos, vasa and dead end, with the repressors having variable success. Exogenous DNA affected percentage hatch (% hatch), as all 14 constructs, except for the TF dsRNA, TF N1 (T), RM DND (C), vasa DND (C), vasa N1 (C) and vasa N2 (C), had lower % hatch than the control electroporated with buffer. The MCTR and RM DND (T) constructs resulted in delayed hatch, and the vasa and nanos constructs had minimal effects on time of hatch (P < 0.05). Cadmium chloride appeared to counteract the slow development caused by the TF constructs in two TF treatments (P < 0.05). The 4 ppt sodium chloride treatment for the RM system decreased % hatch (P < 0.05) and slowed development. In the case of nanos constructs, doxycycline greatly delayed hatch (P < 0.05). Adverse effects of the transgenes and repressors continued for several treatments for the first 6 days after hatch, but only in a few treatments during the next 10 days. Repressors and gene expression impacted the yield of putative transgenic channel catfish fry, and need to be considered and accounted for in the hatchery phase of producing transgenically sterilized catfish fry and their fertile counterparts. This fry output should be considered to ensure that sufficient numbers of transgenic fish are produced for future applications and for defining repressor systems that are the most successful.

  4. Identification of the gene transcription repressor domain of Gli3.

    PubMed

    Tsanev, Robert; Tiigimägi, Piret; Michelson, Piret; Metsis, Madis; Østerlund, Torben; Kogerman, Priit

    2009-01-05

    Gli transcription factors are downstream targets of the Hedgehog signaling pathway. Two of the three Gli proteins harbor gene transcription repressor function in the N-terminal half. We have analyzed the sequences and identified a potential repressor domain in Gli2 and Gli3 and have tested this experimentally. Overexpression studies confirm that the N-terminal parts harbor gene repression activity and we mapped the minimal repressor to residues 106 till 236 in Gli3. Unlike other mechanisms that inhibit Gli induced gene transcription, the repressor domain identified here does not utilize Histone deacetylases (HDACs) to achieve repression, as confirmed by HDAC inhibition studies and pull-down assays. This distinguishes the identified domain from other regulatory parts with negative influence on transcription.

  5. The transcriptional repressor Sum1p counteracts Sir2p in regulation of the actin cytoskeleton, mitochondrial quality control and replicative lifespan in Saccharomyces cerevisiae.

    PubMed

    Higuchi-Sanabria, Ryo; Vevea, Jason D; Charalel, Joseph K; Sapar, Maria L; Pon, Liza A

    2016-01-18

    Increasing the stability or dynamics of the actin cytoskeleton can extend lifespan in C. elegans and S. cerevisiae . Actin cables of budding yeast, bundles of actin filaments that mediate cargo transport, affect lifespan control through effects on mitochondrial quality control. Sir2p, the founding member of the Sirtuin family of lifespan regulators, also affects actin cable dynamics, assembly, and function in mitochondrial quality control. Here, we obtained evidence for novel interactions between Sir2p and Sum1p, a transcriptional repressor that was originally identified through mutations that genetically suppress sir2 ∆ phenotypes unrelated to lifespan. We find that deletion of SUM1 in wild-type cells results in increased mitochondrial function and actin cable abundance. Furthermore, deletion of SUM1 suppresses defects in actin cables and mitochondria of sir2 ∆ yeast, and extends the replicative lifespan and cellular health span of sir2 ∆ cells. Thus, Sum1p suppresses Sir2p function in control of specific aging determinants and lifespan in budding yeast.

  6. Role of sequence encoded κB DNA geometry in gene regulation by Dorsal

    PubMed Central

    Mrinal, Nirotpal; Tomar, Archana; Nagaraju, Javaregowda

    2011-01-01

    Many proteins of the Rel family can act as both transcriptional activators and repressors. However, mechanism that discerns the ‘activator/repressor’ functions of Rel-proteins such as Dorsal (Drosophila homologue of mammalian NFκB) is not understood. Using genomic, biophysical and biochemical approaches, we demonstrate that the underlying principle of this functional specificity lies in the ‘sequence-encoded structure’ of the κB-DNA. We show that Dorsal-binding motifs exist in distinct activator and repressor conformations. Molecular dynamics of DNA-Dorsal complexes revealed that repressor κB-motifs typically have A-tract and flexible conformation that facilitates interaction with co-repressors. Deformable structure of repressor motifs, is due to changes in the hydrogen bonding in A:T pair in the ‘A-tract’ core. The sixth nucleotide in the nonameric κB-motif, ‘A’ (A6) in the repressor motifs and ‘T’ (T6) in the activator motifs, is critical to confer this functional specificity as A6 → T6 mutation transformed flexible repressor conformation into a rigid activator conformation. These results highlight that ‘sequence encoded κB DNA-geometry’ regulates gene expression by exerting allosteric effect on binding of Rel proteins which in turn regulates interaction with co-regulators. Further, we identified and characterized putative repressor motifs in Dl-target genes, which can potentially aid in functional annotation of Dorsal gene regulatory network. PMID:21890896

  7. HNF1β Is Essential for Nephron Segmentation during Nephrogenesis

    PubMed Central

    Naylor, Richard W.; Przepiorski, Aneta; Ren, Qun; Yu, Jing

    2012-01-01

    Nephrons comprise a blood filter and an epithelial tubule that is subdivided into proximal and distal segments, but what directs this patterning during kidney organogenesis is not well understood. Using zebrafish, we found that the HNF1β paralogues hnf1ba and hnf1bb, which encode homeodomain transcription factors, are essential for normal segmentation of nephrons. Embryos deficient in hnf1ba and hnf1bb did not express proximal and distal segment markers, yet still developed an epithelial tubule. Initiating hnf1ba/b expression required Pax2a and Pax8, but hnf1ba/b-deficient embryos did not exhibit the expected downregulation of pax2a and pax8 at later stages of development, suggesting complex regulatory loops involving these molecules. Embryos deficient in hnf1ba/b also did not express the irx3b transcription factor, which is responsible for differentiation of the first distal tubule segment. Reciprocally, embryos deficient in irx3b exhibited downregulation of hnf1ba/b transcripts in the distal early segment, suggesting a segment-specific regulatory circuit. Deficiency of hnf1ba/b also led to ectopic expansion of podocytes into the proximal tubule domain. Epistasis experiments showed that the formation of podocytes required wt1a, which encodes the Wilms’ tumor suppressor-1 transcription factor, and rbpj, which encodes a mediator of canonical Notch signaling, downstream or parallel to hnf1ba/b. Taken together, these results suggest that Hnf1β factors are essential for normal segmentation of nephrons during kidney organogenesis. PMID:23160512

  8. HNF1β is essential for nephron segmentation during nephrogenesis.

    PubMed

    Naylor, Richard W; Przepiorski, Aneta; Ren, Qun; Yu, Jing; Davidson, Alan J

    2013-01-01

    Nephrons comprise a blood filter and an epithelial tubule that is subdivided into proximal and distal segments, but what directs this patterning during kidney organogenesis is not well understood. Using zebrafish, we found that the HNF1β paralogues hnf1ba and hnf1bb, which encode homeodomain transcription factors, are essential for normal segmentation of nephrons. Embryos deficient in hnf1ba and hnf1bb did not express proximal and distal segment markers, yet still developed an epithelial tubule. Initiating hnf1ba/b expression required Pax2a and Pax8, but hnf1ba/b-deficient embryos did not exhibit the expected downregulation of pax2a and pax8 at later stages of development, suggesting complex regulatory loops involving these molecules. Embryos deficient in hnf1ba/b also did not express the irx3b transcription factor, which is responsible for differentiation of the first distal tubule segment. Reciprocally, embryos deficient in irx3b exhibited downregulation of hnf1ba/b transcripts in the distal early segment, suggesting a segment-specific regulatory circuit. Deficiency of hnf1ba/b also led to ectopic expansion of podocytes into the proximal tubule domain. Epistasis experiments showed that the formation of podocytes required wt1a, which encodes the Wilms' tumor suppressor-1 transcription factor, and rbpj, which encodes a mediator of canonical Notch signaling, downstream or parallel to hnf1ba/b. Taken together, these results suggest that Hnf1β factors are essential for normal segmentation of nephrons during kidney organogenesis.

  9. Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model

    PubMed Central

    Wang, Xuexiang; Johnson, Ashley C.; Williams, Jan M.; White, Tiffani; Chade, Alejandro R.; Zhang, Jie; Liu, Ruisheng; Roman, Richard J.; Lee, Jonathan W.; Kyle, Patrick B.; Solberg-Woods, Leah

    2015-01-01

    Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%–75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney. PMID:25349207

  10. Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model.

    PubMed

    Wang, Xuexiang; Johnson, Ashley C; Williams, Jan M; White, Tiffani; Chade, Alejandro R; Zhang, Jie; Liu, Ruisheng; Roman, Richard J; Lee, Jonathan W; Kyle, Patrick B; Solberg-Woods, Leah; Garrett, Michael R

    2015-07-01

    Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%-75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney. Copyright © 2015 by the American Society of Nephrology.

  11. The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis[W

    PubMed Central

    Tao, Qing; Guo, Dongshu; Wei, Baoye; Zhang, Fan; Pang, Changxu; Jiang, Hao; Zhang, Jinzhe; Wei, Tong; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2013-01-01

    Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development. PMID:23444332

  12. DND protein functions as a translation repressor during zebrafish embryogenesis.

    PubMed

    Kobayashi, Manami; Tani-Matsuhana, Saori; Ohkawa, Yasuka; Sakamoto, Hiroshi; Inoue, Kunio

    2017-03-04

    Germline and somatic cell distinction is regulated through a combination of microRNA and germ cell-specific RNA-binding proteins in zebrafish. An RNA-binding protein, DND, has been reported to relieve the miR-430-mediated repression of some germ plasm mRNAs such as nanos3 and tdrd7 in primordial germ cells (PGCs). Here, we showed that miR-430-mediated repression is not counteracted by the overexpression of DND protein in somatic cells. Using a λN-box B tethering assay in the embryo, we found that tethering of DND to reporter mRNA results in translation repression without affecting mRNA stability. Translation repression by DND was not dependent on another germline-specific translation repressor, Nanos3, in zebrafish embryos. Moreover, our data suggested that DND represses translation of nanog and dnd mRNAs, whereas an RNA-binding protein DAZ-like (DAZL) promotes dnd mRNA translation. Thus, our study showed that DND protein functions as a translation repressor of specific mRNAs to control PGC development in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at FLOWERING LOCUS C in Arabidopsis[W

    PubMed Central

    Jégu, Teddy; Latrasse, David; Delarue, Marianne; Hirt, Heribert; Domenichini, Séverine; Ariel, Federico; Crespi, Martin; Bergounioux, Catherine; Raynaud, Cécile; Benhamed, Moussa

    2014-01-01

    SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus. PMID:24510722

  14. STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana

    PubMed Central

    Wang, Zhibiao; Ru, Licong; Baekelandt, Alexandra; Goossens, Alain; Xu, Ran; Zhu, Zhengge; Inzé, Dirk; Li, Yunhai

    2018-01-01

    Organ size control is of particular importance for developmental biology and agriculture, but the mechanisms underlying organ size regulation remain elusive in plants. Meristemoids, which possess stem cell-like properties, have been recognized to play important roles in leaf growth. We have recently reported that the Arabidopsis F-box protein STERILE APETALA (SAP)/SUPPRESSOR OF DA1 (SOD3) promotes meristemoid proliferation and regulates organ size by influencing the stability of the transcriptional regulators PEAPODs (PPDs). Here we demonstrate that KIX8 and KIX9, which function as adaptors for the corepressor TOPLESS and PPD, are novel substrates of SAP. SAP interacts with KIX8/9 and modulates their protein stability. Further results show that SAP acts in a common pathway with KIX8/9 and PPD to control organ growth by regulating meristemoid cell proliferation. Thus, these findings reveal a molecular mechanism by which SAP targets the KIX-PPD repressor complex for degradation to regulate meristemoid cell proliferation and organ size. PMID:29401459

  15. Regulated expression of a repressor protein: FadR activates iclR.

    PubMed Central

    Gui, L; Sunnarborg, A; LaPorte, D C

    1996-01-01

    The control of the glyoxylate bypass operon (aceBAK) of Escherichia coli is mediated by two regulatory proteins, IclMR and FadR. IclMR is a repressor protein which has previously been shown to bind to a site which overlaps the aceBAK promoter. FAR is a repressor/activator protein which participates in control of the genes of fatty acid metabolism. A sequence just upstream of the iclR promoter bears a striking resemblance to FadR binding sites found in the fatty acid metabolic genes. The in vitro binding specificity of FadR, determined by oligonucleotide selection, was in good agreement with the sequences of these sites. The ability of FadR to bind to the site associated with iclR was demonstrated by gel shift and DNase I footprint analyses. Disruption of FadR or inactivation of the FadR binding site of iclR decreased the expression of an iclR::lacZ operon fusion, indicating that FadR activates the expression of iclR. It has been reported that disruption of fadR increases the expression of aceBAK. We observed a similar increase when we inactivated the FadR binding site of an iclR+ allele. This result suggests that FadR regulates aceBAK indirectly by altering the expression of IclR. PMID:8755903

  16. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation[OPEN

    PubMed Central

    Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao

    2017-01-01

    The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709

  17. Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros.

    PubMed

    Naylor, Richard W; Jones, Elizabeth A

    2009-11-01

    Previous studies have highlighted a role for the Notch signalling pathway during pronephrogenesis in the amphibian Xenopus laevis, and in nephron development in the mammalian metanephros, yet a mechanism for this function remains elusive. Here, we further the understanding of how Notch signalling patterns the early X. laevis pronephros anlagen, a function that might be conserved in mammalian nephron segmentation. Our results indicate that early phase pronephric Notch signalling patterns the medio-lateral axis of the dorso-anterior pronephros anlagen, permitting the glomus and tubules to develop in isolation. We show that this novel function acts through the Notch effector gene hrt1 by upregulating expression of wnt4. Wnt-4 then patterns the proximal pronephric anlagen to establish the specific compartments that span the medio-lateral axis. We also identified pronephric expression of lunatic fringe and radical fringe that is temporally and spatially appropriate for a role in regulating Notch signalling in the dorso-anterior region of the pronephros anlagen. On the basis of these results, along with data from previous publications, we propose a mechanism by which the Notch signalling pathway regulates a Wnt-4 function that patterns the proximal pronephric anlagen.

  18. Concentration gradient of oxalate from cortex to papilla in rat kidney.

    PubMed

    Nakatani, Tatsuya; Ishii, Keiichi; Sugimoto, Toshikado; Kamikawa, Sadanori; Yamamoto, Keisuke; Yoneda, Yukio; Kanazawa, Toshinao; Kishimoto, Taketoshi

    2003-02-01

    The kidney eliminates the major fraction of plasma oxalate. It is well known that oxalate is freely filtered by glomeruli and secreted by the proximal tubules. However, the renal handling of oxalate in distal nephrons, which is considered as playing an important role in stone formation, remains obscure. At 15-180 min after intravenous injection of 14C-oxalate to rats, the intrarenal localization of radioactivity was quantitatively measured by the radioluminographic method using a bioimaging analyzer. Tissue radioactivity was compared with plasma, and urinary radioactivities were measured by a liquid scintillation counter. The control study was conducted with 14C-inulin. The radioactivity of 14C-oxalate in the papilla was 10 times greater than in the cortex and eight times greater than in the medulla 180 min after injection when almost no radioactivity was present in the urine. In contrast, the radioactivity of 14C-inulin was nine times less in the papilla than in the cortex at the same time. Oxalate remains in the renal papilla for an extended period. This accumulation of oxalate may be attributed to calcium oxalate crystal fixation along the deep nephron which is considered to be the first step of stone formation.

  19. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE PAGES

    Liang, Yan; Richardson, Sarah; Yan, Jingwei; ...

    2017-01-17

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  20. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yan; Richardson, Sarah; Yan, Jingwei

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  1. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression.

    PubMed

    Hadjighassem, Mahmoud R; Austin, Mark C; Szewczyk, Bernadeta; Daigle, Mireille; Stockmeier, Craig A; Albert, Paul R

    2009-08-01

    Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.

  2. The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine1

    PubMed Central

    Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio

    2015-01-01

    Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of transcriptional activators. PMID:25659381

  3. Evidence against protective role of sex hormone estrogen in Cisplatin-induced nephrotoxicity in ovarectomized rat model.

    PubMed

    Pezeshki, Zahra; Nematbakhsh, Mehdi; Nasri, Hamid; Talebi, Ardeshir; Pilehvarian, Ali-Asghar; Safari, Tahereh; Eshraghi-Jazi, Fatemeh; Haghighi, Maryam; Ashrafi, Farzaneh

    2013-01-01

    Cisplatin (CP) is an effective drug in cancer therapy to treat the solid tumors, but it is accompanied with nephrotoxicity. The protective effect of estrogen in cardiovascular diseases is well-documented; but its nephron-protective effect against CP-induced nephrotoxicity is not completely understood. Thirty ovarectomized Wistar rats were divided in to five groups. Groups 1-3 received different doses of estradiol valerate (0.5, 2.5 and 10 mg/kg/week) in sesame oil for 4 weeks, and at the end of week 3, a single dose of CP (7 mg/kg, intraperitoneal [IP]) was administrated. Group 4 (positive control) received the same regimen as group 1-3 without estradiol without vehicle. The negative control group (Group 5) received sesame oil during the study. The animals were sacrificed 1 week after CP injection for histopathological studies. The serum level of blood urea nitrogen and creatinine, kidney tissue damage score (KTDS), kidney weight and percentage of body weight change in CP-treated groups significantly increased (P < 0.05), however, there were no significant differences detected between the estrogen-treated groups (Groups 1-3) and the positive control group (Group 4). Although, estradiol administration enhanced the serum level of nitrite, it was not affected by CP. Finally, significant correlation between KTDS and kidney weight was detected (r (2) = 0.63, P < 0.01). Estrogen is not nephron-protective against CP-induced nephrotoxicity. Moreover, it seems that the mechanism may be related to estrogen-induced oxidative stress in the kidney, which may promote the nephrotoxicity.

  4. Compensatory Renal Hypertrophy and the Uptake of Cysteine S-Conjugates of Hg2+ in Isolated S2 Proximal Tubular Segments.

    PubMed

    Bridges, Christy C; Barfuss, Delon W; Joshee, Lucy; Zalups, Rudolfs K

    2016-12-01

    Chronic kidney disease is characterized by a progressive and permanent loss of functioning nephrons. In order to compensate for this loss, the remaining functional nephrons undergo significant structural and functional changes. We hypothesize that luminal uptake of inorganic mercury (Hg 2+ ), as a conjugate of cysteine (Cys; Cys-S-Hg-S-Cys), is enhanced in S2 segments of proximal tubules from the remnant kidney of uninephrectomized (NPX) rabbits. To test this hypothesis, we measured uptake and accumulation of Cys-S-Hg-S-Cys in isolated perfused S2 segments of proximal tubules from normal (control) and NPX rabbits. The remnant kidney in NPX rabbits undergoes significant hypertrophy during the initial 3 weeks following surgery. Tubules isolated from NPX rabbits were significantly larger in diameter and volume than those from control rabbits. Moreover, real-time PCR analyses of proximal tubules indicated that the expression of selected membrane transporters was greater in kidneys of NPX animals than in kidneys of control animals. When S2 segments from control and NPX rabbits were perfused with cystine or Cys-S-Hg-S-Cys, we found that the rates of luminal disappearance and tubular accumulation of Hg 2+  were greater in tubules from NPX animals. These increases were inhibited by the addition of various amino acids to the perfusate. Taken together, our data suggest that hypertrophic changes in proximal tubules lead to an enhanced ability of these tubules to take up and accumulate Hg 2 . © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function.

    PubMed

    Drummond, I A; Majumdar, A; Hentschel, H; Elger, M; Solnica-Krezel, L; Schier, A F; Neuhauss, S C; Stemple, D L; Zwartkruis, F; Rangini, Z; Driever, W; Fishman, M C

    1998-12-01

    The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephron primordium. Fluorescent dextran injection experiments demonstrate that vascularization of the zebrafish pronephros and the onset of glomerular filtration occurs between 40 and 48 hpf. We isolated fifteen recessive mutations that affect development of the pronephros. All have visible cysts in place of the pronephric tubule at 2-2.5 days of development. Mutants were grouped in three classes: (1) a group of twelve mutants with defects in body axis curvature and manifesting the most rapid and severe cyst formation involving the glomerulus, tubule and duct, (2) the fleer mutation with distended glomerular capillary loops and cystic tubules, and (3) the mutation pao pao tang with a normal glomerulus and cysts limited to the pronephric tubules. double bubble was analyzed as a representative of mutations that perturb the entire length of the pronephros and body axis curvature. Cyst formation begins in the glomerulus at 40 hpf at the time when glomerular filtration is established suggesting a defect associated with the onset of pronephric function. Basolateral membrane protein targeting in the pronephric duct epithelial cells is also severely affected, suggesting a failure in terminal epithelial cell differentiation and alterations in electrolyte transport. These studies reveal the similarity of normal pronephric development to kidney organogenesis in all vertebrates and allow for a genetic dissection of genes needed to establish the earliest renal function.

  6. Combination of Cyclamen persicum Mill. floral gene promoters and chimeric repressors for the modification of ornamental traits in Torenia fournieri Lind.

    PubMed Central

    Kasajima, Ichiro; Ohtsubo, Norihiro; Sasaki, Katsutomo

    2017-01-01

    Although chimeric repressors such as the Arabidopsis TCP3 repressor are known to have significant effects on flower morphology and color, their cellular-level effects on flower petals are not understood. The promoter sequences of the genes expressed in the flowers of cyclamen, a representative potted flower grown during the winter season, are also unknown. Here, we isolated eight promoters from cyclamen genes that are reportedly expressed in the petals. These promoters were then fused to four chimeric repressors and introduced into the model flower torenia to screen for effective combinations of promoters and repressors for flower breeding. As expected, some of the constructs altered flower phenotypes upon transformation. We further analyzed the effects of chimeric repressors at the cellular level. We observed that complicated petal and leaf serrations were accompanied by excessive vascular branching. Dichromatism in purple anthocyanin was inferred to result in bluish flowers, and imbalanced cell proliferation appeared to result in epinastic flowers. Thus, the genetic constructs and phenotypic changes described in this report will benefit the future breeding and characterization of ornamental flowers. PMID:28446955

  7. Expression of bvg-repressed genes in Bordetella pertussis is controlled by RisA through a novel c-di-GMP signaling pathway

    USDA-ARS?s Scientific Manuscript database

    The BvgAS two component system of Bordetella pertussis controls virulence factor expression. In addition, BvgAS controls expression of the bvg-repressed genes through the action of the repressor, BvgR. The transcription factor RisA is inhibited by BvgR, and when BvgR is not expressed RisA induces th...

  8. [Mechanism of the diuretic effect of eufillin].

    PubMed

    Kantariia, V A; Lebedev, A A

    1975-01-01

    In acute experiments on rats the xanthine diuretic euphylline did not block the short-circuited current in the proximal tubule, nor did it lower the transtubular potential and the transepithelial resistance of the nephron wall. The diuretic speeded up significantly the passage of the tubular fluid along the proximal region of the nephron and Henle's loop. The dihydroergotoxin and inderal blocking of adrenoreceptors did not produce any influence on the renal effects of the xanthine agent. Reserpine totally blocked the diuretic and saluretic effects of euphylline, whereas other sympatholytics, such as alpha-methyl-dofa, anthabus and hemedin, did not modify the action of the diuretic.

  9. Maximizing Nephron Mass in Horseshoe Kidney Transplantation Using Inferior Epigastric Artery: Case Report.

    PubMed

    Elec, Florin-Ioan; Zaharie, Andreea; Vintilă, Ionuţ-Lucian; Ghervan, Liviu

    2018-06-06

    Due to the progressive shortage of donors, kidneys with congenital anomalies are considered for transplantation. We report a successful transplantation of a split horseshoe kidney from a deceased donor by using the inferior epigastric artery with an end-to-end anastomosis, supplying the isthmus. Thus, we preserved as much as possible the functional parenchyma for a good long-term outcome. The learning point is that the use of the right inferior epigastric artery seems to be a good solution to perfuse the lower artery in order to avoid its ligation, thus reducing the nephron mass of the graft. © 2018 S. Karger AG, Basel.

  10. Recent advances in distal tubular potassium handling

    PubMed Central

    Rodan, Aylin R.; Cheng, Chih-Jen

    2011-01-01

    It is well known that sodium reabsorption and aldosterone play important roles in potassium secretion by the aldosterone-sensitive distal nephron. Sodium- and aldosterone-independent mechanisms also exist. This review focuses on some recent studies that provide novel insights into the sodium- and aldosterone-independent potassium secretion by the aldosterone-sensitive distal nephron. In addition, we discuss a study reporting on the regulation of the mammalian potassium kidney channel ROMK by intracellular and extracellular magnesium, which may be important in the pathogenesis of persistent hypokalemia in patients with concomitant potassium and magnesium deficiency. We also discuss outstanding questions and propose working models for future investigation. PMID:21270092

  11. Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling

    PubMed Central

    Gerber, Simon D.; Amann, Ruth; Wyder, Stefan; Trueb, Beat

    2012-01-01

    Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron. PMID:22432025

  12. SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures1[OPEN

    PubMed Central

    Marín-González, Esther; Matías-Hernández, Luis; Aguilar-Jaramillo, Andrea E.; Lee, Jeong Hwan; Ahn, Ji Hoon; Suárez-López, Paula; Pelaz, Soraya

    2015-01-01

    Plants integrate day length and ambient temperature to determine the optimal timing for developmental transitions. In Arabidopsis (Arabidopsis thaliana), the floral integrator FLOWERING LOCUS T (FT) and its closest homolog TWIN SISTER OF FT promote flowering in response to their activator CONSTANS under long-day inductive conditions. Low ambient temperature (16°C) delays flowering, even under inductive photoperiods, through repression of FT, revealing the importance of floral repressors acting at low temperatures. Previously, we have reported that the floral repressors TEMPRANILLO (TEM; TEM1 and TEM2) control flowering time through direct regulation of FT at 22°C. Here, we show that tem mutants are less sensitive than the wild type to changes in ambient growth temperature, indicating that TEM genes may play a role in floral repression at 16°C. Moreover, we have found that TEM2 directly represses the expression of FT and TWIN SISTER OF FT at 16°C. In addition, the floral repressor SHORT VEGETATIVE PHASE (SVP) directly regulates TEM2 but not TEM1 expression at 16°C. Flowering time analyses of svp tem mutants indicate that TEM may act in the same genetic pathway as SVP to repress flowering at 22°C but that SVP and TEM are partially independent at 16°C. Thus, TEM2 partially mediates the temperature-dependent function of SVP at low temperatures. Taken together, our results indicate that TEM genes are also able to repress flowering at low ambient temperatures under inductive long-day conditions. PMID:26243615

  13. SnoN co-repressor binds and represses smad7 gene promoter.

    PubMed

    Briones-Orta, Marco A; Sosa-Garrocho, Marcela; Moreno-Alvarez, Paola; Fonseca-Sánchez, Miguel A; Macías-Silva, Marina

    2006-03-17

    SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.

  14. TGF-{beta} signals the formation of a unique NF1/Smad4-dependent transcription repressor-complex in human diploid fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luciakova, Katarina, E-mail: katarina.luciakova@savba.sk; Kollarovic, Gabriel; Kretova, Miroslava

    2011-08-05

    Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G.more » Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.« less

  15. Mechanism of repression of the inhibin alpha-subunit gene by inducible 3',5'-cyclic adenosine monophosphate early repressor.

    PubMed

    Burkart, Anna D; Mukherjee, Abir; Mayo, Kelly E

    2006-03-01

    The rodent ovary is regulated throughout the reproductive cycle to maintain normal cyclicity. Ovarian follicular development is controlled by changes in gene expression in response to the gonadotropins FSH and LH. The inhibin alpha-subunit gene belongs to a group of genes that is positively regulated by FSH and negatively regulated by LH. Previous studies established an important role for inducible cAMP early repressor (ICER) in repression of alpha-inhibin. These current studies investigate the mechanisms of repression by ICER. It is not clear whether all four ICER isoforms expressed in the ovary can act as repressors of the inhibin alpha-subunit gene. EMSAs demonstrate binding of all isoforms to the inhibin alpha-subunit CRE (cAMP response element), and transfection studies demonstrate that all isoforms can repress the inhibin alpha-subunit gene. Repression by ICER is dependent on its binding to DNA as demonstrated by mutations to ICER's DNA-binding domain. These mutational studies also demonstrate that repression by ICER is not dependent on heterodimerization with CREB (CRE-binding protein). Competitive EMSAs show that ICER effectively competes with CREB for binding to the inhibin alpha CRE in vitro. Chromatin immunoprecipitation assays demonstrate a replacement of CREB dimers bound to the inhibin alpha CRE by ICER dimers in ovarian granulosa cells in response to LH signaling. Thus, there is a temporal association of transcription factors bound to the inhibin alpha-CRE controlling inhibin alpha-subunit gene expression.

  16. Transcriptional repression mediated by the KRAB domain of the human C2H2 zinc finger protein Kox1/ZNF10 does not require histone deacetylation.

    PubMed

    Lorenz, P; Koczan, D; Thiesen, H J

    2001-04-01

    The KRAB domain of human Kox1, a member of the KRAB C2H2 zinc finger family, confers strong transcriptional repressor activities even to remote promoter positions. Here, HDAC inhibitors were used to demonstrate that histone deacetylation is not required for mediating transcriptional repression of KRAB zinc finger proteins. Two reporter systems with either stably integrated or transiently transfected templates, both under control of strong viral promoters, were analyzed. Under all circumstances, HDAC inhibition did not alter the repression potential of the KRAB domain. In case of the stably integrated luciferase reporter gene system, neither expression levels of the KRAB fusion protein nor complex formation with its putative co-repressor TIF1beta were significantly changed. Furthermore, the TIF1beta/KRAB complex was devoid of mSin3A and HDAC1. In the transient transfection system, the transcriptional repression induced by TIF1beta and HP1alpha was not diminished by HDAC inhibitors, whereas the repressory activity of TIF1alpha was significantly affected. Thus, KRAB, TIF1beta and HP1alpha are likely to be functionally linked. In conclusion, HDAC activity is not essential for the strong transcriptional repressor activity mediated by the KRAB domain of Kox1 in particular and, presumably, by KRAB domains in general. This feature might be helpful in identifying and characterizing target genes under the control of

  17. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    PubMed

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  18. Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid.

    PubMed

    Chandran, Divya; Rickert, Joshua; Huang, Yingxiang; Steinwand, Michael A; Marr, Sharon K; Wildermuth, Mary C

    2014-04-09

    In plants, the activation of immunity is often inversely correlated with growth. Mechanisms that control plant growth in the context of pathogen challenge and immunity are unclear. Investigating Arabidopsis infection with the powdery mildew fungus, we find that the Arabidopsis atypical E2F DEL1, a transcriptional repressor known to promote cell proliferation, represses accumulation of the hormone salicylic acid (SA), an established regulator of plant immunity. DEL1-deficient plants are more resistant to pathogens and slightly smaller than wild-type. The resistance and size phenotypes of DEL1-deficient plants are due to the induction of SA and activation of immunity in the absence of pathogen challenge. Moreover, Enhanced Disease Susceptibility 5 (EDS5), a SA transporter required for elevated SA and immunity, is a direct repressed target of DEL1. Together, these findings indicate that DEL1 control of SA levels contributes to regulating the balance between growth and immunity in developing leaves. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.

    PubMed

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-05-17

    Tissues that generate specialized cell types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the Caenorhabditis elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis and organization during oogenesis. We discovered repeated utilization of a self-contained negative regulatory module, consisting of NOS-3 translational repressor, FEM-CUL-2 (E3 ubiquitin ligase), and TRA-1 (Gli transcriptional repressor), which acts both in sex determination and in physiological demand control of oogenesis, coordinating these processes. In the distal germline, where MPK-1 is not activated, TRA-1 represses the male fate as NOS-3 functions in translational repression leading to inactivation of the FEM-CUL-2 ubiquitin ligase. In the proximal germline, sperm-dependent physiological MPK-1 activation results in phosphorylation-based inactivation of NOS-3, FEM-CUL-2-mediated degradation of TRA-1 and the promotion of membrane organization during oogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development

    PubMed Central

    Wei, Baoye; Zhang, Jinzhe; Pang, Changxu; Yu, Hao; Guo, Dongshu; Jiang, Hao; Ding, Mingxin; Chen, Zhuoyao; Tao, Qing; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2015-01-01

    Ovules are essential for plant reproduction and develop into seeds after fertilization. SPOROCYTELESS/NOZZLE (SPL/NZZ) has been known for more than 15 years as an essential factor for ovule development in Arabidopsis, but the biochemical nature of SPL function has remained unsolved. Here, we demonstrate that SPL functions as an adaptor-like transcriptional repressor. We show that SPL recruits TOPLESS/TOPLESS-RELATED (TPL/TPR) co-repressors to inhibit the CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors. We reveal that SPL uses its EAR motif at the C-terminal end to recruit TPL/TPRs and its N-terminal part to bind and inhibit the TCPs. We demonstrate that either disruption of TPL/TPRs or overexpression of TCPs partially phenocopies the defects of megasporogenesis in spl. Moreover, disruption of TCPs causes phenotypes that resemble spl-D gain-of-function mutants. These results define the action mechanism for SPL, which along with TPL/TPRs controls ovule development by repressing the activities of key transcription factors. Our findings suggest that a similar gene repression strategy is employed by both plants and fungi to control sporogenesis. PMID:25378179

  1. Yin Yang 1 Is a Critical Repressor of Matrix Metalloproteinase-9 Expression in Brain Neurons*

    PubMed Central

    Rylski, Marcin; Amborska, Renata; Zybura, Katarzyna; Mioduszewska, Barbara; Michaluk, Piotr; Jaworski, Jacek; Kaczmarek, Leszek

    2008-01-01

    Membrane depolarization controls long lasting adaptive neuronal changes in brain physiology and pathology. Such responses are believed to be gene expression-dependent. Notably, however, only a couple of gene repressors active in nondepolarized neurons have been described. In this study, we show that in the unstimulated rat hippocampus in vivo, as well as in the nondepolarized brain neurons in primary culture, the transcriptional regulator Yin Yang 1 (YY1) is bound to the proximal Mmp-9 promoter and strongly represses Mmp-9 transcription. Furthermore, we demonstrate that monoubiquitinated and CtBP1 (C-terminal binding protein 1)-bound YY1 regulates Mmp-9 mRNA synthesis in rat brain neurons controlling its transcription apparently via HDAC3-dependent histone deacetylation. In conclusion, our data suggest that YY1 exerts, via epigenetic mechanisms, a control over neuronal expression of MMP-9. Because MMP-9 has recently been shown to play a pivotal role in physiological and pathological neuronal plasticity, YY1 may be implicated in these phenomena as well. PMID:18940814

  2. Crystallization and preliminary X-ray diffraction analysis of the arginine repressor of the hyperthermophile Thermotoga neapolitana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massant, Jan, E-mail: jan.massant@vub.ac.be; Peeters, Eveline; Charlier, Daniel

    2006-01-01

    The arginine repressor of the hyperthermophile T. neapolitana was crystallized with and without its corepressor arginine. Both crystals diffracted to high resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with similar unit-cell parameters. The arginine repressor of Thermotoga neapolitana (ArgRTnp) is a member of the family of multifunctional bacterial arginine repressors involved in the regulation of arginine metabolism. This hyperthermophilic repressor shows unique DNA-binding features that distinguish it from its homologues. ArgRTnp exists as a homotrimeric protein that assembles into hexamers at higher protein concentrations and/or in the presence of arginine. ArgRTnp was crystallized with andmore » without its corepressor arginine using the hanging-drop vapour-diffusion method. Crystals of the aporepressor diffracted to a resolution of 2.1 Å and belong to the orthorhombic P2{sub 1}2{sub 1}2{sub 1} space group, with unit-cell parameters a = 117.73, b = 134.15, c = 139.31 Å. Crystals of the repressor in the presence of its corepressor arginine diffracted to a resolution of 2.4 Å and belong to the same space group, with similar unit-cell parameters.« less

  3. Bacterial Degradation of Benzoate

    PubMed Central

    Valderrama, J. Andrés; Durante-Rodríguez, Gonzalo; Blázquez, Blas; García, José Luis; Carmona, Manuel; Díaz, Eduardo

    2012-01-01

    We have studied for the first time the transcriptional regulatory circuit that controls the expression of the box genes encoding the aerobic hybrid pathway used to assimilate benzoate via coenzyme A (CoA) derivatives in bacteria. The promoters responsible for the expression of the box cluster in the β-proteobacterium Azoarcus sp., their cognate transcriptional repressor, the BoxR protein, and the inducer molecule (benzoyl-CoA) have been characterized. The BoxR protein shows a significant sequence identity to the BzdR transcriptional repressor that controls the bzd genes involved in the anaerobic degradation of benzoate. Because the boxR gene is present in all box clusters so far identified in bacteria, the BoxR/benzoyl-CoA regulatory system appears to be a widespread strategy to control this aerobic hybrid pathway. Interestingly, the paralogous BoxR and BzdR regulators act synergistically to control the expression of the box and bzd genes. This cross-regulation between anaerobic and aerobic pathways for the catabolism of aromatic compounds has never been shown before, and it may reflect a biological strategy to increase the cell fitness in organisms that survive in environments subject to changing oxygen concentrations. PMID:22303008

  4. Nephroprotective action of renin-angiotensin-aldosterone system blockade in chronic kidney disease patients: the landscape after ALTITUDE and VA NEPHRON-D trails.

    PubMed

    Rutkowski, Boleslaw; Tylicki, Leszek

    2015-03-01

    The intervention in the renin-angiotensin-aldosterone system (RAAS) is currently the most effective strategy that combines blood pressure lowering and renoprotection. Several large, randomized, controlled trials evidenced the renoprotective potential of the angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) in nephropathies of almost any etiology. Mineralocorticoid receptor antagonists and direct renin inhibitor, aliskiren, as add-on treatments to standard therapy including the optimal dose of ACEIs or ARBs reduce albuminuria or proteinuria and slow development of renal dysfunction more than placebo. No clinical evidence is available however about whether these strategies may influence on long-term kidney outcome. Three recent trials suggested that aggressive RAAS blockade, that is, combination of 2 RAAS-blocking agents, does not decrease cardiovascular and renal morbidity and may carry an increased risk of serious complications. This article reviews an evidence-based approach on the use of RAAS-inhibiting agents in chronic kidney disease and considers the implementation of dual RAAS blockade with reference to the results of ALTITUDE and VA NEPHRON-D trails aiming to aid clinicians in their treatment decisions for patients with chronic kidney disease. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. Development of a Tightly Controlled Off Switch for Saccharomyces cerevisiae Regulated by Camphor, a Low-Cost Natural Product

    PubMed Central

    Ikushima, Shigehito; Zhao, Yu; Boeke, Jef D.

    2015-01-01

    Here we describe the engineering of a distant homolog of the Tet repressor, CamR, isolated from Pseudomonas putida, that is regulated by camphor, a very inexpensive small molecule (at micromolar concentrations) for use in Saccharomyces cerevisiae. The repressor was engineered by expression from a constitutive yeast promoter, fusion to a viral activator protein cassette, and codon optimization. A suitable promoter responsive to the CamR fusion protein was engineered by embedding a P. putida operator binding sequence within an upstream activating sequence (UAS)-less CYC1 promoter from S. cerevisiae. The switch, named the Camphor-Off switch, activates expression of a reporter gene in camphor-free media and represses it with micromolar concentrations of camphor. PMID:26206350

  6. Renal clearance studies of effect of left atrial distension in the dog.

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.; Discala, V. A.

    1972-01-01

    Investigation of the water diuresis of left atrial distension in 16 dogs on the basis of clearance studies employing hydration, chronic and acute salt loading, deoxycorticosterone (DOCA) in excess, and distal tubular nephron blockade with diuretics. The diuresis was found in hydrated and salt-loaded dogs and was independent of DOCA and presumed renin depletion. It was not found in five dogs after distal tubular blockade. No significant reproducible saluresis was ever documented. The water diuresis was always stopped by exogenous vasopressin (seven dogs). Antidiuretic hormone inhibition with distal tubular nephron water permeability changes appears to be the sole mechanism of the diuresis of left atrial distension in the dog.

  7. Solution structure of dimeric Mnt repressor (1-76).

    PubMed

    Burgering, M J; Boelens, R; Gilbert, D E; Breg, J N; Knight, K L; Sauer, R T; Kaptein, R

    1994-12-20

    Wild-type Mnt repressor of Salmonella bacteriophage P22 is a tetrameric protein of 82 residues per monomer. A C-terminal deletion mutant of the repressor denoted Mnt (1-76) is a dimer in solution. The structure of this dimer has been determined using NMR. The NMR assignments of the majority of the 1H, 15N, and 13C resonances were obtained using 2D and triple-resonance 3D techniques. Elements of secondary structure were identified on the basis of characteristic sequential and medium range NOEs. For the structure determination more than 1000 NOEs per monomer were obtained, and structures were generated using distance geometry and restrained simulated annealing calculations. The discrimination of intra- vs intermonomer NOEs was based upon the observation of intersubunit NOEs in [15N,13C] double half-filtered NOESY experiments. The N-terminal part of Mnt (residues 1-44), which shows a 40% sequence homology with the Arc repressor, has a similar secondary and tertiary structure. Mnt (1-76) continues with a loop region of irregular structure, a third alpha-helix, and a random coil C-terminal peptide. Analysis of the secondary structure NOEs, the exchange rates, and the backbone chemical shifts suggests that the carboxy-terminal third helix is less stable than the remainder of the protein, but the observation of intersubunit NOEs for this part of the protein enables the positioning of this helix. The rsmd's between the backbone atoms of the N-terminal part of the Mnt repressor (residues 5-43, 5'-43') and the Arc repressor is 1.58 A, and between this region and the corresponding part of the MetJ repressor 1.43 A.

  8. Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis.

    PubMed

    Mohanty, S; Jermyn, K A; Early, A; Kawata, T; Aubry, L; Ceccarelli, A; Schaap, P; Williams, J G; Firtel, R A

    1999-08-01

    Dd-STATa is a structural and functional homologue of the metazoan STAT (Signal Transducer and Activator of Transcription) proteins. We show that Dd-STATa null cells exhibit several distinct developmental phenotypes. The aggregation of Dd-STATa null cells is delayed and they chemotax slowly to a cyclic AMP source, suggesting a role for Dd-STATa in these early processes. In Dd-STATa null strains, slug-like structures are formed but they have an aberrant pattern of gene expression. In such slugs, ecmB/lacZ, a marker that is normally specific for cells on the stalk cell differentiation pathway, is expressed throughout the prestalk region. Stalk cell differentiation in Dictyostelium has been proposed to be under negative control, mediated by repressor elements present in the promoters of stalk cell-specific genes. Dd-STATa binds these repressor elements in vitro and the ectopic expression of ecmB/lacZ in the null strain provides in vivo evidence that Dd-STATa is the repressor protein that regulates commitment to stalk cell differentiation. Dd-STATa null cells display aberrant behavior in a monolayer assay wherein stalk cell differentiation is induced using the stalk cell morphogen DIF. The ecmB gene, a general marker for stalk cell differentiation, is greatly overinduced by DIF in Dd-STATa null cells. Also, Dd-STATa null cells are hypersensitive to DIF for expression of ST/lacZ, a marker for the earliest stages in the differentiation of one of the stalk cell sub-types. We suggest that both these manifestations of DIF hypersensitivity in the null strain result from the balance between activation and repression of the promoter elements being tipped in favor of activation when the repressor is absent. Paradoxically, although Dd-STATa null cells are hypersensitive to the inducing effects of DIF and readily form stalk cells in monolayer assay, the Dd-STATa null cells show little or no terminal stalk cell differentiation within the slug. Dd-STATa null slugs remain developmentally arrested for several days before forming very small spore masses supported by a column of apparently undifferentiated cells. Thus, complete stalk cell differentiation appears to require at least two events: a commitment step, whereby the repression exerted by Dd-STATa is lifted, and a second step that is blocked in a Dd-STATa null organism. This latter step may involve extracellular cAMP, a known repressor of stalk cell differentiation, because Dd-STATa null cells are abnormally sensitive to the inhibitory effects of extracellular cyclic AMP.

  9. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safo, Martin K., E-mail: msafo@vcu.edu; Ko, Tzu-Ping; Musayev, Faik N.

    The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA,more » and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less

  10. Unraveling the Role of Podocyte Turnover in Glomerular Aging and Injury

    PubMed Central

    Wanner, Nicola; Hartleben, Björn; Herbach, Nadja; Goedel, Markus; Stickel, Natalie; Zeiser, Robert; Walz, Gerd; Moeller, Marcus J.; Grahammer, Florian

    2014-01-01

    Podocyte loss is a major determinant of progressive CKD. Although recent studies showed that a subset of parietal epithelial cells can serve as podocyte progenitors, the role of podocyte turnover and regeneration in repair, aging, and nephron loss remains unclear. Here, we combined genetic fate mapping with highly efficient podocyte isolation protocols to precisely quantify podocyte turnover and regeneration. We demonstrate that parietal epithelial cells can give rise to fully differentiated visceral epithelial cells indistinguishable from resident podocytes and that limited podocyte renewal occurs in a diphtheria toxin model of acute podocyte ablation. In contrast, the compensatory programs initiated in response to nephron loss evoke glomerular hypertrophy, but not de novo podocyte generation. In addition, no turnover of podocytes could be detected in aging mice under physiologic conditions. In the absence of podocyte replacement, characteristic features of aging mouse kidneys included progressive accumulation of oxidized proteins, deposits of protein aggregates, loss of podocytes, and glomerulosclerosis. In summary, quantitative investigation of podocyte regeneration in vivo provides novel insights into the mechanism and capacity of podocyte turnover and regeneration in mice. Our data reveal that podocyte generation is mainly confined to glomerular development and may occur after acute glomerular injury, but it fails to regenerate podocytes in aging kidneys or in response to nephron loss. PMID:24408871

  11. Structural and Functional Changes in Human Kidneys with Healthy Aging.

    PubMed

    Hommos, Musab S; Glassock, Richard J; Rule, Andrew D

    2017-10-01

    Aging is associated with significant changes in structure and function of the kidney, even in the absence of age-related comorbidities. On the macrostructural level, kidney cortical volume decreases, surface roughness increases, and the number and size of simple renal cysts increase with age. On the microstructural level, the histologic signs of nephrosclerosis (arteriosclerosis/arteriolosclerosis, global glomerulosclerosis, interstitial fibrosis, and tubular atrophy) all increase with age. The decline of nephron number is accompanied by a comparable reduction in measured whole-kidney GFR. However, single-nephron GFR remains relatively constant with healthy aging as does glomerular volume. Only when glomerulosclerosis and arteriosclerosis exceed that expected for age is there an increase in single-nephron GFR. In the absence of albuminuria, age-related reduction in GFR with the corresponding increase in CKD (defined by an eGFR<60 ml/min per 1.73 m 2 ) has been shown to associate with a very modest to no increase in age-standardized mortality risk or ESRD. These findings raise the question of whether disease labeling of an age-related decline in GFR is appropriate. These findings also emphasize the need for a different management approach for many elderly individuals considered to have CKD by current criteria. Copyright © 2017 by the American Society of Nephrology.

  12. Ultrastructural characterization of atrial natriuretic peptide receptors (ANP-R) mRNA expression in rat kidney cortex.

    PubMed

    Grandclément, B; Morel, G

    1998-06-01

    Atrial natriuretic peptide (ANP) and two complementary peptides named brain natriuretic peptide and C-type natriuretic peptide are involved in diuresis, natriuresis, hypotension and vasorelaxation. Their actions are mediated by highly selective and specific ANP receptors. Three subtypes have been characterized and cloned: ANP receptor A, -B and -C. In the present study, the mRNA for each subtype was detected by ultrastructural in situ hybridization on ultrathin sections of Lowicryl-embedded tissue and frozen tissue. The distribution of mRNA (visualized by gold particles) for each subtype was found to differ in different cells of the nephron. The three subtypes of this receptor family were expressed in all the parts of the nephron, but their expression levels were different. The ANPR-A mRNA was the most abundant in cells of glomerulus, proximal and distal tubules. The subtype C was the least expressed mRNA in glomerulus. In contrast, the subcellular localization of the three mRNAs was similar; they were found in the cytoplasmic matrix and the euchromatin of the nucleus. In conclusion, the differential expression of these mRNAs in kidney cortex indicates that these three peptides act directly in differing parts of nephron regions which are the glomerulus, the proximal and distal tubules.

  13. Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).

    PubMed

    Marunaka, Y; Hagiwara, N; Tohda, H

    1992-09-01

    Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.

  14. Regulation of cytochrome P-450 4A activity by peroxisome proliferator-activated receptors in the rat kidney.

    PubMed

    Ishizuka, Tsuneo; Ito, Osamu; Tan, Liping; Ogawa, Susumu; Kohzuki, Masahiro; Omata, Ken; Takeuchi, Kazuhisa; Ito, Sadayoshi

    2003-11-01

    The localization of cytochrome P-450 4A, peroxisome proliferator-activated receptor (PPAR) alpha, and PPARgamma proteins, and the inducibility of P-450 4A expression and activity by PPAR agonists were determined in the rat kidney. The expressions of these proteins in isolated nephron segments were evaluated by immunoblot analysis, and the production of 20-hydroxyeicosatetraenoic acid (20-HETE) was measured as P-450 4A activity. P-450 4A proteins were expressed predominantly in the proximal tubule (PT), with lower expression in the preglomerular arteriole (Art), glomerulus (Glm), and medullary thick ascending limb (mTAL), but their expression was not detected in the inner medullary collecting duct (IMCD). PPARalpha protein was expressed in the PT and mTAL, and PPARgamma protein was expressed in the IMCD and mTAL. Treatment with clofibrate, the PPARalpha agonist, increased P-450 4A protein levels and the production of 20-HETE in microsomes prepared from the renal cortex, whereas treatment with pioglitazone, the PPARgamma agonist, affected neither of them. These results indicate that PPARalpha and PPARgamma proteins are localized in different nephron segments and the inducibility of P-450 4A expression and activity by the PPAR agonists correlates with the nephron-specific localization of the respective PPAR isoforms.

  15. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission1

    PubMed Central

    Li, Pei-Fang; Lee, Yung-I; Yang, Chang-Hsien

    2015-01-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. PMID:26063506

  16. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission.

    PubMed

    Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien

    2015-08-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  18. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    Diabetes increases the reabsorption of Na+ (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption QO2active along the whole nephron. To do so, we developed a mathematical model of water and solute transport from the Bowman space to the papillary tip of a superficial nephron of the rat kidney. Model simulations indicate that, in the nondiabetic kidney, acute and chronic SGLT2 inhibition enhances active TNa in all nephron segments, thereby raising QO2active by 5–12% in the cortex and medulla. Diabetes increases overall TNa and QO2active by ∼50 and 100%, mainly because it enhances glomerular filtration rate (GFR) and transport load. In diabetes, acute and chronic SGLT2 inhibition lowers QO2active in the cortex by ∼30%, due to GFR reduction that lowers proximal tubule active TNa, but raises QO2active in the medulla by ∼7%. In the medulla specifically, chronic SGLT2 inhibition is predicted to increase QO2active by 26% in late proximal tubules (S3 segments), by 2% in medullary thick ascending limbs (mTAL), and by 9 and 21% in outer and inner medullary collecting ducts (OMCD and IMCD), respectively. Additional blockade of SGLT1 in S3 segments enhances glucose excretion, reduces QO2active by 33% in S3 segments, and raises QO2active by <1% in mTAL, OMCD, and IMCD. In summary, the model predicts that SGLT2 blockade in diabetes lowers cortical QO2active and raises medullary QO2active, particularly in S3 segments. PMID:26764207

  19. Salt sensitivity of tubuloglomerular feedback in the early remnant kidney

    PubMed Central

    Singh, Prabhleen

    2013-01-01

    We previously reported internephron heterogeneity in the tubuloglomerular feedback (TGF) response 1 wk after subtotal nephrectomy (STN), with 50% of STN nephrons exhibiting anomalous TGF (Singh P, Deng A, Blantz RC, Thomson SC. Am J Physiol Renal Physiol 296: F1158–F1165, 2009). Presently, we tested the theory that anomalous TGF is an adaptation of the STN kidney to facilitate increased distal delivery when NaCl balance forces the per-nephron NaCl excretion to high levels. To this end, the effect of dietary NaCl on the TGF response was tested by micropuncture in STN and sham-operated Wistar rats. An NaCl-deficient (LS) or high-salt NaCl diet (HS; 1% NaCl in drinking water) was started on day 0 after STN or sham surgery. Micropuncture followed 8 days later with measurements of single-nephron GFR (SNGFR), proximal reabsorption, and tubular stop-flow pressure (PSF) obtained at both extremes of TGF activation, while TGF was manipulated by microperfusing Henle's loop (LOH) from the late proximal tubule. Activating TGF caused SNGFR to decline by similar amounts in Sham-LS, Sham-HS and STN-LS [ΔSNGFR (nl/min) = −16 ± 2, −11 ± 3, −11 ± 2; P = not significant by Tukey]. Activating TGF in STN-HS actually increased SNGFR by 5 ± 2 nl/min (P < 0.0005 vs. each other group by Tukey). HS had no effect on the PSF response to LOH perfusion in sham [ΔPSF (mmHg) = −9.6 ± 1.1 vs. −9.8 ± 1.0] but eliminated the PSF response in STN (+0.3 ± 0.9 vs. −5.7 ± 1.0, P = 0.0002). An HS diet leads to anomalous TGF in the early remnant kidney, which facilitates NaCl and fluid delivery to the distal nephron. PMID:24259514

  20. Suppression and restoration of male fertility using a transcription factor.

    PubMed

    Li, Song Feng; Iacuone, Sylvana; Parish, Roger W

    2007-03-01

    The Arabidopsis AtMYB103 gene codes for an R2R3 MYB domain protein whose expression is restricted to the tapetum of developing anthers and to trichomes. Down-regulation of expression using anti-sense leads to abnormal tapetum and pollen development, although seed setting still occurs (Higginson, T., Li, S.F. and Parish, R.W. (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. 35, 177-192). In this study, we show that blocking the function of the AtMYB103 gene, employing either an insertion mutant or an AtMYB103EAR chimeric repressor construct under the control of the AtMYB103 promoter, results in complete male sterility and failure to set seed. These plants exhibit similar abnormalities in tapetum and pollen development, with the tapetum becoming highly vacuolated at early stages and degenerating prematurely. No exine is deposited on to the pollen wall. The degeneration of pollen grains commences prior to pollen mitosis, the pollen collapsing and largely lacking cytoplasmic content. A restorer containing the AtMYB103 gene under the control of a stronger anther-specific promoter was introduced into pollen donor plants and crossed into the male sterile plants transgenic for the repressor. The male fertility of F1 plants was restored. The chimeric repressor and the restorer constitute a reversible male sterility system which could be adapted for hybrid seed production. This is the first reversible male sterility system targeting a transcription factor essential for pollen development. Strategies for generating inducible male sterility and maintainable male sterility for the production of hybrid crops are discussed.

  1. Adaptive style and differences in parent and child report of health-related quality of life in children with cancer.

    PubMed

    Jurbergs, Nichole; Russell, Kathryn M W; Long, Alanna; Phipps, Sean

    2008-01-01

    The objective of this study was to examine the self-reported health-related quality of life (HRQL) of children with cancer, and the consistency between child and parent reports of child HRQL, as a function of the child's adaptive style. Participants included 199 children with cancer, 108 healthy children, and their parents. Children completed self-report measures of HRQL and adaptive style. Measures of adaptive style were used to categorize children as high anxious, low anxious, defensive high anxious or repressor. Parents completed measures reporting their children's HRQL. Adaptive style was a significant predictor of child-reported HRQL, particularly on the psychosocial scales, with children identified as repressors reporting the best HRQL. Adaptive style was also predictive of discrepancies between parent and child report of child HRQL. Repressor and low anxious children reported better HRQL than did their parents, while high anxious children reported poorer HRQL, regardless of health status. Adaptive style is a significant determinant of self-reported HRQL in children, particularly in psychosocial domains, while health status (i.e. cancer patient vs healthy control) is predictive only of physical health domains. Researchers and clinicians should be aware of the impact of child adaptive style when assessing HRQL outcomes using self- or parent report.

  2. A chimeric repressor of petunia PH4 R2R3-MYB family transcription factor generates margined flowers in torenia.

    PubMed

    Kasajima, Ichiro; Sasaki, Katsutomo

    2016-05-03

    The development of new phenotypes is key to the commercial development of the main floricultural species and cultivars. Important new phenotypes include features such as multiple-flowers, color variations, increased flower size, new petal shapes, variegation and distinctive petal margin colourations. Although their commercial use is not yet common, the transgenic technologies provide a potentially rapid means of generating interesting new phenotypes. In this report, we construct 5 vectors which we expected to change the color of the flower anthocyanins, from purple to blue, regulating vacuolar pH. When these constructs were transformed into purple torenia, we unexpectedly recovered some genotypes having slightly margined petals. These transgenic lines expressed a chimeric repressor of the petunia PhPH4 gene under the control of Cauliflower mosaic virus 35 S RNA promoter. PhPH4 is an R2R3-type MYB transcription factor. The transgenic lines lacked pigmentation in the petal margin cells both on the adaxial and abaxial surfaces. Expressions of Flavanone 3-hydroxylase (F3H), Flavonoid 3'-hydroxylase (F3'H) and Flavonoid 3'5'-hydroxylase (F3'5'H) genes were reduced in the margins of these transgenic lines, suggesting an inhibitory effect of PhPH4 repressor on anthocyanin synthesis.

  3. DNA residence time is a regulatory factor of transcription repression

    PubMed Central

    Clauß, Karen; Popp, Achim P.; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N. Henriette

    2017-01-01

    Abstract Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. PMID:28977492

  4. Foxp1/2/4 regulate endochondral ossification as a suppresser complex

    PubMed Central

    Zhao, Haixia; Zhou, Wenrong; Yao, Zhengju; Wan, Yong; Cao, Jingjing; Zhang, Lingling; Zhao, Jianzhi; Li, Hanjun; Zhou, Rujiang; Li, Baojie; Wei, Gang; Zhang, Zhenlin; French, Catherine A.; Dekker, Joseph D.; Yang, Yingzi; Fisher, Simon E.; lucker, Haley O.; Guo, Xizhi

    2015-01-01

    Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription factors of the Foxp subfamily, in both perichondrial skeletal progenitors and proliferating chondrocytes during endochondral ossification. Mice carrying loss-of-function and gain-of-function Foxp mutations had gross defects in appendicular skeleton formation. At the cellular level, over-expression of Foxp1/2/4 in chondroctyes abrogated osteoblast formation and chondrocyte hypertrophy. Conversely, single or compound deficiency of Foxp1/2/4 in skeletal progenitors or chondrocytes resulted in premature osteoblast differentiation in the perichondrium, coupled with impaired proliferation, survival, and hypertrophy of chondrocytes in the growth plate. Foxp1/2/4 and Runx2 proteins interacted in vitro and in vivo, and Foxp1/2/4 repressed Runx2 transactivation function in heterologous cells. This study establishes Foxp1/2/4 proteins as coordinators of osteogenesis and chondrocyte hypertrophy in developing long bones and suggests that a novel transcriptional repressor network involving Foxp1/2/4 may regulate Runx2 during endochondral ossification. PMID:25527076

  5. RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis.

    PubMed

    Lam, Patricia; Zhao, Lifang; McFarlane, Heather E; Aiga, Mytyl; Lam, Vivian; Hooker, Tanya S; Kunst, Ljerka

    2012-08-01

    The cuticle is a protective layer that coats the primary aerial surfaces of land plants and mediates plant interactions with the environment. It is synthesized by epidermal cells and is composed of a cutin polyester matrix that is embedded and covered with cuticular waxes. Recently, we have discovered a novel regulatory mechanism of cuticular wax biosynthesis that involves the ECERIFERUM7 (CER7) ribonuclease, a core subunit of the exosome. We hypothesized that at the onset of wax production, the CER7 ribonuclease degrades an mRNA specifying a repressor of CER3, a wax biosynthetic gene whose protein product is required for wax formation via the decarbonylation pathway. In the absence of this repressor, CER3 is expressed, leading to wax production. To identify the putative repressor of CER3 and to unravel the mechanism of CER7-mediated regulation of wax production, we performed a screen for suppressors of the cer7 mutant. Our screen resulted in the isolation of components of the RNA-silencing machinery, RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, implicating RNA silencing in the control of cuticular wax deposition during inflorescence stem development in Arabidopsis (Arabidopsis thaliana).

  6. BiFCROS: A Low-Background Fluorescence Repressor Operator System for Labeling of Genomic Loci.

    PubMed

    Milbredt, Sarah; Waldminghaus, Torsten

    2017-06-07

    Fluorescence-based methods are widely used to analyze elementary cell processes such as DNA replication or chromosomal folding and segregation. Labeling DNA with a fluorescent protein allows the visualization of its temporal and spatial organization. One popular approach is FROS (fluorescence repressor operator system). This method specifically labels DNA in vivo through binding of a fusion of a fluorescent protein and a repressor protein to an operator array, which contains numerous copies of the repressor binding site integrated into the genomic site of interest. Bound fluorescent proteins are then visible as foci in microscopic analyses and can be distinguished from the background fluorescence caused by unbound fusion proteins. Even though this method is widely used, no attempt has been made so far to decrease the background fluorescence to facilitate analysis of the actual signal of interest. Here, we present a new method that greatly reduces the background signal of FROS. BiFCROS (Bimolecular Fluorescence Complementation and Repressor Operator System) is based on fusions of repressor proteins to halves of a split fluorescent protein. Binding to a hybrid FROS array results in fluorescence signals due to bimolecular fluorescence complementation. Only proteins bound to the hybrid FROS array fluoresce, greatly improving the signal to noise ratio compared to conventional FROS. We present the development of BiFCROS and discuss its potential to be used as a fast and single-cell readout for copy numbers of genetic loci. Copyright © 2017 Milbredt and Waldminghaus.

  7. BiFCROS: A Low-Background Fluorescence Repressor Operator System for Labeling of Genomic Loci

    PubMed Central

    Milbredt, Sarah; Waldminghaus, Torsten

    2017-01-01

    Fluorescence-based methods are widely used to analyze elementary cell processes such as DNA replication or chromosomal folding and segregation. Labeling DNA with a fluorescent protein allows the visualization of its temporal and spatial organization. One popular approach is FROS (fluorescence repressor operator system). This method specifically labels DNA in vivo through binding of a fusion of a fluorescent protein and a repressor protein to an operator array, which contains numerous copies of the repressor binding site integrated into the genomic site of interest. Bound fluorescent proteins are then visible as foci in microscopic analyses and can be distinguished from the background fluorescence caused by unbound fusion proteins. Even though this method is widely used, no attempt has been made so far to decrease the background fluorescence to facilitate analysis of the actual signal of interest. Here, we present a new method that greatly reduces the background signal of FROS. BiFCROS (Bimolecular Fluorescence Complementation and Repressor Operator System) is based on fusions of repressor proteins to halves of a split fluorescent protein. Binding to a hybrid FROS array results in fluorescence signals due to bimolecular fluorescence complementation. Only proteins bound to the hybrid FROS array fluoresce, greatly improving the signal to noise ratio compared to conventional FROS. We present the development of BiFCROS and discuss its potential to be used as a fast and single-cell readout for copy numbers of genetic loci. PMID:28450375

  8. Peripheral and central interactions between the renin-angiotensin system and the renal sympathetic nerves in control of renal function.

    PubMed

    DiBona, G F

    2001-06-01

    Increases in renal sympathetic nerve activity (RSNA) regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. As increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between RSNA and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, that is, the direct (via specific innervation) and indirect (via angiotensin II) contributions of increased RSNA to the regulation of renal function. The effects of increased RSNA on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with angiotensin-converting enzyme inhibitors or angiotensin II-type AT1 receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated following renal denervation. These interactions can also be extrarenal, that is, in the central nervous system, wherein RSNA and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, the permeable blood-brain barrier of which permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II type AT1 receptor antagonists, into the ventricular system or microinjected into the rostral ventrolateral medulla, are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (e.g., congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and RSNA are involved in influencing the neural control of renal function.

  9. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function.

    PubMed

    DiBona, G F

    2000-12-01

    Increases in renal sympathetic nerve activity regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. Because increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between the renal sympathetic nerves and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, for example, the direct (by specific innervation) and indirect (by angiotensin II) contributions of increased renal sympathetic nerve activity to the regulation of renal function. The effects of increased renal sympathetic nerve activity on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with ACE inhibitors or angiotensin II-type AT(1)-receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated after renal denervation. These interactions can also be extrarenal, for example, in the central nervous system, wherein renal sympathetic nerve activity and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, whose permeable blood-brain barrier permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II-type AT(1)-receptor antagonists into the ventricular system or microinjected into the rostral ventrolateral medulla are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (eg, congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and renal sympathetic nerve activity are involved in influencing the neural control of renal function.

  10. Evaluation of the Hepato and Nephron-Protective Effect of a Polyherbal Mixture using Wistar Albino Rats

    PubMed Central

    Adebesin, Olumide Adedapo; Okpuzor, Joy

    2014-01-01

    Aim: A polyherbal formulation prepared from a mixture of leaves of Gongronema latifolia, Ocimum gratissimum and Vernonia amygdalina (GOV) was evaluated for hepato-nephro protective properties against acetaminophen-induced toxicity in Wistar albino rats. Materials and Methods: Normal Wistar albino rats were orally treated with different doses of GOV extract (2, 4 and 8 g/kg b. wt), distilled water and some standard hepatoprotective drugs such as Liv 52 and silymarin for 14 days. However, a day prior to the 14th day, 3 g/kg body weight dose of Acetaminophen (APAP) was administered p.o. 1h before GOV and the standard drugs to induce hepatic and renal damage. The normal control was setup which received only distilled water. The serum levels of liver marker enzymes, biochemical analytes, antioxidant enzymes and hematological parameters were monitored. Results: The results showed that pretreatment of experimental animals with a different doses of the polyherbal formulation dose dependently caused a significant (p≤0.05) increase in the levels of most of the measured hematological parameters but significantly (p≤0.05) reduced the levels of MCV and monocytes when compared to the APAP induced toxin control group. Rats pretreated with GOV exhibited significant (p < 0.05) increase in serum levels of ALP, ALT, AST, GGT, LDH, Cholesterol, Triglycerides, Urea and a subsequent decrease in Albumin, Creatine and Total protein when compared to the normal rats. This trend in enzyme and biochemical analytes levels were significantly (p < 0.05) reversed when compared to toxin control group. GOV significantly (p < 0.05) and dose dependently increased the serum, kidney and hepatic CAT, GPx, GSH, GST, SOD and total protein activity in APAP induced damage in rats compared to the toxin control groups. Conclusion: The data from this study suggest that the polyherbal formulation possess hepato and nephron-protective potential against acetaminophen induced hepatotoxicity in rats, thus providing scientific rationale for its use in traditional medicine for the treatment of liver diseases. PMID:25121002

  11. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    NASA Astrophysics Data System (ADS)

    D'Aquino, J. Alejandro; Ringe, Dagmar

    2006-08-01

    The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.

  12. Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach.

    PubMed

    Yildirim, Necmettin; Aktas, Mehmet Emin; Ozcan, Seyma Nur; Akbas, Esra; Ay, Ahmet

    2017-01-01

    Cells maintain cellular homeostasis employing different regulatory mechanisms to respond external stimuli. We study two groups of signal-dependent transcriptional regulatory mechanisms. In the first group, we assume that repressor and activator proteins compete for binding to the same regulatory site on DNA (competitive mechanisms). In the second group, they can bind to different regulatory regions in a noncompetitive fashion (noncompetitive mechanisms). For both competitive and noncompetitive mechanisms, we studied the gene expression dynamics by increasing the repressor or decreasing the activator abundance (inhibition mechanisms), or by decreasing the repressor or increasing the activator abundance (activation mechanisms). We employed delay differential equation models. Our simulation results show that the competitive and noncompetitive inhibition mechanisms exhibit comparable repression effectiveness. However, response time is fastest in the noncompetitive inhibition mechanism due to increased repressor abundance, and slowest in the competitive inhibition mechanism by increased repressor level. The competitive and noncompetitive inhibition mechanisms through decreased activator abundance show comparable and moderate response times, while the competitive and noncompetitive activation mechanisms by increased activator protein level display more effective and faster response. Our study exemplifies the importance of mathematical modeling and computer simulation in the analysis of gene expression dynamics.

  13. Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression.

    PubMed

    Szewczyk, Bernadeta; Albert, Paul R; Rogaeva, Anastasia; Fitzgibbon, Heidi; May, Warren L; Rajkowska, Grazyna; Miguel-Hidalgo, Jose J; Stockmeier, Craig A; Woolverton, William L; Kyle, Patrick B; Wang, Zhixia; Austin, Mark C

    2010-09-01

    Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of MDD.

  14. Course 1: Physics of Protein-DNA Interaction

    NASA Astrophysics Data System (ADS)

    Bruinsma, R. F.

    1 Introduction 1.1 The central dogma and bacterial gene expression 1.2 Molecular structure 2 Thermodynamics and kinetics of repressor-DNA interaction 2.1 Thermodynamics and the lac repressor 2.2 Kinetics of repressor-DNA interaction 3 DNA deformability and protein-DNA interaction 3.1 Introduction 3.2 The worm-like chain 3.3 The RST model 4 Electrostatics in water and protein-DNA interaction 4.1 Macro-ions and aqueous electrostatics 4.2 The primitive model 4.3 Manning condensation 4.4 Counter-ion release and non-specific protein-DNA interaction

  15. Risk of acute myocardial infarction in upper tract urothelial carcinoma patients receiving radical nephroureterectomy: a population-based cohort study

    PubMed Central

    Lin, Shih-Yi; Lin, Cheng-Li; Chang, Chao-Hsiang; Wu, His-Chin; Wang, I-Kuan; Chou, Che-Yi; Liang, Ji-An

    2017-01-01

    Background The outcomes of upper tract urothelial carcinoma (UTUC) receiving radical nephroureterectomy were usually limited to small sample size, case-control studies, and often focused on cancer progression. Risk of acute myocardial infarction (AMI) in these patients was never investigated. Results The overall incidences of AMI were 3.39, 1.44, and 1.70 per 10,000 person-years in the radical nephroureterectomy, nonnephroureterectomy, and non-UTUC cohorts, respectively. Multivariable Cox proportional hazard regression analysis revealed a significantly higher AMI risk in the radical nephroureterectomy cohort [adjusted HR (aHR) = 1.83, 95% confidence interval (CI) = 1.08–3.11], compared with non-UTUC cohorts. The risk of mortality were the highest in patients with UTUC who had undergone radical nephroureterectomy [adjusted HR (aHR) = 5.37, 95% confidence interval (CI) = 4.80–6.02]. Materials and Methods From the Taiwan National Health Insurance claims data, 1,359 patients with UTUC who had undergone radical nephroureterectomy and 3,154 patients with UTUC who had undergone nephron sparing surgery and were newly diagnosed between 2000 and 2010 were identified. For each patient, 4 individuals without UTUC were randomly selected and frequency matched by age, sex, and diagnosis year. Conclusions Patients with UTUC who have undergone radical nephroureterectomy are at a higher risk of developing AMI, compared with those receiving nephron sparing surgery. PMID:29108329

  16. Renal dysfunction in early adulthood following birth asphyxia in male spiny mice, and its amelioration by maternal creatine supplementation during pregnancy.

    PubMed

    Ellery, Stacey J; LaRosa, Domenic A; Cullen-McEwen, Luise A; Brown, Russell D; Snow, Rod J; Walker, David W; Kett, Michelle M; Dickinson, Hayley

    2017-04-01

    Acute kidney injury affects ~70% of asphyxiated newborns, and increases their risk of developing chronic kidney disease later in life. Acute kidney injury is driven by renal oxygen deprivation during asphyxia, thus we hypothesized that creatine administered antenatally would protect the kidney from the long-term effects of birth asphyxia. Pregnant spiny mice were fed standard chow or chow supplemented with 5% creatine from 20-d gestation (midgestation). One day prior to term (37-d gestation), pups were delivered by caesarean or subjected to intrauterine asphyxia. Litters were allocated to one of two time-points. Kidneys were collected at 1 mo of age to estimate nephron number (stereology). Renal function (excretory profile and glomerular filtration rate) was measured at 3 mo of age, and kidneys then collected for assessment of glomerulosclerosis. Compared with controls, at 1 mo of age male (but not female) birth-asphyxia offspring had 20% fewer nephrons (P < 0.05). At 3 mo of age male birth-asphyxia offspring had 31% lower glomerular filtration rate (P < 0.05) and greater glomerular collagen IV content (P < 0.01). Antenatal creatine prevented these renal injuries arising from birth asphyxia. Maternal creatine supplementation during pregnancy may be an effective prophylactic to prevent birth asphyxia induced acute kidney injury and the emergence of chronic kidney disease.

  17. Retro-peritoneoscopic assisted cryoablation for small renal tumors: the first cases treated in Romania.

    PubMed

    Ghervan, L; Lucan, V; Elec, F; Suciu, M; Bologa, F; Iacob, Gh; Lucan, M

    2007-01-01

    Nephron-sparing surgery (NSS), has been demonstrated to be a safe and effective alternative to radical nephrectomy for selected cases. Retro-peritoneoscopic cryoablation (RCA), combine the benefits of minimal invasiveness of the laparoscopy with the advantage of preserving renal function of the nephron sparing surgery. The aim of our study was to assess the initial results with RCA of small renal tumors. Since Jan 2007, twelve consecutive patients, with small renal tumors (mean tumor size 3.89 cm) underwent RCA at our institution. The patients were assessed using: clinical exam, lab exam, ultrasound, contrast enhanced CT scan. For cryoablation, we used the Galil Medical SeedNet with 17 Gauge cryoprobes, under combined retro-peritoneoscopic and ultrasound guidance. Protocol follow-up design includes clinical exam, lab exam and contrast enhanced CT scan at 3,6 and 12 months and annually thereafter. Mean surgical time was 145.42 min. and mean blood loss was 179.17 ml. Two patients presented: bleeding at the extraction of the cryoprobes and urinary fistula which healed with surgical treatment. Histological examination of the core biopsy revealed clear cell carcinoma in 8 patients, papillary carcinoma in 3 patients and angiomyolipoma in 1 patient. Cryosurgical ablation of small renal tumors using multiple ultrathin 17 Gauge cryoprobes is a feasible treatment option. Retro-peritoneoscopic approach allows optimal access to the kidney and endoscopic real-time ultrasound control of the freezing process.

  18. Low birth weight is associated with impaired murine kidney development and function.

    PubMed

    Barnett, Christina; Nnoli, Oluwadara; Abdulmahdi, Wasan; Nesi, Lauren; Shen, Michael; Zullo, Joseph A; Payne, David L; Azar, Tala; Dwivedi, Parth; Syed, Kunzah; Gromis, Jonathan; Lipphardt, Mark; Jules, Edson; Maranda, Eric L; Patel, Amy; Rabadi, May M; Ratliff, Brian B

    2017-08-01

    BackgroundLow birth weight (LBW) neonates have impaired kidney development that leaves them susceptible to kidney disease and hypertension during adulthood. The study here identifies events that blunt nephrogenesis and kidney development in the murine LBW neonate.MethodsWe examined survival, kidney development, GFR, gene expression, and cyto-/chemokines in the LBW offspring of malnourished (caloric and protein-restricted) pregnant mice.ResultsMalnourished pregnant mothers gave birth to LBW neonates that had 40% reduced body weight and 54% decreased survival. Renal blood perfusion was reduced by 37%, whereas kidney volume and GFR were diminished in the LBW neonate. During gestation, the LBW neonatal kidney had 2.2-fold increased apoptosis, 76% decreased SIX2+ progenitor cells, downregulation of mesenchymal-to-epithelial signaling factors Wnt9b and Fgf8, 64% less renal vesicle formation, and 32% fewer nephrons than controls. At birth, increased plasma levels of IL-1β, IL-6, IL-12(p70), and granulocyte-macrophage colony-stimulating factor in the LBW neonate reduced SIX2+ progenitor cells.ConclusionIncreased pro-inflammatory cytokines in the LBW neonate decrease SIX2+ stem cells in the developing kidney. Reduced renal stem cells (along with the decreased mesenchymal-to-epithelial signaling) blunt renal vesicle generation, nephron formation, and kidney development. Subsequently, the mouse LBW neonate has reduced glomeruli volume, renal perfusion, and GFR.

  19. Gene expression profiling of a pressure-tolerant Listeria monocytogenes Scott A CtsR deletion mutant

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a food-borne pathogen of significant threat to public health. High hydrostatic pressure (HPP) treatment can be used to control Listeria monocytogenes in food. The CtsR (class three stress gene repressor) protein negatively regulates the expression of class III heat shock ...

  20. Negative regulation of P element excision by the somatic product and terminal sequences of P in drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...

  1. Parallel SCF Adaptor Capture Proteomics Reveals a Role for SCFFBXL17 in NRF2 Activation via BACH1 Repressor Turnover

    PubMed Central

    Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J.; Shi, Yang; Harper, J. Wade

    2014-01-01

    Modular Cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of Parallel Adaptor Capture (PAC) proteomics, and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCFFBXL17 in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. PMID:24035498

  2. Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover.

    PubMed

    Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J; Shi, Yang; Harper, J Wade

    2013-10-10

    Modular cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of parallel adaptor capture (PAC) proteomics and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCF(FBXL17) in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    PubMed

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  4. Crystal Structure and Regulation of the Citrus Pol III Repressor MAF1 by Auxin and Phosphorylation.

    PubMed

    Soprano, Adriana Santos; Giuseppe, Priscila Oliveira de; Shimo, Hugo Massayoshi; Lima, Tatiani Brenelli; Batista, Fernanda Aparecida Heleno; Righetto, Germanna Lima; Pereira, José Geraldo de Carvalho; Granato, Daniela Campos; Nascimento, Andrey Fabricio Ziem; Gozzo, Fabio Cesar; de Oliveira, Paulo Sérgio Lopes; Figueira, Ana Carolina Migliorini; Smetana, Juliana Helena Costa; Paes Leme, Adriana Franco; Murakami, Mario Tyago; Benedetti, Celso Eduardo

    2017-09-05

    MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure. CsMAF1 accumulated in the nucleolus upon leaf excision, and this translocation was inhibited by auxin and by mutation of the PKA phosphorylation site, S45, to aspartate. Additionally, mTOR phosphorylated recombinant CsMAF1 and the mTOR inhibitor AZD8055 blocked canker formation in normal but not CsMAF1-silenced plants. These results indicate that the role of TOR on cell growth induced by Xanthomonas citri depends on CsMAF1 and that auxin controls CsMAF1 interaction with Pol III in citrus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cancer, acute stress disorder, and repressive coping.

    PubMed

    Pedersen, Anette Fischer; Zachariae, Robert

    2010-02-01

    The purpose of this study was to investigate the association between repressive coping style and Acute Stress Disorder (ASD) in a sample of cancer patients. A total of 112 cancer patients recently diagnosed with cancer participated in the study. ASD was assessed by the Stanford Acute Stress Reaction Questionnaire, and repressive coping was assessed by a combination of scores from the Marlowe-Crowne Social Desirability Scale, and the Bendig version of the Taylor Manifest Anxiety Scale. Significantly fewer patients classified as "repressors" were diagnosed with ASD compared to patients classified as "non-repressors". However, further investigations revealed that the lower incidence of ASD in repressors apparently was caused by a low score on anxiety and not by an interaction effect between anxiety and defensiveness. Future studies have to investigate whether different psychological mechanisms are responsible for the lower incidence of ASD in repressors and true low-anxious patients.

  6. Claudins and renal salt transport.

    PubMed

    Muto, Shigeaki; Furuse, Mikio; Kusano, Eiji

    2012-02-01

    Tight junctions (TJs) are the most apical component of junctional complexes and regulate the movement of electrolytes and solutes by the paracellular pathway across epithelia. The defining ultrastructural features of TJs are strands of transmembrane protein particles that adhere to similar strands on adjacent cells. These strands are mainly composed of linearly polymerized integral membrane proteins called claudins. Claudins comprise a multigene family consisting of more than 20 members in mammals. Recent work has shown that claudins form barriers, determined by the paracellular electrical resistance and charge selectivity, and pores in the TJ strands. The paracellular pathways in renal tubular epithelia such as the proximal tubule, which reabsorbs the largest fraction of filtered NaCl and water, are important routes for the transport of electrolytes and water. Their transport characteristics vary among different nephron segments. Multiple claudins are expressed at TJs of individual nephron segments in a nephron segment-specific manner. Among them, claudin-2 is highly expressed at TJs of proximal tubules, which are leaky epithelia. Overexpression and knockdown of claudin-2 in epithelial cell lines, and knockout of the claudin-2 gene in mice, have demonstrated that claudin-2 forms high-conductance cation-selective pores in the proximal tubule. Here, we review the renal physiology of paracellular transport and the physiological roles of claudins in kidney function, especially claudin-2 and proximal tubule paracellular NaCl transport.

  7. Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassirpour, Rounak, E-mail: Rounak.nassirpour@pfiz

    Drug-induced nephrotoxicity is a common drug development complication for pharmaceutical companies. Sensitive, specific, translatable and non-invasive biomarkers of renal toxicity are urgently needed to diagnose nephron segment specific injury. The currently available gold standard biomarkers for nephrotoxicity are not kidney-specific, lack sensitivity for early detection, and are not suitable for renal damage localization (glomerular vs tubulointerstitial injury). MicroRNAs (miRNAs) are increasingly gaining momentum as promising biomarkers of various organ toxicities, including drug induced renal injury. This is mostly due to their stability in easily accessible biofluids, ease of developing nucleic acids detection compared to protein detection assays, as well asmore » their interspecies translatability. Increasing concordance of miRNA findings by standardizing methodology most suitable for their detection and quantitation, as well as characterization of their expression pattern in a cell type specific manner, will accelerate progress toward validation of these miRNAs as biomarkers in pre-clinical, and clinical settings. This review aims to highlight the current pre-clinical findings surrounding miRNAs as biomarkers in two important segments of the nephron, the glomerulus and tubules. - Highlights: • miRNAs are promising biomarkers of drug-induced kidney injury. • Summarized pre-clinical miRNA biomarkers of drug-induced nephrotoxicity. • Described the strengths and challenges associated with miRNAs as biomarkers.« less

  8. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density.

    PubMed

    Liu, Pan; Liu, Jie; Dong, Huixue; Sun, Jiaqiang

    2018-02-01

    Bread wheat (Triticum aestivum) spike architecture is an important agronomic trait. The Q gene plays a key role in the domestication of bread wheat spike architecture. However, the regulatory mechanisms of Q expression and transcriptional activity remain largely unknown. In this study, we show that overexpression of bread wheat tae-miR172 caused a speltoid-like spike phenotype, reminiscent of that in wheat plants with the q gene. The reduction in Q transcript levels in the tae-miR172 overexpression transgenic bread wheat lines suggests that the Q expression can be suppressed by tae-miR172 in bread wheat. Indeed, our RACE analyses confirmed that the Q mRNA is targeted by tae-miR172 for cleavage. According to our analyses, the Q protein is localized in nucleus and confers transcriptional repression activity. Meanwhile, the Q protein could physically interact with the bread wheat transcriptional co-repressor TOPLESS (TaTPL). Specifically, the N-terminal ethylene-responsive element binding factor-associated amphiphilic repression (EAR) (LDLNVE) motif but not the C-terminal EAR (LDLDLR) motif of Q protein mediates its interaction with the CTLH motif of TaTPL. Moreover, we show that the N-terminal EAR motif of Q protein is also essentially required for the transcriptional repression activity of Q protein. Taken together, we reveal the functional regulation of Q protein by tae-miR172 and transcriptional co-repressor TaTPL in controlling the bread wheat spike architecture. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Kidney Diseases

    MedlinePlus

    ... until you go to the bathroom. Most kidney diseases attack the nephrons. This damage may leave kidneys ... medicines. You have a higher risk of kidney disease if you have diabetes, high blood pressure, or ...

  10. Adaptor proteins GIR1 and GIR2. I. Interaction with the repressor GLABRA2 and regulation of root hair development.

    PubMed

    Wu, Renhong; Citovsky, Vitaly

    2017-07-01

    Plants use specialized root outgrowths, termed root hairs, to enhance acquisition of nutrients and water, help secure anchorage, and facilitate interactions with soil microbiome. One of the major regulators of this process is GLABRA2 (GL2), a transcriptional repressor of root hair differentiation. However, regulation of the GL2-function is relatively well characterized, it remains completely unknown whether GL2 itself functions in complex with other transcriptional regulators. We identified GIR1 and GIR2, a plant-specific two-member family of closely related proteins that interact with GL2. Loss-of-function mutants of GIR1 and GIR2 enhanced development of root hair whereas gain-of-function mutants repressed it. Thus, GIR1 and GIR2 might function as adaptor proteins that associate with GL2 and participate in control of root hair formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Aging and the Kidneys: Anatomy, Physiology and Consequences for Defining Chronic Kidney Disease.

    PubMed

    Glassock, Richard J; Rule, Andrew D

    2016-01-01

    The varied functions of the kidneys are influenced by the complex process of aging. The glomerular filtration rate (GFR) steadily declines with normal aging, and the progress of this process can be influenced by superimposed diseases. Microscopically, nephron numbers decrease as global glomerulosclerosis becomes more evident. The precise mechanisms underlying nephron loss with aging are not well understood, but derangements in podocyte biology appear to be involved. Classifications of chronic kidney disease (CKD) incorporate GFR values and attendant risk of adverse events. Arbitrary and fixed thresholds of GFR for defining CKD have led to an overdiagnosis of CKD in the elderly. An age-sensitive definition of CKD could offer a solution to this problem and more meaningfully capture the prognostic implications of CKD. © 2016 S. Karger AG, Basel.

  12. Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator

    PubMed Central

    Rajasekar, Karthik V.; Lovering, Andrew L.; Dancea, Felician; Scott, David J.; Harris, Sarah A.; Bingle, Lewis E.H.; Roessle, Manfred; Thomas, Christopher M.; Hyde, Eva I.; White, Scott A.

    2016-01-01

    Abstract The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53. PMID:27016739

  13. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr

    2012-02-01

    The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similaritymore » to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.« less

  14. Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish.

    PubMed

    Cheng, Christina N; Wingert, Rebecca A

    2015-03-01

    The mechanisms that establish nephron segments are poorly understood. The zebrafish embryonic kidney, or pronephros, is a simplified yet conserved genetic model to study this renal development process because its nephrons contain segments akin to other vertebrates, including the proximal convoluted and straight tubules (PCT, PST). The zebrafish pronephros is also associated with the corpuscles of Stannius (CS), endocrine glands that regulate calcium and phosphate homeostasis, but whose ontogeny from renal progenitors is largely mysterious. Initial patterning of zebrafish renal progenitors in the intermediate mesoderm (IM) involves the formation of rostral and caudal domains, the former being reliant on retinoic acid (RA) signaling, and the latter being repressed by elevated RA levels. Here, using expression profiling to gain new insights into nephrogenesis, we discovered that the gene single minded family bHLH transcription factor 1a (sim1a) is dynamically expressed in the renal progenitors-first marking the caudal domain, then becoming restricted to the proximal segments, and finally exhibiting specific CS expression. In loss of function studies, sim1a knockdown expanded the PCT and abrogated both the PST and CS populations. Conversely, overexpression of sim1a modestly expanded the PST and CS, while it reduced the PCT. These results show that sim1a activity is necessary and partially sufficient to induce PST and CS fates, and suggest that sim1a may inhibit PCT fate and/or negotiate the PCT/PST boundary. Interestingly, the sim1a expression domain in renal progenitors is responsive to altered levels of RA, suggesting that RA regulates sim1a, directly or indirectly, during nephrogenesis. sim1a deficient embryos treated with exogenous RA formed nephrons that were predominantly composed of PCT segments, but lacked the enlarged PST observed in RA treated wild-types, indicating that RA is not sufficient to rescue the PST in the absence of sim1a expression. Alternately, when sim1a knockdowns were exposed to the RA inhibitor diethylaminobenzaldehyde (DEAB), the CS was abrogated rather than expanded as seen in DEAB treated wild-types, revealing that CS formation in the absence of sim1a cannot be rescued by RA biosynthesis abrogation. Taken together, these data reveal previously unappreciated roles for sim1a in zebrafish pronephric proximal tubule and CS patterning, and are consistent with the model that sim1a acts downstream of RA to mitigate the formation of these lineages. These findings provide new insights into the genetic pathways that direct nephron development, and may have implications for understanding renal birth defects and kidney reprogramming. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling.

    PubMed

    Singh, Praveen K; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J; Meijer, Wilfried J J

    2013-10-01

    Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.

  16. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Aquino,J.; Tetenbaum-Novatt, J.; White, A.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with amore » binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.« less

  17. Structure of the Mecl Repressor from Staphylococcus aureus in Complex with the Cognate DNA Operator of mec

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safo,M.; Ko, T.; Musayev, F.

    The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtualmore » DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less

  18. Genes that are involved in high hydrostatic pressure treatments in a Listeria monocytogenes Scott A ctsR deletion mutant

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a food-borne pathogen of significant threat to public health. High Hydrostatic Pressure (HHP) treatment can be used to control L. monocytogenes in food. The CtsR (class three stress gene repressor) protein negatively regulates the expression of class III heat shock genes....

  19. [The 3-dimensional organization of the nucleolus and nucleolus-organizer regions of differentiated cells. IV. The structural and functional heterogeneity of the nucleoli in the epithelium of the proximal nephron in the mouse].

    PubMed

    Chelidze, P V; Dzidziguri, D V; Zarandiia, M A; Georgobiani, N M; Tumanishvili, G D

    1993-01-01

    By means of stereological and morphometrical analysis, the ultrastructure of nucleoli in epitheliocytes of mouse kidney cortex proximal tubuli has been studied. In accordance to the nucleolar composition, three main groups of nephrocytes with different levels of rRNA and protein synthesis were defined. Functional heterogeneity of proximal tubuli epithelium was established by correlation between different variants of ultrastructural organization of nucleoli and the total RNA synthesis activity, determined by 3H-uridine incorporation intensity. It has been shown that a greater part of cells (about 52%) in the nephron proximal section, which is characterized by slow RNA synthesis, causing a low functional activity of these cells, presumably represents a reparative cellular reserve. Such cells, defined as the 1st group cells, have resting, ring-shaped nucleoli with one fibrillar centre, and nucleoli similar to the ring-shaped ones but containing 2-3 fibrillar centres. Nucleoli of the 2nd group of nephrocytes (about 37%), most actively incorporating labeled precursor, contain 4-6 fibrillar centres. Their structural organization is closer to the reticular type of nucleoli. The 3rd most actively labeled group of nephrocytes includes cells with typical reticulated nucleoli. The number of fibrillar centres in the reticulated nucleoli is much higher (18-22) than in the 1st and 2nd groups of nephrocytes. Structural and functional polymorphism of nephrocytes was revealed not only in the proximal part of one nephron. During the increase in functional activity of nephrocytes, caused by unilateral nephrectomy, the quantitative correlation between cells related to these different groups was seen to change. The number of cells of the 1st group decreased by 24%, whereas that in the 2nd and 3rd groups increased by 9 and 15%, respectively. Nucleoli with 2-3 fibrillar centres are considered as transitional forms between the inactive ring-shaped nucleoli and the active reticulated nucleoli. Differences in the ultrastructure of nucleoli may be considered as an evidence of functional heterogeneity of nephrocytes within the proximal segment of nephron.

  20. Temporary renal ischemia during nephron sparing surgery is associated with short-term but not long-term impairment in renal function.

    PubMed

    Yossepowitch, Ofer; Eggener, Scott E; Serio, Angel; Huang, William C; Snyder, Mark E; Vickers, Andrew J; Russo, Paul

    2006-10-01

    The emergence of laparoscopic nephron sparing surgery has rekindled interest in the impact of warm renal ischemia on renal function. To provide data with which warm renal ischemia can be compared we analyzed short-term and long-term changes in the glomerular filtration rate after temporary cold renal ischemia. In patients undergoing open nephron sparing surgery the estimated glomerular filtration rate was assessed preoperatively, early in the postoperative hospital stay, and 1 and 12 months after surgery using the abbreviated Modification of Diet in Renal Disease Study equation. We separately analyzed 70 patients with a solitary kidney and 592 with 2 functioning kidneys. The end point was the percent change from the baseline glomerular filtration rate. A linear regression model was used to test the association between the glomerular filtration rate change, and ischemia time, patient age, tumor size, estimated blood loss and intraoperative fluid administration. Median cold ischemia time was 31 minutes in patients with a solitary kidney and 35 minutes in those with 2 kidneys. Compared to patients with 2 kidneys those with a solitary kidney had a significantly lower preoperative estimated glomerular filtration rate (p < 0.001), which decreased a median of 30% during the early postoperative period, and 15% and 32% 1 and 12 months after surgery, respectively. In patients with 2 kidneys the corresponding glomerular filtration rate decreases were 16%, 13% and 14%, respectively. On multivariate analyses in each group cold ischemia duration and intraoperative blood loss were significantly associated with early glomerular filtration rate changes. However, 12 months after surgery age was the only independent predictor of a glomerular filtration rate decrease in patients with 2 kidneys. Cold renal ischemia during nephron sparing surgery is a significant determinant of the short-term postoperative glomerular filtration rate. Longer clamping time is particularly detrimental in patients with a solitary kidney but it does not appear to influence long-term renal function. Patients of advanced age may be less likely to recover from acute ischemic renal injury.

  1. Robotic-assisted transperitoneal nephron-sparing surgery for small renal masses with associated surgical procedures: surgical technique and preliminary experience.

    PubMed

    Ceccarelli, Graziano; Codacci-Pisanelli, Massimo; Patriti, Alberto; Ceribelli, Cecilia; Biancafarina, Alessia; Casciola, Luciano

    2013-09-01

    Small renal masses (T1a) are commonly diagnosed incidentally and can be treated with nephron-sparing surgery, preserving renal function and obtaining the same oncological results as radical surgery. Bigger lesions (T1b) may be treated in particular situations with a conservative approach too. We present our surgical technique based on robotic assistance for nephron-sparing surgery. We retrospectively analysed our series of 32 consecutive patients (two with 2 tumours and one with 4 bilateral tumours), for a total of 37 robotic nephron-sparing surgery (RNSS) performed between June 2008 and July 2012 by a single surgeon (G.C.). The technique differs depending on tumour site and size. The mean tumour size was 3.6 cm; according to the R.E.N.A.L. Nephrometry Score 9 procedures were considered of low, 14 of moderate and 9 of hight complexity with no conversion in open surgery. Vascular clamping was performed in 22 cases with a mean warm ischemia time of 21.5 min and the mean total procedure time was 149.2 min. Mean estimated blood loss was 187.1 ml. Mean hospital stay was 4.4 days. Histopathological evaluation confirmed 19 cases of clear cell carcinoma (all the multiple tumours were of this nature), 3 chromophobe tumours, 1 collecting duct carcinoma, 5 oncocytomas, 1 leiomyoma, 1 cavernous haemangioma and 2 benign cysts. Associated surgical procedures were performed in 10 cases (4 cholecystectomies, 3 important lyses of peritoneal adhesions, 1 adnexectomy, 1 right hemicolectomy, 1 hepatic resection). The mean follow-up time was 28.1 months ± 12.3 (range 6-54). Intraoperative complications were 3 cases of important bleeding not requiring conversion to open or transfusions. Regarding post-operative complications, there were a bowel occlusion, 1 pleural effusion, 2 pararenal hematoma, 3 asymptomatic DVT (deep vein thrombosis) and 1 transient increase in creatinine level. There was no evidence of tumour recurrence in the follow-up. RNSS is a safe and feasible technique. Challenging situations are hilar, posterior or intraparenchymal tumour localization. In our experience, robotic technology made possible a safe minimally invasive management, including vascular clamping, tumour resection and parenchyma reconstruction.

  2. Assessment of Fetal Kidney Growth and Birth Weight in an Indigenous Australian Cohort.

    PubMed

    Diehm, Christopher J; Lumbers, Eugenie R; Weatherall, Loretta; Keogh, Lyniece; Eades, Sandra; Brown, Alex; Smith, Roger; Johnson, Vanessa; Pringle, Kirsty G; Rae, Kym M

    2017-01-01

    Introduction: Indigenous Australians experience higher rates of renal disease and hypertension than non-Indigenous Australians. Low birth weight is recognized as a contributing factor in chronic disease and has been shown to increase the risk of renal failure in adulthood. A smaller kidney volume with fewer nephrons places an individual at risk of hypertension and renal failure. Indigenous Australians have fewer nephrons than non-Indigenous Australians. In this study, intrauterine fetal and kidney growth were evaluated in 174 Indigenous Australian babies throughout gestation in order to record and evaluate fetal growth and kidney size, within a population that is at high risk for chronic illness. Methods: Pregnant women that identified as Indigenous, or non-Indigenous women that were pregnant with a partner who identified as an Indigenous Australian were eligible to participate. Maternal history, smoking status, blood and urine samples and fetal ultrasounds were collected throughout pregnancy. Fetal kidney measurements were collected using ultrasound. Statistical analysis was performed using the Stata 14.1 software package. Results: 15.2% of babies were born prematurely. 44% of the mothers reported smoking in pregnancy. The median birth weight of this cohort was 3,240 g. Male fetuses had higher kidney to body weight ratios than female fetuses ( P = 0.02). The birth weights of term neonates whose mothers smoked during pregnancy were lower (327 g, P < 0.001) than the birth weights of term babies from non-smoking mothers. The kidney volumes of babies whose mothers smoked were also smaller ( P = 0.02), but were in proportion to body weight. Conclusion: In this cohort of Indigenous women smoking was associated with both increased number of preterm births and with a reduction in birth weights, even of term infants. Since kidney volume is a surrogate measure of nephron number and nephrogenesis is complete at birth, babies whose mothers smoked during pregnancy must have fewer nephrons than those from non-smoking mothers. Previous studies have shown that glomerular filtration rate is not related to birth weight, thus infants with smaller kidney volumes are hyperfiltering from birth and therefore are likely to be more susceptible to early onset renal disease in later life.

  3. Oligomeric properties and DNA binding specificities of repressor isoforms from the Streptomyces bacteriophage phiC31.

    PubMed

    Wilson, S E; Smith, M C

    1998-05-15

    Three protein isoforms (74, 54 and 42 kDa) are expressed from repressor gene c in the Streptomyces temperate bacteriophage phiC31. Because expression of the two smaller isoforms, 54 and 42 kDa, is sufficient for superinfection immunity, the interaction between these isoforms was studied. The native 42 kDa repressor (Nat42) and an N-terminally 6x histidine-tagged 54 kDa isoform (His54) were shown by co-purification on a Ni-NTA column to interact in Streptomyces lividans . In vitro three repressor preparations, containing Nat42, His54 and the native 54 and 42 kDa isoforms expressed together (Nat54&42), were subjected to chemical crosslinking and gel filtration analysis. Homo- and hetero-tetramers were observed. Previous work showed that the smallest isoform bound to 17 bp operators containing aconservedinvertedrepeat (CIR) and that the CIRs were located at 16 loci throughout the phiC31 genome. One of the CIRs (CIR6) is believed to be critical for regulating the lytic pathway. The DNA binding activities of the three repressor preparations were studied using fragments containing CIRs (CIR3-CIR6) from the essential early region as templates for DNase I footprinting. Whereas Nat42 bound to CIR6, poorly to CIR5 but undetectably to CIR3 or CIR4, the Nat54&42 preparation could bind to all CIRs tested, albeit poorly to CIR3 and CIR4. The His54 isoform bound all CIRs tested. Isoforms expressed from the phiC31 repressor gene, like those which are expressed from many eukaryotic transcription factor genes, apparently have different binding specificities.

  4. Transcriptional co-repressor SIN3A silencing rescues decline in memory consolidation during scopolamine-induced amnesia.

    PubMed

    Srivas, Sweta; Thakur, Mahendra K

    2018-05-01

    Epigenetic modifications through methylation of DNA and acetylation of histones modulate neuronal gene expression and regulate long-term memory. Earlier we demonstrated that scopolamine-induced decrease in memory consolidation is correlated with enhanced expression of hippocampal DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in mice. DNMT1 and HDAC2 act together by recruiting a co-repressor complex and deacetylating the chromatin. The catalytic activity of HDACs is mainly dependent on its incorporation into multiprotein co-repressor complexes, among which SIN3A-HDAC2 co-repressor is widely studied to regulate synaptic plasticity. However, the involvement of co-repressor complex in regulating memory loss or amnesia is unexplored. This study examines the role of co-repressor SIN3A in scopolamine-induced amnesia through epigenetic changes in the hippocampus. Scopolamine treatment remarkably enhanced hippocampal SIN3A expression in mice. To prevent such increase in SIN3A expression, we used hippocampal infusion of SIN3A-siRNA and assessed the effect of SIN3A silencing on scopolamine-induced amnesia. Silencing of SIN3A in amnesic mice reduced the binding of HDAC2 at neuronal immediate early genes (IEGs) promoter, but did not change the expression of HDAC2. Furthermore, it increased acetylation of H3K9 and H3K14 at neuronal IEGs (Arc, Egr1, Homer1 and Narp) promoter, prevented scopolamine-induced down-regulation of IEGs and improved consolidation of memory during novel object recognition task. These findings together suggest that SIN3A has a critical role in regulation of synaptic plasticity and might act as a potential therapeutic target to rescue memory decline during amnesia and other neuropsychiatric pathologies. © 2018 International Society for Neurochemistry.

  5. Situational Discrimination in Repressor-type and Sensitizer-type Approval Seekers and the Birth Order by Subject Sex Interaction

    ERIC Educational Resources Information Center

    Becker, Gilbert

    1970-01-01

    Five experiments are reported. One conclusion in that repressor-type high need-for-approval subjects made the discrimination and permitted less favorable self-description, but sensitizer-type high need-for-approval subjects did not. (DB)

  6. Expression, purification and preliminary X-ray analysis of the C-terminal domain of an arginine repressor protein from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, George J.; Garen, Craig R.; Cherney, Maia M.

    2007-11-01

    The C-terminal portion of the arginine repressor protein from M. tuberculosis H37Rv has been crystallized. The complete transcriptional factor regulates arginine biosynthesis by binding operator DNA when arginine is bound at the C-terminal domain. The gene product of an open reading frame Rv1657 from Mycobacterium tuberculosis is a putative arginine repressor protein (ArgR), a transcriptional factor that regulates the expression of arginine-biosynthetic enzymes. Rv1657 was expressed and purified and a C-terminal domain was crystallized using the hanging-drop vapour-diffusion method. Diffraction data were collected and processed to a resolution of 2.15 Å. The crystals belong to space group P1 and themore » Matthews coefficient suggests that the crystals contain six C-terminal domain molecules per unit cell. Previous structural and biochemical studies on the arginine repressor proteins from other organisms have likewise shown the presence of six molecules per unit cell.« less

  7. Genomic Mining of Prokaryotic Repressors for Orthogonal Logic Gates

    PubMed Central

    Stanton, Brynne C.; Nielsen, Alec A.K.; Tamsir, Alvin; Clancy, Kevin; Peterson, Todd; Voigt, Christopher A.

    2014-01-01

    Genetic circuits perform computational operations based on interactions between freely diffusing molecules within a cell. When transcription factors are combined to build a circuit, unintended interactions can disrupt its function. Here, we apply “part mining” to build a library of 73 TetR-family repressors gleaned from prokaryotic genomes. The operators of a subset were determined using an in vitro method and this information was used to build synthetic promoters. The promoters and repressors were screened for cross-reactions. Of these, 16 were identified that both strongly repress their cognate promoter (5- to 207-fold) and do not interact with other promoters. Each repressor:promoter pair was converted to a NOT gate and characterized. Used as a set of 16 NOR gates, there are >1054 circuits that could be built by changing the pattern of input and output promoters. This represents a large set of compatible gates that can be used to construct user-defined circuits. PMID:24316737

  8. KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.

    PubMed

    Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B

    2015-08-29

    Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.

  9. MRI tools for assessment of microstructure and nephron function of the kidney.

    PubMed

    Xie, Luke; Bennett, Kevin M; Liu, Chunlei; Johnson, G Allan; Zhang, Jeff Lei; Lee, Vivian S

    2016-12-01

    MRI can provide excellent detail of renal structure and function. Recently, novel MR contrast mechanisms and imaging tools have been developed to evaluate microscopic kidney structures including the tubules and glomeruli. Quantitative MRI can assess local tubular function and is able to determine the concentrating mechanism of the kidney noninvasively in real time. Measuring single nephron function is now a near possibility. In parallel to advancing imaging techniques for kidney microstructure is a need to carefully understand the relationship between the local source of MRI contrast and the underlying physiological change. The development of these imaging markers can impact the accurate diagnosis and treatment of kidney disease. This study reviews the novel tools to examine kidney microstructure and local function and demonstrates the application of these methods in renal pathophysiology. Copyright © 2016 the American Physiological Society.

  10. Practical application of stereological methods in experimental kidney animal models.

    PubMed

    Fernández García, María Teresa; Núñez Martínez, Paula; García de la Fuente, Vanessa; Sánchez Pitiot, Marta; Muñiz Salgueiro, María Del Carmen; Perillán Méndez, Carmen; Argüelles Luis, Juan; Astudillo González, Aurora

    The kidneys are vital organs responsible for excretion, fluid and electrolyte balance and hormone production. The nephrons are the kidney's functional and structural units. The number, size and distribution of the nephron components contain relevant information on renal function. Stereology is a branch of morphometry that applies mathematical principles to obtain three-dimensional information from serial, parallel and equidistant two-dimensional microscopic sections. Because of the complexity of stereological studies and the lack of scientific literature on the subject, the aim of this paper is to clearly explain, through animal models, the basic concepts of stereology and how to calculate the main kidney stereological parameters that can be applied in future experimental studies. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Optimal route of diphtheria toxin administration to eliminate native nephron progenitor cells in vivo for kidney regeneration.

    PubMed

    Fukunaga, Shohei; Yamanaka, Shuichiro; Fujimoto, Toshinari; Tajiri, Susumu; Uchiyama, Taketo; Matsumoto, Kei; Ito, Takafumi; Tanabe, Kazuaki; Yokoo, Takashi

    2018-02-19

    To address the lack of organs for transplantation, we previously developed a method for organ regeneration in which nephron progenitor cell (NPC) replacement is performed via the diphtheria toxin receptor (DTR) system. In transgenic mice with NPC-specific expression of DTR, NPCs were eliminated by DT and replaced with NPCs lacking the DTR with the ability to differentiate into nephrons. However, this method has only been verified in vitro. For applications to natural models, such as animal fetuses, it is necessary to determine the optimal administration route and dose of DT. In this study, two DT administration routes (intra-peritoneal and intra-amniotic injection) were evaluated in fetal mice. The fetus was delivered by caesarean section at E18.5, and the fetal mouse kidney and RNA expression were evaluated. Additionally, the effect of the DT dose (25, 5, 0.5, and 0.05 ng/fetus-body) was studied. Intra-amniotic injection of DT led to a reduction in kidney volume, loss of glomeruli, and decreased differentiation marker expression. The intra-peritoneal route was not sufficient for NPC elimination. By establishing that intra-amniotic injection is the optimal administration route for DT, these results will facilitate studies of kidney regeneration in vivo. In addition, this method might be useful for analysis of kidney development at various time points by deleting NPCs during development. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study.

    PubMed

    Nickolas, Thomas L; Schmidt-Ott, Kai M; Canetta, Pietro; Forster, Catherine; Singer, Eugenia; Sise, Meghan; Elger, Antje; Maarouf, Omar; Sola-Del Valle, David Antonio; O'Rourke, Matthew; Sherman, Evan; Lee, Peter; Geara, Abdallah; Imus, Philip; Guddati, Achuta; Polland, Allison; Rahman, Wasiq; Elitok, Saban; Malik, Nasir; Giglio, James; El-Sayegh, Suzanne; Devarajan, Prasad; Hebbar, Sudarshan; Saggi, Subodh J; Hahn, Barry; Kettritz, Ralph; Luft, Friedrich C; Barasch, Jonathan

    2012-01-17

    This study aimed to determine the diagnostic and prognostic value of urinary biomarkers of intrinsic acute kidney injury (AKI) when patients were triaged in the emergency department. Intrinsic AKI is associated with nephron injury and results in poor clinical outcomes. Several urinary biomarkers have been proposed to detect and measure intrinsic AKI. In a multicenter prospective cohort study, 5 urinary biomarkers (urinary neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, urinary liver-type fatty acid binding protein, urinary interleukin-18, and cystatin C) were measured in 1,635 unselected emergency department patients at the time of hospital admission. We determined whether the biomarkers diagnosed intrinsic AKI and predicted adverse outcomes during hospitalization. All biomarkers were elevated in intrinsic AKI, but urinary neutrophil gelatinase-associated lipocalin was most useful (81% specificity, 68% sensitivity at a 104-ng/ml cutoff) and predictive of the severity and duration of AKI. Intrinsic AKI was strongly associated with adverse in-hospital outcomes. Urinary neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule 1 predicted a composite outcome of dialysis initiation or death during hospitalization, and both improved the net risk classification compared with conventional assessments. These biomarkers also identified a substantial subpopulation with low serum creatinine at hospital admission, but who were at risk of adverse events. Urinary biomarkers of nephron damage enable prospective diagnostic and prognostic stratification in the emergency department. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Diagnostic and Prognostic Stratification in the Emergency Department Using Urinary Biomarkers of Nephron Damage

    PubMed Central

    Nickolas, Thomas L.; Schmidt-Ott, Kai M.; Canetta, Pietro; Forster, Catherine; Singer, Eugenia; Sise, Meghan; Elger, Antje; Maarouf, Omar; Sola-Del Valle, David Antonio; O'Rourke, Matthew; Sherman, Evan; Lee, Peter; Geara, Abdallah; Imus, Philip; Guddati, Achuta; Polland, Allison; Rahman, Wasiq; Elitok, Saban; Malik, Nasir; Giglio, James; El-Sayegh, Suzanne; Devarajan, Prasad; Hebbar, Sudarshan; Saggi, Subodh J.; Hahn, Barry; Kettritz, Ralph; Luft, Friedrich C.; Barasch, Jonathan

    2012-01-01

    Objectives This study aimed to determine the diagnostic and prognostic value of urinary biomarkers of intrinsic acute kidney injury (AKI) when patients were triaged in the emergency department. Background Intrinsic AKI is associated with nephron injury and results in poor clinical outcomes. Several urinary biomarkers have been proposed to detect and measure intrinsic AKI. Methods In a multicenter prospective cohort study, 5 urinary biomarkers (urinary neutrophil gelatinase–associated lipocalin, kidney injury molecule-1, urinary liver-type fatty acid binding protein, urinary interleukin-18, and cystatin C) were measured in 1,635 unselected emergency department patients at the time of hospital admission. We determined whether the biomarkers diagnosed intrinsic AKI and predicted adverse outcomes during hospitalization. Results All biomarkers were elevated in intrinsic AKI, but urinary neutrophil gelatinase-associated lipocalin was most useful (81% specificity, 68% sensitivity at a 104-ng/ml cutoff) and predictive of the severity and duration of AKI. Intrinsic AKI was strongly associated with adverse in-hospital outcomes. Urinary neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule 1 predicted a composite outcome of dialysis initiation or death during hospitalization, and both improved the net risk classification compared with conventional assessments. These biomarkers also identified a substantial subpopulation with low serum creatinine at hospital admission, but who were at risk of adverse events. Conclusion Urinary biomarkers of nephron damage enable prospective diagnostic and prognostic stratification in the emergency department. PMID:22240130

  14. Active osmotic exchanger for advanced filtration at the nano scale

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  15. The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate.

    PubMed

    Mistry, Abinash C; Wynne, Brandi M; Yu, Ling; Tomilin, Viktor; Yue, Qiang; Zhou, Yiqun; Al-Khalili, Otor; Mallick, Rickta; Cai, Hui; Alli, Abdel A; Ko, Benjamin; Mattheyses, Alexa; Bao, Hui-Fang; Pochynyuk, Oleh; Theilig, Franziska; Eaton, Douglas C; Hoover, Robert S

    2016-10-01

    The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α- and γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  16. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis.

    PubMed

    Terker, Andrew S; Zhang, Chong; Erspamer, Kayla J; Gamba, Gerardo; Yang, Chao-Ling; Ellison, David H

    2016-01-01

    Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low-potassium diet. Recent data suggest that plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the with-no-lysine kinase (WNK)-Ste20p-related proline- and alanine-rich kinase (SPAK) pathway. As previous studies used extreme dietary manipulations, we sought to determine whether the relationship between potassium and NaCl cotransporter (NCC) is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect NCC in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride concentration. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3, and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable it to mediate effects of potassium on NCC in vivo. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf.

    PubMed

    Magella, Bliss; Adam, Mike; Potter, Andrew S; Venkatasubramanian, Meenakshi; Chetal, Kashish; Hay, Stuart B; Salomonis, Nathan; Potter, S Steven

    2018-02-01

    The developing kidney provides a useful model for study of the principles of organogenesis. In this report we use three independent platforms, Drop-Seq, Chromium 10x Genomics and Fluidigm C1, to carry out single cell RNA-Seq (scRNA-Seq) analysis of the E14.5 mouse kidney. Using the software AltAnalyze, in conjunction with the unsupervised approach ICGS, we were unable to identify and confirm the presence of 16 distinct cell populations during this stage of active nephrogenesis. Using a novel integrative supervised computational strategy, we were able to successfully harmonize and compare the cell profiles across all three technological platforms. Analysis of possible cross compartment receptor/ligand interactions identified the nephrogenic zone stroma as a source of GDNF. This was unexpected because the cap mesenchyme nephron progenitors had been thought to be the sole source of GDNF, which is a key driver of branching morphogenesis of the collecting duct system. The expression of Gdnf by stromal cells was validated in several ways, including Gdnf in situ hybridization combined with immunohistochemistry for SIX2, and marker of nephron progenitors, and MEIS1, a marker of stromal cells. Finally, the single cell gene expression profiles generated in this study confirmed and extended previous work showing the presence of multilineage priming during kidney development. Nephron progenitors showed stochastic expression of genes associated with multiple potential differentiation lineages. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Modulation of renal CNG-A3 sodium channel in rats subjected to low- and high-sodium diets.

    PubMed

    Novaira, Horacio J; Botelho, Bruno F; Goldenberg, Regina C; Guggino, Sandra E; Morales, Marcelo M

    2004-10-11

    In this work, we studied the mRNA distribution of CNG-A3, an amiloride-sensitive sodium channel that belongs to the cyclic nucleotide-gated (CNG) family of channels, along the rat nephron. The possible involvement of aldosterone in this process was also studied. We also evaluated its expression in rats subjected to diets with different concentrations of sodium or to alterations in aldosterone plasma levels. Total RNA isolated from whole kidney and/or dissected nephron segments of Wistar rats subjected to low- and high-sodium diets, furosemide treatment, adrenalectomy, and adrenalectomy with replacement by aldosterone were analyzed by the use of Western blot, ribonuclease protection assay (RPA) and/or reverse transcription followed by semi-quantitative polymerase chain reaction (RT-PCR). CNG-A3 sodium channel mRNA and protein expression, in whole kidneys of rats subjected to high-Na+ diet, were lower than those in animals given a low-salt diet. Renal CNG-A3 mRNA expression was also decreased in adrenalectomized rats, and was normalized by aldosterone replacement. Moreover, a CNG-A3 mRNA expression study in different nephron segments revealed that aldosterone modulation is present in the cortical thick ascending loop (cTAL) and cortical collecting duct (CCD). This result suggests that CNG-A3 is responsive to the same hormone signaling as the amiloride sensitive sodium channel ENaC and suggests the CNG-A3 may have a physiological role in sodium reabsorption.

  19. Purification and DNA binding properties of the blaI gene product, repressor for the beta-lactamase gene, blaP, of Bacillus licheniformis.

    PubMed Central

    Grossman, M J; Lampen, J O

    1987-01-01

    The location of the repressor gene, blaI, for the beta-lactamase gene blaP of Bacillus licheniformis 749, on the 5' side of blaP, was confirmed by sequencing the bla region of the constitutive mutant 749/C. An amber stop codon, likely to result in a nonfunctional truncated repressor, was found at codon 32 of the 128 codon blaI open reading frame (ORF) located 5' to blaP. In order to study the DNA binding activity of the repressor, the structural gene for blaI, from strain 749, with its ribosome binding site was expressed using a two plasmid T7 RNA polymerase/promotor system (S. Tabor and C. C. Richardson. Proc. Natl. Acad. Sci. 82, 1074-1078 (1985). Heat induction of this system in Escherichia coli K38 resulted in the production of BlaI as 5-10% of the soluble cell protein. Repressor protein was then purified by ammonium sulfate fractionation and cation exchange chromatography. The sequence of the N-terminal 28 amino acid residues was determined and was as predicted from the DNA. Binding of BlaI to DNA was detected by the slower migration of protein DNA complexes during polyacrylamide gel electrophoresis. BlaI was shown to selectively bind DNA fragments carrying the promoter regions of blaI and blaP. Images PMID:3498148

  20. Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo.

    PubMed

    Mugford, Joshua W; Sipilä, Petra; Kobayashi, Akio; Behringer, Richard R; McMahon, Andrew P

    2008-07-15

    The mammalian kidney consists of an array of tubules connected to a ductal system that collectively function to control water/salt balance and to remove waste from the organisms' circulatory system. During mammalian embryogenesis, three kidney structures form within the intermediate mesoderm. The two most anterior structures, the pronephros and the mesonephros, are transitory and largely non-functional, while the most posterior, the metanephros, persists as the adult kidney. We have explored the mechanisms underlying regional specific differentiation of the kidney forming mesoderm. Previous studies have shown a requirement for Hox11 paralogs (Hoxa11, Hoxc11 and Hoxd11) in metanephric development. Mice lacking all Hox11 activity fail to form metanephric kidney structures. We demonstrate that the Hox11 paralog expression is restricted in the intermediate mesoderm to the posterior, metanephric level. When Hoxd11 is ectopically activated in the anterior mesonephros, we observe a partial transformation to a metanephric program of development. Anterior Hoxd11(+) cells activate Six2, a transcription factor required for the maintenance of metanephric tubule progenitors. Additionally, Hoxd11(+) mesonephric tubules exhibit an altered morphology and activate several metanephric specific markers normally confined to distal portions of the functional nephron. Collectively, our data support a model where Hox11 paralogs specify a metanephric developmental program in responsive intermediate mesoderm. This program maintains tubule forming progenitors and instructs a metanephric specific pattern of nephron differentiation.

  1. The Repression-Sensitization Dimension in Relation to Impending Painful Stimulation

    ERIC Educational Resources Information Center

    Scarpetti, William L.

    1973-01-01

    The study attempted to replicate previous findings of differences between self-report and physiological indices of disturbance in repressors and sensitizers placed in threatening situations. Results indicate that repressors admit to less anxiety on the self-report measure while producing more physiological reactivity to threat of shock. No such…

  2. Identification and characterization of PhbF: a DNA binding protein with regulatory role in the PHB metabolism of Herbaspirillum seropedicae SmR1.

    PubMed

    Kadowaki, Marco A S; Müller-Santos, Marcelo; Rego, Fabiane G M; Souza, Emanuel M; Yates, Marshall G; Monteiro, Rose A; Pedrosa, Fabio O; Chubatsu, Leda S; Steffens, Maria B R

    2011-10-14

    Herbaspirillum seropedicae SmR1 is a nitrogen fixing endophyte associated with important agricultural crops. It produces polyhydroxybutyrate (PHB) which is stored intracellularly as granules. However, PHB metabolism and regulatory control is not yet well studied in this organism. In this work we describe the characterization of the PhbF protein from H. seropedicae SmR1 which was purified and characterized after expression in E. coli. The purified PhbF protein was able to bind to eleven putative promoters of genes involved in PHB metabolism in H. seropedicae SmR1. In silico analyses indicated a probable DNA-binding sequence which was shown to be protected in DNA footprinting assays using purified PhbF. Analyses using lacZ fusions showed that PhbF can act as a repressor protein controlling the expression of PHB metabolism-related genes. Our results indicate that H. seropedicae SmR1 PhbF regulates expression of phb-related genes by acting as a transcriptional repressor. The knowledge of the PHB metabolism of this plant-associated bacterium may contribute to the understanding of the plant-colonizing process and the organism's resistance and survival in planta.

  3. Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes

    PubMed Central

    Metz, Sebastian; Haberzettl, Kerstin; Frühwirth, Sebastian; Teich, Kristin; Hasewinkel, Christian; Klug, Gabriele

    2012-01-01

    The expression of photosynthesis genes in the facultatively photosynthetic bacterium Rhodobacter sphaeroides is controlled by the oxygen tension and by light quantity. Two photoreceptor proteins, AppA and CryB, have been identified in the past, which are involved in this regulation. AppA senses light by its N-terminal BLUF domain, its C-terminal part binds heme and is redox-responsive. Through its interaction to the transcriptional repressor PpsR the AppA photoreceptor controls expression of photosynthesis genes. The cryptochrome-like protein CryB was shown to affect regulation of photosynthesis genes, but the underlying signal chain remained unknown. Here we show that CryB interacts with the C-terminal domain of AppA and modulates the binding of AppA to the transcriptional repressor PpsR in a light-dependent manner. Consequently, binding of the transcription factor PpsR to its DNA target is affected by CryB. In agreement with this, all genes of the PpsR regulon showed altered expression levels in a CryB deletion strain after blue-light illumination. These results elucidate for the first time how a bacterial cryptochrome affects gene expression. PMID:22434878

  4. Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes.

    PubMed

    Metz, Sebastian; Haberzettl, Kerstin; Frühwirth, Sebastian; Teich, Kristin; Hasewinkel, Christian; Klug, Gabriele

    2012-07-01

    The expression of photosynthesis genes in the facultatively photosynthetic bacterium Rhodobacter sphaeroides is controlled by the oxygen tension and by light quantity. Two photoreceptor proteins, AppA and CryB, have been identified in the past, which are involved in this regulation. AppA senses light by its N-terminal BLUF domain, its C-terminal part binds heme and is redox-responsive. Through its interaction to the transcriptional repressor PpsR the AppA photoreceptor controls expression of photosynthesis genes. The cryptochrome-like protein CryB was shown to affect regulation of photosynthesis genes, but the underlying signal chain remained unknown. Here we show that CryB interacts with the C-terminal domain of AppA and modulates the binding of AppA to the transcriptional repressor PpsR in a light-dependent manner. Consequently, binding of the transcription factor PpsR to its DNA target is affected by CryB. In agreement with this, all genes of the PpsR regulon showed altered expression levels in a CryB deletion strain after blue-light illumination. These results elucidate for the first time how a bacterial cryptochrome affects gene expression.

  5. Therapeutic fetal-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms.

    PubMed

    Dai, Yan; Sangerman, Jose; Luo, Hong Yuan; Fucharoen, Suthat; Chui, David H K; Faller, Douglas V; Perrine, Susan P

    2016-01-01

    Pharmacologic augmentation of γ-globin expression sufficient to reduce anemia and clinical severity in patients with diverse hemoglobinopathies has been challenging. In studies here, representative molecules from four chemical classes, representing several distinct primary mechanisms of action, were investigated for effects on γ-globin transcriptional repressors, including components of the NuRD complex (LSD1 and HDACs 2-3), and the downstream repressor BCL11A, in erythroid progenitors from hemoglobinopathy patients. Two HDAC inhibitors (MS-275 and SB939), a short-chain fatty acid derivative (sodium dimethylbutyrate [SDMB]), and an agent identified in high-throughput screening, Benserazide, were studied. These therapeutics induced γ-globin mRNA in progenitors above same subject controls up to 20-fold, and increased F-reticulocytes up to 20%. Cellular protein levels of BCL11A, LSD-1, and KLF1 were suppressed by the compounds. Chromatin immunoprecipitation assays demonstrated a 3.6-fold reduction in LSD1 and HDAC3 occupancy in the γ-globin gene promoter with Benserazide exposure, 3-fold reduction in LSD-1 and HDAC2 occupancy in the γ-globin gene promoter with SDMB exposure, while markers of gene activation (histone H3K9 acetylation and H3K4 demethylation), were enriched 5.7-fold. These findings identify clinical-stage oral therapeutics which inhibit or displace major co-repressors of γ-globin gene transcription and may suggest a rationale for combination therapy to produce enhanced efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Therapeutic γ-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms

    PubMed Central

    Dai, Yan; Sangerman, Jose; Hong, Yuan Luo; Fuchareon, Suthat; Chui, David H.K.; Faller, Douglas V.; Perrine, Susan P.

    2015-01-01

    Pharmacologic augmentation of γ-globin expression sufficient to reduce anemia and clinical severity in patients with diverse hemoglobinopathies has been challenging. In studies here, representative molecules from four chemical classes, representing several distinct primary mechanisms of action, were investigated for effects on γ-globin transcriptional repressors, including components of the NuRD complex (LSD1 and HDACs 2-3), and the downstream repressor BCL11A, in erythroid progenitors from hemoglobinopathy patients. Two HDAC inhibitors (MS-275 and SB939), a short-chain fatty acid derivative (sodium dimethylbutyrate [SDMB]), and an agent identified in high-throughput screening, Benserazide, were studied. These therapeutics induced γ globin mRNA in progenitors above same subject controls up to 20-fold, and increased F-reticulocytes up to 20%. Cellular protein levels of BCL11A, LSD-1, and KLF1 were suppressed by the compounds. Chromatin immunoprecipitation assays demonstrated a 3.6-fold reduction in LSD1 and HDAC3 occupancy in the γ-globin gene promoter with Benserazide exposure, 3-fold reduction in LSD-1 and HDAC2 occupancy in the γ-globin gene promoter with SDMB exposure, while markers of gene activation (histone H3K9 acetylation and H3K4 demethylation), were enriched 5.7-fold. These findings identify clinical-stage oral therapeutics which inhibit or displace major co-repressors of γ-globin gene transcription and may suggest a rationale for combination therapy to produce enhanced efficacy. PMID:26603726

  7. Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1)

    PubMed Central

    Vaeth, Martin; Gogishvili, Tea; Bopp, Tobias; Klein, Matthias; Berberich-Siebelt, Friederike; Gattenloehner, Stefan; Avots, Andris; Sparwasser, Tim; Grebe, Nadine; Schmitt, Edgar; Hünig, Thomas; Serfling, Edgar; Bodor, Josef

    2011-01-01

    Inducible cAMP early repressor (ICER) is a transcriptional repressor, which, because of alternate promoter use, is generated from the 3′ region of the cAMP response modulator (Crem) gene. Its expression and nuclear occurrence are elevated by high cAMP levels in naturally occurring regulatory T cells (nTregs). Using two mouse models, we demonstrate that nTregs control the cellular localization of ICER/CREM, and thereby inhibit IL-2 synthesis in conventional CD4+ T cells. Ablation of nTregs in depletion of regulatory T-cell (DEREG) mice resulted in cytosolic localization of ICER/CREM and increased IL-2 synthesis upon stimulation. Direct contacts between nTregs and conventional CD4+ T cells led to nuclear accumulation of ICER/CREM and suppression of IL-2 synthesis on administration of CD28 superagonistic (CD28SA) Ab. In a similar way, nTregs communicated with B cells and induced the cAMP-driven nuclear localization of ICER/CREM. High levels of ICER suppressed the induction of nuclear factor of activated T cell c1 (Nfatc1) gene in T cells whose inducible Nfatc1 P1 promoter bears two highly conserved cAMP-responsive elements to which ICER/CREM can bind. These findings suggest that nTregs suppress T-cell responses by the cAMP-dependent nuclear accumulation of ICER/CREM and inhibition of NFATc1 and IL-2 induction. PMID:21262800

  8. Gestational low-protein intake enhances whole-kidney miR-192 and miR-200 family expression and epithelial-to-mesenchymal transition in rat adult male offspring.

    PubMed

    Sene, Letícia B; Rizzi, Victor Hugo Gonçalves; Gontijo, José A R; Boer, Patricia A

    2018-05-22

    Studies have shown that adult offspring of mothers fed a protein-restricted diet during pregnancy present a pronounced reduction of nephron number associated with decreased fractional urinary sodium excretion and arterial hypertension. Additionally, recent advances in our understanding of the molecular pathways that govern the association of gestational nutritional restriction, intrauterine growth retardation and inflammation with impaired nephrogenesis, nephron underdosing and kidney fibrosis point to the epithelial to mesenchymal transition (EMT) as a common factor. In the current study, protein and sodium urinary excretion rates were evaluated in rats, and immunohistochemistry and western blot techniques were used to characterize kidney structure changes in 16 week old male offspring of mothers fed a low-protein diet during pregnancy (LP group) compared with age-matched (NP) controls. We also verified the expression of miRNA, mRNA and protein markers of fibrosis and the EMT in whole kidney prepared from LP offspring. We found, surprisingly, that arterial hypertension and long-term hyperfiltration, manifest by proteinuria, were associated with increased renal miR-192 and miR-200 family expression in 16 week old LP relative to age-matched NP rats. Measurement of kidney fibrosis and EMT-related protein markers, by histochemistry and immunoblot techniques, showed a significant rise of TGF-β1 and type-I collagen content in glomeruli and tubulointerstitial areas, accompanied by enhanced fibronectin and ZEB1 and decreased E-cadherin immunoreactivity in 16 week old LP offspring. The results were partially confirmed by increased gene (mRNA) expression of collagen 1α1, collagen 1α2 and ZEB1 in LP whole kidneys compared with those of age-matched NP offspring. In view of the presumed functional overload in the remaining nephrons, we suggest that hypertension and proteinuria development following maternal protein restriction may be a preponderant factor for EMT and structural kidney changes in LP offspring. However, our study was not wholly able to establish the precise role of miRNAs in LP kidney disorders. Thus, further studies will be required to assess the contribution of the miR family to renal injury in a gestational protein-restricted model of fetal programming. © 2018. Published by The Company of Biologists Ltd.

  9. [New perspective on the role of WNK1 and WNK4 in the regulation of NaCl reabsorption and K(+) secretion by the distal nephron].

    PubMed

    Rafael, Chloé; Chavez-Canales, Maria; Hadchouel, Juliette

    2016-03-01

    The study of Familial Hyperkalemic Hypertension (FHHt), a rare monogenic disease, allowed remarkable advances in the understanding of the mechanisms of regulation of NaCl reabsorption by the distal nephron. FHHt results from mutations in the genes encoding WNK1 and WNK4, two serine-threonine kinases of the WNK (With No lysine [K]) family. The clinical manifestations of FHHt are due, among others, to an increased activity of the Na(+)-Cl(-) cotransporter NCC. Several groups therefore tried to understand how WNK1 and WNK4 could regulate NCC. However, the data were often contradictory. Two of our recent studies allowed to partially explain these controversies and to propose a new model for the regulation of NCC by the WNKs. © 2016 médecine/sciences – Inserm.

  10. Pathogenesis of dysplastic kidney associated with urinary tract obstruction in utero.

    PubMed

    Nagata, Michio; Shibata, Sawako; Shu, Yujin

    2002-01-01

    Renal dysplasia is the major cause of chronic renal failure in children, and is commonly associated with urinary tract obstruction. There are two phenotypes of renal dysplasia associated with urinary tract abnormality, multicystic dysplastic kidney (MCDK) and obstructive dysplasia (ORD). Previous observations by Potter and co-workers suggested that cystic dilatation of the ureteric bud ampula was the cause of renal dysplasia. In this context, our recent investigation of human fetal dysplastic kidneys provided an alternative explanation for the evolution of renal dysplasia. We suggested that in utero urinary tract obstruction may cause urine retention in functioning nephrons and lead to glomerular cysts in the nephrogenic zone. The mechanism was common to MCDK and ORD, albeit at different sites of obstruction. Expansion of glomerular cysts with tubular dilatation (cysts) disturbs the subsequent nephron induction and may contribute to the abnormal development of fetal kidneys.

  11. P1,P4-diadenosine tetraphosphate (Ap4A) inhibits proximal tubular reabsorption of sodium in rats.

    PubMed

    Stiepanow-Trzeciak, Anna; Jankowski, Maciej; Angielski, Stefan; Szczepanska-Konkel, Miroslawa

    2007-01-01

    P1,P4-diadenosine tetraphosphate (Ap4A) is a vasoactive dinucleotide possessing natriuretic activity. It is unclear, however, which part of the nephron is the target site of action for Ap4A. We evaluated the tubular sites of Ap4A action using the lithium clearance technique. Ap4A at a priming dose of 2 micromol/kg with subsequent infusion at 20 nmol/kg/min increased fractional water and sodium excretion 2.5- and 5.6-fold, respectively. Moreover, Ap4A increased lithium clearance 1.9-fold and fractional lithium excretion 2.8-fold. Fractional water and sodium excretion from distal nephron segments was not significantly affected by Ap4A. These results suggest that Ap4A induces natriuresis mainly through inhibition of proximal tubular reabsorption of sodium. Copyright 2007 S. Karger AG, Basel.

  12. Renal potassium physiology: integration of the renal response to dietary potassium depletion.

    PubMed

    Kamel, Kamel S; Schreiber, Martin; Halperin, Mitchell L

    2018-01-01

    We summarize the current understanding of the physiology of the renal handling of potassium (K + ), and present an integrative view of the renal response to K + depletion caused by dietary K + restriction. This renal response involves contributions from different nephron segments, and aims to diminish the rate of excretion of K + as a result of: decreasing the rate of electrogenic (and increasing the rate of electroneutral) reabsorption of sodium in the aldosterone-sensitive distal nephron (ASDN), decreasing the abundance of renal outer medullary K + channels in the luminal membrane of principal cells in the ASDN, decreasing the flow rate in the ASDN, and increasing the reabsorption of K + in the cortical and medullary collecting ducts. The implications of this physiology for the association between K + depletion and hypertension, and K + depletion and formation of calcium kidney stones are discussed. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Renal effects of continuous negative pressure breathing

    NASA Technical Reports Server (NTRS)

    Kinney, M. J.; Discala, V. A.

    1975-01-01

    Continuous negative pressure breathing (CNPB) was utilized to simulate the thoracic vascular distension of zero g or space, in 11 anesthetized rats. The animals underwent renal clearance and micropuncture renal nephron studies before, during, and after CNPB. Rats were pretreated with a high salt diet and I-M desoxycorticosterone (DOCA) in excess. None of these rats diuresed with CNPB. In contrast 5 of the 7 remaining rats increased the fraction of the filtered sodium excreted (C sub Na/GFR, p .05) and their urinary flow rate (V, p .05). Potassium excretion increased (U sub k V, p .05). End proximal tubular fluid specimen's TF/P inulin ratios were unchanged. Whole kidney and single nephron glomerular filtration rates fell 10%. CNPB, a mechanism for atrial distension, appears to cause, in rats, a decrease in distal tubular sodium, water and potassium reabsorption. Exogenous mineral-corticoid prevents the diuresis, saluresis, and kaluresis.

  14. Gross, histological and ultrastructural morphology of the aglomerular kidney in the lined seahorse Hippocampus erectus.

    PubMed

    Fogelson, S B; Yanong, R P E; Kane, A; Teal, C N; Berzins, I K; Smith, S A; Brown, C; Camus, A

    2015-09-01

    Histologic evaluation of the renal system in the lined seahorse Hippocampus erectus reveals a cranial kidney with low to moderate cellularity, composed of a central dorsal aorta, endothelial lined capillary sinusoids, haematopoietic tissue, fine fibrovascular stroma, ganglia and no nephrons. In comparison, the caudal kidney is moderately to highly cellular with numerous highly convoluted epithelial lined tubules separated by interlacing haematopoietic tissue, no glomeruli, fine fibrovascular stroma, numerous capillary sinusoids, corpuscles of Stannius and clusters of endocrine cells adjacent to large calibre vessels. Ultrastructural evaluation of the renal tubules reveals minimal variability of the tubule epithelium throughout the length of the nephron and the majority of tubules are characterized by epithelial cells with few apical microvilli, elaborate basal membrane infolding, rare electron dense granules and abundant supporting collagenous matrix. © 2015 The Fisheries Society of the British Isles.

  15. Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence.

    PubMed

    Yang, Li; Teixeira, Paulo José Pereira Lima; Biswas, Surojit; Finkel, Omri M; He, Yijian; Salas-Gonzalez, Isai; English, Marie E; Epple, Petra; Mieczkowski, Piotr; Dangl, Jeffery L

    2017-02-08

    Independently evolved pathogen effectors from three branches of life (ascomycete, eubacteria, and oomycete) converge onto the Arabidopsis TCP14 transcription factor to manipulate host defense. However, the mechanistic basis for defense control via TCP14 regulation is unknown. We demonstrate that TCP14 regulates the plant immune system by transcriptionally repressing a subset of the jasmonic acid (JA) hormone signaling outputs. A previously unstudied Pseudomonas syringae (Psy) type III effector, HopBB1, interacts with TCP14 and targets it to the SCF COI1 degradation complex by connecting it to the JA signaling repressor JAZ3. Consequently, HopBB1 de-represses the TCP14-regulated subset of JA response genes and promotes pathogen virulence. Thus, HopBB1 fine-tunes host phytohormone crosstalk by precisely manipulating part of the JA regulon to avoid pleiotropic host responses while promoting pathogen proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression.

    PubMed

    Kerk, Sze Yen; Kratsios, Paschalis; Hart, Michael; Mourao, Romulo; Hobert, Oliver

    2017-01-04

    A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression.

    PubMed

    Koontz, Laura M; Liu-Chittenden, Yi; Yin, Feng; Zheng, Yonggang; Yu, Jianzhong; Huang, Bo; Chen, Qian; Wu, Shian; Pan, Duojia

    2013-05-28

    The Hippo tumor suppressor pathway restricts tissue growth by inactivating the transcriptional coactivator Yki. Although Sd has been implicated as a DNA-binding transcription factor partner for Yki and can genetically account for gain-of-function Yki phenotypes, how Yki regulates normal tissue growth remains a long-standing puzzle because Sd, unlike Yki, is dispensable for normal growth in most Drosophila tissues. Here we show that the yki mutant phenotypes in multiple developmental contexts are rescued by inactivation of Sd, suggesting that Sd functions as a default repressor and that Yki promotes normal tissue growth by relieving Sd-mediated default repression. We further identify Tgi as a cofactor involved in Sd's default repressor function and demonstrate that the mammalian ortholog of Tgi potently suppresses the YAP oncoprotein in transgenic mice. These findings fill a major gap in Hippo-mediated transcriptional regulation and open up possibilities for modulating the YAP oncoprotein in cancer and regenerative medicine. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The fickle finger of fate

    PubMed Central

    de la Fuente, Luis; Helms, Jill A.

    2005-01-01

    In this issue of the JCI, Niedermaier and colleagues demonstrate that a chromosomal inversion in mice results in dysregulation of Sonic hedgehog (Shh), such that Shh is ectopically expressed in a skeletogenic domain typically occupied by Indian hedgehog (Ihh). This molecular reversal eliminates phalangeal joint spaces, and consequently, Short digits (Dsh) heterozygotes (Dsh/+) have brachydactyly (shortened digits). Ihh is normally downregulated in regions that will become the joint space, but in Dsh/+ mice, Shh bypasses this regulatory control and persists; accordingly, cells maintain their chondrogenic fate and the developed digits are shorter than normal. The significance of these data extends far beyond the field of skeletal biology: they hint at the very real possibility that the endogenous Shh regulatory region contains a repressor designed to segregate the activity of Shh from Ihh. The existence of such a repressor provides a window into the distant past, revealing that Shh and Ihh must once have shared responsibilities in establishing tissue boundaries and orchestrating vertebrate tissue morphogenesis. PMID:15841172

  19. Regulation and Adaptive Evolution of Lactose Operon Expression in Lactobacillus delbrueckii

    PubMed Central

    Lapierre, Luciane; Mollet, Beat; Germond, Jacques-Edouard

    2002-01-01

    Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the β-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (β-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus. PMID:11807052

  20. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    PubMed Central

    Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie

    2007-01-01

    Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with γ-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH· radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH· radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689

  1. Zn(II) stimulation of Fe(II)-activated repression in the iron-dependent repressor from Mycobacterium tuberculosis.

    PubMed

    Stapleton, Brian; Walker, Lawrence R; Logan, Timothy M

    2013-03-19

    Thermodynamic measurements of Fe(II) binding and activation of repressor function in the iron-dependent repressor from Mycobacterium tuberculosis (IdeR) are reported. IdeR, a member of the diphtheria toxin repressor family of proteins, regulates iron homeostasis and contributes to the virulence response in M. tuberculosis. Although iron is the physiological ligand, this is the first detailed analysis of iron binding and activation in this protein. The results showed that IdeR binds 2 equiv of Fe(II) with dissociation constants that differ by a factor of 25. The high- and low-affinity iron binding sites were assigned to physical binding sites I and II, respectively, using metal binding site mutants. IdeR was also found to contain a high-affinity Zn(II) binding site that was assigned to physical metal binding site II through the use of binding site mutants and metal competition assays. Fe(II) binding was modestly weaker in the presence of Zn(II), but the coupled metal binding-DNA binding affinity was significantly stronger, requiring 30-fold less Fe(II) to activate DNA binding compared to Fe(II) alone. Together, these results suggest that IdeR is a mixed-metal repressor, where Zn(II) acts as a structural metal and Fe(II) acts to trigger the physiologically relevant promoter binding. This new model for IdeR activation provides a better understanding of IdeR and the biology of iron homeostasis in M. tuberculosis.

  2. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes.

    PubMed

    Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Aging and the Disposition and Toxicity of Mercury in Rats

    PubMed Central

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2014-01-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg2+), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg2+ in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5 μmol • kg−1 non-nephrotoxic or a 2.5 μmol • kg−1 nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775

  4. ROMK inhibitor actions in the nephron probed with diuretics

    PubMed Central

    Kharade, Sujay V.; Flores, Daniel; Lindsley, Craig W.; Satlin, Lisa M.

    2015-01-01

    Diuretics acting on specific nephron segments to inhibit Na+ reabsorption have been used clinically for decades; however, drug interactions, tolerance, and derangements in serum K+ complicate their use to achieve target blood pressure. ROMK is an attractive diuretic target, in part, because its inhibition is postulated to indirectly inhibit the bumetanide-sensitive Na+-K+-2Cl− cotransporter (NKCC2) and the amiloride- and benzamil-sensitive epithelial Na+ channel (ENaC). The development of small-molecule ROMK inhibitors has created opportunities for exploring the physiological responses to ROMK inhibition. The present study evaluated how inhibition of ROMK alone or in combination with NKCC2, ENaC, or the hydrochlorothiazide (HCTZ) target NCC alter fluid and electrolyte transport in the nephron. The ROMK inhibitor VU591 failed to induce diuresis when administered orally to rats. However, another ROMK inhibitor, termed compound A, induced a robust natriuretic diuresis without kaliuresis. Compound A produced additive effects on urine output and Na+ excretion when combined with HCTZ, amiloride, or benzamil, but not when coadministered with bumetanide, suggesting that the major diuretic target site is the thick ascending limb (TAL). Interestingly, compound A inhibited the kaliuretic response induced by bumetanide and HCTZ, an effect we attribute to inhibition of ROMK-mediated K+ secretion in the TAL and CD. Compound A had no effect on heterologously expressed flow-sensitive large-conductance Ca2+-activated K+ channels (Slo1/β1). In conclusion, compound A represents an important new pharmacological tool for investigating the renal consequences of ROMK inhibition and therapeutic potential of ROMK as a diuretic target. PMID:26661652

  5. ROMK inhibitor actions in the nephron probed with diuretics.

    PubMed

    Kharade, Sujay V; Flores, Daniel; Lindsley, Craig W; Satlin, Lisa M; Denton, Jerod S

    2016-04-15

    Diuretics acting on specific nephron segments to inhibit Na + reabsorption have been used clinically for decades; however, drug interactions, tolerance, and derangements in serum K + complicate their use to achieve target blood pressure. ROMK is an attractive diuretic target, in part, because its inhibition is postulated to indirectly inhibit the bumetanide-sensitive Na + -K + -2Cl - cotransporter (NKCC2) and the amiloride- and benzamil-sensitive epithelial Na + channel (ENaC). The development of small-molecule ROMK inhibitors has created opportunities for exploring the physiological responses to ROMK inhibition. The present study evaluated how inhibition of ROMK alone or in combination with NKCC2, ENaC, or the hydrochlorothiazide (HCTZ) target NCC alter fluid and electrolyte transport in the nephron. The ROMK inhibitor VU591 failed to induce diuresis when administered orally to rats. However, another ROMK inhibitor, termed compound A, induced a robust natriuretic diuresis without kaliuresis. Compound A produced additive effects on urine output and Na + excretion when combined with HCTZ, amiloride, or benzamil, but not when coadministered with bumetanide, suggesting that the major diuretic target site is the thick ascending limb (TAL). Interestingly, compound A inhibited the kaliuretic response induced by bumetanide and HCTZ, an effect we attribute to inhibition of ROMK-mediated K + secretion in the TAL and CD. Compound A had no effect on heterologously expressed flow-sensitive large-conductance Ca 2+ -activated K + channels (Slo1/β1). In conclusion, compound A represents an important new pharmacological tool for investigating the renal consequences of ROMK inhibition and therapeutic potential of ROMK as a diuretic target. Copyright © 2016 the American Physiological Society.

  6. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis.

    PubMed

    Lindström, Nils O; McMahon, Jill A; Guo, Jinjin; Tran, Tracy; Guo, Qiuyu; Rutledge, Elisabeth; Parvez, Riana K; Saribekyan, Gohar; Schuler, Robert E; Liao, Christopher; Kim, Albert D; Abdelhalim, Ahmed; Ruffins, Seth W; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; Kesselman, Carl; McMahon, Andrew P

    2018-03-01

    Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species. Copyright © 2018 by the American Society of Nephrology.

  7. A MicroRNA Cluster miR-23-24-27 Is Upregulated by Aldosterone in the Distal Kidney Nephron Where it Alters Sodium Transport.

    PubMed

    Liu, Xiaoning; Edinger, Robert S; Klemens, Christine A; Phua, Yu L; Bodnar, Andrew J; LaFramboise, William A; Ho, Jacqueline; Butterworth, Michael B

    2017-06-01

    The epithelial sodium channel (ENaC) is expressed in the epithelial cells of the distal convoluted tubules, connecting tubules, and cortical collecting duct (CCD) in the kidney nephron. Under the regulation of the steroid hormone aldosterone, ENaC is a major determinant of sodium (Na + ) and water balance. The ability of aldosterone to regulate microRNAs (miRs) in the kidney has recently been realized, but the role of miRs in Na + regulation has not been well established. Here we demonstrate that expression of a miR cluster mmu-miR-23-24-27, is upregulated in the CCD by aldosterone stimulation both in vitro and in vivo. Increasing the expression of these miRs increased Na + transport in the absence of aldosterone stimulation. Potential miR targets were evaluated and miR-27a/b was verified to bind to the 3'-untranslated region of intersectin-2, a multi-domain protein expressed in the distal kidney nephron and involved in the regulation of membrane trafficking. Expression of Itsn2 mRNA and protein was decreased after aldosterone stimulation. Depletion of Itsn2 expression, mimicking aldosterone regulation, increased ENaC-mediated Na + transport, while Itsn2 overexpression reduced ENaC's function. These findings reinforce a role for miRs in aldosterone regulation of Na + transport, and implicate miR-27 in aldosterone's action via a novel target. J. Cell. Physiol. 232: 1306-1317, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Ischemic acute renal failure and antioxidant therapy in the rat. The relation between glomerular and tubular dysfunction.

    PubMed Central

    Bird, J E; Milhoan, K; Wilson, C B; Young, S G; Mundy, C A; Parthasarathy, S; Blantz, R C

    1988-01-01

    The effects of antioxidant therapy with probucol were evaluated in rats subjected to 1 h renal ischemia and to 24 h reperfusion. Probucol exerted significant antioxidant effects in renal cortical tubules in vitro when exposed to a catalase-resistant oxidant. At 24 h probucol treatment (IP) improved single nephron glomerular filtration rate (SNGFR) (28.1 +/- 3.3 nl/min) in comparison to untreated ischemic (I) rats (15.2 +/- 3.0), primarily as a result of improving SNGFR in a population of low SNGFR, low flow and/or obstructed nephrons. However, absolute proximal reabsorption remained abnormally low in IP rats at 24 h (5.9 +/- 0.8 nl/min), and cell necrosis was greater than in I rats. Kidney GFR remained low in IP rats due to extensive tubular backleak of inulin measured by microinjection studies. Evaluations after 2 h of reperfusion revealed a higher SNGFR in IP (36 +/- 3.1 nl/min) than I rats (20.8 +/- 2.7 nl/min). Absolute proximal reabsorption was essentially normal (11.6 +/- 1.3 nl/min) in IP rats, which was higher than IP rats at 24 h and the concurrent I rats. Administration of the lipophilic antioxidant, probucol, increased SNGFR and proximal tubular reabsorption within 2 h after ischemic renal failure. Although SNGFR remained higher than I rats at 24 h, absolute reabsorption fell below normal levels and tubular necrosis was more extensive in IP rats. Early improvement in nephron filtration with antioxidants may increase load dependent metabolic demand upon tubules and increase the extent of damage and transport dysfunction. Images PMID:2835399

  9. Lengths of nephron tubule segments and collecting ducts in the CD-1 mouse kidney: an ontogeny study.

    PubMed

    Walton, Sarah L; Moritz, Karen M; Bertram, John F; Singh, Reetu R

    2016-11-01

    The kidney continues to mature postnatally, with significant elongation of nephron tubules and collecting ducts to maintain fluid/electrolyte homeostasis. The aim of this project was to develop methodology to estimate lengths of specific segments of nephron tubules and collecting ducts in the CD-1 mouse kidney using a combination of immunohistochemistry and design-based stereology (vertical uniform random sections with cycloid arc test system). Lengths of tubules were determined at postnatal day 21 (P21) and 2 and 12 mo of age and also in mice fed a high-salt diet throughout adulthood. Immunohistochemistry was performed to identify individual tubule segments [aquaporin-1, proximal tubules (PT) and thin descending limbs of Henle (TDLH); uromodulin, distal tubules (DT); aquaporin-2, collecting ducts (CD)]. All tubular segments increased significantly in length between P21 and 2 mo of age (PT, 602% increase; DT, 200% increase; TDLH, 35% increase; CD, 53% increase). However, between 2 and 12 mo, a significant increase in length was only observed for PT (76% increase in length). At 12 mo of age, kidneys of mice on a high-salt diet demonstrated a 27% greater length of the TDLH, but no significant change in length was detected for PT, DT, and CD compared with the normal-salt group. Our study demonstrates an efficient method of estimating lengths of specific segments of the renal tubular system. This technique can be applied to examine structure of the renal tubules in combination with the number of glomeruli in the kidney in models of altered renal phenotype. Copyright © 2016 the American Physiological Society.

  10. Ion transport in the zebrafish kidney from a human disease angle: possibilities, considerations, and future perspectives.

    PubMed

    Kersten, Simone; Arjona, Francisco J

    2017-01-01

    Unique experimental advantages, such as its embryonic/larval transparency, high-throughput nature, and ease of genetic modification, underpin the rapid emergence of the zebrafish (Danio rerio) as a preeminent model in biomedical research. Particularly in the field of nephrology, the zebrafish provides a promising model for studying the physiological implications of human solute transport processes along consecutive nephron segments. However, although the zebrafish might be considered a valuable model for numerous renal ion transport diseases and functional studies of many channels and transporters, not all human renal electrolyte transport mechanisms and human diseases can be modeled in the zebrafish. With this review, we explore the ontogeny of zebrafish renal ion transport, its nephron structure and function, and thereby demonstrate the clinical translational value of this model. By critical assessment of genomic and amino acid conservation of human proteins involved in renal ion handling (channels, transporters, and claudins), kidney and nephron segment conservation, and renal electrolyte transport physiology in the zebrafish, we provide researchers and nephrologists with an indication of the possibilities and considerations of the zebrafish as a model for human renal ion transport. Combined with advanced techniques envisioned for the future, implementation of the zebrafish might expand beyond unraveling pathophysiological mechanisms that underlie distinct genetic or environmentally, i.e., pharmacological and lifestyle, induced renal transport deficits. Specifically, the ease of drug administration and the exploitation of improved genetic approaches might argue for the adoption of the zebrafish as a model for preclinical personalized medicine for distinct renal diseases and renal electrolyte transport proteins. Copyright © 2017 the American Physiological Society.

  11. The global repressor FliZ antagonizes gene expression by σS-containing RNA polymerase due to overlapping DNA binding specificity.

    PubMed

    Pesavento, Christina; Hengge, Regine

    2012-06-01

    FliZ, a global regulatory protein under the control of the flagellar master regulator FlhDC, was shown to antagonize σ(S)-dependent gene expression in Escherichia coli. Thereby it plays a pivotal role in the decision between alternative life-styles, i.e. FlhDC-controlled flagellum-based motility or σ(S)-dependent curli fimbriae-mediated adhesion and biofilm formation. Here, we show that FliZ is an abundant DNA-binding protein that inhibits gene expression mediated by σ(S) by recognizing operator sequences that resemble the -10 region of σ(S)-dependent promoters. FliZ does so with a structural element that is similar to region 3.0 of σ(S). Within this element, R108 in FliZ corresponds to K173 in σ(S), which contacts a conserved cytosine at the -13 promoter position that is specific for σ(S)-dependent promoters. R108 as well as C(-13) are also crucial for DNA binding by FliZ. However, while a number of FliZ binding sites correspond to known σ(S)-dependent promoters, promoter activity is not a prerequisite for FliZ binding and repressor function. Thus, we demonstrate that FliZ also feedback-controls flagellar gene expression by binding to a site in the flhDC control region that shows similarity only to a -10 element of a σ(S)-dependent promoter, but does not function as a promoter.

  12. Transforming an educational virtual reality simulation into a work of fine art.

    PubMed

    Panaiotis; Addison, Laura; Vergara, Víctor M; Hakamata, Takeshi; Alverson, Dale C; Saiki, Stanley M; Caudell, Thomas Preston

    2008-01-01

    This paper outlines user interface and interaction issues, technical considerations, and problems encountered in transforming an educational VR simulation of a reified kidney nephron into an interactive artwork appropriate for a fine arts museum.

  13. Extracellular 2′,3′-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells

    PubMed Central

    Gillespie, Delbert G.

    2013-01-01

    In a previous study, we demonstrated that human proximal tubular epithelial cells obtained from a commercial source metabolized extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and extracellular 2′-AMP and 3′-AMP to adenosine (the extracellular 2′,3′-cAMP-adenosine pathway; extracellular 2′,3′-cAMP → 2′-AMP + 3′-AMP → adenosine). The purpose of this study was to investigate the metabolism of extracellular 2′,3′-cAMP in proximal tubular vs. thick ascending limb vs. collecting duct epithelial cells freshly isolated from their corresponding nephron segments obtained from rat kidneys. In epithelial cells from all three nephron segments, 1) extracellular 2′,3′-cAMP was metabolized to 2′-AMP and 3′-AMP, with 2′-AMP > 3′-AMP, 2) the metabolism of extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP was not inhibited by either 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor) or 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), 3) extracellular 2′,3′-cAMP increased extracellular adenosine levels, 4) 3′-AMP and 2′-AMP were metabolized to adenosine with an efficiency similar to that of 5′-AMP, and 5) the metabolism of 5′-AMP, 3′-AMP, and 2′-AMP was not inhibited by α,β-methylene-adenosine-5′-diphosphate (CD73 inhibitor). These results support the conclusion that renal epithelial cells all along the nephron can metabolize extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and can efficiently metabolize extracellular 2′-AMP and 3′-AMP to adenosine and that the metabolic enzymes involved are not the classical phosphodiesterases nor ecto-5′-nucleotidase (CD73). Because 2′,3′-cAMP is released by injury and because previous studies demonstrate that the extracellular 2′,3′-cAMP-adenosine pathway stimulates epithelial cell proliferation via adenosine A2B receptors, the present results suggest that the extracellular 2′,3′-cAMP-adenosine pathway may help restore epithelial cells along the nephron following kidney injury. PMID:23077101

  14. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance.

    PubMed

    Diallo, Amadou; Kane, Ndjido; Agharbaoui, Zahra; Badawi, Mohamed; Sarhan, Fathey

    2010-01-13

    The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  15. The Genetics and Epigenetics of Kidney Development

    PubMed Central

    Patel, Sanjeevkumar R.; Dressler, Gregory R.

    2013-01-01

    The development of the mammalian kidney has been studied at the genetic, biochemical, and cell biological level for more than 40 years. As such, detailed mechanisms governing early patterning, cell lineages, and inductive interactions are well described. How genes interact to specify the renal epithelial cells of the nephrons and how this specification is relevant to maintaining normal renal function is discussed. Implicit in the development of the kidney are epigenetic mechanisms that mark renal cell types and connect certain developmental regulatory factors to chromatin modifications that control gene expression patterns and cellular physiology. In adults, such regulatory factors and their epigenetic pathways may function in regeneration and may be disturbed in disease processes. PMID:24011574

  16. Elevated blood pressure in offspring of rats exposed to diverse chemicals during pregnancy

    EPA Science Inventory

    Adverse intrauterine environments are associated with increased risk of later disease, including cardiovascular disease and hypertension. As a potential bioindicator of such an adverse environment, we measured blood pressure (BP), renal nephron endowment, renal glucocorticoid rec...

  17. Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus.

    PubMed

    Néant, Isabelle; Mellström, Britt; Gonzalez, Paz; Naranjo, Jose R; Moreau, Marc; Leclerc, Catherine

    2015-09-01

    In amphibian embryos, our previous work has demonstrated that calcium transients occurring in the dorsal ectoderm at the onset of gastrulation are necessary and sufficient to engage the ectodermal cells into a neural fate by inducing neural specific genes. Some of these genes are direct targets of calcium. Here we search for a direct transcriptional mechanism by which calcium signals are acting. The only known mechanism responsible for a direct action of calcium on gene transcription involves an EF-hand Ca²⁺ binding protein which belongs to a group of four proteins (Kcnip1 to 4). Kcnip protein can act in a Ca²⁺-dependent manner as a transcriptional repressor by binding to a specific DNA sequence, the Downstream Regulatory Element (DRE) site. In Xenopus, among the four kcnips, we show that only kcnip1 is timely and spatially present in the presumptive neural territories and is able to bind DRE sites in a Ca²⁺-dependent manner. The loss of function of kcnip1 results in the expansion of the neural plate through an increased proliferation of neural progenitors. Later on, this leads to an impairment in the development of anterior neural structures. We propose that, in the embryo, at the onset of neurogenesis Kcnip1 is the Ca²⁺-dependent transcriptional repressor that controls the size of the neural plate. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Copyright © 2014. Published by Elsevier B.V.

  18. Promoter/repressor system of Lactobacillus plantarum phage og1e: characterization of the promoters pR49-pR-pL and overproduction of the cro-like protein cng in Escherichia coli.

    PubMed

    Kakikawa, M; Watanabe, N; Funawatashi, T; Oki, M; Yasukawa, H; Taketo, A; Kodaira, K I

    1998-07-30

    The Lactobacillus plantarum phage og1e (42259bp) has two repressor-like genes cng and cpg oriented oppositely, accompanied by three potential promoters pR, pL and pR49, and seven operator-like sequences (GATAC-boxes) (Kodaira et al., 1997). In this study, the og1e putative promoters were introduced into the Escherichia coli promoter-detecting plasmid pKK232-8. In E. coli CK111, pR (pKPR1), pL (pKPL1) and pR49 (pKPR49) exhibited distinct CAT activities. When pKPR1 or pKPL1 was coexistent with a compatible plasmid pACYC184 carrying pR-cng (pA4PRCN1), the CAT activity was decreased significantly. On the other hand, cng directed a protein (Cng) of 10.1 kDa in E. coli under the control of T7 promoter. Gel mobility-shift assays demonstrated that Cng binds specifically to a DNA region containing the GATAC-boxes. In addition, primer extension analyses demonstrated that the two sequences pR and pL act as a promoter in L. plantarum as well as in E. coli. These results suggested that the potential promoters pR and pL probably function for the lytic and lysogenic pathways, respectively, and Cng may act as a repressor presumably through the GATAC-boxes as operators.

  19. The transcription repressor NmrA is subject to proteolysis by three Aspergillus nidulans proteases

    PubMed Central

    Zhao, Xiao; Hume, Samantha L; Johnson, Christopher; Thompson, Paul; Huang, Junyong; Gray, Joe; Lamb, Heather K; Hawkins, Alastair R

    2010-01-01

    The role of specific cleavage of transcription repressor proteins by proteases and how this may be related to the emerging theme of dinucleotides as cellular signaling molecules is poorly characterized. The transcription repressor NmrA of Aspergillus nidulans discriminates between oxidized and reduced dinucleotides, however, dinucleotide binding has no effect on its interaction with the zinc finger in the transcription activator AreA. Protease activity in A. nidulans was assayed using NmrA as the substrate, and was absent in mycelium grown under nitrogen sufficient conditions but abundant in mycelium starved of nitrogen. One of the proteases was purified and identified as the protein Q5BAR4 encoded by the gene AN2366.2. Fluorescence confocal microscopy showed that the nuclear levels of NmrA were reduced approximately 38% when mycelium was grown on nitrate compared to ammonium and absent when starved of nitrogen. Proteolysis of NmrA occurred in an ordered manner by preferential digestion within a C-terminal surface exposed loop and subsequent digestion at other sites. NmrA digested at the C-terminal site was unable to bind to the AreA zinc finger. These data reveal a potential new layer of control of nitrogen metabolite repression by the ordered proteolytic cleavage of NmrA. NmrA digested at the C-terminal site retained the ability to bind NAD+ and showed a resistance to further digestion that was enhanced by the presence of NAD+. This is the first time that an effect of dinucleotide binding to NmrA has been demonstrated. PMID:20506376

  20. Effects of Task Familiarity on Stress Responses of Repressors and Sensitizers

    ERIC Educational Resources Information Center

    Pagano, Don F.

    1973-01-01

    R.S. Lazarus's theory of coping was used to investigate appraisal and reappraisal of threat in repressors and sensitizers. Two indexes of stress, self-report ratings of affect and palmar skin conductance, were measured prior to performance on a reaction time task, after one-third of the task was completed and after two-thirds of the task was…

  1. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    PubMed Central

    Zhou, X. Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten

    2015-01-01

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. PMID:25691470

  2. Short linear motif acquisition, exon formation and alternative splicing determine a pathway to diversity for NCoR-family co-repressors

    PubMed Central

    Short, Stephen; Peterkin, Tessa; Guille, Matthew; Patient, Roger; Sharpe, Colin

    2015-01-01

    Vertebrate NCoR-family co-repressors play central roles in the timing of embryo and stem cell differentiation by repressing the activity of a range of transcription factors. They interact with nuclear receptors using short linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR) boxes. Here, we identify the pathway leading to increasing co-repressor diversity across the deuterostomes. The final complement of CoRNR boxes arose in an ancestral cephalochordate, and was encoded in one large exon; the urochordates and vertebrates then split this region between 10 and 12 exons. In Xenopus, alternative splicing is prevalent in NCoR2, but absent in NCoR1. We show for one NCoR1 exon that alternative splicing can be recovered by a single point mutation, suggesting NCoR1 lost the capacity for alternative splicing. Analyses in Xenopus and zebrafish identify that cellular context, rather than gene sequence, predominantly determines species differences in alternative splicing. We identify a pathway to diversity for the NCoR family beginning with the addition of a SLiM, followed by gene duplication, the generation of alternatively spliced isoforms and their differential deployment. PMID:26289800

  3. Repressing a Repressor

    PubMed Central

    Silverstone, Aron L.; Jung, Hou-Sung; Dill, Alyssa; Kawaide, Hiroshi; Kamiya, Yuji; Sun, Tai-ping

    2001-01-01

    RGA (for repressor of ga1-3) and SPINDLY (SPY) are likely repressors of gibberellin (GA) signaling in Arabidopsis because the recessive rga and spy mutations partially suppressed the phenotype of the GA-deficient mutant ga1-3. We found that neither rga nor spy altered the GA levels in the wild-type or the ga1-3 background. However, expression of the GA biosynthetic gene GA4 was reduced 26% by the rga mutation, suggesting that partial derepression of the GA response pathway by rga resulted in the feedback inhibition of GA4 expression. The green fluorescent protein (GFP)–RGA fusion protein was localized to nuclei in transgenic Arabidopsis. This result supports the predicted function of RGA as a transcriptional regulator based on sequence analysis. Confocal microscopy and immunoblot analyses demonstrated that the levels of both the GFP-RGA fusion protein and endogenous RGA were reduced rapidly by GA treatment. Therefore, the GA signal appears to derepress the GA signaling pathway by degrading the repressor protein RGA. The effect of rga on GA4 gene expression and the effect of GA on RGA protein level allow us to identify part of the mechanism by which GA homeostasis is achieved. PMID:11449051

  4. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    DOE PAGES

    Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; ...

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conservedmore » ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.« less

  5. Zinc deficiency during growth: influence on renal function and morphology.

    PubMed

    Tomat, Analía Lorena; Costa, María Angeles; Girgulsky, Luciana Carolina; Veiras, Luciana; Weisstaub, Adriana Ruth; Inserra, Felipe; Balaszczuk, Ana María; Arranz, Cristina Teresa

    2007-03-13

    This study was designed to investigate the effects of moderate zinc deficiency during growth on renal morphology and function in adult life. Weaned male Wistar rats were divided into two groups and fed either a moderately zinc-deficient diet (zinc: 8 mg/kg, n=12) or a control diet (zinc: 30 mg/kg, n=12) for 60 days. We evaluated: renal parameters, NADPH-diaphorase and nitric oxide synthase activity in kidney, renal morphology and apoptotic cells in renal cortex. Zinc-deficient rats showed a decrease in glomerular filtration rate and no changes in sodium and potassium urinary excretion. Zinc deficiency decreased NADPH diaphorase activity in glomeruli and tubular segment of nephrons, and reduced activity of nitric oxide synthase in the renal medulla and cortex, showing that zinc plays an important role in preservation of the renal nitric oxide system. A reduction in nephron number, glomerular capillary area and number of glomerular nuclei in cortical and juxtamedullary areas was observed in zinc deficient kidneys. Sirius red staining and immunostaining for alpha-smooth muscle-actin and collagen III showed no signs of fibrosis in the renal cortex and medulla. An increase in the number of apoptotic cells in distal tubules and cortical collecting ducts neighboring glomeruli and, to a lesser extent, in the glomeruli was observed in zinc deficient rats. The major finding of our study is the emergence of moderate zinc deficiency during growth as a potential nutritional factor related to abnormalities in renal morphology and function that facilitates the development of cardiovascular and renal diseases in adult life.

  6. Identification and characterization of PhbF: A DNA binding protein with regulatory role in the PHB metabolism of Herbaspirillum seropedicae SmR1

    PubMed Central

    2011-01-01

    Background Herbaspirillum seropedicae SmR1 is a nitrogen fixing endophyte associated with important agricultural crops. It produces polyhydroxybutyrate (PHB) which is stored intracellularly as granules. However, PHB metabolism and regulatory control is not yet well studied in this organism. Results In this work we describe the characterization of the PhbF protein from H. seropedicae SmR1 which was purified and characterized after expression in E. coli. The purified PhbF protein was able to bind to eleven putative promoters of genes involved in PHB metabolism in H. seropedicae SmR1. In silico analyses indicated a probable DNA-binding sequence which was shown to be protected in DNA footprinting assays using purified PhbF. Analyses using lacZ fusions showed that PhbF can act as a repressor protein controlling the expression of PHB metabolism-related genes. Conclusions Our results indicate that H. seropedicae SmR1 PhbF regulates expression of phb-related genes by acting as a transcriptional repressor. The knowledge of the PHB metabolism of this plant-associated bacterium may contribute to the understanding of the plant-colonizing process and the organism's resistance and survival in planta. PMID:21999748

  7. Expression, Purification And Preliminary X-Ray Analysis of the C-Terminal Domain of An Arginine Repressor Protein From Mycobacterium Tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, G.J.; Garen, C.R.; Cherney, M.M.

    2009-06-03

    The gene product of an open reading frame Rv1657 from Mycobacterium tuberculosis is a putative arginine repressor protein (ArgR), a transcriptional factor that regulates the expression of arginine-biosynthetic enzymes. Rv1657 was expressed and purified and a C-terminal domain was crystallized using the hanging-drop vapour-diffusion method. Diffraction data were collected and processed to a resolution of 2.15 {angstrom}. The crystals belong to space group P1 and the Matthews coefficient suggests that the crystals contain six C-terminal domain molecules per unit cell. Previous structural and biochemical studies on the arginine repressor proteins from other organisms have likewise shown the presence of sixmore » molecules per unit cell.« less

  8. Histopathological Validation of the Surface-Intermediate-Base Margin Score for Standardized Reporting of Resection Technique during Nephron Sparing Surgery.

    PubMed

    Minervini, Andrea; Campi, Riccardo; Kutikov, Alexander; Montagnani, Ilaria; Sessa, Francesco; Serni, Sergio; Raspollini, Maria Rosaria; Carini, Marco

    2015-10-01

    The surface-intermediate-base margin score is a novel standardized reporting system of resection techniques during nephron sparing surgery. We validated the surgeon assessed surface-intermediate-base score with microscopic histopathological assessment of partial nephrectomy specimens. Between June and August 2014 data were prospectively collected from 40 consecutive patients undergoing nephron sparing surgery. The surface-intermediate-base score was assigned to all cases. The score specific areas were color coded with tissue margin ink and sectioned for histological evaluation of healthy renal margin thickness. Maximum, minimum and mean thickness of healthy renal margin for each score specific area grade (surface [S] = 0, S = 1 ; intermediate [I] or base [B] = 0, I or B = 1, I or B = 2) was reported. The Mann-Whitney U and Kruskal-Wallis tests were used to compare the thickness of healthy renal margin in S = 0 vs 1 and I or B = 0 vs 1 vs 2 grades, respectively. Maximum, minimum and mean thickness of healthy renal margin was significantly different among score specific area grades S = 0 vs 1, and I or B = 0 vs 1, 0 vs 2 and 1 vs 2 (p <0.001). The main limitations of the study are the low number of the I or B = 1 and I or B = 2 samples and the assumption that each microscopic slide reflects the entire score specific area for histological analysis. The surface-intermediate-base scoring method can be readily harnessed in real-world clinical practice and accurately mirrors histopathological analysis for quantification and reporting of healthy renal margin thickness removed during tumor excision. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. An optimal serum-free defined condition for in vitro culture of kidney organoids.

    PubMed

    Nishikawa, Masaki; Kimura, Hiroshi; Yanagawa, Naomi; Hamon, Morgan; Hauser, Peter; Zhao, Lifu; Jo, Oak D; Yanagawa, Norimoto

    2018-07-02

    Kidney organoid is an emerging topic of importance for research in kidney development and regeneration. Conventional culture systems for kidney organoids reported thus far use culture media containing serum, which may compromise our understanding and the potential clinical applicability of the organoid system. In our present study, we tested two serum-free culture conditions and compared their suitability for the maintenance and growth of kidney organoids in culture. One of the serum-free culture conditions was the combination of keratinocytes serum free medium (KSFM) with knockout serum replacement (KSR) (KSFM + KSR), and the other was the combination of knockout DMEM/F12 (KD/F12) and KSR (KD/F12 + KSR). With cell aggregates derived from E12.5 mouse embryonic kidneys, we found that KD/F12 + KSR was superior to KSFM + KSR in promoting the growth of the aggregate with expansion of Six2 + nephron progenitor cells (NPC) and elaborated ureteric branching morphogenesis. With KD/F12 + KSR, we found that lower concentrations of KSR at 5-10% were superior to a higher concentration (20%) in promoting the growth of aggregates without affecting the expression levels of NPC marker genes. We also found that NPC in aggregates retained their differentiation potential to develop nephron tubules through mesenchyme-to-epithelial transition (MET), after being maintained in culture under these conditions for up to 7 days. In conclusion, we have identified a defined serum-free culture condition suitable for the maintenance and growth of kidney organoids that retain the differentiation potential to develop nephron structures. This defined serum-free culture condition may serve as a useful platform for further investigation of kidney organoids in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney.

    PubMed

    Lindström, Nils O; Guo, Jinjin; Kim, Albert D; Tran, Tracy; Guo, Qiuyu; De Sena Brandine, Guilherme; Ransick, Andrew; Parvez, Riana K; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-03-01

    Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2 + nephron progenitor cells (NPCs) and Foxd1 + interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1 , were readily detected within SIX2 + NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2 + NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2 , are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs. Copyright © 2018 by the American Society of Nephrology.

  11. Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties.

    PubMed

    Buzhor, Ella; Omer, Dorit; Harari-Steinberg, Orit; Dotan, Zohar; Vax, Einav; Pri-Chen, Sara; Metsuyanim, Sally; Pleniceanu, Oren; Goldstein, Ronald S; Dekel, Benjamin

    2013-11-01

    The nephron is composed of a monolayer of epithelial cells that make up its various compartments. In development, these cells begin as mesenchyme. NCAM1, abundant in the mesenchyme and early nephron lineage, ceases to express in mature kidney epithelia. We show that, once placed in culture and released from quiescence, adult human kidney epithelial cells (hKEpCs), uniformly positive for CD24/CD133, re-express NCAM1 in a specific cell subset that attains a stem/progenitor state. Immunosorted NCAM1(+) cells overexpressed early nephron progenitor markers (PAX2, SALL1, SIX2, WT1) and acquired a mesenchymal fate, indicated by high vimentim and reduced E-cadherin levels. Gene expression and microarray analysis disclosed both a proximal tubular origin of these cells and molecules regulating epithelial-mesenchymal transition. NCAM1(+) cells generated clonal progeny when cultured in the presence of fetal kidney conditioned medium, differentiated along mesenchymal lineages but retained the unique propensity to generate epithelial kidney spheres and produce epithelial renal tissue on single-cell grafting in chick CAM and mouse. Depletion of NCAM1(+) cells from hKEpCs abrogated stemness traits in vitro. Eliminating these cells during the regenerative response that follows glycerol-induced acute tubular necrosis worsened peak renal injury in vivo. Thus, higher clone-forming and developmental capacities characterize a distinct subset of adult kidney-derived cells. The ability to influence an endogenous regenerative response via NCAM1 targeting may lead to novel therapeutics for renal diseases. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Nephron sparing surgery (NSS) for unilateral wilms tumor (UWT): the SIOP 2001 experience.

    PubMed

    Wilde, Jim C H; Aronson, Daniel C; Sznajder, Beata; Van Tinteren, Harm; Powis, Mark; Okoye, Bruce; Cecchetto, Giovanni; Audry, Georges; Fuchs, Jörg; Schweinitz, Dietrich Von; Heij, Hugo; Graf, Norbert; Bergeron, Christophe; Pritchard-Jones, Kathy; Van Den Heuvel-Eibrink, Marry; Carli, Modesto; Oldenburger, Foppe; Sandstedt, Bengt; De Kraker, Jan; Godzinski, Jan

    2014-12-01

    Total nephrectomy (TN) remains the standard treatment of unilateral Wilms tumors (uWT). The SIOP WT-2001 protocol allowed Nephron Sparing Surgery (NSS) for polar or peripherally non-infiltrating tumors. Inventory of the current SIOP NSS-experience. 2,800 patients with a unilateral, localized or metastatic and an unequivocal surgical technique recorded were included. All had neo-adjuvant chemotherapy and delayed surgery. In 91 (3%) NSS was performed and in 2709 TN. Data was retrieved from the SIOP WT 2001 database. NSS group contained 65% stage I tumours and the TN group 48%. Tumor volume (at diagnosis and surgery) was significantly smaller in the NSS group. Within stage III, after NSS, 7/12 (58%) had positive margins (M +), 5 with tumor negative lymph nodes (LN-). After TN, 355/712 (55%) had M + , 182 were LN-. Treatment of M+ in the NSS group resulted in two conversions to TN (one combined with radiotherapy), three patients had radiotherapy only and in two patients local therapy, if given, was not recorded. After NSS, four recurrences occurred. For localized disease the 5-year overall (OS) and event free survival (EFS) in NSS group was 100 and 94.8 (95% CI:89.9-99.9), respectively, while OS and EFS in the TN group were 94.4 (95% CI: 93.2-95.5, log-rank test P = 0.06) and 86.5 (95% CI:85.0-88.1, log-rank test P = 0.06), respectively. NSS was only performed in 3% of patients with uWT. Despite excellent survival with few relapses, the gain of nephrons needs to be weighed against the risk to induce stage III with intensified therapy. © 2014 Wiley Periodicals, Inc.

  13. Sex-specific effect of antenatal betamethasone exposure on renal oxidative stress induced by angiotensins in adult sheep.

    PubMed

    Bi, Jianli; Contag, Stephen A; Chen, Kai; Su, Yixin; Figueroa, Jorge P; Chappell, Mark C; Rose, James C

    2014-11-01

    Prenatal glucocorticoid administration in clinically relevant doses reduces nephron number and renal function in adulthood and is associated with hypertension. Nephron loss in early life may predispose the kidney to other insults later but whether sex influences increases in renal susceptibility is unclear. Therefore, we determined, in male and female adult sheep, whether antenatal glucocorticoid (betamethasone) exposure increased 8-isoprostane (marker of oxidative stress) and protein excretion after acute nephron reduction and intrarenal infusions of angiotensin peptides. We also examined whether renal proximal tubule cells (PTCs) could contribute to alterations in 8-isoprostane excretion in a sex-specific fashion. In vivo, ANG II significantly increased 8-isoprostane excretion by 49% and protein excretion by 44% in male betamethasone- but not in female betamethasone- or vehicle-treated sheep. ANG-(1-7) decreased 8-isoprostane excretion but did not affect protein excretion in either group. In vitro, ANG II stimulated 8-isoprostane release from PTCs of male but not female betamethasone-treated sheep. Male betamethasone-exposed sheep had increased p47 phox abundance in the renal cortex while superoxide dismutase (SOD) activity was increased only in females. We conclude that antenatal glucocorticoid exposure enhances the susceptibility of the kidney to oxidative stress induced by ANG II in a sex-specific fashion and the renal proximal tubule is one target of the sex-specific effects of antenatal steroids. ANG-(1-7) may mitigate the impact of prenatal glucocorticoids on the kidney. P47 phox activation may be responsible for the increased oxidative stress and proteinuria in males. The protection from renal oxidative stress in females is associated with increased SOD activity. Copyright © 2014 the American Physiological Society.

  14. Effect of Mannitol on Glomerular Ultrafiltration in the Hydropenic Rat

    PubMed Central

    Blantz, Roland C.

    1974-01-01

    The effect of mannitol upon glomerular ultrafiltration was examined in hydropenic Munich-Wistar rats. Superficial nephron filtration rate (sngfr) rose from 32.0±0.9 nl/min/g kidney wt to 42.0±1.6 (P < 0.001) in eight rats. Hydrostatic pressure gradients acting across the glomerular capillary (ΔP) were measured in glomerular capillaries and Bowman's space with a servo-nulling device, systemic (πA) and efferent arteriolar oncotic pressures (πE) were determined by microprotein analysis. These data were applied to a computer-based mathematical model of glomerular ultrafiltration to determine the profile of effective filtration pressure (EFP = ΔP — π) and total glomerular permeability (LpA) in both states. Filtration equilibrium obtained in hydropenia (LpA ≥ 0.099±0.006 nl/s/g kidney wt/mm Hg) and sngfr rose because EFP increased from a maximum value of 4.2±1.1 to 12.8±0.5 mm Hg after mannitol (P <0.01). This increase was due to both increased nephron plasma flow and decreased πA. Computer analysis of these data revealed that more than half (>58%) of this increase was due to decreased πA, consequent to dilution of protein. Since EFP was disequilibrated after mannitol, LpA could be calculated accurately (0.065 ± 0.003 nl/s/g kidney wt/mm Hg) and was significantly lower than the minimum estimate in hydropenia. Therefore, sngfr does increase with mannitol and this increase is not wholly dependent upon an increase in nephron plasma flow since the major factor increasing EFP was decreased πA. PMID:4418509

  15. Transcription factor FBI-1 acts as a dual regulator in adipogenesis by coordinated regulation of cyclin-A and E2F-4.

    PubMed

    Laudes, Matthias; Bilkovski, Roman; Oberhauser, Frank; Droste, Andrea; Gomolka, Matthias; Leeser, Uschi; Udelhoven, Michael; Krone, Wilhelm

    2008-05-01

    Generation of new adipocytes plays a major role in the development of obesity. We previously have shown that transcriptional repressor factor that binds to IST (FBI)-1 exerts a dual effect in the process of adipogenesis by inhibiting proliferation and promoting differentiation of preadipocytes. The aim of the present study was to identify FBI-1 regulated molecular effectors that could account for these effects. Overexpressing FBI-1 in preadipocytes resulted in reduced expression of the cell cycle regulator cyclin A, which may explain FBI-1 induced inhibition of proliferation. Interestingly, FBI-1 repressed cyclin A promoter activity through an indirect mechanisms that did not involve direct binding of FBI-1 to the promoter sequence, but rather FBI-1 inhibition of transcriptional activator Sp1 binding to a regulatory element at -452 to -443. We also show that FBI-1 promotes terminal preadipocyte differentiation through a mechanism involving decreased levels of expression of the PPARgamma inhibitor E2F-4. FBI-1 significantly reduced E2F-4 promoter activity. Contrary to cyclin A, we found FBI-1-induced repression of E2F-4 is mediated by a direct mechanism via a FBI-1 regulatory element at -11 to -5. As function of transcriptional repressors normally depends on the presence of regulatory co-factors we also performed expression profiling of potential FBI-1 co-repressors throughout adipogenesis. In these experiments Sin3A and histon deacetylase (HDAC)-1 showed a similar expression pattern compared to FBI-1. Strikingly, co-immunoprecipitation studies revealed that FBI-1 binds Sin3A and HDAC-1 to form a repressor complex. Furthermore, by mutational analysis the amino terminal Poxvirus (POZ) domain of FBI-1 was found to be important for Sin3A and HDAC-1 binding. Taken together, FBI-1 is the first transcriptional repressor shown to act as a dual regulator in adipogenesis exerting repressor activities on target genes by both, direct and indirect mechanisms.

  16. Multiple conformations of the cytidine repressor DNA-binding domain coalesce to one upon recognition of a specific DNA surface.

    PubMed

    Moody, Colleen L; Tretyachenko-Ladokhina, Vira; Laue, Thomas M; Senear, Donald F; Cocco, Melanie J

    2011-08-09

    The cytidine repressor (CytR) is a member of the LacR family of bacterial repressors with distinct functional features. The Escherichia coli CytR regulon comprises nine operons whose palindromic operators vary in both sequence and, most significantly, spacing between the recognition half-sites. This suggests a strong likelihood that protein folding would be coupled to DNA binding as a mechanism to accommodate the variety of different operator architectures to which CytR is targeted. Such coupling is a common feature of sequence-specific DNA-binding proteins, including the LacR family repressors; however, there are no significant structural rearrangements upon DNA binding within the three-helix DNA-binding domains (DBDs) studied to date. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the CytR DBD free in solution and to determine the high-resolution structure of a CytR DBD monomer bound specifically to one DNA half-site of the uridine phosphorylase (udp) operator. We find that the free DBD populates multiple distinct conformations distinguished by up to four sets of NMR peaks per residue. This structural heterogeneity is previously unknown in the LacR family. These stable structures coalesce into a single, more stable udp-bound form that features a three-helix bundle containing a canonical helix-turn-helix motif. However, this structure differs from all other LacR family members whose structures are known with regard to the packing of the helices and consequently their relative orientations. Aspects of CytR activity are unique among repressors; we identify here structural properties that are also distinct and that might underlie the different functional properties. © 2011 American Chemical Society

  17. Localized renal cell carcinoma management: an update.

    PubMed

    Heldwein, Flavio L; McCullough, T Casey; Souto, Carlos A V; Galiano, Marc; Barret, Eric

    2008-01-01

    To review the current modalities of treatment for localized renal cell carcinoma. A literature search for keywords: renal cell carcinoma, radical nephrectomy, nephron sparing surgery, minimally invasive surgery, and cryoablation was performed for the years 2000 through 2008. The most relevant publications were examined. New epidemiologic data and current treatment of renal cancer were covered. Concerning the treatment of clinically localized disease, the literature supports the standardization of partial nephrectomy and laparoscopic approaches as therapeutic options with better functional results and oncologic success comparable to standard radical resection. Promising initial results are now available for minimally invasive therapies, such as cryotherapy and radiofrequency ablation. Active surveillance has been reported with acceptable results, including for those who are poor surgical candidates. This review covers current advances in radical and conservative treatments of localized kidney cancer. The current status of nephron-sparing surgery, ablative therapies, and active surveillance based on natural history has resulted in great progress in the management of localized renal cell carcinoma.

  18. Prenatal programming-effects on blood pressure and renal function.

    PubMed

    Ritz, Eberhard; Amann, Kerstin; Koleganova, Nadezda; Benz, Kerstin

    2011-03-01

    Impaired intrauterine nephrogenesis-most clearly illustrated by low nephron number-is frequently associated with low birthweight and has been recognized as a powerful risk factor for renal disease; it increases the risks of low glomerular filtration rate, of more rapid progression of primary kidney disease, and of increased incidence of chronic kidney disease or end-stage renal disease. Another important consequence of impaired nephrogenesis is hypertension, which further amplifies the risk of onset and progression of kidney disease. Hypertension is associated with low nephron numbers in white individuals, but the association is not universal and is not seen in individuals of African origin. The derangement of intrauterine kidney development is an example of a more general principle that illustrates the paradigm of plasticity during development-that is, that transcription of the genetic code is modified by epigenetic factors (as has increasingly been documented). This Review outlines the concept of prenatal programming and, in particular, describes its role in kidney disease and hypertension.

  19. Preferential Propagation of Competent SIX2+ Nephronic Progenitors by LIF/ROCKi Treatment of the Metanephric Mesenchyme

    PubMed Central

    Tanigawa, Shunsuke; Sharma, Nirmala; Hall, Michael D.; Nishinakamura, Ryuichi; Perantoni, Alan O.

    2015-01-01

    Summary Understanding the mechanisms responsible for nephrogenic stem cell preservation and commitment is fundamental to harnessing the potential of the metanephric mesenchyme (MM) for nephron regeneration. Accordingly, we established a culture model that preferentially expands the MM SIX2+ progenitor pool using leukemia inhibitory factor (LIF), a Rho kinase inhibitor (ROCKi), and extracellular matrix. Passaged MM cells express the key stem cell regulators Six2 and Pax2 and remain competent to respond to WNT4 induction and form mature tubular epithelia and glomeruli. Mechanistically, LIF activates STAT, which binds to a Stat consensus sequence in the Six2 proximal promoter and sustains SIX2 levels. ROCKi, on the other hand, attenuates the LIF-induced differentiation activity of JNK. Concomitantly, the combination of LIF/ROCKi upregulates Slug expression and activates YAP, which maintains SIX2, PAX2, and SALL1. Using this novel model, our study underscores the pivotal roles of SIX2 and YAP in MM stem cell stability. PMID:26321142

  20. Aldosterone Modulates the Association between NCC and ENaC.

    PubMed

    Wynne, Brandi M; Mistry, Abinash C; Al-Khalili, Otor; Mallick, Rickta; Theilig, Franziska; Eaton, Douglas C; Hoover, Robert S

    2017-06-23

    Distal sodium transport is a final step in the regulation of blood pressure. As such, understanding how the two main sodium transport proteins, the thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC), are regulated is paramount. Both are expressed in the late distal nephron; however, no evidence has suggested that these two sodium transport proteins interact. Recently, we established that these two sodium transport proteins functionally interact in the second part of the distal nephron (DCT2). Given their co-localization within the DCT2, we hypothesized that NCC and ENaC interactions might be modulated by aldosterone (Aldo). Aldo treatment increased NCC and αENaC colocalization (electron microscopy) and interaction (coimmunoprecipitation). Finally, with co-expression of the Aldo-induced protein serum- and glucocorticoid-inducible kinase 1 (SGK1), NCC and αENaC interactions were increased. These data demonstrate that Aldo promotes increased interaction of NCC and ENaC, within the DCT2 revealing a novel method of regulation for distal sodium reabsorption.

  1. Update on contemporary management of clinically localized renal cell carcinoma.

    PubMed

    Jorns, J J; Thiel, D D; Castle, E P

    2012-12-01

    Renal cell carcinoma (RCC) continues to increase in incidence with the largest increase manifesting in small, organ-confined tumors. This review outlines the epidemiology and current data pertaining to the management of clinically-localized RCC. In this manuscript, the current data outlining the benefit of nephron sparing to the overall survival of the patient is described. The data pertaining to minimally invasive nephron sparing is also explained in detail. From laparoscopic and robotic partial nephrectomy to watchful waiting and percutaneous ablation, the urologist is continually assaulted with new data for the management of clinically-localized RCC. The data can be confusing, and much of it is conflicting. The addition of new scoring systems or nomograms may aid in predicting which therapy would be most beneficial in certain patient groups. New scoring systems may also predict the difficulty of surgical resection and predict surgical complications. The limitations of the data pertaining to the management of clinically-localized RCC are also outlined.

  2. Synaptic control of local translation: the plot thickens with new characters.

    PubMed

    Thomas, María Gabriela; Pascual, Malena Lucía; Maschi, Darío; Luchelli, Luciana; Boccaccio, Graciela Lidia

    2014-06-01

    The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.

  3. Neural control of renal function: cardiovascular implications.

    PubMed

    DiBona, G F

    1989-06-01

    The innervation of the kidney serves to function of its component parts, for example, the blood vessels, the nephron (glomerulus, tubule), and the juxtaglomerular apparatus. Alterations in efferent renal sympathetic nerve activity produce significant changes in renal blood flow, glomerular filtration rate, the reabsorption of water, sodium, and other ions, and the release of renin, prostaglandins, and other vasoactive substances. These functional effects contribute significantly to the renal regulation of total body sodium and fluid volumes with important implications for the control of arterial pressure. The renal nerves, both efferent and afferent, are known to be important contributors to the pathogenesis of hypertension. In addition, the efferent renal nerves participate in the mediation of the excessive renal sodium retention, which characterizes edema-forming states such as congestive heart failure. Thus, the renal nerves play an important role in overall cardiovascular homeostasis in both normal and pathological conditions.

  4. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus.

    PubMed

    Grossoehme, Nicholas; Kehl-Fie, Thomas E; Ma, Zhen; Adams, Keith W; Cowart, Darin M; Scott, Robert A; Skaar, Eric P; Giedroc, David P

    2011-04-15

    All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027-0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes.

  5. Control of Copper Resistance and Inorganic Sulfur Metabolism by Paralogous Regulators in Staphylococcus aureus*

    PubMed Central

    Grossoehme, Nicholas; Kehl-Fie, Thomas E.; Ma, Zhen; Adams, Keith W.; Cowart, Darin M.; Scott, Robert A.; Skaar, Eric P.; Giedroc, David P.

    2011-01-01

    All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027–0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes. PMID:21339296

  6. Epigenetic control of skull morphogenesis by histone deacetylase 8

    PubMed Central

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684

  7. Cutting edge: A transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway.

    PubMed

    El Kasmi, Karim C; Smith, Amber M; Williams, Lynn; Neale, Geoffrey; Panopoulos, Athanasia D; Panopolous, Athanasia; Watowich, Stephanie S; Häcker, Hans; Foxwell, Brian M J; Murray, Peter J

    2007-12-01

    IL-10 regulates anti-inflammatory signaling via the activation of STAT3, which in turn controls the induction of a gene expression program whose products execute inhibitory effects on proinflammatory mediator production. In this study we show that IL-10 induces the expression of an ETS family transcriptional repressor, ETV3, and a helicase family corepressor, Strawberry notch homologue 2 (SBNO2), in mouse and human macrophages. IL-10-mediated induction of ETV3 and SBNO2 expression was dependent upon both STAT3 and a stimulus through the TLR pathway. We also observed that ETV3 expression was strongly induced by the STAT3 pathway regulated by IL-10 but not by STAT3 signaling activated by IL-6, which cannot activate the anti-inflammatory signaling pathway. ETV3 and SBNO2 repressed NF-kappaB- but not IFN regulatory factor 7 (IRF7)-activated transcriptional reporters. Collectively our data suggest that ETV3 and SBNO2 are components of the pathways that contribute to the downstream anti-inflammatory effects of IL-10.

  8. PADI4 acts as a coactivator of Tal1 by counteracting repressive histone arginine methylation

    NASA Astrophysics Data System (ADS)

    Kolodziej, Stephan; Kuvardina, Olga N.; Oellerich, Thomas; Herglotz, Julia; Backert, Ingo; Kohrs, Nicole; Buscató, Estel. La; Wittmann, Sandra K.; Salinas-Riester, Gabriela; Bonig, Halvard; Karas, Michael; Serve, Hubert; Proschak, Ewgenij; Lausen, Jörn

    2014-05-01

    The transcription factor Tal1 is a critical activator or repressor of gene expression in hematopoiesis and leukaemia. The mechanism by which Tal1 differentially influences transcription of distinct genes is not fully understood. Here we show that Tal1 interacts with the peptidylarginine deiminase IV (PADI4). We demonstrate that PADI4 can act as an epigenetic coactivator through influencing H3R2me2a. At the Tal1/PADI4 target gene IL6ST the repressive H3R2me2a mark triggered by PRMT6 is counteracted by PADI4, which augments the active H3K4me3 mark and thus increases IL6ST expression. In contrast, at the CTCF promoter PADI4 acts as a repressor. We propose that the influence of PADI4 on IL6ST transcription plays a role in the control of IL6ST expression during lineage differentiation of hematopoietic stem/progenitor cells. These results open the possibility to pharmacologically influence Tal1 in leukaemia.

  9. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation.

    PubMed

    Rappl, Gunter; Pabst, Stefan; Riemann, Dagmar; Schmidt, Annette; Wickenhauser, Claudia; Schütte, Wolfgang; Hombach, Andreas A; Seliger, Barbara; Grohé, Christian; Abken, Hinrich

    2011-07-01

    Sarcoidosis can evolve into a chronic disease with persistent granulomas accompanied by progressive fibrosis. While an unlimited inflammatory response suggests an impaired immune control in sarcoid lesions, it stands in contrast to the massive infiltration with CD4(+)CD25(high)FoxP3(+) regulatory T cells. We here revealed that those Treg cells in affected lung lesions were mainly derived from activated natural Treg cells with GARP (LRRC32)-positive phenotype but exhibited reduced repressor capacities despite high IL-10 and TGF-beta 1 levels. The repressive capacity of blood Treg cells, in contrast, was not impaired compared to age-matched healthy donors. Treg derived cells in granuloma lesions have undergone extensive rounds of amplifications indicated by shortened telomeres compared to blood Treg cells of the same patient. Lesional Treg derived cells moreover secreted pro-inflammatory cytokines including IL-4 which sustains granuloma formation through fibroblast amplification and the activation of mast cells, the latter indicated by the expression of membrane-bound oncostatin M. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. A GntR-type transcriptional repressor controls sialic acid utilization in Bifidobacterium breve UCC2003.

    PubMed

    Egan, Muireann; O'Connell Motherway, Mary; van Sinderen, Douwe

    2015-02-01

    Bifidobacterium breve strains are numerically prevalent among the gut microbiota of healthy, breast-fed infants. The metabolism of sialic acid, a ubiquitous monosaccharide in the infant and adult gut, by B. breve UCC2003 is dependent on a large gene cluster, designated the nan/nag cluster. This study describes the transcriptional regulation of the nan/nag cluster and thus sialic acid metabolism in B. breve UCC2003. Insertion mutagenesis and transcriptome analysis revealed that the nan/nag cluster is regulated by a GntR family transcriptional repressor, designated NanR. Crude cell extract of Escherichia coli EC101 in which the nanR gene had been cloned and overexpressed was shown to bind to two promoter regions within this cluster, each of which containing an imperfect inverted repeat that is believed to act as the NanR operator sequence. Formation of the DNA-NanR complex is prevented in the presence of sialic acid, which we had previously shown to induce transcription of this gene cluster. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Quantitative Phosphoproteomics Reveals the Role of Protein Arginine Phosphorylation in the Bacterial Stress Response*

    PubMed Central

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-01-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response. PMID:24263382

  12. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    PubMed Central

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558

  13. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response.

    PubMed

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-02-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response.

  14. Structural basis for corepressor assembly by the orphan nuclear receptor TLX.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. © 2015 Zhi et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Cu(I)-mediated Allosteric Switching in a Copper-sensing Operon Repressor (CsoR)*

    PubMed Central

    Chang, Feng-Ming James; Coyne, H. Jerome; Cubillas, Ciro; Vinuesa, Pablo; Fang, Xianyang; Ma, Zhen; Ma, Dejian; Helmann, John D.; García-de los Santos, Alejandro; Wang, Yun-Xing; Dann, Charles E.; Giedroc, David P.

    2014-01-01

    The copper-sensing operon repressor (CsoR) is representative of a major Cu(I)-sensing family of bacterial metalloregulatory proteins that has evolved to prevent cytoplasmic copper toxicity. It is unknown how Cu(I) binding to tetrameric CsoRs mediates transcriptional derepression of copper resistance genes. A phylogenetic analysis of 227 DUF156 protein members, including biochemically or structurally characterized CsoR/RcnR repressors, reveals that Geobacillus thermodenitrificans (Gt) CsoR characterized here is representative of CsoRs from pathogenic bacilli Listeria monocytogenes and Bacillus anthracis. The 2.56 Å structure of Cu(I)-bound Gt CsoR reveals that Cu(I) binding induces a kink in the α2-helix between two conserved copper-ligating residues and folds an N-terminal tail (residues 12–19) over the Cu(I) binding site. NMR studies of Gt CsoR reveal that this tail is flexible in the apo-state with these dynamics quenched upon Cu(I) binding. Small angle x-ray scattering experiments on an N-terminally truncated Gt CsoR (Δ2–10) reveal that the Cu(I)-bound tetramer is hydrodynamically more compact than is the apo-state. The implications of these findings for the allosteric mechanisms of other CsoR/RcnR repressors are discussed. PMID:24831014

  16. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology.

    PubMed

    Xu, Yue; Li, Song Feng; Parish, Roger W

    2017-07-01

    Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Determination of the DNA-binding kinetics of three related but heteroimmune bacteriophage repressors using EMSA and SPR analysis

    PubMed Central

    Henriksson-Peltola, Petri; Sehlén, Wilhelmina; Haggård-Ljungquist, Elisabeth

    2007-01-01

    Bacteriophages P2, P2 Hy dis and WΦ are very similar but heteroimmune Escherichia coli phages. The structural genes show over 96% identity, but the repressors show between 43 and 63% identities. Furthermore, the operators, which contain two directly repeated sequences, vary in sequence, length, location relative to the promoter and spacing between the direct repeats. We have compared the in vivo effects of the wild type and mutated operators on gene expression with the complexes formed between the repressors and their wild type or mutated operators using electrophoretic mobility shift assay (EMSA), and real-time kinetics of the protein–DNA interactions using surface plasmon resonance (SPR) analysis. Using EMSA, the repressors formed different protein–DNA complexes, and only WΦ was significantly affected by point mutations. However, SPR analysis showed a reduced association rate constant and an increased dissociation rate constant for P2 and WΦ operator mutants. The association rate constants of P2 Hy dis was too fast to be determined. The P2 Hy dis dissociation response curves were shown to be triphasic, while both P2 and WΦ C were biphasic. Thus, the kinetics of complex formation and the nature of the complexes formed differ extensively between these very closely related phages. PMID:17412705

  18. Tunable riboregulator switches for post-transcriptional control of gene expression

    DOE PAGES

    Krishnamurthy, Malathy; Hennelly, Scott Patrick; Dale, Taraka T.; ...

    2015-07-13

    The most straightforward approach to altering the flux through a particular metabolic step is to increase or decrease the concentration of the enzyme catalyst. Until recently engineering strategies for altering gene expression have focused on transcription control using strong inducible promoters or by using one of several strategies to knock down or knock out a wasteful gene. Recently, synthetic riboregulators have been developed for translational regulation of gene expression. We report a new modular synthetic riboregulator class that has the potential to finely tune protein expression and independently control the concentration of each enzyme in an engineered metabolic pathway. Ourmore » design includes a cis-repressor at the 5’ end of the mRNA that forms a stem-loop helix occluding the ribosome binding site and blocking translation. An activating-RNA, expressed in trans, frees the RBS turning on translation. The overall architecture of the riboregulators is designed using Watson-Crick base-pairing stability followed by directed evolution on a portion of each trans-activator to fine tune translation. We report a cis-repressor that can completely shut off translation of antibiotic resistance reporters and a trans-activator that restores translation. We have shown it is possible to use riboregulators to achieve translational control of gene expression over a wide dynamic range. Using a bioluminescent reporter system, we demonstrated an ON/OFF ratio >300. We have demonstrated that a targeting sequence can be changed to develop riboregulators that can independently regulate translation of many genes with minimal cross-talk. In a SELEX experiment, we demonstrated that by subtly altering the sequence of the trans-activator, it is possible to alter the equilibrium between repressed and activated states and achieve intermediate translational control.« less

  19. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.

    PubMed

    Gloss, L M; Simler, B R; Matthews, C R

    2001-10-05

    The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts. Copyright 2001 Academic Press.

  20. Molecular Regulation of Temperature-Dependent Floral Induction in Tulipa gesneriana.

    PubMed

    Leeggangers, Hendrika A C F; Nijveen, Harm; Bigas, Judit Nadal; Hilhorst, Henk W M; Immink, Richard G H

    2017-03-01

    The vegetative-to-reproductive phase change in tulip ( Tulipa gesneriana ) is promoted by increasing temperatures during spring. The warm winters of recent years interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular mechanisms would be of help, but unlike the model plant Arabidopsis ( Arabidopsis thaliana ), very little is known about floral induction in tulip. To shed light on the gene regulatory network controlling flowering in tulip, RNA sequencing was performed on meristem-enriched tissue collected under two contrasting temperature conditions, low and high. The start of reproductive development correlated with rounding of the shoot apical meristem and induction of TGSQA expression, a tulip gene with a high similarity to Arabidopsis APETALA1 Gene Ontology enrichment analysis of differentially expressed genes showed the overrepresentation of genes potentially involved in floral induction, bulb maturation, and dormancy establishment. Expression analysis revealed that TERMINAL FLOWER1 ( TgTFL1 ) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-like1 ( TgSOC1-like1 ) might be repressors, whereas TgSOC1-like2 likely is an activator, of flowering. Subsequently, the flowering time-associated expression of eight potential flowering time genes was confirmed in three tulip cultivars grown in the field. Additionally, heterologous functional analyses in Arabidopsis resulted in flowering time phenotypes in line with TgTFL1 being a floral repressor and TgSOC1-like2 being a floral activator in tulip. Taken together, we have shown that long before morphological changes occur in the shoot apical meristem, the expression of floral repressors in tulip is suppressed by increased ambient temperatures, leading either directly or indirectly to the activation of potential flowering activators shortly before the commencement of the phase change. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor.

    PubMed

    Sexton, Jessica A; Brown, Victoria; Johnston, Mark

    2007-10-01

    The ability of the fungal pathogen Candida albicans to cause systemic infections depends in part on the function of Hgt4, a cell surface sugar sensor. The orthologues of Hgt4 in Saccharomyces cerevisiae, Snf3 and Rgt2, initiate a signalling cascade that inactivates Rgt1, a transcriptional repressor of genes encoding hexose transporters. To determine whether Hgt4 functions similarly through the C. albicans orthologue of Rgt1, we analysed Cargt1 deletion mutants. We found that Cargt1 mutants are sensitive to the glucose analogue 2-deoxyglucose, a phenotype probably due to uncontrolled expression of genes encoding glucose transporters. Indeed, transcriptional profiling revealed that expression of about two dozen genes, including multiple HGT genes encoding hexose transporters, is increased in the Cargt1 mutant in the absence of sugars, suggesting that CaRgt1 represses expression of several HGT genes under this condition. Some of the HGT genes (probably encoding high-affinity transporters) are also repressed by high levels of glucose, and we show that this repression is mediated by CaMig1, the orthologue of the major glucose-activated repressor in S. cerevisiae, but not by its paralogue CaMig2. Therefore, CaRgt1 and CaMig1 collaborate to control expression of C. albicans hexose transporters in response to different levels of sugars. We were surprised to find that CaRgt1 also regulates expression of GAL1, suggesting that regulation of galactose metabolism in C. albicans is unconventional. Finally, Cargt1 mutations cause cells to hyperfilament, and suppress the hypofilamented phenotype of an hgt4 mutant, indicating that the Hgt4 glucose sensor may affect filamentation by modulating sugar import and metabolism via CaRgt1. Copyright 2007 John Wiley & Sons, Ltd.

  2. In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation

    PubMed Central

    Coffee, R. Lane; Williamson, Ashley J.; Adkins, Christopher M.; Gray, Marisa C.; Page, Terry L.; Broadie, Kendal

    2012-01-01

    Fragile X syndrome (FXS), caused by loss of the Fragile X Mental Retardation 1 (FMR1) gene product (FMRP), is the most common heritable cause of intellectual disability and autism spectrum disorders. It has been long hypothesized that the phosphorylation of serine 500 (S500) in human FMRP controls its function as an RNA-binding translational repressor. To test this hypothesis in vivo, we employed neuronally targeted expression of three human FMR1 transgenes, including wild-type (hFMR1), dephosphomimetic (S500A-hFMR1) and phosphomimetic (S500D-hFMR1), in the Drosophila FXS disease model to investigate phosphorylation requirements. At the molecular level, dfmr1 null mutants exhibit elevated brain protein levels due to loss of translational repressor activity. This defect is rescued for an individual target protein and across the population of brain proteins by the phosphomimetic, whereas the dephosphomimetic phenocopies the null condition. At the cellular level, dfmr1 null synapse architecture exhibits increased area, branching and bouton number. The phosphomimetic fully rescues these synaptogenesis defects, whereas the dephosphomimetic provides no rescue. The presence of Futsch-positive (microtubule-associated protein 1B) supernumerary microtubule loops is elevated in dfmr1 null synapses. The human phosphomimetic restores normal Futsch loops, whereas the dephosphomimetic provides no activity. At the behavioral level, dfmr1 null mutants exhibit strongly impaired olfactory associative learning. The human phosphomimetic targeted only to the brain-learning center restores normal learning ability, whereas the dephosphomimetic provides absolutely no rescue. We conclude that human FMRP S500 phosphorylation is necessary for its in vivo function as a neuronal translational repressor and regulator of synaptic architecture, and for the manifestation of FMRP-dependent learning behavior. PMID:22080836

  3. Target gene analysis by microarrays and chromatin immunoprecipitation identifies HEY proteins as highly redundant bHLH repressors.

    PubMed

    Heisig, Julia; Weber, David; Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.

  4. Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors

    PubMed Central

    Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. PMID:22615585

  5. Borrelia oxidative stress response regulator, BosR: A distinctive Zn-dependent transcriptional activator

    PubMed Central

    Boylan, Julie A.; Posey, James E.; Gherardini, Frank C.

    2003-01-01

    The ability of a pathogen to cause infection depends on successful colonization of the host, which, in turn, requires adaptation to various challenges presented by that host. For example, host immune cells use a variety of mechanisms to control infection by bacterial pathogens, including the production of bactericidal reactive oxygen species. Prokaryotic and eukaryotic cells have developed ways of protecting themselves against this oxidative damage; for instance, Borrelia burgdorferi alters the expression of oxidative-stress-related proteins, such as a Dps/Dpr homolog NapA (BB0690), in response to increasing levels of oxygen and reactive oxygen species. These stress-related genes appear to be regulated by a putative metal-dependent DNA-binding protein (BB0647) that has 50.7% similarity to the peroxide-specific stress response repressor of Bacillus subtilis, PerR. We overexpressed and purified this protein from Escherichia coli and designated it Borrelia oxidative stress regulator, BosR. BosR bound to a 50-nt region 180 bp upstream of the napA transcriptional start site and required DTT and Zn2+ for optimal binding. Unlike the Bacillus subtilis PerR repressor, BosR did not require Fe2+ and Mn2+ for binding, and oxidizing agents, such as t-butyl peroxide, enhanced, not eliminated, BosR binding to the napA promoter region. Surprisingly, transcriptional fusion analysis indicated that BosR exerted a positive regulatory effect on napA that is inducible with t-butyl peroxide. On the basis of these data, we propose that, despite the similarity to PerR, BosR functions primarily as a transcriptional activator, not a repressor of oxidative stress response, in B. burgdorferi. PMID:12975527

  6. Molecular Regulation of Temperature-Dependent Floral Induction in Tulipa gesneriana1

    PubMed Central

    Leeggangers, Hendrika A.C.F.; Bigas, Judit Nadal

    2017-01-01

    The vegetative-to-reproductive phase change in tulip (Tulipa gesneriana) is promoted by increasing temperatures during spring. The warm winters of recent years interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular mechanisms would be of help, but unlike the model plant Arabidopsis (Arabidopsis thaliana), very little is known about floral induction in tulip. To shed light on the gene regulatory network controlling flowering in tulip, RNA sequencing was performed on meristem-enriched tissue collected under two contrasting temperature conditions, low and high. The start of reproductive development correlated with rounding of the shoot apical meristem and induction of TGSQA expression, a tulip gene with a high similarity to Arabidopsis APETALA1. Gene Ontology enrichment analysis of differentially expressed genes showed the overrepresentation of genes potentially involved in floral induction, bulb maturation, and dormancy establishment. Expression analysis revealed that TERMINAL FLOWER1 (TgTFL1) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-like1 (TgSOC1-like1) might be repressors, whereas TgSOC1-like2 likely is an activator, of flowering. Subsequently, the flowering time-associated expression of eight potential flowering time genes was confirmed in three tulip cultivars grown in the field. Additionally, heterologous functional analyses in Arabidopsis resulted in flowering time phenotypes in line with TgTFL1 being a floral repressor and TgSOC1-like2 being a floral activator in tulip. Taken together, we have shown that long before morphological changes occur in the shoot apical meristem, the expression of floral repressors in tulip is suppressed by increased ambient temperatures, leading either directly or indirectly to the activation of potential flowering activators shortly before the commencement of the phase change. PMID:28104719

  7. Salmonella typhimurium PtsJ is a novel MocR-like transcriptional repressor involved in regulating the vitamin B6 salvage pathway.

    PubMed

    Tramonti, Angela; Milano, Teresa; Nardella, Caterina; di Salvo, Martino L; Pascarella, Stefano; Contestabile, Roberto

    2017-02-01

    The vitamin B 6 salvage pathway, involving pyridoxine 5'-phosphate oxidase (PNPOx) and pyridoxal kinase (PLK), recycles B 6 vitamers from nutrients and protein turnover to produce pyridoxal 5'-phosphate (PLP), the catalytically active form of the vitamin. Regulation of this pathway, widespread in living organisms including humans and many bacteria, is very important to vitamin B 6 homeostasis but poorly understood. Although some information is available on the enzymatic regulation of PNPOx and PLK, little is known on their regulation at the transcriptional level. In the present work, we identified a new MocR-like regulator, PtsJ from Salmonella typhimurium, which controls the expression of the pdxK gene encoding one of the two PLKs expressed in this organism (PLK1). Analysis of pdxK expression in a ptsJ knockout strain demonstrated that PtsJ acts as a transcriptional repressor. This is the first case of a MocR-like regulator acting as repressor of its target gene. Expression and purification of PtsJ allowed a detailed characterisation of its effector and DNA-binding properties. PLP is the only B 6 vitamer acting as effector molecule for PtsJ. A DNA-binding region composed of four repeated nucleotide sequences is responsible for binding of PtsJ to its target promoter. Analysis of binding stoichiometry revealed that protein subunits/DNA molar ratio varies from 4 : 1 to 2 : 1, depending on the presence or absence of PLP. Structural characteristics of DNA transcriptional factor-binding sites suggest that PtsJ binds DNA according to a different model with respect to other characterised members of the MocR subgroup. © 2016 Federation of European Biochemical Societies.

  8. Directed evolution of a synthetic phylogeny of programmable Trp repressors.

    PubMed

    Ellefson, Jared W; Ledbetter, Michael P; Ellington, Andrew D

    2018-04-01

    As synthetic regulatory programs expand in sophistication, an ever increasing number of biological components with predictable phenotypes is required. Regulators are often 'part mined' from a diverse, but uncharacterized, array of genomic sequences, often leading to idiosyncratic behavior. Here, we generate an entire synthetic phylogeny from the canonical allosteric transcription factor TrpR. Iterative rounds of positive and negative compartmentalized partnered replication (CPR) led to the exponential amplification of variants that responded with high affinity and specificity to halogenated tryptophan analogs and novel operator sites. Fourteen repressor variants were evolved with unique regulatory profiles across five operators and three ligands. The logic of individual repressors can be modularly programmed by creating heterodimeric fusions, resulting in single proteins that display logic functions, such as 'NAND'. Despite the evolutionarily limited regulatory role of TrpR, vast functional spaces exist around this highly conserved protein scaffold and can be harnessed to create synthetic regulatory programs.

  9. Pokemon decreases the transcriptional activity of RARα in the absence of ligand.

    PubMed

    Yang, Yutao; Li, Yueting; Di, Fei; Cui, Jiajun; Wang, Yue; David Xu, Zhi-Qing

    2016-12-20

    Pokemon is a transcriptional repressor that belongs to the POZ and Krüppel (POK) protein family. In this study, we investigated the potential interaction between Pokemon and retinoic acid receptor alpha (RARα) and determined the role of Pokemon in regulation of RARα transcriptional activity in the absence of ligand. We found that Pokemon could directly interact with RARα. Moreover, we demonstrated that Pokemon could decrease the transcriptional activity of RARα in the absence of ligand. Furthermore, we showed that Pokemon could repress the transcriptional activity of RARα by increasing the recruitment of nuclear receptor co-repressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) to the retinoic acid response element (RARE) element. Taken together, these data suggest that Pokemon is a novel partner of RARα that acts as a co-repressor to regulate RARα transcriptional activity in the absence of ligand.

  10. Sensitive maintenance: a cognitive process underlying individual differences in memory for threatening information.

    PubMed

    Peters, Jan H; Hock, Michael; Krohne, Heinz Walter

    2012-01-01

    Dispositional styles of coping with threat influence memory for threatening information. In particular, sensitizers excel over repressors in their memory for threatening information after long retention intervals, but not after short ones. We therefore suggested that sensitizers, but not repressors, employ active maintenance processes during the retention interval to selectively retain threatening material. Sensitive maintenance was studied in 2 experiments in which participants were briefly exposed to threatening and nonthreatening pictures (Experiment 1, N = 128) or words (Experiment 2, N = 145). Following, we administered unannounced recognition tests before and after an intervening task that generated either high or low cognitive load, assuming that high cognitive load would impede sensitizers' memory maintenance of threatening material. Supporting our hypotheses, the same pattern of results was obtained in both experiments: Under low cognitive load, sensitizers forgot less threat material than repressors did; no such differences were observed under high cognitive load.

  11. Effect of mutation at the interface of Trp-repressor dimeric protein: a steered molecular dynamics simulation.

    PubMed

    Miño, German; Baez, Mauricio; Gutierrez, Gonzalo

    2013-09-01

    The strength of key interfacial contacts that stabilize protein-protein interactions have been studied by computer simulation. Experimentally, changes in the interface are evaluated by generating specific mutations at one or more points of the protein structure. Here, such an evaluation is performed by means of steered molecular dynamics and use of a dimeric model of tryptophan repressor and in-silico mutants as a test case. Analysis of four particular cases shows that, in principle, it is possible to distinguish between wild-type and mutant forms by examination of the total energy and force-extension profiles. In particular, detailed atomic level structural analysis indicates that specific mutations at the interface of the dimeric model (positions 19 and 39) alter interactions that appear in the wild-type form of tryptophan repressor, reducing the energy and force required to separate both subunits.

  12. Prolonged Baroreflex Activation Abolishes Salt-Induced Hypertension After Reductions in Kidney Mass.

    PubMed

    Hildebrandt, Drew A; Irwin, Eric D; Lohmeier, Thomas E

    2016-12-01

    Chronic electric activation of the carotid baroreflex produces sustained reductions in sympathetic activity and arterial pressure and is currently being evaluated for therapy in patients with resistant hypertension. However, patients with significant impairment of renal function have been largely excluded from clinical trials. Thus, there is little information on blood pressure and renal responses to baroreflex activation in subjects with advanced chronic kidney disease, which is common in resistant hypertension. Changes in arterial pressure and glomerular filtration rate were determined in 5 dogs after combined unilateral nephrectomy and surgical excision of the poles of the remaining kidney to produce ≈70% reduction in renal mass. After control measurements, sodium intake was increased from ≈45 to 450 mol/d. While maintained on high salt, animals experienced increases in mean arterial pressure from 102±4 to 121±6 mm Hg and glomerular filtration rate from 40±2 to 45±2 mL/min. During 7 days of baroreflex activation, the hypertension induced by high salt was abolished (103±6 mm Hg) along with striking suppression of plasma norepinephrine concentration from 139±21 to 81±9 pg/mL, but despite pronounced blood pressure lowering, there were no significant changes in glomerular filtration rate (43±2 mL/min). All variables returned to prestimulation values during a recovery period. These findings indicate that after appreciable nephron loss, chronic suppression of central sympathetic outflow by baroreflex activation abolishes hypertension induced by high salt intake. The sustained antihypertensive effects of baroreflex activation occur without significantly compromising glomerular filtration rate in remnant nephrons. © 2016 American Heart Association, Inc.

  13. Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans

    PubMed Central

    Tan, Benedict G.; Vijgenboom, Erik; Worrall, Jonathan A. R.

    2014-01-01

    Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoRSl) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoRSl binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5′-TAC/GTA-3′ inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoRSl–DNA interaction suggest selectivity towards the A-DNA-like topology of the G-tracts at the operator site. Such properties are enhanced on protein binding thus enabling the symmetrical binding of two CsoRSl tetramers. Finally, differential binding modes may exist in operator sites having more than one 5′-TAC/GTA-3′ inverted repeat with implications in vivo for a mechanism of modular control. PMID:24121681

  14. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila.

    PubMed

    Gunawardhana, Kushan L; Hardin, Paul E

    2017-11-20

    In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLN v ) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Vibrio parahaemolyticus CalR down regulates the thermostable direct hemolysin (TDH) gene transcription and thereby inhibits hemolytic activity.

    PubMed

    Zhang, Yiquan; Zhang, Ying; Gao, He; Zhang, Lingyu; Yin, Zhe; Huang, Xinxiang; Zhou, Dongsheng; Yang, Huiying; Yang, Wenhui; Wang, Li

    2017-05-20

    TDH, encoded by tdh gene, is a major virulent determinant of V. parahaemolyticus that controls various biological activities, such as hemolytic activity, cytotoxicity, and enterotoxicity. The hemolytic activity on Wagatsuma agar ascribed to TDH is called Kanagawa phenomenon (KP). All KP positive strains contain tdh1 and tdh2 genes, but tdh2 is predominantly responsible for KP. CalR is a regulatory protein that was originally identified as a repressor of swarming motility and T3SS1 gene expression in V. parahaemolyticus. In the present study, the regulation of tdh2 by CalR was investigated using a set of experiments including qRT-PCR, primer extension, LacZ fusion, hemolytic phenotype, EMSA, and DNase I footprinting assays. The results showed that His-CalR protected a single region from 224bp to 318bp upstream of tdh2 against DNase I digestion, and a transcriptional start site located at 42bp upstream of tdh2 was detected and its transcribed activity was inhibited by CalR. Moreover, the KP test results showed that the hemolytic activity of V. parahaemolyticus is also under negative control of CalR. The data demonstrated that CalR is a repressor of the tdh2 transcription and thereby inhibits the hemolytic activity of V. parahaemolyticus. Copyright © 2017. Published by Elsevier B.V.

  16. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage.

    PubMed

    Kubiak, Jeffrey M; Culyba, Matthew J; Liu, Monica Yun; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2017-11-17

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.

  17. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots[C][W][OPEN

    PubMed Central

    Albert, Nick W.; Davies, Kevin M.; Lewis, David H.; Zhang, Huaibi; Montefiori, Mirco; Brendolise, Cyril; Boase, Murray R.; Ngo, Hanh; Jameson, Paula E.; Schwinn, Kathy E.

    2014-01-01

    Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots. PMID:24642943

  18. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    PubMed Central

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  19. Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster

    PubMed Central

    Maier, Dieter; Kurth, Patricia; Schulz, Adriana; Russell, Andrew; Yuan, Zhenyu; Gruber, Kim; Kovall, Rhett A.; Preiss, Anette

    2011-01-01

    In metazoans, the highly conserved Notch pathway drives cellular specification. On receptor activation, the intracellular domain of Notch assembles a transcriptional activator complex that includes the DNA-binding protein CSL, a composite of human C-promoter binding factor 1, Suppressor of Hairless of Drosophila melanogaster [Su(H)], and lin-12 and Glp-1 phenotype of Caenorhabditis elegans. In the absence of ligand, CSL represses Notch target genes. However, despite the structural similarity of CSL orthologues, repression appears largely diverse between organisms. Here we analyze the Notch repressor complex in Drosophila, consisting of the fly CSL protein, Su(H), and the corepressor Hairless, which recruits general repressor proteins. We show that the C-terminal domain of Su(H) is necessary and sufficient for forming a high-affinity complex with Hairless. Mutations in Su(H) that affect interactions with Notch and Mastermind have no effect on Hairless binding. Nonetheless, we demonstrate that Notch and Hairless compete for CSL in vitro and in cell culture. In addition, we identify a site in Hairless that is crucial for binding Su(H) and subsequently show that this Hairless mutant is strongly impaired, failing to properly assemble the repressor complex in vivo. Finally, we demonstrate Hairless-mediated inhibition of Notch signaling in a cell culture assay, which hints at a potentially similar repression mechanism in mammals that might be exploited for therapeutic purposes. PMID:21737682

  20. Mechanisms of information decoding in a cascade system of gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Haohua; Yuan, Zhanjiang; Liu, Peijiang; Zhou, Tianshou

    2016-05-01

    Biotechnology advances have allowed investigation of heterogeneity of cellular responses to stimuli on the single-cell level. Functionally, this heterogeneity can compromise cellular responses to environmental signals, and it can also enlarge the repertoire of possible cellular responses and hence increase the adaptive nature of cellular behaviors. However, the mechanism of how this response heterogeneity is generated remains elusive. Here, by systematically analyzing a representative cellular signaling system, we show that (1) the upstream activator always amplifies the downstream burst frequency (BF) but the noiseless activator performs better than the noisy one, remarkably for small or moderate input signal strengths, and the repressor always reduces the downstream BF but the difference in the reducing effect between noiseless and noise repressors is very small; (2) both the downstream burst size and mRNA mean are a monotonically increasing function of the activator strength but a monotonically decreasing function of the repressor strength; (3) for repressor-type input, there is a noisy signal strength such that the downstream mRNA noise arrives at an optimal level, but for activator-type input, the output noise intensity is fundamentally a monotonically decreasing function of the input strength. Our results reveal the essential mechanisms of both signal information decoding and cellular response heterogeneity, whereas our analysis provides a paradigm for analyzing dynamics of noisy biochemical signaling systems.

  1. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity.

    PubMed

    Rus, Florentina; Flatt, Thomas; Tong, Mei; Aggarwal, Kamna; Okuda, Kendi; Kleino, Anni; Yates, Elisabeth; Tatar, Marc; Silverman, Neal

    2013-05-29

    Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, Malathy; Hennelly, Scott Patrick; Dale, Taraka T.

    The most straightforward approach to altering the flux through a particular metabolic step is to increase or decrease the concentration of the enzyme catalyst. Until recently engineering strategies for altering gene expression have focused on transcription control using strong inducible promoters or by using one of several strategies to knock down or knock out a wasteful gene. Recently, synthetic riboregulators have been developed for translational regulation of gene expression. We report a new modular synthetic riboregulator class that has the potential to finely tune protein expression and independently control the concentration of each enzyme in an engineered metabolic pathway. Ourmore » design includes a cis-repressor at the 5’ end of the mRNA that forms a stem-loop helix occluding the ribosome binding site and blocking translation. An activating-RNA, expressed in trans, frees the RBS turning on translation. The overall architecture of the riboregulators is designed using Watson-Crick base-pairing stability followed by directed evolution on a portion of each trans-activator to fine tune translation. We report a cis-repressor that can completely shut off translation of antibiotic resistance reporters and a trans-activator that restores translation. We have shown it is possible to use riboregulators to achieve translational control of gene expression over a wide dynamic range. Using a bioluminescent reporter system, we demonstrated an ON/OFF ratio >300. We have demonstrated that a targeting sequence can be changed to develop riboregulators that can independently regulate translation of many genes with minimal cross-talk. In a SELEX experiment, we demonstrated that by subtly altering the sequence of the trans-activator, it is possible to alter the equilibrium between repressed and activated states and achieve intermediate translational control.« less

  3. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.

    PubMed

    Zotti, Moises; Dos Santos, Ericmar Avila; Cagliari, Deise; Christiaens, Olivier; Taning, Clauvis Nji Tizi; Smagghe, Guy

    2018-06-01

    Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Molecular dynamics studies of a DNA-binding protein: 2. An evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor.

    PubMed Central

    Guenot, J.; Kollman, P. A.

    1992-01-01

    Although aqueous simulations with periodic boundary conditions more accurately describe protein dynamics than in vacuo simulations, these are computationally intensive for most proteins. Trp repressor dynamic simulations with a small water shell surrounding the starting model yield protein trajectories that are markedly improved over gas phase, yet computationally efficient. Explicit water in molecular dynamics simulations maintains surface exposure of protein hydrophilic atoms and burial of hydrophobic atoms by opposing the otherwise asymmetric protein-protein forces. This properly orients protein surface side chains, reduces protein fluctuations, and lowers the overall root mean square deviation from the crystal structure. For simulations with crystallographic waters only, a linear or sigmoidal distance-dependent dielectric yields a much better trajectory than does a constant dielectric model. As more water is added to the starting model, the differences between using distance-dependent and constant dielectric models becomes smaller, although the linear distance-dependent dielectric yields an average structure closer to the crystal structure than does a constant dielectric model. Multiplicative constants greater than one, for the linear distance-dependent dielectric simulations, produced trajectories that are progressively worse in describing trp repressor dynamics. Simulations of bovine pancreatic trypsin were used to ensure that the trp repressor results were not protein dependent and to explore the effect of the nonbonded cutoff on the distance-dependent and constant dielectric simulation models. The nonbonded cutoff markedly affected the constant but not distance-dependent dielectric bovine pancreatic trypsin inhibitor simulations. As with trp repressor, the distance-dependent dielectric model with a shell of water surrounding the protein produced a trajectory in better agreement with the crystal structure than a constant dielectric model, and the physical properties of the trajectory average structure, both with and without a nonbonded cutoff, were comparable. PMID:1304396

  5. p21 as a Transcriptional Co-Repressor of S-Phase and Mitotic Control Genes

    PubMed Central

    Ferrándiz, Nuria; Caraballo, Juan M.; García-Gutierrez, Lucía; Devgan, Vikram; Rodriguez-Paredes, Manuel; Lafita, M. Carmen; Bretones, Gabriel; Quintanilla, Andrea; Muñoz-Alonso, M. Jose; Blanco, Rosa; Reyes, Jose C.; Agell, Neus; Delgado, M. Dolores; Dotto, G. Paolo; León, Javier

    2012-01-01

    It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes. PMID:22662213

  6. The Yeast PUF Protein Puf5 Has Pop2-Independent Roles in Response to DNA Replication Stress

    PubMed Central

    Traven, Ana; Lo, Tricia L.; Lithgow, Trevor; Heierhorst, Jörg

    2010-01-01

    PUFs are RNA binding proteins that promote mRNA deadenylation and decay and inhibit translation. Yeast Puf5 is the prototype for studying PUF-dependent gene repression. Puf5 binds to the Pop2 subunit of the Ccr4-Pop2-NOT mRNA deadenylase, recruiting the deadenylase and associated translational repressors to mRNAs. Here we used yeast genetics to show that Puf5 has additional roles in vivo that do not require Pop2. Deletion of PUF5 caused increased sensitivity to DNA replication stress in cells lacking Pop2, as well as in cells mutated for two activities recruited to mRNAs by the Puf5-Pop2 interaction, the deadenylase Ccr4 and the translational repressor Dhh1. A functional Puf5 RNA binding domain was required, and Puf5 cytoplasmic localisation was sufficient for resistance to replication stress, indicating posttranscriptional gene expression control is involved. In contrast to DNA replication stress, in response to the cell wall integrity pathway activator caffeine, PUF5 and POP2 acted in the same genetic pathway, indicating that functions of Puf5 in the caffeine response are mediated by Pop2-dependent gene repression. Our results support a model in which Puf5 uses multiple, Pop2-dependent and Pop2-independent mechanisms to control mRNA expression. The Pop2-independent roles for Puf5 could involve spatial control of gene expression, a proposition supported by our data indicating that the active form of Puf5 is localised to cytoplasmic foci. PMID:20498834

  7. A role for Candida albicans superoxide dismutase enzymes in glucose signaling.

    PubMed

    Broxton, Chynna N; He, Bixi; Bruno, Vincent M; Culotta, Valeria C

    2018-01-01

    The Saccharomyces cerevisiae and Candida albicans yeasts have evolved to differentially use glucose for fermentation versus respiration. S. cerevisiae is Crabtree positive, where glucose represses respiration and promotes fermentation, while the opportunistic fungal pathogen C. albicans is Crabtree negative and does not repress respiration with glucose. We have previously shown that glucose control in S. cerevisiae involves the antioxidant enzyme Cu/Zn superoxide dismutase (SOD1), where H 2 O 2 generated by SOD1 stabilizes the casein kinase YCK1 for glucose sensing. We now demonstrate that C. albicans SODs also participate in glucose regulation. C. albicans expresses two cytosolic SODs, Cu/Zn SOD1 and Mn containing SOD3, and both complemented a S. cerevisiae sod1Δ mutant in stabilizing YCK1. Moreover, in C. albicans cells, both SODs functioned to repress glucose transporter genes in response to glucose. However, the action of SODs in glucose control has diverged in the two yeasts. In S. cerevisiae, SOD1 specifically functions in the glucose sensing pathway involving YCK1 and the RGT1 repressor, but the analogous YCK/RGT1 pathway in C. albicans shows no control by SOD enzymes. Instead C. albicans SODs work in the glucose repression pathway involving the MIG1 transcriptional repressor. In C. albicans, the SODs repress glucose uptake, while in S. cerevisiae, SOD1 activates glucose uptake, in accordance with the divergent modes for glucose utilization in these two distantly related yeasts. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Site of Action of Antidiuretic Hormone on Mammalian Nephrons.

    DTIC Science & Technology

    1981-01-01

    techniques. Na and K concen- trations were determined by flamirne photometry and Cl by coulombmetric titration. 3ILO 14C- inulin and "Na were...of Cr in sequential Slop-flow samples. The appearance of 14C- inulin deriv ed from the posl-stop-Ilow IV infusion signalled the appearance of fresh

  9. Glucose Transport into Everted Sacs of the Small Intestine of Mice

    ERIC Educational Resources Information Center

    Hamilton, Kirk L.; Butt, A. Grant

    2013-01-01

    The Na[superscript +]-glucose cotransporter is a key transport protein that is responsible for absorbing Na[superscript +] and glucose from the luminal contents of the small intestine and reabsorption by the proximal straight tubule of the nephron. Robert K. Crane originally described the cellular model of absorption of Na[superscript +] and…

  10. Diuretics in the treatment of hypertension. Part 2: loop diuretics and potassium-sparing agents.

    PubMed

    Tamargo, Juan; Segura, Julian; Ruilope, Luis M

    2014-04-01

    Diuretics enhance the renal excretion of Na(+) and water due to a direct action at different tubular sites of the nephron where solute re-absorption occurs. This paper focuses on the mechanism of action, pharmacodynamics, antihypertensive effects, adverse effects, interactions and contraindications of loop diuretics and potassium-sparing agents (including mineralocorticoid receptor antagonists (MRAs) and epithelial Na(+) channel blockers). Loop diuretics are less effective than thiazide diuretics in lowering blood pressure, so that their major use is in edematous patients with congestive heart failure (HF), cirrhosis with ascites and nephritic edema. MRAs represent a major advance in the treatment of resistant hypertension, primary and secondary hyperaldosteronism and in patients with systolic HF to reduce the risks of hospitalization and of premature death. Potassium-sparing diuretics when coadministered with diuretics (thiazides and loop diuretics) working at more proximal nephron locations reduce the risk of hypokalemia and hypomagnesemia and the risk of cardiac arrhythmias. At the end of the article, the basis for the combination of diuretics with other antihypertensive drugs to achieve blood pressure targets is presented.

  11. Treatment options for renal cell carcinoma in renal allografts: a case series from a single institution.

    PubMed

    Swords, Darden C; Al-Geizawi, Samer M; Farney, Alan C; Rogers, Jeffrey; Burkart, John M; Assimos, Dean G; Stratta, Robert J

    2013-01-01

    Renal cell carcinoma (RCC) is more common in renal transplant and dialysis patients than the general population. However, RCC in transplanted kidneys is rare, and treatment has previously consisted of nephrectomy with a return to dialysis. There has been recent interest in nephron-sparing procedures as a treatment option for RCC in allograft kidneys in an effort to retain allograft function. Four patients with RCC in allograft kidneys were treated with nephrectomy, partial nephrectomy, or radiofrequency ablation. All of the patients are without evidence of recurrence of RCC after treatment. We found nephron-sparing procedures to be reasonable initial options in managing incidental RCCs diagnosed in functioning allografts to maintain an improved quality of life and avoid immediate dialysis compared with radical nephrectomy of a functioning allograft. However, in non-functioning renal allografts, radical nephrectomy may allow for a higher chance of cure without the loss of transplant function. Consequently, radical nephrectomy should be utilized whenever the allograft is non-functioning and the patient's surgical risk is not prohibitive. © 2013 John Wiley & Sons A/S.

  12. Role of fibroblast growth factor receptor signaling in kidney development

    PubMed Central

    2011-01-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling “decoy” receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development. PMID:21613421

  13. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-08-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  14. Orchestrating phospholipid biosynthesis: Phosphatidic acid conducts and Opi1p performs.

    PubMed

    Salsaa, Michael; Case, Kendall; Greenberg, Miriam L

    2017-11-10

    Phosphatidic acid (PA) and the conserved integral ER membrane protein Scs2p regulate localization of the transcriptional repressor Opi1p, which controls expression of phospholipid biosynthesis genes, but the mechanisms conducting Opi1p localization are not fully understood. A new study suggests the existence of a distinct pool of PA in the ER that is required for regulation of Opi1p localization and thus phospholipid metabolism in yeast. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenesis

    DTIC Science & Technology

    2012-10-01

    support with our hypothesis, expressions of AR co-repressors (48-50), HDAC1, HDAC3 or SirT1 inhibit the ligand-induced AR activation at different...signaling and androgen-dependent growth. We hypothesis that DACH1/Six1/Eya pathway is an endogenous regulator of AR trans- activation and contributes to...mechanism. Inhibitory function of Eya1 on AR transactivation required a phosphates activity and could be enhanced by ectopic expression of co-repressors

  16. REST Controls Self-Renewal and Tumorigenic Competence of Human Glioblastoma Cells

    PubMed Central

    Conti, Luciano; Crisafulli, Laura; Brilli, Elisa; Conforti, Paola; Zunino, Franco; Magrassi, Lorenzo; Schiffer, Davide; Cattaneo, Elena

    2012-01-01

    The Repressor Element 1 Silencing Transcription factor (REST/NRSF) is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM) specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets. PMID:22701651

  17. A high-resolution structure of the DNA-binding domain of AhrC, the arginine repressor/activator protein from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.

    2007-11-01

    The structure of the winged helix–turn–helix DNA-binding domain of AhrC has been determined at 1.0 Å resolution. The largely hydrophobic β-wing shows high B factors and may mediate the dimer interface in operator complexes. In Bacillus subtilis the concentration of l-arginine is controlled by the transcriptional regulator AhrC, which interacts with 18 bp DNA operator sites called ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a 100 kDa homohexamer, with each subunit having two domains. The C-terminal domains form the core, mediating intersubunit interactions and binding of the co-repressor l-arginine, whilst the N-terminal domains containmore » a winged helix–turn–helix DNA-binding motif and are arranged around the periphery. The N-terminal domain of AhrC has been expressed, purified and characterized and it has been shown that the fragment still binds DNA operators as a recombinant monomer. The DNA-binding domain has also been crystallized and the crystal structure refined to 1.0 Å resolution is presented.« less

  18. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei.

    PubMed

    Cao, Yanli; Zheng, Fanglin; Wang, Lei; Zhao, Guolei; Chen, Guanjun; Zhang, Weixin; Liu, Weifeng

    2017-07-01

    Cellulase gene expression in the model cellulolytic fungus Trichoderma reesei is supposed to be controlled by an intricate regulatory network involving multiple transcription factors. Here, we identified a novel transcriptional repressor of cellulase gene expression, Rce1. Disruption of the rce1 gene not only facilitated the induced expression of cellulase genes but also led to a significant delay in terminating the induction process. However, Rce1 did not participate in Cre1-mediated catabolite repression. Electrophoretic mobility shift (EMSA) and DNase I footprinting assays in combination with chromatin immunoprecipitation (ChIP) demonstrated that Rce1 could bind directly to a cbh1 (cellobiohydrolase 1-encoding) gene promoter region containing a cluster of Xyr1 binding sites. Furthermore, competitive binding assays revealed that Rce1 antagonized Xyr1 from binding to the cbh1 promoter. These results indicate that intricate interactions exist between a variety of transcription factors to ensure tight and energy-efficient regulation of cellulase gene expression in T. reesei. This study also provides important clues regarding increased cellulase production in T. reesei. © 2017 John Wiley & Sons Ltd.

  19. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53.

    PubMed

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice; Kramer, Daniela; Najafova, Zeynab; Weiss, Miriam; Karpiuk, Oleksandra; Kassem, Moustapha; Zhang, Yanping; Lozano, Guillermina; Johnsen, Steven A; Moll, Ute M; Zhang, Xin; Dobbelstein, Matthias

    2016-01-07

    The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Epigenetic mechanisms and memory strength: a comparative study.

    PubMed

    Federman, Noel; Zalcman, Gisela; de la Fuente, Verónica; Fustiñana, Maria Sol; Romano, Arturo

    2014-01-01

    Memory consolidation requires de novo mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modifications related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5 years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab Neohelice granulata, as well as during consolidation of novel object recognition memory in the mouse Mus musculus. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Increase of Total Nephron Albumin Filtration and Reabsorption in Diabetic Nephropathy.

    PubMed

    Mori, Keita P; Yokoi, Hideki; Kasahara, Masato; Imamaki, Hirotaka; Ishii, Akira; Kuwabara, Takashige; Koga, Kenichi; Kato, Yukiko; Toda, Naohiro; Ohno, Shoko; Kuwahara, Koichiro; Endo, Tomomi; Nakao, Kazuwa; Yanagita, Motoko; Mukoyama, Masashi; Mori, Kiyoshi

    2017-01-01

    The amount of albumin filtered through the glomeruli and reabsorbed at the proximal tubules in normal and in diabetic kidneys is debated. The megalin/cubilin complex mediates protein reabsorption, but genetic knockout of megalin is perinatally lethal. To overcome current technical problems, we generated a drug-inducible megalin-knockout mouse line, megalin(lox/lox);Ndrg1-CreER T2 (iMegKO), in which megalin expression can be shut off at any time by administration of tamoxifen (Tam). Tam administration in adult iMegKO mice decreased the expression of renal megalin protein by 92% compared with that in wild-type C57BL/6J mice and almost completely abrogated renal reabsorption of intravenously injected retinol-binding protein. Furthermore, urinary albumin excretion increased to 175 μg/d (0.46 mg albumin/mg creatinine) in Tam-treated iMegKO mice, suggesting that this was the amount of total nephron albumin filtration. By comparing Tam-treated, streptozotocin-induced diabetic iMegKO mice with Tam-treated nondiabetic iMegKO mice, we estimated that the development of diabetes led to a 1.9-fold increase in total nephron albumin filtration, a 1.8-fold increase in reabsorption, and a significant reduction in reabsorption efficiency (86% efficiency versus 96% efficiency in nondiabetic mice). Insulin treatment normalized these abnormalities. Akita;iMegKO mice, another model of type 1 diabetes, showed equivalent results. Finally, nondiabetic iMegKO mice had a glomerular sieving coefficient of albumin of 1.7×10 -5 , which approximately doubled in diabetic iMegKO mice. This study reveals actual values and changes of albumin filtration and reabsorption in early diabetic nephropathy in mice, bringing new insights to our understanding of renal albumin dynamics associated with the hyperfiltration status of diabetic nephropathy. Copyright © 2016 by the American Society of Nephrology.

  2. Effect of Dietary Countermeasures and Impact of Gravity on Renal Calculi Size Distributions Predicted by PBE-System and PBE-CFD Models

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Thompson, D.; Goodenow, D.; Gokoglu, S.; Myers, J.

    2016-01-01

    Renal stone disease is not only a concern on earth but can conceivably pose a serious risk to the astronauts health and safety in Space. In this work, two different deterministic models based on a Population Balance Equation (PBE) analysis of renal stone formation are developed to assess the risks of critical renal stone incidence for astronauts during space travel. In the first model, the nephron is treated as a continuous mixed suspension mixed product removal crystallizer and the PBE for the nucleating, growing and agglomerating renal calculi is coupled to speciation calculations performed by JESS. Predictions of stone size distributions in the kidney using this model indicate that the astronaut in microgravity is at noticeably greater but still subcritical risk and recommend administration of citrate and augmented hydration as effective means of minimizing and containing this risk. In the second model, the PBE analysis is coupled to a Computational Fluid Dynamics (CFD) model for flow of urine and transport of Calcium and Oxalate in the nephron to predict the impact of gravity on the stone size distributions. Results presented for realistic 3D tubule and collecting duct geometries, clearly indicate that agglomeration is the primary mode of size enhancement in both 1g and microgravity. 3D numerical simulations seem to further indicate that there will be an increased number of smaller stones developed in microgravity that will likely pass through the nephron in the absence of wall adhesion. However, upon reentry to a 1g (Earth) or 38g (Mars) partial gravitational fields, the renal calculi can lag behind the urinary flow in tubules that are adversely oriented with respect to the gravitational field and grow agglomerate to large sizes that are sedimented near the wall with increased propensity for wall adhesion, plaque formation, and risk to the astronauts.

  3. THE EFFECT OF TOTAL AND PARTIAL NEPHRECTOMY ON THE PHARMACOKINETICS OF INTRAVENOUS PARACETAMOL IN HUMANS.

    PubMed

    Karbownik, Agnieszka; Polom, Wojciech; Porazka, Joanna; Szalek, Edyta; Grabowski, Tomasz; Wolc, Anna; Matuszewski Marcin; Grzesowiak, Edmund

    2017-05-01

    Paracetamol is one of the most common analgesic and antipyretic drugs. Recently intravenous paracetamol has been widely used to treat moderate postoperative pain. Surgery is the main method of treatment of renal cancer. Total or partial nephrectomy can be performed, depending on the size and location of the tumor. Pharmacokinetics of drugs may depend on the type of surgery. The aim of the study was to compare the postinfusion pharmacokinetics of paracetamol in patients after total nephrectomy (TN) and nephron sparing surgery (NSS).The research was carried out on two groups of patients after nephrectomy: total (TN n = 37; mean [SD], age, 60.4 [10.9] years; BMI, 26.5 [3.8] kg/m2; creatinine clearance, Cl, 80.9 [37.1] mL/min) and nephron sparing surgery (NSS n = 17; 57.9 [16.5] years; BMI, 29.5 [5.3] kg/m2; Cl, 97.6 [27.8] mL/min). The patients were treated with paracetamol (PerfalganO Bristol-Myers Squibb) at an intravenous dose of 1.000 mg, which was infused for 15 minutes after surgery. The concentrations of paracetamol in the patients' plasma were determined by the HPLC method with UV detection (X = 261 run). The main pharmacokinetic parameters of paracetamol in the TN vs. NSS group were as follows: C.. 29.08 [17.39] vs. 27.54 [15.70] pg/mL (p = 0.6692); AUC5, 29.24 [13.86] vs. 34.85 [14.28] pg.h/mL (p = 0.2896); AUMC5,,,, 47.58 [26.08] vs. 62.02 [27.64] pg-h/mL (p = 0.1345); to. 2.34 [0.96] vs. 1.93 [0.50] h (p = 0.1415), respectively. In both groups the exposure to paracetamol was comparable. The t1/2 after nephron sparing surgery was shorter than after total nephrectomy. Therefore, these patients may demand more frequent drug administration. In the NSS group the C. of the analgesic was considerably reduced in men.

  4. Impact of renal medullary three-dimensional architecture on oxygen transport.

    PubMed

    Fry, Brendan C; Edwards, Aurélie; Sgouralis, Ioannis; Layton, Anita T

    2014-08-01

    We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (PO2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial PO2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal PO2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the high metabolic requirements of the thick limbs and raises NaCl reabsorption. Copyright © 2014 the American Physiological Society.

  5. Robot-assisted partial nephrectomy: Superiority over laparoscopic partial nephrectomy.

    PubMed

    Shiroki, Ryoichi; Fukami, Naohiko; Fukaya, Kosuke; Kusaka, Mamoru; Natsume, Takahiro; Ichihara, Takashi; Toyama, Hiroshi

    2016-02-01

    Nephron-sparing surgery has been proven to positively impact the postoperative quality of life for the treatment of small renal tumors, possibly leading to functional improvements. Laparoscopic partial nephrectomy is still one of the most demanding procedures in urological surgery. Laparoscopic partial nephrectomy sometimes results in extended warm ischemic time and severe complications, such as open conversion, postoperative hemorrhage and urine leakage. Robot-assisted partial nephrectomy exploits the advantages offered by the da Vinci Surgical System to laparoscopic partial nephrectomy, equipped with 3-D vision and a better degree in the freedom of surgical instruments. The introduction of the da Vinci Surgical System made nephron-sparing surgery, specifically robot-assisted partial nephrectomy, safe with promising results, leading to the shortening of warm ischemic time and a reduction in perioperative complications. Even for complex and challenging tumors, robotic assistance is expected to provide the benefit of minimally-invasive surgery with safe and satisfactory renal function. Warm ischemic time is the modifiable factor during robot-assisted partial nephrectomy to affect postoperative kidney function. We analyzed the predictive factors for extended warm ischemic time from our robot-assisted partial nephrectomy series. The surface area of the tumor attached to the kidney parenchyma was shown to significantly affect the extended warm ischemic time during robot-assisted partial nephrectomy. In cases with tumor-attached surface area more than 15 cm(2) , we should consider switching robot-assisted partial nephrectomy to open partial nephrectomy under cold ischemia if it is imperative. In Japan, a nationwide prospective study has been carried out to show the superiority of robot-assisted partial nephrectomy to laparoscopic partial nephrectomy in improving warm ischemic time and complications. By facilitating robotic technology, robot-assisted partial nephrectomy will be more frequently carried out as a safe, effective and minimally-invasive nephron-sparing surgery procedure. © 2015 The Japanese Urological Association.

  6. Renal Cell Carcinoma Associated with Xp11.2 Translocation/TFE3 Gene Fusions: Clinical Features, Treatments and Prognosis.

    PubMed

    Liu, Ning; Wang, Zhen; Gan, Weidong; Xiong, Lei; Miao, Baolei; Chen, Xiancheng; Guo, Hongqian; Li, Dongmei

    2016-01-01

    To investigate the clinical characteristics, treatments and prognosis of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusions (Xp11.2 tRCC), the epidemiological features and treatment results of 34 cases of Xp11.2 tRCC, which were diagnosed by immunohistochemistry staining of TFE3 and fluorescence in situ hybridization at our center, were retrospectively reviewed. The 34 patients included 21 females and 13 males aged 3 to 64 years (median age: 27 years). Four patients were children or adolescents (<18 years of age), and 26 patients were young or middle-aged adults (18-45 years). Radical nephrectomy was performed on 25 patients. Laparoscopic nephron-sparing surgery was performed on 9 patients who presented with an isolated mass with a small diameter (<7 cm) and well-defined boundary on computed tomography imaging. Postoperative staging showed that 25 cases (73.53%) were at stage I/II, while 9 cases (26.47%) were at stage III/IV. All stage I/II patients received a favorable prognosis with a three-year overall survival rate of 100%, including the patients who underwent laparoscopic nephron-sparing surgery. With the exception of 2 children, the other 7 stage III/IV patients died or developed recurrence with a median follow-up of 29 months. On univariate analysis, maximum diameter, adjuvant treatment, TNM stage, lymph node metastasis, inferior vena cava tumor thrombosis and tumor boundary were identified as statistically significant factors impacting survival (P<0.05). Multivariate analysis indicated that TNM stage and inferior vena cava tumor thrombosis were independent prognostic factors (P<0.05). In conclusion, Xp11.2 tRCC is a rare subtype of renal cell carcinoma that mainly occurs in young females. Nephron-sparing surgery was confirmed effective preliminarily in the treatment of small Xp11.2 tRCCs with clear rims. Advanced TNM stage and inferior vena cava tumor thrombosis were associated with poor prognosis.

  7. Renal Cell Carcinoma Associated with Xp11.2 Translocation/TFE3 Gene Fusions: Clinical Features, Treatments and Prognosis

    PubMed Central

    Gan, Weidong; Xiong, Lei; Miao, Baolei; Chen, Xiancheng; Guo, Hongqian; Li, Dongmei

    2016-01-01

    To investigate the clinical characteristics, treatments and prognosis of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusions (Xp11.2 tRCC), the epidemiological features and treatment results of 34 cases of Xp11.2 tRCC, which were diagnosed by immunohistochemistry staining of TFE3 and fluorescence in situ hybridization at our center, were retrospectively reviewed. The 34 patients included 21 females and 13 males aged 3 to 64 years (median age: 27 years). Four patients were children or adolescents (<18 years of age), and 26 patients were young or middle-aged adults (18–45 years). Radical nephrectomy was performed on 25 patients. Laparoscopic nephron-sparing surgery was performed on 9 patients who presented with an isolated mass with a small diameter (<7 cm) and well-defined boundary on computed tomography imaging. Postoperative staging showed that 25 cases (73.53%) were at stage I/II, while 9 cases (26.47%) were at stage III/IV. All stage I/II patients received a favorable prognosis with a three-year overall survival rate of 100%, including the patients who underwent laparoscopic nephron-sparing surgery. With the exception of 2 children, the other 7 stage III/IV patients died or developed recurrence with a median follow-up of 29 months. On univariate analysis, maximum diameter, adjuvant treatment, TNM stage, lymph node metastasis, inferior vena cava tumor thrombosis and tumor boundary were identified as statistically significant factors impacting survival (P<0.05). Multivariate analysis indicated that TNM stage and inferior vena cava tumor thrombosis were independent prognostic factors (P<0.05). In conclusion, Xp11.2 tRCC is a rare subtype of renal cell carcinoma that mainly occurs in young females. Nephron-sparing surgery was confirmed effective preliminarily in the treatment of small Xp11.2 tRCCs with clear rims. Advanced TNM stage and inferior vena cava tumor thrombosis were associated with poor prognosis. PMID:27893792

  8. Sulfate transporters involved in sulfate secretion in the kidney are localized in the renal proximal tubule II of the elephant fish (Callorhinchus milii)

    PubMed Central

    Kato, Akira; Watanabe, Taro; Takagi, Wataru; Romero, Michael F.; Bell, Justin D.; Toop, Tes; Donald, John A.; Hyodo, Susumu

    2016-01-01

    Most vertebrates, including cartilaginous fishes, maintain their plasma SO42− concentration ([SO42−]) within a narrow range of 0.2–1 mM. As seawater has a [SO42−] about 40 times higher than that of the plasma, SO42− excretion is the major role of kidneys in marine teleost fishes. It has been suggested that cartilaginous fishes also excrete excess SO42− via the kidney. However, little is known about the underlying mechanisms for SO42− transport in cartilaginous fish, largely due to the extraordinarily elaborate four-loop configuration of the nephron, which consists of at least 10 morphologically distinguishable segments. In the present study, we determined cDNA sequences from the kidney of holocephalan elephant fish (Callorhinchus milii) that encoded solute carrier family 26 member 1 (Slc26a1) and member 6 (Slc26a6), which are SO42− transporters that are expressed in mammalian and teleost kidneys. Elephant fish Slc26a1 (cmSlc26a1) and cmSlc26a6 mRNAs were coexpressed in the proximal II (PII) segment of the nephron, which comprises the second loop in the sinus zone. Functional analyses using Xenopus oocytes and the results of immunohistochemistry revealed that cmSlc26a1 is a basolaterally located electroneutral SO42− transporter, while cmSlc26a6 is an apically located, electrogenic Cl−/SO42− exchanger. In addition, we found that both cmSlc26a1 and cmSlc26a6 were abundantly expressed in the kidney of embryos; SO42− was concentrated in a bladder-like structure of elephant fish embryos. Our results demonstrated that the PII segment of the nephron contributes to the secretion of excess SO42− by the kidney of elephant fish. Possible mechanisms for SO42− secretion in the PII segment are discussed. PMID:27122370

  9. Luminal flow regulates NO and O2− along the nephron

    PubMed Central

    Cabral, Pablo D.

    2011-01-01

    Urinary flow is not constant but in fact highly variable, altering the mechanical forces (shear stress, stretch, and pressure) exerted on the epithelial cells of the nephron as well as solute delivery. Nitric oxide (NO) and superoxide (O2−) play important roles in various processes within the kidney. Reductions in NO and increases in O2− lead to abnormal NaCl and water absorption and hypertension. In the last few years, luminal flow has been shown to be a regulator of NO and O2− production along the nephron. Increases in luminal flow enhance fluid, Na, and bicarbonate transport in the proximal tubule. However, we know of no reports directly addressing flow regulation of NO and O2− in this segment. In the thick ascending limb, flow-stimulated NO and O2− formation has been extensively studied. Luminal flow stimulates NO production by nitric oxide synthase type 3 and its translocation to the apical membrane in medullary thick ascending limbs. These effects are mediated by flow-induced shear stress. In contrast, flow-induced stretch and NaCl delivery stimulate O2− production by NADPH oxidase in this segment. The interaction between flow-induced NO and O2− is complex and involves more than one simply scavenging the other. Flow-induced NO prevents flow from increasing O2− production via cGMP-dependent protein kinase in thick ascending limbs. In macula densa cells, shear stress increases NO production and this requires that the primary cilia be intact. The role of luminal flow in NO and O2− production in the distal tubule is not known. In cultured inner medullary collecting duct cells, shear stress enhances nitrite accumulation, a measure of NO production. Although much progress has been made on this subject in the last few years, there are still many unanswered questions. PMID:21345976

  10. Stochastic model of template-directed elongation processes in biology.

    PubMed

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. New application of carbon nanotubes in haemostatic dressing filled with anticancer substance.

    PubMed

    Nowacki, M; Wiśniewski, M; Werengowska-Ciećwierz, K; Terzyk, A P; Kloskowski, T; Marszałek, A; Bodnar, M; Pokrywczyńska, M; Nazarewski, Ł; Pietkun, K; Jundziłł, A; Drewa, T

    2015-02-01

    The drug-carrier system used as innovative haemostatic dressing with oncostatic action is studied. It is obtained from CDDP (cisplatin) doped SWCNT (single walled carbon nanotubes), modified and purified by H2O2 in hydrothermal treatment process. In the in vivo nephron sparing surgery (NSS) study we used 35 BALB/c nude mice with induced renal cancer using adenocarcinoma 786-o cells. Animals were divided into four groups: CDDP(M-), CDDP(M+), CONTROL(M-) and CONTROL(M+). In CDDP(M-) and CDDP(M+) groups we used, intraoperatively, carbon nanotubes filled with cisplatin (CDDP). In CONTROL(M-) and CONTROL(M+) groups carbon nanotubes were used alone. During NSS free margin (M-) or positive margin (M+) was performed. In the CDDP(M-) group, we do not observe local tumor recurrences. In Group CDDP(M+) only one animal was diagnosed with tumor recurrence. In control groups the recurrent tumor formation was observed. In our study, it is shown that CDDP filled SWCNT inhibit cancer recurrence in animal model NSS study, and can be successfully applied as haemostatic dressings for local chemoprevention. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells.

    PubMed

    Wang, Jun; Lee, Seungsoo; Teh, Charis En-Yi; Bunting, Karen; Ma, Lina; Shannon, M Frances

    2009-03-01

    Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.

  13. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5.

    PubMed

    Tabata, Takanori; Kokura, Kenji; Ten Dijke, Peter; Ishii, Shunsuke

    2009-01-01

    The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.

  14. Direct Role for the Rpd3 Complex in Transcriptional Induction of the Anaerobic DAN/TIR Genes in Yeast▿‡

    PubMed Central

    Sertil, Odeniel; Vemula, Arvind; Salmon, Sharon L.; Morse, Randall H.; Lowry, Charles V.

    2007-01-01

    Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of “anaerobic” genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression. PMID:17210643

  15. Control of renal calcium, phosphate, electrolyte, and water excretion by the calcium-sensing receptor.

    PubMed

    Tyler Miller, R

    2013-06-01

    Through regulation of excretion, the kidney shares responsibility for the metabolic balance of calcium (Ca(2+)) with several other tissues including the GI tract and bone. The balances of Ca(2+) and phosphate (PO4), magnesium (Mg(2+)), sodium (Na(+)), potassium (K(+)), chloride (Cl(-)), and water (H2O) are linked via regulatory systems with overlapping effects and are also controlled by systems specific to each of them. Cloning of the calcium-sensing receptor (CaSR) along with the recognition that mutations in the CaSR gene are responsible for two familial syndromes characterized by abnormalities in the regulation of PTH secretion and Ca(2+) metabolism (Familial Hypocalciuric Hypercalcemia, FHH, and Autosomal Dominant Hypocalcemia, ADH) made it clear that extracellular Ca(2+) (Ca(2+)o) participates in its own regulation via a specific, receptor-mediated mechanism. Demonstration that the CaSR is expressed in the kidney as well as the parathyroid glands combined with more complete characterizations of FHH and ADH established that the effects of elevated Ca(2+) on the kidney (wasting of Na(+), K(+), Cl(-), Ca(2+), Mg(2+) and H2O) are attributable to activation of the CaSR. The advent of positive and negative allosteric modulators of the CaSR along with mouse models with global or tissue-selective deletion of the CaSR in the kidney have allowed a better understanding of the functions of the CaSR in various nephron segments. The biology of the CaSR is more complicated than originally thought and difficult to define precisely owing to the limitations of reagents such as anti-CaSR antibodies and the difficulties inherent in separating direct effects of Ca(2+) on the kidney mediated by the CaSR from associated CaSR-induced changes in PTH. Nevertheless, renal CaSRs have nephron-specific effects that contribute to regulating Ca(2+) in the circulation and urine in a manner that assures a narrow range of Ca(2+)o in the blood and avoids excessively high concentrations of Ca(2+) in the urine. Published by Elsevier Ltd.

  16. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ–mediated host defenses

    PubMed Central

    Brenier-Pinchart, Marie-Pierre; Bertini, Rose-Laurence; Varesano, Aurélie; De Bock, Pieter-Jan

    2016-01-01

    An early hallmark of Toxoplasma gondii infection is the rapid control of the parasite population by a potent multifaceted innate immune response that engages resident and homing immune cells along with pro- and counter-inflammatory cytokines. In this context, IFN-γ activates a variety of T. gondii–targeting activities in immune and nonimmune cells but can also contribute to host immune pathology. T. gondii has evolved mechanisms to timely counteract the host IFN-γ defenses by interfering with the transcription of IFN-γ–stimulated genes. We now have identified TgIST (T. gondii inhibitor of STAT1 transcriptional activity) as a critical molecular switch that is secreted by intracellular parasites and traffics to the host cell nucleus where it inhibits STAT1-dependent proinflammatory gene expression. We show that TgIST not only sequesters STAT1 on dedicated loci but also promotes shaping of a nonpermissive chromatin through its capacity to recruit the nucleosome remodeling deacetylase (NuRD) transcriptional repressor. We found that during mice acute infection, TgIST-deficient parasites are rapidly eliminated by the homing Gr1+ inflammatory monocytes, thus highlighting the protective role of TgIST against IFN-γ–mediated killing. By uncovering TgIST functions, this study brings novel evidence on how T. gondii has devised a molecular weapon of choice to take control over a ubiquitous immune gene expression mechanism in metazoans, as a way to promote long-term parasitism. PMID:27503074

  17. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor.

    PubMed

    Ares, Miguel A; Fernández-Vázquez, José L; Pacheco, Sabino; Martínez-Santos, Verónica I; Jarillo-Quijada, Ma Dolores; Torres, Javier; Alcántar-Curiel, María D; González-Y-Merchand, Jorge A; De la Cruz, Miguel A

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.

  18. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor

    PubMed Central

    Ares, Miguel A.; Fernández-Vázquez, José L.; Pacheco, Sabino; Martínez-Santos, Verónica I.; Jarillo-Quijada, Ma. Dolores; Torres, Javier; Alcántar-Curiel, María D.; González-y-Merchand, Jorge A.; De la Cruz, Miguel A.

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae. PMID:28278272

  19. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage

    PubMed Central

    2017-01-01

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway. PMID:28826208

  20. [Diuretics].

    PubMed

    Filipowicz, Ewa; Staszków, Monika

    2013-01-01

    Diuretics are an important class of medicine used to treat a wide variety of acute and chronic conditions, like: heart failure, hypertension and renal diseases. They act by increasing urinary excretion of water, sodium, and some others electrolytes, at different sites in the nephron. In this paper the mechanisms of action, use, dosing and adverse effects of the commonly used diuretics are reviewed.

  1. [Prescribing diuretics: what a practitioner needs to know].

    PubMed

    Richard, C; Saudan, P; Ernandez, T

    2015-02-25

    Diuretics are among the most frequently prescribed drugs. Most of them act by inhibiting sodium reabsorption in various nephron segments. By understanding their pharmacological characteristics, it is possible to adapt the type of diuretic to different clinical situations. Practical aspects of their use, including in heart failure, cirrhosis, the nephrotic syndrome and renal failure, are discussed.

  2. SatR Is a Repressor of Fluoroquinolone Efflux Pump SatAB

    PubMed Central

    Escudero, Jose Antonio; San Millan, Alvaro; Montero, Natalia; Gutierrez, Belen; Ovejero, Cristina Martinez; Carrilero, Laura

    2013-01-01

    Streptococcus suis is an emerging zoonotic agent responsible for high-mortality outbreaks among the human population in China. In this species, the ABC transporter SatAB mediates fluoroquinolone resistance when overexpressed. Here, we describe and characterize satR, an open reading frame (ORF) encoding a MarR superfamily regulator that acts as a repressor of satAB. satR is cotranscribed with satAB, and its interruption entails the overexpression of the pump, leading to a clinically relevant increase in resistance to fluoroquinolones. PMID:23650171

  3. DeSUMOylation switches Kaiso from activator to repressor upon hyperosmotic stress.

    PubMed

    Zhenilo, Svetlana; Deyev, Igor; Litvinova, Ekaterina; Zhigalova, Nadezhda; Kaplun, Daria; Sokolov, Alexey; Mazur, Alexander; Prokhortchouk, Egor

    2018-02-22

    Kaiso is a member of the BTB/POZ zinc finger family, which is involved in cancer progression, cell cycle control, apoptosis, and WNT signaling. Depending on promoter context, it may function as either a transcriptional repressor or activator. Previous studies found that Kaiso might be SUMOylated due to heat shock, but the biological significance of Kaiso SUMOylation is unclear. Here, we find that K42 is the only amino acid within Kaiso that is modified with SUMO. Kaiso is monoSUMOylated at lysine 42 in cell lines of kidney origin under normal physiological conditions. SUMOylated Kaiso can activate transcription from exogenous methylated promoters, wherein the deSUMOylated form of the protein kept the ability to be a repressor. Rapid Kaiso deSUMOylation occurs in response to hyperosmotic stress and is reversible upon return to an isotonic environment. DeSUMOylation occurs within minutes in HEK293 cells treated with 100 mM NaCl and relaxes in 3 h even in a salt-containing medium. Genomic editing of Kaiso by conversion of K42 into R42 (K42R) in HEK293 cells that resulted in fully deSUMOylated endogenous protein led to misregulation of genes associated with ion transport, blood pressure, and the immune response. TRIM25 was significantly repressed in two K42R HEK293 clones. By a series of rescue experiments with K42R and KO HEK293 cells, we show that TRIM25 is a direct transcriptional target for Kaiso. In the absence of Kaiso, the level of TRIM25 is insensitive to hyperosmotic stress. Extending our observations to animal models, we show that in response to a high salt diet, Kaiso knockout mice are characterized by significantly higher blood pressure increases when compared to wild-type animals. Thus, we propose a novel biological role for Kaiso in the regulation of homeostasis.

  4. Directed Neural Differentiation of Mouse Embryonic Stem Cells Is a Sensitive System for the Identification of Novel Hox Gene Effectors

    PubMed Central

    Bami, Myrto; Episkopou, Vasso; Gavalas, Anthony; Gouti, Mina

    2011-01-01

    The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox genes. PMID:21637844

  5. Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12.

    PubMed

    Sellars, Laura E; Bryant, Jack A; Sánchez-Romero, María-Antonia; Sánchez-Morán, Eugenio; Busby, Stephen J W; Lee, David J

    2017-08-03

    In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.

  6. S-Bacillithiolation Protects Against Hypochlorite Stress in Bacillus subtilis as Revealed by Transcriptomics and Redox Proteomics*

    PubMed Central

    Chi, Bui Khanh; Gronau, Katrin; Mäder, Ulrike; Hessling, Bernd; Becher, Dörte; Antelmann, Haike

    2011-01-01

    Protein S-thiolation is a post-translational thiol-modification that controls redox-sensing transcription factors and protects active site cysteine residues against irreversible oxidation. In Bacillus subtilis the MarR-type repressor OhrR was shown to sense organic hydroperoxides via formation of mixed disulfides with the redox buffer bacillithiol (Cys-GlcN-Malate, BSH), termed as S-bacillithiolation. Here we have studied changes in the transcriptome and redox proteome caused by the strong oxidant hypochloric acid in B. subtilis. The expression profile of NaOCl stress is indicative of disulfide stress as shown by the induction of the thiol- and oxidative stress-specific Spx, CtsR, and PerR regulons. Thiol redox proteomics identified only few cytoplasmic proteins with reversible thiol-oxidations in response to NaOCl stress that include GapA and MetE. Shotgun-liquid chromatography-tandem MS analyses revealed that GapA, Spx, and PerR are oxidized to intramolecular disulfides by NaOCl stress. Furthermore, we identified six S-bacillithiolated proteins in NaOCl-treated cells, including the OhrR repressor, two methionine synthases MetE and YxjG, the inorganic pyrophosphatase PpaC, the 3-d-phosphoglycerate dehydrogenase SerA, and the putative bacilliredoxin YphP. S-bacillithiolation of the OhrR repressor leads to up-regulation of the OhrA peroxiredoxin that confers together with BSH specific protection against NaOCl. S-bacillithiolation of MetE, YxjG, PpaC and SerA causes hypochlorite-induced methionine starvation as supported by the induction of the S-box regulon. The mechanism of S-glutathionylation of MetE has been described in Escherichia coli also leading to enzyme inactivation and methionine auxotrophy. In summary, our studies discover an important role of the bacillithiol redox buffer in protection against hypochloric acid by S-bacillithiolation of the redox-sensing regulator OhrR and of four enzymes of the methionine biosynthesis pathway. PMID:21749987

  7. The Groucho Co-repressor Is Primarily Recruited to Local Target Sites in Active Chromatin to Attenuate Transcription

    PubMed Central

    Jennings, Barbara H.

    2014-01-01

    Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE) proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling), and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase). We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in “active” chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone deacetylation and polymerase pausing. PMID:25165826

  8. Nature of the Carrier State of Bacteriophage SP-10 in Bacillus subtilis1

    PubMed Central

    Kawakami, Masaya; Landman, Otto E.

    1968-01-01

    Although the association of phage SP-10 with Bacillus subtilis W-23-Sr persists in heat- and antiserum-resistant form through the spore stage, it is unstable in vegetative cells and frequently terminates in loss of the carried phage or in lysis. On low-tonicity media, the plating efficiency of carrier cells is low. However, high concentrations of succinate or sucrose or a slowed growth rate preserve viability: on 0.48 m succinate-agar, the viable count per optical density unit is the same as that of a noncarrier control culture. Carrier clones retain phage on 0.48 m succinate-agar. At higher succinate levels, many colonies emerge free of phage; at 1 m succinate, all are cured, probably because high succinate inhibits reinfection. Growth of carrier cells in liquid medium with antiphage serum results in rapid curing; events in such cultures with and without succinate were studied quantitatively by tracing the emergence of sensitive cells, the multiplication and induction of carrier cells, and the sensitivity of carrier cells to superinfection with virulent phage. During log phase, 40 to 70% of the carrier cells became sensitive to virulent phage, although the same cells were insensitive during lag and stationary phase. Apparently, fluctuations in repressor levels are responsible. Spontaneous induction of carrier cells followed a qualitatively similar pattern, perhaps in response to changes in level of the same repressor. Production of sensitive segregants by carrier followed a different course, presumably because the repressor does not affect segregation. Many sensitive cells were found two to three divisions after inoculation in antiserum medium. This suggests that each inoculum cell contained one or only a few phage replicons. The data are compatible with the idea that the carrier state in media without antisera is maintained entirely by reinfection and without replication of phage in the latent state. Alternative models which involve replication of latent phage are not ruled out, however. PMID:4967775

  9. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.

    PubMed

    Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2018-06-01

    Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.

  10. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.

    PubMed

    Troxell, Bryan; Hassan, Hosni M

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe(2+)) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe(3+)) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe(3+), bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe(3+). However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe(2+) as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.

  11. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria

    PubMed Central

    Troxell, Bryan; Hassan, Hosni M.

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe2+) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe3+) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe3+, bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe3+. However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe2+ as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria. PMID:24106689

  12. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor.

    PubMed

    Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara; Bremer, Erhard

    2012-05-01

    Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent K(D) (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine.

  13. Genetic Control of Osmoadaptive Glycine Betaine Synthesis in Bacillus subtilis through the Choline-Sensing and Glycine Betaine-Responsive GbsR Repressor

    PubMed Central

    Nau-Wagner, Gabriele; Opper, Daniela; Rolbetzki, Anne; Boch, Jens; Kempf, Bettina; Hoffmann, Tamara

    2012-01-01

    Synthesis of the compatible solute glycine betaine confers a considerable degree of osmotic stress tolerance to Bacillus subtilis. This osmoprotectant is produced through the uptake of the precursor choline via the osmotically inducible OpuB and OpuC ABC transporters and a subsequent two-step oxidation process by the GbsB and GbsA enzymes. We characterized a regulatory protein, GbsR, controlling the transcription of both the structural genes for the glycine betaine biosynthetic enzymes (gbsAB) and those for the choline-specific OpuB transporter (opuB) but not of that for the promiscuous OpuC transporter. GbsR acts genetically as a repressor and functions as an intracellular choline sensor. Spectroscopic analysis of the purified GbsR protein showed that it binds the inducer choline with an apparent KD (equilibrium dissociation constant) of approximately 165 μM. Based on the X-ray structure of a protein (Mj223) from Methanococcus jannaschii, a homology model for GbsR was derived. Inspection of this GbsR in silico model revealed a possible ligand-binding pocket for choline resembling those of known choline-binding sites present in solute receptors of microbial ABC transporters, e.g., that of the OpuBC ligand-binding protein of the OpuB ABC transporter. GbsR was not only needed to control gbsAB and opuB expression in response to choline availability but also required to genetically tune down glycine betaine production once cellular adjustment to high osmolarity has been achieved. The GbsR regulatory protein from B. subtilis thus records and integrates cellular and environmental signals for both the onset and the repression of the synthesis of the osmoprotectant glycine betaine. PMID:22408163

  14. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    PubMed

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    PubMed

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. Copyright 2009 S. Karger AG, Basel.

  16. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling

    DOE PAGES

    Zhang, Feng; Yao, Jian; Ke, Jiyuan; ...

    2015-08-10

    The plant hormone jasmonate plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development. Key mediators of jasmonate signalling include MYC transcription factors, which are repressed by jasmonate ZIM-domain (JAZ) transcriptional repressors in the resting state. In the presence of active jasmonate, JAZ proteins function as jasmonate co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase. The hormone-dependent formation of the COI1–JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins frommore » transcriptional repression. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. In this paper, we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partly unwound helix, forms a complete α-helix that displaces the amino (N)-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Finally, our structural and functional studies elucidate a dynamic molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.« less

  17. Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphtheria toxin repressor, DtxR

    PubMed Central

    Bhattacharya, Nilakshee; Yi, Myunggi; Zhou, Huan-Xiang; Logan, Timothy M.

    2008-01-01

    Summary The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of DtxR by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. In this study we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times while residues in the loops connecting β-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low order parameters with internal rotational correlation times on the order of 0.6 – 1 ns. Further analysis showed that the SH3 domain was rich in millisecond timescale motions while the Pr segment was rich in motions on the 100s μs timescale. Molecular dynamics simultations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding ↔ unbinding equilibrium. The results of this study provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity. PMID:17976643

  18. WRKY transcription factors

    PubMed Central

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  19. Cocaine-induced renal disease.

    PubMed

    Gitman, Michael D; Singhal, Pravin C

    2004-09-01

    Cocaine has anaesthetic, vasoconstrictive and CNS stimulatory effects. Presently, it is used clinically as a local anaesthetic and abused as a recreational drug. It has been implicated in both acute and chronic renal failure and has been reported to affect every aspect of the nephron. This article will review the spectrum of cocaine-induced kidney disease and attempt to give insight into the pathophysiological mechanisms involved.

  20. PCR localization of C-type natriuretic peptide and B-type receptor mRNAs in rat nephron segments.

    PubMed

    Terada, Y; Tomita, K; Nonoguchi, H; Yang, T; Marumo, F

    1994-08-01

    The present study was undertaken to investigate the presence of C-type natriuretic peptide (CNP) mRNA and its receptor, natriuretic peptide B-type receptor (ANPR-B) mRNA, in rat renal structures. The microlocalization of mRNAs coding for CNP and ANPR-B was carried out in the rat kidney, using an assay of reverse transcription and polymerase chain reaction (RT-PCR) in individual microdissected renal tubule segments, glomeruli, vasa recta bundle, and arcuate arteries. The PCR signal for CNP was detected in glomerulus, vasa recta bundle, and arcuate artery. The PCR product of ANPR-B was widely present in renal structures. Relatively large amounts of ANPR-B PCR product were detected in glomerulus, vasa recta bundle, arcuate artery, and distal nephron segments. A relatively high concentration of CNP (10(-7) M) stimulated guanosine 3',5'-cyclic monophosphate accumulation in glomerulus, medullary thick ascending limb, cortical collecting duct, and inner medullary collecting duct. Our data demonstrate that CNP can be produced locally in the glomerulus and renal vascular system and that ANPR-B is widely distributed in renal structures. Thus CNP may influence renal function and act in autocrine and paracrine fashions in the kidney.

  1. Regulation of Nephron Progenitor Cell Self-Renewal by Intermediary Metabolism.

    PubMed

    Liu, Jiao; Edgington-Giordano, Francesca; Dugas, Courtney; Abrams, Anna; Katakam, Prasad; Satou, Ryousuke; Saifudeen, Zubaida

    2017-11-01

    Nephron progenitor cells (NPCs) show an age-dependent capacity to balance self-renewal with differentiation. Older NPCs (postnatal day 0) exit the progenitor niche at a higher rate than younger (embryonic day 13.5) NPCs do. This behavior is reflected in the transcript profiles of young and old NPCs. Bioenergetic pathways have emerged as important regulators of stem cell fate. Here, we investigated the mechanisms underlying this regulation in murine NPCs. Upon isolation and culture in NPC renewal medium, younger NPCs displayed a higher glycolysis rate than older NPCs. Inhibition of glycolysis enhanced nephrogenesis in cultured embryonic kidneys, without increasing ureteric tree branching, and promoted mesenchymal-to-epithelial transition in cultured isolated metanephric mesenchyme. Cotreatment with a canonical Wnt signaling inhibitor attenuated but did not entirely block the increase in nephrogenesis observed after glycolysis inhibition. Furthermore, inhibition of the phosphatidylinositol 3-kinase/Akt self-renewal signaling pathway or stimulation of differentiation pathways in the NPC decreased glycolytic flux. Our findings suggest that glycolysis is a pivotal, cell-intrinsic determinant of NPC fate, with a high glycolytic flux supporting self-renewal and inhibition of glycolysis stimulating differentiation. Copyright © 2017 by the American Society of Nephrology.

  2. The mechanisms of renal tubule electrolyte and water absorption, 100 years after Carl Ludwig.

    PubMed

    Greger, R

    1996-01-01

    Some 154 years after Carl Ludwig's Habilitationsschrift "Contributions to the theory of the mechanism of urine secretion" renal physiology has come a long way. The mechanisms of urine formation are now understood as the result of glomerular filtration and tubule absorption of most of the filtrate. The detailed understanding of tubule transport processes has become possible with the invention of several refined techniques such as the micropuncture techniques; the microchemical analysis of nanolitre tubule fluid samples; the in vitro perfusion of isolated tubule segments of defined origin; electrophysiological analysis of electrolyte transport including micropuncture and patch-clamp techniques; transport studies in membrane vesicle preparations; recordings of intracellular electrolyte concentrations and cloning techniques of the individual membrane transport proteins. With this wealth of information we are now starting to build an integrative understanding of the function of the individual nephron segments, the regulatory processes, the integrated function of the nephron and hence the formation of the final urine. Like anatomists of previous centuries we still state that the kidney is an "organum mirable" and we recognize that basic research in this area has fertilized the analysis of the function of a large number of other organs and cells.

  3. Kidney removal: the past, presence, and perspectives: a historical review.

    PubMed

    Poletajew, Slawomir; Antoniewicz, Artur A; Borówka, Andrzej

    2010-01-01

    More than 140 years have passed since the first documented planned nephrectomy. Throughout all these years, people gained significant knowledge on the renal functions and diseases, and what is more, the surgical workshop underwent considerable improvement. Initially, the kidney removal operations were performed due to ureterovaginal fistulas and renal lithiasis. Later, they were executed mainly in patients with renal tumors, whereas today, the number of these surgeries tend to decrease to the benefit of nephron sparing procedures. Current nephrectomies are more and more often performed in case of organ donation, what will probably remain the most significant indication for the kidney removal in close future. While the first surgeries were executed with classical surgical methods, nowadays, after years of studies concerning nephron sparing and minimally invasive operations, we can see surgeries carried out through natural body orifices with robotic assistance. In relation to simple surgical operation based on ligation of 3 tubular anatomic structures, we can perceive the true scope of the progress that occurred in surgery. The aim of this article is to present the evolution of indications and operating techniques utilized to remove the kidney in chronological aspect.

  4. Histology of the Urogenital System in the American Bullfrog (Rana catesbeiana), with Emphasis on Male Reproductive Morphology.

    PubMed

    Rheubert, Justin L; Cook, Hanna E; Siegel, Dustin S; Trauth, Stanley E

    2017-10-01

    Previous studies have revealed variations in the urogenital system morphology of amphibians. Recently, the urogenital system of salamanders was reviewed and terminology was synonymized across taxa. Discrepancies exist in the terminology describing the urogenital system of anurans, which prompted our group to develop a complete, detailed description of the urogenital system in an anuran species and provide nomenclature that is synonymous with those of other amphibian taxa. In Rana catesbeiana, sperm mature within spermatocysts of the seminiferous tubule epithelia and are transported to a series of intratesticular ducts that exit the testes and merge to form vasa efferentia. Vasa efferentia converge into single longitudinal ducts (Bidder's ducts) on the lateral aspects of the kidneys. Branches from the longitudinal ducts merge with genital kidney renal tubules through renal corpuscles. The nephrons travel caudally and empty into the Wöffian ducts. Similar to salamanders, the caudal portion of the kidneys (termed the pelvic kidneys in salamanders) only possesses nephrons involved in urine formation, not sperm transport. Data from the present study provide a detailed description and synonymous nomenclature that can be used to make future comparative analyses between taxa more efficient.

  5. Second messenger production in avian medullary nephron segments in response to peptide hormones.

    PubMed

    Goldstein, D L; Reddy, V; Plaga, K

    1999-03-01

    We examined the sites of peptide hormone activation within medullary nephron segments of the house sparrow (Passer domesticus) kidney by measuring rates of hormone-induced generation of cyclic nucleotide second messenger. Thin descending limbs, thick ascending limbs, and collecting ducts had baseline activity of adenylyl cyclase that resulted in cAMP accumulation of 207 +/- 56, 147 +/- 31, and 151 +/- 41 fmol. mm-1. 30 min-1, respectively. In all segments, this activity increased 10- to 20-fold in response to forskolin. Activity of adenylyl cyclase in the thin descending limb was stimulated approximately twofold by parathyroid hormone (PTH) but not by any of the other hormones tested [arginine vasotocin (AVT), glucagon, atrial natriuretic peptide (ANP), or isoproterenol, each at 10(-6) M]. Thick ascending limb was stimulated two- to threefold by both AVT and PTH; however, glucagon and isoproterenol had no effect, and ANP stimulated neither cAMP nor cGMP accumulation. Adenylyl cyclase activity in the collecting duct was stimulated fourfold by AVT but not by the other hormones; likewise, ANP did not stimulate cGMP accumulation in this segment. These data support a tubular action of AVT and PTH in the avian renal medulla.

  6. The renal TRPV4 channel is essential for adaptation to increased dietary potassium

    PubMed Central

    Mamenko, Mykola; Boukelmoune, Nabila; Tomilin, Viktor; Zaika, Oleg; Jensen, V. Behrana; O’Neil, Roger G.; Pochynyuk, Oleh

    2016-01-01

    To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance. PMID:28187982

  7. The mechanism of the increase in glomerular filtration rate in the twelve-day pregnant rat.

    PubMed Central

    Baylis, C

    1980-01-01

    1. Whole kidney and micropuncture techniques were employed to investigate the determinants of glomerular ultrafiltration in virgin and 12-day pregnant rats. 2. A significant increase in whole kidney glomerular filtration rate (g.f.r.) and superficial cortical single nephron g.f.r. was noted in pregnant rats compared to virgins. 3. Increases in whole kidney and glomerular plasma flow rate also occurred in pregnancy which were in proportion to the increase in rate of filtration. No differences were noted in the hydrostatic and oncotic pressures which influence formation of glomerular ultrafiltrate in the superficial nephron population. 4. Reduction in arterial haematocrit and no change in mean red cell volume indicate that a plasma volume expansion has occurred by day 12 of pregnancy in the rat. 5. It is concluded that the increased g.f.r. seen in 12-day pregnant rats is exclusively the result of an increase in renal plasma flow rate (r.p.f.) since the other determinants of glomerular ultrafiltration are unaffected by pregnancy. The plasma volume expansion which also occurs must be, at least in part, responsible for the increase in r.p.f. PMID:7441561

  8. The absence of intrarenal ACE protects against hypertension

    PubMed Central

    Gonzalez-Villalobos, Romer A.; Janjoulia, Tea; Fletcher, Nicholas K.; Giani, Jorge F.; Nguyen, Mien T.X.; Riquier-Brison, Anne D.; Seth, Dale M.; Fuchs, Sebastien; Eladari, Dominique; Picard, Nicolas; Bachmann, Sebastian; Delpire, Eric; Peti-Peterdi, Janos; Navar, L. Gabriel; Bernstein, Kenneth E.; McDonough, Alicia A.

    2013-01-01

    Activation of the intrarenal renin-angiotensin system (RAS) can elicit hypertension independently from the systemic RAS. However, the precise mechanisms by which intrarenal Ang II increases blood pressure have never been identified. To this end, we studied the responses of mice specifically lacking kidney angiotensin-converting enzyme (ACE) to experimental hypertension. Here, we show that the absence of kidney ACE substantially blunts the hypertension induced by Ang II infusion (a model of high serum Ang II) or by nitric oxide synthesis inhibition (a model of low serum Ang II). Moreover, the renal responses to high serum Ang II observed in wild-type mice, including intrarenal Ang II accumulation, sodium and water retention, and activation of ion transporters in the loop of Henle (NKCC2) and distal nephron (NCC, ENaC, and pendrin) as well as the transporter activating kinases SPAK and OSR1, were effectively prevented in mice that lack kidney ACE. These findings demonstrate that ACE metabolism plays a fundamental role in the responses of the kidney to hypertensive stimuli. In particular, renal ACE activity is required to increase local Ang II, to stimulate sodium transport in loop of Henle and the distal nephron, and to induce hypertension. PMID:23619363

  9. Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells.

    PubMed

    Lefevre, James G; Chiu, Han S; Combes, Alexander N; Vanslambrouck, Jessica M; Ju, Ali; Hamilton, Nicholas A; Little, Melissa H

    2017-03-15

    Human pluripotent stem cells, after directed differentiation in vitro , can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation. © 2017. Published by The Company of Biologists Ltd.

  10. Oxygen transport in a cross section of the rat inner medulla: Impact of heterogeneous distribution of nephrons and vessels

    PubMed Central

    Fry, Brendan C.; Layton, Anita T.

    2014-01-01

    We have developed a highly detailed mathematical model of oxygen transport in a cross section of the upper inner medulla of the rat kidney. The model is used to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies, in which descending vasa recta are found to lie distant from clusters of collecting ducts. Specifically, we formulated a two-dimensional oxygen transport model, in which the positions and physical dimensions of renal tubules and vessels are based on an image obtained by immunochemical techniques (Pannabecker and Dantzler, Am J Physiol Renal Physiol, 2006). The model represents oxygen diffusion through interstitium and other renal structures, oxygen consumption by the Na+/K+-ATPase activities of the collecting ducts, and basal metabolic consumption. Model simulations yield marked variations in interstitial PO2, which can be attributed, in large part, to the heterogeneities in the position and physical dimensions of the collecting ducts. Further, results of a sensitivity study suggest that medullary oxygenation is highly sensitive to medullary blood flow, and that, at high active consumption rates, localized patches of tissue may be vulnerable to hypoxic injury. PMID:25260928

  11. Solution NMR investigation of the response of the lactose repressor core domain dimer to hydrostatic pressure.

    PubMed

    Fuglestad, Brian; Stetz, Matthew A; Belnavis, Zachary; Wand, A Joshua

    2017-12-01

    Previous investigations of the sensitivity of the lac repressor to high-hydrostatic pressure have led to varying conclusions. Here high-pressure solution NMR spectroscopy is used to provide an atomic level view of the pressure induced structural transition of the lactose repressor regulatory domain (LacI* RD) bound to the ligand IPTG. As the pressure is raised from ambient to 3kbar the native state of the protein is converted to a partially unfolded form. Estimates of rotational correlation times using transverse optimized relaxation indicates that a monomeric state is never reached and that the predominate form of the LacI* RD is dimeric throughout this pressure change. Spectral analysis suggests that the pressure-induced transition is localized and is associated with a volume change of approximately -115mlmol -1 and an average pressure dependent change in compressibility of approximately 30mlmol -1 kbar -1 . In addition, a subset of resonances emerge at high-pressures indicating the presence of a non-native but folded alternate state. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity.

    PubMed

    Aapola, Ulla; Liiv, Ingrid; Peterson, Pärt

    2002-08-15

    DNMT3L is a regulator of imprint establishment of normally methylated maternal genomic sequences. DNMT3L shows high similarity to the de novo DNA methyltransferases, DNMT3A and DNMT3B, however, the amino acid residues needed for DNA cytosine methyltransferase activity have been lost from the DNMT3L protein sequence. Apart from methyltransferase activity, Dnmt3a and Dnmt3b serve as transcriptional repressors associating with histone deacetylase (HDAC) activity. Here we show that DNMT3L can also repress transcription by binding directly to HDAC1 protein. We have identified the PHD-like zinc finger of the ATRX domain as a main repression motif of DNMT3L, through which DNMT3L recruits the HDAC activity needed for transcriptional silencing. Furthermore, we show that DNMT3L protein contains an active nuclear localisation signal at amino acids 156-159. These results describe DNMT3L as a co-repressor protein and suggest that a transcriptionally repressed chromatin organisation through HDAC activity is needed for establishment of genomic imprints.

  13. A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth.

    PubMed

    Butter, Falk; Kappei, Dennis; Buchholz, Frank; Vermeulen, Michiel; Mann, Matthias

    2010-04-01

    Single-nucleotide polymorphisms (SNPs) in the regulatory regions of the genome can have a profound impact on phenotype. The G3072A polymorphism in intron 3 of insulin-like growth factor 2 (IGF2) is implicated in higher muscle content and reduced fat in European pigs and is bound by a putative repressor. Here, we identify this repressor--which we call muscle growth regulator (MGR)--by using a DNA protein interaction screen based on quantitative mass spectrometry. MGR has a bipartite nuclear localization signal, two BED-type zinc fingers and is highly conserved between placental mammals. Surprisingly, the gene is located in an intron and belongs to the hobo-Ac-Tam3 transposase superfamily, suggesting regulatory use of a formerly parasitic element. In transactivation assays, MGR differentially represses the expression of the two SNP variants. Knockdown of MGR in C2C12 myoblast cells upregulates Igf2 expression and mild overexpression retards growth. Thus, MGR is the repressor responsible for enhanced muscle growth in the IGF2 G3072A polymorphism in commercially bred pigs.

  14. Crystal structure of enterococcus faecalis sly A-like transcriptional factor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Zhang, R.; Zagnitko, O.

    2003-05-30

    The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed themore » same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.« less

  15. Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhiqiang; Su, Lijing; Pei, Jimin

    In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices,more » are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates.« less

  16. Stress-Responsive Mitogen-Activated Protein Kinases Interact with the EAR Motif of a Poplar Zinc Finger Protein and Mediate Its Degradation through the 26S Proteasome1[W][OA

    PubMed Central

    Hamel, Louis-Philippe; Benchabane, Meriem; Nicole, Marie-Claude; Major, Ian T.; Morency, Marie-Josée; Pelletier, Gervais; Beaudoin, Nathalie; Sheen, Jen; Séguin, Armand

    2011-01-01

    Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors. PMID:21873571

  17. Dual Roles for Ikaros in Regulation of Macrophage Chromatin State and Inflammatory Gene Expression.

    PubMed

    Oh, Kyu-Seon; Gottschalk, Rachel A; Lounsbury, Nicolas W; Sun, Jing; Dorrington, Michael G; Baek, Songjoon; Sun, Guangping; Wang, Ze; Krauss, Kathleen S; Milner, Joshua D; Dutta, Bhaskar; Hager, Gordon L; Sung, Myong-Hee; Fraser, Iain D C

    2018-06-13

    Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1 -/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1 +/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.

  18. Using in-cell SHAPE-Seq and simulations to probe structure–function design principles of RNA transcriptional regulators

    PubMed Central

    Takahashi, Melissa K.; Watters, Kyle E.; Gasper, Paul M.; Abbott, Timothy R.; Carlson, Paul D.; Chen, Alan A.

    2016-01-01

    Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure–function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure–function design principles for a diverse array of natural and synthetic RNA regulators. PMID:27103533

  19. The uncharacterized transcription factor YdhM is the regulator of the nemA gene, encoding N-ethylmaleimide reductase.

    PubMed

    Umezawa, Yoshimasa; Shimada, Tomohiro; Kori, Ayako; Yamada, Kayoko; Ishihama, Akira

    2008-09-01

    N-ethylmaleimide (NEM) has been used as a specific reagent of Cys modification in proteins and thus is toxic for cell growth. On the Escherichia coli genome, the nemA gene coding for NEM reductase is located downstream of the gene encoding an as-yet-uncharacterized transcription factor, YdhM. Disruption of the ydhM gene results in reduction of nemA expression even in the induced state, indicating that the two genes form a single operon. After in vitro genomic SELEX screening, one of the target recognition sequences for YdhM was identified within the promoter region for this ydhM-nemA operon. Both YdhM binding in vitro to the ydhM promoter region and transcription repression in vivo of the ydhM-nemA operon by YdhM were markedly reduced by the addition of NEM. Taken together, we propose that YdhM is the repressor for the nemA gene, thus hereafter designated NemR. The repressor function of NemR was inactivated by the addition of not only NEM but also other Cys modification reagents, implying that Cys modification of NemR renders it inactive. This is an addition to the mode of controlling activity of transcription factors by alkylation with chemical agents.

  20. Quaternary re-arrangement analysed by spectral enhancement: the interaction of a sporulation repressor with its antagonist.

    PubMed

    Scott, D J; Leejeerajumnean, S; Brannigan, J A; Lewis, R J; Wilkinson, A J; Hoggett, J G

    1999-11-12

    The protein/protein interaction between SinI and SinR has been studied by analytical ultracentrifugation and gel electrophoresis in an attempt to understand how these proteins contribute to developmental control of sporulation in Bacillus subtilis. SinR was found to be tetrameric, while SinI was found to exist as monomers and dimers in a rapidly reversible equilibrium. Labelling of SinR by incorporating the tryptophan analogue 7-azatryptophan (7AW) into the protein in place of tryptophan shifts the UV absorbance spectrum, thus allowing selective monitoring of 7AWSinR at 315 nm using the UV absorption optics of the analytical ultracentrifuge. Selective monitoring of SinR in mixtures of SinR and SinI enables the binding and stoichiometry of the interaction to be investigated quantitatively and unambiguously. We demonstrate that the oligomeric forms of SinR and SinI re-arrange to form a tight 1:1 SinR:SinI complex, with no stable intermediate species. A fragment of SinR, SinR(1-69), which contains only the DNA-binding domain, was found to be monomeric, showing that the protein appears not to oligomerise in a similar manner to the Cro repressor, a protein with which it shares a marked structural similarity. Copyright 1999 Academic Press.

  1. The myogenic repressor gene Holes in muscles is a direct transcriptional target of Twist and Tinman in the Drosophila embryonic mesoderm

    PubMed Central

    Elwell, Jennifer A.; Lovato, TyAnna L.; Adams, Melanie M.; Baca, Erica M.; Lee, Thai; Cripps, Richard M.

    2015-01-01

    Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arise through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist expression in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. PMID:25704510

  2. Studying phenotypic evolution in domestic animals: a walk in the footsteps of Charles Darwin.

    PubMed

    Andersson, L

    2009-01-01

    Charles Darwin used domesticated plants and animals as proof of principle for his theory on phenotypic evolution by means of natural selection. Inspired by Darwin's work, we developed an intercross between the wild boar and domestic pigs to study the genetic basis for phenotypic changes during domestication. The difference in coat color is controlled by two major loci. Dominant white color is due to two consecutive mutations in the KIT gene: a 450-kb duplication and a splice mutation. Black spotting is caused by the combined effect of two mutations in MC1R: a missense mutation for dominant black color and a 2-bp insertion leading to a frameshift. A major discovery made using this pedigree is the identification of a single-nucleotide substitution in intron 3 of the gene for insulin-like growth factor 2 (IGF2) that is underlying a quantitative trait locus affecting muscle growth, size of the heart, and fat deposition. The mutation disrupts the interaction with a repressor and leads to threefold increased IGF2 expression in postnatal muscle. In a recent study, we have identified the IGF2 repressor, and this previously unknown protein, named ZBED6, is specific for placental mammals and derived from a domesticated DNA transposon.

  3. Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron

    PubMed Central

    Cornelius, Ryan J.; Wen, Donghai; Hatcher, Lori I.

    2012-01-01

    Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When wild type (WT) were placed on HK-alk, but not HK-Cl, renal BK-β4 expression increased (Western blot). When WT and β4KO were placed on HK-Cl, plasma K concentration ([K]) was elevated compared with control K diets; however, K excretion was not different between WT and β4KO. When HK-alk was consumed, the plasma [K] was lower and K clearance was greater in WT compared with β4KO. The urine was alkaline in mice on HK-alk; however, urinary pH was not different between WT and β4KO. Immunohistochemical analysis of pendrin and V-ATPase revealed the same increases in β-IC, comparing WT and β4KO on HK-alk. We found an amiloride-sensitive reduction in Na excretion in β4KO, compared with WT, on HK-alk, indicating enhanced Na reabsorption as a compensatory mechanism to secrete K. Treating mice with an alkaline, Na-deficient, high-K diet (LNaHK) to minimize Na reabsorption exaggerated the defective K handling of β4KO. When WT on LNaHK were given NH4Cl in the drinking water, K excretion was reduced to the magnitude of β4KO on LNaHK. These results show that WT, but not β4KO, efficiently excretes K on HK-alk but not on HK-Cl and suggest that BK-α/β4-mediated K secretion is promoted by bicarbonaturia. PMID:22993067

  4. Protein-induced satiety: effects and mechanisms of different proteins.

    PubMed

    Veldhorst, M; Smeets, A; Soenen, S; Hochstenbach-Waelen, A; Hursel, R; Diepvens, K; Lejeune, M; Luscombe-Marsh, N; Westerterp-Plantenga, M

    2008-05-23

    Relatively high protein diets, i.e. diets that maintain the absolute number of grams of protein ingested as compared to before dieting, are a popular strategy for weight loss and weight maintenance. Research into multiple mechanisms regulating body weight has focused on the effects of different quantities and types of dietary protein. Satiety and energy expenditure are important in protein-enhanced weight loss and weight maintenance. Protein-induced satiety has been shown acutely, with single meals, with contents of 25% to 81% of energy from protein in general or from specific proteins, while subsequent energy intake reduction was significant. Protein-induced satiety has been shown with high protein ad libitum diets, lasting from 1 to 6 days, up to 6 months. Also significantly greater weight loss has been observed in comparison with control. Mechanisms explaining protein-induced satiety are nutrient-specific, and consist mainly of synchronization with elevated amino acid concentrations. Different proteins cause different nutrient related responses of (an)orexigenic hormones. Protein-induced satiety coincides with a relatively high GLP-1 release, stimulated by the carbohydrate content of the diet, PYY release, while ghrelin does not seem to be especially affected, and little information is available on CCK. Protein-induced satiety is related to protein-induced energy expenditure. Finally, protein-induced satiety appears to be of vital importance for weight loss and weight maintenance. With respect to possible adverse events, chronic ingestion of large amounts of sulphur-containing amino acids may have an indirect effect on blood pressure by induction of renal subtle structural damage, ultimately leading to loss of nephron mass, and a secondary increase in blood pressure. The established synergy between obesity and low nephron number on induction of high blood pressure and further decline of renal function identifies subjects with obesity, metabolic syndrome and diabetes mellitus II as particularly susceptible groups.

  5. Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1

    PubMed Central

    Huang, Yuning; Mizel, Diane

    2013-01-01

    Deletions of claudin-2 (Cldn2) and aquaporin1 (AQP1) reduce proximal fluid reabsorption (PFR) by about 30% and 50%, respectively. Experiments were done to replicate these observations and to determine in AQP1/claudin-2 double knockout mice (DKO) if the effects of deletions of these established water pores are additive. PFR was determined in inactin/ketamine-anesthetized mice by free-flow micropuncture using single-nephron I125-iothalamate (io) clearance. Animal means of PFR [% of glomerular filtration rate (GFR)] derived from TF/Piothalamate ratios in 12 mice in each of four groups [wild type (WT), Cldn2−/−, AQP1−/−, and DKO) were 45.8 ± 0.85 (51 tubules), 35.4 ± 1 (54 tubules; P < 0.01 vs. WT), 36.8 ± 1 (63 tubules; P < 0.05 vs. WT), and 33.9 ± 1.4 (69 tubules; P < 0.01 vs. WT). Kidney and single-nephron GFRs (SNGFR) were significantly reduced in all mutant strains. The direct relationship between PFR and SNGFR was maintained in mutant mice, but the slope of this relationship was reduced in the absence of Cldn2 and/or AQP1. Transtubular osmotic pressure differences were not different between WT and Cldn2−/− mice, but markedly increased in DKO. In conclusion, the deletion of Cldn2, AQP1, or of both Cldn2 and AQP1 reduces PFR by 22.7%, 19.6%, and 26%, respectively. Our data are consistent with an up to 25% paracellular contribution to PFR. The reduced osmotic water permeability caused by absence of AQP1 augments luminal hypotonicity. Aided by a fall in filtered load, the capacity of non-AQP1-dependent transcellular reabsorption is sufficient to maintain PFR without AQP1 and claudin-2 at 75% of control. PMID:24049145

  6. Analysis of tandem E-box motifs within human Complement receptor 2 (CR2/CD21) promoter reveals cell specific roles for RP58, E2A, USF and localized chromatin accessibility.

    PubMed

    Cruickshank, Mark N; Dods, James; Taylor, Rhonda L; Karimi, Mahdad; Fenwick, Emily J; Quail, Elizabeth A; Rea, Alexander J; Holers, V Michael; Abraham, Lawrence J; Ulgiati, Daniela

    2015-07-01

    Complement receptor 2 (CR2/CD21) plays an important role in the generation of normal B cell immune responses. As transcription appears to be the prime mechanism via which surface CR2/CD21 expression is controlled, understanding transcriptional regulation of this gene will have broader implications to B cell biology. Here we report opposing, cell-context specific control of CR2/CD21 promoter activity by tandem E-box elements, spaced 22 bp apart and within 70 bp of the transcription initiation site. We have identified E2A and USF transcription factors as binding to the distal and proximal E-box sites respectively in CR2-positive B-cells, at a site that is hypersensitive to restriction enzyme digestion compared to non-expressing K562 cells. However, additional unidentified proteins have also been found to bind these functionally important elements. By utilizing a proteomics approach we have identified a repressor protein, RP58, binding the distal E-box motif. Co-transfection experiments using RP58 overexpression constructs demonstrated a specific 10-fold repression of CR2/CD21 transcriptional activity mediated through the distal E-box repressor element. Taken together, our results indicate that repression of the CR2/CD21 promoter can occur through one of the E-box motifs via recruitment of RP58 and other factors to bring about a silenced chromatin context within CR2/CD21 non-expressing cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Pseudomonas aeruginosa Catabolite Repression Control Protein Crc Is Devoid of RNA Binding Activity

    PubMed Central

    Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa. PMID:23717639

  8. The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity.

    PubMed

    Milojevic, Tetyana; Grishkovskaya, Irina; Sonnleitner, Elisabeth; Djinovic-Carugo, Kristina; Bläsi, Udo

    2013-01-01

    The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa.

  9. Structure of the C-terminal domain of the arginine repressor protein from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherney, Leonid T.; Cherney, Maia M.; Garen, Craig R.

    2008-09-01

    The structure of the core domain of the arginine repressor protein from M. tuberculosis has been determined with (1.85 Å resolution) and without (2.15 Å resolution) the arginine corepressor bound. Three additional arginine molecules have been found to bind to the core domain hexamer at high (0.2 M) arginine concentration. The Mycobacterium tuberculosis (Mtb) gene product encoded by open reading frame Rv1657 is an arginine repressor (ArgR). All genes involved in the l-arginine (hereafter arginine) biosynthetic pathway are essential for optimal growth of the Mtb pathogen, thus making MtbArgR a potential target for drug design. The C-terminal domains of argininemore » repressors (CArgR) participate in oligomerization and arginine binding. Several crystal forms of CArgR from Mtb (MtbCArgR) have been obtained. The X-ray crystal structures of MtbCArgR were determined at 1.85 Å resolution with bound arginine and at 2.15 Å resolution in the unliganded form. These structures show that six molecules of MtbCArgR are arranged into a hexamer having approximate 32 point symmetry that is formed from two trimers. The trimers rotate relative to each other by about 11° upon binding arginine. All residues in MtbCArgR deemed to be important for hexamer formation and for arginine binding have been identified from the experimentally determined structures presented. The hexamer contains six regular sites in which the arginine molecules have one common binding mode and three sites in which the arginine molecules have two overlapping binding modes. The latter sites only bind the ligand at high (200 mM) arginine concentrations.« less

  10. tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli.

    PubMed Central

    McEntee, K; Weinstock, G M

    1981-01-01

    The requirements for polynucleotide-dependent hydrolysis of ATP and for proteolytic cleavage of phage lambda repressor have been examined for both the wild-type (recA+ protein) and the tif-1 mutant form [tif(recA) protein] of the recA gene product. The recA+ and tif(recA) proteins catalyze both reactions in the presence of long single-stranded DNAs or certain deoxyhomopolymers. However, short oligonucleotides [(dT)12, (dA)14] stimulate neither the protease nor the ATPase activities of the recA+ protein. In contrast, these short oligonucleotides activate tif(recA) protein to cleave lambda repressor without stimulating its ATPase activity. Moreover, both the ATPase and protease activities of the tif(recA) protein are stimulated by poly(rU) and poly(rC) whereas the recA+ protein does not respond to these ribopolymers. We have purified the recA protein from a strain in which the tif mutation is intragenically suppressed. This mutant protein (recA629) is inactive in the presence of (dT)12, (dA)14, poly(rU), and poly(rC) for lambda repressor cleavage and ATP hydrolysis. These results argue that the tif-1 mutation (or mutations) alters the DNA binding site of the recA protein. We suggest that in vivo the tif(recA) protein is activated for cleaving repressors of SOS genes by complex formation with short single-stranded regions or gaps that normally occur near the growing fork of replicating chromosomes and are too short for activating the recA+ enzyme. This mechanism can account for the expression of SOS functions in the absence of DNA damage in tif mutant strains. Images PMID:7031642

  11. Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence ▿

    PubMed Central

    Hsu, Po-Chen; Yang, Cheng-Yao; Lan, Chung-Yu

    2011-01-01

    Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of “natural resistance” that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities. PMID:21131439

  12. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta

    PubMed Central

    Gerlach, Gary F.; Wingert, Rebecca A.

    2014-01-01

    The zebrafish pronephros provides an excellent in vivo system to study the mechanisms of vertebrate nephron development. When and how renal progenitors in the zebrafish embryo undergo tubulogenesis to form nephrons is poorly understood, but is known to involve a mesenchymal to epithelial transition (MET) and the acquisition of polarity. Here, we determined the precise timing of these events in pronephros tubulogenesis. As the ternary polarity complex is an essential regulator of epithelial cell polarity across tissues, we performed gene knockdown studies to assess the roles of the related factors atypical protein kinase C iota and zeta (prkcι, prkcζ). We found that prkcι and prkcζ serve partially redundant functions to establish pronephros tubule epithelium polarity. Further, the loss of prkcι or the combined knockdown of prkcι/ζ disrupted proximal tubule morphogenesis and podocyte migration due to cardiac defects that prevented normal fluid flow to the kidney. Surprisingly, tubule cells in prkcι/ζ morphants displayed ectopic expression of the transcription factor pax2a and the podocyte-associated genes wt1a, wt1b, and podxl, suggesting that prkcι/ζ are needed to maintain renal epithelial identity. Knockdown of genes essential for cardiac contractility and vascular flow to the kidney, such as tnnt2a, or elimination of pronephros fluid output through knockdown of the intraflagellar transport gene ift88, was not associated with ectopic pronephros gene expression, thus suggesting a unique role for prkcι/ζ in maintaining tubule epithelial identity separate from the consequence of disruptions to renal fluid flow. Interestingly, knockdown of pax2a, but not wt1a, was sufficient to rescue ectopic tubule gene expression in prkcι/ζ morphants. These data suggest a model in which the redundant activities of prkcι and prkcζ are essential to establish tubule epithelial polarity and also serve to maintain proper epithelial cell type identity in the tubule by inhibiting pax2a expression. These studies provide a valuable foundation for further analysis of MET during nephrogenesis, and have implications for understanding the pathways that affect nephron epithelial cells during kidney disease and regeneration. PMID:25446529

  13. Pathophysiology and Treatment of Resistant Hypertension: The Role of Aldosterone and Amiloride-Sensitive Sodium Channels

    PubMed Central

    Judd, Eric K.; Calhoun, David A.; Warnock, David G.

    2015-01-01

    Summary Resistant hypertension is a clinically distinct subgroup of hypertension defined by the failure to achieve blood pressure control on optimal dosing of at least 3 antihypertensive medications of different classes, including a diuretic. The pathophysiology of hypertension can be attributed to aldosterone excess in more than 20% of patients with resistant hypertension. Existing dogma attributes the increase in blood pressure seen with increases in aldosterone to its antinatriuretic effects in the distal nephron. However, emerging research, which has identified and has begun to define the function of amiloride-sensitive sodium channels and mineralocorticoid receptors in the systemic vasculature, challenges impaired natriuresis as the sole cause of aldosterone-mediated resistant hypertension. This review integrates these findings to better define the role of the vasculature and aldosterone in the pathophysiology of resistant hypertension. In addition, a brief guide to the treatment of resistant hypertension is presented. PMID:25416662

  14. Pathophysiology and treatment of resistant hypertension: the role of aldosterone and amiloride-sensitive sodium channels.

    PubMed

    Judd, Eric K; Calhoun, David A; Warnock, David G

    2014-01-01

    Resistant hypertension is a clinically distinct subgroup of hypertension defined by the failure to achieve blood pressure control on optimal dosing of at least 3 antihypertensive medications of different classes, including a diuretic. The pathophysiology of hypertension can be attributed to aldosterone excess in more than 20% of patients with resistant hypertension. Existing dogma attributes the increase in blood pressure seen with increases in aldosterone to its antinatriuretic effects in the distal nephron. However, emerging research, which has identified and has begun to define the function of amiloride-sensitive sodium channels and mineralocorticoid receptors in the systemic vasculature, challenges impaired natriuresis as the sole cause of aldosterone-mediated resistant hypertension. This review integrates these findings to better define the role of the vasculature and aldosterone in the pathophysiology of resistant hypertension. In addition, a brief guide to the treatment of resistant hypertension is presented.

  15. [Augmented reality for image guided therapy (ARIGT) of kidney tumor during nephron sparing surgery (NSS): animal model and clinical approach].

    PubMed

    Drewniak, Tomasz; Rzepecki, Maciej; Juszczak, Kajetan; Kwiatek, Wojciech; Bielecki, Jakub; Zieliński, Krzysztof; Ruta, Andrzej; Czekierda, Łukasz; Moczulskis, Zbigniew

    2011-01-01

    The main problem in nephron sparing surgery (NSS) is to preserve renal tumors oncological purity during the removal of the tumor with a margin of macroscopically unchanged kidney tissue while keeping the largest possible amount of normal parenchyma of the operated kidney. The development of imaging techniques, in particular IGT (Image Guided Therapy) allows precise imaging of the surgical field and, therefore, is essential in improving the effectiveness of NSS (increase of nephron sparing with the optimal radicality). The aim of this study was to develop a method of the three-dimensional (3D) imaging of the kidney tumor and its lodge in the operated kidney using 3D laser scanner during NSS procedure. Additionally, the animal model of visualization was developed. The porcine kidney model was used to test the set built up with HD cameras and linear laser scanner connected to a laptop with graphic software (David Laser Scanner, Germany) showing the surface of the kidney and the lodge after removal the chunk of renal parenchyma. Additionally, the visualization and reconstruction was performed on animal porcine model. Moreover, 5 patients (3 women, 2 men) aged from 37 to 68 years (mean 56), diagnosed with kidney tumors in CT scans with a diameter of 3.7-6.9 cm (mean 4.9) were operated in our Department this year, scanning the surface during the treatment with the kidney tumor and kidney tumor after it is removed with a margin of renal tissue. In one case, the lodge of removed tumor was scanned. Dimensions in 3D reconstruction images of laser scans in the study of animal model and the images obtained intraoperatively were compared with the dimensions evaluated during preoperative CT scans, intraoperative measurements. Three-dimensional imaging laser scanner operating field loge resected tumor and the tumor on the kidney of animal models and during NSS treatments for patients with kidney tumors is possible in real time with an accuracy of -2 mm do +9 mm (+/- 3 mm). The duration of data acquisition by laser scanner and obtain three-dimensional image of the operating field takes an average of 13 seconds +/- 2 seconds. Movements associated with breathing and heart rate did not affect on the quality of the reconstruction. The imposition of the scanned surface texture occurs in real time, allowing you to identify renal parenchymal structures such as renal cortex, pyramids, pyelo-calices complex. Imaging control of NSS procedures is possible in animal models and in real time intraoperatively. The comparison of tumor size and the tumor lodge obtained in preoperative CT scans with the measurements during NSS procedure provide the surgeon to assess the extent of macroscopic estimation of the resection. This procedure helps the surgeon in obtaining oncological radicality with saving as much normal tissue kidney as possible. Performance of the imaging methods should be evaluated on a larger group of patients with kidney tumors eligible for NSS treatment.

  16. Light-induced carotenogenesis in Myxococcus xanthus: evidence that CarS acts as an anti-repressor of CarA.

    PubMed

    Whitworth, D E; Hodgson, D A

    2001-11-01

    In the bacterium Myxococcus xanthus, carotenoids are produced in response to illumination, as a result of expression of the crt carotenoid biosynthesis genes. The majority of crt genes are clustered in the crtEBDC operon, which is repressed in the dark by CarA. Genetic data suggest that, in the light, CarS is synthesized and achieves activation of the crtEBDC operon by removing the repressive action of CarA. As CarS contains no known DNA-binding motif, the relief of CarA-mediated repression was postulated to result from a direct interaction between these two proteins. Use of the yeast two-hybrid system demonstrated direct interaction between CarA and CarS. The two-hybrid system also implied that CarA and, possibly, CarS are capable of homodimerization. Direct evidence for CarS anti-repressor action was provided in vitro. A glutathione S-transferase (GST)-CarA protein fusion was shown to bind specifically to a palindromic operator sequence within the crtEBDC promoter. CarA was prevented from binding to its operator, and prebound CarA was removed by the addition of purified CarS. CarS is therefore an anti-repressor.

  17. Design, Synthesis, and Evaluation of Novel p-(methylthio)styryl Substituted Quindoline Derivatives as Neuroblastoma RAS (NRAS) Repressors via Specific Stabilizing the RNA G-Quadruplex.

    PubMed

    Peng, Wang; Sun, Zhi-Yin; Zhang, Qi; Cheng, Sui-Qi; Wang, Shi-Ke; Wang, Xiao-Na; Kuang, Guo-Tao; Su, Xiao-Xuan; Tan, Jia-Heng; Huang, Zhi-Shu; Ou, Tian-Miao

    2018-05-25

    The human proto-oncogene neuroblastoma RAS (NRAS) contains a guanine-rich sequence in the 5'-untranslated regions (5'-UTR) of the mRNA that could form an RNA G-quadruplex structure. This structure acts as a repressor for NRAS translation and could be a potential target for anti-cancer drugs. Our previous studies found an effective scaffold, the quindoline scaffold, for binding and stabilizing the DNA G-quadruplex structures. Here, basing on the previous studies and reported RNA-specific probes, a series of novel p-(methylthio)styryl substituted quindoline (MSQ) derivatives were designed, synthesized and evaluated as NRAS RNA G-quadruplex ligands. Panels of experiments turned out that the introduction of p-(methylthio)styryl side chain could enhance the specific binding to the NRAS RNA G-quadruplex. One of the hits, 4a-10, showed strong stabilizing activity on the G-quadruplex, and subsequently repressed NRAS's translation and inhibited tumor cells proliferation. Our finding provided a novel strategy to discover novel NRAS repressors by specifically binding to the RNA G-quadruplex in the 5'-UTR of mRNA.

  18. Cntnap2 expression in the cerebellum of Foxp2(R552H) mice, with a mutation related to speech-language disorder.

    PubMed

    Fujita, Eriko; Tanabe, Yuko; Momoi, Mariko Y; Momoi, Takashi

    2012-01-11

    Foxp2(R552H) knock-in (KI) mice carrying a mutation related to human speech-language disorder exhibit impaired ultrasonic vocalization and poor Purkinje cell development. Foxp2 is a forkhead domain-containing transcriptional repressor that associates with its co-repressor CtBP; Foxp2(R552H) displays reduced DNA binding activity. A genetic connection between FOXP2 and CNTNAP2 has been demonstrated in vitro, but not in vivo. Here we show that Cntnap2 mRNA levels significantly increased in the cerebellum of Foxp2(R552H) KI pups, although the cerebellar population of Foxp2-positive Purkinje cells was very small. Furthermore, Cntnap2 immunofluorescence did not decrease in the poorly developed Purkinje cells of Foxp2(R552H) KI pups, although synaptophysin immunofluorescence decreased. Cntnap2 and CtBP were ubiquitously expressed, while Foxp2 co-localized with CtBP only in Purkinje cells. Taken together, these observations suggest that Foxp2 may regulate ultrasonic vocalization by associating with CtBP in Purkinje cells; Cntnap2 may be a target of this co-repressor. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Integration host factor is necessary for lysogenization of Escherichia coli by bacteriophage P2.

    PubMed

    Saha, S; Haggård-Ljungquist, E; Nordström, K

    1990-01-01

    Whether infection by bacteriophage P2 results in lysogenization of the host or vegetative growth of the phage depends upon a race between transcription from the repressor promoter Pc and the early promoter Pe; transcription from these promoters is mutually exclusive, since the Pc repressor Cox is formed from the Pe transcript and the Pe repressor C from the Pc transcript. The involvement of integration host factor (IHF) in the lysogenization of Escherichia coli K12 by P2 was tested by comparing wild-type and IHF-deficient (himA and himD) mutants. No lysogenic clones were formed following infection of the mutant bacteria. A switch plasmid that contains Pc-C-cat and Pe-cox-kan was used to test the choice for expression of Pc versus Pe. In the wild-type K12 bacteria, 20% of the clones expressed Pe transcription and 80% Pc transcription, whereas all transformed IHF-defective clones expressed transcription from Pe only. The effects of IHF on the in vivo expression of the Pe and Pc promoters were only marginal. The IHF protein was found to bind upstream of the Pe promoter, where a potential ihf sequence is located.

  20. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles.

    PubMed

    Dedrick, Rebekah M; Marinelli, Laura J; Newton, Gerald L; Pogliano, Kit; Pogliano, Joseph; Hatfull, Graham F

    2013-05-01

    Bacteriophages represent a majority of all life forms, and the vast, dynamic population with early origins is reflected in their enormous genetic diversity. A large number of bacteriophage genomes have been sequenced. They are replete with novel genes without known relatives. We know little about their functions, which genes are required for lytic growth, and how they are expressed. Furthermore, the diversity is such that even genes with required functions - such as virion proteins and repressors - cannot always be recognized. Here we describe a functional genomic dissection of mycobacteriophage Giles, in which the virion proteins are identified, genes required for lytic growth are determined, the repressor is identified, and the transcription patterns determined. We find that although all of the predicted phage genes are expressed either in lysogeny or in lytic growth, 45% of the predicted genes are non-essential for lytic growth. We also describe genes required for DNA replication, show that recombination is required for lytic growth, and that Giles encodes a novel repressor. RNAseq analysis reveals abundant expression of a small non-coding RNA in a lysogen and in late lytic growth, although it is non-essential for lytic growth and does not alter lysogeny. © 2013 Blackwell Publishing Ltd.

  1. Molecular dynamics simulation of trp-repressor/operator complex: analysis of hydrogen bond patterns of protein DNA interaction

    NASA Astrophysics Data System (ADS)

    Suenaga, A.; Yatsu, C.; Komeiji, Y.; Uebayasi, M.; Meguro, T.; Yamato, I.

    2000-08-01

    Molecular dynamics simulation of Escherichia colitrp-repressor/operator complex was performed to elucidate protein-DNA interactions in solution for 800 ps on special-purpose computer MD-GRAPE. The Ewald summation method was employed to treat the electrostatic interaction without cutoff. DNA kept stable conformation in comparison with the result of the conventional cutoff method. Thus, the trajectories obtained were used to analyze the protein-DNA interaction and to understand the role of dynamics of water molecules forming sequence specific recognition interface. The dynamical cross-correlation map showed a significant positive correlation between the helix-turn-helix DNA-binding motifs and the major grooves of operator DNA. The extensive contact surface was stable during the simulation. Most of the contacts consisted of direct interactions between phosphates of DNA and the protein, but several water-mediated polar contacts were also observed. These water-mediated interactions, which were also seen in the crystal structure (Z. Otwinowski, et al., Nature, 335 (1998) 321) emerged spontaneously from the randomized initial configuration of the solvent. This result suggests the importance of the water-mediated interaction in specific recognition of DNA by the trp-repressor, consistent with X-ray structural information.

  2. Functional domains of the Drosophila Engrailed protein.

    PubMed Central

    Han, K; Manley, J L

    1993-01-01

    We have studied the transcriptional activity of the Drosophila homeodomain protein Engrailed (En) by using a transient expression assay employing Schneider L2 cells. En was found to very strongly repress promoters activated by a variety of different activator proteins. However, unlike another Drosophila homeodomain-containing repressor, Even-skipped (Eve), En was unable to repress the activity of several basal promoters in the absence of activator expression. These findings indicate that En is a specific repressor of activated transcription, and suggest that En may repress transcription by a different mechanism than Eve, perhaps by interfering with interactions between transcriptional activators and the general transcription machinery. By analyzing the properties of a variety of En mutants, we identified a minimal repression domain composed of 55 residues, which can function when fused to a heterologous DNA binding domain. Like repression domains identified in the Drosophila repressors Eve and Krüppel, the En repression domain is rich in alanine residues (26%), but unlike these other domains, is moderately charged (six arginine and three glutamic acid residues). Separate regions of En that may in some circumstances function in transcriptional activation were also identified. Images PMID:8334991

  3. Modeling the Lac repressor-operator assembly: The influence of DNA looping on Lac repressor conformation

    PubMed Central

    Swigon, David; Coleman, Bernard D.; Olson, Wilma K.

    2006-01-01

    Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR–DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50–180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure. PMID:16785444

  4. Genetic and epigenetic control of gene expression by CRISPR–Cas systems

    PubMed Central

    Lo, Albert; Qi, Lei

    2017-01-01

    The discovery and adaption of bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems has revolutionized the way researchers edit genomes. Engineering of catalytically inactivated Cas variants (nuclease-deficient or nuclease-deactivated [dCas]) combined with transcriptional repressors, activators, or epigenetic modifiers enable sequence-specific regulation of gene expression and chromatin state. These CRISPR–Cas-based technologies have contributed to the rapid development of disease models and functional genomics screening approaches, which can facilitate genetic target identification and drug discovery. In this short review, we will cover recent advances of CRISPR–dCas9 systems and their use for transcriptional repression and activation, epigenome editing, and engineered synthetic circuits for complex control of the mammalian genome. PMID:28649363

  5. Modulation of DNA binding by gene-specific transcription factors.

    PubMed

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  6. Endothelin-1 mediates natriuresis but not polyuria during vitamin D-induced acute hypercalcaemia.

    PubMed

    Tokonami, Natsuko; Cheval, Lydie; Monnay, Isabelle; Meurice, Guillaume; Loffing, Johannes; Feraille, Eric; Houillier, Pascal

    2017-04-15

    Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT-treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT-treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D-induced hypercalcaemia increases the renal production of ET-1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  7. Endothelin‐1 mediates natriuresis but not polyuria during vitamin D‐induced acute hypercalcaemia

    PubMed Central

    Tokonami, Natsuko; Cheval, Lydie; Monnay, Isabelle; Meurice, Guillaume; Loffing, Johannes; Feraille, Eric

    2017-01-01

    Key points Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism.A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)‐1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia‐induced effects.In the present study, we demonstrate that, during vitamin D‐induced hypercalcaemia, the activation of ET system by increased ET‐1 is responsible for natriuresis but not for polyuria.Vitamin D‐treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited.We have identified an original pathway that specifically mediates the effects of vitamin D‐induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. Abstract Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D‐induced hypercalcaemia increases the renal expression of endothelin (ET)‐1, we hypothesized that ET‐1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8‐week‐old, parathyroid hormone‐supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT‐treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET‐1 and the transcription factors CCAAT‐enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT‐treated mice. To examine the role of the ET system in hypercalcaemia‐induced natriuresis and polyuria, mice were treated with the ET‐1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT‐treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT‐treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D‐induced hypercalcaemia increases the renal production of ET‐1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria. PMID:28120456

  8. Precision Medicine for Acute Kidney Injury (AKI): Redefining AKI by Agnostic Kidney Tissue Interrogation and Genetics.

    PubMed

    Kiryluk, Krzysztof; Bomback, Andrew S; Cheng, Yim-Ling; Xu, Katherine; Camara, Pablo G; Rabadan, Raul; Sims, Peter A; Barasch, Jonathan

    2018-01-01

    Acute kidney injury (AKI) currently is diagnosed by a temporal trend of a single blood analyte: serum creatinine. This measurement is neither sensitive nor specific to kidney injury or its protean forms. Newer biomarkers, neutrophil gelatinase-associated lipocalin (NGAL, Lipocalin 2, Siderocalin), or kidney injury molecule-1 (KIM-1, Hepatitis A Virus Cellular Receptor 1), accelerate the diagnosis of AKI as well as prospectively distinguish rapidly reversible from prolonged causes of serum creatinine increase. Nonetheless, these biomarkers lack the capacity to subfractionate AKI further (eg, sepsis versus ischemia versus nephrotoxicity from medications, enzymes, or metals) or inform us about the primary and secondary sites of injury. It also is unknown whether all nephrons are injured in AKI, whether all cells in a nephron are affected, and whether injury responses can be stimulus-specific or cell type-specific or both. In this review, we summarize fully agnostic tissue interrogation approaches that may help to redefine AKI in cellular and molecular terms, including single-cell and single-nuclei RNA sequencing technology. These approaches will empower a shift in the current paradigm of AKI diagnosis, classification, and staging, and provide the renal community with a significant advance toward precision medicine in the analysis AKI. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Zebrafish Pronephros Development.

    PubMed

    Naylor, Richard W; Qubisi, Sarah S; Davidson, Alan J

    The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water-processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.

  10. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat

    PubMed Central

    Rieg, Timo; Miracle, Cynthia; Mansoury, Hadi; Whaley, Jean; Vallon, Volker; Singh, Prabhleen

    2012-01-01

    Tubuloglomerular feedback (TGF) stabilizes nephron function from minute to minute and adapts to different steady-state inputs to maintain this capability. Such adaptation inherently renders TGF less efficient at buffering long-term disturbances, but the magnitude of loss is unknown. We undertook the present study to measure the compromise between TGF and TGF adaptation in transition from acute to chronic decline in proximal reabsorption (Jprox). As a tool, we blocked proximal tubule sodium-glucose cotransport with the SGLT2 blocker dapagliflozin in hyperglycemic rats with early streptozotocin diabetes, a condition in which a large fraction of proximal fluid reabsorption owes to SGLT2. Dapagliflozin acutely reduced proximal reabsorption leading to a 70% increase in early distal chloride, a saturated TGF response, and a major reduction in single nephron glomerular filtration rate (SNGFR). Acute and chronic effects on Jprox were indistinguishable. Adaptations to 10–12 days of dapagiflozin included increased reabsorption by Henle's loop, which caused a partial relaxation in the increased tone exerted by TGF that could be explained without desensitization of TGF. In summary, TGF contributes to long-term fluid and salt balance by mediating a persistent decline in SNGFR as the kidney adapts to a sustained decrease in Jprox. PMID:21940401

  11. Metal accumulation and nephron heterogeneity in mercuric chloride-induced acute renal failure.

    PubMed

    Wilks, M F; Gregg, N J; Bach, P H

    1994-01-01

    The present study was designed to assess the effects of mercury on glomerular integrity during the early phase of acute renal failure. The silver amplification method showed distribution of mercury in midcortical and juxtamedullary glomeruli and on the brush border of the S2 segment of the proximal tubule 15 min after treatment. At 30 min, there was a decrease in glomerular staining and increased mercury in the proximal tubule. After 3 hr, mercury was no longer detectable in glomeruli but was widespread in the lumen of the proximal tubule. By 24 hr, mercury was prominent in all proximal tubular segments throughout the cortex. The presence of mercury in glomeruli was not related to hemodynamic changes, as there was no evidence for blood redistribution toward juxtamedullary glomeruli as assessed by the filling of the microvascular system with Monastral Blue B. The reduced activity of horseradish peroxidase (administered i.v. 90 sec and 10 min before sacrifice) in juxtamedullary glomeruli 30 min after mercury administration suggests a decreased uptake of horseradish peroxidase or an increased glomerular protein filtration. These data support glomerular filtration as the predominant excretory route for mercury, highlight the marked nephron heterogeneity in the distribution of this metal, and show that impairment of glomerular integrity occurs before necrosis of the proximal tubules and acute renal failure.

  12. Regulation of transport in the connecting tubule and cortical collecting duct

    PubMed Central

    Staruschenko, Alexander

    2012-01-01

    The central goal of this overview article is to summarize recent findings in renal epithelial transport, focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD). Mammalian CCD and CNT are involved in fine tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, e.g. aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades. Recent studies shed new light on several key questions concerning the regulation of renal transport. Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will be also covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD. PMID:23227301

  13. The renal TRPV4 channel is essential for adaptation to increased dietary potassium.

    PubMed

    Mamenko, Mykola V; Boukelmoune, Nabila; Tomilin, Viktor N; Zaika, Oleg L; Jensen, V Behrana; O'Neil, Roger G; Pochynyuk, Oleh M

    2017-06-01

    To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. How Kidney Cell Death Induces Renal Necroinflammation.

    PubMed

    Mulay, Shrikant R; Kumar, Santhosh V; Lech, Maciej; Desai, Jyaysi; Anders, Hans-Joachim

    2016-05-01

    The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A 2D model of axial symmetry for proximal tubule of an average human nephron: indicative results of diffusion, convection and absorption processes

    NASA Astrophysics Data System (ADS)

    Insfrán, J. F.; Ubal, S.; Di Paolo, y. J.

    2016-04-01

    A simplified model of a proximal convoluted tubule of an average human nephron is presented. The model considers the 2D axisymmetric flow of the luminal solution exchanging matter with the tubule walls and the peritubular fluid by means of 0D models for the epithelial cells. The tubule radius is considered to vary along the conduit due to the trans-epithelial pressure difference. The fate of more than ten typical solutes is tracked down by the model. The Navier-Stokes and Reaction-Diffusion-Advection equations (considering the electro-neutrality principle) are solved in the lumen, giving a detailed picture of the velocity, pressure and concentration fields, along with trans-membrane fluxes and tubule deformation, via coupling with the 0D model for the tubule wall. The calculations are carried out numerically by means of the finite element method. The results obtained show good agreement with those published by other authors using models that ignore the diffusive transport and disregard a detailed calculation of velocity, pressure and concentrations. This work should be seen as a first approach towards the development of a more comprehensive model of the filtration process taking place in the kidneys, which ultimately helps in devising a device that can mimic/complement the renal function.

  16. Counting glomeruli and podocytes: rationale and methodologies

    PubMed Central

    Puelles, Victor G.; Bertram, John F.

    2015-01-01

    Purpose of review There is currently much interest in the numbers of both glomeruli and podocytes. This interest stems from greater understanding of the effects of suboptimal fetal events on nephron endowment, the associations between low nephron number and chronic cardiovascular and kidney disease in adults, and the emergence of the podocyte depletion hypothesis. Recent findings Obtaining accurate and precise estimates of glomerular and podocyte number has proven surprisingly difficult. When whole kidneys or large tissue samples are available, design-based stereological methods are considered gold-standard because they are based on principles that negate systematic bias. However, these methods are often tedious and time-consuming, and oftentimes inapplicable when dealing with small samples such as biopsies. Therefore, novel methods suitable for small tissue samples, and innovative approaches to facilitate high through put measurements, such as magnetic resonance imaging (MRI) to estimate glomerular number and flow cytometry to estimate podocyte number, have recently been described. Summary This review describes current gold-standard methods for estimating glomerular and podocyte number, as well as methods developed in the past 3 years. We are now better placed than ever before to accurately and precisely estimate glomerular and podocyte number, and to examine relationships between these measurements and kidney health and disease. PMID:25887899

  17. Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles.

    PubMed

    Casellas, D; Moore, L C

    1990-03-01

    Videometric measurements of changes in vessel lumen diameters were made to investigate autoregulatory and tubuloglomerular feedback (TGF) responses of early efferent arterioles (EA), mid-to-late afferent arterioles (MAA), and terminal, juxtaglomerular afferent arterioles (JAA) in rat juxtamedullary nephrons in vitro. High-contrast shadow-cast images of blood-perfused arterioles at the glomerular vascular pole were obtained with incident illumination and long-working-distance objectives fitted to a compound microscope. In response to an increase in blood perfusion pressure from 60 to 140 mmHg, strong autoregulatory vasoconstriction was observed in the MAA and JAA, with respective reductions in mean luminal diameter of 23 +/- 4 and 40 +/- 4% (mean +/- SE); EA diameter was unchanged. In response to TGF excitation by direct microinjection of Ringer solution into the cortical thick ascending limb segment near the macula densa, JAA luminal diameter decreased by 34 +/- 5%. The TGF responses were completely inhibited by the addition of 0.1 mM furosemide to the tubular injectate. Calcium channel blockade achieved by adding 1 microM nimodipine to the superfusate had no effect on early EA diameter but produced a blood pressure-dependent JAA and MAA vasodilation and complete inhibition of autoregulatory responses. These results provide direct evidence that the distal afferent arteriole in juxtamedullary nephrons is a major effector site for both renal autoregulation and tubuloglomerular feedback.

  18. Intra-tubular hydrodynamic forces influence tubulo-interstitial fibrosis in the kidney

    PubMed Central

    Rohatgi, Rajeev; Flores, Daniel

    2010-01-01

    Purpose of review Renal epithelial cells respond to mechanical stimuli with immediate transduction events (e.g., activation of ion channels), intermediate biological responses (e.g., changes in gene expression), and long term cellular adaptation (e.g., protein expression). Progressive renal disease is characterized by disturbed glomerular hydrodynamics that contributes to glomerulosclerosis, but, how intra-tubular biomechanical forces contribute to tubulo-interstital inflammation and fibrosis is poorly understood. Recent findings In vivo and in vitro models of obstructive uropathy demonstrate that tubular stretch induces robust expression of transforming growth factor β-1 (TGFβ-1), activation of tubular apoptosis, and induction of NF-κB signaling which contribute to the inflammatory and fibrotic milieu. Non-obstructive structural kidney diseases associated with nephron loss follow a course characterized by compensatory increases of single nephron glomerular filtration rate and tubular flow rate. Resulting increases in tubular fluid shear stress (FSS) reduce tissue-plasminogen activator and urokinase enzymatic activity which diminishes breakdown of extracellular matrix. In models of high dietary Na intake, which increase tubular flow, urinary TGFβ-1 concentrations and renal mitogen activated protein kinase activity are increased. Summary In conclusion, intra-tubular biomechanical forces, stretch and FSS, generate changes in intracellular signaling and gene expression that contribute to the pathobiology of obstructive, and non-obstructive kidney disease. PMID:19851105

  19. Use of near infrared fluorescence during robot-assisted laparoscopic partial nephrectomy.

    PubMed

    Cornejo-Dávila, V; Nazmy, M; Kella, N; Palmeros-Rodríguez, M A; Morales-Montor, J G; Pacheco-Gahbler, C

    2016-04-01

    Partial nephrectomy is the treatment of choice for T1a tumours. The open approach is still the standard method. Robot-assisted laparoscopic surgery offers advantages that are applicable to partial nephrectomy, such as the use of the Firefly® system with near-infrared fluorescence. To demonstrate the implementation of fluorescence in nephron-sparing surgery. This case concerned a 37-year-old female smoker, with obesity. The patient had a right kidney tumour measuring 31 mm, which was found using tomography. She therefore underwent robot-assisted laparoscopic partial nephrectomy, with a warm ischaemia time of 22 minutes and the use of fluorescence with the Firefly® system to guide the resection. There were no complications. The tumour was a pT1aN0M0 renal cell carcinoma, with negative margins. Robot-assisted renal laparoscopic surgery is employed for nephron-sparing surgery, with good oncological and functional results. The combination of the Firefly® technology and intraoperative ultrasound can more accurately delimit the extent of the lesion, increase the negative margins and decrease the ischaemia time. Near-infrared fluorescence in robot-assisted partial nephrectomy is useful for guiding the tumour resection and can potentially improve the oncological and functional results. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. The Impact of Kidney Development on the Life Course: A Consensus Document for Action

    PubMed Central

    2017-01-01

    Hypertension and chronic kidney disease (CKD) have a significant impact on global morbidity and mortality. The Low Birth Weight and Nephron Number Working Group has prepared a consensus document aimed to address the relatively neglected issue for the developmental programming of hypertension and CKD. It emerged from a workshop held on April 2, 2016, including eminent internationally recognized experts in the field of obstetrics, neonatology, and nephrology. Through multidisciplinary engagement, the goal of the workshop was to highlight the association between fetal and childhood development and an increased risk of adult diseases, focusing on hypertension and CKD, and to suggest possible practical solutions for the future. The recommendations for action of the consensus workshop are the results of combined clinical experience, shared research expertise, and a review of the literature. They highlight the need to act early to prevent CKD and other related noncommunicable diseases later in life by reducing low birth weight, small for gestational age, prematurity, and low nephron numbers at birth through coordinated interventions. Meeting the current unmet needs would help to define the most cost-effective strategies and to optimize interventions to limit or interrupt the developmental programming cycle of CKD later in life, especially in the poorest part of the world. PMID:28319949

Top