Science.gov

Sample records for reproductive allocation growth

  1. Female Baltic herring Clupea harengus allocate resources from growth to reproduction in poor feeding conditions.

    PubMed

    Rajasilta, M; Eklund, J; Hänninen, J; Vuorinen, I; Laine, P

    2015-01-22

    The trade-off between somatic growth and reproduction in the female Baltic herring Clupea harengus was investigated from 1984 to 2002. During the study period, growth decreased, as a consequence of decreasing salinity and weakening of feeding conditions. Production of muscle and ovarian tissue decreased in repeat spawners, but investment in reproduction took an increasing amount of the total production of new tissues. This suggested that a shift in allocation to reproduction takes precedence over body growth in the reproductive strategy of C. harengus. The process also indicated one possible mechanism leading to dwarf forms in fish populations. © 2015 The Fisheries Society of the British Isles.

  2. Mortality affects adaptive allocation to growth and reproduction: field evidence from a guild of body snatchers.

    PubMed

    Hechinger, Ryan F

    2010-05-07

    The probability of being killed by external factors (extrinsic mortality) should influence how individuals allocate limited resources to the competing processes of growth and reproduction. Increased extrinsic mortality should select for decreased allocation to growth and for increased reproductive effort. This study presents perhaps the first clear cross-species test of this hypothesis, capitalizing on the unique properties offered by a diverse guild of parasitic castrators (body snatchers). I quantify growth, reproductive effort, and expected extrinsic mortality for several species that, despite being different species, use the same species' phenotype for growth and survival. These are eight trematode parasitic castrators-the individuals of which infect and take over the bodies of the same host species-and their uninfected host, the California horn snail. As predicted, across species, growth decreased with increased extrinsic mortality, while reproductive effort increased with increased extrinsic mortality. The trematode parasitic castrator species (operating stolen host bodies) that were more likely to be killed by dominant species allocated less to growth and relatively more to current reproduction than did species with greater life expectancies. Both genders of uninfected snails fit into the patterns observed for the parasitic castrator species, allocating as much to growth and to current reproduction as expected given their probability of reproductive death (castration by trematode parasites). Additionally, species differences appeared to represent species-specific adaptations, not general plastic responses to local mortality risk. Broadly, this research illustrates that parasitic castrator guilds can allow unique comparative tests discerning the forces promoting adaptive evolution. The specific findings of this study support the hypothesis that extrinsic mortality influences species differences in growth and reproduction.

  3. Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants.

    PubMed

    Nord, Eric A; Shea, Katriona; Lynch, Jonathan P

    2011-08-01

    Timing of reproduction is a key life-history trait that is regulated by resource availability. Delayed reproduction in soils with low phosphorus availability is common among annuals, in contrast to the accelerated reproduction typical of other low-nutrient environments. It is hypothesized that this anomalous response arises from the high marginal value of additional allocation to root growth caused by the low mobility of phosphorus in soils. To better understand the benefits and costs of such delayed reproduction, a two-resource dynamic allocation model of plant growth and reproduction is presented. The model incorporates growth, respiration, and carbon and phosphorus acquisition of both root and shoot tissue, and considers the reallocation of resources from senescent leaves. The model is parameterized with data from Arabidopsis and the optimal reproductive phenology is explored in a range of environments. The model predicts delayed reproduction in low-phosphorus environments. Reproductive timing in low-phosphorus environments is quite sensitive to phosphorus mobility, but is less sensitive to the temporal distribution of mortality risks. In low-phosphorus environments, the relative metabolic cost of roots was greater, and reproductive allocation reduced, compared with high-phosphorus conditions. The model suggests that delayed reproduction in response to low phosphorus availability may be reduced in plants adapted to environments where phosphorus mobility is greater. Delayed reproduction in low-phosphorus soils can be a beneficial response allowing for increased acquisition and utilization of phosphorus. This finding has implications both for efforts to breed crops for low-phosphorus soils, and for efforts to understand how climate change may impact plant growth and productivity in low-phosphorus environments.

  4. Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants

    PubMed Central

    Nord, Eric A.; Shea, Katriona; Lynch, Jonathan P.

    2011-01-01

    Background and Aims Timing of reproduction is a key life-history trait that is regulated by resource availability. Delayed reproduction in soils with low phosphorus availability is common among annuals, in contrast to the accelerated reproduction typical of other low-nutrient environments. It is hypothesized that this anomalous response arises from the high marginal value of additional allocation to root growth caused by the low mobility of phosphorus in soils. Methods To better understand the benefits and costs of such delayed reproduction, a two-resource dynamic allocation model of plant growth and reproduction is presented. The model incorporates growth, respiration, and carbon and phosphorus acquisition of both root and shoot tissue, and considers the reallocation of resources from senescent leaves. The model is parameterized with data from Arabidopsis and the optimal reproductive phenology is explored in a range of environments. Key Results The model predicts delayed reproduction in low-phosphorus environments. Reproductive timing in low-phosphorus environments is quite sensitive to phosphorus mobility, but is less sensitive to the temporal distribution of mortality risks. In low-phosphorus environments, the relative metabolic cost of roots was greater, and reproductive allocation reduced, compared with high-phosphorus conditions. The model suggests that delayed reproduction in response to low phosphorus availability may be reduced in plants adapted to environments where phosphorus mobility is greater. Conclusions Delayed reproduction in low-phosphorus soils can be a beneficial response allowing for increased acquisition and utilization of phosphorus. This finding has implications both for efforts to breed crops for low-phosphorus soils, and for efforts to understand how climate change may impact plant growth and productivity in low-phosphorus environments. PMID:21712299

  5. Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata.

    PubMed

    Lewis, Kristin C; Bazzaz, F A; Liao, Qing; Orians, Colin M

    2006-06-01

    We investigated geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata, to test the hypothesis that escape from herbivory in invasive species permits enhanced growth and lower production of defensive chemicals. We quantified herbivore damage, concentrations of sinigrin, and growth and reproduction inside and outside herbivore exclusion treatments, in field populations in the native and invasive ranges. As predicted, unmanipulated plants in the native range (Hungary, Europe) experienced greater herbivore damage than plants in the introduced range (Massachusetts and Connecticut, USA), providing evidence for enemy release, particularly in the first year of growth. Nevertheless, European populations had consistently larger individuals than US populations (rosettes were, for example, eightfold larger) and also had greater reproductive output, but US plants produced larger seeds at a given plant height. Moreover, flowering plants showed significant differences in concentrations of sinigrin in the invasive versus native range, although the direction of the difference was variable, suggesting the influence of environmental effects. Overall, we observed less herbivory, but not increased growth or decreased defense in the invasive range. Geographical differences in performance and leaf chemistry appear to be due to variation in the environment, which could have masked evolved differences in allocation.

  6. Resource allocation to reproduction in animals.

    PubMed

    Kooijman, Sebastiaan A L M; Lika, Konstadia

    2014-11-01

    The standard Dynamic Energy Budget (DEB) model assumes that a fraction κ of mobilised reserve is allocated to somatic maintenance plus growth, while the rest is allocated to maturity maintenance plus maturation (in embryos and juveniles) or reproduction (in adults). All DEB parameters have been estimated for 276 animal species from most large phyla and all chordate classes. The goodness of fit is generally excellent. We compared the estimated values of κ with those that would maximise reproduction in fully grown adults with abundant food. Only 13% of these species show a reproduction rate close to the maximum possible (assuming that κ can be controlled), another 4% have κ lower than the optimal value, and 83% have κ higher than the optimal value. Strong empirical support hence exists for the conclusion that reproduction is generally not maximised. We also compared the parameters of the wild chicken with those of races selected for meat and egg production and found that the latter indeed maximise reproduction in terms of κ, while surface-specific assimilation was not affected by selection. We suggest that small values of κ relate to the down-regulation of maximum body size, and large values to the down-regulation of reproduction. We briefly discuss the ecological context for these findings.

  7. Social dominance in prepubertal dairy heifers allocated in continuous competitive dyads: Effects on body growth, metabolic status, and reproductive development.

    PubMed

    Fiol, C; Carriquiry, M; Ungerfeld, R

    2017-03-01

    The objective of this study was to compare the body weight (BW) and size, metabolic status, and reproductive development of dominant and subordinate prepubertal dairy heifers allocated in competitive dyads. Sixteen Holstein and Jersey × Holstein prepubertal heifers (means ± SEM; 250.8 ± 9.8 d; 208.5 ± 13.9 kg of BW) were assigned to 8 homogeneous dyads according to breed, age, and BW. Dyads were housed in pens separated 1 m from each other during 120 d, receiving a total mixed ration on a 5% restriction of their potential dry matter intake, and had access to the same feeder (60 cm) throughout the experiment. Dominant and subordinate heifers were defined based on the winning agonistic interactions in each dyad. Body development was recorded every 20 d in all heifers, and blood samples were collected on the same days to determine endocrine and metabolic status. The maximum follicle diameter, number of follicles >6 mm, and the presence of corpus luteum were observed weekly by ultrasound. Heifer BW (269.3 vs. 265.3 ± 1.5 kg) and average daily gains (0.858 vs. 0.770 ± 0.02 kg/d) were greater in dominant than subordinate heifers. On d 30, 37, and 53, dominant heifers had more follicles than subordinate heifers, and maximum follicle diameter was greater in dominant than in subordinate heifers (10.0 vs. 9.0 ± 0.3 mm). Dominant heifers achieved puberty earlier than subordinate heifers (313.9 ± 4.9 vs. 329.6 ± 5.7 d) with similar BW (279.4 ± 2.6 vs. 277.4 ± 5.8 kg). Glucose concentrations were greater in dominant than subordinate heifers (89.2 vs. 86.8 ± 1.2 mg/dL), but cholesterol concentrations were greater in subordinate than dominant heifers (86.1 vs. 90.2 ± 2.6 mg/dL). We concluded that, under continuous competitive situations, dominant heifers were more precocious than subordinate ones, achieving an earlier puberty. Dominant heifers had greater body growth and glucose concentrations than subordinate heifers, which may be responsible, at least in part, for

  8. Reproductive biomass allocation in three Sargassum species.

    PubMed

    McCourt, Richard M

    1985-08-01

    Allocation of biomass to sexual reproductive (receptacle) tissue and vegetative (holdfast) tissue differed absolutely and relatively in three Sargassum species that form the bulk of the intertidal algal canopy in the northern Gulf of California. Sargassum herporhizum devoted a greater proportion of its thallus mass into its rhizoidal holdfast than did S. sinicola var. camouii or S. johnstonii, whose holdfasts are solid, more compact, and composed of a lower percentage of water. Conversely, more sexual receptacle tissue was produced by these two species with small holdfasts during the spring reproductive period. Sargassum sinicola var. camouii, which is the only species of the three that becomes fertile in the fall, produces a comparable amount of sexual tissue during this second period of reproduction. Removal of Sargassum from single-species patches showed that canopy regrowth by S. herporhizum with its encroaching rhizoidal holdfast was more rapid and complete than that of the other two species, which invest most of their reproductive efforts into sexual propagules that can disperse long distances. Sargassum herporhizum also displayed a more rapid and complete recovery of canopy cover in patches cleared of thalli and in control patches following the annual summer dieback. These two divergent modes of reproductive biomass allocation suggest that ability to encroach upon nearby open sites and ability to colonize distant discrete islands of suitable habitat represent two distinct reproductive strategies requiring different patterns of biomass allocation. Moreover, for energetic reasons, a species may not be able to excel at both modes of reproduction.

  9. Plasticity in allocation of nicotine to reproductive parts inNicotiana attenuata.

    PubMed

    Baldwin, I T; Karb, M J

    1995-07-01

    Although little is known about the patterns of chemical defense allocation in reproductive tissues, optimal defense theory predicts a high constitutive allocation due to the tissues' high fitness value. To examine this prediction, we quantified the short- and long-term changes in the nicotine pools of reproductive tissues in response to both floral and leaf damage. Recently opened flowers (stage 5 capsules) do not alter their nicotine pools within a day in response to herbivory byManduca sexta larvae or mechanical damage to the corolla. Similarly, leaf damage during both vegetative and reproductive growth does not influence the nicotine pools of the first three stage-5 capsules produced. However, the nicotine pools of capsules produced later in reproductive growth were significantly larger (1.2- to 1.9-fold) on plants with leaf damage. These differences in floral nicotine pools were a result of both increases in nicotine pools of capsules on damaged plants and decreases in the nicotine pools of capsules on undamaged plants during reproductive growth. Leaf damage did not affect the rate of capsule maturation or the mass of stage-5 capsules at any time during reproductive growth. An allometric analysis of nicotine pools and biomass of reproductive parts in all stages of development from damaged and undamaged plants demonstrates that damaged plants allocated a significantly larger quantity of nicotine to reproductive parts in all stages of development than did undamaged plants. Given that nicotine is thought to be synthesized in the roots and transported to leaves and reproductive parts, nicotine could be allocated to reproductive parts in proportion to the number of developing capsules on a plant. We excised the first 27 stage-5 capsules on plants with and without leaf damage, with the expectation that plants with fewer capsules would allocate a larger amount of nicotine to the remaining capsules. In contrast to the prediction of this passive allocation model, floral

  10. Density-dependent reproductive and vegetative allocation in the aquatic plant Pistia stratiotes (Araceae).

    PubMed

    Coelho, Flávia Freitas; Deboni, Liene; Lopes, Frederico Santos

    2005-01-01

    Pistia stratiotes is an aquatic macrophyte that grows in temporary-ponds in the southern Pantanal, Brazil. It reproduces both sexually and asexually and is usually observed forming dense mats on the water surface, a condition favored by the plant's vegetative reproduction coupled with an ability for rapid growth. In this study we examined the effect of densely crowded conditions on the production of reproductive and vegetative structures. In addition, we verified whether there is a trade-off between clonal growth and investment in sexual reproductive structures, and whether there is an allocation pattern with plant size. Individual plant biomass and the number of the rosettes producing sexual reproductive structures and vegetative growth structures both increased with density. Increase in plant size resulted in increased proportional allocation to sexual reproductive structures and vegetative growth structures. Allocation of biomass to reproduction did not occur at the expense of clonal growth. Thus, the density response appears as a increase of rosettes producing sexual reproductive structures and vegetative growth structures. Therefore, long leaves and stolons may be adaptive under densely crowded conditions where competition for light is intense. An important aspect in the study of trade-offs is the size-dependency of the allocation patterns .Usually, larger plants produce more biomass. Therefore, larger plants can allocate more biomass to both vegetative and sexual reproduction than smaller plants and thus show a positive correlation between both traits rather than the expected negative one.

  11. Reproductive success and failure: the role of winter body mass in reproductive allocation in Norwegian moose.

    PubMed

    Milner, Jos M; van Beest, Floris M; Solberg, Erling J; Storaas, Torstein

    2013-08-01

    A life history strategy that favours somatic growth over reproduction is well known for long-lived iteroparous species, especially in unpredictable environments. Risk-sensitive female reproductive allocation can be achieved by a reduced reproductive effort at conception, or the subsequent adjustment of investment during gestation or lactation in response to unexpected environmental conditions or resource availability. We investigated the relative importance of reduced investment at conception compared with later in the reproductive cycle (i.e. prenatal, perinatal or neonatal mortality) in explaining reproductive failure in two high-density moose (Alces alces) populations in southern Norway. We followed 65 multiparous, global positioning system (GPS)-collared females throughout the reproductive cycle and focused on the role of maternal nutrition during gestation in determining reproductive success using a quasi-experimental approach to manipulate winter forage availability. Pregnancy rates in early winter were normal (≥0.8) in all years while spring calving rates ranged from 0.4 to 0.83, with prenatal mortality accounting for most of the difference. Further losses over summer reduced autumn recruitment rates to 0.23-0.69, despite negligible predation. Over-winter mass loss explained variation in both spring calving and autumn recruitment success better than absolute body mass in early or late winter. Although pregnancy was related to body mass in early winter, overall reproductive success was unrelated to pre-winter body condition. We therefore concluded that reproductive success was limited by winter nutritional conditions. However, we could not determine whether the observed reproductive allocation adjustment was a bet-hedging strategy to maximise reproduction without compromising survival or whether females were simply unable to invest more resources in their offspring.

  12. Temporal Uncoupling between Energy Acquisition and Allocation to Reproduction in a Herbivorous-Detritivorous Fish

    PubMed Central

    Villamarín, Francisco; Magnusson, William E.; Jardine, Timothy D.; Valdez, Dominic; Woods, Ryan; Bunn, Stuart E.

    2016-01-01

    Although considerable knowledge has been gathered regarding the role of fish in cycling and translocation of nutrients across ecosystem boundaries, little information is available on how the energy obtained from different ecosystems is temporally allocated in fish bodies. Although in theory, limitations on energy budgets promote the existence of a trade-off between energy allocated to reproduction and somatic growth, this trade-off has rarely been found under natural conditions. Combining information on RNA:DNA ratios and carbon and nitrogen stable-isotope analyses we were able to achieve novel insights into the reproductive allocation of diamond mullet (Liza alata), a catadromous, widely distributed herbivorous-detritivorous fish. Although diamond mullet were in better condition during the wet season, most reproductive allocation occurred during the dry season when resources are limited and fish have poorer body condition. We found a strong trade-off between reproductive and somatic investment. Values of δ13C from reproductive and somatic tissues were correlated, probably because δ13C in food resources between dry and wet seasons do not differ markedly. On the other hand, data for δ15N showed that gonads are more correlated to muscle, a slow turnover tissue, suggesting long term synthesis of reproductive tissues. In combination, these lines of evidence suggest that L. alata is a capital breeder which shows temporal uncoupling of resource ingestion, energy storage and later allocation to reproduction. PMID:26938216

  13. Temporal Uncoupling between Energy Acquisition and Allocation to Reproduction in a Herbivorous-Detritivorous Fish.

    PubMed

    Villamarín, Francisco; Magnusson, William E; Jardine, Timothy D; Valdez, Dominic; Woods, Ryan; Bunn, Stuart E

    2016-01-01

    Although considerable knowledge has been gathered regarding the role of fish in cycling and translocation of nutrients across ecosystem boundaries, little information is available on how the energy obtained from different ecosystems is temporally allocated in fish bodies. Although in theory, limitations on energy budgets promote the existence of a trade-off between energy allocated to reproduction and somatic growth, this trade-off has rarely been found under natural conditions. Combining information on RNA:DNA ratios and carbon and nitrogen stable-isotope analyses we were able to achieve novel insights into the reproductive allocation of diamond mullet (Liza alata), a catadromous, widely distributed herbivorous-detritivorous fish. Although diamond mullet were in better condition during the wet season, most reproductive allocation occurred during the dry season when resources are limited and fish have poorer body condition. We found a strong trade-off between reproductive and somatic investment. Values of δ13C from reproductive and somatic tissues were correlated, probably because δ13C in food resources between dry and wet seasons do not differ markedly. On the other hand, data for δ15N showed that gonads are more correlated to muscle, a slow turnover tissue, suggesting long term synthesis of reproductive tissues. In combination, these lines of evidence suggest that L. alata is a capital breeder which shows temporal uncoupling of resource ingestion, energy storage and later allocation to reproduction.

  14. The effect of a rosette-crown fly, Botanophila turcica, on growth,biomass allocation and reproduction of the thistle Carthamus lanatus

    NASA Astrophysics Data System (ADS)

    Sheppard, Andrew W.; Vitou, Janine

    2000-12-01

    Plant growth and reproductive output of the winter annual invasive thistle, Carthamus lanatus was characterised in relation to plant size in three native populations in southern France. The effects of the rosette-crown feeding fly Botanophila turcica on these plant characteristics were assessed by comparing unattacked with naturally attacked plants at each site and by a field experiment. Indirect effects of B. turcica on plant seed production were also compared with direct seed loss caused by a guild of capitulum-feeding insects that incidentally attacked the marked plants at these sites. C. lanatus showed no size or weight requirement for flowering, but larger flowering plants produced less total receptacle surface and less seed production (female reproductive potential) in proportion to plant weight than smaller flowering plants. B. turcica did not select hosts on the basis of size or density. B. turcica reduced plant relative growth rate (RGR) in all situations, but attacked plants compensated fully at two of three sites as attack failed to halt rosette growth. Attacked plants suffered 12 % mortality, and 71 % lower seed production than unattacked plants at the site with the lowest RGR. This corresponded to 9 % lower seed production for the whole thistle population compared to 8.6-19.5 % direct seed loss to capitulum insects across all sites.

  15. Clonal Patch Size and Ramet Position of Leymus chinensis Affected Reproductive Allocation

    PubMed Central

    Zhang, Zhuo; Yang, Yunfei

    2015-01-01

    Reproductive allocation is critically important for population maintenance and usually varies with not only environmental factors but also biotic ones. As a typical rhizome clonal plant in China's northern grasslands, Leymus chinensis usually dominates the steppe communities and grows in clonal patches. In order to clarify the sexual reproductive allocation of L. chinensis in the process of the growth and expansion, we selected L. chinensis clonal patches of a range of sizes to examine the reproductive allocation and allometric growth of the plants. Moreover, the effects of position of L. chinensis ramets within the patch on their reproductive allocation were also examined. Clonal patch size and position both significantly affected spike biomass, reproductive tiller biomass and SPIKE/TILLER biomass ratio. From the central to the marginal zone, both the spike biomass and reproductive tiller biomass displayed an increasing trend in all the five patch size categories except for reproductive tiller biomass in 15–40m2 category. L. chinensis had significantly larger SPIKE/TILLER biomass ratio in marginal zone than in central zone of clonal patches that are larger than 15 m2 in area. Regression analysis showed that the spike biomass and SPIKE/TILLER biomass ratio were negatively correlated with clonal patch size while patch size showed significantly positive effect on SEED/SPIKE biomass ratio, but the reproductive tiller biomass and SEED/TILLER biomass ratio were not dependent on clonal patch size. The relationships between biomass of spike and reproductive tiller, between mature seed biomass and spike biomass and between mature seed biomass and reproductive tiller biomass were significant allometric for all or some of patch size categories, respectively. The slopes of all these allometric relationships were significantly different from 1. The allometric growth of L. chinensis is patch size-dependent. This finding will be helpful for developing appropriate practices for

  16. The dynamics of resource allocation and costs of reproduction in a sexually dimorphic, wind-pollinated dioecious plant.

    PubMed

    Teitel, Z; Pickup, M; Field, D L; Barrett, S C H

    2016-01-01

    Sexual dimorphism in resource allocation is expected to change during the life cycle of dioecious plants because of temporal differences between the sexes in reproductive investment. Given the potential for sex-specific differences in reproductive costs, resource availability may contribute to variation in reproductive allocation in females and males. Here, we used Rumex hastatulus, a dioecious, wind-pollinated annual plant, to investigate whether sexual dimorphism varies with life-history stage and nutrient availability, and determine whether allocation patterns differ depending on reproductive commitment. To examine if the costs of reproduction varied between the sexes, reproduction was either allowed or prevented through bud removal, and biomass allocation was measured at maturity. In a second experiment to assess variation in sexual dimorphism across the life cycle, and whether this varied with resource availability, plants were grown in high and low nutrients and allocation to roots, aboveground vegetative growth and reproduction were measured at three developmental stages. Males prevented from reproducing compensated with increased above- and belowground allocation to a much larger degree than females, suggesting that male reproductive costs reduce vegetative growth. The proportional allocation to roots, reproductive structures and aboveground vegetative growth varied between the sexes and among life-cycle stages, but not with nutrient treatment. Females allocated proportionally more resources to roots than males at peak flowering, but this pattern was reversed at reproductive maturity under low-nutrient conditions. Our study illustrates the importance of temporal dynamics in sex-specific resource allocation and provides support for high male reproductive costs in wind-pollinated plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Reproductive efficiency and metabolism of female broiler breeders as affected by genotype, feed allocation, and age at photostimulation. 1. Pullet growth and development.

    PubMed

    Robinson, F E; Zuidhof, M J; Renema, R A

    2007-10-01

    A 3 x 4 x 2 factorial design was carried out to determine the effect of 3 broiler breeder strains, 4 target BW profiles, and 2 photostimulation ages on pullet growth and development. A total of 560 pullets from each strain (Hubbard Hi-Y, Ross 508, and Ross 708) were reared on BW profiles that separated at 4 wk and converged at 32 wk of age as follows: standard (mean target BW profile of the 3 strains used), low (12-wk BW target = 25% lower than standard followed by rapid gain to 32 wk), moderate (12-wk BW target = 150% of standard followed by lower rate of gain to 32 wk), and high (12-wk BW target = 200% of standard followed by minimal growth to 32 wk). Birds were photostimulated at 18 (18WK) or 22 wk (22WK). During the prephotostimulation phase (2 to 18 wk of age), 4 birds were killed for each of the 12 interactions at 14-d intervals to characterize changes in carcass traits. After 18 wk (wk 20, 22, and 24), 4 birds from each of the 24 interactions were killed and dissected (n = 768). Growth rate restricted frame size (e.g., 18-wk shank length: low = 101.8; standard = 105.6; moderate = 109.5; and high = 112.3 mm). At 24 wk of age, the 22WK birds had similar amounts of breast muscle compared with 18WK birds, whereas the later photostimulated hens had heavier abdominal fat pads. Early photo-stimulation resulted in increased 24-wk liver weights in all strains, but the difference was greatest in Ross 708 birds. The 22-wk ovary weight was influenced by age at photostimulation in high (18WK = 17.3; 22WK = 1.6 g) and moderate (18WK = 14.1; 22WK = 1.1 g) birds. The more extensive feed restriction of LOW birds before 12 wk of age appeared to limit breast muscle and fat pad growth and slow reproductive tract development following photostimulation. Pullets on heavier BW profiles respond to early PS by developing the reproductive system at the expense of breast muscle and fat pad growth. Genetic strain modulates some of the effect of very different target BW profiles.

  18. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies.

    PubMed

    Jervis, Mark A; Ellers, Jacintha; Harvey, Jeffrey A

    2008-01-01

    Parasitoids display remarkable inter- and intraspecific variation in their reproductive and associated traits. Adaptive explanations have been proposed for many of the between-trait relationships. We present an overview of the current knowledge of parasitoid reproductive biology, focusing on egg production strategies in females, by placing parasitoid reproduction within physiological and ecological contexts. Thus, we relate parasitoid reproduction both to inter- and intraspecific patterns of nutrient allocation, utilization, and acquisition, and to key aspects of host ecology, specifically abundance and dispersion pattern. We review the evidence that resource trade-offs underlie several key intertrait correlations and that reproductive and feeding strategies are closely integrated at both the physiological and the behavioral levels. The idea that parasitoids can be divided into capital-breeders or income-breeders is no longer tenable; such terminology is best restricted to the females' utilization of particular nutrients.

  19. Plant reproductive allocation predicts herbivore dynamics across spatial and temporal scales.

    PubMed

    Miller, Tom E X; Tyre, Andrew J; Louda, Svata M

    2006-11-01

    Life-history theory suggests that iteroparous plants should be flexible in their allocation of resources toward growth and reproduction. Such plasticity could have consequences for herbivores that prefer or specialize on vegetative versus reproductive structures. To test this prediction, we studied the response of the cactus bug (Narnia pallidicornis) to meristem allocation by tree cholla cactus (Opuntia imbricata). We evaluated the explanatory power of demographic models that incorporated variation in cactus relative reproductive effort (RRE; the proportion of meristems allocated toward reproduction). Field data provided strong support for a single model that defined herbivore fecundity as a time-varying, increasing function of host RRE. High-RRE plants were predicted to support larger insect populations, and this effect was strongest late in the season. Independent field data provided strong support for these qualitative predictions and suggested that plant allocation effects extend across temporal and spatial scales. Specifically, late-season insect abundance was positively associated with interannual changes in cactus RRE over 3 years. Spatial variation in insect abundance was correlated with variation in RRE among five cactus populations across New Mexico. We conclude that plant allocation can be a critical component of resource quality for insect herbivores and, thus, an important mechanism underlying variation in herbivore abundance across time and space.

  20. Allocation to Reproduction and Relative Reproductive Costs in Two Species of Dioecious Anacardiaceae with Contrasting Phenology

    PubMed Central

    Matsuyama, Shuhei; Sakimoto, Michinori

    2008-01-01

    Background and Aims The cost of reproduction in dioecious plants is often female-biased. However, several studies have reported no difference in costs of reproduction between the sexes. In this study, the relative reproductive allocation and costs at the shoot and whole-plant levels were examined in woody dioecious Rhus javanica and R. trichocarpa, in order to examine differences between types of phenophase (i.e. physiological stage of development). Methods Male and female Rhus javanica and R. trichocarpa were sampled and the reproductive and vegetative allocation of the shoot were estimated by harvesting reproductive current-year shoots during flowering and fruiting. Measurements were made of the number of reproductive and total current-year shoots per whole plant, and of the basal area increment (BAI). The numbers of reproductive and total current-year shoots per 1-year-old shoot were counted in order to examine the costs in the following year at the shoot level. Key Results A female-biased annual reproductive allocation was found; however, the ratio of reproductive current-year shoots per tree and the BAI did not differ between sexes in Rhus javanica and R. trichocarpa. The percentage of 1-year-old shoots with at least one reproductive current-year shoot was significantly male-biased in R. trichocarpa, but not in R. javanica, indicating that there was a relative cost at the shoot level only in R. trichocarpa. The female-biased leaf mass per shoot, an indicator of compensation for costs, was only found in R. javanica. Conclusions Relative reproductive costs at the shoot level were detected in Rhus trichocarpa, which has simultaneous leafing and flowering, but not in R. javanica, which has leafing followed by flowering. However, the costs for the whole-plant level were diminished in both species. The results suggest that the phenophase type may produce the different costs for R. javanica and R. trichocarpa through the development of a compensation mechanism. PMID

  1. Energy allocation and reproductive investment in a temperate protogynous hermaphrodite, the ballan wrasse Labrus bergylta

    NASA Astrophysics Data System (ADS)

    Villegas-Ríos, David; Alonso-Fernández, Alexandre; Domínguez-Petit, Rosario; Saborido-Rey, Fran

    2014-02-01

    Energy allocation is an important component of life-history variation since it determines the tradeoff between growth and reproduction. In this study we investigated the state-dependent and sex-specific energy allocation pattern and the reproductive investment of a protogynous hermaphrodite fish with parental care. Individuals of Labrus bergylta, a temperate wrasse displaying two main different colour patterns (plain and spotted), were obtained from the fish markets in NW Spain between 2009 and 2012. Total energy of the gonad, liver, mesenteric fat and muscle (obtained by calorimetric analysis) and gut weight (as a proxy of feeding intensity) were modelled in relation to the reproductive phase of the individuals. A decrease in the energy stored as mesenteric fat from prespawning to spawning paralleled the increase in the gonad total energy in the same period. The predicted reduction in stored total energy over the reproductive cycle was higher than the energy required to develop the ovaries for the full range of female sizes analysed, suggesting a capital breeding strategy. Males stored less energy over a season and invested fewer resources in gamete production than females. Reproductive investment (both fecundity and energy required to produce the gonads) was higher in plain than in spotted females, which is in agreement with the different growth patterns described for the species.

  2. Trade-offs between reproductive allocation and storage in species of Oenothera L. (Onagraceae) native to Argentina

    NASA Astrophysics Data System (ADS)

    Vilela, Alejandra; Cariaga, Rodrigo; González-Paleo, Luciana; Ravetta, Damián

    2008-01-01

    A trade-off between reproduction and survival arises because current reproduction diminishes levels of a limiting resource such that less can be placed in storage organs for the survival of an organism during the unfavorable season. Oenothera is a particularly suited genus for studying those kind of trade-offs because it contains species with different life-history strategies (annual, biennial and perennial). Since allocation to leaves is a major factor associated with changes in life-history, here we tested the hypothesis that Oenothera leaf attributes would affect plant reproductive effort and therefore, root reserves. We selected two groups of taxa differing in their leaf area ratio (low- and high-LAR) and we compared their pattern of resource allocation to growth, reproduction and storage. Path analysis confirmed our hypothesis that LAR is the most important variable in explaining variation in allocation to reproduction or storage. The group with high allocation to leaves assigned resources preferentially to storage while the other group allocated more resources to reproduction, as predicted. A trade-off between reproduction and storage was only confirmed for the high-LAR group. The low-LAR group showed the life-history tactic of annual plants, while the high-LAR group exhibited a strategy generally associated with perenniality.

  3. Differential response to copper stress in the reproductive resources and allocation of metallophyte Kummerowia stipulacea.

    PubMed

    Gan, Jin-hua; Xiong, Zhi-Ting; Li, Jin-Ping; Chen, Da-Qing

    2013-03-01

    Abundant seed production is a key life history trait for plant to maintain the stability of the whole population in adverse environments such as heavy metal contaminated mine area. In the current studies, we hypothesize that mine (metallicolous) populations of metallophytes have formed specialized reproductive strategies to adapt themselves to the heavy metal contaminated habitats, and differ from normal (non-metallicolous) populations in reproductive allocation. To test this hypothesis, the differences in reproductive resources and reproductive allocation between the copper mine and non-copper mine populations of pseudo-metallophyte Kummerowia stipulacea were comparatively examined under controlled Cu exposure experiments. Compared to non-copper mine population, copper mine population shows an increased seed output and larger reproductive effort under Cu stress. The increase of reproductive allocation in metallicolous population depends on not only seed size but also seed number per plant. The plants of metallicolous population increase allocation to the reproductive organs at the expense of a curtailment of allocation to vegetative traits, resulting in plants with shorter height and fewer branch numbers. There is little evidence displaying effect of root nodule on the reproductive resources and allocation. In addition, plants in metallicolous population reduce the transfer of Cu from roots to aboveground parts. These data suggest that plants of metallicolous population tend to invest more resources to reproductive output and increase their reproductive allocation in the adaptive evolution to Cu-enriched mine soils.

  4. Branching habit and the allocation of reproductive resources in conifers

    PubMed Central

    Leslie, Andrew B.

    2012-01-01

    Background and Aims Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Methods Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. Key Results The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conclusions Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit. PMID:22782240

  5. To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae).

    PubMed

    Climent, José; Prada, M Aránzazu; Calama, Rafael; Chambel, M Regina; de Ron, David Sánchez; Alía, Ricardo

    2008-07-01

    Age and size at the first reproduction and the reproductive allocation of plants are linked to different life history strategies. Aleppo pine only reproduces through seed, and, as such, early female reproduction confers high fitness in its infertile highly fire-prone habitats along the Mediterranean coast because life expectancy is short. We investigated the extent of ecotypic differentiation in female reproductive allocation and examined the relation between early female reproduction and vegetative growth. In a common-garden experiment, the threshold age and size at first female reproduction and female reproductive allocation at age seven differed significantly among Aleppo pine provenances of ecologically distinct origin. Significant correlations among reproductive features of the provenances and the ecological traits of origin were found using different analytical tools. In nonlinear models of cone counts vs. stem volume, medium-sized trees (not the largest trees) produced the highest cone yield, confirming that, at the individual level, early female reproduction is incompatible with fast vegetative growth. The contribution of founder effects and adaptation to contrasting fire regimes may be confounding factors. But considering all traits analyzed, the geographical patterns of resource allocation by Aleppo pine suggest ecotypic specialization for either resource-poor (favoring early reproduction) or resource-rich (favoring vegetative growth) habitats.

  6. [Growth and resource allocation pattern of Artemisia frigida under different grazing and clipping intensities].

    PubMed

    Li, Jinhua; Li, Zhenqing; Liu, Zhenguo

    2004-03-01

    In order to understand the degradation process and its mechanism of typical steppe in Inner Mongolia, this paper studied the growth and resource allocation pattern of Artimisia frigida under different grazing and clipping intensities(no grazing, light grazing 1.33 sheep.hm-2, moderate grazing 4.00 sheep.hm-2, heavy grazing 6.67 sheep.hm-2, proportional clipping and stubble clipping), which was conducted at the Inner Mongolia Grassland Ecosystem Research Station of Chinese Academy of Sciences(43 degrees 26'-44 degrees 08' N, 116 degrees 04'-117 degrees 05' E). The results showed that the regrowth ability of A. frigida under proportional clipping was superior to that under stubble clipping, and light clipping (1/4 proportional clipping or 10 cm stubble clipping) was superior to no clipping. In early growth season, the net regrowth of A. frigida was higher under no clipping than under light clipping, but reversed in late growth season (after mid-August). The biomass allocation pattern of A. frigida was roots > leaves > stems. Grazing or clipping affected biomass allocation significantly, especially for the allocation of leaves and flowers. The biomass allocation of leaves was significantly higher under 3/4 proportional clipping or 4 cm stubble clipping than under other treatments, and reverse trend was true for the biomass allocation of flowers. There were no significant differences in biomass allocation of roots and stems among treatments. Sexual reproductive allocation decreased with increasing grazing or clipping intensities, and reproductive mode of A. frigida changed under heavy grazing. The changes in priority of biomass allocation from sexual reproductive organs to clonal growth to sustain and propagate population were important ecological strategies of the species to heavy grazing.

  7. Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers.

    PubMed

    Mason, Chase M; Goolsby, Eric W; Davis, Kaleigh E; Bullock, Devon V; Donovan, Lisa A

    2017-05-01

    Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant

  8. Interannual variability of growth and reproduction in Bursera simaruba: the role of allometry and resource variability.

    PubMed

    Hulshof, Catherine M; Stegen, James C; Swenson, Nathan G; Enquist, Carolyn A F; Enquist, Brian J

    2012-01-01

    Plants are expected to differentially allocate resources to reproduction, growth, and survival in order to maximize overall fitness. Life history theory predicts that the allocation of resources to reproduction should occur at the expense of vegetative growth. Although it is known that both organism size and resource availability can influence life history traits, few studies have addressed how size dependencies of growth and reproduction and variation in resource supply jointly affect the coupling between growth and reproduction. In order to understand the relationship between growth and reproduction in the context of resource variability, we utilize a long-term observational data set consisting of 670 individual trees over a 10-year period within a local population of Bursera simaruba (L.) Sarg. We (1) quantify the functional form and variability in the growth-reproduction relationship at the population and individual-tree level and (2) develop a theoretical framework to understand the allometric dependence of growth and reproduction. Our findings suggest that the differential responses of allometric growth and reproduction to resource availability, both between years and between microsites, underlie the apparent relationship between growth and reproduction. Finally, we offer an alternative approach for quantifying the relationship between growth and reproduction that accounts for variation in allometries.

  9. Size-dependent sex allocation and reproductive investment in a gynodioecious shrub

    PubMed Central

    Kudo, Gaku

    2017-01-01

    Abstract In sexually dimorphic plants, resource allocation to reproduction often differs between sex morphs. In gynodioecious species, i.e. coexisting hermaphrodite and female plants within a population, females often produce more fruits than hermaphrodites. Since fruit production is costlier than flower production, hermaphrodites and females may regulate flower and fruit production differently in response to resource availability. To clarify the gender-specific strategies of reproductive allocation, we assessed sexual dimorphism in reproductive traits, size-dependent resource allocation, morphological traits, and photosynthetic capacity in a natural population of a gynodioecious shrub, Daphne jezoensis. Hermaphrodites had larger flowers and increased flower number with plant size at a rate greater than females, but showed consistently smaller fruit production. Although females did not increase flower production as much as hermaphrodites did as their size increased, they produced 3.7 times more fruits than did hermaphrodites. Despite a large sexual difference in fruiting ability based on hand-pollination, total resource investment in reproduction (the sum of flower and fruit mass) was similar between sex morphs across plant sizes, and there was a little sexual difference in the cost of reproduction, i.e. the negative effect of current reproduction on future reproductive effort, in the natural population. In addition, there were no sexual differences in the resource allocation to vegetative organs (leaf and root mass) and photosynthetic capacity (light response photosynthetic rates). Under natural conditions, pollen limitation strongly restricted the fruit production of females, resulting in similar cost of reproduction between hermaphrodites and females. PMID:28039117

  10. Reproduction allocation and potential mechanism of individual allelopathic rice plants in the presence of competing barnyardgrass.

    PubMed

    Kong, Chui-Hua; Wang, Ming-Li; Wang, Peng; Ni, Han-Wen; Meng, Xiang-Rui

    2013-01-01

    In spite of increasing knowledge of allelopathic rice as an efficient component involved in paddy weed management, relatively little is known about its reproduction in response to competing weeds. Reproduction allocation of individual allelopathic rice plants in relation to monoculture and mixed culture with competing barnyardgrass in a paddy field was studied, along with analyses of soil nutrients and microbial communities to understand the potential mechanism. At a 1:1 barnyardgrass and rice mixture proportion identified from a replacement series study, biomass, grain yield and major parameters of individual allelopathic rice plants at the mature stage were increased by competing barnyardgrass. There was no difference in allelopathic rice root-zone soil ammonium N and Olsen P between monoculture and mixed culture. However, mixed culture altered soil microbial biomass C and communities. When mixed with barnyardgrass, allelopathic rice root zone had an 87% increase in soil microbial biomass C. Phospholipid fatty acid (PLFA) profiling indicated that the signature lipid biomarkers of bacteria, actinobacteria and fungi were affected by mixed culture. Principal component analysis clearly identified differences in the composition of PLFA in different soil samples. Allelopathic rice specific changes in soil microbial communities may generate a positive feedback on its own growth and reproduction in the presence of competing barnyardgrass in a given paddy system. Copyright © 2012 Society of Chemical Industry.

  11. Constraints on growth and allocation patterns of Silphium integrifolium (Asteraceae) caused by a cynipid gall wasp.

    PubMed

    Fay, P A; Hartnett, D C

    1991-10-01

    Insect herbivory can have important effects on plant life histories and architecture. We quantified the impact that a cynipid gall wasp, Antistrophus silphii, had on growth, reproduction, and biomass allocation patterns of Silphium integrifolium growing in the tallgrass prairie of northeastern Kansas. Experimentally galled individual Silphium shoots (ramets) had reduced shoot growth, leaf and flower head production, and delayed flowering compared to gall-free control shoots. Gall formation completely halted normal apical growth in 65% of the shoots. Galling did not affect individual flower head weight, the numbers of achenes per flower head or achene weight. Silphium plants (genets) with a high proportion of galled shoots had lower total biomass, a lower proportion of total biomass allocated to flower heads, higher allocation to leaves, but no change in allocation to stems or rhizome. High gall densities reduced the number of flower heads per plant and shortened the time between flower head initiation and maturity. An adaptive interpretation of these results would be that the survivorship and future performance of galled Silphium may be promoted by maintaining allocation to rhizome. However, reduced shoot growth and delayed reproduction in galled Silphium may weaken its competitive ability and reduce pollination success, so that any adaptive advantage to Silphium's allocation responses to galls may be outweighed by disadvantages from its growth and flowering phenology responses. We conclude that a more parsimonious interpretation of these results is that gall-induced allocation changes are due to architectural constraints placed by galls on meristem activity, rather than to any adaptive response on the part of the plant.

  12. Effects of Aspect on Clonal Reproduction and Biomass Allocation of Layering Modules of Nitraria tangutorum in Nebkha Dunes

    PubMed Central

    Li, Qinghe; Xu, Jun; Li, Huiqing; Wang, Saixiao; Yan, Xiu; Xin, Zhiming; Jiang, Zeping; Wang, Linlong; Jia, Zhiqing

    2013-01-01

    The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha. PMID:24205391

  13. Environmental control of carbon allocation matters for modelling forest growth.

    PubMed

    Guillemot, Joannès; Francois, Christophe; Hmimina, Gabriel; Dufrêne, Eric; Martin-StPaul, Nicolas K; Soudani, Kamel; Marie, Guillaume; Ourcival, Jean-Marc; Delpierre, Nicolas

    2017-04-01

    We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 10(4) sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.

  14. Reproduction-related variation in carbon allocation to woody tissues in Fagus crenata using a natural 13C approach.

    PubMed

    Han, Qingmin; Kagawa, Akira; Kabeya, Daisuke; Inagaki, Yoshiyuki

    2016-11-01

    The contribution of new photo-assimilates and stored carbon (C) to plant growth remains poorly understood, especially during reproduction. In order to elucidate how mast seeding affects C allocation to both reproductive and vegetative tissues, we measured biomass increase in each tissue, branch starch concentration and stable C isotope composition (δ(13)C) in bulk leaves, current-year shoots, 3-year branches and tree rings in fruiting and non-fruiting trees for 2 years, as well as in fruits. We isolated the effect of reproduction on C allocation to vegetative growth by comparing (13)C enrichment in woody tissues in fruiting and non-fruiting specimens. Compared with 2‰ (13)C enrichment in shoots relative to leaves from non-fruiting trees, fruiting reduced the enrichment to 1‰ and this reduction disappeared in the following year with no fruiting, indicating that new photo-assimilates are preferentially used for woody tissues even with fruiting burden. In contrast, fruits had up to 2.5‰ (13)C enrichment at mid-summer, which dropped thereafter, indicating that fruit production relies on C storage early in the growing season then shifts to current photo-assimilates. At this tipping point, growth of shoots and cupules had almost finished and nuts had a second rapid growth period thereafter. Together with shorter shoots but higher biomass increment per length in fruiting trees than non-fruiting trees, these results indicate that the C limitation due to fruit burden is minimized by fine-tuning of allocation of old C stores and new photo-assimilates, along with the growth pattern in various tissues. Furthermore, fruiting had no significant effect on starch concentration in 3-year-old branches, which became fully depleted during leaf and flower flushing but were quickly replenished. These results indicate that reproduction affects C allocation to branches but not its source or storage. These reproduction-related variations in the fate of C have implications for

  15. Reproductive Allocation in Three Macrophyte Species from Different Lakes with Variable Eutrophic Conditions

    PubMed Central

    Wan, Tao; Han, Qingxiang; Xian, Ling; Cao, Yu; Andrew, Apudo A.; Pan, Xiaojie; Li, Wei; Liu, Fan

    2016-01-01

    Reproductive allocation is a key process in the plant life cycle and aquatic plants exhibit great diversity in their reproductive systems. In the present study, we conduct a field investigation of three aquatic macrophytes: Stuckenia pectinata, Myriophyllum spicatum, and Potamogeton perfoliatus. Our results showed that widespread species, including S. pectinata and M. spicatum had greater plasticity in their allocation patterns in the form of increased sexual and asexual reproduction, and greater potential to set seeds and increase fitness in more eutrophic environments. P. perfoliatus also exhibited a capacity to adopt varied sexual reproductive strategies such as setting more offspring for the future, although only in clear conditions with low nutrient levels. Our results establish strategies and mechanisms of some species for tolerating and surviving in varied eutrophic lake conditions. PMID:27806122

  16. FT Duplication Coordinates Reproductive and Vegetative Growth

    SciTech Connect

    Hsu, Chuan-Yu; Adams, Joshua P.; Kim, Hyejin; No, Kyoungok; Ma, Caiping; Strauss, Steven; Drnevich, Jenny; Wickett, Norman; Vandervelde, Lindsay; Ellis, Jeffrey D.; Rice, Brandon; Gunter, Lee E; Tuskan, Gerald A; Brunner, Amy M.; Page, Grier P.; Carlson, John E.; DePamphilis, Claude; Luthe, Dawn S.; Yuceer, Cetin

    2011-01-01

    Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.

  17. Resource allocation between reproductive phases: the importance of thermal conditions in determining the cost of incubation.

    PubMed Central

    Reid, J M; Monaghan, P; Ruxton, G D

    2000-01-01

    Changes in the resources allocated to particular stages of reproduction are expected to influence allocation to, and performance in, subsequent reproductive stages. Experimental manipulation of individual investment patterns provides important evidence that such physiological trade-offs occur, and can highlight the key environmental variables that influence reproductive costs. By temporarily altering the thermal properties of starling nests, we reduced the energetic demand of first-clutch incubation, and examined the effect of this manipulation on performance during the same and the subsequent reproductive attempts. Compared with controls, starlings investing less in incubation were more successful in fledging young, and were more likely to hatch all their eggs if a subsequent reproductive attempt was made. Our results show that incubation demands can limit reproductive success, and that resources saved during incubation can be reallocated to later stages of the same reproductive attempt and to future reproductive attempts. This study also shows that small changes in thermal environment can affect breeding success by altering the energetic demands imposed on incubating parents, independently of the effect of temperature on other environmental variables such as food supply. PMID:10670950

  18. Individual heterogeneity and offspring sex affect the growth-reproduction trade-off in a mammal with indeterminate growth.

    PubMed

    Gélin, Uriel; Wilson, Michelle E; Cripps, Jemma; Coulson, Graeme; Festa-Bianchet, Marco

    2016-04-01

    Reproduction can lead to a trade-off with growth, particularly when individuals reproduce before completing body growth. Kangaroos have indeterminate growth and may always face this trade-off. We combined an experimental manipulation of reproductive effort and multi-year monitoring of a large sample size of marked individuals in two populations of eastern grey kangaroos to test the predictions (1) that reproduction decreases skeletal growth and mass gain and (2) that mass loss leads to reproductive failure. We also tested if sex-allocation strategies influenced these trade-offs. Experimental reproductive suppression revealed negative effects of reproduction on mass gain and leg growth from 1 year to the next. Unmanipulated females, however, showed a positive correlation between number of days lactating and leg growth over periods of 2 years and longer, suggesting that over the long term, reproductive costs were masked by individual heterogeneity in resource acquisition. Mass gain was necessary for reproductive success the subsequent year. Although mothers of daughters generally lost more mass than females nursing sons, mothers in poor condition experienced greater mass gain and arm growth if they had daughters than if they had sons. The strong links between individual mass changes and reproduction suggest that reproductive tactics are strongly resource-dependent.

  19. Resource allocation and post-reproductive degeneration in the freshwater cnidarian Hydra oligactis (Pallas, 1766).

    PubMed

    Tökölyi, Jácint; Ősz, Zsófia; Sebestyén, Flóra; Barta, Zoltán

    2017-02-01

    Freshwater hydra are among the few animal groups that show negligible senescence and can maintain high survival and reproduction rates when kept under stable conditions in the laboratory. Yet, one species of Hydra (H. oligactis) undergoes a senescence-like process in which polyps degenerate and die after sexual reproduction. The ultimate factors responsible for this phenomenon are unclear. High mortality in reproducing animals could be the consequence of increased allocation of resources to reproduction at the expense of somatic maintenance. This hypothesis predicts that patterns of reproduction and survival are influenced by resource availability. To test this prediction we investigated survival and reproduction at different levels of food availability in 10 lineages of H. oligactis derived from a single Hungarian population. Sexual reproduction was accompanied by reduced survival, but a substantial proportion of animals regenerated after sexual reproduction and continued reproducing asexually. Polyps belonging to different lineages showed differences in their propensity to initiate sexual reproduction, gonad number and survival rate. Food availability significantly affected fecundity (number of eggs or testes produced), with the largest number of gonads being produced by animals kept on a high food regime. On the other hand, survival rate was not affected by the amount of food. These results show that survival is conserved at the expense of reproduction in this population when food is low. It remains a question still to be answered why survival is prioritized over reproduction in this population.

  20. Reproductive allocation of biomass and nitrogen in annual and perennial Lesquerella crops.

    PubMed

    Ploschuk, E L; Slafer, G A; Ravetta, D A

    2005-07-01

    The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. * Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. * Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. * It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy.

  1. Reproductive Allocation of Biomass and Nitrogen in Annual and Perennial Lesquerella Crops

    PubMed Central

    PLOSCHUK, E. L.; SLAFER, G. A.; RAVETTA, D. A.

    2005-01-01

    • Background and Aims The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. • Methods Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. • Key Results Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. • Conclusions It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy. PMID:15863469

  2. Effects of tidal action on pollination and reproductive allocation in an estuarine emergent wetland plant-Sagittaria graminea (Alismataceae).

    PubMed

    Zhang, Yanwen; Zhang, Lihui; Zhao, Xingnan; Huang, Shengjun; Zhao, Jimin

    2013-01-01

    In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water.

  3. Effects of Tidal Action on Pollination and Reproductive Allocation in an Estuarine Emergent Wetland Plant–Sagittaria graminea (Alismataceae)

    PubMed Central

    Zhang, Yanwen; Zhang, Lihui; Zhao, Xingnan; Huang, Shengjun; Zhao, Jimin

    2013-01-01

    In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water. PMID:24244393

  4. Plasticity in reproduction and growth among 52 range-wide populations of a Mediterranean conifer: adaptive responses to environmental stress.

    PubMed

    Santos-Del-Blanco, L; Bonser, S P; Valladares, F; Chambel, M R; Climent, J

    2013-09-01

    A plastic response towards enhanced reproduction is expected in stressful environments, but it is assumed to trade off against vegetative growth and efficiency in the use of available resources deployed in reproduction [reproductive efficiency (RE)]. Evidence supporting this expectation is scarce for plants, particularly for long-lived species. Forest trees such as Mediterranean pines provide ideal models to study the adaptive value of allocation to reproduction vs. vegetative growth given their among-population differentiation for adaptive traits and their remarkable capacity to cope with dry and low-fertility environments. We studied 52 range-wide Pinus halepensis populations planted into two environmentally contrasting sites during their initial reproductive stage. We investigated the effect of site, population and their interaction on vegetative growth, threshold size for female reproduction, reproductive-vegetative size relationships and RE. We quantified correlations among traits and environmental variables to identify allocation trade-offs and ecotypic trends. Genetic variation for plasticity was high for vegetative growth, whereas it was nonsignificant for reproduction. Size-corrected reproduction was enhanced in the more stressful site supporting the expectation for adverse conditions to elicit plastic responses in reproductive allometry. However, RE was unrelated with early reproductive investment. Our results followed theoretical predictions and support that phenotypic plasticity for reproduction is adaptive under stressful environments. Considering expectations of increased drought in the Mediterranean, we hypothesize that phenotypic plasticity together with natural selection on reproductive traits will play a relevant role in the future adaptation of forest tree species.

  5. [Sexual reproductive allocation of Sargassum thunbergii at Taiping Cape of Yellow Sea].

    PubMed

    Pan, Jin-hua; Zhang, Quan-sheng; Li, Xiao-jie; Jiang, Xin; Zhang, Zhuang-zhi; Wang, De-bin; Han, Hou-wei; Wang, Ru-zhou

    2011-08-01

    This paper studied the dynamics of reproductive allocation (RA) of Sargassum thunbergii during its sexual reproductive season and the related environmental factors at the Taiping Cape of Yellow Sea. The sexual reproduction of S. thunbergii initiated in early June, peaked in mid July when the sea water temperature was about 22 degrees C (the mean proportion of biomass allocated to reproductive organs on July 19 was 76.7%), and ended in late August. The RA had a significant linear correlation with the average length of thallus branches (r = 0.855, P < 0.01). The thalli with a length less than 10 cm showed a lower RA in the whole sexual reproductive season, while the thalli longer than 10 cm had a RA up to averagely 70.0% at the peak maturing stage. UNIANOVA analysis showed that both tidal level and wave strength had significant effects on the RA of S. thunbergii (tidal level: F = 175.62, P < 0.01; wave strength: F = 95.35, P < 0.01), and there was a significant interaction between tidal level and wave strength (F = 9.14, P < 0.05). The sizes of the effects were in the order of tidal level > wave strength > tidal level x wave strength.

  6. Alternative reproductive tactics in snail shell-brooding cichlids diverge in energy reserve allocation.

    PubMed

    von Kuerthy, Corinna; Tschirren, Linda; Taborsky, Michael

    2015-05-01

    Life history theory predicts that the amount of resources allocated to reproduction should maximize an individual's lifetime reproductive success. So far, resource allocation in reproduction has been studied mainly in females. Intraspecific variation of endogenous energy storage and utilization patterns of males has received little attention, although these patterns may vary greatly between individuals pursuing alternative reproductive tactics (ARTs). ARTs are characterized by systematic variation of behavioral, physiological, and often morphological traits among same-sex conspecifics. Some individuals may rely on previously accumulated reserves, because of limited foraging opportunities during reproduction. Others may be able to continue foraging during reproduction, thus relying on reserves to a lesser extent. We therefore predicted that, if male tactics involve such divergent limitations and trade-offs within a species, ARTs should correspondingly differ in energy reserve allocation and utilization. To test this prediction, we studied short-term and long-term reserve storage patterns of males in the shell-brooding cichlid Lamprologus callipterus. In this species, bourgeois males investing in territory defense, courtship, and guarding of broods coexist with two distinct parasitic male tactics: (1) opportunistic sneaker males attempting to fertilize eggs by releasing sperm into the shell opening when a female is spawning; and (2) specialized dwarf males attempting to enter the shell past the spawning female to fertilize eggs from inside the shell. Sneaker males differed from other male types by showing the highest amount of accumulated short-term and long-term fat stores, apparently anticipating their upcoming adoption of the nest male status. In contrast, nest males depleted previously accumulated energy reserves with increasing nest holding period, as they invest heavily into costly reproductive behaviors while not taking up any food. This conforms to a capital

  7. Alternative reproductive tactics in snail shell-brooding cichlids diverge in energy reserve allocation

    PubMed Central

    von Kuerthy, Corinna; Tschirren, Linda; Taborsky, Michael

    2015-01-01

    Life history theory predicts that the amount of resources allocated to reproduction should maximize an individual's lifetime reproductive success. So far, resource allocation in reproduction has been studied mainly in females. Intraspecific variation of endogenous energy storage and utilization patterns of males has received little attention, although these patterns may vary greatly between individuals pursuing alternative reproductive tactics (ARTs). ARTs are characterized by systematic variation of behavioral, physiological, and often morphological traits among same-sex conspecifics. Some individuals may rely on previously accumulated reserves, because of limited foraging opportunities during reproduction. Others may be able to continue foraging during reproduction, thus relying on reserves to a lesser extent. We therefore predicted that, if male tactics involve such divergent limitations and trade-offs within a species, ARTs should correspondingly differ in energy reserve allocation and utilization. To test this prediction, we studied short-term and long-term reserve storage patterns of males in the shell-brooding cichlid Lamprologus callipterus. In this species, bourgeois males investing in territory defense, courtship, and guarding of broods coexist with two distinct parasitic male tactics: (1) opportunistic sneaker males attempting to fertilize eggs by releasing sperm into the shell opening when a female is spawning; and (2) specialized dwarf males attempting to enter the shell past the spawning female to fertilize eggs from inside the shell. Sneaker males differed from other male types by showing the highest amount of accumulated short-term and long-term fat stores, apparently anticipating their upcoming adoption of the nest male status. In contrast, nest males depleted previously accumulated energy reserves with increasing nest holding period, as they invest heavily into costly reproductive behaviors while not taking up any food. This conforms to a capital

  8. Symbiotic regulation of plant growth, development and reproduction

    USGS Publications Warehouse

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  9. Egg size and reproductive allocation in the pitcherplant mosquito Wyeomyia smithii (Diptera: Culicidae).

    PubMed

    Bradshaw, W E; Holzapfel, C M; O'Neill, T

    1993-03-01

    Adult longevity and lifetime fecundity, but not fertility, of northern (Maine, USA) Wyeomyia smithii (Coquillet) increase with female pupal weight. Mean egg size does not vary with pupal weight, but the standard deviation in egg size shows a marginally significant increase with pupal weight. Egg sizes are not skewed but are leptokurtic in their distribution; neither skewness nor kurtosis changes with female pupal weight. Mean egg size is not correlated with weight-specific adult longevity or with weight- and longevity-specific lifetime fecundity. Reproductive effort early in adult life does not affect longevity, reproductive effort late in life, or reproductive rate late in life. Finally, there is no significant correlation late in adult life between weight-specific rate of egg production and the size of eggs being produced. Egg size does vary within females but is not a variable entered into the physiological allocation of resources among survivorship, fecundity, or rate of egg production.

  10. Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album.

    PubMed

    Alvarez-Cansino, Leonor; Zunzunegui, María; Díaz Barradas, Mari Cruz; Esquivias, Mari Paz

    2010-12-01

    Reproductive costs imply trade-offs in resource distribution at the physiological level, expressed as changes in future growth and/or reproduction. In dioecious species, females generally endure higher reproductive effort, although this is not necessarily expressed through higher somatic costs, as compensatory mechanisms may foster resource uptake during reproduction. To assess effects of reproductive allocation on vegetative growth and physiological response in terms of costs and compensation mechanisms, a manipulative experiment of inflorescence bud removal was carried out in the sexually dimorphic species Corema album. Over two consecutive growing seasons, vegetative growth patterns, water status and photochemical efficiency were measured to evaluate gender-related differences. Suppression of reproductive allocation resulted in a direct reduction in somatic costs of reproduction, expressed through changes in growth variables and plant physiological status. Inflorescence bud removal was related to an increase in shoot elongation and water potential in male and female plants. The response to inflorescence bud removal showed gender-related differences that were related to the moment of maximum reproductive effort in each sexual form: flowering in males and fruiting in females. Delayed costs of reproduction were found in both water status and growth variables, showing gender-related differences in resource storage and use. Results are consistent with the existence of a trade-off between reproductive and vegetative biomass, indicating that reproduction and growth depend on the same resource pool. Gender-related morphological and physiological differences arise as a response to different reproductive resource requirements. Delayed somatic costs provide evidence of gender-related differences in resource allocation and storage. Adaptive differences between genders in C. album may arise through the development of mechanisms which compensate for the cost of reproduction.

  11. Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album

    PubMed Central

    Álvarez-Cansino, Leonor; Zunzunegui, María; Díaz Barradas, Mari Cruz; Esquivias, Mari Paz

    2010-01-01

    Background and Aims Reproductive costs imply trade-offs in resource distribution at the physiological level, expressed as changes in future growth and/or reproduction. In dioecious species, females generally endure higher reproductive effort, although this is not necessarily expressed through higher somatic costs, as compensatory mechanisms may foster resource uptake during reproduction. Methods To assess effects of reproductive allocation on vegetative growth and physiological response in terms of costs and compensation mechanisms, a manipulative experiment of inflorescence bud removal was carried out in the sexually dimorphic species Corema album. Over two consecutive growing seasons, vegetative growth patterns, water status and photochemical efficiency were measured to evaluate gender-related differences. Key Results Suppression of reproductive allocation resulted in a direct reduction in somatic costs of reproduction, expressed through changes in growth variables and plant physiological status. Inflorescence bud removal was related to an increase in shoot elongation and water potential in male and female plants. The response to inflorescence bud removal showed gender-related differences that were related to the moment of maximum reproductive effort in each sexual form: flowering in males and fruiting in females. Delayed costs of reproduction were found in both water status and growth variables, showing gender-related differences in resource storage and use. Conclusions Results are consistent with the existence of a trade-off between reproductive and vegetative biomass, indicating that reproduction and growth depend on the same resource pool. Gender-related morphological and physiological differences arise as a response to different reproductive resource requirements. Delayed somatic costs provide evidence of gender-related differences in resource allocation and storage. Adaptive differences between genders in C. album may arise through the development of

  12. Allometry of within-fruit reproductive allocation in subtropical dicot woody species.

    PubMed

    Chen, Hong; Felker, Sara; Sun, Shucun

    2010-04-01

    Angiosperm fruits typically consist of pericarp and seed, which collectively function to maximize plant reproductive success. Within-fruit reproductive allocation has been scarcely examined across a wide range of fruit types and taxa although it is critical to the understanding of the evolution of fruit size and seed size. We investigated seed size, fruit size, seed number per fruit (SNF), and within-fruit biomass allocation between seed mass and pericarp mass for 62 dicot woody species (27 deciduous and 35 evergreen species) of a subtropical evergreen forest in southwest China. At the fruit level, total pericarp mass (TPM) isometrically scaled with increasing total seed mass (TSM) in the evergreen species and in the pooled data set, while TPM increased faster than TSM in the deciduous species. The slope difference is possibly due to the difference in the timing of fruit development between the two species groups. At the seed level, seed package (pericarp mass per seed) isometrically scaled with increasing seed size in the deciduous group, but less than isometrically in the evergreens and in the pooled data set. SNF was negatively correlated with seed size but positively correlated with the proportion of pericarp within fruits. In conclusion, within-fruit biomass allocation is significantly affected by seed size, fruit size, and SNF in both deciduous and evergreen species. The implications of the observed scaling relationships are discussed in relation to seed size evolution and global patterns of seed size variation.

  13. Pistil Smut Infection Increases Ovary Production, Seed Yield Components, and Pseudosexual Reproductive Allocation in Buffalograss

    PubMed Central

    Chandra, Ambika; Huff, David R.

    2014-01-01

    Sex expression of dioecious buffalograss [Bouteloua dactyloides Columbus (syn. Buchloë dactyloides (Nutt.) Engelm.)] is known to be environmentally stable with approximate 1:1, male to female, sex ratios. Here we show that infection by the pistil smut fungus [Salmacisia buchloëana Huff & Chandra (syn. Tilletia buchloëana Kellerman and Swingle)] shifts sex ratios of buffalograss to be nearly 100% phenotypically hermaphroditic. In addition, pistil smut infection decreased vegetative reproductive allocation, increased most seed yield components, and increased pseudosexual reproductive allocation in both sex forms compared to uninfected clones. In female sex forms, pistil smut infection resulted in a 26 fold increase in ovary production and a 35 fold increase in potential harvest index. In male sex forms, pistil smut infection resulted in 2.37 fold increase in floret number and over 95% of these florets contained a well-developed pistil. Although all ovaries of infected plants are filled with fungal teliospores and hence reproductively sterile, an average male-female pair of infected plants exhibited an 87 fold increase in potential harvest index compared to their uninfected clones. Acquiring an ability to mimic the effects of pistil smut infection would enhance our understanding of the flowering process in grasses and our efforts to increase seed yield of buffalograss and perhaps other grasses. PMID:27135522

  14. Photosynthate allocations patterns and mode of postfire reproduction in two shrub species from the California chaparral

    SciTech Connect

    Sparks, S.R.

    1989-01-01

    Age-specific patterns of photosynthate allocation in leaves were investigated for two chaparral shrubs, Adenostoma fasciculatum and Ceanothus greggii, in five stands of various ages. Branches of shrubs were labeled with {sup 14}CO{sub 2}, and seasonal allocation of {sup 14}C-labeled photosynthate to storage, defense, metabolic, and structural compounds was followed. Age-specific allocation patterns were found only in the spring, when older shrubs showed a reduced allocation of photosynthate within leaves to storage compounds. Older shrubs may be less able than younger shrubs to allocate photosynthate to storage compounds when demands on photosynthate for growth are high. The influence of senescence on postfire sprouting was investigated by quantifying the proportion of standing dead biomass in A. fasciculatum, as well as other shrub structural characteristics, before an experimental burn. After the burn, sprout production during the first postfire season was determined and correlated with prefire structural characteristics. Photosynthate allocation to shoots and roots was investigated for seedlings of both species.

  15. Ant species identity mediates reproductive traits and allocation in an ant-garden bromeliad

    PubMed Central

    Leroy, Céline; Corbara, Bruno; Pélozuelo, Laurent; Carrias, Jean-François; Dejean, Alain; Céréghino, Régis

    2012-01-01

    Background and Aims Determining the sources of variation in floral morphology is crucial to understanding the mechanisms underlying Angiosperm evolution. The selection of floral and reproductive traits is influenced by the plant's abiotic environment, florivores and pollinators. However, evidence that variations in floral traits result from mutualistic interactions with insects other than pollinators is lacking in the published literature and has rarely been investigated. We aimed to determine whether the association with either Camponotus femoratus or Pachycondyla goeldii (both involved in seed dispersal and plant protection) mediates the reproductive traits and allocation of Aechmea mertensii, an obligatory ant-garden tank-bromeliad, differently. Methods Floral and reproductive traits were compared between the two A. mertensii ant-gardens. The nitrogen flux from the ants to the bromeliads was investigated through experimental enrichments with stable isotopes (15N). Key Results Camponotus femoratus-associated bromeliads produced inflorescences up to four times longer than did P. goeldii-associated bromeliads. Also, the numbers of flowers and fruits were close to four times higher, and the number of seeds and their mass per fruit were close to 1·5 times higher in C. femoratus than in P. goeldii-associated bromeliads. Furthermore, the 15N-enrichment experiment showed that C. femoratus-associated bromeliads received more nitrogen from ants than did P. goeldii-associated bromeliads, with subsequent positive repercussions on floral development. Greater benefits were conferred to A. mertensii by the association with C. femoratus compared with P. goeldii ants. Conclusions We show for the first time that mutualistic associations with ants can result in an enhanced reproductive allocation for the bromeliad A. mertensii. Nevertheless, the strength and direction of the selection of floral and fruit traits change based on the ant species and were not related to light

  16. Risk-sensitive reproductive allocation: fitness consequences of body mass losses in two contrasting environments

    PubMed Central

    Bårdsen, Bård-Jørgen; Næss, Marius Warg; Tveraa, Torkild; Langeland, Knut; Fauchald, Per

    2014-01-01

    For long-lived organisms, the fitness value of survival is greater than that of current reproduction. Asymmetric fitness rewards suggest that organisms inhabiting unpredictable environments should adopt a risk-sensitive life history, predicting that it is adaptive to allocate resources to increase their own body reserves at the expense of reproduction. We tested this using data from reindeer populations inhabiting contrasting environments and using winter body mass development as a proxy for the combined effect of winter severity and density dependence. Individuals in good and harsh environments responded similarly: Females who lost large amounts of winter body mass gained more body mass the coming summer compared with females losing less mass during winter. Additionally, females experienced a cost of reproduction: On average, barren females gained more body mass than lactating females. Winter body mass development positively affected both the females' reproductive success and offspring body mass. Finally, we discuss the relevance of our findings with respect to scenarios for future climate change. PMID:24772280

  17. Deciphering the Costs of Reproduction in Mango - Vegetative Growth Matters.

    PubMed

    Capelli, Mathilde; Lauri, Pierre-Éric; Normand, Frédéric

    2016-01-01

    Irregular fruit production across successive years is a major issue that limits the profitability of most temperate and tropical fruit crops. It is particularly affected by the reciprocal relationships between vegetative and reproductive growth. The concept of the costs of reproduction is defined in terms of losses in the potential future reproductive success caused by current investment in reproduction. This concept, developed in ecology and evolutionary biology, could provide a methodological framework to analyze irregular bearing in fruit crops, especially in relation to the spatial scale at which studies are done. The objective of this study was to investigate the direct effects of reproduction during a growing cycle on reproduction during the following growing cycle and the indirect effects through vegetative growth between these two reproductive events, for four mango cultivars and during two growing cycles. Two spatial scales were considered: the growth unit (GU) and the scaffold branch. Costs of reproduction were detected between two successive reproductive events and between reproduction and vegetative growth. These costs were scale-dependent, generally detected at the GU scale and infrequently at the scaffold branch scale, suggesting partial branch autonomy with respect to processes underlying the effects of reproduction on vegetative growth. In contrast, the relationships between vegetative growth and reproduction were positive at the GU scale and at the scaffold branch scale in most cases, suggesting branch autonomy for the processes, mainly local, underlying flowering and fruiting. The negative effect of reproduction on vegetative growth prevailed over the positive effect of vegetative growth on the subsequent reproduction. The costs of reproduction were also cultivar-dependent. Those revealed at the GU scale were related to the bearing behavior of each cultivar. Our results put forward the crucial role of vegetative growth occurring between two

  18. Interactions in the patterns of vegetative growth and reproduction in woody dioecious plants.

    PubMed

    Hoffmann, A J; Alliende, M C

    1984-01-01

    Interactions between vegetative growth and reproduction were evaluated in Peumus boldus, Lithraea caustica and Laretia acaulis, three woody dioecious species in central Chile. Phenological observations were made periodically on marked branches of male and female plants, and biomass allocation (dry weight) to vegetative and reproductive tissues was measured. The magnitude of flowering was evaluated in groups of plants in three successive seasons. The patterns of activities are species- and sex-dependent, and cycles of 2-4 years have been established. Branches that produce flowers either do not grow or grow less than branches without flowers, and males and females have differential resource allocation: male branches attain higher biomass values. Groups of plants show seasonal behavior that suggest synchrony in their reproductive activities.

  19. Prezygotic resource-allocation dynamics and reproductive trade-offs in Calymperaceae (Bryophyta).

    PubMed

    Pereira, Marta R; Dambros, Cristian S; Zartman, Charles E

    2016-10-01

    Resource allocation is difficult to characterize in plants because of the challenges of quantifying gametes and propagules. We surveyed six sympatric, unisexual species in the family Calymperaceae (Bryophyta) to test for trade-offs in prezygotic sexual and asexual expression and density-dependent survivorship of female gametangia. We tallied gametangial and asexual propagule output for 1820 shoots from 17 populations of six species at monthly intervals during one year (2010-2011) in a central Amazonian forest. Generalized linear mixed models were used to test for trade-offs in sexual and asexual expression and density-dependent senescence probability of gametangia. Precipitation and microsite variables were also included in the model. For all species, sexual and asexual expression were positively correlated with mean monthly precipitation. Asexually expressing shoots produced significantly fewer gametangia than nonexpressing ones, and the probability of senescence increased with shoot density. Archegonium density per shoot was also consistently lower than the modeled optimum to maximize the number of receptive archegonia. Trade-offs among reproductive strategies and positive density-dependent senescence of female gametangia suggest that prezygotic sexual and asexual expression come at a tangible investment. However, the apparently inefficient resource-allocation dynamics in the production of female gametangia makes the possible advantages of squandering such investments unclear. One possibility is that the study populations, like those of many dioicous mosses, are skewed toward expressing females with low sporophyte production, which would suggest that asexual reproduction predominates and upstages efficient resource allocation in prezygotic investment. © 2016 Botanical Society of America.

  20. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth.

    PubMed

    Sferruzzi-Perri, Amanda N; Sandovici, Ionel; Constancia, Miguel; Fowden, Abigail L

    2017-03-24

    The placenta is the main determinant of fetal growth and development in utero. It supplies all the nutrients and oxygen required for fetal growth and secretes hormones that facilitate maternal allocation of nutrients to the fetus. Furthermore, the placenta responds to nutritional and metabolic signals in the mother by altering its structural and functional phenotype which can lead to changes in maternal resource allocation to the fetus. The molecular mechanisms by which the placenta senses and responds to environmental cues are poorly understood. This review discusses the role of the insulin-like growth factors (IGFs) in controlling placental resource allocation to fetal growth, particularly in response to adverse gestational environments. In particular, it assesses the impact of the IGFs and their signalling machinery on placental morphogenesis, substrate transport and hormone secretion, primarily in the laboratory species, although it draws on data from human and other species where relevant. It also considers the role of the IGFs as environmental signals in linking resource availability, to fetal growth through changes in the morphological and functional phenotype of the placenta. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing adult-onset diseases in later life, understanding the role of IGFs during pregnancy in regulating placental resource allocation to fetal growth is important for identifying the mechanisms underlying the developmental programming of offspring phenotype by suboptimal intrauterine growth. This article is protected by copyright. All rights reserved.

  1. Optimal Resource Allocation to Survival and Reproduction in Parasitic Wasps Foraging in Fragmented Habitats

    PubMed Central

    Wajnberg, Eric; Coquillard, Patrick; Vet, Louise E. M.; Hoffmeister, Thomas

    2012-01-01

    Expansion and intensification of human land use represents the major cause of habitat fragmentation. Such fragmentation can have dramatic consequences on species richness and trophic interactions within food webs. Although the associated ecological consequences have been studied by several authors, the evolutionary effects on interacting species have received little research attention. Using a genetic algorithm, we quantified how habitat fragmentation and environmental variability affect the optimal reproductive strategies of parasitic wasps foraging for hosts. As observed in real animal species, the model is based on the existence of a negative trade-off between survival and reproduction resulting from competitive allocation of resources to either somatic maintenance or egg production. We also asked to what degree plasticity along this trade-off would be optimal, when plasticity is costly. We found that habitat fragmentation can indeed have strong effects on the reproductive strategies adopted by parasitoids. With increasing habitat fragmentation animals should invest in greater longevity with lower fecundity; yet, especially in unpredictable environments, some level of phenotypic plasticity should be selected for. Other consequences in terms of learning ability of foraging animals were also observed. The evolutionary consequences of these results are discussed. PMID:22701614

  2. Optimal resource allocation to survival and reproduction in parasitic wasps foraging in fragmented habitats.

    PubMed

    Wajnberg, Eric; Coquillard, Patrick; Vet, Louise E M; Hoffmeister, Thomas

    2012-01-01

    Expansion and intensification of human land use represents the major cause of habitat fragmentation. Such fragmentation can have dramatic consequences on species richness and trophic interactions within food webs. Although the associated ecological consequences have been studied by several authors, the evolutionary effects on interacting species have received little research attention. Using a genetic algorithm, we quantified how habitat fragmentation and environmental variability affect the optimal reproductive strategies of parasitic wasps foraging for hosts. As observed in real animal species, the model is based on the existence of a negative trade-off between survival and reproduction resulting from competitive allocation of resources to either somatic maintenance or egg production. We also asked to what degree plasticity along this trade-off would be optimal, when plasticity is costly. We found that habitat fragmentation can indeed have strong effects on the reproductive strategies adopted by parasitoids. With increasing habitat fragmentation animals should invest in greater longevity with lower fecundity; yet, especially in unpredictable environments, some level of phenotypic plasticity should be selected for. Other consequences in terms of learning ability of foraging animals were also observed. The evolutionary consequences of these results are discussed.

  3. Effects of windspeed on the growth and biomass allocation of white mustard Sinapis alba L.

    PubMed

    Retuerto, Ruben; Woodward, F Ian

    1992-10-01

    We examined how different wind speeds and interactions between plant age and wind affect growth and biomass allocation of Sinapis alba L. (white mustard). Physiological and growth measurements were made on individuals of white mustard grown in controlled-environment wind tunnels at windspeeds of 0.3, 2.2 and 6.0 ms(-1) for 42 days. Plants were harvested at four different dates. Increasing wind speed slightly increased transpiration and stomatal conductance. We did not observe a significant decline in the photosynthetic rate per unit of leaf area. Number of leaves, stem length, leaf area and dry weights of total biomass and plant parts were significantly lower in plants exposed at high wind speed conditions. There were no significant differences in the unit leaf rate nor relative growth rates, although these were always lower in plants grown at high wind speed. Allocation and architectural parameters were also examined. After 42 days of exposure to wind, plants showed higher leaf area ratio, root and leaf weight ratios and root/shoot ratio than those grown at control treatment. Only specific leaf area declined significantly with wind speed, but stem and reproductive parts also decreased. The responses of plants to each wind speed treatment depended on the age of the plant for most of the variables. It is suggested that wind operates in logarithmic manner, with relatively small or no effect at lower wind speeds and a much greater effect at higher speeds. Since there is no evidence of a significant reduction in photosynthetic rate of Sinapis with increasing wind speed it is suggested that the effect of wind on plant growth was due to mechanical effects leading to changes in allocation and developmental patterns.

  4. [Effects of UV-B radiation on the growth and reproduction of Vicia angustifolia].

    PubMed

    Wang, Ying; Wang, Xing-An; Wang, Ren-Jun; Qiu, Nian-Wei; Ma, Zong-Qi; Du, Guo-Zhen

    2012-05-01

    A simulation experiment with supplementation and exclusion of solar ultraviolet-B (UV-B) radiation was conducted to study the effects of enhanced and near ambient UV-B radiation on the growth and reproduction of alpine annual pasture Vicia angustifolia on Qinghai-Tibet Plateau. Enhanced UV-B decreased the plant height and biomass, biomass allocation to fruit, flower number, and 100-seed mass significantly, delayed flowering stage, increased the concentration degree of flowering and success rate of reproduction, but had little effect on seed yield. Near ambient UV-B radiation made the plant height increased after an initial decrease, decreased biomass allocation to fruit and 100-seed mass, but little affected flowering duration, flower number, and seed yield. Both enhanced and near ambient UV-B radiation could inhibit the growth and production of V. angustifolia, and the effect of enhanced UV-B radiation was even larger.

  5. Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta.

    PubMed

    DeWalt, Saara J; Denslow, Julie S; Hamrick, J L

    2004-03-01

    We tested the hypothesis that the tropical shrub Clidemia hirta appears more shade tolerant and is more abundant in its introduced than native range because of genetic differences in resource acquisition, allocation, and phenotypic plasticity between native and introduced genotypes. We examined growth, biomass allocation, and photosynthetic parameters of C. hirta grown in a greenhouse from seed collected from four populations in part of its native range (Costa Rica) and four populations in part of its introduced range (Hawaiian Islands). Six-month-old seedlings were placed in high (10.3-13.9 mol m(-2) day(-1)) or low (1.4-4.5 mol m(-2) day(-1)) light treatments and grown for an additional 6 months. Our study provided little evidence that Hawaiian genotypes of C. hirta differed genetically from Costa Rican genotypes in ways that would contribute to differences in habitat distribution or abundance. Some of the genetic differences that were apparent, such as greater allocation to stems and leaf area relative to whole plant biomass in Costa Rican genotypes and greater allocation to roots in Hawaiian genotypes, were contrary to predictions that genotypes from the introduced range would allocate more biomass to growth and less to storage than those from the native range. Hawaiian and Costa Rican genotypes displayed no significant differences in relative growth rates, maximal photosynthetic rates, or specific leaf areas in either light treatment. In the high light environment, however, Hawaiian genotypes allocated more biomass to reproductive parts than Costa Rican genotypes. Phenotypic plasticity for only 1 of 12 morphological and photosynthetic variables was greater for Hawaiian than Costa Rican genotypes. We conclude that genetic shifts in resource use, resource allocation, or plasticity do not contribute to differences in habitat distribution and abundance between the native and introduced ranges of C. hirta.

  6. Maternal nutrition affects reproductive output and sex allocation in a lizard with environmental sex determination

    PubMed Central

    Warner, Daniel A; Lovern, Matthew B; Shine, Richard

    2007-01-01

    Life-history traits such as offspring size, number and sex ratio are affected by maternal feeding rates in many kinds of animals, but the consequences of variation in maternal diet quality (rather than quantity) are poorly understood. We manipulated dietary quality of reproducing female lizards (Amphibolurus muricatus; Agamidae), a species with temperature-dependent sex determination, to examine strategies of reproductive allocation. Females maintained on a poor-quality diet produced fewer clutches but massively (twofold) larger eggs with lower concentrations of yolk testosterone than did conspecific females given a high-quality diet. Although all eggs were incubated at the same temperature, and yolk steroid hormone levels were not correlated with offspring sex, the nutrient-deprived females produced highly male-biased sex ratios among their offspring. These responses to maternal nutrition generate a link between sex and offspring size, in a direction likely to enhance maternal fitness if large body size enhances reproductive success more in sons than in daughters (as seems plausible, given the mating system of this species). Overall, our results show that sex determination in these animals is more complex, and responsive to a wider range of environmental cues, than that suggested by the classification of ‘environmental sex determination’. PMID:17251109

  7. Maternal nutrition affects reproductive output and sex allocation in a lizard with environmental sex determination.

    PubMed

    Warner, Daniel A; Lovern, Matthew B; Shine, Richard

    2007-03-22

    Life-history traits such as offspring size, number and sex ratio are affected by maternal feeding rates in many kinds of animals, but the consequences of variation in maternal diet quality (rather than quantity) are poorly understood. We manipulated dietary quality of reproducing female lizards (Amphibolurus muricatus; Agamidae), a species with temperature-dependent sex determination, to examine strategies of reproductive allocation. Females maintained on a poor-quality diet produced fewer clutches but massively (twofold) larger eggs with lower concentrations of yolk testosterone than did conspecific females given a high-quality diet. Although all eggs were incubated at the same temperature, and yolk steroid hormone levels were not correlated with offspring sex, the nutrient-deprived females produced highly male-biased sex ratios among their offspring. These responses to maternal nutrition generate a link between sex and offspring size, in a direction likely to enhance maternal fitness if large body size enhances reproductive success more in sons than in daughters (as seems plausible, given the mating system of this species). Overall, our results show that sex determination in these animals is more complex, and responsive to a wider range of environmental cues, than that suggested by the classification of 'environmental sex determination'.

  8. Invited review: resource allocation mismatch as pathway to disproportionate growth in farm animals - prerequisite for a disturbed health.

    PubMed

    Huber, K

    2017-08-14

    The availability of resources including energy, nutrients and (developmental) time has a crucial impact on productivity of farm animals. Availability of energy and nutrients depends on voluntary feed intake and intestinal digestive and absorptive capacity at optimal feeding conditions. Availability of time is provided by the management in animal production. According to the resource allocation theory, resources have to be allocated between maintenance, ontogenic growth, production and reproduction during lifetime. Priorities for these processes are mainly determined by the genetic background, the rearing system and the feeding regimen. Aim of this review was to re-discuss the impact of a proper resource allocation for a long and healthy life span in farm animals. Using the barrel model of resource allocation, resource fluxes were explained and were implemented to specific productive life conditions of different farm animal species, dairy cows, sows and poultry. Hypothetically, resource allocation mismatch neglecting maintenance is a central process, which might be associated with morphological constraints of extracellular matrix components; evidence for that was found in the literature. A potential consequence of this limitation is a phenomenon called disproportionate growth, which counteracts the genetically determined scaling rules for body and organ proportions and could have a strong impact on farm animal health and production.

  9. Reproductive allocation strategies: a long-term study on proximate factors and temporal adjustments in a viviparous lizard.

    PubMed

    Bleu, Josefa; Le Galliard, Jean-François; Fitze, Patrick S; Meylan, Sandrine; Clobert, Jean; Massot, Manuel

    2013-01-01

    Optimisation of reproductive investment is crucial for Darwinian fitness, and detailed long-term studies are especially suited to unravel reproductive allocation strategies. Allocation strategies depend on the timing of resource acquisition, the timing of resource allocation, and trade-offs between different life-history traits. A distinction can be made between capital breeders that fuel reproduction with stored resources and income breeders that use recently acquired resources. In capital breeders, but not in income breeders, energy allocation may be decoupled from energy acquisition. Here, we tested the influence of extrinsic (weather conditions) and intrinsic (female characteristics) factors during energy storage, vitellogenesis and early gestation on reproductive investment, including litter mass, litter size, offspring mass and the litter size and offspring mass trade-off. We used data from a long-term study of the viviparous lizard, Lacerta (Zootoca) vivipara. In terms of extrinsic factors, rainfall during vitellogenesis was positively correlated with litter size and mass, but temperature did not affect reproductive investment. With respect to intrinsic factors, litter size and mass were positively correlated with current body size and postpartum body condition of the previous year, but negatively with parturition date of the previous year. Offspring mass was negatively correlated with litter size, and the strength of this trade-off decreased with the degree of individual variation in resource acquisition, which confirms theoretical predictions. The combined effects of past intrinsic factors and current weather conditions suggest that common lizards combine both recently acquired and stored resources to fuel reproduction. The effect of past energy store points out a trade-off between current and future reproduction.

  10. Maternal effects shape dynamic trajectories of reproductive allocation in the ladybird Coleomegilla maculata.

    PubMed

    Vargas, G; Michaud, J P; Nechols, J R

    2012-10-01

    We followed lifetime trajectories of reproductive allocation in Coleomegilla maculata females of three different size classes produced by rearing beetles on three different daily larval feeding regimes (30 min, 6 h or ad libitum access to eggs of Ephestia kuehniella). We hypothesized that small females would produce fewer and smaller eggs than larger females and that reproductive effort would decline with female age. Females were mated with a male from the same treatment and then isolated with ad libitum food for their entire adult lives. Egg size increased over time in all treatments; small females started off laying the smallest eggs, but increased egg size more rapidly than larger females, until all treatments converged on a similar egg size around the 20th day of oviposition. Large females realized a larger proportion of their fecundity early in life, but smaller females increased daily fecundity over time. Reproductive effort (egg mass/body mass) did not decline over 30 oviposition days; it remained constant in large females, but increased among small and medium females, suggesting gradual compensation for larval food deprivation. An increase in egg size with maternal age may be an adaptive strategy to maximize fitness on ephemeral patches of aphid prey, assuming females reproduce in a single aphid outbreak and that offspring produced later in the aphid cycle experience greater competition and risk of mortality compared to those produced earlier. We demonstrate for the first time in Coleoptera that dynamic changes in both egg size and number occur as a function of female age and illustrate that such changes are constrained by larval feeding histories via their effects on maternal body size.

  11. Reproduction worship and population growth in China.

    PubMed

    Li, J

    1992-01-01

    Surveys have found that the overwhelming majority of married women in China desire to have 2 or more children and that male children are generally preferred to female children. This interest in bearing multiple children, and especially sons, reflects traditional needs for male laborers in China's rural families, parents' quests to ensure their personal old-age security, and a broad, deeply-ingrained social sense of the need to perpetuate the family. As China gradually modernizes, however, these first 2 factors, which support multiple births and preference for sons, grow less important. This latter factor of perceived need for male offspring to perpetuate the family, however, remains most powerful in Chinese society. The Chinese worship their ancestors as the source of life. While ancestors are considered gods, fathers are thought to be their subordinates. Ancestor and reproduction worship has been a respected part of traditional Chinese culture for thousands of years since the Shang and Zhou dynasties. These notions may even be found in Confucian doctrine where family perpetuation is held up as the greatest act of filial piety. Accepting these beliefs and teachings, Chinese have tended to marry early, begin bearing children without delay, and strive to ultimately produce many offspring. Family planning and population policy have brought about a reduction in birth rate from 30/1000 in the early 1970s to 20/1000 by the early 1980s. Multibirths and unplanned births, however, have yet to be eliminated. Multibirths in fact accounted for 13.6% of all children born in China in 1988, with 92% born in rural areas where reproduction worship in strongest. 70% of families with multibirths were prompted by the desire to have more sons. An estimated 30 million unplanned births occurred in the 1980s due to parents' interests in perpetuating the family. Under the conditions, policy will have only limited effect in moderating fertility and population growth in China. Accordingly

  12. Funding fertility: issues in the allocation and distribution of resources to assisted reproduction technologies.

    PubMed

    Devlin, Nancy; Parkin, David

    2003-05-01

    The appropriate level and source of funds for assisted reproduction technologies (ARTs), in particular IVF, have been controversial in most developed economies. Funding of fertility services internationally is characterized by low public (or other third party) funding, a greater reliance on user-pays than in most other health services, and variations in funding and provision. This article describes the characteristics of infertility as a condition and its treatment that have been used as a rationale for its exclusion from an otherwise comprehensive coverage of health services. The challenges these characteristics pose for the use of economic evaluation to inform resource allocation are discussed. Most economic evaluations have focused on the cost effectiveness of alternative infertility treatments. These evaluations provide important information, but do not inform the real issue at stake: what is the appropriate allocation of funds to ARTs, given that it involves sacrificing improvements in health in other areas? Cost utility analysis - the method of economic appraisal preferred by most agencies charged with making such decisions (including the National Institute of Clinical Excellence in the UK) - is ill-equipped to deal with the benefits produced by ARTs. Alternative methods are available, but require decision makers to weigh up very different sorts of evidence. Demonstration of the willingness to pay for the benefits of ARTs can be used to support public decisions but, conversely, also implies that those who can pay will pay in a private market. Ultimately, decisions about the inclusion or otherwise of ARTs in collectively funded health systems probably rest as much on judgments about equity in access as value for money. Given that this is the case, public funding of IVF should be accompanied by the development of agreed criteria for the prioritization of potential recipients, to ensure treatment is targeted at those for whom it is most effective and that access

  13. Tradeoffs in basal area growth and reproduction shift over the lifetime of a long-lived tropical species.

    PubMed

    Staudhammer, Christina L; Wadt, Lúcia H O; Kainer, Karen A

    2013-09-01

    Understanding of the extent to which reproductive costs drive growth largely derives from reproductively mature temperate trees in masting and non-masting years. We modeled basal area increment (BAI) and explored current growth-reproduction tradeoffs and changes in such allocation over the life span of a long-lived, non-masting tropical tree. We integrated rainfall and soil variables with data from 190 Bertholletia excelsa trees of different diameter at breast height (DBH) sizes, crown characteristics, and liana loads, quantifying BAI and reproductive output over 4 and 6 years, respectively. While rainfall explains BAI in all models, regardless of DBH class or ontogenic stage, light (based on canopy position and crown form) is most critical in the juvenile (5 cm ≤ DBH < 50 cm) phase. Suppressed trees are only present as juveniles and grow ten times slower (1.45 ± 2.73 m(2) year(-1)) than trees in dominant and co-dominant positions (13.25 ± 0.82 and 12.90 ± 1.35 m(2) year(-1), respectively). Additionally, few juvenile trees are reproductive, and those that are, demonstrate reduced growth, as do reproductive trees in the next 50 to 100 cm DBH class, suggesting growth-reproduction tradeoffs. Upon reaching the canopy, however, and attaining a sizeable girth, this pattern gradually shifts to one where BAI and reproduction are influenced independently by variables such as liana load, crown size and soil properties. At this stage, BAI is largely unaffected by fruit production levels. Thus, while growth-reproduction tradeoffs clearly exist during early life stages, effects of reproductive allocation diminish as B. excelsa increases in size and maturity.

  14. Reproductive allocation and output in herbaceous annuals of the genera Polygonum, Ipomoea, and Cassia in elevated CO[sub 2] environments

    SciTech Connect

    Farnsworth, E.J.; Bazzaz, F.A. )

    1994-06-01

    In assessing the capacity of plants to adapt to rapidly changing global climate, we must elucidate the impacts of elevated carbon dioxide on reproduction, fitness and evolution. We investigated how elevated CO[sub 2] influenced reproduction and growth of plants exhibiting a range of floral displays, the implications of shifts in allocation for fitness in these species, and whether related taxa would show similar patterns of response. Three herbaceous, annual species each of the genera Polygonum, Ipomoea, and Cassia were grown under 350 or 700 ppm CO[sub 2]. Vegetative growth and reproductive output were non-destructively measured throughout the full life span, and biomass calibrated with a subsample harvest at first flowering. Viability and germination studies of seed progeny were conducted to more precisely characterize fitness. Timecourse and numbers of floral buds, flowers, unripe and abscised fruits differed between CO[sub 2] treatments. Genera differed significantly in their phenological responses to elevated CO[sub 2], Polygonum and Cassia species (but not Ipomoea) showed accelerated, enhanced reproduction. Elevated CO[sub 2] ameliorated trade-offs between vegetative and floral production. However, seed [open quotes]quality[close quotes] and fitness were not always directly correlated with quantity produced. Species within general responded more consistently to CO[sub 2], indicating that phylogeny and life form may be general predictors of performance under global change.

  15. Is reproduction limiting growth?. Comment on ;Physics of metabolic organization; by Marko Jusup et al.

    NASA Astrophysics Data System (ADS)

    Pecquerie, Laure; Lika, Konstadia

    2017-03-01

    Jusup et al. [1] aimed at covering the theoretical foundations of DEB theory and presenting the broadness of its applications for both physicists and biologists and they successfully do so. One of the most striking assumptions of DEB theory for biologists that is, as mentioned by the authors, at odds with an existing body of literature in fisheries sciences [2,3], is the so-called κ-rule. A constant allocation to growth and somatic maintenance throughout ontogeny is indeed at odds with the widely accepted limitation of growth at the onset of sexual maturity by the reproduction process.

  16. Optimal defense: snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation.

    PubMed

    Asplund, Johan; Solhaug, Knut Asbjørn; Gauslaa, Yngvar

    2010-10-01

    The optimal defense theory (ODT) deals with defensive compounds improving fitness of a particular organism. It predicts that these compounds are allocated in proportion to the risk for a specific plant tissue being attacked and this tissue's value for plant fitness. As the benefit of defense cannot easily be measured in plants, the empirical evidence for ODT is limited. However, lichens are unique in the sense that their carbon-based secondary compounds can nondestructively be removed or reduced in concentration by acetone rinsing. By using such an extraction protocol, which is lethal to plants, we have tested the ODT by studying lichens instead of plants as photosynthetically active organisms. Prior to acetone rinsing, we found five times higher concentration of meta-scrobiculin in the reproductive parts (soralia) of Lobaria scrobiculata compared to somatic parts of this foliose epiphytic lichen species. At this stage, the lichen-feeding snail Cochlodina laminata avoided the soralia. However, after removal of secondary compounds, the snail instead preferred the soralia. In this way, we have successfully shown that grazing pattern inversely reflects the partitioning of the secondary compounds that have a documented deterring effect. Thus our study provides strong and novel evidence for the ODT.

  17. Trade-offs between growth and reproduction in female bison.

    PubMed

    Green, Wendy C H; Rothstein, Aron

    1991-05-01

    The extent to which (a) larger females produce more or larger offspring, (b) reproduction imposes costs, and (c) the benefits of early reproduction outweigh the costs was examined for female bison (Bison bison) with data from an 8-year period. Description of ontogenetic patterns indicated that reproductive performance reached a plateau near the end of the growth period; changes with age in fecundity were little related to those of body weight during the typical reproductive lifespan (age 3-18 years). Examination of inter-and intra-individual variation showed that the relationship between growth and reproduction depends on the age of subjects. Larger juveniles matured earlier and were more fecund (though smaller) as adults. In contrast, post-pubertal growth was negatively related to reporductive performance, although intra-individual weight variation was positively associated with pregnancy rate. Fecundity was not generally lower in years after reproduction than after barren years, in spite of weight loss, suggesting that reproduction did not impose significant fitness costs. On the other hand, offspring quality was lower when mothers reproduced in successive rather than alternate years. Early maturation resulted in immediate costs, including reduced growth and infertility in the year after first parturition. However, there were long-term benefits: fecundity in the first 7-9 years was highest for early-maturing and lowest for late-maturing females, suggesting that reproductive success is greater for early-maturing females despite reduced growth. In the present study, trade-offs between growth and reproduction did not appear to reflect substantial costs as measured by long-term reproductive success.

  18. Reproduction and vegetative growth in the dioecious shrub Acer barbinerve in temperate forests of Northeast China.

    PubMed

    Wang, Juan; Zhang, Chunyu; Gadow, Klaus V; Cheng, Yanxia; Zhao, Xiuhai

    2015-06-01

    Trade-off in dioecious plant. The trade-off between reproduction, vegetative growth and maintenance is a major issue in the life history of an organism and a record of the process which is producing the largest possible number of living offspring by natural selection. Dioecious species afford an excellent opportunity for detecting such possible trade-offs in resource allocation. In this study, we selected the dioecious shrub Acer barbinerve to examine possible trade-offs between reproduction and vegetative growth in both genders at different modular levels during three successive years. Reproductive and vegetative biomass values were assessed during successive years to evaluate their intra-annual and inter-annual trade-offs. These trade-offs were examined at shoot, branch and shrub modular levels in Acer barbinerve shrubs. An intra-annual trade-off was detected at the shoot level for both genders in 2011 and 2012. Both males and females showed a negative correlation between reproduction and vegetative growth, but this was more prominent in males. For the females of the species, inter-annual trade-offs were only found at branch and shrub levels. Slightly negative correlations in females were detected between the reproduction in 2012 and the reproduction in the two previous years. The gender ratio was significantly male biased during the three successive years of our investigation. Females had higher mortality rates in the larger diameter classes, both in 2011 and 2012. This study revealed a clear trade-off between reproduction and vegetative growth in Acer barbinerve, but results varied between males and females. The degree of autonomy of the different modular levels may affect the ability to detect such trade-offs.

  19. Symbiotic regulation of plant growth, development and reproduction

    Treesearch

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  20. Energy allocation during the maturation of adults in a long-lived insect: implications for dispersal and reproduction.

    PubMed

    David, G; Giffard, B; van Halder, I; Piou, D; Jactel, H

    2015-10-01

    Energy allocation strategies have been widely documented in insects and were formalized in the context of the reproduction process by the terms 'capital breeder' and 'income breeder'. We propose here the extension of this framework to dispersal ability, with the concepts of 'capital disperser' and 'income disperser', and explore the trade-off in resource allocation between dispersal and reproduction. We hypothesized that flight capacity was sex-dependent, due to a trade-off in energy allocation between dispersal and egg production in females. We used Monochamus galloprovincialis as model organism, a long-lived beetle which is the European vector of the pine wood nematode. We estimated the flight capacity with a flight mill and used the number of mature eggs as a proxy for the investment in reproduction. We used the ratio between dry weights of the thorax and the abdomen to investigate the trade-off. The probability of flying increased with the adult weight at emergence, but was not dependent on insect age or sex. Flight distance increased with age in individuals but did not differ between sexes. It was also positively associated with energy allocation to thorax reserves, which increased with age. In females, the abdomen weight and the number of eggs also increase with age with no negative effect on flight capacity, indicating a lack of trade-off. This long-lived beetle has a complex strategy of energy allocation, being a 'capital disperser' in terms of flight ability, an 'income disperser' in terms of flight performance and an 'income breeder' in terms of egg production.

  1. Trade-off between allocation to reproductive ramets and rhizome buds in Carex brevicuspis populations along a small-scale elevational gradient.

    PubMed

    Chen, Xin-sheng; Li, Ya-fang; Xie, Yong-hong; Deng, Zheng-miao; Li, Xu; Li, Feng; Hou, Zhi-yong

    2015-07-31

    The trade-off between allocation to sexual and clonal reproduction in clonal plants is influenced by a variety of environmental factors; however, it has rarely been examined under field conditions. In this study, we investigated the trade-off between two modes of reproduction in Carex brevicuspis C. B. Clarke across a small-scale elevational gradient (21-27 m a.s.l.) at the Dongting Lake wetlands, China. The proportion of biomass allocated to and the density of reproductive ramets were higher at low than at intermediate and high elevations. In contrast, the proportion of biomass allocated to and the density of rhizome buds were lower at low than at intermediate and high elevations. Redundancy analysis showed that sexual reproduction was positively correlated with soil moisture content, soil organic matter, total phosphorus, and pH, and negatively correlated with elevation and ramet density. Our findings suggested that allocation to sexual reproduction is favored in disturbed habitats with fertile soils, whereas allocation to vegetative propagation is favored in stable and competitive habitats. Trade-off between allocation to sexual reproduction and vegetative propagation along an elevational gradient might be a reproductive strategy of C. brevicuspis to adapt to the water level fluctuations in wetland habitats.

  2. Trade-off between allocation to reproductive ramets and rhizome buds in Carex brevicuspis populations along a small-scale elevational gradient

    PubMed Central

    Chen, Xin-sheng; Li, Ya-fang; Xie, Yong-hong; Deng, Zheng-miao; Li, Xu; Li, Feng; Hou, Zhi-yong

    2015-01-01

    The trade-off between allocation to sexual and clonal reproduction in clonal plants is influenced by a variety of environmental factors; however, it has rarely been examined under field conditions. In this study, we investigated the trade-off between two modes of reproduction in Carex brevicuspis C. B. Clarke across a small-scale elevational gradient (21–27 m a.s.l.) at the Dongting Lake wetlands, China. The proportion of biomass allocated to and the density of reproductive ramets were higher at low than at intermediate and high elevations. In contrast, the proportion of biomass allocated to and the density of rhizome buds were lower at low than at intermediate and high elevations. Redundancy analysis showed that sexual reproduction was positively correlated with soil moisture content, soil organic matter, total phosphorus, and pH, and negatively correlated with elevation and ramet density. Our findings suggested that allocation to sexual reproduction is favored in disturbed habitats with fertile soils, whereas allocation to vegetative propagation is favored in stable and competitive habitats. Trade-off between allocation to sexual reproduction and vegetative propagation along an elevational gradient might be a reproductive strategy of C. brevicuspis to adapt to the water level fluctuations in wetland habitats. PMID:26228352

  3. UV Sensitivity of Vegetative and Reproductive Tissues of Two Antarctic Brown Algae is Related to Differential Allocation of Phenolic Substances.

    PubMed

    Huovinen, Pirjo; Gómez, Iván

    2015-11-01

    UV sensitivity of the vegetative and reproductive tissues of two Antarctic brown macroalgae was compared. Photosynthesis as well as the content and localization of phenolic substances were determined. Responses to UV radiation were quantified as chlorophyll fluorescence (Fv /Fm ). Ascoseira mirabilis showed high UV tolerance, while in Cystosphaera jacquinotii Fv /Fm decreased by 15-21%, the receptacles being more tolerant than the vegetative blades. The phlorotannin contents showed an opposite pattern: the soluble fraction dominated in C. jacquinotii while in A. mirabilis the insoluble fraction was more abundant. Soluble phlorotannins were higher in the reproductive than in vegetative tissues in both species. Images of tissue cross-sections under violet-blue light excitation confirmed a high allocation of phenolic compounds (as blue autofluorescence) in C. jacquinotii, both in reproductive and vegetative blades. The allocation and proportions of the soluble and insoluble phlorotannins could be related with the observed UV tolerance of the vegetative and reproductive tissues. © 2015 The American Society of Photobiology.

  4. Effect of prolonged hypoxia on food consumption, respiration, growth and reproduction in marine scavenging gastropod Nassarius festivus.

    PubMed

    Cheung, S G; Chan, H Y; Liu, C C; Shin, P K S

    2008-01-01

    The effects of prolonged exposure to reduced oxygen levels (3.0 and 1.5 mg O(2)l(-1)) on marine scavenging gastropods Nassarius festivus were studied for 8 weeks. The percentages of individuals engaged in feeding and amount of food consumed were reduced as oxygen level decreased; absorption efficiency, however, did not vary significantly with oxygen level. Oxygen consumption rates and specific oxygen consumption rates were lower at reduced oxygen levels. Reproduction occurred at all oxygen levels with less egg capsules being produced at lower oxygen levels. Egg size and number of eggs per capsule, however, were not significantly affected by oxygen level. The increase in shell length was 12%, 6% and 5% at 6.0 mgO(2)l(-1) (normoxia), 3.0 mgO(2)l(-1) and 1.5 mgO(2)l(-1), respectively. At the end of the experiment, the amount of energy allocated to growth and reproduction decreased at reduced oxygen levels with values obtained at 3.0 mgO(2)l(-1) and 1.5 mgO(2)l(-1) being 48% and 70% lower than those at 6.0 mgO(2)l(-1). At all oxygen levels, most of the accumulated energy was allocated to shell growth and reproduction, and the amount allocated to somatic growth was relatively insignificant. The reduction in energy allocated to reproduction was greater than that to shell growth as the oxygen level was reduced, indicating a strategic energy allocation of marine scavengers under stressful conditions to enhance survival.

  5. Plant reproduction: GABA gradient, guidance and growth.

    PubMed

    Ma, Hong

    2003-10-28

    How a pollen tube manages to navigate through the female tissues during plant reproduction has been a mystery. A new analysis of an Arabidopsis mutant has provided the strongest evidence yet that a GABA gradient may be a critical signal for correct targeting of the pollen tube.

  6. Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments.

    PubMed

    King, D A

    1997-04-01

    Aboveground biomass allocation, and height and branch growth were studied in saplings of the shade-tolerant conifer, Abies amabilis Dougl. ex Forbes growing in large openings and in the understory of an old-growth forest in western Oregon. The presence of annual overwintering budscale scars was used to infer extension growth histories; annual growth rings in branches and stems were used in combination with extension histories to compute partitioning of new biomass among leaves, branches and stems. Saplings growing in large gaps had conical crowns, whereas understory saplings had umbrella shaped crowns as a result of much greater rates of branch extension than stem extension. Understory saplings grew slowly in height because of low rates of biomass production and low allocation of biomass to stem extension. About 40% of new biomass was allocated to foliage in both groups, but understory saplings allocated more of the remaining growth increment to branches and less to stem than did saplings growing in large gaps. These results differ from the patterns observed in shade-tolerant saplings of tropical forests, where allocation to foliage increases with shading and branch allocation is much lower than observed here. This difference in allocation may reflect mechanical constraints imposed by snow loads on the evergreen A. amabilis crowns, particularly on flat-crowned understory saplings.

  7. Experimental life-history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant.

    PubMed

    van Kleunen, Mark; Fischer, Markus; Schmid, Bernhard

    2002-11-01

    Allocation to sexual reproduction is an important life-history trait in clonal plants. Different selection pressures between competitive and competition-free environments are likely to result in the evolution of specialized genotypes and to maintain genetic variation in reproductive allocation. Moreover, selection may also result in the evolution of plastic allocation strategies. The necessary prerequisite for evolution, heritable genetic variation, can best be studied with selection experiments. Starting from a base population of 102 replicated genotypes of the clonal herb Ranunculus reptans, we imposed selection on the proportion of flowering rosettes in the absence of competition (base population: mean = 0.391, broad-sense heritability = 0.307). We also selected on the plasticity in this trait in response to competition with a naturally coexisting grass in a parallel experiment (base population: 14% lower mean in the presence of competition, broad-sense heritability = 0.072). After two generations of bidirectional selection, the proportion of flowering rosettes was 26% higher in the high line than in the low line (realized heritability +/- SE = 0.205 +/- 0.017). Moreover, genotypes of the high line had 11% fewer carpels per flower, a 22% lower proportion of rooted rosettes, and a 39% smaller average distance between rosettes within a clone. In the second experiment, we found no significant responses to selection for high and low plasticity in the proportion of flowering rosettes (realized heritability +/- SE = -0.002 +/- 0.013). Our study indicates a high heritability and potential for further evolution of the proportion of flowering rosettes in R. reptans, but not for its plasticity, which may have been fixed by past evolution at its current level. Moreover, our results demonstrate strong genetic correlations between allocation to sexual reproduction and other clonal life-history characteristics.

  8. REPRODUCTIVE TOXICITY OF ANDROGENIC GROWTH PROMOTORS IN THE FATHEAD MINNOW

    EPA Science Inventory

    Reproductive Toxicity of Androgenic Growth Promoters in the Fathead Minnow. Jensen, KM*, Kahl, MD, Makynen, EA, Hornung, MW, Ankley, GT. U.S. Environmental Protection Agency, Duluth, MN. Trenbolone acetate is a synthetic steroid which is extensively used in the US as a growth pro...

  9. REPRODUCTIVE TOXICITY OF ANDROGENIC GROWTH PROMOTORS IN THE FATHEAD MINNOW

    EPA Science Inventory

    Reproductive Toxicity of Androgenic Growth Promoters in the Fathead Minnow. Jensen, KM*, Kahl, MD, Makynen, EA, Hornung, MW, Ankley, GT. U.S. Environmental Protection Agency, Duluth, MN. Trenbolone acetate is a synthetic steroid which is extensively used in the US as a growth pro...

  10. Differences in Patterns of Reproductive Allocation between the Sexes in Nicrophorus orbicollis

    PubMed Central

    2015-01-01

    Organisms are selected to maximize lifetime reproductive success by balancing the costs of current reproduction with costs to future survival and fecundity. Males and females typically face different reproductive costs, which makes comparisons of their reproductive strategies difficult. Burying beetles provide a unique system that allows us to compare the costs of reproduction between the sexes because males and females are capable of raising offspring together or alone and carcass preparation and offspring care represent the majority of reproductive costs for both sexes. Because both sexes perform the same functions of carcass preparation and offspring care, we predict that they would experience similar costs and have similar life history patterns. In this study we assess the cost of reproduction in male Nicrophorus orbicollis and compare to patterns observed in females. We compare the reproductive strategies of single males and females that provided pre- and post-hatching parental care. There is a cost to reproduction for both males and females, but the sexes respond to these costs differently. Females match brood size with carcass size, and thus maximize the lifetime number of offspring on a given size carcass. Males cull proportionately more offspring on all carcass sizes, and thus have a lower lifetime number of offspring compared to females. Females exhibit an adaptive reproductive strategy based on resource availability, but male reproductive strategies are not adaptive in relation to resource availability. PMID:26600016

  11. Differences in Patterns of Reproductive Allocation between the Sexes in Nicrophorus orbicollis.

    PubMed

    Smith, Ashlee N; Creighton, J Curtis; Belk, Mark C

    2015-01-01

    Organisms are selected to maximize lifetime reproductive success by balancing the costs of current reproduction with costs to future survival and fecundity. Males and females typically face different reproductive costs, which makes comparisons of their reproductive strategies difficult. Burying beetles provide a unique system that allows us to compare the costs of reproduction between the sexes because males and females are capable of raising offspring together or alone and carcass preparation and offspring care represent the majority of reproductive costs for both sexes. Because both sexes perform the same functions of carcass preparation and offspring care, we predict that they would experience similar costs and have similar life history patterns. In this study we assess the cost of reproduction in male Nicrophorus orbicollis and compare to patterns observed in females. We compare the reproductive strategies of single males and females that provided pre- and post-hatching parental care. There is a cost to reproduction for both males and females, but the sexes respond to these costs differently. Females match brood size with carcass size, and thus maximize the lifetime number of offspring on a given size carcass. Males cull proportionately more offspring on all carcass sizes, and thus have a lower lifetime number of offspring compared to females. Females exhibit an adaptive reproductive strategy based on resource availability, but male reproductive strategies are not adaptive in relation to resource availability.

  12. Testosterone inhibits growth in juvenile male eastern fence lizards (Sceloporus undulatus): implications for energy allocation and sexual size dimorphism.

    PubMed

    Cox, Robert M; Skelly, Stephanie L; John-Alder, Henry B

    2005-01-01

    In the eastern fence lizard, Sceloporus undulatus, female-larger sexual size dimorphism develops because yearling females grow faster than males before first reproduction. This sexual growth divergence coincides with maturational increases in male aggression, movement, and ventral coloration, all of which are influenced by the sex steroid testosterone (T). These observations suggest that male growth may be constrained by energetic costs of activity and implicate T as a physiological regulator of this potential trade-off. To test this hypothesis, we used surgical castration and subsequent administration of exogenous T to alter the physiological and behavioral phenotypes of field-active males during the period of sexual growth divergence. As predicted, T inhibited male growth, while castration promoted long-term growth. Males treated with T also exhibited increased daily activity period, movement, and home range area. Food consumption did not differ among male treatments or sexes, suggesting that the inhibitory effects of T on growth are mediated by patterns of energy allocation rather than acquisition. On the basis of estimates derived from published data, we conclude that the energetic cost of increased daily activity period following T manipulation is sufficient to explain most (79%) of the associated reduction in growth. Further, growth may have been constrained by additional energetic costs of increased ectoparasite load following T manipulation. Similar studies of the proximate behavioral, ecological, and physiological mechanisms involved in growth regulation should greatly improve our understanding of sexual size dimorphism.

  13. Tactics for male reproductive success in plants: contrasting insights of sex allocation theory and pollen presentation theory.

    PubMed

    Thomson, James D

    2006-08-01

    The basic tenet of sex allocation theory is that an organism's reproductive success, through either male or female function, can be represented as a sex-specific, monotonic, increasing function of the organism's investment of resources in that function. The shapes of these curves determine what patterns of resource allocation can be evolutionarily stable. Although SA theory has stimulated creative thinking about plant sexual tactics, quantifying the shapes of male and female gain curves has proven so difficult that other approaches must be considered. I contrast sex allocation theory to a different, emerging viewpoint, pollen presentation theory (PPT), which attempts to address variation in reproductive success by measuring and modeling the quantitative fates of pollen grains. Models suggest that RS through male function depends heavily on the packaging and gradual dispensing of pollen to pollinators, even with the amount of investment held constant. Many plants do deploy pollen gradually, through morphological and "behavioral" mechanisms that range from obvious to subtle. They may thereby influence many aspects of the evolution of sexual modes in plants, including transitions between dioecy and cosexuality. After reviewing the main implications of the models, I discuss recent work aimed at testing some key assumptions and predictions by functional and comparative studies in the genus Penstemon. Species of Penstemon conform to PPT predictions that bee-adapted flowers will restrict per-visit pollen availability more than hummingbird-adapted flowers.

  14. HIV treatment and reproductive health in the health system in Burkina Faso: resource allocation and the need for integration.

    PubMed

    Windisch, Ricarda; de Savigny, Don; Onadja, Geneviève; Somda, Antoine; Wyss, Kaspar; Sié, Ali; Kouyaté, Bocar

    2011-11-01

    Organizational changes, increased funding and the demands of HIV antiretroviral (ARV) treatment create particular challenges for governance in the health sector. We assess resource allocation, policy making and integration of the national responses to ARV provision and reproductive health in Burkina Faso, using national and district budgets related to disease burden, policy documents, organizational structures, and coordination and implementation processes. ARV provision represents the concept of a "crisis scenario", in which reforms are pushed due to a perception of urgent need, whereas the national reproductive health programme, which is older and more integrated, represents a "politics-as-usual scenario". Findings show that the early years of the national response to HIV and AIDS were characterized by new institutions with overlapping functions, and failure to integrate with and strengthen existing structures. National and district budget allocations for HIV compared to other interventions were disproportionately high when assessed against burden of disease. Strategic documents for ARV provision were relatively less developed and referred to, compared to those of the Ministry of Health Directorates for HIV and for Family Health and district health planning teams for reproductive health services. Imbalances and new structures potentially trigger important adverse effects which are difficult to remedy and likely to increase due to the dynamics they create. It therefore becomes crucial, from the outset, to integrate HIV/AIDS funding and responses into health systems.

  15. Allocation trade-offs dominate the response of tropical forest growth to seasonal and interannual drought.

    PubMed

    Doughty, Christopher E; Malhi, Yadvinder; Araujo-Murakami, Alejandro; Metcalfe, Daniel B; Silva-Espejo, Javier E; Arroyo, Luzmila; Heredia, Juan P; Pardo-Toledo, Erwin; Mendizabal, Luz M; Rojas-Landivar, Victor D; Vega-Martinez, Meison; Flores-Valencia, Marcio; Sibler-Rivero, Rebeca; Moreno-Vare, Luzmarina; Viscarra, Laura Jessica; Chuviru-Castro, Tamara; Osinaga-Becerra, Marilin; Ledezma, Roxana

    2014-08-01

    What determines the seasonal and interannual variation of growth rates in trees in a tropical forest? We explore this question with a novel four-year high-temporal-resolution data set of carbon allocation from two forest plots in the Bolivian Amazon. The forests show strong seasonal variation in tree wood growth rates, which are largely explained by shifts in carbon allocation, and not by shifts in total productivity. At the deeper soil plot, there was a clear seasonal trade-off between wood and canopy NPP, while the shallower soils plot showed a contrasting seasonal trade-off between wood and fine roots. Although a strong 2010 drought reduced photosynthesis, NPP remained constant and increased in the six-month period following the drought, which indicates usage of significant nonstructural carbohydrate stores. Following the drought, carbon allocation increased initially towards the canopy, and then in the following year, allocation increased towards fine-root production. Had we only measured woody growth at these sites and inferred total NPP, we would have misinterpreted both the seasonal and interannual responses. In many tropical forest ecosystems, we propose that changing tree growth rates are more likely to reflect shifts in allocation rather than changes in overall productivity. Only a whole NPP allocation perspective can correctly interpret the relationship between changes in growth and changes in productivity.

  16. Effect of environment on reproduction and growth of Mysis relicta

    USGS Publications Warehouse

    Beeton, Alfred M.; Gannon, John E.

    1991-01-01

    Published and unpublished data were examined to determine whether the time to first reproduction, brood size, and growth rate of Mysis relicta are related to environmental conditions. Time to first reproduction ranged from 1 year in eutrophic lakes to 4 years in a ultraoligotrophic lake. Mysids in nutrient-rich lakes may have 45 eggs per brood, whereas those in less productive lakes had 10-12 eggs per brood. Growth rates ranged from 1.0 to 1.5 mm/month in productive lakes to only 0.2 mm/month in ultraoligotrophic Lake Tahoe. Some differences in reproduction and growth rate consistent with the above observation occurred between areas of Lakes Tahoe and Michigan that differed in trophic conditions.

  17. Relationships of sire scrotal circumference to offspring reproduction and growth.

    PubMed

    Smith, B A; Brinks, J S; Richardson, G V

    1989-11-01

    Reproductive and growth data were obtained on 779 and 564 yearling beef heifers and bulls, respectively, that had sires with yearling scrotal circumference data at the San Juan Basin Research Center, Hesperus, CO. Partial regression coefficients of reproductive and growth traits on inbreeding (FXC) and age of the individual and adjusted scrotal circumference of sire (SCSI) were obtained. Growth and reproductive traits of heifers and growth and breeding soundness traits of bulls were analyzed. Separate analyses for each sex were performed, but least squares models were similar. Models included fixed effects of breed, birth year (BY), age of dam (AOD) and the covariates FXC, age (day of birth in heifer analyses) and SCSI. Scrotal circumference of sire was adjusted for age, FXC, AOD and BY using values obtained in a separate analysis. Seminal traits improved as age increased, and there was a seasonal effect present for age of puberty. Inbreeding had a detrimental effect on reproductive traits. Partial regression coefficients for the reproductive traits on SCSI were: age of puberty, -.796 d/cm; age of first calving, -.826 d/cm; julian day of first calving, -.667 d/cm; julian day of second calving, .597 d/cm; most probable producing ability, .132 %/cm; percent sperm motility, -.74 %/cm; percent primary sperm abnormalities, .08 %/cm; percent secondary sperm abnormalities, .92 %/cm; percent normal sperm, -1.28 %/cm; total breeding soundness examination score, .28 units/cm and scrotal circumference, .306 cm/cm. A heritability of .39 was obtained for scrotal circumference.

  18. Changes in cellular energy allocation in Enchytraeus crypticus exposed to copper and silver--linkage to effects at higher level (reproduction).

    PubMed

    Gomes, Susana I L; Soares, Amadeu M V M; Amorim, Mónica J B

    2015-09-01

    Under stressful conditions, organisms often try to detoxify by mobilizing certain energy sources with costs to various functions, e.g. growth or reproduction. Cellular energy allocation (CEA) is a commonly used methodology to evaluate the energetic status of an organism. In the present study, the effects of copper (Cu) and silver (Ag) were evaluated on the total energy budget of Enchytraeus crypticus (Oligochaeta) over periods of exposure (0-2, 2-4 and 4-8 days). The parameters measured were the total energy reserves available (protein, carbohydrate and lipid budgets) and the energy consumption (based on electron transport system activity) being further integrated to obtain the CEA. Results showed that Enchytraeids responded differently to Ag and Cu, mobilizing lipids and proteins in response to Ag and carbohydrates and proteins in response to Cu. Overall, it was possible to distinguish between effect concentrations (reproduction effect concentrations-EC10 and EC50), with EC10 causing an increase in energy consumption (Ec); while for the EC50, the increase in Ec is followed by a steep decrease in Ec, with a corresponding decrease in CEA in the longer exposure periods. These results could be linked with effects at higher levels of biological organization (effects on reproduction) providing evidences that CEA can be used as faster and sensitive endpoints towards metal exposure in E. crypticus.

  19. Life-history strategies of North American elk: trade-offs associated with reproduction and survival

    Treesearch

    Sabrina Morano; Kelley M. Stewart; James S. Sedinger; Christopher A. Nicolai; Marty Vavra

    2013-01-01

    The principle of energy allocation states that individuals should attempt to maximize fitness by allocating resources optimally among growth, maintenance, and reproduction. Such allocation may result in trade-offs between survival and reproduction, or between current and future reproduction. We used a marked population of North American elk (Cervus elaphus...

  20. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  1. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    PubMed

    Raich, James W; Clark, Deborah A; Schwendenmann, Luitgard; Wood, Tana E

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  2. A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits.

    PubMed

    Ogle, Kiona; Pacala, Stephen W

    2009-04-01

    Predictions of forest succession, diversity and function require an understanding of how species differ in their growth, allocation patterns and susceptibility to mortality. These processes in turn are affected by allometric constraints and the physiological state of the tree, both of which are coupled to the tree's labile carbon status. Ultimately, insight into the hidden labile pools and the processes affecting the allocation of labile carbon to storage, maintenance and growth will improve our ability to predict tree growth, mortality and forest dynamics. We developed the 'Allometrically Constrained Growth and Carbon Allocation' (ACGCA) model that explicitly couples tree growth, mortality, allometries and labile carbon. This coupling results in (1) a semi-mechanistic basis for predicting tree death, (2) an allocation scheme that simultaneously satisfies allometric relationships and physiology-based carbon dynamics and (3) a range of physiological states that are consistent with tree behavior (e.g., healthy, static, shrinking, recovering, recovered and dead). We present the ACGCA model and illustrate aspects of its behavior by conducting simulations under different forest gap dynamics scenarios and with parameter values obtained for two ecologically dissimilar species: loblolly pine (Pinus taeda L.) and red maple (Acer rubrum L.). The model reproduces growth and mortality patterns of these species that are consistent with their shade-tolerance and succession status. The ACGCA framework provides an alternative, and potentially improved, approach for predicting tree growth, mortality and forest dynamics.

  3. How do sink and source activities influence the reproduction and vegetative growth of spring ephemeral herbs under different light conditions?

    PubMed

    Sunmonu, Ninuola; Kudo, Gaku

    2014-07-01

    Spring ephemeral herbs inhabiting deciduous forests commonly complete reproduction and vegetative growth before canopy closure in early summer. Effects of shading by early canopy closure on reproductive output and vegetative growth, however, may vary depending on the seasonal allocation patterns of photosynthetic products between current reproduction and storage for future growth in each species. To clarify the effects of sink-source balance on seed production and bulb growth in a spring ephemeral herb, Gagea lutea, we performed a bract removal treatment (source reduction) and a floral-bud removal treatment (sink reduction) under canopy and open conditions. Leaf carbon fixations did not differ between the forest and open sites and among treatments. Bract carbon fixations were also similar between sites but tended to decrease when floral buds were removed. Seed production was higher under open condition but decreased by the bract-removal treatment under both light conditions. In contrast, bulb growth was independent of light conditions and the bract-removal treatment but increased greatly by the bud-removal treatment. Therefore, leaves and bracts acted as specialized source organs for vegetative and reproductive functions, respectively, but photosynthetic products by bracts were flexibly used for bulb growth when plants failed to set fruits. Extension of bright period was advantageous for seed production (i.e., source limited) but not for vegetative growth (i.e., sink limited) in this species.

  4. Paternal inheritance of growth in fish pursuing alternative reproductive tactics.

    PubMed

    Wirtz-Ocaňa, Sabine; Schütz, Dolores; Pachler, Gudrun; Taborsky, Michael

    2013-06-01

    In species with indeterminate growth, age-related size variation of reproductive competitors within each sex is often high. This selects for divergence in reproductive tactics of same-sex competitors, particularly in males. Where alternative tactics are fixed for life, the causality of tactic choice is often unclear. In the African cichlid Lamprologus callipterus, large nest males collect and present empty snail shells to females that use these shells for egg deposition and brood care. Small dwarf males attempt to fertilize eggs by entering shells in which females are spawning. The bourgeois nest males exceed parasitic dwarf males in size by nearly two orders of magnitude, which is likely to result from greatly diverging growth patterns. Here, we ask whether growth patterns are heritable in this species, or whether and to which extent they are determined by environmental factors. Standardized breeding experiments using unrelated offspring and maternal half-sibs revealed highly divergent growth patterns of male young sired by nest or dwarf males, whereas the growth of female offspring of both male types did not differ. As expected, food had a significant modifying effect on growth, but neither the quantity of breeding substrate in the environment nor ambient temperature affected growth. None of the environmental factors tested influenced the choice of male life histories. We conclude that in L. callipterus growth rates of bourgeois and parasitic males are paternally inherited, and that male and female growth is phenotypically plastic to only a small degree.

  5. Paternal inheritance of growth in fish pursuing alternative reproductive tactics

    PubMed Central

    Wirtz-Ocaňa, Sabine; Schütz, Dolores; Pachler, Gudrun; Taborsky, Michael

    2013-01-01

    In species with indeterminate growth, age-related size variation of reproductive competitors within each sex is often high. This selects for divergence in reproductive tactics of same-sex competitors, particularly in males. Where alternative tactics are fixed for life, the causality of tactic choice is often unclear. In the African cichlid Lamprologus callipterus, large nest males collect and present empty snail shells to females that use these shells for egg deposition and brood care. Small dwarf males attempt to fertilize eggs by entering shells in which females are spawning. The bourgeois nest males exceed parasitic dwarf males in size by nearly two orders of magnitude, which is likely to result from greatly diverging growth patterns. Here, we ask whether growth patterns are heritable in this species, or whether and to which extent they are determined by environmental factors. Standardized breeding experiments using unrelated offspring and maternal half-sibs revealed highly divergent growth patterns of male young sired by nest or dwarf males, whereas the growth of female offspring of both male types did not differ. As expected, food had a significant modifying effect on growth, but neither the quantity of breeding substrate in the environment nor ambient temperature affected growth. None of the environmental factors tested influenced the choice of male life histories. We conclude that in L. callipterus growth rates of bourgeois and parasitic males are paternally inherited, and that male and female growth is phenotypically plastic to only a small degree. PMID:23789072

  6. Environmental and genetic correlates of allocation to sexual reproduction in the circumpolar plant Bistorta vivipara.

    PubMed

    Bills, John W; Roalson, Eric H; Busch, Jeremiah W; Eidesen, Pernille B

    2015-07-01

    • Sexual reproduction often requires more energy and time than clonal reproduction. In marginal arctic conditions, species that can reproduce both sexually and clonally dominate. Plants with this capacity may thrive because they can alter reproduction depending on environmental conditions. Bistorta vivipara is a circumpolar herb that predominately reproduces clonally, but certain environmental conditions promote higher investment in flowers (and possible sexual reproduction). Despite largely reproducing clonally, the herb has high levels of genetic variation, and the processes underlying this paradoxical pattern of variation remain unclear. Here we identified environmental factors associated with sexual investment and examined whether sexual reproduction is associated with higher levels of genetic variation.• We sampled 20 populations of B. vivipara across the high Arctic archipelago of Svalbard. In each population, we measured reproductive traits, environmental variables, and collected samples for genetic analyses. These samples permitted hypotheses to be tested regarding sexual investment and ecological and genetic correlates.• Increased soil nitrogen and organic matter content and decreased elevation were positively associated with investment in flowers. Increased investment in flowers significantly correlated with more genotypes per population. Linkage disequilibrium was consistent with predominant clonality, but several populations showed higher genetic variation and lower differentiation than expected. There was no geographical genetic structure.• In B. vivipara, sexual investment is positively associated with habitat quality. Bistorta vivipara predominantly reproduces clonally, but occasional outcrossing, efficient clonal reproduction, and dispersal by bulbils can explain the considerable genetic variation and weak genetic structure in B. vivipara. © 2015 Botanical Society of America, Inc.

  7. The effect of feeding or starvation on resource allocation to body components during the reproductive cycle of the sea urchin Sphaerechinus granularis (Lamarck).

    PubMed

    Guillou; Lumingas; Michel

    2000-03-15

    To determine the effects of feeding or starvation on resource allocation to body components during the reproductive cycle of Sphaerechinus granularis, sea urchins were placed in laboratory tanks and either fed ad libitum or starved during two different periods of their biological cycle, i.e. the mature stage and the recovery stage. The urchin growth was monitored over the whole experimental period, the gonad, gut, lantern indices and organic matter levels of different organs were determined at the end of the experiment. During the mature stage sea urchins in good nutritional conditions did not increase in size, but allotted energy to gonad production and stored reserves in body wall. Limiting food stopped the gonadal growth without complete regression. During the recovery period food allowed somatic growth, i.e. test growth and the storage of reserves in gonad somatic cells. This somatic production did not occur under food-limited conditions and the resources allotted for survival and maintenance were taken from different body components.

  8. The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus)

    NASA Astrophysics Data System (ADS)

    Yang, Ye-Feng; Jiang, Jing-Song; Pan, Jin-Ming; Ying, Yi-Bin; Wang, Xiao-Shuang; Zhang, Ming-Li; Lu, Min-Si; Chen, Xian-Hui

    2016-01-01

    A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance.

  9. The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus)

    PubMed Central

    Yang, Ye-Feng; Jiang, Jing-Song; Pan, Jin-Ming; Ying, Yi-Bin; Wang, Xiao-Shuang; Zhang, Ming-Li; Lu, Min-Si; Chen, Xian-Hui

    2016-01-01

    A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance. PMID:26765747

  10. The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus).

    PubMed

    Yang, Ye-Feng; Jiang, Jing-Song; Pan, Jin-Ming; Ying, Yi-Bin; Wang, Xiao-Shuang; Zhang, Ming-Li; Lu, Min-Si; Chen, Xian-Hui

    2016-01-14

    A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance.

  11. GROWTH, SURVIVORSHIP, AND REPRODUCTION OF DAPHNIA MIDDENDORFFIANA IN SEVERAL ARCTIC LAKES AND PONDS

    EPA Science Inventory

    The growth, survivorship and reproduction of Arctic region Daphnia middendorffiana was investigated in several lakes and ponds on the tundra in northern Alaska and additionally in a laboratory study. Growth rate equations, reproduction rates and survivorship under natural conditi...

  12. GROWTH, SURVIVORSHIP, AND REPRODUCTION OF DAPHNIA MIDDENDORFFIANA IN SEVERAL ARCTIC LAKES AND PONDS

    EPA Science Inventory

    The growth, survivorship and reproduction of Arctic region Daphnia middendorffiana was investigated in several lakes and ponds on the tundra in northern Alaska and additionally in a laboratory study. Growth rate equations, reproduction rates and survivorship under natural conditi...

  13. Graph theoretical stable allocation as a tool for reproduction of control by human operators

    NASA Astrophysics Data System (ADS)

    van Nooijen, Ronald; Ertsen, Maurits; Kolechkina, Alla

    2016-04-01

    During the design of central control algorithms for existing water resource systems under manual control it is important to consider the interaction with parts of the system that remain under manual control and to compare the proposed new system with the existing manual methods. In graph theory the "stable allocation" problem has good solution algorithms and allows for formulation of flow distribution problems in terms of priorities. As a test case for the use of this approach we used the algorithm to derive water allocation rules for the Gezira Scheme, an irrigation system located between the Blue and White Niles south of Khartoum. In 1925, Gezira started with 300,000 acres; currently it covers close to two million acres.

  14. Extrapituitary growth hormone in the chicken reproductive system.

    PubMed

    Luna, Maricela; Martínez-Moreno, Carlos G; Ahumada-Solórzano, Marisela S; Harvey, Steve; Carranza, Martha; Arámburo, Carlos

    2014-07-01

    Increasing evidence shows that growth hormone (GH) expression is not limited to the pituitary, as it can be produced in many other tissues. It is known that growth hormone (GH) plays a role in the control of reproductive tract development. Acting as an endocrine, paracrine and/or autocrine regulator, GH influences proliferation, differentiation and function of reproductive tissues. In this review we substantiate the local expression of GH mRNA and GH protein, as well as the GH receptor (GHR) in both male and female reproductive tract, mainly in the chicken. Locally expressed GH was found to be heterogeneous, with a 17 kDa variant being predominant. GH secretagogues, such as GHRH and TRH co-localize with GH expression in the chicken testis and induce GH release. In the ovarian follicular granulosa cells, GH and GHR are co-expressed and stimulate progesterone production, which was neutralized by a specific GH antibody. Both testicular and follicular cells in primary cultures were able to synthesize and release GH to the culture medium. We also characterized GH and GH mRNA expression in the hen's oviduct and showed that it had 99.6% sequence identity with pituitary GH. Data suggest local reproductive GH may have important autocrine/paracrine effects.

  15. Insulin-like growth factors and fish reproduction.

    PubMed

    Reinecke, Manfred

    2010-04-01

    Knowledge of fish reproduction is of high relevance to basic fish biology and comparative evolution. Furthermore, fish are excellent biomedical models, and the impact of aquaculture on worldwide food production is steadily increasing. Consequently, research on fish reproduction and the potential modes of its manipulation has become more and more important. Reproduction in fish is regulated by the integration of endogenous neuroendocrine (gonadotropins), endocrine, and autocrine/paracrine signals with exogenous (environmental) factors. The main endocrine regulators of gonadal sex differentiation and function are steroid hormones. However, recent studies suggest that other hormones are also involved. Most prominent among these hormones are the insulin-like growth factors (Igfs), i.e., Igf1, Igf2, and, most recently, Igf3. Thus, the present review deals with the expression patterns and potential physiological functions of Igf1 and Igf2 in male and female gonads. It further considers the potential involvement of growth hormone (Gh) and balances the reasons for endocrine vs. autocrine/paracrine action of the Igfs on the gonads of fish. Finally, this review discusses the early and late development of gonadal Igf1 and Igf2 and whether they are targets of endocrine-disrupting compounds. Future topics for novel research investigation on Igfs and fish reproduction are presented.

  16. Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir

    PubMed Central

    Deslauriers, Annie; Caron, Laurie; Rossi, Sergio

    2015-01-01

    During repetitive defoliation events, carbon can become limiting for trees. To maintain growth and survival, the resources have to be shared more efficiently, which could result in a trade-off between the different physiological processes of a plant. The objective of this study was to assess the effect of defoliation in carbon allocation of balsam fir [Abies balsamea (L.) Mill.] to test the presence of a trade-off between allocation to growth, carbon storage, and defense. Three defoliation intensities [control (C-trees, 0% defoliation), moderately (M-trees, 41–60%), and heavily (H-trees, 61–80%) defoliated] were selected in order to monitor several variables related to stem growth (wood formation in xylem), carbon storage in stem and needle (non-structural soluble sugars and starch), and defense components in needles (terpenoids compound) from May to October 2011. The concentration of starch was drastically reduced in both wood and leaves of H-trees with a quasi-absence of carbon partitioning to storage in early summer. Fewer kinds of monoterpenes and sesquiterpenes were formed with an increasing level of defoliation indicating a lower carbon allocation for the production of defense. The carbon allocation to wood formation gradually reduced at increasing defoliation intensities, with a lower growth rate and fewer tracheids resulting in a reduced carbon sequestration in cell walls. The hypothesis of a trade-off between the allocations to defense components and to non-structural (NCS) and structural (growth) carbon was rejected as most of the measured variables decreased with increasing defoliation. The starch amount was highly indicative of the tree carbon status at different defoliation intensity and future research should focus on the mechanism of starch utilization for survival and growth following an outbreak. PMID:26029235

  17. Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir.

    PubMed

    Deslauriers, Annie; Caron, Laurie; Rossi, Sergio

    2015-01-01

    During repetitive defoliation events, carbon can become limiting for trees. To maintain growth and survival, the resources have to be shared more efficiently, which could result in a trade-off between the different physiological processes of a plant. The objective of this study was to assess the effect of defoliation in carbon allocation of balsam fir [Abies balsamea (L.) Mill.] to test the presence of a trade-off between allocation to growth, carbon storage, and defense. Three defoliation intensities [control (C-trees, 0% defoliation), moderately (M-trees, 41-60%), and heavily (H-trees, 61-80%) defoliated] were selected in order to monitor several variables related to stem growth (wood formation in xylem), carbon storage in stem and needle (non-structural soluble sugars and starch), and defense components in needles (terpenoids compound) from May to October 2011. The concentration of starch was drastically reduced in both wood and leaves of H-trees with a quasi-absence of carbon partitioning to storage in early summer. Fewer kinds of monoterpenes and sesquiterpenes were formed with an increasing level of defoliation indicating a lower carbon allocation for the production of defense. The carbon allocation to wood formation gradually reduced at increasing defoliation intensities, with a lower growth rate and fewer tracheids resulting in a reduced carbon sequestration in cell walls. The hypothesis of a trade-off between the allocations to defense components and to non-structural (NCS) and structural (growth) carbon was rejected as most of the measured variables decreased with increasing defoliation. The starch amount was highly indicative of the tree carbon status at different defoliation intensity and future research should focus on the mechanism of starch utilization for survival and growth following an outbreak.

  18. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth.

    PubMed

    Reimers, Alexandra-M; Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf

    2017-07-18

    Cyanobacteria are an integral part of Earth's biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2 Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions.

  19. Biomass allocation and long-term growth patterns of temperate lianas in comparison with trees.

    PubMed

    Ichihashi, Ryuji; Tateno, Masaki

    2015-08-01

    The host-dependent support habit of lianas is generally interpreted as a strategy designed to reduce resource investment in mechanical tissues; this allows preferential allocation to leaf and stem extension, thereby enhancing productivity and competitive abilities. However, this hypothesis has not been rigorously tested. We examined the aboveground allometries regarding biomass allocation (leaf mass and current-year stem mass (approximated as biomass allocated to extension growth) vs total aboveground mass) and long-term apparent growth patterns (height and aboveground mass vs age, i.e. numbers of growth rings) for nine deciduous liana species in Japan. Lianas had, on average, three- and five-fold greater leaf and current-year stem mass, respectively, than trees for a given aboveground mass, whereas the time course to reach the forest canopy was comparable and biomass accumulation during that period was only one-tenth that of co-occurring canopy trees. The balance between the lengths of yearly stem extension and existing older stems indicated that lianas lost c. 75% of stem length during growth to the canopy, which is probably a consequence of the host-dependent growth. Our observations suggest that, although lianas rely on hosts mechanically, allowing for short-term vigorous growth, this habit requires a large cost and could limit plant growth over protracted periods. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Allocation changes buffer CO2 effect on tree growth since the last ice age

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C. C.; Gerhart, L. M.; Ward, J. K.

    2015-12-01

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf- internal [CO2] (ci) was close to the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that the ci/ca ratio was stable because both vapor pressure deficit and temperature were decreased with compensating effects. Reduced photorespiration at lower temperatures partly mitigated the effect of low ci on gross primary production, but maintenance of present-day radial growth also required changes in carbon allocation, including a ~25% reduction in below-ground carbon allocation and a ~7% in allocation to leaves. Such a shift was possible due to reduced drought stress. Our findings are consistent with the observed increase in below-ground allocation in FACE experiments and the apparent homoeostasis of measured radial growth as ca increases today; results which our model can also reproduce.

  1. Growth and allocation of resources in economics: The agent-based approach

    NASA Astrophysics Data System (ADS)

    Scalas, Enrico; Gallegati, Mauro; Guerci, Eric; Mas, David; Tedeschi, Alessandra

    2006-10-01

    Some agent-based models for growth and allocation of resources are described. The first class considered consists of conservative models, where the number of agents and the size of resources are constant during time evolution. The second class is made up of multiplicative noise models and some of their extensions to continuous time.

  2. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea.

    PubMed

    Liu, Yong-Bo; Darmency, Henry; Stewart, C Neal; Wei, Wei; Tang, Zhi-Xi; Ma, Ke-Ping

    2015-06-01

    This study aims to investigate the relative plant growth and reproduction of insect-resistant and susceptible plants following the introgression of an insect-resistance Bt-transgene from Brassica napus, oilseed rape, to wild Brassica juncea. The second backcrossed generation (BC2) from a single backcross family was grown in pure and mixed stands of Bt-transgenic and non-transgenic siblings under two insect treatments. Various proportions of Bt-transgenic plants were employed in mixed stands to study the interaction between resistant and susceptible plants. In the pure stands, Bt-transgenic BC2 plants performed better than non-transgenic plants with or without insect treatments. In mixed stands, Bt-transgenic BC2 plants produced fewer seeds than their non-Bt counterparts at low proportions of Bt-transgenic BC2 plants in the absence of insects. Reproductive allocation of non-transgenic plants marginally increased with increasing proportions of Bt-transgenic plants under herbivore pressure, which resulted in increased total biomass and seed production per stand. The results showed that the growth of non-transgenic plants was protected by Bt-transgenic plants under herbivore pressure. The Bt-transgene might not be advantageous in mixed stands of backcrossed hybrids; thus transgene introgression would not be facilitated when herbivorous insects are not present. However, a relatively large initial population of Bt-transgenic plants might result in transgene persistence when target herbivores are present.

  3. Food restriction alters energy allocation strategy during growth in tobacco hornworms (Manduca sexta larvae).

    PubMed

    Jiao, Lihong; Amunugama, Kaushalya; Hayes, Matthew B; Jennings, Michael; Domingo, Azriel; Hou, Chen

    2015-08-01

    Growing animals must alter their energy budget in the face of environmental changes and prioritize the energy allocation to metabolism for life-sustaining requirements and energy deposition in new biomass growth. We hypothesize that when food availability is low, larvae of holometabolic insects with a short development stage (relative to the low food availability period) prioritize biomass growth at the expense of metabolism. Driven by this hypothesis, we develop a simple theoretical model, based on conservation of energy and allometric scaling laws, for understanding the dynamic energy budget of growing larvae under food restriction. We test the hypothesis by manipulative experiments on fifth instar hornworms at three temperatures. At each temperature, food restriction increases the scaling power of growth rate but decreases that of metabolic rate, as predicted by the hypothesis. During the fifth instar, the energy budgets of larvae change dynamically. The free-feeding larvae slightly decrease the energy allocated to growth as body mass increases and increase the energy allocated to life sustaining. The opposite trends were observed in food restricted larvae, indicating the predicted prioritization in the energy budget under food restriction. We compare the energy budgets of a few endothermic and ectothermic species and discuss how different life histories lead to the differences in the energy budgets under food restriction.

  4. Food restriction alters energy allocation strategy during growth in tobacco hornworms ( Manduca sexta larvae)

    NASA Astrophysics Data System (ADS)

    Jiao, Lihong; Amunugama, Kaushalya; Hayes, Matthew B.; Jennings, Michael; Domingo, Azriel; Hou, Chen

    2015-08-01

    Growing animals must alter their energy budget in the face of environmental changes and prioritize the energy allocation to metabolism for life-sustaining requirements and energy deposition in new biomass growth. We hypothesize that when food availability is low, larvae of holometabolic insects with a short development stage (relative to the low food availability period) prioritize biomass growth at the expense of metabolism. Driven by this hypothesis, we develop a simple theoretical model, based on conservation of energy and allometric scaling laws, for understanding the dynamic energy budget of growing larvae under food restriction. We test the hypothesis by manipulative experiments on fifth instar hornworms at three temperatures. At each temperature, food restriction increases the scaling power of growth rate but decreases that of metabolic rate, as predicted by the hypothesis. During the fifth instar, the energy budgets of larvae change dynamically. The free-feeding larvae slightly decrease the energy allocated to growth as body mass increases and increase the energy allocated to life sustaining. The opposite trends were observed in food restricted larvae, indicating the predicted prioritization in the energy budget under food restriction. We compare the energy budgets of a few endothermic and ectothermic species and discuss how different life histories lead to the differences in the energy budgets under food restriction.

  5. A size-structured model of bacterial growth and reproduction.

    PubMed

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  6. Deciphering the Costs of Reproduction in Mango – Vegetative Growth Matters

    PubMed Central

    Capelli, Mathilde; Lauri, Pierre-Éric; Normand, Frédéric

    2016-01-01

    Irregular fruit production across successive years is a major issue that limits the profitability of most temperate and tropical fruit crops. It is particularly affected by the reciprocal relationships between vegetative and reproductive growth. The concept of the costs of reproduction is defined in terms of losses in the potential future reproductive success caused by current investment in reproduction. This concept, developed in ecology and evolutionary biology, could provide a methodological framework to analyze irregular bearing in fruit crops, especially in relation to the spatial scale at which studies are done. The objective of this study was to investigate the direct effects of reproduction during a growing cycle on reproduction during the following growing cycle and the indirect effects through vegetative growth between these two reproductive events, for four mango cultivars and during two growing cycles. Two spatial scales were considered: the growth unit (GU) and the scaffold branch. Costs of reproduction were detected between two successive reproductive events and between reproduction and vegetative growth. These costs were scale-dependent, generally detected at the GU scale and infrequently at the scaffold branch scale, suggesting partial branch autonomy with respect to processes underlying the effects of reproduction on vegetative growth. In contrast, the relationships between vegetative growth and reproduction were positive at the GU scale and at the scaffold branch scale in most cases, suggesting branch autonomy for the processes, mainly local, underlying flowering and fruiting. The negative effect of reproduction on vegetative growth prevailed over the positive effect of vegetative growth on the subsequent reproduction. The costs of reproduction were also cultivar-dependent. Those revealed at the GU scale were related to the bearing behavior of each cultivar. Our results put forward the crucial role of vegetative growth occurring between two

  7. Appendicularian ecophysiology I: Food concentration dependent clearance rate, assimilation efficiency, growth and reproduction of Oikopleura dioica

    NASA Astrophysics Data System (ADS)

    Lombard, Fabien; Renaud, Florent; Sainsbury, Christopher; Sciandra, Antoine; Gorsky, Gabriel

    2009-11-01

    Three aspects of the appendicularian O. dioica' s ecophysiology were measured here: 1) morphological parameters over a wide range of appendicularian sizes, including mature animals in order to document the morphological characteristics inducing reproduction; 2) clearance rate and assimilation efficiency using feeding incubations with different algal concentrations and 3) the effect of food concentration on growth, mortality and reproduction. The relationship between the body carbon weight and the clearance rate follows a power function, with an exponent of 0.91 (± 0.07). The rate of particles retention increases with the food concentration following a Michaelis-Menten relationship (half-saturation constant = 151 ± 22 µg C l - 1 , maximum clearance rate = 12 ± 1 µg C µg C - 1 d - 1 ). The carbon assimilation efficiency decreases with the increasing food concentration. As a result, appendicularian growth which is limited in concentrations lower than 50 µg C l - 1 is saturated above 100 µg C l - 1 . In immature animals the gonad represents less than 30% of the body volume whereas in mature individuals, its volume varies between 50% and 87% (mean 63%) suggesting that gonad/total volume ratio can be used as indicator of the maturation stages. The gonad weight in mature animals represents 70.3 (± 4.6)% of the total body carbon weight. Two major maturity stages can explain the changes in energy allocation: i) the somatic growth, when less energy is invested in gonad growth when compared to the rest of the body and ii) the maturation phase where most of the assimilated matter is invested in gonad maturation. This process is rapid, lasting only few hours. For this reason we measured completely mature organisms that are generally not measured during the experimental work with appendicularians. In food-limited conditions, the gonad maturation process starts with smaller individuals and ends with smaller reproductive animals having the same gonad to total volume ratio

  8. Water availability and population origin affect the expression of the tradeoff between reproduction and growth in Plantago coronopus.

    PubMed

    Hansen, C F; García, M B; Ehlers, B K

    2013-05-01

    Investment in reproduction and growth represent a classic tradeoff with implication for life history evolution. The local environment can play a major role in the magnitude and evolutionary consequences of such a tradeoff. Here, we examined the investment in reproductive and vegetative tissue in 40 maternal half-sib families from four different populations of the herb Plantago coronopus growing in either a dry or wet greenhouse environment. Plants originated from populations with an annual or a perennial life form, with annuals prevailing in drier habitats with greater seasonal variation in both temperature and precipitation. We found that water availability affected the expression of the tradeoff (both phenotypic and genetic) between reproduction and growth, being most accentuated under dry condition. However, populations responded very differently to water treatments. Plants from annual populations showed a similar response to drought condition with little variation among maternal families, suggesting a history of selection favouring genotypes with high allocation to reproduction when water availability is low. Plants from annual populations also expressed the highest level of plasticity. For the perennial populations, one showed a large variation among maternal families in resource allocation and expressed significant negative genetic correlations between reproductive and vegetative biomass under drought. The other perennial population showed less variation in response to treatment and had trait values similar to those of the annuals, although it was significantly less plastic. We stress the importance of considering intraspecific variation in response to environmental change such as drought, as conspecific plants exhibited very different abilities and strategies to respond to high versus low water availability even among geographically close populations. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  9. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  10. Effect of protein supplementation and forage allowance on the growth and reproduction of beef heifers grazing stockpiled tall fescue.

    PubMed

    Lyons, S E; Shaeffer, A D; Drewnoski, M E; Poore, M H; Poole, D H

    2016-04-01

    Stockpiled tall fescue can provide adequate winter forage for beef cattle, although unsupplemented replacement heifers may display marginal performance before breeding. The objective of this study was to determine if protein supplementation and/or additional forage improves growth and reproductive performance of replacement heifers grazing stockpiled fescue. Cattle averaging 272 ± 1.59 kg were stratified by BW and then randomly assigned to 1 of 4 plots within a pasture replication. Treatment combinations were assigned in a 2 × 2 factorial arrangement and included 1) a conservative forage allocation ("normal," targeting 85% forage use) and mineral supplement (normal forage allocation with mineral supplement [FM]), 2) normal forage allocation with protein tub (FT), 3) more liberal forage allocation ("extra," targeting 70% forage use) and mineral supplement (extra forage allocation with mineral supplement [EM]), and 4) "extra forage allocation with protein tub (ET). Treatments were administered for 8 wk from early November to early January. Heifers were fed fescue hay for 1 wk before breeding in late January. Heifers were synchronized with the 7-d CO-Synch + controlled internal drug release device protocol and inseminated in late January. Heifers were checked for pregnancy by ultrasonography at 35 and 90 d after AI. Main and interaction effects between the 2 treatments were determined. Total supplement intake was greater for protein tub than mineral supplement (0.36 vs. 0.11 kg·heifer·d, respectively; < 0.0001), and the additional dietary protein in the tub groups resulted in greater serum urea N concentrations ( < 0.0001; 8.15 vs. 10.4 mg/dL for mineral and protein tub, respectively). Forage utilization efficiency was greater for normal than extra forage allocation (74.7 vs. 65.8%, respectively; < 0.0001). Main effects of both treatments on ADG were significant ( < 0.0001; 0.28, 0.43, 0.43, and 0.51 kg·heifer·d for FM, FT, EM, and ET, respectively). There was

  11. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    PubMed

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  12. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    PubMed Central

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W.; Ryu, Choong-Min

    2015-01-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation. PMID:26361480

  13. Effects of growth hormone on female reproductive organs.

    PubMed

    Kaiser, G G; Sinowatz, F; Palma, G A

    2001-10-01

    During the last decade many experiments have been performed to study the effects of growth hormone (GH, somatotropin) on reproductive functions. Most of the studies found only slight or no effects of GH treatment, both on the oestrous cycle and on gonadotropin, progesterone. or oestrogen serum levels. In GH-treated animals, elevated levels of insulin-like growth factor I and GH in the serum could be correlated with an increased number of small (< 5 mm in diameter) ovarian follicles, possibly as a consequence of a reduction of apoptosis and follicular atresia. There is still controversy over the effects of GH on in vivo and in vitro embryo production and on the gestation period. Recent studies produced some evidence that GH-receptor is expressed in ovarian tissue, implying a direct role for GH in the ovary.

  14. Gravitational Effects on Reproduction, Growth, and Development of Mammals

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1985-01-01

    The broad objective of this research program is to determine the role which gravity plays in the growth and development of mammalian animals. Current studies are focused on the effects of graded hypergravitatinal field intensities on mice, rats and other small sized laboratory animals using the chronic centrifugation technique. They include studies on reproduction and prenatal and postnatel growth and development. Among the important questions addressed are: (1) what stage or stages in animal development are affected by hypergravity and what are the effects? (2) is there a minimum or critical body size for hypergravity to produce a significant effect on growth and development? (3) are there field intensity thresholds for the preceding questions? From analysis of the body masses at birth of rats conceived and allowed to undergo gestation under 2.1G and under normal gravity (1G), it was found that there was no significant difference between the two groups. Futhermore, their growth rates postnatally were the same until they reached a body mass of approximately 50 grams when the 2.1G group showed a significantly slower rate. Results from these studies support the conclusion that prenatal as well as the early postnatal stages of growth and development of the rat are refractory to hyper-G.

  15. Gravitational Effects on Reproduction, Growth, and Development of Mammals

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1985-01-01

    The broad objective of this research program is to determine the role which gravity plays in the growth and development of mammalian animals. Current studies are focused on the effects of graded hypergravitatinal field intensities on mice, rats and other small sized laboratory animals using the chronic centrifugation technique. They include studies on reproduction and prenatal and postnatel growth and development. Among the important questions addressed are: (1) what stage or stages in animal development are affected by hypergravity and what are the effects? (2) is there a minimum or critical body size for hypergravity to produce a significant effect on growth and development? (3) are there field intensity thresholds for the preceding questions? From analysis of the body masses at birth of rats conceived and allowed to undergo gestation under 2.1G and under normal gravity (1G), it was found that there was no significant difference between the two groups. Futhermore, their growth rates postnatally were the same until they reached a body mass of approximately 50 grams when the 2.1G group showed a significantly slower rate. Results from these studies support the conclusion that prenatal as well as the early postnatal stages of growth and development of the rat are refractory to hyper-G.

  16. Environmental control of reproductive phenology and the effect of pollen supplementation on resource allocation in the cleistogamous weed, Ruellia nudiflora (Acanthaceae).

    PubMed

    Munguía-Rosas, Miguel A; Parra-Tabla, Victor; Ollerton, Jeff; Cervera, J Carlos

    2012-02-01

    Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora. Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers. CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen. Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds, respectively.

  17. Environmental control of reproductive phenology and the effect of pollen supplementation on resource allocation in the cleistogamous weed, Ruellia nudiflora (Acanthaceae)

    PubMed Central

    Munguía-Rosas, Miguel A.; Parra-Tabla, Victor; Ollerton, Jeff; Cervera, J. Carlos

    2012-01-01

    • Background and Aims Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora. • Methods Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers. • Key Results CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen. • Conclusions Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds

  18. Concentrative nitrogen allocation to sun-lit branches and the effects on whole-plant growth under heterogeneous light environments.

    PubMed

    Sugiura, D; Tateno, M

    2013-08-01

    We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (N(area)) also had the highest rates of growth, and HS-branches with the lowest N(area) had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.

  19. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

    PubMed Central

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc

    2016-01-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  20. Evaluation of bioelectrical impedance analysis (BIA) to measure condition and energy allocated to reproduction in marine fishes

    NASA Astrophysics Data System (ADS)

    Fitzhugh, G. R.; Wuenschel, M. J.; McBride, R. S.

    2010-04-01

    Reliable estimates of fish energy density at specific times prior to spawning may provide suitable proxies for egg production, and thereby help to explain some of the observed annual variation in recruits per spawner. Our goal is to develop and test modifications of BIA technology to measure energy allocation to reproduction for a variety of marine fishes. To date, a newly developed measuring board and probe system stabilized readings, which was demonstrated by a significant reduction in the coefficients of variation for impedance measures. Total body water, wet and dry weights could be predicted with very good precision (r2 = 0.92-0.99) using BIA measures of reactance or resistance for a number of finfish species. While constituent relationships (e.g. body water- body mass functions) did not differ seasonally, we did find that BIA measures are sensitive to body composition changes related to the seasonal spawning cycle. In an examination of monthly samples of tilefish, phase angle decreased below 15° in post-spawning (regressed) females. Such a monthly trend, which suggests available energy had decreased following the spawning season, was not evident from other, more traditional measures of condition including body-muscle water content, Fulton's K or ordinal measures of fat deposition (such as mesenteric fat). These preliminary results show that BIA technology is a promising application for tracking and efficiently predicting energetic condition of marine fishes.

  1. Does the silver moss Bryum argenteum exhibit sex-specific patterns in vegetative growth rate, asexual fitness or prezygotic reproductive investment?

    PubMed Central

    Horsley, Kimberly; Stark, Lloyd R.; McLetchie, D. Nicholas

    2011-01-01

    Background and Aims Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale. Methods Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass. Key Results The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females. Conclusions Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and

  2. Does the silver moss Bryum argenteum exhibit sex-specific patterns in vegetative growth rate, asexual fitness or prezygotic reproductive investment?

    PubMed

    Horsley, Kimberly; Stark, Lloyd R; McLetchie, D Nicholas

    2011-05-01

    Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale. Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass. The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females. Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is

  3. Effects of stoichiometric dietary mixing on Daphnia growth and reproduction.

    PubMed

    Acharya, Kumud; Kyle, Marcia; Elser, James J

    2004-02-01

    Herbivores often encounter nutritional deficiencies in their diets because of low nutrient content of plant biomass. Consumption of various diet items with different nutrient contents can potentially alleviate these nutritional deficiencies. However, most laboratory studies and modeling of herbivorous animals have been done with diets in which all food has uniform nutrient content. It is not clear whether heterogeneous versus uniform food of equal overall nutrient content is of equivalent nutritional value. We tested the effects of dietary mixing on performance of a model organism, Daphnia. We fed two species of Daphnia ( D. galeata, D. pulicaria) with diets of equivalent bulk stoichiometric food quality (C:P) and studied whether they would produce equivalent performance when C:P was uniform among cells or when the diet involved a mixture of high C:P and low C:P cells. Daphnia were fed saturating and limiting concentrations of a uniform food of moderate C:P (UNI) or mixtures (MIX) of high C:P (LOP) and low C:P (HIP) algae prepared to match C:P in UNI. Daphnia were also fed HIP and LOP algae separately. Juvenile growth rate and adult fecundity were measured. D. galeata performance in UNI and MIX treatments did not differ, indicating that partitioning of C and P among particles did not affect dietary quality. Similarly, D. pulicaria's performance was similar in the MIX and UNI treatments but only at low food abundance. In the high food treatment, both growth and reproduction were higher in the MIX treatment, indicating some benefit of a more heterogeneous diet. The mechanisms for this improvement are unclear. Also, food quality affected growth and reproduction even at low food levels for both D. pulicaria and D. galeata. Our results indicate that some species of zooplankton can benefit from stoichiometric heterogeneity on diet.

  4. [Effects of Cuscuta australis parasitism on the growth, reproduction and defense of Solidago canadensis].

    PubMed

    Yang, Bei-fen; Du, Le-shan; Li, Jun-min

    2015-11-01

    In order to find out how parasitic Cuscuta australis influences the growth and reproduction of Solidago canadensis, the effects of the parasitism of C. australis on the morphological, growth and reproductive traits of S. canadensis were examined and the relationships between the biomass and the contents of the secondary metabolites were analyzed. The results showed that the parasitism significantly reduced the plant height, basal diameter, root length, root diameter, root biomass, stem biomass, leaf biomass, total biomass, number of inflorescences branches, axis length of inflorescence, and number of inflorescence. In particular, plant height, number of inflorescence and the stem biomass of parasitized S. canadensis were only 1/2, 1/5 and 1/8 of non-parasitized plants, respectively. There was no significant difference of plant height, root length, stem biomass and total biomass between plants parasitized with high and low intensities. But the basal diameter, root volume, leaf biomass, root biomass, the number of inflorescences branches, axis length of inflorescence and number of inflorescence of S. canadensis parasitized with high intensity were significantly lower than those of plants parasitized with low intensity. The parasitism of C. australis significantly increased the tannins content in the root and the flavonoids content in the stem of S. canadensis. The biomass of S. canadensis was significantly negatively correlated with the tannin content in the root and the flavonoids content in the stem. These results indicated that the parasitism of C. australis could inhibit the growth of S. canadensis by changing the resources allocation patterns as well as reducing the resources obtained by S. canadensis.

  5. Onset of and recovery from nitrogen stress during reproductive growth of soybean

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr; Rideout, J. W.; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Photosynthetic rates and allocation of dry matter, nitrogen, and nonstructural carbohydrates were determined during onset of and recovery from a nitrogen stress for reproductive soybean (Glycine max [L.] Merrill cv Ransom) plants. Until the beginning of seed fill, non-nodulated plants were grown in flowing solution culture with 1.0 mM NO3- in a complete nutrient solution. One set of plants then was transferred to minus-nitrogen solution for 24 d of seed fill; a second set was transferred to a minus-nitrogen solution for 14 d followed by return to the complete solution with 1.0 mM NO3- for the remaining 10 d of seed fill; and a third set was continued on the complete solution. Net CO2 exchange rates of individual leaves, which remained nearly constant during seed fill for nonstressed plants, declined at an accelerated rate during onset of nitrogen stress as the specific content of reduced nitrogen in the leaves was decreased by remobilization of nitrogen to support pod growth. The rate of nitrogen remobilization out of leaves initially was relatively greater than the decrease in photosynthetic rate. While rate of pod growth declined in response to the developing nitrogen stress, photosynthetic assimilation of carbon exceeded reproductive demand and nonstructural carbohydrates accumulated within tissues. Following resupply of exogenous NO3-, specific rate of NO3- uptake by roots was enhanced relative to nonstressed plants. While there was little increase in content of reduced nitrogen in leaves, net remobilization of nitrogen out of leaves ceased, and the decline in photosynthetic rate stabilized at about 51% of that for nonstressed plants. This level of photosynthesis, combined with the availability of elevated pools of carbohydrates accumulated during stress, was sufficient to support the increases in both the specific rates of NO3- uptake and the rate of pod growth during recovery.

  6. Onset of and recovery from nitrogen stress during reproductive growth of soybean

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr; Rideout, J. W.; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Photosynthetic rates and allocation of dry matter, nitrogen, and nonstructural carbohydrates were determined during onset of and recovery from a nitrogen stress for reproductive soybean (Glycine max [L.] Merrill cv Ransom) plants. Until the beginning of seed fill, non-nodulated plants were grown in flowing solution culture with 1.0 mM NO3- in a complete nutrient solution. One set of plants then was transferred to minus-nitrogen solution for 24 d of seed fill; a second set was transferred to a minus-nitrogen solution for 14 d followed by return to the complete solution with 1.0 mM NO3- for the remaining 10 d of seed fill; and a third set was continued on the complete solution. Net CO2 exchange rates of individual leaves, which remained nearly constant during seed fill for nonstressed plants, declined at an accelerated rate during onset of nitrogen stress as the specific content of reduced nitrogen in the leaves was decreased by remobilization of nitrogen to support pod growth. The rate of nitrogen remobilization out of leaves initially was relatively greater than the decrease in photosynthetic rate. While rate of pod growth declined in response to the developing nitrogen stress, photosynthetic assimilation of carbon exceeded reproductive demand and nonstructural carbohydrates accumulated within tissues. Following resupply of exogenous NO3-, specific rate of NO3- uptake by roots was enhanced relative to nonstressed plants. While there was little increase in content of reduced nitrogen in leaves, net remobilization of nitrogen out of leaves ceased, and the decline in photosynthetic rate stabilized at about 51% of that for nonstressed plants. This level of photosynthesis, combined with the availability of elevated pools of carbohydrates accumulated during stress, was sufficient to support the increases in both the specific rates of NO3- uptake and the rate of pod growth during recovery.

  7. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation

    PubMed Central

    Li, Guangqi; Gerhart, Laci M.; Harrison, Sandy P.; Ward, Joy K.; Harris, John M.; Prentice, I. Colin

    2017-01-01

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today. PMID:28233772

  8. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation.

    PubMed

    Li, Guangqi; Gerhart, Laci M; Harrison, Sandy P; Ward, Joy K; Harris, John M; Prentice, I Colin

    2017-02-24

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today.

  9. How to time growth and reproduction during the vegetative season: an evolutionary choice for indeterminate growers in seasonal environments.

    PubMed

    Ejsmond, Maciej Jan; Czarnołeski, Marcin; Kapustka, Filip; Kozłowski, Jan

    2010-05-01

    Indeterminate growers such as plants, mollusks, fish, amphibians, and reptiles are highly diversified with respect to the seasonal timing of growth and reproduction. Current life-history theory does not offer a consistent view on the origin of this diversity. We use dynamic optimization to examine resource allocation in seasonal environments, considering that offspring produced at different times of the season have unequal future prospects. Reduction of these prospects during the season produced indeterminate growers that grew mostly after maturation, achieving large final body sizes. It also changed the optimal timing of growth and reproduction during a season, from grow-first-reproduce-later, as usually predicted by life-history theory, to the reproduce-first-grow-later tactic; other tactics were produced by the interactive effects of winter survival and unequal offspring prospects. The results suggest that devaluation of offspring production provides conditions for the evolution of capital breeding, even in fully predictable seasonal environments. Thus, the unequal fate of newborns from different parts of a season may explain the origin of diversity of reproductive phenologies, growth patterns, and capital breeding in nature.

  10. Respiration and Reproductive Effort in Xanthium canadense

    PubMed Central

    KINUGASA, TOSHIHIKO; HIKOSAKA, KOUKI; HIROSE, TADAKI

    2005-01-01

    • Background and Aims The proportion of resources devoted to reproduction in the plant is called the reproductive effort (RE), which is most commonly expressed as the proportion of reproductive biomass to total plant biomass production (REW). Reproductive yield is the outcome of photosynthates allocated to reproductive structures minus subsequent respiratory consumption for construction and maintenance of reproductive structures. Thus, REW can differ from RE in terms of photosynthates allocated to reproductive structures (REP). • Methods Dry mass growth and respiration of vegetative and reproductive organs were measured in Xanthium canadense and the amount of photosynthates and its partitioning to dry mass growth and respiratory consumption were determined. Differences between REW and REP were analysed in terms of growth and maintenance respiration. • Key Results The fraction of allocated photosynthates that was consumed by respiration was smaller in the reproductive organ than in the vegetative organs. Consequently, REP was smaller than REW. The smaller respiratory consumption in the reproductive organ resulted from its shorter period of existence and a seasonal decline in temperature, as well as a slower rate of maintenance respiration, although the fraction of photosynthates consumed by growth respiration was larger than in the vegetative organs. • Conclusions Reproductive effort in terms of photosynthates (REP) was smaller than that in terms of biomass (REW). This difference resulted from respiratory consumption for maintenance, which was far smaller in the reproductive organ than in vegetative organs. PMID:15837721

  11. Sapling biomass allocation and growth in the understory of a deciduous hardwood forest.

    PubMed

    Delucia, E; Sipe, T; Herrick, J; Maherali, H

    1998-07-01

    Above- and belowground tissues of co-occurring saplings (0.1-1 m height) of Acer saccharum Marsh. (very shade tolerant), Acer rubrum L. (shade tolerant), Fraxinus americana L. (intermediate shade tolerant), and Prunus serotina Ehrh. (shade intolerant) were harvested from a forest understory to test the hypothesis that the pattern of biomass allocation varied predictably with shade-tolerance rank. The placement and length of branches along the main axis were consistent with the formation of a monolayer of foliage for the tolerant and intermediate species. Other morphological characteristics did not vary predictably with shade-tolerance rank. The maintenance of high specific leaf area (SLA; leaf area/leaf mass) and leaf area ratio (LAR; leaf area/sapling mass) is considered important for growth under extreme shade, yet these traits were not clearly related to the shade-tolerance rank of these species. Fraxinus americana, an intermediate species, had the highest LAR and growth rate in the understory, and with the exception of P. serotina, the very shade-tolerant A. saccharum had the lowest LAR. Prunus serotina maintained a large starch-rich tap root and shoot dieback was common, yielding the largest root/shoot ratio for these species. The observed allocation patterns were not similar to the long-standing expectation for the phenotypic response of juvenile trees to shade, but were consistent with three hypothetical "growth strategies" in the understory: (1) the low SLA and LAR of A. saccharum may provide a measure of defense against herbivores and pathogens and thus promote persistence in the understory, (2) the high SLA for F. americana and high LAR for F. americana and A. rubrum may enable these species to achieve high growth rates in shade, and (3) the large carbohydrate stores of P. serotina may poise this species for opportunistic growth following disturbance. The relative importance of resistance to herbivores and pathogens vs. the maintenance of high growth

  12. Juvenile compensatory growth has negative consequences for reproduction in Trinidadian guppies (Poecilia reticulata).

    PubMed

    Auer, Sonya K; Arendt, Jeffrey D; Chandramouli, Radhika; Reznick, David N

    2010-08-01

    Compensatory or 'catch-up' growth may be an adaptive mechanism that buffers the growth trajectory of young organisms from deviations caused by reduced food availability. Theory generally assumes that rapid juvenile compensatory growth impacts reproduction only through its positive effects on age and size at maturation, but potential reproductive costs to juvenile compensatory growth remain virtually unexplored. We used a food manipulation experiment to examine the reproductive consequences of compensatory growth in Trinidadian guppies (Poecilia reticulata). Compensatory growth did not affect adult growth rates, litter production rates or investment in offspring size. However, compensatory growth had negative effects on litter size, independent of the effects of female body length, resulting in a 20% decline in offspring production. We discuss potential mechanisms behind this observed cost to reproduction.

  13. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage?

    PubMed

    Wiley, Erin; Huepenbecker, Sarah; Casper, Brenda B; Helliker, Brent R

    2013-11-01

    There is no consensus about how stresses such as low water availability and temperature limit tree growth. Sink limitation to growth and survival is often inferred if a given stress does not cause non-structural carbohydrate (NSC) concentrations or levels to decline along with growth. However, trees may actively maintain or increase NSC levels under moderate carbon stress, making the pattern of reduced growth and increased NSCs compatible with carbon limitation. To test this possibility, we used full and half defoliation to impose severe and moderate carbon limitation on 2-year-old Quercus velutina Lam. saplings grown in a common garden. Saplings were harvested at either 3 weeks or 4 months after treatments were applied, representing short- and longer-term effects on woody growth and NSC levels. Both defoliation treatments maintained a lower total leaf area than controls throughout the experiment with no evidence of photosynthetic up-regulation, and resulted in a similar total biomass reduction. While fully defoliated saplings had lower starch levels than controls in the short term, half defoliated saplings maintained control starch levels in both the short and longer term. In the longer term, fully defoliated saplings had the greatest starch concentration increment, allowing them to recover to near-control starch levels. Furthermore, between the two harvest dates, fully and half defoliated saplings allocated a greater proportion of new biomass to starch than did controls. The maintenance of control starch levels in half defoliated saplings indicates that these trees actively store a substantial amount of carbon before growth is carbon saturated. In addition, the allocation shift favouring storage in defoliated saplings is consistent with the hypothesis that, as an adaptation to increasing carbon stress, trees can prioritize carbon reserve formation at the expense of growth. Our results suggest that as carbon limitation increases, reduced growth is not necessarily

  14. Is growth reduction in defoliated trees a consequence of prioritized carbon allocation to reserves?

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Schmid, Sandra; Palacio, Sara

    2015-04-01

    Tissue concentrations of carbon reserve compounds are frequently used as proxies for the carbon balance of trees, but the mechanisms regulating the formation of carbon reserves are still under debate. It is often assumed that carbon storage in trees is largely a consequence of surplus carbon supply (reserve accumulation). In contrast, carbon storage might also occur against prevailing carbon demand from other sink activities, like growth (reserve formation), in which case carbon reserve pools might increase even at carbon limitation, and thus, cannot be used as indicators for a tree's carbon supply status. Such a situation might be severe defoliation by herbivores. Especially in evergreen tree species, it has been shown that natural and experimental defoliation leads to a reduction of growth that is proportional to the lost leaf area. Compared to this strong effect on growth, carbon reserve pools (i.e. sugars, starch and storage lipids) of defoliated trees often exert only a temporary decrease immediately after defoliation, while tissue concentrations of carbon reserves return to those of undefoliated trees by the end of the growing season. Within a recent experiment, we investigated, if the growth decline in trees following early season defoliation is the consequence of prioritized carbon allocation to carbon reserves over growth. To test this hypothesis we grew seedlings of evergreen Quecus ilex and deciduous Quercus petraea trees under low (140 ppm), medium (280 ppm) and high (560 ppm) CO2 concentrations and completely defoliated half of the seedlings in each CO2 treatment at the beginning of the growing season. In undefoliated control trees, CO2 had a significant positive effect on the seasonal growth in both species. Defoliation had a strong negative impact on growth in the evergreen Q. illex, but less in the deciduous Q. petraea. In both species, the growth reduction after defoliation relative to undefoliated controls was very similar at all three CO2

  15. Changes in growth and reproductive traits of dragonet Callionymus valenciennei in Tokyo Bay, concurrent with decrease in stock size.

    PubMed

    Kodama, Keita; Lee, Jeong-Hoon; Shiraishi, Hiroaki; Horiguchi, Toshihiro

    2014-02-01

    We examined changes in the growth and reproductive traits of dragonet Callionymus valenciennei concurrent with decrease in stock size in Tokyo Bay. Stock size in mid 2000s decreased to 14% of that recorded in early 1990s. The minimum standard length at which dragonet attain gonadal maturation was smaller in 2000s (4.8 cm) compared to that in 1990s (6.0 cm). In addition, timing of the onset of the first spawning became earlier in 2000s (starting from spring) than that in 1990s (from summer). We also found significant changes in growth for both sexes from 1990s to 2000s; growth of dragonet after they attained sexual maturation showed a significant decrease in 2000s against that in 1990s. Changes in the life history traits may reflect trade-off for allocating available energy resource to reproduction rather than to somatic growth under limited prey abundance for enhancing a chance for stock recovery. However, these changes in the life history traits might have not led to the resilience of the population due to negative effects of hypoxia on settlement of larvae from the spring spawning season.

  16. A dynamic model for intertemporal allocation of old-growth forests in the Pacific Northwest.

    PubMed

    Carver, Andrew D; Lee, John G; LeMaster, Dennis C

    2002-12-01

    Across the globe, continued policy debates regarding the management of old-growth forests center around the difficult task of balancing economic and ecological considerations. Though the forests of the Pacific Northwest United States are among the most studied old-growth ecosystems, ecological and economic analyses have yielded public land management directives that remain controversial. Specifically, the recently adopted Northwest Forest Plan lacks explicit goals for maintaining intergenerational equity for the use of forest resources and the diversity of old-growth ecosystems. Unlike previous studies which rely on monetary quantification of costs and benefits, this study develops and applies a conceptual framework for evaluating socially optimal Pacific Northwest old-growth forest utilization strategies. Conditions for the optimal management of old-growth forests are derived using dynamic programming. The objective function synthesizes relevant biological and economic attributes of the old-growth allocation problem. Results in the form of extraction paths are compared given social pressure for consumptive and non-consumptive benefits, as well as different planning horizons, rates of social time preference, and environmental variance. Lengthening the planning horizon results in a vast divergence of optimal policies in the absence of discounting. Extraction rates appear to approach zero as the planning horizon approaches infinity. While higher rates of social time preference increase the rate of extraction, forest stocks remaining at the terminal time period equal levels remaining with a lower discount rate. Increasing environmental variance results in a higher level of stock remaining at the terminal time period. This analysis, while specific to the old-growth controversy of the Pacific Northwest, does provide general guidelines for addressing similar problems of multiple uses of natural areas, particularly where such uses are mutually incompatible, or where one

  17. Reproductive health, population growth, economic development and environmental change.

    PubMed

    Lincoln, D W

    1993-01-01

    World population will increase by 1000 million, or by 20%, within 10 years. Ninety-five per cent of this increase will occur in the South, in areas that are already economically, environmentally and politically fragile. Morbidity and mortality associated with reproduction will be greater in the current decade than in any period in human history. Annually, 40-60 million pregnancies will be terminated and 5-10 million children will die within one year of birth. AIDS-related infections, e.g. tuberculosis, will undermine health care in Africa (and elsewhere) and in places AIDS-related deaths will decimate the work-force. The growth in population and associated morbidity will inhibit global economic development and spawn new problems. The key issues are migration, the spread of disease, the supply of water and the degradation of land, and fiscal policies with respect to family planning, pharmaceuticals and Third-World debt. Full education, particularly of women, and more effective family planning in the South have the power to unlock the problem. Failure will see the developed countries, with their 800 million population, swamped by the health, economic and environmental problems of the South, with its projected population of 5400 million people for the year 2000.

  18. Growth or reproduction: emergence of an evolutionary optimal strategy

    NASA Astrophysics Data System (ADS)

    Grilli, J.; Suweis, S.; Maritan, A.

    2013-10-01

    Modern ecology has re-emphasized the need for a quantitative understanding of the original ‘survival of the fittest theme’ based on analysis of the intricate trade-offs between competing evolutionary strategies that characterize the evolution of life. This is key to the understanding of species coexistence and ecosystem diversity under the omnipresent constraint of limited resources. In this work we propose an agent-based model replicating a community of interacting individuals, e.g. plants in a forest, where all are competing for the same finite amount of resources and each competitor is characterized by a specific growth-reproduction strategy. We show that such an evolution dynamics drives the system towards a stationary state characterized by an emergent optimal strategy, which in turn depends on the amount of available resources the ecosystem can rely on. We find that the share of resources used by individuals is power-law distributed with an exponent directly related to the optimal strategy. The model can be further generalized to devise optimal strategies in social and economical interacting systems dynamics.

  19. Genetic relationship between growth and reproductive traits in Nellore cattle.

    PubMed

    Santana, M L; Eler, J P; Ferraz, J B S; Mattos, E C

    2012-04-01

    The objective of this study was to evaluate the genetic relationship between postweaning weight gain (PWG), heifer pregnancy (HP), scrotal circumference (SC) at 18 months of age, stayability at 6 years of age (STAY) and finishing visual score at 18 months of age (PREC), and to determine the potential of these traits as selection criteria for the genetic improvement of growth and reproduction in Nellore cattle. The HP was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 days. The STAY was defined as whether or not a cow calved every year up to the age of 6 years, given that she was provided the opportunity to breed. The Bayesian linear-threshold analysis via the Gibbs sampler was used to estimate the variance and covariance components applying a multitrait model. Posterior mean estimates of direct heritability were 0.15 ± 0.00, 0.42 ± 0.02, 0.49 ± 0.01, 0.11 ± 0.01 and 0.19 ± 0.00 for PWG, HP, SC, STAY and PREC, respectively. The genetic correlations between traits ranged from 0.17 to 0.62. The traits studied generally have potential for use as selection criteria in genetic breeding programs. The genetic correlations between all traits show that selection for one of these traits does not imply the loss of the others.

  20. Does reproduction compromise defense in woody plants?

    Treesearch

    Daniel A. Herms; William J. Mattson

    1991-01-01

    A general principle of adaptive allocation was proposed by Cody (1966) who hypothesized that 1) all living organisms have finite resources to partition among growth and competing physiological processes such as reproduction and defense; and 2) natural selection results in the evolution of unique resource allocation patterns that maximize fitness in different...

  1. Unisexual reproduction enhances fungal competitiveness by promoting habitat exploration via hyphal growth and sporulation.

    PubMed

    Phadke, Sujal S; Feretzaki, Marianna; Heitman, Joseph

    2013-08-01

    Unisexual reproduction is a novel homothallic sexual cycle recently discovered in both ascomycetous and basidiomycetous pathogenic fungi. It is a form of selfing that induces the yeast-to-hyphal dimorphic transition in isolates of the α mating type of the human fungal pathogen Cryptococcus neoformans. Unisexual reproduction may benefit the pathogen by facilitating sexual reproduction in the absence of the opposite a mating type and by generating infectious propagules called basidiospores. Here, we report an independent potential selective advantage of unisexual reproduction beyond genetic exchange and recombination. We competed a wild-type strain capable of undergoing unisexual reproduction with mutants defective in this developmental pathway and found that unisexual reproduction provides a considerable dispersal advantage through hyphal growth and sporulation. Our results show that unisexual reproduction may serve to facilitate access to both nutrients and potential mating partners and may provide a means to maintain the capacity for dimorphic transitions in the environment.

  2. Influence of organic wastes and seasonal environmental factors on growth and reproduction of Eisenia fetida.

    PubMed

    Biradar, Pulikeshi M; Amoji, Sharabanna D

    2003-01-01

    Epigeic earthworms (E. fetida) were cultured on variety of organic wastes amended with cattle manure to determine the influence of diets and the seasonal environmental factors on growth and reproduction. The results showed that growth and reproductive strategies of E. fetida varied with different diets and seasons. Growth and reproduction of worms in all wastes were significantly more in winter and monsoon than in summer season. Hence winter and monsoon seasons could be considered congenial for vermiculture. During all seasons, worm activities were more in cattle manure followed by amended Bengal gram grain husk and Mixed Organic waste by E. fetida. Parthenin containing diet had deleterious effects on cocoon production.

  3. Growth Hormone and Reproduction: A Review of Endocrine and Autocrine/Paracrine Interactions

    PubMed Central

    Hull, Kerry L.; Harvey, Steve

    2014-01-01

    The somatotropic axis, consisting of growth hormone (GH), hepatic insulin-like growth factor I (IGF-I), and assorted releasing factors, regulates growth and body composition. Axiomatically, since optimal body composition enhances reproductive function, general somatic actions of GH modulate reproductive function. A growing body of evidence supports the hypothesis that GH also modulates reproduction directly, exerting both gonadotropin-dependent and gonadotropin-independent actions in both males and females. Moreover, recent studies indicate GH produced within reproductive tissues differs from pituitary GH in terms of secretion and action. Accordingly, GH is increasingly used as a fertility adjunct in males and females, both humans and nonhumans. This review reconsiders reproductive actions of GH in vertebrates in respect to these new conceptual developments. PMID:25580121

  4. Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction.

    PubMed

    Lester, N P; Shuter, B J; Abrams, P A

    2004-08-07

    We develop a model for somatic growth in fishes that explicitly allows for the energy demand imposed by reproduction. We show that the von Bertalanffy (VB) equation provides a good description of somatic growth after maturity, but not before. We show that the parameters of the VB equation are simple functions of age at maturity and reproductive investment. We use this model to show how the energy demands for both growth and reproduction trade off to determine optimal life-history traits. Assuming that both age at maturity and reproductive investment adapt to variations in adult mortality to maximize lifetime offspring production, our model predicts that: (i) the optimal age of maturity is inversely related to adult mortality rate; (ii) the optimal reproductive effort is approximately equal to adult mortality rate. These predictions are consistent with observed variations in the life-history traits of a large sample of iteroparous freshwater fishes. Copyright 2004 The Royal Society

  5. Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction.

    PubMed Central

    Lester, N. P.; Shuter, B. J.; Abrams, P. A.

    2004-01-01

    We develop a model for somatic growth in fishes that explicitly allows for the energy demand imposed by reproduction. We show that the von Bertalanffy (VB) equation provides a good description of somatic growth after maturity, but not before. We show that the parameters of the VB equation are simple functions of age at maturity and reproductive investment. We use this model to show how the energy demands for both growth and reproduction trade off to determine optimal life-history traits. Assuming that both age at maturity and reproductive investment adapt to variations in adult mortality to maximize lifetime offspring production, our model predicts that: (i) the optimal age of maturity is inversely related to adult mortality rate; (ii) the optimal reproductive effort is approximately equal to adult mortality rate. These predictions are consistent with observed variations in the life-history traits of a large sample of iteroparous freshwater fishes. PMID:15306310

  6. Carbon allocation to growth and storage in two evergreen species of contrasting successional status.

    PubMed

    Piper, Frida I; Sepúlveda, Paulina; Bustos-Salazar, Angela; Zúñiga-Feest, Alejandra

    2017-05-01

    A prevailing hypothesis in forest succession is that shade-tolerant species grow more slowly than shade-intolerant species, across light conditions, because they prioritize carbon (C) allocation to storage. We examined this hypothesis in a confamilial pair of species, including one of the fastest-growing tree species in the world (Eucalyptus globulus) and a shade-tolerant, slow-growing species (Luma apiculata). Seedlings were subjected to one out of four combinations of light (high vs. low) and initial defoliation (90% defoliated vs. nondefoliated) for four months. Growth, C storage concentration in different organs, leaf shedding, and lateral shoot formation were measured at the end of the experiment. Eucalyptus globulus grew faster than L. apiculata in high light, but not in low light. Both species had lower C storage concentration in low than in high light, but similar C storage concentrations in each light condition. Defoliation had no effect on C storage, except in the case of the old leaves of both species, which showed lower C storage levels in response to defoliation. Across treatments, leaf shedding was 96% higher in E. globulus than in L. apiculata while, in contrast, lateral shoot formation was 87% higher in L. apiculata. In low light, E. globulus prioritized C storage instead of growth, whereas L. apiculata prioritized growth and lateral branching. Our results suggest that shade tolerance depends on efficient light capture rather than C conservation traits. © 2017 Botanical Society of America.

  7. DESPOT, a process-based tree growth model that allocates carbon to maximize carbon gain.

    PubMed

    Buckley, Thomas N; Roberts, David W

    2006-02-01

    We present a new model of tree growth, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is adjusted in each time step to maximize whole-tree net C gain in the next time step. Carbon gain, respiration and the acquisition and transport of substitutable photosynthetic resources (nitrogen, water and light) are modeled on a process basis. The current form of DESPOT simulates a uniform, monospecific, self-thinning stand. This paper describes DESPOT and its general behavior in comparison to published data, and presents an evaluation of the sensitivity of its qualitative predictions by Monte Carlo parameter sensitivity analysis. DESPOT predicts determinate height growth and steady stand-level net primary productivity (NPP), but slow declines in aboveground NPP and leaf area index. Monte Carlo analysis, wherein the model was run repeatedly with randomly different parameter sets, revealed that many parameter sets do not lead to sustainable NPP. Of those that do lead to sustainable growth, the ratios at maturity of net to gross primary productivity and of leaf area to sapwood area are highly conserved.

  8. The effect of sediment on survival, growth, reproductive success and bioaccumulation in Neanthes: Summary report

    SciTech Connect

    Gerlinger, T.V.; Fanizzi, M.; Soong, K.; Armstrong, J.; Reish, D.J.

    1995-12-31

    Sediments taken from the vicinity of the County Sanitation Districts of Orange County ocean outfall were tested for survival, growth, reproduction and bioaccumulation of toxicants on the polychaete, Neanthes arenaceodentata. The end points were survival, growth (dry weight), reproductive success (as number of emerged larvae) and bioaccumulation (metals, DDT, PCBs). Ten experiments have been conducted over a 2 year period of which 2 measured reproductive success. The experiments for survival and growth utilized 2--3 week old post-emergence juvenile worms and subjected them to different test sediments including an inert sediment and plain sea water control. Worms were fed during the experiments. Experiments for reproductive success and bioaccumulation consisted of placing 100 juvenile worms each in 10 gallon aquaria together with test sediment for a 35--40 day period. After which, 10--15 pairs were made and each pair was placed in a separate 1 liter beaker together with sediment for the reproductive experiment. The remaining worms in each aquarium were used for chemical analysis. No toxic responses, as measured by survival, growth and reproductive success, were noted at any station during the 2 year study. Growth was generally lower in the inert sediment and sea water controls compared to test sediments indicating that worms were obtaining some nutrients from the sediment. No difference was noted in the number of emerged juveniles in any test container. While worms accumulated metals and organics in their tissue, there was neither a relationship to the station location nor to survival, growth or reproduction.

  9. Growth of four types of white oak reproduction after clearcutting in the Missouri Ozarks.

    Treesearch

    Robert A. McQuilkin

    1975-01-01

    Describes growth and survival of seedlings, cut and uncut seedling sprouts, and stump sprouts for 10 years after clearcutting in white oak stands and describes how to evaluate quantitatively the reproductive potential of 40 to 60-year-old white oak stands before they are clearcut. Survival was high for all four reproduction types and stumps grew the best.

  10. Reproductive allocation in plants as affected by elevated carbon dioxide and other environmental changes: a synthesis using meta-analysis and graphical vector analysis.

    PubMed

    Wang, Xianzhong; Taub, Daniel R; Jablonski, Leanne M

    2015-04-01

    Reproduction is an important life history trait that strongly affects dynamics of plant populations. Although it has been well documented that elevated carbon dioxide (CO2) in the atmosphere greatly enhances biomass production in plants, the overall effect of elevated CO2 on reproductive allocation (RA), i.e., the proportion of biomass allocated to reproductive structures, is little understood. We combined meta-analysis with graphical vector analysis to examine the overall effect of elevated CO2 on RA and how other environmental factors, such as low nutrients, drought and elevated atmospheric ozone (O3), interacted with elevated CO2 in affecting RA in herbaceous plants. Averaged across all species of different functional groups and environmental conditions, elevated CO2 had little effect on RA (-0.9%). RA in plants of different reproductive strategies and functional groups, however, differed in response to elevated CO2. For example, RA in iteroparous wild species decreased by 8%, while RA in iteroparous crops increased significantly (+14%) at elevated CO2. RA was unaffected by CO2 in plants grown with no stress or in low-nutrient soils. RA decreased at elevated CO2 and elevated O3, but increased in response to elevated CO2 in drought-stressed plants, suggesting that elevated CO2 could ameliorate the adverse effect of drought on crop production to some extent. Our results demonstrate that elevated CO2 and other global environmental changes have the potential to greatly alter plant community composition through differential effects on RA of different plant species and thus affect the dynamics of natural and agricultural ecosystems in the future.

  11. Physical stress modifies top-down and bottom-up forcing on plant growth and reproduction in a coastal ecosystem.

    PubMed

    Daleo, Pedro; Alberti, Juan; Bruschetti, Carlos Martin; Pascual, Jesos; Iribarne, Oscar; Silliman, Brian R

    2015-08-01

    Bottom-up and top-down effects act together to exert strong control over plant growth and reproduction, but how physical stress modifies those interactive forces remains unclear. Even though empirical evidence is scarce, theory predicts that the importance of both top-down- and bottom-up forces may decrease as physical stress increases. Here, we experimentally evaluate in the field the separate and interactive effect of salinity, nutrient availability, and crab herbivory on plant above- and belowground biomass, as well as on sexual and clonal reproduction in the salt marsh plant Spartina densiflora. Results show that the outcome of the interaction between nutrient availability and herbivory is highly context dependent, not only varying with the abiotic context (i.e., with or without increased salinity stress), but also with the dependent variable considered. Contrary to theoretical predictions, our results show that, consistently across different measured variables, salinity stress did not cancel bottom-up (i.e., nutrients) or top-down (i.e., consumers) control, but has additive effects. Our results support emerging theory by highlighting that, under many conditions, physical stress can act additively with, or even stimulate, consumer control, especially in cases where the physical stress is only experienced by basal levels of the trophic chain. Abiotic stress, as well as bottom-up and top-down factors, can affect salt marsh structure and function not only by affecting biomass production but also by having other indirect effects, such as changing patterns in plant biomass allocation and reproduction.

  12. Resource allocation patterns of two California-Sonoran desert ephemerals.

    PubMed

    Clark, D D; Burk, J H

    1980-07-01

    The patterns of allocation of structural and nonstructural carbon were followed in the co-occurring desert ephemerals Plantago insularis and Camissonia boothii. Patterns of biomass distribution were determined from material harvested at biweekly intervals as were levels of nonstructural sugar and starch. Seasonal patterns of growth and reproduction differed markedly with Plantago allocating significantly more structural and nonstructural carbon to reproduction early in the season. Plantago completed its life cycle in less than 60 days but Camissonia continued both vegetative and reproductive growth to over 100 days. The longer growing season of Camissonia was possible because more energy was allocated to vegetative tissues and storage presumably as investment toward longer life and higher levels of reproduction.

  13. Effect of development system on growth and reproductive performance of beef heifers.

    PubMed

    Lardner, H A; Damiran, D; Hendrick, S; Larson, K; Funston, R

    2014-07-01

    Reproductive performance was evaluated in beef heifers born over a 2-yr period to determine the effects of target breeding weight (TBW) and development system (SYS) on growth and subsequent reproductive efficiency. Spring-born Angus heifers (253 ± 0.7 kg) were randomly allocated over 2 consecutive yr (yr 1, n = 80; yr 2, n = 96) to be developed to either 55% (350 kg) of mature BW (moderate gain, MG) or 62% (395 kg) of mature BW (high gain, HG). Each MG and HG group was further assigned to 1 of 2 replicated systems: (1) bale graze bromegrass-alfalfa round bales in field paddocks (BG) or (2) fed bromegrass-alfalfa round bales in drylot pens (DL). Heifers were fed a diet of bromegrass-alfalfa hay (56.9% TDN; 9.8% CP) and barley grain supplement (85.1% TDN; 12.3% CP). After the 202-d development period, heifers were exposed to bulls for a 63-d breeding season. Target BW × SYS interactions were not detected for any measured parameters. During the winter development period, MG heifers had lower (P = 0.01) ADG than HG heifers and MG heifers had lighter (P = 0.01) BW at breeding. The proportion of heifers attaining puberty by 14.5 mo of age was less (P = 0.05) in MG (20 ± 4%) than HG heifers (52 ± 3%). From the end of the 202-d development period to pregnancy diagnosis, ADG was greater (P = 0.04) in MG heifers than HG heifers (0.83 vs. 0.71 kg/d). First-calf pregnancy rates were 86 and 88% for MG and HG heifers, respectively (P = 0.41). Second- and third-calf pregnancy rates of cows, developed in either a MG or HG system as heifers, were not different (P = 0.74; 94.7 vs. 95.9% and 93.8 vs. 93.9%, respectively). Economic analysis revealed a $58 reduced development cost for heifers developed to 55% compared with 62% of mature BW without a loss in reproductive performance.

  14. Investment choices in post-embryonic development: quantifying interactions among growth, regeneration, and asexual reproduction in the annelid Pristina leidyi.

    PubMed

    Zattara, Eduardo E; Bely, Alexandra E

    2013-12-01

    Animals capable of multiple forms of post-embryonic development, such as growth, regeneration, and asexual reproduction, must make choices about which processes to invest in. What strategies guide post-embryonic resource allocation investments? We investigated this question in the annelid Pristina leidyi, which can grow continuously, regenerates well, and reproduces asexually by fission. We found that in this species growth is concentrated in three zones: a subterminal posterior zone (forming new segments), a mid-body zone (forming fission zones), and a previously undescribed subterminal anterior zone at the base of the prostomium (which we suggest continually builds the prostomium through a "conveyor-belt" like process). Body-wide counts of proliferating cells are greater under high food than low food conditions but proliferation patterns themselves are independent of feeding level. Proliferation patterns are strongly affected by amputation, however, with proliferation rapidly shutting-down throughout the body, except at the wound site, following injury. Relative investment to fission and regeneration is highly context-dependent, being sensitive to the position of the cut and the stage of fission. Outcomes range from fission acceleration and regeneration stalling (high fission:regeneration investment) to resorption of fission zones and progression of regeneration (low fission:regeneration investment). Our findings reveal strong interactions between growth, regeneration, and fission and demonstrate a particularly important effect of injury on resource allocation patterns. Patterns of resource investment in P. leidyi show similarities to those described in two other groups that evolved fission independently (naidine annelids and catenulid flatworms), suggesting that similar developmental and physiological contexts may drive convergent evolution of resource allocation strategies. © 2013 Wiley Periodicals, Inc.

  15. The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes

    PubMed Central

    Wang, Zhu; Stoltzfus, Jonathan; You, Young-jai; Ranjit, Najju; Tang, Hao; Xie, Yang; Lok, James B.; Mangelsdorf, David J.; Kliewer, Steven A.

    2015-01-01

    Appropriate nutrient response is essential for growth and reproduction. Under favorable nutrient conditions, the C. elegans nuclear receptor DAF-12 is activated by dafachronic acids, hormones that commit larvae to reproductive growth. Here, we report that in addition to its well-studied role in controlling developmental gene expression, the DAF-12 endocrine system governs expression of a gene network that stimulates the aerobic catabolism of fatty acids. Thus, activation of the DAF-12 transcriptome coordinately mobilizes energy stores to permit reproductive growth. DAF-12 regulation of this metabolic gene network is conserved in the human parasite, Strongyloides stercoralis, and inhibition of specific steps in this network blocks reproductive growth in both of the nematodes. Our study provides a molecular understanding for metabolic adaptation of nematodes to their environment, and suggests a new therapeutic strategy for treating parasitic diseases. PMID:25774872

  16. EFFECTS OF CORPUS CHRISTI BAY SEDIMENTS ON SURVIVAL, GROWTH AND REPRODUCTION OF THE MYSID, MYSIDOPSIS BAHIA

    EPA Science Inventory

    The study described here examined effects on mortality, growth, reproduction, and behavior of Americamysis bahi exposed under extended static conditions to bedded sediments from Corpus Christi Bay.

  17. Asexual endophytes in a native grass: Tradeoffs in mortality, growth, reproduction, and alkaloid production

    USDA-ARS?s Scientific Manuscript database

    Neotyphodium endophytes are asexual, seed-borne fungal symbionts that are thought to interact mutualistically with their grass hosts. Benefits include increased growth, reproduction, and resistance of herbivores via endophytic alkaloids. Although these benefits are well established in infected int...

  18. Interpretation of tree-ring data with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Wang, H.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    We present a simple, generic model of annual tree growth, called ';T'. This model accepts input from a generic light-use efficiency model which is known to provide good simulations of terrestrial carbon exchange. The light-use efficiency model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine-root production and respiration, in such a way as to satisfy well-understood dimensional relationships. The result is a model that can represent both ontogenetic effects and the effects of environmental variations and trends on growth. The model has been applied to simulate ring-width series from multiple individual trees in temperature- and drought-limited contexts. Each tree is initialized at its actual diameter at the time when local climate records started. These records are used to drive the trees' subsequent growth. Realistic simulations of the pattern of interannual variability of ring-width are generated, and shown to relate statistically to climate. An upward trend in ring-width during 1958-2007 is shown to be present in the primary observations, and in the simulations; but not in the standard, detrended ring-width series. This approach combines two modelling approaches previously developed in the global carbon cycle and forest science literature respectively. Neither has been widely applied in the context of tree-ring based climate reconstruction. This combination of methods offers promise, however, because it could provide a way to sidestep several known problems. These include: reliance on correlations for the interpretation of ring-width variations in terms of climate; the necessity of detrending using empirical functions (which can remove trends caused by variations in the environment as well as those that are ontogenetic); and the difficulty of assessing effects of extrinsic, non

  19. Synchrony between growth and reproductive patterns in human females: Early investment in growth among Pumé foragers.

    PubMed

    Kramer, Karen L; Greaves, Russell D

    2010-02-01

    Life history is an important framework for understanding many aspects of ontogeny and reproduction relative to fitness outcomes. Because growth is a key influence on the timing of reproductive maturity and age at first birth is a critical demographic variable predicting lifetime fertility, it raises questions about the synchrony of growth and reproductive strategies. Among the Pumé, a group of South American foragers, young women give birth to their first child on average at age 15.5. Previous research showed that this early age at first birth maximizes surviving fertility under conditions of high infant mortality. In this study we evaluate Pumé growth data to test the expectation that if early reproduction is advantageous, then girls should have a developmental trajectory that best prepares them for young childbearing. Analyses show that comparatively Pumé girls invest in skeletal growth early, enter puberty having achieved a greater proportion of adult body size and grow at low velocities during adolescence. For early reproducers growing up in a food-limited environment, a precocious investment in growth is advantageous because juveniles have no chance of pregnancy and it occurs before the onset of the competing metabolic demands of final reproductive maturation and childbearing. Documenting growth patterns under preindustrial energetic and demographic conditions expands the range of developmental variation not otherwise captured by normative growth standards and contributes to research on human phenotypic plasticity in diverse environments.

  20. Evaluation of Moringa oleifera as a dietary supplement on growth and reproductive performance in zebrafish.

    PubMed

    Paul, Latoya T; Fowler, Lauren A; Barry, Robert J; Watts, Stephen A

    2013-12-01

    The leaves of the Moringa oleifera (Moringa) tree contain a significant source of protein, vitamins and minerals, and are considered as an important dietary supplement in countries where chronic malnourishment is linked to poor fetal development. We evaluated the effectiveness of the Moringa leaf as a supplemental replacement for vitamins, minerals, and protein in a formulated zebrafish diet and the impact that it may have on growth and reproductive outcome. Diets included a formulated control (FC) containing an array of vitamins and mineral supplements (pre-mixes), dried ground Moringa only (M), formulated control minus vitamin and mineral pre-mixes (Fvm), and formulated control minus vitamin and mineral pre-mixes and supplemented with Moringa (FM). Juvenile zebrafish were fed experimental diets ad libitum. After a 12 week feeding period, each treatment group was evaluated based on growth and reproductive performance. The M treatment showed the least growth performance (length and weight gain) and no reproductive success (no egg production). Although small, M fish appeared otherwise healthy, with survivorship at ca. 70%, suggesting, Moringa can serve as a single ingredient source for a short period of time. FC showed the highest growth performance, and had the highest reproductive success. Growth performance and reproduction in the Fvm diet was greatly reduced. However, inclusion of Moringa (FM) promoted significant, but not total, recovery of growth and reproductive metrics. These data suggest that Moringa leaves can serve as an acceptable supplement for macro and micronutrients in the diet and could, in part, reduce problems associated with nutrient deficiencies.

  1. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar.

    PubMed

    Hsu, Chuan-Yu; Adams, Joshua P; Kim, Hyejin; No, Kyoungok; Ma, Caiping; Strauss, Steven H; Drnevich, Jenny; Vandervelde, Lindsay; Ellis, Jeffrey D; Rice, Brandon M; Wickett, Norman; Gunter, Lee E; Tuskan, Gerald A; Brunner, Amy M; Page, Grier P; Barakat, Abdelali; Carlson, John E; DePamphilis, Claude W; Luthe, Dawn S; Yuceer, Cetin

    2011-06-28

    Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.

  2. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar

    PubMed Central

    Hsu, Chuan-Yu; Adams, Joshua P.; Kim, Hyejin; No, Kyoungok; Ma, Caiping; Strauss, Steven H.; Drnevich, Jenny; Vandervelde, Lindsay; Ellis, Jeffrey D.; Rice, Brandon M.; Wickett, Norman; Gunter, Lee E.; Tuskan, Gerald A.; Brunner, Amy M.; Page, Grier P.; Barakat, Abdelali; Carlson, John E.; dePamphilis, Claude W.; Luthe, Dawn S.; Yuceer, Cetin

    2011-01-01

    Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication. PMID:21653885

  3. Selection of optimal measures of growth and reproduction for the sublethal Leptocheirus plumulosus sediment bioassay

    SciTech Connect

    Gray, B.R.; Wright, R.B.; Duke, B.M.; Farrar, J.D.; Emery, V.L. Jr.; Brandon, D.L.; Moore, D.W.

    1998-11-01

    This article describes the selection process used to identify optimal measures of growth and reproduction for the proposed 28-d sublethal sediment bioassay with the estuarine amphipod Leptocheirus plumulosus. The authors used four criteria (relevance of each measure to its respective endpoint, signal-to-noise ratio, redundancy relative to other measures of the same endpoint, and cost) to evaluate nine growth and seven reproductive measures. Optimal endpoint measures were identified as those receiving relatively high scores for all or most criteria. Measures of growth scored similarly on all criteria, except for cost. The cost of the pooled (female plus male) growth measures was substantially lower than the cost of the female and male growth measures because the latter required more labor (by approx. 25 min per replicate). Pooled dry weight was identified as the optimal growth measure over pooled length because the latter required additional labor and nonstandard software and equipment. Embryo and neonate measures of reproduction exhibited wide differences in labor costs but yielded similar scores for other criteria. In contrast, brooding measures of reproduction scored relatively low on endpoint relevance, signal-to-noise ratio, and redundancy criteria. The authors recommend neonates/survivor as the optimal measure of L. plumulosus reproduction because it exhibited high endpoint relevance and signal-to-noise ratios, was redundant to other reproductive measures, and required minimal time.

  4. Light and nutrient effects on growth and allocation of Inga vera(Leguminosae), a successional tree of Puerto Rico.

    Treesearch

    R. W. Myster

    2006-01-01

    With the aim of acquiring a better understanding of ecological growth and biomass allocation of Neotropical trees, I inoculated Inga vera Willd. (Leguminosae) plants from cuttings with Rhizobium spp. and arbuscular mycorrhizal fungi and grew them in a greenhouse for 8 months under varying light (L), phosphorus (P), and nitrogen (N) treatments. I obtained the following...

  5. Deciduous conifers: high n deposition and o3 exposure effects on growth and biomass allocation in ponderosa pine

    Treesearch

    Nancy Grulke; L. Balduman

    1999-01-01

    Ponderosa pines (Pinus ponderosa Dougl. ex. Laws) 21 to 60 yr old were used to assess the relative importance of environmental stressors (O3, drought) versus an enhancer (N deposition) on foliar retention, components of aboveground growth, and whole tree biomass allocation. Sites were chosen across a well-described gradient...

  6. Growth, photosynthesis, and resource investment for vegetative and reproductive modules of artemisia tridentata

    SciTech Connect

    Evans, R.D.; Black, R.A. )

    1993-07-01

    Growth of vegetative and reproductive structures in Artemisia tridentata is temporally separated during the growing season; vegetative growth occurs during spring and early summer when soil moisture is most abundant, while reproductive growth occurs during summer and fall when soil moisture may be limiting. Vegetative and reproductive structures may exhibit contrasting efficiencies of resource acquisition and investment resulting from temporal differences in resource availability. The effect of water stress on growth, photosynthesis, and resource investment for vegetative and reproductive modules of Artemisia tridentata was examined by applying supplemental water. No differences were observed in vegetative biomass in the two watering treatments. Growth of vegetative structures occurred in the spring when water was not limiting, and shrubs in both treatments exerted little stomatal control over water loss. Conversely, supplemental watering increased reproductive growth. Shrubs conserved water during summer by abscising leaves and lowering stomatal conductance potential and increases in evaporative demand. In florescences are capable of positive photosynthetic rates comparable to vegetative leaves. Water stress did not alter tissue construction costs or carbon and nitrogen contents for either vegetative or reproductive modules. Resource limitations were reflected in the efficiency of water use during tissue construction; floral leaves and floral heads of shrubs not receiving supplemental water were produced with higher water-use efficiency. Conservative use of water during production of vegetative modules would offer no advantage because neighboring species are also most active at this time. Reproductive growth in A. tridentata occurs during summer when neighboring species are largely dormant, and so efficient use of water may allow development of reproductive structures to continue throughout the summer even with limited supplies of water. 66 refs., 8 figs., 3 tabs.

  7. Distributed Generators Allocation in Radial Distribution Systems with Load Growth using Loss Sensitivity Approach

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.

    2016-07-01

    Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.

  8. Distributed Generators Allocation in Radial Distribution Systems with Load Growth using Loss Sensitivity Approach

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.

    2017-06-01

    Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.

  9. Effects of space allocations and energy levels on growth performance and nutrient digestibility in growing and finishing pigs.

    PubMed

    Lei, X J; Yan, L; Kim, Y M; Kim, I H

    2017-05-15

    Two experiments were conducted to investigate effects of different space allocations and different dietary metabolizable energy (ME) levels on growth performance and nutrient digestibility in growing and finishing pigs. In experiment 1, a total of 84 growing pigs [(Yorkshire × Landrace) × Duroc] with an initial body weight (BW) of 27.10 ± 1.60 kg were used in a 5-week trial. Pigs were blocked based on initial BW into a 2 × 2 factorial design with the following factors: (i) 0.60 or 0.80 m(2) /pig space allocations; and (ii) 3,400 or 3,550 kcal/kg ME of diets. In experiment 2, a total of 84 finishing pigs with an initial BW of 67.43 ± 1.97 kg were used in a 10-week trial. Pigs were allotted based on initial BW into a 2 × 2 factorial design with the following factors: (i) 0.81 or 1.08 m(2) /pig space allocations; and (ii) 3,300 or 3,450 kcal/kg ME of diet. In experiment 1, high ME diet improved gain-to-feed ratio (G:F) in pigs with low space allocation but not in pigs in high space allocation (p < .05). Additionally, high ME diet increased apparent total tract digestibility (ATTD) of nitrogen in low space allocation but decreased ATTD of nitrogen in high space allocation (p < .05). In experiment 2, high ME diet improved average daily gain (ADG) and G:F in early-finishing pigs with low space allocation but not in pigs with high space allocation (p < .05). In conclusion, the provision of high ME diets was not enough to overcome the reduction in growth performance due to low space allocation but can improve feed efficiency in growing pigs and daily gain and feed efficiency early-finishing pigs. © 2017 Blackwell Verlag GmbH.

  10. The effect of depopulation and restocking on reproductive and growth performances on Japanese commercial swine farms

    PubMed Central

    SASAKI, Yosuke; SEKIGUCHI, Satoshi; UEMURA, Ryoko; SUEYOSHI, Masuo

    2015-01-01

    This study compared the reproductive and growth performances of pigs before and after depopulation and restocking after a foot-and-mouth disease outbreak in Japan. Data for the time period before and after depopulation and restocking were obtained from three farrow-to-finish farms. As a result of depopulation and restocking, hygiene levels were improved, and common infectious diseases, such as porcine reproductive and respiratory syndrome and Aujeszky’s disease, remained undetected on the farms. Compared with before depopulation, reproductive and growth performances improved after depopulation; the number of total pigs born was higher, the postweaning mortality rate was lower, and the age at slaughter was lower (P<0.05). In summary, depopulation and restocking improved the reproductive and growth performances of pigs. PMID:26412047

  11. The effect of depopulation and restocking on reproductive and growth performances on Japanese commercial swine farms.

    PubMed

    Sasaki, Yosuke; Sekiguchi, Satoshi; Uemura, Ryoko; Sueyoshi, Masuo

    2016-02-01

    This study compared the reproductive and growth performances of pigs before and after depopulation and restocking after a foot-and-mouth disease outbreak in Japan. Data for the time period before and after depopulation and restocking were obtained from three farrow-to-finish farms. As a result of depopulation and restocking, hygiene levels were improved, and common infectious diseases, such as porcine reproductive and respiratory syndrome and Aujeszky's disease, remained undetected on the farms. Compared with before depopulation, reproductive and growth performances improved after depopulation; the number of total pigs born was higher, the postweaning mortality rate was lower, and the age at slaughter was lower (P<0.05). In summary, depopulation and restocking improved the reproductive and growth performances of pigs.

  12. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production.

  13. Early growth, dominance acquisition and lifetime reproductive success in male and female cooperative meerkats.

    PubMed

    English, Sinead; Huchard, Elise; Nielsen, Johanna F; Clutton-Brock, Tim H

    2013-11-01

    In polygynous species, variance in reproductive success is higher in males than females. There is consequently stronger selection for competitive traits in males and early growth can have a greater influence on later fitness in males than in females. As yet, little is known about sex differences in the effect of early growth on subsequent breeding success in species where variance in reproductive success is higher in females than males, and competitive traits are under stronger selection in females. Greater variance in reproductive success has been documented in several singular cooperative breeders. Here, we investigated consequences of early growth for later reproductive success in wild meerkats. We found that, despite the absence of dimorphism, females who exhibited faster growth until nutritional independence were more likely to become dominant, whereas early growth did not affect dominance acquisition in males. Among those individuals who attained dominance, there was no further influence of early growth on dominance tenure or lifetime reproductive success in males or females. These findings suggest that early growth effects on competitive abilities and fitness may reflect the intensity of intrasexual competition even in sexually monomorphic species.

  14. Early growth, dominance acquisition and lifetime reproductive success in male and female cooperative meerkats

    PubMed Central

    English, Sinead; Huchard, Elise; Nielsen, Johanna F; Clutton-Brock, Tim H

    2013-01-01

    In polygynous species, variance in reproductive success is higher in males than females. There is consequently stronger selection for competitive traits in males and early growth can have a greater influence on later fitness in males than in females. As yet, little is known about sex differences in the effect of early growth on subsequent breeding success in species where variance in reproductive success is higher in females than males, and competitive traits are under stronger selection in females. Greater variance in reproductive success has been documented in several singular cooperative breeders. Here, we investigated consequences of early growth for later reproductive success in wild meerkats. We found that, despite the absence of dimorphism, females who exhibited faster growth until nutritional independence were more likely to become dominant, whereas early growth did not affect dominance acquisition in males. Among those individuals who attained dominance, there was no further influence of early growth on dominance tenure or lifetime reproductive success in males or females. These findings suggest that early growth effects on competitive abilities and fitness may reflect the intensity of intrasexual competition even in sexually monomorphic species. PMID:24340181

  15. [Interactive effects of light intensity and nitrogen supply on fraxinus mandshurica seedlings growth, biomass, and nitrogen allocation].

    PubMed

    Huo, Chang-fu; Wang, Zheng-quan; Sun, Hai-long; Fan, Zhi-qiang; Zhao, Xiao-min

    2008-08-01

    With sand culture in greenhouse, the responses of Fraxinus mandshurica seedlings growth, biomass, and N allocation to 2 levels of light intensity and 4 levels of N supply were studied. The results showed that under low light intensity, the seedlings shoot/root ratio (S/R) and net N uptake rate (NNUR) increased significantly (P < 0.01), but their relative growth rate (RGR) and net assimilation rate (NAR) had a significant decrease (P < 0.01). The biomass of root, stem, leaf, and total plant under low light was decreased by 36.8% (P < 0.01), 1.7%, 12.7% (P < 0.05) , and 24.3% (P < 0.01), respectively, and the N allocation to leaf increased but that to root was in adverse. At the two light levels, N supply had an obvious promotion effect on the seedlings growth, and the S/R and the N allocation to leaf were increased obviously with increasing N supply. Significant interactive effects of light and N supply were observed on the seedlings diameter, S/R, RGR, and biomass allocation.

  16. Competitive growth, energy allocation, and host modification in the acanthocephalan Acanthocephalus dirus: field data.

    PubMed

    Caddigan, Sara C; Pfenning, Alaina C; Sparkes, Timothy C

    2017-01-01

    The acanthocephalan Acanthocephalus dirus is a trophically transmitted parasite that modifies both the physiology and behavior of its intermediate host (isopod) prior to transmission to its definitive host (fish). Infected isopods often contain multiple A. dirus individuals and we examined the relationships between host sharing, body size, energy content, and host modification to determine if host sharing was costly and if these costs could influence the modification of host behavior (mating behavior). Using field-based measures of parasite energy content (glycogen, lipid) and parasite body size (volume), we showed that host sharing was costly in terms of energy content but not in terms of body size. Analysis of the predictors of host behavior revealed that energy content, and body size, were not predictors of host behavior. Of the variables examined, parasite intensity was the only predictor of host behavior. Hosts that contained more parasites were less likely to be modified (i.e., less likely to undergo mating suppression). We suggest that intraspecific competition influenced parasite energy content and that the costs associated with competition are likely to shape the strategy of growth and energy allocation adopted by the parasites. These costs did not appear to have a direct effect on the modification of host mating behavior.

  17. Growth and reproductive patterns of Undaria pinnatifida sporophytes in a cultivation farm in Busan, Korea.

    PubMed

    Choi, Han Gil; Kim, Young Sik; Lee, Soon Jeong; Nam, Ki Wan

    2007-04-01

    Monthly growth and reproduction of Undaria pinnatifida sporophytes were examined over a period of 5 months in a cultivation farm in Korea. A total of 11 characters of Undaria were measured to determine a reliable morphological character representing its growth and reproduction. Plant weight of Undaria sporophytes increased steadily over the experimental period, but it increased in four different ways. Undaria pinnatifida increased body weight by growth in length and width (October-early December), and by growth in width with the thickening of blade and stipe when sporophytes began to be fertile (December-January). In the middle of January, growth in length and width had almost stopped with the maturation of Undaria sporophytes. Finally, the weight of Undaria increased again by growth in width at the end of February. Present results indicate that Undaria sporophytes increase body weight by growth in length and width at different times, and the relationship between reproduction and vegetative growth is exclusive. Plant weight was positively correlated and fitted well with stipe width and blade width. The blade of Undaria was very thin (ca. 254 mum) and breakable by wave action, but its stipe was strong and relatively thick (ca. 8.7 mm). Furthermore, the fertility of U. pinnatifida was fitted better with stipe width than blade width. Thus, we suggest that the stipe width is the most feasible character with which to estimate the growth and reproduction of U. pinnatifida sporophytes in the cultivation farm.

  18. Effects of Ration Levels on Growth and Reproduction from Larvae to First-Time Spawning in the Female Gambusia affinis

    PubMed Central

    Zhu, Zhiming; Zeng, Xiangling; Lin, Xiaotao; Xu, Zhongneng; Sun, Jun

    2015-01-01

    Somatic growth and reproduction were examined in individual laboratory-grown female Gambusia affinis fed with high (H), medium (M) and low (L) ration levels from birth to the first-time spawning. Results showed that the body length and weight, condition factor (CF), wet weight gain (WGw), specific growth rate in wet weight (SGRw) and ration levels in terms of energy (RLe) decreased significantly (p < 0.05) with decreasing ration levels from birth to first-time spawning. On the contrary, the food conversion efficiency in terms of energy (FCEe) increased significantly (p < 0.05) with the decreasing ration levels from birth to first-time sexual maturity. Furthermore, higher percentages of energy intake from food were allocated to somatic and gonad growth in M and L groups compared to the H group before sexual maturity; In addition, the time for first-time spawning in groups M and L was longer than that of the H group. As a result, the gonad-somatic index (GSI) and oocytes/embryos weight in M and L groups were similar to that of the H group, although the ovary weight and oocytes/embryos numbers were all lower than that of the H group. Also, similar growth performances were observed in second-generation offspring, which were produced by female parents fed with different ration levels. These findings suggest that the female G. affinis could produce a number of healthy offspring under conditions of food restriction, and that this could be achieved by increasing the energy allocated to gonad development, reducing fecundity and delaying spawning time. These life strategies ensured that G. affinis could survive and thrive in adverse environmental conditions and exhibit characteristics of invasive fish species. PMID:25768343

  19. Effects of ration levels on growth and reproduction from larvae to first-time spawning in the female Gambusia affinis.

    PubMed

    Zhu, Zhiming; Zeng, Xiangling; Lin, Xiaotao; Xu, Zhongneng; Sun, Jun

    2015-03-11

    Somatic growth and reproduction were examined in individual laboratory-grown female Gambusia affinis fed with high (H), medium (M) and low (L) ration levels from birth to the first-time spawning. Results showed that the body length and weight, condition factor (CF), wet weight gain (WG(w)), specific growth rate in wet weight (SGR(w)) and ration levels in terms of energy (RL(e)) decreased significantly (p < 0.05) with decreasing ration levels from birth to first-time spawning. On the contrary, the food conversion efficiency in terms of energy (FCE(e)) increased significantly (p < 0.05) with the decreasing ration levels from birth to first-time sexual maturity. Furthermore, higher percentages of energy intake from food were allocated to somatic and gonad growth in M and L groups compared to the H group before sexual maturity; In addition, the time for first-time spawning in groups M and L was longer than that of the H group. As a result, the gonad-somatic index (GSI) and oocytes/embryos weight in M and L groups were similar to that of the H group, although the ovary weight and oocytes/embryos numbers were all lower than that of the H group. Also, similar growth performances were observed in second-generation offspring, which were produced by female parents fed with different ration levels. These findings suggest that the female G. affinis could produce a number of healthy offspring under conditions of food restriction, and that this could be achieved by increasing the energy allocated to gonad development, reducing fecundity and delaying spawning time. These life strategies ensured that G. affinis could survive and thrive in adverse environmental conditions and exhibit characteristics of invasive fish species.

  20. Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-12-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

  1. Simulation of tree ring-widths with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-07-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the P model). The P model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine root production and respiration, in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountain, northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilization over the past 50 years is too small to be distinguished in the ring-width data given ontogenetic trends and interannual variability in climate.

  2. SuMoToRI, an Ecophysiological Model to Predict Growth and Sulfur Allocation and Partitioning in Oilseed Rape (Brassica napus L.) Until the Onset of Pod Formation.

    PubMed

    Brunel-Muguet, Sophie; Mollier, Alain; Kauffmann, François; Avice, Jean-Christophe; Goudier, Damien; Sénécal, Emmanuelle; Etienne, Philippe

    2015-01-01

    Sulfur (S) nutrition in rapeseed (Brassica napus L.) is a major concern for this high S-demanding crop, especially in the context of soil S oligotrophy. Therefore, predicting plant growth, S plant allocation (between the plant's compartments) and S pool partitioning (repartition of the mobile-S vs. non-mobile-S fractions) until the onset of reproductive phase could help in the diagnosis of S deficiencies during the early stages. For this purpose, a process-based model, SuMoToRI (Sulfur Model Toward Rapeseed Improvement), was developed up to the onset of pod formation. The key features rely on (i) the determination of the S requirements used for growth (structural and metabolic functions) through critical S dilution curves and (ii) the estimation of a mobile pool of S that is regenerated by daily S uptake and remobilization from senescing leaves. This study describes the functioning of the model and presents the model's calibration and evaluation. SuMoToRI was calibrated and evaluated with independent datasets from greenhouse experiments under contrasting S supply conditions. It is run with a small number of parameters with generic values, except in the case of the radiation use efficiency, which was shown to be modulated by S supply. The model gave satisfying predictions of the dynamics of growth, S allocation between compartments and S partitioning, such as the mobile-S fraction in the leaves, which is an indicator of the remobilization potential toward growing sinks. The mechanistic features of SuMoToRI provide a process-based framework that has enabled the description of the S remobilizing process in a species characterized by senescence during the vegetative phase. We believe that this model structure could be useful for modeling S dynamics in other arable crops that have similar senescence-related characteristics.

  3. SuMoToRI, an Ecophysiological Model to Predict Growth and Sulfur Allocation and Partitioning in Oilseed Rape (Brassica napus L.) Until the Onset of Pod Formation

    PubMed Central

    Brunel-Muguet, Sophie; Mollier, Alain; Kauffmann, François; Avice, Jean-Christophe; Goudier, Damien; Sénécal, Emmanuelle; Etienne, Philippe

    2015-01-01

    Sulfur (S) nutrition in rapeseed (Brassica napus L.) is a major concern for this high S-demanding crop, especially in the context of soil S oligotrophy. Therefore, predicting plant growth, S plant allocation (between the plant’s compartments) and S pool partitioning (repartition of the mobile-S vs. non-mobile-S fractions) until the onset of reproductive phase could help in the diagnosis of S deficiencies during the early stages. For this purpose, a process-based model, SuMoToRI (Sulfur Model Toward Rapeseed Improvement), was developed up to the onset of pod formation. The key features rely on (i) the determination of the S requirements used for growth (structural and metabolic functions) through critical S dilution curves and (ii) the estimation of a mobile pool of S that is regenerated by daily S uptake and remobilization from senescing leaves. This study describes the functioning of the model and presents the model’s calibration and evaluation. SuMoToRI was calibrated and evaluated with independent datasets from greenhouse experiments under contrasting S supply conditions. It is run with a small number of parameters with generic values, except in the case of the radiation use efficiency, which was shown to be modulated by S supply. The model gave satisfying predictions of the dynamics of growth, S allocation between compartments and S partitioning, such as the mobile-S fraction in the leaves, which is an indicator of the remobilization potential toward growing sinks. The mechanistic features of SuMoToRI provide a process-based framework that has enabled the description of the S remobilizing process in a species characterized by senescence during the vegetative phase. We believe that this model structure could be useful for modeling S dynamics in other arable crops that have similar senescence-related characteristics. PMID:26635825

  4. Negative correlation does not imply a tradeoff between growth and reproduction in California oaks

    PubMed Central

    Knops, Johannes M. H.; Koenig, Walter D.; Carmen, William J.

    2007-01-01

    A tradeoff between growth and reproduction, often inferred from an inverse correlation between these two variables, is a fundamental paradigm of life-history evolution. Oak species provide a unique test of this relationship because different species mature acorns either in the year of pollination or in the year after pollination. This difference allows for an interspecific comparison testing whether the apparent tradeoff is causal or the result of confounding factors influencing growth and reproduction independently. Based on 13 years of data on five California oak species, we found significant negative correlations between radial growth and seed production in the three species that produce acorns the same year in which pollination occurs, but not in two species that mature acorns the year after pollination. Rainfall, which correlates positively with radial growth and correlates negatively with acorn production (based on the year of pollination), appears to be driving this pattern. We conclude that the observed negative correlations are not causal, but rather a consequence of growth and reproduction being dependent, in opposite ways, on environmental conditions. Thus, contrary to the current consensus, growth and reproduction in these species are apparently largely independent of each other. In contrast, tradeoffs between current and future reproduction appear to be much more important in the life-history evolution of these long-lived plants. We also conclude that a negative correlation does not necessarily imply a causal mechanism and should not be used as the only evidence supporting a tradeoff. PMID:17940035

  5. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  6. Divergence for residual feed intake of Holstein-Friesian cattle during growth did not affect production and reproduction during lactation.

    PubMed

    Macdonald, K A; Thomson, B P; Waghorn, G C

    2016-11-01

    Residual feed intake (RFI) is the difference between actual and predicted dry matter intake (DMI) of individual animals. Recent studies with Holstein-Friesian calves have identified an ~20% difference in RFI during growth (calf RFI) and these groups remained divergent in RFI during lactation. The objective of the experiment described here was to determine if cows selected for divergent RFI as calves differed in milk production, reproduction or in the profiles of BW and body condition score (BCS) change during lactation, when grazing pasture. The cows used in the experiment (n=126) had an RFI of -0.88 and +0.75 kg DM intake/day for growth as calves (efficient and inefficient calf RFI groups, respectively) and were intensively grazed at four stocking rates (SR) of 2.2, 2.6, 3.1 and 3.6 cows/ha on self-contained farmlets, over 3 years. Each SR treatment had equal number of cows identified as low and high calf RFI, with 24, 28, 34 and 40/11 ha farmlet. The cows divergent for calf RFI were randomly allocated to each SR. Although SR affected production, calf RFI group (low or high) did not affect milk production, reproduction, BW, BCS or changes in these parameters throughout lactation. The most efficient animals (low calf RFI) lost similar BW and BCS as the least efficient (high calf RFI) immediately post-calving, and regained similar BW and BCS before their next calving. These results indicate that selection for RFI as calves to increase efficiency of feed utilisation did not negatively affect farm productivity variables (milk production, BCS, BW and reproduction) as adults when managed under an intensive pastoral grazing system.

  7. Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.).

    PubMed

    Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François

    2015-10-01

    Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the

  8. Sexual Reproduction in a Simple Growth Population Model

    NASA Astrophysics Data System (ADS)

    Lemos, Carlos Gentil Oro; Santos, Marcio

    2012-05-01

    One of the most important characteristics in the survival of a species is related to the kind of reproduction responsible for the offspring generation. However, only in the last years the role played by sexual reproduction has been investigated. Then, for a better understanding of this kind of process we introduce, in this work, a surface reaction model that describes the role of the sexual reproduction. In our model two different elements of the species, representing male and female, can interact to reproduce a new element. The sex of this new element is chosen with a given probability and in order to take into account the mortality rate we introduce another kind of individual. The value of the spatial density of this element remains constant during the time evolution of the system. The model is studied using Monte Carlo simulations and mean field approximation. Depending on the values of the control parameters of the model, the system can attain two stationary states: In one of them the population survives and in the other it can be extinguished. Besides, accordingly to our results, the phase diagram of the model shows a discontinuous transition between these two states.

  9. Trans-generational influences of sulfamethoxazole on lifespan, reproduction and population growth of Caenorhabditis elegans.

    PubMed

    Yu, Zhenyang; Sun, Guohua; Liu, Yanjun; Yin, Daqiang; Zhang, Jing

    2017-01-01

    Trans-generational effects are increasingly used to indicate long-term influences of environmental pollutants. However, such studies can be complex and yield inconclusive results. In this study, the trans-generational effects of sulfamethoxazole (SMX) on Caenorhabditis elegans on lifespan, reproduction and population growth were tested for 7 consecutive generations, which included gestating generation (F0), embryo-exposed generation (F1), germline-exposed generation (F2), the first non-exposed generation (F3) and the three following generations (F4-F6). Results showed that lifespan was significantly affected by embryo exposure (F1) at 400µm SMX with a value as low as 47% of the control. The reproduction (a total brood size as 49% of the control) and population growth (81% of the control) were significantly affected in germline exposure (F2). Lifespan and reproduction were severely inhibited in non-exposed generations, confirming the real trans-generational effects. Notably, initial reproduction and reproduction duration showed opposite generation-related changes, indicating their interplay in the overall brood size. The population growth rate was well correlated with median lethal time, brood size and initial reproduction, which indicated that the population would increase when the nematodes lived longer and reproduced more offspring within shorter duration.

  10. Complex genetic effects on early vegetative development shape resource allocation differences between Arabidopsis lyrata populations.

    PubMed

    Remington, David L; Leinonen, Päivi H; Leppälä, Johanna; Savolainen, Outi

    2013-11-01

    Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs.

  11. Complex Genetic Effects on Early Vegetative Development Shape Resource Allocation Differences Between Arabidopsis lyrata Populations

    PubMed Central

    Remington, David L.; Leinonen, Päivi H.; Leppälä, Johanna; Savolainen, Outi

    2013-01-01

    Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs. PMID:23979581

  12. Vitellogenin RNAi halts ovarian growth and diverts reproductive proteins and lipids in young grasshoppers.

    PubMed

    Tokar, Derek R; Veleta, Katherine A; Canzano, Joseph; Hahn, Daniel A; Hatle, John D

    2014-11-01

    Reduced reproduction extends lifespan of females in many animals. To test the effects of reproduction on storage of macronutrients, we block reproductive output in the lubber grasshopper by injecting RNAi against the precursor to egg-yolk protein, vitellogenin, in early adulthood. Controls were injected with either buffer or RNAi against the major storage protein in the hemolymph, hexamerin-90. Vitellogenin RNAi greatly reduced both levels of mRNA for vitellogenin and ovarian growth, in comparison to both controls. Fat body mass was increased upon vitellogenin RNAi, but concentrations of the three hexameric storage proteins from the hemolymph were not. Surprisingly, hemolymph vitellogenin levels were increased upon vitellogenin RNAi. Total reproductive protein (hemolymph vitellogenin plus ovarian vitellin) was unchanged by vitellogenin RNAi, as reproductive protein was diverted to the hemolymph. Similarly, the increased lipid storage upon vitellogenin RNAi was largely attributable to the reduction in lipid in the ovary, due to decreased ovarian growth. A BLAST search revealed that the 515 bp sequence of vitellogenin used for RNAi had three 11 bp regions identical to the vitellogenin receptor of the cockroach Leucophaea maderae. This suggests that our treatment, in addition to reducing levels of vitellogenin transcript, may have also blocked transport of vitellogenin from the hemolymph to the ovary. This would be consistent with halted ovarian growth simultaneous with high levels of vitellogenin in the hemolymph. Nonetheless, the accumulation of vitellogenin, instead of hexameric storage proteins, is inconsistent with a simple model of the trade-off between reproduction and storage. This was observed in young females; future studies will address whether investment of proteins may shift to the soma as individuals age. Overall, our results suggest that blockage of reproduction in young grasshoppers redirects lipids to storage and reproductive proteins to the hemolymph.

  13. Vitellogenin RNAi Halts Ovarian Growth and Diverts Reproductive Proteins and Lipids in Young Grasshoppers

    PubMed Central

    Tokar, Derek R.; Veleta, Katherine A.; Canzano, Joseph; Hahn, Daniel A.; Hatle, John D.

    2014-01-01

    Reduced reproduction extends lifespan of females in many animals. To test the effects of reproduction on storage of macronutrients, we block reproductive output in the lubber grasshopper by injecting RNAi against the precursor to egg-yolk protein, vitellogenin, in early adulthood. Controls were injected with either buffer or RNAi against the major storage protein in the hemolymph, hexamerin-90. Vitellogenin RNAi greatly reduced both levels of mRNA for vitellogenin and ovarian growth, in comparison to both controls. Fat body mass was increased upon vitellogenin RNAi, but concentrations of the three hexameric storage proteins from the hemolymph were not. Surprisingly, hemolymph vitellogenin levels were increased upon vitellogenin RNAi. Total reproductive protein (hemolymph vitellogenin plus ovarian vitellin) was unchanged by vitellogenin RNAi, as reproductive protein was diverted to the hemolymph. Similarly, the increased lipid storage upon vitellogenin RNAi was largely attributable to the reduction in lipid in the ovary, due to decreased ovarian growth. A BLAST search revealed that the 515 bp sequence of vitellogenin used for RNAi had three 11 bp regions identical to the vitellogenin receptor of the cockroach Leucophaea maderae. This suggests that our treatment, in addition to reducing levels of vitellogenin transcript, may have also blocked transport of vitellogenin from the hemolymph to the ovary. This would be consistent with halted ovarian growth simultaneous with high levels of vitellogenin in the hemolymph. Nonetheless, the accumulation of vitellogenin, instead of hexameric storage proteins, is inconsistent with a simple model of the trade-off between reproduction and storage. This was observed in young females; future studies will address whether investment of proteins may shift to the soma as individuals age. Overall, our results suggest that blockage of reproduction in young grasshoppers redirects lipids to storage and reproductive proteins to the hemolymph

  14. The allocation of assimilated carbon to shoot growth: in situ assessment in natural grasslands reveals nitrogen effects and interspecific differences.

    PubMed

    Gong, Xiao Ying; Berone, Germán Darío; Agnusdei, Mónica Graciela; Palma, Ricardo Manuel Rodríguez; Schäufele, Rudi; Lattanzi, Fernando Alfredo

    2014-04-01

    In grasslands, sustained nitrogen loading would increase the proportion of assimilated carbon allocated to shoot growth (A shoot), because it would decrease allocation to roots and also encourage the contribution of species with inherently high A shoot. However, in situ measurements of carbon allocation are scarce. Therefore, it is unclear to what extent species that coexist in grasslands actually differ in their allocation strategy or in their response to nitrogen. We used a mobile facility to perform steady-state (13)C-labeling of field stands to quantify, in winter and autumn, the daily relative photosynthesis rate (RPR~tracer assimilated over one light-period) and A shoot (~tracer remaining in shoots after a 100 degree days chase period) in four individual species with contrasting morpho-physiological characteristics coexisting in a temperate grassland of Argentina, either fertilized or not with nitrogen, and either cut intermittently or grazed continuously. Plasticity in response to nitrogen was substantial in most species, as indicated by positive correlations between A shoot and shoot nitrogen concentration. There was a notable interspecific difference: productive species with higher RPR, enhanced by fertilization and characterized by faster leaf turnover rate, allocated ~20% less of the assimilated carbon to shoot growth than species of lower productivity (and quality) characterized by longer leaf life spans and phyllochrons. These results imply that, opposite to the expected response, sustained nitrogen loading would change little the A shoot of grassland communities if increases at the species-level are offset by decreases associated with replacement of 'low RPR-high A shoot' species by 'high RPR-low A shoot' species.

  15. Larval growth rate and sex determine resource allocation and stress responsiveness across life stages in juvenile frogs.

    PubMed

    Warne, Robin W; Crespi, Erica J

    2015-03-01

    The extent to which interactions between environmental stressors and phenotypic variation during larval life stages impose carry-over effects on adult phenotypes in wildlife are not clear. Using semi-natural mesocosms, we examined how chronically low food availability and size-specific phenotypes in larval amphibians interact and carry over to influence frog growth, resource allocation, endocrine activity and survival. We tagged three cohorts of larvae that differed in body size and developmental stage at 3 weeks after hatching, and tracked them through 10 weeks after metamorphosis in high and low food conditions. We found that growth and development rates during the early tadpole stage not only affected metamorphic rates, but also shaped resource allocation and stress responsiveness in frogs: the slowest growing larvae from low-food mesocosms exhibited a suppressed glucocorticoid response to a handling stressor; reduced growth rate and fat storage as frogs. We also show for the first time that larval developmental trajectories varied with sex, where females developed faster than males especially in food-restricted conditions. Last, while larval food restriction profoundly affected body size in larvae and frogs, time to metamorphosis was highly constrained, which suggests that the physiology and development of this ephemeral pond-breeding amphibian is adapted for rapid metamorphosis despite large potential variation in nutrient availability. Taken together, these results suggest that larval phenotypic variation significantly influences multiple dimensions of post-metamorphic physiology and resource allocation, which likely affect overall performance.

  16. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    PubMed Central

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  17. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis.

    PubMed

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants.

  18. Evaluation of Moringa oleifera as a dietary supplement on growth and reproductive performance in zebrafish

    PubMed Central

    Paul, Latoya T.; Fowler, Lauren A.; Barry, Robert J.; Watts, Stephen A.

    2016-01-01

    The leaves of the Moringa oleifera (Moringa) tree contain a significant source of protein, vitamins and minerals, and are considered as an important dietary supplement in countries where chronic malnourishment is linked to poor fetal development. We evaluated the effectiveness of the Moringa leaf as a supplemental replacement for vitamins, minerals, and protein in a formulated zebrafish diet and the impact that it may have on growth and reproductive outcome. Diets included a formulated control (FC) containing an array of vitamins and mineral supplements (pre-mixes), dried ground Moringa only (M), formulated control minus vitamin and mineral pre-mixes (Fvm), and formulated control minus vitamin and mineral pre-mixes and supplemented with Moringa (FM). Juvenile zebrafish were fed experimental diets ad libitum. After a 12 week feeding period, each treatment group was evaluated based on growth and reproductive performance. The M treatment showed the least growth performance (length and weight gain) and no reproductive success (no egg production). Although small, M fish appeared otherwise healthy, with survivorship at ca. 70%, suggesting, Moringa can serve as a single ingredient source for a short period of time. FC showed the highest growth performance, and had the highest reproductive success. Growth performance and reproduction in the Fvm diet was greatly reduced. However, inclusion of Moringa (FM) promoted significant, but not total, recovery of growth and reproductive metrics. These data suggest that Moringa leaves can serve as an acceptable supplement for macro and micronutrients in the diet and could, in part, reduce problems associated with nutrient deficiencies. PMID:27570785

  19. Role of rice PPS in late vegetative and reproductive growth.

    PubMed

    Tanaka, Nobuhiro; Itoh, Jun-Ichi; Nagato, Yasuo

    2012-01-01

    The rice peter pan syndrome-1 (pps-1) mutant shows a prolonged juvenile phase and early flowering. Although the early vegetative phase and flowering time of pps-1 have been closely examined, the phenotypes in the late vegetative and reproductive phases are not yet well understood. In the ninth leaf blade of pps-1, the relative length of the midrib was comparable to the sixth leaf blade of wild-type. Moreover, pps-1 had a small inflorescence meristem and small panicles. These phenotypes indicate that in pps-1 the juvenile phase coexists with the late vegetative phase, resulting in small panicles. Gibberellin is known to promote the juvenile-adult phase transition. d18-k is dwarf and has a prolonged juvenile phase. Double mutant (d18-k pps-1) showed the same phenotype as the pps-1, indicating that PPS is upstream of GA biosynthetic genes.

  20. Impact of tail-nipping on mortality, growth and reproduction of Arenicola marina

    NASA Astrophysics Data System (ADS)

    Bergman, Magda J. N.; Van Der Veer, Henk W.; Karczmarski, Leszek

    The impact of predation by amputation of regenerating body parts (tail tips) of the lugworm Arenicola marina on species mortality, growth and reproduction has been studied under laboratory conditions by the artificial removal of tail tips at different frequencies. The loss of body weight by amputation was not compensated for by an increased growth. Within a wide range of amputation frequencies, total growth (body growth + amount of tail tip amputated) and reproduction of the lugworm were not affected. Also, both egg development and amount of energy stored in reproduction remained the same. Only at the highest frequency of amputation (once a week) did total growth decrease in the course of time, resulting even in a loss of body weight. The amount of energy stored in reproduction was also significantly less at the highest rate of amputation. Lugworms appeared to be unable to sustain this high level of amputation and the anaerobic sediment conditions in the cuvettes suggest a reduced pumping activity and food intake. Mortality in this group was also higher than in the other groups. The consequences of tail-nipping by flatfish for A. marina in the field situation are discussed.

  1. Age at first reproduction and growth rate are independent of basal metabolic rate in mammals.

    PubMed

    Lovegrove, Barry G

    2009-05-01

    This study tested an emergent prediction from the Metabolic Theory of Ecology (MTE) that the age at first reproduction (alpha) of a mammal is proportional to the inverse of its mass-corrected basal metabolic rate: alpha proportional (B / M)-1 The hypothesis was tested with multiple regression models of conventional species data and phylogenetically independent contrasts of 121 mammal species. Since age at first reproduction is directly influenced by an individual's growth rate, the hypothesis that growth rate is proportional to BMR was also tested. Although the overall multiple regression model was significant, age at first reproduction was not partially correlated with either body mass, growth rate or BMR. Similarly, growth rate was not correlated with BMR. Thus at least for mammals in general, there is no evidence to support the fundamental premise of the MTE that individual metabolism governs the rate at which energy is converted to growth and reproduction at the species level. The exponents of the BMR allometry calculated using phylogenetic generalized least squares regression models were significantly lower than the three-quarter value predicted by the MTE.

  2. Characterizing the reproduction number of epidemics with early subexponential growth dynamics

    PubMed Central

    Viboud, Cécile; Simonsen, Lone; Moghadas, Seyed M.

    2016-01-01

    Early estimates of the transmission potential of emerging and re-emerging infections are increasingly used to inform public health authorities on the level of risk posed by outbreaks. Existing methods to estimate the reproduction number generally assume exponential growth in case incidence in the first few disease generations, before susceptible depletion sets in. In reality, outbreaks can display subexponential (i.e. polynomial) growth in the first few disease generations, owing to clustering in contact patterns, spatial effects, inhomogeneous mixing, reactive behaviour changes or other mechanisms. Here, we introduce the generalized growth model to characterize the early growth profile of outbreaks and estimate the effective reproduction number, with no need for explicit assumptions about the shape of epidemic growth. We demonstrate this phenomenological approach using analytical results and simulations from mechanistic models, and provide validation against a range of empirical disease datasets. Our results suggest that subexponential growth in the early phase of an epidemic is the rule rather the exception. Mechanistic simulations show that slight modifications to the classical susceptible–infectious–removed model result in subexponential growth, and in turn a rapid decline in the reproduction number within three to five disease generations. For empirical outbreaks, the generalized-growth model consistently outperforms the exponential model for a variety of directly and indirectly transmitted diseases datasets (pandemic influenza, measles, smallpox, bubonic plague, cholera, foot-and-mouth disease, HIV/AIDS and Ebola) with model estimates supporting subexponential growth dynamics. The rapid decline in effective reproduction number predicted by analytical results and observed in real and synthetic datasets within three to five disease generations contrasts with the expectation of invariant reproduction number in epidemics obeying exponential growth. The

  3. Emerging role of PLAG1 as a regulator of growth and reproduction.

    PubMed

    Juma, Almas R; Damdimopoulou, Pauliina E; Grommen, Sylvia V H; Van de Ven, Wim J M; De Groef, Bert

    2016-02-01

    Pleomorphic adenoma gene 1 (PLAG1) belongs to the PLAG family of zinc finger transcription factors along with PLAG-like 1 and PLAG-like 2. The PLAG1 gene is best known as an oncogene associated with certain types of cancer, most notably pleomorphic adenomas of the salivary gland. While the mechanisms of PLAG1-induced tumorigenesis are reasonably well understood, the role of PLAG1 in normal physiology is less clear. It is known that PLAG1 is involved in cell proliferation by directly regulating a wide array of target genes, including a number of growth factors such as insulin-like growth factor 2. This is likely to be a central mode of action for PLAG1 both in embryonic development and in cancer. The phenotype of Plag1 knockout mice suggests an important role for PLAG1 also in postnatal growth and reproduction, as PLAG1 deficiency causes growth retardation and reduced fertility. A role for PLAG1 in growth and reproduction is further corroborated by genome-wide association studies in humans and domestic animals in which polymorphisms in the PLAG1 genomic region are associated with body growth and reproductive traits. Here we review the current evidence for PLAG1 as a regulator of growth and fertility and discuss possible endocrine mechanisms involved.

  4. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source–sink models

    PubMed Central

    Pallas, Benoît; Da Silva, David; Valsesia, Pierre; Yang, Weiwei; Guillaume, Olivier; Lauri, Pierre-Eric; Vercambre, Gilles; Génard, Michel; Costes, Evelyne

    2016-01-01

    Background and aims Plant growth depends on carbon availability and allocation among organs. QualiTree has been designed to simulate carbon allocation and partitioning in the peach tree (Prunus persica), whereas MappleT is dedicated to the simulation of apple tree (Malus × domestica) architecture. The objective of this study was to couple both models and adapt QualiTree to apple trees to simulate organ growth traits and their within-tree variability. Methods MappleT was used to generate architectures corresponding to the ‘Fuji’ cultivar, accounting for the variability within and among individuals. These architectures were input into QualiTree to simulate shoot and fruit growth during a growth cycle. We modified QualiTree to account for the observed shoot polymorphism in apple trees, i.e. different classes (long, medium and short) that were characterized by different growth function parameters. Model outputs were compared with observed 3D tree geometries, considering shoot and final fruit size and growth dynamics. Key Results The modelling approach connecting MappleT and QualiTree was appropriate to the simulation of growth and architectural characteristics at the tree scale (plant leaf area, shoot number and types, fruit weight at harvest). At the shoot scale, mean fruit weight and its variability within trees was accurately simulated, whereas the model tended to overestimate individual shoot leaf area and underestimate its variability for each shoot type. Varying the parameter related to the intensity of carbon exchange between shoots revealed that behaviour intermediate between shoot autonomy and a common assimilate pool was required to properly simulate within-tree fruit growth variability. Moreover, the model correctly dealt with the crop load effect on organ growth. Conclusions This study provides understanding of the integration of shoot ontogenetic properties, carbon supply and transport between entities for simulating organ growth in trees. Further

  5. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source-sink models.

    PubMed

    Pallas, Benoît; Da Silva, David; Valsesia, Pierre; Yang, Weiwei; Guillaume, Olivier; Lauri, Pierre-Eric; Vercambre, Gilles; Génard, Michel; Costes, Evelyne

    2016-08-01

    Plant growth depends on carbon availability and allocation among organs. QualiTree has been designed to simulate carbon allocation and partitioning in the peach tree (Prunus persica), whereas MappleT is dedicated to the simulation of apple tree (Malus × domestica) architecture. The objective of this study was to couple both models and adapt QualiTree to apple trees to simulate organ growth traits and their within-tree variability. MappleT was used to generate architectures corresponding to the 'Fuji' cultivar, accounting for the variability within and among individuals. These architectures were input into QualiTree to simulate shoot and fruit growth during a growth cycle. We modified QualiTree to account for the observed shoot polymorphism in apple trees, i.e. different classes (long, medium and short) that were characterized by different growth function parameters. Model outputs were compared with observed 3D tree geometries, considering shoot and final fruit size and growth dynamics. The modelling approach connecting MappleT and QualiTree was appropriate to the simulation of growth and architectural characteristics at the tree scale (plant leaf area, shoot number and types, fruit weight at harvest). At the shoot scale, mean fruit weight and its variability within trees was accurately simulated, whereas the model tended to overestimate individual shoot leaf area and underestimate its variability for each shoot type. Varying the parameter related to the intensity of carbon exchange between shoots revealed that behaviour intermediate between shoot autonomy and a common assimilate pool was required to properly simulate within-tree fruit growth variability. Moreover, the model correctly dealt with the crop load effect on organ growth. This study provides understanding of the integration of shoot ontogenetic properties, carbon supply and transport between entities for simulating organ growth in trees. Further improvements regarding the integration of retroaction loops

  6. Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density

    PubMed Central

    Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki

    2015-01-01

    Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476

  7. Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density.

    PubMed

    Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki

    2015-10-01

    Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed 'leaf variables') in order to analyse leaf dynamics and its effect on plant growth. Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company.

  8. Morphological and physiological changes during reproduction and their relationships to reproductive performance in a capital breeder.

    PubMed

    Stahlschmidt, Zachary R; Lourdais, Olivier; Lorioux, Sophie; Butler, Michael W; Davis, Jon R; Salin, Karine; Voituron, Yann; DeNardo, Dale F

    2013-01-01

    Current reproductive effort typically comes at a cost to future reproductive value by altering somatic function (e.g., growth or self-maintenance). Furthermore, effects of reproduction often depend on both fecundity and stage of reproduction, wherein allocation of resources into additional offspring and/or stages of reproduction results in increased costs. Despite these widely accepted generalities, interindividual variation in the effects of reproduction is common-yet the proximate basis that allows some individuals to mitigate these detrimental effects is unclear. We serially measured several variables of morphology (e.g., musculature) and physiology (e.g., antioxidant defenses) in female Children's pythons (Antaresia childreni) throughout reproduction to examine how these traits change over the course of reproduction and whether certain physiological traits are associated with reduced effects of reproduction in some individuals. Reproduction in this capital breeder was associated with changes in both morphology and physiology, but only morphological changes varied with fecundity and among specific reproductive stages. During reproduction, we detected negative relationships between morphology and self-maintenance (e.g., increased muscle allocation to reproduction was related to reduced immune function). Additionally, females that allocated resources more heavily into current reproduction also did so during future reproduction, and these females assimilated resources more efficiently, experienced reduced detriments to self-maintenance (e.g., lower levels of oxidative damage and glucocorticoids) during reproduction, and produced clutches with greater hatching success. Our results suggest that interindividual variation in specific aspects of physiology (assimilation efficiency and oxidative status) may drive variation in reproductive performance.

  9. The effect of positive air ions on reproduction and growth in laboratory rats

    NASA Astrophysics Data System (ADS)

    Hinsull, S. M.; Head, E. L.

    1986-03-01

    The aim of the present investigation was to determine the growth rates, reproductive success and early mortality of laboratory rats maintained at 10,000 positive ions/ml over two generations. These findings were compared with those from animals maintained at ambient ion levels. The present work indicates that positive ions do not have any adverse effects on the reproductive capabilities or the growth of laboratory rats. In contrast it is shown that exposure to elevated levels of positive ions promotes overall growth, particularly in male rats. This action of positive ions increases with each successive generation exposed to the ions. It is suggested that the growth promoting effect of positive ions may be mediated via some modulation of the endocrine system.

  10. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment

    Treesearch

    J.W. Raich; D.A. Clark; L. Schwendenmann; Tana Wood

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the...

  11. Predicting the height growth of oak species (Quercus) reproduction over a 23-year period following clearcutting

    Treesearch

    J. Travis Swaim; Daniel C. Dey; Michael R. Saunders; Dale R. Weigel; Christopher D. Thornton; John M. Kabrick; Michael A. Jenkins

    2016-01-01

    We resampled plots from a repeated measures study implemented on the Hoosier National Forest (HNF) in southern Indiana in 1988 to investigate the influence of site and seedling physical attributes on height growth and establishment success of oak species (Quercus spp.) reproduction in stands regenerated by the clearcut method. Before harvest, an...

  12. Patterns of Geographic Synchrony in Growth and Reproduction of Oaks Within California and Beyond

    Treesearch

    Walter D. Koenig; Johannes M.H. Knops

    1997-01-01

    We measured patterns of spatial synchrony in growth and reproduction by oaks using direct acorn surveys, published data on acorn production, and tree-ring chronologies. The two data sets involving acorn production both indicate that acorn crops are detectably synchronous over areas of at least 500 to 1,000 km not only within individual species but among species that...

  13. Growth of Oak Reproduction Increased by Shelterwood Treatments in Northern Arkansas

    Treesearch

    David L. Graney

    1999-01-01

    Nine-year survival and growth of oak (Quercus alba L., Q. rubra L., and Q. velutina Lam.) reproduction was evaluated in upland oak stands representing a range in site quality, residual overstory stocking, and understory treatments. Analysis of variance was used to test for differences in establishment, survival...

  14. Differences between wheat genotypes in damage from freezing temperatures during reproductive growth

    USDA-ARS?s Scientific Manuscript database

    Winter cereal crops in the reproductive stage of growth are considerably more susceptible to freezing temperatures than they are during their vegetative stage during the fall. While damage resulting from spring-freeze events has been documented, information on genotypic differences in tolerance to ...

  15. Effect of mid-summer haying on growth and reproduction in prairie forbs

    Treesearch

    Becky Begay; Helen M. Alexander; Erin Questad

    2011-01-01

    Mid-summer haying is a common management practice for prairies; plant species could differ in the effect of haying on subsequent growth and reproduction. We examined the effect of haying on prairie species by performing a clipping experiment. For each of seven species, sixteen plants were chosen and half were randomly assigned to a clipping treatment and half to a...

  16. MOLECULAR CONSTITUTION OF BREAST BUT NOT OTHER REPRODUCTIVE TISSUES IS RICH IN GROWTH PROMOTING MOLECULES

    PubMed Central

    Poola, Indira; Abraham, Jessy; Marshalleck, Josephine J.; Yue, Qingqi; Fu, Sidney W.; Viswanath, Lokesh; Sharma, Nikhil; Hill, Russel; DeWitty, Robert L.; Bonney, George

    2009-01-01

    In the current study we tested if highest incidence of benign as well as cancer growths in breast tissue is due to constitutive molecular composition of this tissue. To delineate the molecular basis, we compared the expression of nine functional gene modules (total 578 genes) that regulate major positive growth and negative inhibitory signals in normal breast with two other reproductive tissues, ovary and uterus. We present data to demonstrate that breast tissues constitutively have very highly elevated levels of several growth promoting molecules and diminished levels of inhibitory molecules which may, in part, contribute for highest incidence of tumor growths in this tissue. PMID:19698714

  17. Characterization of reproduction and growth of American robins at the Fernald Environmental Management Project, 1991

    SciTech Connect

    Osborne, D.R.; Ambrose, D.M.; Simpson, J.C.

    1992-11-01

    As part of a Biological and Ecological Site Characterization of the Fernald Environmental Management Project (FEMP), suppressed growth in onsite American robin nestlings was discovered in 1987 and in 1990. However, the causal factors relating to suppressed growth were not investigated. This study was initiated to determine if growth suppression still existed, and if so, the possible relationship of FEMP land management practices and soil contaminants through food chains to growth and reproductive fitness. This study was expanded to include five offsite sampling sites, as well as analyses of soils and earthworms for uranium, pesticides/herbicides, and heavy metals.

  18. Released advance reproduction of white and red fir. . . growth, damage, mortality

    Treesearch

    Donald T. Gordon

    1973-01-01

    Advance reproduction of white fir and red fir released by cutting overmature over-story was studied at the Swain Mountain Experimental Forest in northern California, at 6,300 feet elevation. Seedling and sapling height growth before logging was only 0.1-0.2 foot per year. Five years after cutting, seedling and sapling height growth had accelerated to about 0.5 to 0.8...

  19. Developmental effects on intersexual and intrasexual variation in growth and reproduction in a lizard with temperature-dependent sex determination.

    PubMed

    Crews, D; Sakata, J; Rhen, T

    1998-06-01

    The mechanisms that control growth and reproduction have received considerable attention by molecular and cellular endocrinologists, yet there has been relatively little effort to link these two aspects of physiology. On the other hand, evolutionary biologists have long commented on the relationship between growth and reproduction in many species, yet have generally neglected the mechanisms underlying such complex traits. An approach that integrates the multiple proximate levels promises to provide significant insight into the evolution of neuroendocrine control mechanisms. In this chapter, we take this approach in reviewing environmental influences on growth and reproduction in the leopard gecko, Eublepharis macularius. In this species, incubation temperature during embryonic development not only determines gonadal sex, but also underlies within-sex differences in growth, adult morphology, aggressiveness, reproductive physiology and behaviour, and brain organization. Thus, the leopard gecko is an excellent model to elucidate the developmental interactions among the environment and the endocrine and nervous systems that control growth and reproduction.

  20. Growth and reproduction respond differently to climate in three Neotropical tree species.

    PubMed

    Alfaro-Sánchez, Raquel; Muller-Landau, Helene C; Wright, S Joseph; Camarero, J Julio

    2017-06-01

    The response of tropical forests to anthropogenic climate change is critically important to future global carbon budgets, yet remains highly uncertain. Here, we investigate how precipitation, temperature, solar radiation and dry- and wet-season lengths are related to annual tree growth, flower production, and fruit production in three moist tropical forest tree species using long-term datasets from tree rings and litter traps in central Panama. We also evaluated how growth, flower, and fruit production were interrelated. We found that growth was positively correlated with wet-season precipitation in all three species: Jacaranda copaia (r = 0.63), Tetragastris panamensis (r = 0.39) and Trichilia tuberculata (r = 0.39). Flowering and fruiting in Jacaranda were negatively related to current-year dry-season rainfall and positively related to prior-year dry-season rainfall. Flowering in Tetragastris was negatively related to current-year annual mean temperature while Trichilia showed no significant relationships of reproduction with climate. Growth was significantly related to reproduction only in Tetragastris, where it was positively related to previous year fruiting. Our results suggest that tree growth in moist tropical forest tree species is generally reduced by drought events such as those associated with strong El Niño events. In contrast, interannual variation in reproduction is not generally associated with growth and has distinct and species-specific climate responses, with positive effects of El Niño events in some species. Understanding these contrasting climate effects on tree growth and reproduction is critical to predicting changes in tropical forest dynamics and species composition under climate change.

  1. Effects of bison and cattle on growth, reproduction, and abundances of five tallgrass prairie forbs.

    PubMed

    Damhoureyeh, S; Hartnett, D

    1997-12-01

    Forb populations were sampled on Kansas tallgrass prairie to examine the effects of native (bison) and domestic (cattle) ungulates on plant growth, reproduction, and species abundances. Five locally and regionally abundant native tallgrass prairie perennials, Baptisia bracteata, Oenothera speciosa, Vernonia baldwinii, Solidago missouriensis, and Salvia azurea, were selected for study. Replicate watershed-level treatments included three grazing regimes (ungrazed, grazed by cattle, and grazed by bison), and two spring fire frequencies (annually burned and burned at 4-yr intervals). The results show that forb responses to ungulates in tallgrass prairie are complex and vary significantly among plant species, ungulate species, fire regimes, and plant life history stages. Some forbs (e.g., B. bracteata, O. speciosa, and V. baldwinii) increased in growth and reproduction in grazed sites, indicating competitive release in response to selective grazing of the dominant warm-season matrix grasses. Forbs that reduced performance in grazed sites are likely negatively affected by disturbances generated by ungulate nongrazing activities, because none of the forbs studied were directly consumed by bison or cattle. Large grazers had no detectable effect on the frequency of plant damage by other herbivores or pathogens. Significant effects of grazers on patterns of flowering and seed production were not congruent with their effects on population densities, indicating that variation in sexual reproduction plays a minor role in regulating local population abundances. Furthermore, the native and domestic ungulates differ significantly in their effects on forb growth and reproduction.

  2. Effects of food variability on growth and reproduction of Aedes aegypti.

    PubMed

    Zeller, Michael; Koella, Jacob C

    2016-01-01

    Despite a large body of knowledge about the evolution of life histories, we know little about how variable food availability during an individual's development affects its life history. We measured the effects of manipulating food levels during early and late larval development of the mosquito Aedes aegypti on its growth rate, life history and reproductive success. Switching from low to high food led to compensatory growth: individuals grew more rapidly during late larval development and emerged at a size close to that of mosquitoes consistently reared at high food. However, switching to high food had very little effect on longevity, and fecundity and reproductive success were considerably lower than in consistently well-fed mosquitoes. Changing from high to low food led to adults with similar size as in consistently badly nourished mosquitoes, but even lower fecundity and reproductive success. A rapid response of growth to changing resources can thus have unexpected effects in later life and in lifetime reproductive success. More generally, our study emphasizes the importance of varying developmental conditions for the evolutionary pressures underlying life-history evolution.

  3. Reproduction and growth in American robins at the Feed Materials Production Center

    SciTech Connect

    Osborne, D.R.; Jones, F.A. . Dept. of Zoology)

    1991-01-01

    Birds have been useful in environmental monitoring within forest ecosystems and at a variety of industrial sites. Growth analyses have been shown to be a sensitive measure of environmental stress in gulls, eagles, and in passerine birds. As part of an intensive year-long baseline ecological study investigations were initiated in late spring 1987 in order to characterize growth and reproductive success in Mourning Doves (Zenaida macroura) and American Robins (Turdus migratorius) at the Feed Materials Production Center (FMPC). The current study was initiated in order to determine whether the pattern of suppressed growth and reproduction in FMPC birds still existed onsite. We selected only American robins (Turdus migratorius) for study because they appeared the most severely affected in 1987. 44 refs., 3 figs., 3 tabs.

  4. Effects of androgenic gland ablation on growth and reproductive parameters of Cherax quadricarinatus males (Parastacidae, Decapoda).

    PubMed

    Tropea, Carolina; Hermida, Gladys N; López Greco, Laura S

    2011-11-01

    This work investigates the effects of androgenic gland (AG) ablation on the structure of the reproductive system, development of secondary sexual characters and somatic growth in Cherax quadricarinatus males. The AG ablation, which was performed at an early developmental stage (initial weight: 1.85±0.03 g), had no effect on the somatic growth parameters (specific growth rate and growth increment), but it prevented the re-formation of male gonopores and appendices masculinae. However, the red patch differentiation and chelae size were similar to those in control males. All the ablated animals developed a male reproductive system. Testis structure was macroscopically and histologically normal. The distal portion of the vas deferens (DVD) was enlarged in some animals, with histological alterations of the epithelium and the structure of the spermatophore. Results suggest that the higher growth in males than in females may be due to an indirect effect of the AG on energy investment in reproduction rather than to a direct effect of an androgen. This is the first report of a potential action of the AG on the secretory activity of the distal VD and the structural organization of the spermatophore. Although the AG may play a role in the development of male copulatory organs, its association with the red patch development deserves further research. The results obtained in the present study support and complement those from intersexes of the same species.

  5. Potassium enrichment stimulates the growth and reproduction of a clone of Daphnia dentifera.

    PubMed

    Civitello, David J; Hite, Jessica L; Hall, Spencer R

    2014-07-01

    Nutrient limitation commonly constrains organisms in natural ecosystems. Typically, ecologists focus on limitation by N and P. However, other nutrients can limit growth or reproduction. Here we focus on K limitation of invertebrate consumers (Daphnia dentifera) and phytoplankton in freshwater lakes. All organisms require K for several metabolic processes. In freshwater, K could limit growth because low external concentrations can increase the energetic costs of accumulating K. Furthermore, in a study linking K to disease, we previously found that K enrichment of water from one low-K lake stimulated the growth and reproduction of Daphnia. Here we test whether K could limit the production of Daphnia and phytoplankton across lakes and years. We repeated a life table experiment using water collected from a low-K lake during a different year. K again stimulated Daphnia reproduction. We also enriched water from 12 lakes with K or P and measured short-term growth of Daphnia and the resident algal community. Both nutrients increased Daphnia growth in five lakes. However, only P enhanced algal production. P stimulation of Daphnia positively correlated with algal quantity and the ratio of C to P in seston. However, K stimulation of Daphnia was not correlated with these factors or the background concentration of K. Thus, this study shows repeatable K-limited animal physiology in nature. Further, we can exclude the hypothesis that K stimulates Daphnia indirectly by enhancing algal production. These patterns call for future physiological studies to uncover the mechanistic basis of K limitation in natural systems.

  6. Influence of copper on the feeding rate, growth and reproduction of the golden apple snail, Pomacea canaliculata Lamarck.

    PubMed

    Peña, Silvia C; Pocsidio, Glorina N

    2007-12-01

    The influence of copper on feeding rate, growth, and reproduction of Pomacea canaliculata Lamarck was evaluated. Ten days of exposure to copper of relatively high concentration (67.5 microg/L) reduced the snails' feeding rate and retarded their growth. Exposure to 20 microg/L after 36 days increased feeding rate to 28%. After 20 days of exposure at 30 microg/L, snail's growth was significant but thereafter declined. Growth of all snails including control was negligible by day 50 when snails were in the reproductive state. Copper did not affect reproduction.

  7. Allocation of new growth between shoot, root and mycorrhiza in relation to carbon, nitrogen and phosphate supply: teleonomy with maximum growth rate.

    PubMed

    Thornley, John H M; Parsons, Anthony J

    2014-02-07

    Treating resource allocation within plants, and between plants and associated organisms, is essential for plant, crop and ecosystem modelling. However, it is still an unresolved issue. It is also important to consider quantitatively when it is efficient and to what extent a plant can invest profitably in a mycorrhizal association. A teleonomic model is used to address these issues. A six state-variable model giving exponential growth is constructed. This represents carbon (C), nitrogen (N) and phosphorus (P) substrates with structure in shoot, root and mycorrhiza. The shoot is responsible for uptake of substrate C, the root for substrates N and P, and the mycorrhiza also for substrates N and P. A teleonomic goal, maximizing proportional growth rate, is solved analytically for the allocation fractions. Expressions allocating new dry matter to shoot, root and mycorrhiza are derived which maximize growth rate. These demonstrate several key intuitive phenomena concerning resource sharing between plant components and associated mycorrhizae. For instance, if root uptake rate for phosphorus is equal to that achievable by mycorrhiza and without detriment to root uptake rate for nitrogen, then this gives a faster growing mycorrhizal-free plant. However, if root phosphorus uptake is below that achievable by mycorrhiza, then a mycorrhizal association may be a preferred strategy. The approach offers a methodology for introducing resource sharing between species into ecosystem models. Applying teleonomy may provide a valuable short-term means of modelling allocation, avoiding the circularity of empirical models, and circumventing the complexities and uncertainties inherent in mechanistic approaches. However it is subjective and brings certain irreducible difficulties with it.

  8. The role of feeding regimens in the growth of neonate broad-banded water snakes, Nerodia fasciata confluens, and possible effects on reproduction.

    PubMed

    Scudder, R M; Burghardt, G M

    1985-05-01

    The effect of different feeding regimens on the growth pattern of Nerodia fasciata confluens was tested using a litter of 18 captive-born neonates. The snakes were divided among three feeding groups: one group fed once per week, another fed twice per week, and the third fed on alternate days. The once per week and the twice per week groups were offered the same weight of food each week, while the alternate-day group was offered food in excess of ingestion levels during each feeding session. The results indicate that there is a shift in the allocation of energy for growth in weight, snout-vent length, and tail length with a change in the feeding regimen. Females were affected more than the males. The results are discussed in relation to their possible effect on reproduction.

  9. New horizons at the caudal embryos: coordinated urogenital/reproductive organ formation by growth factor signaling.

    PubMed

    Suzuki, Kentaro; Economides, Aris; Yanagita, Motoko; Graf, Daniel; Yamada, Gen

    2009-10-01

    The cloaca/urogenital sinus and its adjacent region differentiate into the urogenital/reproductive organs. Caudal regression syndrome (CRS; including mermaid syndrome), a type of severe cloacal malformation displays hindlimb fusion and urogenital organ defects, thus suggesting that such defects are caused by several morphogenetic alterations during early development. The attenuation of bone morphogenetic protein (Bmp) signaling at the posterior primitive streak of embryos leads to the caudal dysmorphogenesis including the cloaca and fusion of both hindlimbs. Genetic tissue lineage studies indicate the presence of coordinated organogenesis. Hedgehog (HH)-responding cells derived from peri-cloacal mesenchyme (PCM) contribute to the urogenital/reproductive organs. These findings indicate the existence of developmental programs for the coordinated organogenesis of urogenital/reproductive tissues based on growth factor function and crosstalk.

  10. New horizons at the caudal embryos; coordinated urogenital/reproductive organ formation by growth factor signaling

    PubMed Central

    Suzuki, Kentaro; Economides, Aris; Yanagita, Motoko; Graf, Daniel; Yamada, Gen

    2009-01-01

    Summary The cloaca/urogenital sinus and its adjacent region differentiate into the urogenital/reproductive organs. Caudal regression syndrome (CRS; including Mermaid syndrome), a type of severe cloacal malformation displays hindlimb fusion and urogenital organ defects, thus suggesting that such defects are caused by several morphogenetic alterations during early development. The attenuation of Bone Morphogenetic Protein (Bmp) signaling at the posterior primitive streak of embryos leads to the caudal dysmorphogenesis including the cloaca and fusion of both hindlimbs. Genetic tissue lineage studies indicate the presence of coordinated organogenesis. Hedgehog (HH)-responding cells derived from peri-cloacal mesenchyme (PCM) contribute to the urogenital/reproductive organs. These findings indicate the existence o f developmental programs for the coordinated organogenesis of urogenital/reproductive tissues based on growth factor function and crosstalk. PMID:19765973

  11. Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance

    PubMed Central

    Khan, Hammad A.; Siddique, Kadambot H.M.

    2017-01-01

    Abstract Reproductive processes of chickpea (Cicer arietinum L.) are particularly sensitive to salinity. We tested whether limited photoassimilate availability contributes to reproductive failure in salt-stressed chickpea. Rupali, a salt-sensitive genotype, was grown in aerated nutrient solution, either with non-saline (control) or 30mM NaCl treatment. At flowering, stems were either infused with sucrose solution (0.44M), water only or maintained without any infusion, for 75 d. The sucrose and water infusion treatments of non-saline plants had no effect on growth or yield, but photosynthesis declined in response to sucrose infusion. Salt stress reduced photosynthesis, decreased tissue sugars by 22–47%, and vegetative and reproductive growth were severely impaired. Sucrose infusion of salt-treated plants increased total sugars in stems, leaves and developing pods, to levels similar to those of non-saline plants. In salt-stressed plants, sucrose infusion increased dry mass (2.6-fold), pod numbers (3.8-fold), seed numbers (6.5-fold) and seed yield (10.4-fold), yet vegetative growth and reproductive failure were not rescued completely by sucrose infusion. Sucrose infusion partly rescued reproductive failure in chickpea by increasing vegetative growth enabling more flower production and by providing sucrose for pod and seed growth. We conclude that insufficient assimilate availability limits yield in salt-stressed chickpea. PMID:27140441

  12. Water fleas require microbiota for survival, growth and reproduction

    PubMed Central

    Sison-Mangus, Marilou P; Mushegian, Alexandra A; Ebert, Dieter

    2015-01-01

    Microbiota have diverse roles in the functioning of their hosts; experiments using model organisms have enabled investigations into these functions. In the model crustacean Daphnia, little knowledge exists about the effect of microbiota on host well being. We assessed the effect of microbiota on Daphnia magna by experimentally depriving animals of their microbiota and comparing their growth, survival and fecundity to that of their bacteria-bearing counterparts. We tested Daphnia coming from both lab-reared parthenogenetic eggs of a single genotype and from genetically diverse field-collected resting eggs. We showed that bacteria-free hosts are smaller, less fecund and have higher mortality than those with microbiota. We also manipulated the association by exposing bacteria-free Daphnia to a single bacterial strain of Aeromonas sp., and to laboratory environmental bacteria. These experiments further demonstrated that the Daphnia–microbiota system is amenable to manipulation under various experimental conditions. The results of this study have implications for studies of D. magna in ecotoxicology, ecology and environmental genomics. PMID:25026374

  13. Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage.

    PubMed

    Lavinsky, Alyne O; Detmann, Kelly C; Reis, Josimar V; Ávila, Rodrigo T; Sanglard, Matheus L; Pereira, Lucas F; Sanglard, Lílian M V P; Rodrigues, Fabrício A; Araújo, Wagner L; DaMatta, Fábio M

    2016-11-01

    Silicon (Si) has been recognized as a beneficial element to improve rice (Oryza sativa L.) grain yield. Despite some evidence suggesting that this positive effect is observed when Si is supplied along the reproductive growth stage (from panicle initiation to heading), it remains unclear whether its supplementation during distinct growth phases can differentially impact physiological aspects of rice and its yield and the underlying mechanisms. Here, we investigated the effects of additions/removals of Si at different growth stages and their impacts on rice yield components, photosynthetic performance, and expression of genes (Lsi1, Lsi2 and Lsi6) involved in Si distribution within rice shoots. Positive effects of Si on rice production and photosynthesis were manifested when it was specifically supplied during the reproductive growth stage, as demonstrated by: (1) a high crop yield associated with higher grain number and higher 1000-grain weight, whereas the leaf area and whole-plant biomass remained unchanged; (2) an increased sink strength which, in turn, exerted a feed-forward effect on photosynthesis that was coupled with increases in both stomatal conductance and biochemical capacity to fix CO2; (3) higher Si amounts in the developing panicles (and grain husks) in good agreement with a remarkable up-regulation of Lsi6 (and to a lesser extent Lsi1). We suggest that proper levels of Si in these reproductive structures seem to play an as yet unidentified role culminating with higher grain number and size.

  14. Human Disturbance Influences Reproductive Success and Growth Rate in California Sea Lions (Zalophus californianus)

    PubMed Central

    French, Susannah S.; González-Suárez, Manuela; Young, Julie K.; Durham, Susan; Gerber, Leah R.

    2011-01-01

    The environment is currently undergoing changes at both global (e.g., climate change) and local (e.g., tourism, pollution, habitat modification) scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups) for California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources). Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations. PMID:21436887

  15. Human disturbance influences reproductive success and growth rate in California sea lions (Zalophus californianus).

    PubMed

    French, Susannah S; González-Suárez, Manuela; Young, Julie K; Durham, Susan; Gerber, Leah R

    2011-03-16

    The environment is currently undergoing changes at both global (e.g., climate change) and local (e.g., tourism, pollution, habitat modification) scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups) for California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources). Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations.

  16. Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations?

    PubMed

    Epron, Daniel; Laclau, Jean-Paul; Almeida, Julio C R; Gonçalves, José Leonardo M; Ponton, Stephane; Sette, Carlos R; Delgado-Rojas, Juan S; Bouillet, Jean-Pierre; Nouvellon, Yann

    2012-06-01

    Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO(2) efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (δ(13)C) of stem wood α-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P(W)) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P(W), but to a lesser extent compared with K fertilization. Neither K nor Na affected δ(13)C of stem wood α-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P(W) resulted from drastic changes in carbon allocation.

  17. Differential Growth of the Reproductive Organs during the Peripubertal Period in Male Rats.

    PubMed

    Han, Seung Hee; Lee, Sung-Ho

    2013-12-01

    In mammals, puberty is a process of acquiring reproductive competence, triggering by activation of hypothalamic kisspeptin (KiSS)-gonadotropin releasing hormone (GnRH) neuronal circuit. During peripubertal period, not only the external genitalia but the internal reproductive organs have to be matured in response to the hormonal signals from hypothalamic-pituitary-gonadal (H-P-G) axis. In the present study, we evaluated the maturation of male rat accessory sex organs during the peripubertal period using tissue weight measurement, histological analysis and RT-PCR assay. Male rats were sacrificed at 25, 30, 35, 40, 45, 50, and 70 postnatal days (PND). The rat accessory sex organs exhibited differential growth patterns compared to those of non-reproductive organs. The growth rate of the accessory sex organs were much higher than the those of non-reproductive organs. Also, the growth spurts occurred differentially even among the accessory sex organs; the order of prepubertal organ growth spurts is testis = epididymis > seminal vesicle = prostate. Histological study revealed that the presence of sperms in seminiferous tubules and epididymal ducts at day 50, indicating the puberty onset. The number of duct and the volume of duct in epididymis and prostate were inversely correlated during the experimental period. Our RT-PCR revealed that the levels of hypothalamic GnRH transcript were increased significantly on PND 40, suggesting the activation of hypothalamic GnRH pulse-generator before puberty onset. Studies on the peripubertal male accessory sex organs will provide useful references on the growth regulation mechanism which is differentially regulated during the period in andevrepogen-sensitive organs. The detailed references will render easier development of endocrine disruption assay.

  18. Feeding inhibition explains effects of imidacloprid on the growth, maturation, reproduction, and survival of Daphnia magna.

    PubMed

    Agatz, Annika; Cole, Tabatha A; Preuss, Thomas G; Zimmer, Elke; Brown, Colin D

    2013-03-19

    Effects of some xenobiotics on aquatic organisms might not be caused directly by the compound but rather arise from acclimation of the organism to stress invoked by feeding inhibition during exposure. Experiments were conducted to identify effects of imidacloprid on individual performance (feeding, growth, maturation, reproduction, and survival) of Daphnia magna under surplus and reduced food availability. Concentrations inhibiting feeding by 5, 50, and 95% after one day of exposure were 0.19, 1.83, and 8.70 mg/L, respectively. Exposure with imidacloprid at ≥ 3.7 mg/L reduced growth by up to 53 ± 11% within one week. Surplus food availability after inhibition allowed recovery from this growth inhibition, whereas limited food supply eliminated the potential for recovery in growth even for exposure at 0.15 mg/L. A shift in the distribution of individual energy reserves toward reproduction rather than growth resulted in increased reproduction after exposure to concentrations ≤ 0.4 mg/L. Exposure to imidacloprid at ≥ 4.0 mg/L overwhelmed this adaptive response and reduced reproduction by up to 57%. We used the individual based Daphnia magna population model IDamP as a virtual laboratory to demonstrate that only feeding was affected by imidacloprid, and that in turn this caused the other impacts on individual performance. Consideration of end points individually would have led to a different interpretation of the effects. Thus, we demonstrate how multiple lines of evidence linked by understanding the ecology of the organism are necessary to elucidate xenobiotic impacts along the effect cascade.

  19. Why Cells Grow and Divide? General Growth Mechanism and How it Defines Cells’ Growth, Reproduction and Metabolic Properties

    NASA Astrophysics Data System (ADS)

    Shestopaloff, Yuri K.

    2015-02-01

    We consider a general growth mechanism, which acts at cellular level and above (organs, systems and whole organisms). Using its mathematical representation, the growth equation, we study the growth and division mechanisms of amoeba and fission yeast Schizosaccharomyces pombe. We show how this mechanism, together with biomolecular machinery, governs growth and reproduction of cells, and these organisms in particular. This mechanism provides revealing answers to fundamental questions of biology, like why cells grow and divide, why and when cells’ growth stops. It also sheds light on questions like why and how life originated and developed. Solving the growth equation, we obtain analytical expression for the growth curve of fission yeast as a function of geometrical characteristics and nutrient influxes for RNA and protein synthesis, and compare the computed growth curves with 85 experiments. Statistical evaluation shows that these growth curves correspond to experimental data significantly better than all previous approximations. Also, using the general growth mechanism, we show how metabolic characteristics of cells, their size and evolutionary traits relate, considering fission yeast. In particular, we found that fission yeast S. pombe consumes about 16-18 times more nutrients for maintenance needs than for biomass synthesis.

  20. Growth and reproductive investment of introduced Pacific oysters Crassostrea gigas in southern European waters

    NASA Astrophysics Data System (ADS)

    Cardoso, Joana F. M. F.; Peralta, Nelson R. E.; Machado, Jorge P.; van der Veer, Henk W.

    2013-02-01

    Growth and reproductive investment of cultured Pacific oysters Crassostrea gigas were studied in two south-western European estuaries: the Ría de Ribadeo in Spain and the Ria Formosa in Portugal. Developing gonads were found in individuals >23.5 mm shell length in the Ria Formosa and >27.5 mm shell length in the Ría de Ribadeo. Although the amount of gonadal mass in relation to total body mass was higher in the Ría de Ribadeo, oysters from this location did not spawn completely. In contrast, oysters from the Ria Formosa completely emptied their gonad during spawning. Reproduction and, consequently, the maximum potential for population expansion may be constrained in both areas: in the Ría de Ribadeo due to suboptimal spawning threshold temperatures and in the Ria Formosa due to higher metabolic costs caused by warmer winter temperatures. Nevertheless, in comparison to northern oyster populations, Portuguese and Spanish populations have higher reproductive output. If suitable environmental conditions are met, expansion of Portuguese and Spanish populations will most likely occur. In the Ria Formosa, where environmental conditions for growth and reproduction are favourable, wild oysters are already observed. In order to follow the dynamics of oyster populations and predict possible negative effects on the ecosystems, it is important to continue monitoring the physiological performance of C. gigas in these areas.

  1. Growth and carbon allocation of tropical and temperate N-fixing trees grown in elevated CO{sub 2}

    SciTech Connect

    Tissue, D.T.; Megonigal, J.P.; Thomas, R.B.

    1995-09-01

    Seeds of two tree species, Gliricidia seplum (tropical) and Robinia pseudoacacia (temperate), were inoculated with N-fixing Rhizobium bacteria and grown in environmentally controlled glasshouses for 75 days to determine the effects of atmospheric CO{sub 2} on seedling growth and carbon allocation. Seedlings were grown in ambient CO{sub 2}(35 Pa) and elevated CO{sub 22}(70 Pa) and watered with a N-deficient nutrient solution such that bacterial N-fixation was the only source of N. Elevated CO{sub 2} increased leaf, stem, root and total biomass in Gliricidia, but did not affect nodule mass; Robinia biomass was unchanged by CO{sub 2}. Leaf photosynthetic rates at 70 Pa CO{sub 2} were increased 49% in Gliricidia, but were unchanged in Robinia, and there was no change in respiration rate in either species. A {sup 14}CO{sub 2} labelling experiment demonstrated that elevated CO{sub 2} did not affect the kinetics or allocation patterns of photosynthetically fixed carbon to nodules or other plant parts in either species. Our results demonstrate that Gliricidia, but not Robinia, will show an early, positive growth and photosynthetic response to elevated CO{sub 2} in N-poor soils, suggesting that tropical N-fixing trees may be more responsive than temperate N-fixing trees to future atmospheric CO{sub 2} conditions.

  2. Reproduction, growth, and tissue residues of deer fed dieldrin

    USGS Publications Warehouse

    Murphy, D.A.; Korschgen, L.J.

    1970-01-01

    Feeding tests were conducted from January, 1966, to January, 1969, to ascertain the effects of daily ingestions of sublethal amounts of dieldrin on white-tailed deer (Odocoileus virginianus). Groups of deer on 0 ppm dieldrin (controls), 5 ppm, and 25 ppm dieldrin were maintained at these respective levels, as were their progeny. Treated food was readily accepted. Dieldrin intoxication was not observed, and 9 of 10 animals of each group survived 3 years of treatment. No differences in conception or in utero mortality were found between groups. Fawns from dieldrin-fed does were smaller at birth and greater post-partum mortality occurred. Fertility of male progeny was not affected. Growth was slower and remained reduced in dieldrin-treated females which were immature when the study began. Hematologic values and serum protein concentrations were not significantly (P > 0.05) related to treatment. Liver/body weight ratios were significantly (P < 0.05) larger for the 25-ppm-dieldrin group. Pituitary glands were smaller and thyroids were larger in dieldrin-fed deer. Weight gains of fawns were significantly (P < 0.05) reduced 2 of 3 years in dieldrin-treated groups. Placental transfer of dieldrin occurred. Whole milk from does fed 25 ppm dieldrin contained residues of 17 ppm. Residue levels in brain, liver, and thigh muscle tissues showed no evidence of increasing with length of treatment, but showed definite relationships to levels of dieldrin in daily diets. Nursing fawns had higher residues in brain tissues than did older deer on 5 ppm a d 25 ppm dieldrin. Highest brain residues (12.60 and 12.10 ppm, wet weight) occurred in fawns only a few days of age at death. Equilibrium between ingestion and storage or excretion of dieldrin occurred prior to 200 days and continued until nearly 1,100 days. There was no evidence of a sharp decline in residues after a long period of continued dosage. Daily ingestion of 100 and 200 ppm of dieldrin proved fatal to yearling male deer at 27

  3. Genetic relationships among traits related to reproduction and growth of Nelore females.

    PubMed

    Eler, J P; Bignardi, A B; Ferraz, J B S; Santana, M L

    2014-09-15

    The objective of the study presented here was to analyze the genetic relationships among heifer pregnancy (HP), age at first calving (AFC), stayability (STAY), average annual productivity of the cow, in kilograms of weaned calf per cow per year (PRODAM), postweaning weight gain (PWG), and hip height (HH) of Nelore females from 12 Brazilian herds. (Co)variance components were obtained by six-trait animal model using Gibbs sampling. The posterior mean of the heritability estimates were 0.37, 0.18, 0.19, 0.16, 0.21, and 0.37 for HP, AFC, STAY, PRODAM, PWG, and HH, respectively. In general, the genetic correlations were strong between traits related to reproduction, for example, -0.85 between HP and AFC, and 0.94 between STAY and PRODAM. Weak genetic correlations were obtained between reproductive and growth traits (absolute values ranging from 0.02 to 0.30). Although weak, the genetic correlations between PWG and reproductive traits were favorable, whereas the genetic correlations between HH and reproductive traits were close to zero and slightly unfavorable for HP, AFC, and STAY. An increase of HH is therefore expected to have little or no negative effect on the reproductive performance of females. The posterior mean of genetic correlation between PWG and HH was moderate (0.50). On the basis of the heritability, genetic correlation estimates, and time to obtain data, HP and PRODAM seems to show the best potential as selection criteria to improve the productive and reproductive performance of Nelore females. In principle, it is possible to select for increased PWG without compromising the reproduction of Nelore females. However, selection for PWG may result in an increase of female HH as a correlated response, a fact that could increase management costs in advanced generations of selection. In the light of the results, all traits studied here can be used as selection criteria and there is no strong evidence of genetic antagonism among traits related to reproduction

  4. Growth hormone production and role in the reproductive system of female chicken.

    PubMed

    Hrabia, Anna

    2015-09-01

    The expression and role of growth hormone (GH) in the reproductive system of mammals is rather well established. In birds the limited information thus far available suggests that GH is an endocrine or paracrine/autocrine regulator of ovarian and oviductal functions too. GH and its receptors are expressed in all compartments of the ovary and oviduct and change accordingly to physiological state. The intra-ovarian role of GH likely includes the regulation of steroidogenesis, cell proliferation and apoptosis, the modulation of LH action and the synthesis of IGFs (insulin-like growth factors). In the oviduct, GH is also involved in the regulation of oviduct-specific protein expression. The present study provides a review of current knowledge on the presence and action of GH in the female reproduction, in which it is likely that act in endocrine, autocrine or paracrine mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Growth factors and steroid hormones: a complex interplay in the hypothalamic control of reproductive functions.

    PubMed

    Melcangi, Roberto C; Martini, Luciano; Galbiati, Mariarita

    2002-08-01

    The mechanisms through which LHRH-secreting neurons are controlled still represent a crucial and debated field of research in the neuroendocrine control of reproduction. In the present review, we have specifically considered two potential signals reaching these hypothalamic neurons: steroid hormones and growth factors. Examples of the relevant physiological role of the interactions between these two families of biologically acting molecules have been provided. In many cases, these interactions occur at the level of hypothalamic astrocytes, which are presently accepted as functional partners of the LHRH-secreting neurons. On the basis of the observations here summarized, we have formulated the hypothesis that a functional co-operation of steroid hormones and growth factors occurring in the hypothalamic astrocytic compartment represents a key factor in the neuroendocrine control of reproductive functions.

  6. Chronic effects of 2,2'-dichlorobiphenyl on reproduction, mortality, growth, and respiration of daphnia pulicaria

    SciTech Connect

    Bridgham, S.D.

    1988-01-01

    Previous studies have shown toxic effects of polychlorinated biphenyls (PCBs) on aquatic life only in the micro g/L range, well above normal ambient concentrations. Daphnia pulicaria was isolated from Lake Erie and exposed to 50 ng/L to 10 micro g/L of 2,2'-dichlorobiphenyl (DCB) in lifetable and physiological studies. Reproduction, mortality, growth, and respiration were measured for periods up to the entire lifespan of the animal with and without the use of an organic surfactant. Significant mortality and inhibition of reproduction were found at levels as low as 50-100 ng/L in lifetable studies, and no safe level could be determined. A unique, yet repeatable, dose-response curve occurred in lifetables with maximum inhibition at low to intermediate concentrations. Inhibition at the highest level tested, 10 micro g/L, occurred only after continuous exposure for three generations. Increasing concentrations of CBD stimulated growth, while respiration experiments yielded variable results.

  7. Effect of dietary biotin supplementation on sow reproductive performance and soundness and pig growth and mortality.

    PubMed

    Watkins, K L; Southern, L L; Miller, J E

    1991-01-01

    A 3-yr study was conducted to evaluate the effect of dietary biotin supplementation on the reproductive performance of 90 sows and gilts, and on the pre-weaning growth and mortality of 223 litters. Corn-soybean meal-based diets supplemented with either 0 or 440 micrograms/kg d-biotin were fed to sows throughout their reproductive cycle. Biotin supplementation had no beneficial effect (P greater than .10) on 107-d sow weight, sow weight at weaning, weaning to estrus interval, foot lesion score, hair loss score, structural soundness score, number of pigs born, number and percentage of pigs born alive or number and percentage of pigs alive at 21 d of age. Biotin supplementation had no effect (P greater than .10) on pig growth or mortality to 21 d of age. These data do not support the concept that biotin supplementation of sow diets is needed.

  8. Effect of growth factors on oocyte maturation and allocations of inner cell mass and trophectoderm cells of cloned bovine embryos.

    PubMed

    Arat, Sezen; Caputcu, Arzu Tas; Cevik, Mesut; Akkoc, Tolga; Cetinkaya, Gaye; Bagis, Haydar

    2016-08-01

    This study was conducted to determine the additive effects of exogenous growth factors during in vitro oocyte maturation (IVM) and the sequential culture of nuclear transfer (NT) embryos. Oocyte maturation and culture of reconstructed embryos derived from bovine granulosa cells were performed in culture medium supplemented with either epidermal growth factor (EGF) alone or a combination of EGF with insulin-like growth factor-I (IGF-I). The maturation rates of oocytes matured in the presence of EGF or the EGF + IGF-I combination were significantly higher than those of oocytes matured in the presence of only fetal calf serum (FCS) (P 0.05). IGF-I alone or in combination with EGF in sequential embryo culture medium significantly increased the ratio of inner cell mass (ICM) to total blastocyst cells (P < 0.05). Our results showed that the addition of growth factors to IVM and sequential culture media of cloned bovine embryos increased the ICM without changing the total cell number. These unknown and uncontrolled effects of growth factors can alter the allocation of ICM and trophectoderm cells (TE) in NT embryos. A decrease in TE cell numbers could be a reason for developmental abnormalities in embryos in the cloning system.

  9. Removal of the local geomagnetic field affects reproductive growth in Arabidopsis.

    PubMed

    Xu, Chunxiao; Wei, Shufeng; Lu, Yan; Zhang, Yuxia; Chen, Chuanfang; Song, Tao

    2013-09-01

    The influence of the geomagnetic field-removed environment on Arabidopsis growth was investigated by cultivation of the plants in a near-null magnetic field and local geomagnetic field (45 µT) for the whole growth period under laboratory conditions. The biomass accumulation of plants in the near-null magnetic field was significantly suppressed at the time when plants were switching from vegetative growth to reproductive growth compared with that of plants grown in the local geomagnetic field, which was caused by a delay in the flowering of plants in the near-null magnetic field. At the early or later growth stage, no significant difference was shown in the biomass accumulation between the plants in the near-null magnetic field and local geomagnetic field. The average number of siliques and the production of seeds per plant in the near-null magnetic field was significantly lower by about 22% and 19%, respectively, than those of control plants. These resulted in a significant reduction of about 20% in the harvest index of plants in the near-null magnetic field compared with that of the controls. These results suggest that the removal of the local geomagnetic field negatively affects the reproductive growth of Arabidopsis, which thus affects the yield and harvest index.

  10. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  11. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    PubMed

    Barenholz, Uri; Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

  12. Assessment of reproduction and growth performance of offspring derived from somatic cell cloned pigs.

    PubMed

    Hu, Kui; Kong, Qingran; Zhao, Zeping; Lu, Xinyu; Liu, Biao; Li, Yutian; Wang, Hongbin; Liu, Zhonghua

    2012-09-01

    Since cloned pig was successfully produced, a new opportunity for porcine breeding industry to conserve genetic resources has been opened. However, there has been no report to investigate whether both somatic cell nuclear transfer (SCNT) pigs and their offspring have the characteristics of the donor breed. In this study, we compared the reproductive and growth performance of American Large White boars cloned by SCNT with the donor boar, and analyzed the test parameters, including semen quality, re-service rate, rate of parturition, and average daily gain. The results showed that these cloned boars and the donor boar had no significant differences in the tests (P > 0.05) and the growth performance of their offspring was similar to the naturally bred American Large White pigs. In summary, the reproductive and growth performance of cloned pigs are similar to the donor pig and within the normal range. This suggests that pigs cloned by SCNT have the potential to be used in reproduction and breeding.

  13. Effects of growth hormone over-expression on reproduction in the common carp Cyprinus carpio L.

    PubMed

    Cao, Mengxi; Chen, Ji; Peng, Wei; Wang, Yaping; Liao, Lanjie; Li, Yongming; Trudeau, Vance L; Zhu, Zuoyan; Hu, Wei

    2014-01-01

    To study the complex interaction between growth and reproduction we have established lines of transgenic common carp (Cyprinus carpio) carrying a grass carp (Ctenopharyngodon idellus) growth hormone (GH) transgene. The GH-transgenic fish showed delayed gonadal development compared with non-transgenic common carp. To gain a better understanding of the phenomenon, we studied body growth, gonad development, changes of reproduction related genes and hormones of GH-transgenic common carp for 2years. Over-expression of GH elevated peripheral gh transcription, serum GH levels, and inhibited endogenous GH expression in the pituitary. Hormone analyses indicated that GH-transgenic common carp had reduced pituitary and serum level of luteinizing hormone (LH). Among the tested genes, pituitary lhβ was inhibited in GH-transgenic fish. Further analyses in vitro showed that GH inhibited lhβ expression. Localization of ghr with LH indicates the possibility of direct regulation of GH on gonadotrophs. We also found that GH-transgenic common carp had reduced pituitary sensitivity to stimulation by co-treatments with a salmon gonadotropin-releasing hormone (GnRH) agonist and a dopamine antagonist. Together these results suggest that the main cause of delayed reproductive development in GH transgenic common carp is reduced LH production and release.

  14. Multigenerational Effects of Heavy Metals on Feeding, Growth, Initial Reproduction and Antioxidants in Caenorhabditis elegans

    PubMed Central

    Yu, ZhenYang; Zhang, Jing; Yin, DaQiang

    2016-01-01

    Earlier studies showed that toxicities of excessive metals lasted over generations. Yet, these studies mainly employed one-generation exposure, and the effects of multigenerational challenges need further studies. Presently, Caenorhabditis elegans were exposed to cadmium, copper, lead and zinc for four consecutive generations (G1 to G4) at environmental concentrations. The feeding, growth, initial reproduction, superoxide dismutase (SOD) and catalase (CAT) were determined. All data were represented in the percentage of that in control (POC), and POC in the control was normalized to 100%. In G1 and G2, the POC values in feeding, growth and initial reproduction were generally within 10% of the control (100%), indicating non-significant effects. The POC values in SOD and CAT were significantly higher than 100%, showing stimulatory effects. In G3 and G4, the POC values in feeding, growth and initial reproduction were significantly lower than 100%, showing inhibitory effects which were more severe in G4 than in G3. Meanwhile, SOD and CAT continuously showed stimulatory effects, and the stimulatory effects on SOD increased from G1 to G4. The effects with multigenerational challenges were different from those in one-generation exposure. The effects in later generations demonstrated the importance of multigenerational challenges in judging long-term influences of metals. PMID:27116222

  15. Androgen Receptors Expression in Pituitary of Male Viscacha in relation to Growth and Reproductive Cycle

    PubMed Central

    Filippa, Verónica Palmira; Rosales, Gabriela Judith; Cruceño, Albana Andrea Marina; Mohamed, Fabian Heber

    2015-01-01

    The aim of this work was to study the androgen receptors (AR) expression in pituitary pars distalis (PD) of male viscachas in relation to growth and reproductive cycle. AR were detected by immunocytochemistry and quantified by image analysis. Pituitary glands from fetus, immature, prepubertal, and adult viscachas during their reproductive cycle were used. In the fetal PD, the immunoreactivity (ir) was mainly cytoplasmic. In immature and prepubertal animals, AR-ir was cytoplasmic (ARc-ir) and nuclear (ARn-ir) in medial region. In adult animals, ARn-ir cells were numerous at caudal end. AR regionalization varied between the PD zones in relation to growth. In immature animals, the ARn-ir increased whereas the cytoplasmic expression decreased in relation to the fetal glands. The percentage of ARc-ir cells increased in prepubertal animals whereas the nuclear AR expression was predominant in adult viscachas. The AR expression changed in adults, showing minimum percentage in the gonadal regression period. The variation of nuclear AR expression was directly related with testosterone concentration. These results demonstrated variations in the immunostaining pattern, regionalization, and number of AR-ir cells throughout development, growth, and reproductive cycle, suggesting the involvement of AR in the regulation of the pituitary activity of male viscacha. PMID:25945090

  16. EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA

    EPA Science Inventory

    The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...

  17. EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA

    EPA Science Inventory

    The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...

  18. Periodic matrix population models: growth rate, basic reproduction number, and entropy.

    PubMed

    Bacaër, Nicolas

    2009-10-01

    This article considers three different aspects of periodic matrix population models. First, a formula for the sensitivity analysis of the growth rate lambda is obtained that is simpler than the one obtained by Caswell and Trevisan. Secondly, the formula for the basic reproduction number R0 in a constant environment is generalized to the case of a periodic environment. Some inequalities between lambda and R0 proved by Cushing and Zhou are also generalized to the periodic case. Finally, we add some remarks on Demetrius' notion of evolutionary entropy H and its relationship to the growth rate lambda in the periodic case.

  19. Trade-offs between growth and maturation: the cost of reproduction for surviving environmental extremes.

    PubMed

    Luhring, Thomas M; Holdo, Ricardo M

    2015-07-01

    Life-history trade-offs and the costs of reproduction are central concepts in evolution and ecology. Episodic climatic events such as drought and extreme temperatures provide strong selective pressures that can change the balance of these costs and trade-offs. We used size-structured matrix models parameterized from field and laboratory studies to examine the effect of periodic drought on two species of aquatic salamanders (greater siren, Siren lacertina; lesser siren, Siren intermedia) that differ in size at reproduction and maximum body size. Post-drought body size distributions of the larger species (S. lacertina) are consistent with size-dependent mortality. Smaller individuals were extirpated from the population during each drought while large animals persisted, a pattern that contrasted with that seen in several ectotherms. This appears to be largely explained by estivation proficiency and a positive relationship between body size and estivation potential. Increased body size, however, may come at the cost of fecundity and maturation rate compared to a closely related congener. The cost of somatic allocation in this case may manifest itself via reduced per-capita competitive ability, which (at least in simulation studies) allows the smaller, fast-maturing species to outcompete the larger, slow-maturing species when drought is minimal or nonexistent.

  20. Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy

    PubMed Central

    Higgins, J. S.; Vaughan, O. R.; Fernandez de Liger, E.; Fowden, A. L.

    2015-01-01

    Key points Hypoxia is a major cause of fetal growth restriction, particularly at high altitude, although little is known about its effects on placental phenotype and resource allocation to fetal growth.In the present study, maternal hypoxia induced morphological and functional changes in the mouse placenta, which depended on the timing and severity of hypoxia, as well as the degree of maternal hypophagia.Hypoxia at 13% inspired oxygen induced beneficial changes in placental morphology, nutrient transport and metabolic signalling pathways associated with little or no change in fetal growth, irrespective of gestational age.Hypoxia at 10% inspired oxygen adversely affected placental phenotype and resulted in severe fetal growth restriction, which was due partly to maternal hypophagia.There is a threshold between 13% and 10% inspired oxygen, corresponding to altitudes of ∼3700 m and 5800 m, respectively, at which the mouse placenta no longer adapts to support fetal resource allocation. This has implications for high altitude human pregnancies. Abstract The placenta adapts its transport capacity to nutritional cues developmentally, although relatively little is known about placental transport phenotype in response to hypoxia, a major cause of fetal growth restriction. The present study determined the effects of both moderate hypoxia (13% inspired O2) between days (D)11 and D16 or D14 and D19 of pregnancy and severe hypoxia (10% inspired O2) from D14 to D19 on placental morphology, transport capacity and fetal growth on D16 and D19 (term∼D20.5), relative to normoxic mice in 21% O2. Placental morphology adapted beneficially to 13% O2; fetal capillary volume increased at both ages, exchange area increased at D16 and exchange barrier thickness reduced at D19. Exposure to 13% O2 had no effect on placental nutrient transport on D16 but increased placental uptake and clearance of 3H‐methyl‐d‐glucose at D19. By contrast, 10% O2 impaired fetal vascularity

  1. Distribution of bulbil- and seed-producing plants of Poa alpina (Poaceae) and their growth and reproduction in common gardens suggest adaptation to different elevations.

    PubMed

    Steiner, Bigna L; Armbruster, Georg F J; Scheepens, J F; Stöcklin, Jürg

    2012-12-01

    The European Alps harbor a spatially heterogeneous environment. Plants can be adapted genetically to this heterogeneity but may also respond to it by phenotypic plasticity. We expected the important fodder grass Poa alpina to be adapted to elevation either genetically or plastically. • We investigated in three elevational common gardens whether growth and reproductive allocation of plants reproducing either by seeds or bulbils suggest adaptation to their elevation of origin and to what extent they can respond plastically to different elevations. Additionally, we analyzed genetic diversity using microsatellites and tested whether seeds are of sexual origin. • In the field, bulbil-producing plants occurred more often at higher elevations, whereas seed-producing plants occurred more often at lower elevations, but bulbil-producing plants were generally less vigorous in the common gardens. The response of plants to elevational transplantation was highly plastic, and vigor was always best at the highest location. The small genetic differences were not clinally related to elevation of origin, underlining the importance of phenotypic plasticity. Reproductive allocation was, however, independent of elevational treatments. Seed-producing plants had higher genetic diversity than the bulbil-producing plants even though we found that seed-producing plants were facultative apomicts mostly reproducing asexually. • Bulbil-producing P. alpina, showing a fitness cost at lower elevations compared with seed-producing plants, seem better adapted to higher elevations. By means of its two reproductive modes and the capacity to adjust plastically, P. alpina is able to occupy a broad ecological niche across a large elevational range.

  2. Dietary ractopamine supplementation during the first lactation affects milk composition, piglet growth and sow reproductive performance.

    PubMed

    van Wettere, W H E J; Pain, S J; Hughes, P E

    2016-11-01

    Excessive mobilization of body reserves during lactation delays the return to reproductive function in weaned primiparous sows. This study tested the hypothesis that supplementing the lactation diets of first-parity sows with ractopamine hydrochloride would reduce maternal weight loss and improve subsequent reproductive performance. Gestating gilts were allocated to one of two treatment groups (n=30 sows/treatment), with one group fed a standard lactation diet (2.5g/Mcal LYS: DE) throughout lactation (CTRL), whereas the treatment group received the standard lactation diet supplemented with 10mg/kg ractopamine hydrochloride (RAC) from d 1 to 13 of lactation and 20mg/kg RAC from d 14 of lactation until artificial insemination (AI). Weaning occurred on d 21 of lactation, with AI occurring at the first post-weaning estrus. Compared to CTRL, RAC supplementation decreased (P<0.05) liveweight loss between d 13 and 20 of lactation (4.3±0.90 versus 1.3±0.96kg), and tended to increase (P=0.06) the number of second litter piglets born alive (9.5±0.52 versus 8.1±0.74). Treatment (RAC versus CTRL) reduced milk protein levels on d 13 and 20 of lactation (P<0.05), and piglet weight gain between d 13 and 20 of lactation (260±0.01 versus 310±0.01g/day, P<0.01). In conclusion, it is evident that dietary RAC altered milk composition and stimulated conservation of maternal body reserves during the third week of lactation, resulting in a beneficial effect on subsequent reproductive performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fisheries-induced evolution in growth, maturation and reproductive investment of the sexually dimorphic North Sea plaice ( Pleuronectes platessa L.)

    NASA Astrophysics Data System (ADS)

    van Walraven, L.; Mollet, F. M.; van Damme, C. J. G.; Rijnsdorp, A. D.

    2010-07-01

    Changes in the onset of sexual maturation, reproductive investment and growth of North Sea plaice are studied between three periods: 1900s, 1980s and 2000s. Probabilistic maturation reaction norms of both males and females, describing the probability of becoming mature conditional on age and size, shifted towards smaller sizes and younger ages, indicating a fisheries-induced evolutionary change. A higher rate of change was observed during the past 20 years, which may be related to higher temperature conditions. Reproductive investment was estimated from the decrease in lipid, protein, dry weight content and condition factor of the whole body between pre- and post-spawning adults. Reproductive investment expressed as the energy loss over the spawning period increased with body size from 19% at 20 cm to 30% at 40 cm in males and from 35% at 30 cm to 48% at 50 cm in females. No change in reproductive investment could be detected between the 1980s and the 2000s. Von Bertalanffy (VB) growth parameters showed a decrease in L∞ the asymptotic size and an increase in K, the velocity to reach L∞, in both males and females. The changes in VB growth are consistent with an increase in energy acquisition and reproductive investment. The observed changes in maturation, reproductive investment and growth are consistent with fisheries-induced evolution, but the changes in reproductive investment and growth need further investigation to disentangle the role of phenotypic plasticity.

  4. Impacts of breeder loss on social structure, reproduction and population growth in a social canid.

    PubMed

    Borg, Bridget L; Brainerd, Scott M; Meier, Thomas J; Prugh, Laura R

    2015-01-01

    The importance of individuals to the dynamics of populations may depend on reproductive status, especially for species with complex social structure. Loss of reproductive individuals in socially complex species could disproportionately affect population dynamics by destabilizing social structure and reducing population growth. Alternatively, compensatory mechanisms such as rapid replacement of breeders may result in little disruption. The impact of breeder loss on the population dynamics of social species remains poorly understood. We evaluated the effect of breeder loss on social stability, recruitment and population growth of grey wolves (Canis lupus) in Denali National Park and Preserve, Alaska using a 26-year dataset of 387 radiocollared wolves. Harvest of breeding wolves is a highly contentious conservation and management issue worldwide, with unknown population-level consequences. Breeder loss preceded 77% of cases (n = 53) of pack dissolution from 1986 to 2012. Packs were more likely to dissolve if a female or both breeders were lost and pack size was small. Harvest of breeders increased the probability of pack dissolution, likely because the timing of harvest coincided with the breeding season of wolves. Rates of denning and successful recruitment were uniformly high for packs that did not experience breeder loss; however, packs that lost breeders exhibited lower denning and recruitment rates. Breeder mortality and pack dissolution had no significant effects on immediate or longer term population dynamics. Our results indicate the importance of breeding individuals is context dependent. The impact of breeder loss on social group persistence, reproduction and population growth may be greatest when average group sizes are small and mortality occurs during the breeding season. This study highlights the importance of reproductive individuals in maintaining group cohesion in social species, but at the population level socially complex species may be resilient

  5. Cyclic variations in nitrogen uptake rate in soybean plants: uptake during reproductive growth

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic culture was measured daily during a 63 d period of reproductive development between the first florally inductive photoperiod and [unknown word] seed growth. Removal of NO3- from a replenished solution containing 1.0 mol m-3 NO3- was determined by ion chromatography. Uptake of NO3- continued throughout reproductive development. The net uptake rate of NO3- cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floral stage and about 6 d during the fruiting stage. Coupled with increasing concentrations of carbon and C : N ratios in tissues, the oscillations in net uptake rates of NO3- are evidence that the demand for carbohydrate by reproductive organs is contingent on the availability of nitrogen in the shoot pool rather than that the demand for nitrogen follows the flux of carbohydrate into reproductive tissues.

  6. [Effects of substrate nitrogen and phosphorus contents on Potamogeton crispus growth and reproduction].

    PubMed

    Huang, Wei; Chen, Kai-ning; Bai, Xiang

    2010-11-01

    Six nutritional levels were designed to study the effects of different nitrogen (N) and phosphorus (P) contents in sediment on the growth and reproduction of Potamogeton crispus. The results revealed that the germination rate of P. crispus was not affected by the N and P contents in sediment, and all reached 100%. With the increasing N and P contents in sediment, the N content in plant tissues increased first and approached to a stationary level then, while the P content presented a slow increasing trend. In the meantime, the initial fluorescence (Fo) declined rapidly, while the potential maximum quantum yield (Fv/Fm) increased first followed by a slight decrease, indicating that the photosynthetic efficiency was enhanced by the increasing N and P contents in sediment but decreased at excessively high N and P contents. The rapid light curves showed that P. crispus could effectively use weak light and was more susceptible to photoinhibition under intense light, but its resistance capability against intense light could be improved by the high N and P contents in sediment. The high N and P contents in sediment could also promote the total biomass of P. crispus, but reduce the root: shoot ratio of the plant. Under the increasing N and P contents in sediment, the asexual reproduction of P. crispus was improved, reproductive strategy was optimized, and also, the sexual reproduction occurred but the seed setting rate was low, only 19.6% on average.

  7. Cyclic variations in nitrogen uptake rate in soybean plants: uptake during reproductive growth

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic culture was measured daily during a 63 d period of reproductive development between the first florally inductive photoperiod and [unknown word] seed growth. Removal of NO3- from a replenished solution containing 1.0 mol m-3 NO3- was determined by ion chromatography. Uptake of NO3- continued throughout reproductive development. The net uptake rate of NO3- cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floral stage and about 6 d during the fruiting stage. Coupled with increasing concentrations of carbon and C : N ratios in tissues, the oscillations in net uptake rates of NO3- are evidence that the demand for carbohydrate by reproductive organs is contingent on the availability of nitrogen in the shoot pool rather than that the demand for nitrogen follows the flux of carbohydrate into reproductive tissues.

  8. Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants*

    PubMed Central

    Zhou, Yan-hong; Zhang, Yi-li; Wang, Xue-min; Cui, Jin-xia; Xia, Xiao-jian; Shi, Kai; Yu, Jing-quan

    2011-01-01

    Cucumber and rice plants with varying ammonium (NH4 +) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO3 −)-grown plants, cucumber plants grown under NH4 +-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO2) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O2-independent alternative electron flux, and increased O2-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH4 +-grown plants had a higher O2-independent alternative electron flux than NO3 −-grown plants. NO3 − reduction activity was rarely detected in leaves of NH4 +-grown cucumber plants, but was high in NH4 +-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO3 − assimilation, an effect more significant in NO3 −-grown plants than in NH4 +-grown plants. Meanwhile, NH4 +-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO3 − reduction, regardless of the N form supplied, while NH4 +-sensitive plants had a high water-water cycle activity when NH4 + was supplied as the sole N source. PMID:21265044

  9. Effects of nitrogen form on growth, CO₂ assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants.

    PubMed

    Zhou, Yan-hong; Zhang, Yi-li; Wang, Xue-min; Cui, Jin-xia; Xia, Xiao-jian; Shi, Kai; Yu, Jing-quan

    2011-02-01

    Cucumber and rice plants with varying ammonium (NH(4)(+)) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO(3)(-))-grown plants, cucumber plants grown under NH(4)(+)-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO(2)) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O(2)-independent alternative electron flux, and increased O(2)-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH(4)(+)-grown plants had a higher O(2)-independent alternative electron flux than NO(3)(-)-grown plants. NO(3)(-) reduction activity was rarely detected in leaves of NH(4)(+)-grown cucumber plants, but was high in NH(4)(+)-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO(3)(-) assimilation, an effect more significant in NO(3)(-)-grown plants than in NH(4)(+)-grown plants. Meanwhile, NH(4)(+)-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO(3)(-) reduction, regardless of the N form supplied, while NH(4)(+)-sensitive plants had a high water-water cycle activity when NH(4)(+) was supplied as the sole N source.

  10. Phenotypic and genotypic components of growth and reproduction in Typha latifolia: experimental studies in three contrasting marshes

    SciTech Connect

    Grace, J.B.

    1980-01-01

    The magnitude and causes of intraspecific variation in biomass production and allocation, and morphology for Typha latifolia L. from three marshes which can be distinguished by their successional maturity were investigated. The first stage of investigation was to determine the environmental characteristics of the three marshes and the characteristics of the T. latifolia populations. Second, in situ studies of /sup 14/C fixation and allocation were used to determine the phenotypic variation in biomass production and allocation. Third, populations were sampled for genotypic variation in biomass allocation patterns by comparing growth in controlled garden experiments. Fourth, the growth of different biotypes was compared by transplantation into natural stands of T. latifolia. And fifth, the intraspecific variations were considered in terms of their consequences for the persistence of T. latifolia in habitats over successional time.

  11. The dynamic of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrêne, E.; François, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-02-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will condition the response of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study is to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). Combining field measurements and process-based simulations at 49 sites (931 site-years), we assessed the stand biomass growth dependences at both inter-site and inter-annual scales. Specifically, the relative influence of forest C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in stand C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual stand woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. We provide an evaluation of the spatio-temporal dynamics of annual carbon allocation to wood in European forests. Our study supports the premise that European forest growth is under a complex control including both source and sink limitations. The relative influences of the different growth drivers strongly vary across years and spatial ecological gradients. We suggest a

  12. Effects of the artificial sweetener sucralose on Daphnia magna and Americamysis bahia survival, growth and reproduction.

    PubMed

    Huggett, D B; Stoddard, K I

    2011-10-01

    The artificial sweetener sucralose has been detected in municipal wastewater effluent and surface waters at concentrations ranging from ng/L to low μg/L. Few chronic ecotoxicological data are available in the peer reviewed literature with respect to sucralose. To address this data gap, 21 d Daphnia magna and 28 d Americamysis bahia (mysid shrimp) studies were conducted to assess the effects of sucralose on the survival, growth and reproduction of these organisms. Concentrations ⩽1800mg/L resulted in no statistically significant reduction in D. magna survival or reproduction. Survival, growth and reproduction of mysid shrimp were unaffected by ⩽93mg/L sucralose. The no observable effect concentration (NOEC) and lowest observable effect concentration (LOEC) for the D. magna study were 1800 and >1800mg/L, respectively. The NOEC and LOEC for the mysid study were 93 and >93mg/L, respectively. Collectively, these data suggest that the concentrations of sucralose detected in the environment are well below those required to elicit chronic effects in freshwater or marine invertebrates.

  13. Effect of bovine colostrum intake on growth, reproductive parameters and survival in red kids.

    PubMed

    Abdou, H; Marichatou, H; Beckers, J-F; Dufrasne, I; Issa, M; Hornick, J-L

    2014-10-01

    The aim of this study is to evaluate the efficacy of frozen Azawak colostrum supplementation on body weight (BW), average daily gain (ADG), reproductive parameters (mean age at first parturition, fertility, fecundity, prolificacy) and mortality rate among red kids. The study was conducted at the goat farm secondary centre of Maradi in Niger from September 2010 to September 2011. The control animals (n = 20) were left with their mother, while the treatment animals (n = 20) received in addition 50 ml/animal/day of bovine colostrum at birth and 15 ml/animal/day from d2 to d15. Weight was measured weekly from birth to d365. Mortalities were also recorded over the same period. For reproductive parameters, observations began at weaning (d197). Growth rate was higher (p < 0.001) in supplemented animal, and the treatment effects on ADG were observed up to 150 day after the end of supplementation. A similar long-lasting trend was also observed in relation to the mortality rate (25% for ColG vs. 55% for ConG; p = 0.05). The age at first kidding tended to be lower in the treated group (13.8 ± 0.7 vs. 14.1 ± 0.8 month; p < 0.1). In conclusion, mild bovine colostrum supplementation induces a long-lasting positive impact on growth rate and to a lower extent on reproduction parameters and survival rate.

  14. Responses of plant phenology, growth, defense, and reproduction to interactive effects of warming and insect herbivory.

    PubMed

    Lemoine, Nathan P; Doublet, Dejeanne; Salminen, Juha-Pekka; Burkepile, Deron E; Parker, John D

    2017-07-01

    Climate warming can modify plant reproductive fitness through direct and indirect pathways. Direct effects include temperature-driven impacts on growth, reproduction, and secondary metabolites. Indirect effects may manifest through altered species interactions, including herbivory, although studies comparing the interactive effects of warming and herbivory are few. We used experimental warming combined with herbivore exclusion cages to assess the interactive effects of climate warming and herbivory by Popillia japonica, the Japanese beetle, on flowering phenology, growth, defense, and lifetime reproduction of a biennial herb, Oenothera biennis. Regardless of temperature, herbivory delayed flowering phenology and, surprisingly, led to decreased levels of foliar defenses. At ambient temperatures, plants were able to compensate for herbivory by producing smaller seeds and increasing total seed production, leading to similar investment in seed biomass for plants exposed to and protected from herbivores. At elevated temperatures, plants had elevated total seed production, but herbivory had negligible impacts on flower and fruit production, and total lifetime seed biomass was highest in plants exposed to herbivores in warmed conditions. We speculate that warming induced a stress response in O. biennis resulting from low soil moisture, which in turn led to an increase in seed number at the expense of maternal investment in each seed. Plant-insect interactions might therefore shift appreciably under future climates, and ecologists must consider both temperature and herbivory when attempting to assess the ramifications of climate warming on plant populations. © 2017 by the Ecological Society of America.

  15. Effects of lithium on the survival, growth, and reproduction of Daphniopsis tibetana Sars (Crustacea: Cladocera)

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Huo, Yuanzi; Zhang, Tianmin; Wang, Shan; Shi, Tingting

    2016-08-01

    We evaluated the effects of lithium on the survival, growth, and reproduction of D. tibetana in the laboratory. The safe concentration value was 69.3 mg/L. The time to first brood was significant lower for individuals reared in 5 and 10 mg/L (24.4 and 24.0 d, respectively) compared with individuals reared in 20, 40, or 60 mg/L. Females reared in 5 mg/L lithium produced a mean of 16.5 neonates/brood and had the highest number of broods (3.0±1.95). The rate of egg production (a), the intrinsic rate of increase (r m ), net reproduction rate (R 0), and finite rate of increase (λ) were highest for D. tibetana reared at 5 and 10 mg/L lithium, and the duration of development was shorter than for the remaining groups. The results indicated that rearing in 5-10 mg/L lithium can accelerate the growth and reproduction of D. tibetana.

  16. Effects of lithium on the survival, growth, and reproduction of Daphniopsis tibetana Sars (Crustacea: Cladocera)

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Huo, Yuanzi; Zhang, Tianmin; Wang, Shan; Shi, Tingting

    2017-07-01

    We evaluated the effects of lithium on the survival, growth, and reproduction of D. tibetana in the laboratory. The safe concentration value was 69.3 mg/L. The time to first brood was significant lower for individuals reared in 5 and 10 mg/L (24.4 and 24.0 d, respectively) compared with individuals reared in 20, 40, or 60 mg/L. Females reared in 5 mg/L lithium produced a mean of 16.5 neonates/brood and had the highest number of broods (3.0±1.95). The rate of egg production ( a), the intrinsic rate of increase ( r m ), net reproduction rate ( R 0), and finite rate of increase ( λ) were highest for D. tibetana reared at 5 and 10 mg/L lithium, and the duration of development was shorter than for the remaining groups. The results indicated that rearing in 5-10 mg/L lithium can accelerate the growth and reproduction of D. tibetana.

  17. Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white pine trees

    SciTech Connect

    McLaughlin, S.B.; McConathy, R.K.; Duvick, D.; Mann, L.K.

    1982-03-01

    Comparisons of annual growth, photosynthetic capacity, and fate of photosynthetic products were made to determine the rate and case of declining vigor of oxidant-stressed white pine (Pinus strobus L.) growing near Oak Ridge, Tennessee. Three approximately 25-year-old trees were selected for study from each of three sensitivity classes based on needle color, length, and duration of retention. Growth ring analysis revealed comparable growth trends in intermediate and tolerant trees whereas sensitive trees experienced a steady decline in average ring width (70 percent decrease over 15 years) and a loss in capacity for recovery of growth. The fate of photosynthetically fixed /sup 14/C was followed after supplying /sup 14/CO/sub 2/ to in situ foliage four times (June, July, August, November) during the growing season. Carbon-14 transport patterns emphasized the role of older needles as sources of photosynthate for new needle growth in spring and storage sinks in the fall. Higher retention of /sup 14/C-photosynthate by foliage and branches of sensitive trees indicatd that photosynthante export to boles and roots was reduced. Photosynthetic capacity (CO/sub 2/ uptake/g dwt ) of foliage of sensitive and tolerant trees was similar. The ratio of respiratory to photosynthetic activity was significantly higher for foliage of sensitive trees. Results suggest that declining vigor of sensitive trees in ths area results from reductions in needle longevity, size, increased respiratory activity, and altered translocation patterns which are induced by chronic air pollution stress.

  18. Determining cadmium critical concentrations in natural soils by assessing Collembola mortality, reproduction and growth.

    PubMed

    Bur, T; Probst, A; Bianco, A; Gandois, L; Crouau, Y

    2010-03-01

    The toxicity of cadmium for the Collembola Folsomia candida was studied by determining the effects of increasing Cd concentrations on growth, survival and reproduction in three cultivated and forested soils with different pH (4.5-8.2) and organic matter content (1.6-16.5%). The Cd concentration in soil CaCl(2) exchangeable fraction, in soil solution and in Collembola body was determined. At similar total soil concentrations, the Cd concentration in soil solutions strongly decreased with increasing pH. Reproduction was the most sensitive parameter. Low organic matter content was a limiting factor for reproduction. Effect of Cd on reproduction was better described by soil or body concentrations than by soil solution concentration. Values of EC(50-Repro) expressed on the basis of nominal soil concentration were 182, 111 and 107 microg g(-1), respectively, for a carbonated cultivated soil (AU), an acid forested soil with high organic matter (EPC) and a circumneutral cultivated soil with low organic content (SV). Sensitivity to Cd was enhanced for low OM content and acidic pH. The effect of Cd on reproduction is not directly related to Cd concentration in soil solution for carbonated soil: a very low value is found for EC(50-Repro) (0.17) based on soil solution for the soil with the highest pH (AU; pH=8.2). Chronic toxicity cannot be predicted on the basis of soluble fractions. Critical concentrations were 8 x 10(-5), 1.1, 0.3 microg mL(-1), respectively, for AU, EPC and SV soils. (c) 2009. Published by Elsevier Inc.

  19. Survival, reproductive, and growth responses in fish to creosote exposure in aquatic mesocosms

    SciTech Connect

    Munro, K.A.; Solomon, K.R.; Bestari, K.T.; Robinson, R.D.

    1995-12-31

    Creosote is a coal tar distillate, consisting mainly of a mixture of polyaromatic hydrocarbons (PAHs). Its widespread use as a wood preservative presents a potential risk to aquatic ecosystems. The use of mesocosms (precolonized with zooplankton, phytoplankton, macroinvertebrates, and periphyton) enabled evaluation of the total impact of creosote exposure, resulting from both direct toxic effects and indirect community-level interactions. Two methods of creosote addition were used, resulting in two series of mesocosm exposures: sixteen ponds were dosed with liquid creosote (from 0 to 100 ppm), and eight were dosed using creosote impregnated pilings (0 to 6 pilings per pond). In addition to growth and survival in two species of fish, Carassius auratus and Pimephales promelas, a number of reproductive parameters were measured (reproductive hormones, egg production, hatching success, and weight/frequency distribution of juveniles).

  20. Estimation of genetic parameters among reproductive and growth traits in yearling heifers.

    PubMed

    Smith, B A; Brinks, J S; Richardson, G V

    1989-11-01

    Growth and reproductive data were obtained on 779 beef heifers at the San Juan Basin Research Center, Hesperus, Co. Genetic parameters were estimated for age of puberty (AOP), age of first calving (AOC), julian day of first calving (DOC), julian day of second calving (DOSC), birth weight, weaning weight, yearling weight, and average daily gain from weaning to yearling and to cycling weights. The least squares model included birth year, age of dam and breed as fixed effects, sire/breed as a random variable, and day of birth and percent inbreeding as covariates. Day of birth was not included in the analyses of AOC, DOC or DOSC. Paternal half-sib estimates of heritability were: AOP, .10 +/- .17; AOC, .01 +/- .12; DOC, .09 +/- .13 and DOSC, .36 +/- .18. Genetic and phenotypic correlations were generally favorable, but genetic correlations were variable with large standard errors. Inbreeding had a detrimental effect on reproductive traits, and a seasonal effect was present for AOP.

  1. Asexual endophytes in a native grass: tradeoffs in mortality, growth, reproduction, and alkaloid production.

    PubMed

    Faeth, Stanley H; Hayes, Cinnamon J; Gardner, Dale R

    2010-10-01

    Neotyphodium endophytes are asexual, seed-borne fungal symbionts that are thought to interact mutualistically with their grass hosts. Benefits include increased growth, reproduction, and resistance to herbivores via endophytic alkaloids. Although these benefits are well established in infected introduced, agronomic grasses, little is known about the cost and benefits of endophyte infection in native grass populations. These populations exist as mosaics of uninfected and infected plants, with the latter often comprised of plants that vary widely in alkaloid content. We tested the costs and benefits of endophyte infections with varying alkaloids in the native grass Achnatherum robustum (sleepygrass). We conducted a 4-year field experiment, where herbivory and water availability were controlled and survival, growth, and reproduction of three maternal plant genotypes [uninfected plants (E-), infected plants with high levels of ergot alkaloids (E+A+), and infected plants with no alkaloids (E+A-)] were monitored over three growing seasons. Generally, E+A+ plants had reduced growth over the three growing seasons and lower seed production than E- or E+A- plants, suggesting a cost of alkaloid production. The reduction in vegetative biomass in E+A+ plants was most pronounced under supplemented water, contrary to the prediction that additional resources would offset the cost of alkaloid production. Also, E+A+ plants showed no advantage in growth, seed production, or reproductive effort under full herbivory relative to E- or E+A- grasses, contrary to the predictions of the defensive mutualism hypothesis. However, E+A+ plants had higher overwintering survival than E+A- plants in early plant ontogeny, suggesting that alkaloids associated with infection may protect against below ground herbivory or harsh winter conditions. Our results suggest that the mosaic of E-, E+A+, and E+A- plants observed in nature may result from varying biotic and abiotic selective factors that maintain

  2. The influence of bacteria-dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition.

    PubMed

    Taipale, Sami J; Brett, Michael T; Pulkkinen, Katja; Kainz, Martin J

    2012-10-01

    We explored how dietary bacteria affect the life history traits and biochemical composition of Daphnia magna, using three bacteria taxa with very different lipid composition. Our objectives were to (1) examine whether and how bacteria-dominated diets affect Daphnia survival, growth, and fecundity, (2) see whether bacteria-specific fatty acid (FA) biomarkers accrued in Daphnia lipids, and (3) explore the quantitative relationship between bacteria availability in Daphnia diets and the amounts of bacterial FA in their lipids. Daphnia were fed monospecific and mixed diets of heterotrophic (Micrococcus luteus) or methanotrophic bacteria (Methylomonas methanica and Methylosinus trichosporium) and two phytoplankton species (Cryptomonas ozolinii and Scenedesmus obliquus). Daphnia neonates fed pure bacteria diets died after 6-12 days and produced no viable offspring, whereas those fed pure phytoplankton diets had high survival, growth, and reproduction success. Daphnia fed a mixed diet with 80% M. luteus and 20% of either phytoplankton had high somatic growth, but low reproduction. Conversely, Daphnia fed mixed diets including 80% of either methane-oxidizing bacteria and 20% Cryptomonas had high reproduction rates, but low somatic growth. All Daphnia fed mixed bacteria and phytoplankton diets had strong evidence of both bacteria- and phytoplankton-specific FA biomarkers in their lipids. FA mixing model calculations indicated that Daphnia that received 80% of their carbon from bacteria assimilated 46 ± 25% of their FA from this source. A bacteria-phytoplankton gradient experiment showed a strong positive correlation between the proportions of the bacterial FA in the Daphnia and their diet, indicating that bacterial utilization can be traced in this keystone consumer using FA biomarkers.

  3. Growth, morphology, ammonium uptake and nutrient allocation of Myriophyllum brasiliense Cambess. under high NH₄⁺ concentrations.

    PubMed

    Saunkaew, Piyanart; Wangpakapattanawong, Prasit; Jampeetong, Arunothai

    2011-11-01

    The effects of high NH(4)(+) concentration on growth, morphology, NH(4) (+) uptake and nutrient allocation of Myriophyllum brasiliense were investigated in hydroponic culture. The plants were grown under greenhouse conditions for 4 weeks using four levels of NH(4)(+) concentration: 1, 5, 10 and 15 mM. M. brasiliense grew well with a relative growth rate of c.0.03 day(-1) at NH(4)(+) concentration up to 5 mM. At the higher NH(4)(+) concentrations the growth of the plants was stunted and the plants had short roots and few new buds, especially when grown in 15 mM NH(4)(+) where the submerged leaves were lost and there were rotten roots and submerged stems. To avoid NH(4)(+) toxicity, the plants may have a mechanism to prevent cytoplasmic NH(4)(+) accumulation in plant cells. The net uptake of NH(4)(+) significantly decreased and the total N significantly increased in the plants treated with 10 and 15 mM NH(4)(+), respectively. The plant may employ NH(4)(+) assimilation and extrusion as a mechanism to compensate for the high NH(4)(+) concentrations. However, the plants may show nutrient deficiency symptoms, especially K deficiency symptoms, after they were exposed to NH(4)(+) concentration higher than 10 mM. The present study provides a basic ecophysiology of M. brasiliense that it can grow in NH(4)(+) enriched water up to concentrations as high as 5 mM.

  4. Survival, growth and reproduction of cryopreserved larvae from a marine invertebrate, the Pacific oyster (Crassostrea gigas).

    PubMed

    Suquet, Marc; Labbé, Catherine; Puyo, Sophie; Mingant, Christian; Quittet, Benjamin; Boulais, Myrina; Queau, Isabelle; Ratiskol, Dominique; Diss, Blandine; Haffray, Pierrick

    2014-01-01

    This study is the first demonstration of successful post-thawing development to reproduction stage of diploid cryopreserved larvae in an aquatic invertebrate. Survival, growth and reproductive performances were studied in juvenile and adult Pacific oysters grown from cryopreserved embryos. Cryopreservation was performed at three early stages: trochophore (13±2 hours post fertilization: hpf), early D-larvae (24±2 hpf) and late D-larvae (43±2 hpf). From the beginning (88 days) at the end of the ongrowing phase (195 days), no mortality was recorded and mean body weights did not differ between the thawed oysters and the control. At the end of the growing-out phase (982 days), survival of the oysters cryopreserved at 13±2 hpf and at 43±2 hpf was significantly higher (P<0.001) than those of the control (non cryopreserved larvae). Only the batches cryopreserved at 24±2 hpf showed lower survival than the control. Reproductive integrity of the mature oysters, formely cryopreserved at 13±2 hpf and 24±2 hpf, was estimated by the sperm movement and the larval development of their offspring in 13 crosses gamete pools (five males and five females in each pool). In all but two crosses out of 13 tested (P<0.001), development rates of the offspring were not significantly different between frozen and unfrozen parents. In all, the growth and reproductive performances of oysters formerly cryopreserved at larval stages are close to those of controls. Furthermore, these performances did not differ between the three initial larval stages of cryopreservation. The utility of larvae cryopreservation is discussed and compared with the cryopreservation of gametes as a technique for selection programs and shellfish cryobanking.

  5. Relationship between self-fertility, allocation of growth, and inbreeding depression in three coniferous species.

    Treesearch

    Frank C. Sorensen

    1999-01-01

    Mortality and growth of self and outcross families of three wind-pollinated, mixed-mating, long-lived conifers, Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), and noble fir (Abies procera) were followed from outplanting to age 26 (25 for noble fir) in spaced plantings at a common...

  6. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation.

    PubMed

    Evers, J B; Vos, J; Yin, X; Romero, P; van der Putten, P E L; Struik, P C

    2010-05-01

    Intimate relationships exist between form and function of plants, determining many processes governing their growth and development. However, in most crop simulation models that have been created to simulate plant growth and, for example, predict biomass production, plant structure has been neglected. In this study, a detailed simulation model of growth and development of spring wheat (Triticum aestivum) is presented, which integrates degree of tillering and canopy architecture with organ-level light interception, photosynthesis, and dry-matter partitioning. An existing spatially explicit 3D architectural model of wheat development was extended with routines for organ-level microclimate, photosynthesis, assimilate distribution within the plant structure according to organ demands, and organ growth and development. Outgrowth of tiller buds was made dependent on the ratio between assimilate supply and demand of the plants. Organ-level photosynthesis, biomass production, and bud outgrowth were simulated satisfactorily. However, to improve crop simulation results more efforts are needed mechanistically to model other major plant physiological processes such as nitrogen uptake and distribution, tiller death, and leaf senescence. Nevertheless, the work presented here is a significant step forwards towards a mechanistic functional-structural plant model, which integrates plant architecture with key plant processes.

  7. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    USDA-ARS?s Scientific Manuscript database

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  8. Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants.

    PubMed

    Benlloch-González, María; Quintero, José Manuel; Suárez, María Paz; Sánchez-Lucas, Rosa; Fernández-Escobar, Ricardo; Benlloch, Manuel

    2016-12-01

    There is little information about the prolonged effect of a moderately high temperature on the growth of olive (Olea europaea L.). It has been suggested that when the temperature of the air rises above 35°C the shoot growth of olive is inhibited while there is any reference on how growth is affected when the soil is warmed. In order to examine these effects, mist-cuttings and young plants generated from seeds were grown under moderate high temperature (37°C) for 64 and 42days respectively. In our study, plant dry matter accumulation was reduced when the temperature of both the air and the root medium was moderately high. However, when the temperature of the root medium was 25°C, the inhibitory effect of air high temperature on plant growth was not observed. The exposure of both the aerial part and the root to moderate high temperature also reduced the accumulation of K(+) in the stem and the root, the water use efficiency and leaf relative water content. However, when only the aerial part was exposed to moderate high temperature, the accumulation of K(+) in the stem, the water use efficiency and leaf relative water content were not modified. The results from this study suggest that the olive is very efficient in regulating the water and potassium transport through the plant when only the atmosphere surrounding the aerial part is warmed up. However, an increase in the soil temperature decrease root K(+) uptake and its transport to the aerial parts resulting in a reduction in shoot water status and growth.

  9. Influence of host plants on feeding, growth and reproduction of Papilio polytes (The common mormon).

    PubMed

    Shobana, K; Murugan, K; Naresh Kumar, A

    2010-09-01

    We studied the feeding, growth and reproductive behaviour of Papilio polytes (common mormon butterfly) on five different host plants, Murraya koenigii, Toddalia asiatica, Glycosmis pentaphylla, Aegle marmelos and Citrus medica. The growth rate of P. polytes was fastest on M. koenigii followed by T. asiatica, C. medica, G. pentaphylla and A. marmelos. We related this to the nutrient contexts of the five plants. The plants T. asiatica and C. medica had higher water contents, which influenced the growth rate of the insect. M. koenigii was found to contain rich quantities of carbohydrate. M. koenigii, T. asiatica and C. medica were also rich in protein when compared to A. marmelos and G. pentaphylla. Total amino acid levels were comparatively higher in M. koenigii, T. asiatica, C. medica rather than A. marmelos and G. pentaphylla.

  10. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1)

    PubMed Central

    Wolfe, Andrew; Divall, Sara; Wu, Sheng

    2014-01-01

    The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. PMID:24929098

  11. Long-Term Hyperphagia and Caloric Restriction Caused by Low- or High-Density Husbandry Have Differential Effects on Zebrafish Postembryonic Development, Somatic Growth, Fat Accumulation and Reproduction

    PubMed Central

    Leibold, Sandra; Hammerschmidt, Matthias

    2015-01-01

    In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis

  12. Long-term hyperphagia and caloric restriction caused by low- or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction.

    PubMed

    Leibold, Sandra; Hammerschmidt, Matthias

    2015-01-01

    In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis

  13. Genetic parameter estimates of growth curve and reproduction traits in Japanese quail.

    PubMed

    Narinc, Dogan; Karaman, Emre; Aksoy, Tulin; Firat, Mehmet Ziya

    2014-01-01

    The goal of selection studies in broilers is to obtain genetically superior chicks in terms of major economic traits, which are mainly growth rate, meat yield, and feed conversion ratio. Multiple selection schedules for growth and reproduction are used in selection programs within commercial broiler dam lines. Modern genetic improvement methods have not been applied in experimental quail lines. The current research was conducted to estimate heritabilities and genetic correlations for growth and reproduction traits in a Japanese quail flock. The Gompertz equation was used to determine growth curve parameters. The Gibbs sampling under a multi-trait animal model was applied to estimate the heritabilities and genetic correlations for these traits. A total of 948 quail were used with complete pedigree information to estimate the genetic parameters. Heritability estimates of BW, absolute and relative growth rates at 5 wk of age (AGR and RGR), β0 and β2 parameters, and age at point of inflection (IPT) of Gompertz growth curve, total egg number (EN) from the day of first lay to 24 wk of age were moderate to high, with values ranging from 0.25 to 0.40. A low heritability (0.07) for fertility (FR) and a strong genetic correlation (0.83) between FR and EN were estimated in our study. Body weight exhibited negative genetic correlation with EN, FR, RGR, and IPT. This genetic antagonism among the mentioned traits may be overcome using modern poultry breeding methods such as selection using multi-trait best linear unbiased prediction and crossbreeding.

  14. Carbon allocation, source-sink relations and plant growth: do we need to revise our carbon centric concepts?

    NASA Astrophysics Data System (ADS)

    Körner, Christian

    2014-05-01

    Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers

  15. Do submerged aquatic plants influence their periphyton to enhance the growth and reproduction of invertebrate mutualists?

    PubMed

    Jones, J I; Young, J O; Haynes, G M; Moss, B; Eaton, J W; Hardwick, K J

    1999-08-01

    It has been suggested that submerged aquatic plants can influence the nutritional quality of the periphyton which grows on their surfaces, making it more nutritious for grazing invertebrates, particularly snails. In return, these grazers might preferentially feed on the periphyton and clear the plants of a potential competitor, with the plants and grazers both gaining from this mutualistic relationship. A highly replicated experiment was conducted, in which the nature of the plant (isoetid and elodeid types compared with similar-shaped inert substrata), the nutrient loading, and the influence of periphyton grazers (the bladder snail, Physa fontinalis) of similar size and history were controlled. Plant growth and survival significantly increased in the presence of the periphyton grazer. Whilst the presence of the grazers had the largest influence on periphyton abundance, nutrient availability and plant type also had effects. Plant type had little influence on the nutritional quality of the periphyton measured as carbohydrate, protein and C:N. Effects of treatment on snail growth, and the timing and extent of snail reproduction disappeared when they were compared with the quantity of periphyton available. There was no evidence of enhanced grazer success in the presence of the live plants compared with inert substrata. Although submerged plants affect the growth and reproduction of the grazers which feed on their surfaces, through differences in the amount of periphyton which grows there, we found no evidence that they manipulate the periphyton to encourage such grazers.

  16. Allocation trade-off under climate warming in experimental amphibian populations.

    PubMed

    Gao, Xu; Jin, Changnan; Camargo, Arley; Li, Yiming

    2015-01-01

    Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming.

  17. Allocation trade-off under climate warming in experimental amphibian populations

    PubMed Central

    Gao, Xu; Jin, Changnan; Camargo, Arley

    2015-01-01

    Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832

  18. Genetic correlations among and between wool, growth and reproduction traits in Merino sheep.

    PubMed

    Safari, E; Fogarty, N M; Gilmour, A R; Atkins, K D; Mortimer, S I; Swan, A A; Brien, F D; Greeff, J C; van der Werf, J H J

    2007-04-01

    Data from seven research resource flocks across Australia were combined to provide accurate estimates of genetic correlations among production traits in Merino sheep. The flocks represented contemporary Australian Merino fine, medium and broad wool strains over the past 30 years. Over 110,000 records were available for analysis for each of the major wool traits, and 50,000 records for reproduction and growth traits with over 2700 sires and 25,000 dams. Individual models developed from the single trait analyses were extended to the various combinations of two-trait models to obtain genetic correlations among six wool traits [clean fleece weight (CFW), greasy fleece weight, fibre diameter (FD), yield, coefficient of variation of fibre diameter and standard deviation of fibre diameter], four growth traits [birth weight, weaning weight, yearling weight (YWT), and hogget weight] and four reproduction traits [fertility, litter size, lambs born per ewe joined, lambs weaned per ewe joined (LW/EJ)]. This study has provided for the first time a comprehensive matrix of genetic correlations among these 14 wool, growth and reproduction traits. The large size of the data set has also provided estimates with very low standard errors. A moderate positive genetic correlation was observed between CFW and FD (0.29 +/- 0.02). YWT was positively correlated with CFW (0.23 +/- 0.04), FD (0.17 +/- 0.04) and LWEJ (0.58 +/- 0.06), while LW/EJ was negatively correlated with CFW (-0.26 +/- 0.05) and positively correlated with FD (0.06 +/- 0.04) and LS (0.68 +/- 0.04). These genetic correlations, together with the estimates of heritability and other parameters provide the basis for more accurate prediction of outcomes in complex sheep-breeding programmes designed to improve several traits.

  19. Evaluating the fitness of human lysozyme transgenic dairy goats: growth and reproductive traits

    PubMed Central

    Jackson, Kathryn A.; Berg, Jolene M.; Murray, James D.

    2010-01-01

    While there are many reports in the literature describing the attributes of specific applications of transgenic animals for agriculture, there are relatively few studies focusing on the fitness of the transgenic animals themselves. This work was designed to gather information on genetically modified food animals to determine if the presence of a transgene can impact general animal production traits. More specifically, we used a line of transgenic dairy goats expressing human lysozyme in their mammary gland to evaluate the reproductive fitness and growth and development of these animals compared to their non-transgenic counterparts and the impact of consuming a transgenic food product, lysozyme-containing milk. In males, none of the parameters of semen quality, including semen volume and concentration, total sperm per ejaculate, sperm morphology, viability and motility, were significantly different between transgenic bucks and non-transgenic full-sib controls. Likewise, transgenic females of this line did not significantly differ in the reproductive traits of gestation length and litter size compared to their non-transgenic counterparts. To evaluate growth, transgenic and non-transgenic kid goats received colostrum and milk from either transgenic or non-transgenic does from birth until weaning. Neither the presence of the transgene nor the consumption of milk from transgenic animals significantly affected birth weight, weaning weight, overall gain and post-wean gain. These results indicate that the analyzed reproductive and growth traits were not regularly or substantially impacted by the presence or expression of the transgene. The evaluation of these general parameters is an important aspect of defining the safety of applying transgenic technology to animal agriculture. PMID:20135222

  20. Birth Weight, Intrauterine Growth Retardation and Fetal Susceptibility to Porcine Reproductive and Respiratory Syndrome Virus

    PubMed Central

    Ladinig, Andrea; Foxcroft, George; Ashley, Carolyn; Lunney, Joan K.; Plastow, Graham; Harding, John C. S.

    2014-01-01

    The severity of porcine reproductive and respiratory syndrome was compared in pregnant gilts originating from high and low birth weight litters. One-hundred and eleven pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus on gestation day 85 (±1) were necropsied along with their fetuses 21 days later. Ovulation rates and litter size did not differ between groups, but fetuses from low birth weight gilts were shorter, lighter and demonstrated evidence of asymmetric growth with large brain:organ weight ratios (i.e. brain sparing). The number of intrauterine growth retarded fetuses, defined by brain:organ weight ratios greater than 1 standard deviation from the mean, was significantly greater in low, compared to high, birth weight gilts. Although γδ T cells significantly decreased over time in high compared to low birth weight gilts, viral load in serum and tissues, gilt serum cytokine levels, and litter outcome, including the percent dead fetuses per litter, did not differ by birth weight group. Thus, this study provided no substantive evidence that the severity of porcine reproductive and respiratory syndrome is affected by dam birth weight. However, intrauterine growth retarded fetuses had lower viral loads in both fetal thymus and in endometrium adjacent to the umbilical stump. Crown rump length did not significantly differ between fetuses that survived and those that died at least one week prior to termination. Taken together, this study clearly demonstrates that birth weight is a transgenerational trait in pigs, and provides evidence that larger fetuses are more susceptible to transplacental PRRSv infection. PMID:25275491

  1. Effects of hypergravity stimulus on global gene expression during reproductive growth in Arabidopsis.

    PubMed

    Tamaoki, D; Karahara, I; Nishiuchi, T; Wakasugi, T; Yamada, K; Kamisaka, S

    2014-01-01

    The life cycle of higher plants consists of successive vegetative and reproductive growth phases. Understanding effects of altered gravity conditions on the reproductive growth is essential, not only to elucidate how higher plants evolved under gravitational condition on Earth but also to approach toward realization of agriculture in space. In the present study, a comprehensive analysis of global gene expression of floral buds under hypergravity was carried out to understand effects of altered gravity on reproductive growth at molecular level. Arabidopsis plants grown for 20-26 days were exposed to hypergravity of 300 g for 24 h. Total RNA was extracted from flower buds and microarray (44 K) analysis performed. As a result, hypergravity up-regulated expression of a gene related to β-1,3-glucanase involved in pectin modification, and down-regulated β-galactosidase and amino acid transport, which supports a previous study reporting inhibition of pollen development and germination under hypergravity. With regard to genes related to seed storage accumulation, hypergravity up-regulated expression of genes of aspartate aminotransferase, and down-regulated those related to cell wall invertase and sugar transporter, supporting a previous study reporting promotion of protein body development and inhibition of starch accumulation under hypergravity, respectively. In addition, hypergravity up-regulated expression of G6PDH and GPGDH, which supports a previous study reporting promotion of lipid deposition under hypergravity. In addition, analysis of the metabolic pathway revealed that hypergravity substantially changed expression of genes involved in the biosynthesis of phytohormones such as abscisic acid and auxin.

  2. The application of "natural" growth rates of Heterostegina depressa to infer timing of reproduction events

    NASA Astrophysics Data System (ADS)

    Eder, Wolfgang; Julia, Woeger; Kinoshita, Shunichi; Hohenegger, Johann; Briguglio, Antonino

    2017-04-01

    To explore applicability of the natural laboratory approach (sensu Hohenegger) on population dynamic studies of recent larger benthic foraminifera, this relatively new experimental method has been applied on Heterostegina depressa populations from Sesoko Jima, NW Okinawa, Japan. It is used to gain an averaged chamber and diameter building rate, as well as the average longevity of H. depressa based on monthly samplings at fixed sampling stations. Samples were collected by SCUBA in 16 monthly intervals around 20 and 50 meters water depth, wherefrom live populations were dried and investigated by microCT. The specimens were measured regarding chamber number and maximum diameter. This biometric data has been tested for the presence of multiple generations of H. depressa megalospheres. In case of skewed or bimodal frequency distributions, they were decomposed into normally distributed components. Means and standard deviations of each component of every month were extracted and could be used to calculate the maximum values of chamber number and diameter for all sampling intervals. Based on these maximal values, the natural chamber/diameter growth rate was fitted by Michaelis-Menten functions. By inversion of this growth functions the birthdate of every specimen was calculated. Frequency diagrams of these dates reveal a continuous background reproduction throughout the year, yet show distinct reproduction peaks in late spring and late autumn. Further, sinusoidal regression analysis support these two main reproduction cycles, one short-term cycle 70 days and a one long-term cycles around 180 days. Surprisingly, similar cycles have been found in different studies on volumetric growth of larger benthic foraminifera.

  3. Genetic correlations between male reproductive traits and growth traits in growth performance tested Duroc, Landrace and Yorkshire breed boars.

    PubMed

    Chang, Hsiu-Luan; Lai, Yung-Yu; Wu, Ming-Che; Sasaki, Osamu

    2017-02-09

    Male-related traits at 180-225 days of age for 6464 grow-finish performance tested boars were measured from 2000 to 2016. Heritability estimates and genetic correlations among average daily gain, feed efficiency, back fat thickness, teat counts, mounting libido, leg locomotion, penile length, sperm motility, sperm concentration and total sperm counts were estimated by VCE software using a multiple traits animal model in each breed. Growth-tested boars had heritability estimates of male reproductive traits in 0.34-0.56 of teat counts, 0.12-0.20 of libido, 0.08-0.12 of locomotion, 0.17-0.58 of penile length, 0.04-0.21 of sperm motility and concentration, 0.17-0.30 of total sperm counts. Total sperm counts were genetically positively correlated with penile length in all breeds. Boars with higher total sperm counts had genetically better libido and locomotion. Genetic correlation between feed efficiency and sperm motility and feed efficiency and sperm concentration were positive in Duroc and negative in Landrace and Yorkshire. Sperm motility and concentration were genetically negatively correlated with average daily gain in Yorkshire. Male reproductive traits of imported breeds could be improved with care in the change of growth traits, especially in Yorkshire.

  4. Creep-feeding to stimulate metabolic imprinting in nursing beef heifers: impacts on heifer growth, reproductive and physiological variables.

    PubMed

    Reis, M M; Cooke, R F; Cappellozza, B I; Marques, R S; Guarnieri Filho, T A; Rodrigues, M C; Bradley, J S; Mueller, C J; Keisler, D H; Johnson, S E; Bohnert, D W

    2015-09-01

    This experiment compared growth, physiological, and reproductive responses of beef heifers with (MI) or without (CON) access to a creep-feeder, as a manner to stimulate metabolic imprinting while nursing their dams. On day 0, 60 Angus × Hereford heifers were ranked by BW and age (140 ± 3 kg and 68±3 days), and assigned to pairs so all ranking criteria were similar between heifers within each pair. On day 1, pairs were randomly assigned to MI (n=15) or CON (n=15). From day 1 to 51, MI pairs and their dams were allocated to 15 drylot pens where heifers had ad libitum access to a corn-based supplement through a creep-feeder. The CON pairs and their dams were maintained in an adjacent single drylot pen. From day 52 to 111, treatments were managed as a single group on a semiarid range pasture. On day 111, heifers were weaned and allocated to two pastures (one pasture/treatment), receiving hay and a corn-based concentrate until day 326. Heifer BW was recorded before and at the end of the creep-feeding period (day 1 to 51), and on days 112 and 326. On days 0, 51, 111, 187, 261, and 325, jugular blood was collected and real-time ultrasonography for longissimus muscle depth and backfat thickness assessment was performed. Blood was also collected every 10 days from days 113 to 323 for puberty evaluation via plasma progesterone. Liver and subcutaneous fat biopsies were performed on days 51, 111, 261 and 325. Average daily gain was greater (P<0.01) for MI than CON from day 1 to 51, tended (P=0.09) to be greater for CON than MI from day 112 to 326, while BW on day 326 was similar between treatments. On day 51, MI had greater (P ⩽ 0.01) plasma IGF-I and glucose concentrations, as well as mRNA expression of hepatic pyruvate carboxylase and adipose fatty acid synthase than CON. On days 261 and 325, plasma insulin concentrations were greater (P ⩽ 0.03) in CON than MI. Mean mRNA expression of hepatic IGF-I and adipose peroxisome proliferator-activated receptor gamma were

  5. Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development.

    PubMed

    LaLone, Carlie A; Villeneuve, Daniel L; Olmstead, Allen W; Medlock, Elizabeth K; Kahl, Michael D; Jensen, Kathleen M; Durhan, Elizabeth J; Makynen, Elizabeth A; Blanksma, Chad A; Cavallin, Jenna E; Thomas, Linnea M; Seidl, Sara M; Skolness, Sarah Y; Wehmas, Leah C; Johnson, Rodney D; Ankley, Gerald T

    2012-03-01

    Synthetic glucocorticoids are pharmaceutical compounds prescribed in human and veterinary medicine as anti-inflammatory agents and have the potential to contaminate natural watersheds via inputs from wastewater treatment facilities and confined animal-feeding operations. Despite this, few studies have examined the effects of this class of chemicals on aquatic vertebrates. To generate data to assess potential risk to the aquatic environment, we used fathead minnow 21-d reproduction and 29-d embryo-larvae assays to determine reproductive toxicity and early-life-stage effects of dexamethasone. Exposure to 500 µg dexamethasone/L in the 21-d test caused reductions in fathead minnow fecundity and female plasma estradiol concentrations and increased the occurrence of abnormally hatched fry. Female fish exposed to 500 µg dexamethasone/L also displayed a significant increase in plasma vitellogenin protein levels, possibly because of decreased spawning. A decrease in vitellogenin messenger ribonucleic acid (mRNA) expression in liver tissue from females exposed to the high dexamethasone concentration lends support to this hypothesis. Histological results indicate that a 29-d embryo-larval exposure to 500 µg dexamethasone/L caused a significant increase in deformed gill opercula. Fry exposed to 500 µg dexamethasone/L for 29 d also exhibited a significant reduction in weight and length compared with control fry. Taken together, these results indicate that nonlethal concentrations of a model glucocorticoid receptor agonist can impair fish reproduction, growth, and development.

  6. Selection for superior growth advances the onset of puberty and increases reproductive performance in ewe lambs.

    PubMed

    Rosales Nieto, C A; Ferguson, M B; Macleay, C A; Briegel, J R; Martin, G B; Thompson, A N

    2013-06-01

    The reproductive efficiency of the entire sheep flock could be improved if ewe lambs go through puberty early and produce their first lamb at 1 year of age. The onset of puberty is linked to the attainment of critical body mass, and therefore we tested whether it would be influenced by genetic selection for growth rate or for rate of accumulation of muscle or fat. We studied 136 Merino ewe lambs with phenotypic values for depth of eye muscle (EMD) and fat (FAT) and Australian Sheep Breeding Values at post-weaning age (200 days) for live weight (PWT), eye muscle depth (PEMD) and fat depth (PFAT). First oestrus was detected with testosterone-treated wethers and then entire rams as the ewes progressed from 6 to 10 months of age. Blood concentrations of leptin and IGF-I were measured to test whether they were related to production traits and reproductive performance (puberty, fertility and reproductive rate). In total, 97% of the lambs reached first oestrus at average weight 39.4 ± 0.4 kg (mean ± s.e.m.) and age 219 days (range 163 to 301). Age at first oestrus decreased with increases in values for PWT (P < 0.001), and concentrations of IGF-I (P < 0.05) and leptin (P < 0.01). The proportion of ewe lambs that achieved puberty was positively related with increases in values for EMD (P < 0.01), FAT (P < 0.05) or PWT (P < 0.01), and 75% of the ewe lambs were pregnant at average weight 44.7 ± 0.5 kg and age 263 days (range 219 to 307). Ewe lambs that were heavier at the start of mating were more fertile (P < 0.001) and had a higher reproductive rate (P < 0.001). Fertility and reproductive rate were positively correlated with increases in values for EMD (P < 0.01), FAT (P < 0.05), PWT (P < 0.01) and leptin concentration (P < 0.01). Fertility, but not reproductive rate, increased as values for PFAT increased (P < 0.05). Leptin concentration increased with increases in values for EMD (P < 0.001), FAT (P < 0.001), PWT (P < 0.001), PEMD (P < 0.05) and PFAT (P < 0.05). Many

  7. Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies.

    PubMed

    Zvereva, Elena L; Lanta, Vojtech; Kozlov, Mikhail V

    2010-08-01

    The majority of generalisations concerning plant responses to herbivory are based on studies of natural or simulated defoliation. However, effects caused by insects feeding on plant sap are likely to differ from the effects of folivory. We assessed the general patterns and sources of variation in the effects of sap feeding on growth, photosynthesis, and reproduction of woody plants through a meta-analysis of 272 effect sizes calculated from 52 papers. Sap-feeders significantly reduced growth (-29%), reproduction (-17%), and photosynthesis (-27%); seedlings suffered more than saplings and mature trees. Deciduous and evergreen woody plants did not differ in their abilities to tolerate damage imposed by sap-feeders. Different plant parts, in particular below- and above-ground organs, responded similarly to damage, indicating that sap-feeders did not change the resource allocation in plants. The strongest effects were caused by mesophyll and phloem feeders, and the weakest by xylem feeders. Generalist sap-feeders reduced plant performance to a greater extent than did specialists. Methodology substantially influenced the outcomes of the primary studies; experiments conducted in greenhouses yielded stronger negative effects than field experiments; shorter (<12 months) experiments showed bigger growth reduction in response to sap feeding than longer experiments; natural levels of herbivory caused weaker effects than infestation of experimental plants by sap-feeders. Studies conducted at higher temperatures yielded stronger detrimental effects of sap-feeders on their hosts. We conclude that sap-feeders impose a more severe overall negative impact on plant performance than do defoliators, mostly due to the lower abilities of woody plants to compensate for sap-feeders' damage in terms of both growth and photosynthesis.

  8. Influence of plant maturity, shoot reproduction and sex on vegetative growth in the dioecious plant Urtica dioica

    PubMed Central

    Oñate, Marta; Munné-Bosch, Sergi

    2009-01-01

    Background and Aims Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots. Methods Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, α-tocopherol and Fv/Fm ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer. Key Results Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of α-tocopherol (up to 2·7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females. Conclusions It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants. PMID:19633309

  9. Influence of plant maturity, shoot reproduction and sex on vegetative growth in the dioecious plant Urtica dioica.

    PubMed

    Oñate, Marta; Munné-Bosch, Sergi

    2009-10-01

    Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots. Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, alpha-tocopherol and F(v)/F(m) ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer. Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of alpha-tocopherol (up to 2.7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females. It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.

  10. Effects of β-endosulfan on the growth and reproduction of zebrafish (Danio rerio).

    PubMed

    Han, Zhihua; Jiao, Shaojun; Kong, Deyang; Shan, Zhengjun; Zhang, Xiaowei

    2011-11-01

    Because of persistent organic pollution in aquatic environments, the widely used organochlorine pesticide endosulfan, which is a potential endocrine disruptor, is expected to pose a significant risk to aquatic organisms. In the present study, we explored the potential endocrine-disrupting risk of β-endosulfan by investigating its effect on the growth, reproduction, plasma vitellogenin, and organ histology of adult zebrafish. We found that, although β-endosulfan did not significantly affect the growth of zebrafish, it greatly decreased the hatching rate, even at a concentration as low as 10 ng/L. Interestingly, the decrease of the hatching rate was highly correlated with pathological alterations of the testes. Additionally, the values of the gonadosomatic index were significantly reduced in female zebrafish treated with 200 ng/L β-endosulfan, which was also closely associated with ovarian histological changes. More importantly, a significant increase in the level of vitellogenin was observed in all male fish treated with β-endosulfan. Based on these findings, we conclude that β-endosulfan severely affects the reproductive function of zebrafish and the synthesis of vitellogenin in the liver, and thus, β-endosulfan has a serious endocrine disruption function in zebrafish. Copyright © 2011 SETAC.

  11. Epidemic growth rate and household reproduction number in communities of households, schools and workplaces

    PubMed Central

    Pellis, Lorenzo; Ferguson, Neil M.; Fraser, Christophe

    2013-01-01

    In this paper we present a novel and coherent modelling framework for the characterisation of the real-time growth rate in SIR models of epidemic spread in populations with social structures of increasing complexity. Known results about homogeneous mixing and multitype models are included in the framework, which is then extended to models with households and models with households and schools/workplaces. Efficient methods for the exact computation of the real-time growth rate are presented for the standard SIR model with constant infection and recovery rates (Markovian case). Approximate methods are described for a large class of models with time-varying infection rates (non-Markovian case). The quality of the approximation is assessed via comparison with results from individual-based stochastic simulations. The methodology is then applied to the case of influenza in models with households and schools/workplaces, to provide an estimate of a household-to-household reproduction number and thus asses the effort required to prevent an outbreak by targeting control policies at the level of households. The results highlight the risk of underestimating such effort when the additional presence of schools/workplaces is neglected. Our framework increases the applicability of models of epidemic spread in socially structured population by linking earlier theoretical results, mainly focused on time-independent key epidemiological parameters (e.g. reproduction numbers, critical vaccination coverage, epidemic final size) to new results on the epidemic dynamics. PMID:21120484

  12. Faster reproductive rates trade off against offspring growth in wild chimpanzees

    PubMed Central

    Emery Thompson, Melissa; Muller, Martin N.; Sabbi, Kris; Machanda, Zarin P.; Otali, Emily; Wrangham, Richard W.

    2016-01-01

    Life history theory predicts a trade-off between offspring quality and quantity. Among large-bodied mammals, prolonged lactation and infant dependence suggest particularly strong potential for a quality–quantity trade-off to exist. Humans are one of the only such species to have been examined, providing mixed evidence under a peculiar set of circumstances, including extensive nutritional provisioning by nonmothers and extrasomatic wealth transmission. Here, we examine trade-offs between reproductive rate and one aspect of offspring quality (body size) in wild chimpanzees (Pan troglodytes schweinfurthii), a species with long periods of infant dependence and little direct provisioning. Juvenile lean body mass, estimated using urinary creatinine excretion, was positively associated with the interval to the next sibling’s birth. These effects persisted into adolescence and were not moderated by maternal identity. Maternal depletion could not explain poor offspring growth, as older mothers had larger offspring, and low maternal energy balance during lactation predicted larger, not smaller, juvenile size. Instead, our data suggest that offspring growth suffers when mothers wean early to invest in new reproductive efforts. These findings indicate that chimpanzee mothers with the resources to do so prioritize production of new offspring over prolonged investment in current offspring. PMID:27354523

  13. Growth, reproductive performance, and manganese status of heifers fed varying concentrations of manganese.

    PubMed

    Hansen, S L; Spears, J W; Lloyd, K E; Whisnant, C S

    2006-12-01

    An experiment was conducted to examine the effects of dietary Mn on growth, reproductive performance, and Mn status of beef heifers. Eighty Angus (n = 40) and Simmental (n = 40) heifers, averaging 249 kg, were stratified by BW within a breed and randomly assigned to 1 of 4 treatments providing 0 (control), 10, 30, or 50 mg of supplemental Mn/kg of DM from MnSO(4). Heifers were individually fed a diet containing cottonseed hulls, corn gluten feed, citrus pulp, and ground corn, and the control diet contained 15.8 mg of Mn/kg of DM by analysis. Average daily gain, DMI, and G:F for the 196-d period were not affected by Mn supplementation. Control heifers had reduced (P = 0.04) liver Mn when contrasted with the 3 levels of supplemental Mn. Serum cholesterol was greater (P = 0.001) in Angus compared with Simmental heifers over the course of the 196-d experiment but was not affected by treatment. Dietary Mn did not significantly affect measures of reproductive performance. Results of this study indicate that 15.8 mg of Mn/kg of diet DM should be adequate for growth, onset of estrus, and conception of beef heifers.

  14. Appendicularian ecophysiology. II. Modeling nutrition, metabolism, growth and reproduction of the appendicularian Oikopleura dioica

    NASA Astrophysics Data System (ADS)

    Lombard, Fabien; Sciandra, Antoine; Gorsky, Gabriel

    2009-11-01

    A model has been developed to simulate the growth of an individual appendicularian ( Oikopleura dioica) from egg to spawning. This model uses a new set of experimental data presented in a companion paper in this volume and estimates growth rates and generation times as well as clearance rates, house and fecal pellet production and reproductive capacity at different temperatures and food concentrations. According to the model outputs, the weight of a single house represents 11.5% of the individual's total weight, a lower value than previously estimated. The relative weight of one fecal pellet varies as a function of food concentration. The model also confirms that the minimum food concentration for growth is about 20-30 µg C l - 1 and that growth is maximal for a 100 µg C l - 1 feeding concentration. The limits of the growth optimum in relation to food concentration and temperature can be considered as a first description of the fundamental ecological niche of appendicularians. This model can be used both for predicting (1) the impact of in situ observed populations on the pico- and nanoseston and (2) the production of large aggregates. These two pieces of information are often needed for large-scale biogeochemical models.

  15. Effects of lighting and air movement on temperatures in reproductive organs of plants in a closed plant growth facility

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Temperature increases in plant reproductive organs such as anthers and stigmas could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions without adequately controlled environments in closed plant growth facilities. There is a possibility such a situation could occur in Bioregenerative Life Support Systems under microgravity conditions in space because there will be little natural convective or thermal mixing. This study was conducted to determine the temperature of the plant reproductive organs as affected by illumination and air movement under normal gravitational forces on the earth and to make an estimation of the temperature increase in reproductive organs in closed plant growth facilities under microgravity in space. Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at air temperatures of 10 11 °C. Compared to the air temperature, temperatures of petals, stigmas and anthers of strawberry increased by 24, 22 and 14 °C, respectively, after 5 min of lighting at an irradiance of 160 W m-2 from incandescent lamps. Temperatures of reproductive organs and leaves of strawberry were significantly higher than those of rice. The temperatures of petals, stigmas, anthers and leaves of strawberry decreased by 13, 12, 13 and 14 °C, respectively, when the air velocity was increased from 0.1 to 1.0 ms-1. These results show that air movement is necessary to reduce the temperatures of plant reproductive organs in plant growth facilities.

  16. Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes.

    PubMed

    Callaway, R M; DeLucia, E H; Thomas, E M; Schlesinger, W H

    1994-07-01

    Increases in the concentration of atmospheric carbon dioxide may have a fertilizing effect on plant growth by increasing photosynthetic rates and therefore may offset potential growth decreases caused by the stress associated with higher temperatures and lower precipitation. However, plant growth is determined both by rates of net photosynthesis and by proportional allocation of fixed carbon to autotrophic tissue and heterotrophic tissue. Although CO2 fertilization may enhance growth by increasing leaf-level assimilation rates, reallocation of biomass from leaves to stems and roots in response to higher concentrations of CO2 and higher temperatures may reduce whole-plant assimilation and offset photosynthetic gains. We measured growth parameters, photosynthesis, respiration, and biomass allocation of Pinus ponderosa seedlings grown for 2 months in 2×2 factorial treatments of 350 or 650μ bar CO2 and 10/25° C or 15/30° C night/day temperatures. After 1 month in treatment conditions, total seedling biomass was higher in elevated CO2, and temperature significantly enhanced the positive CO2 effect. However, after 2 months the effect of CO2 on total biomass decreased and relative growth rates did not differ among CO2 and temperature treatments over the 2-month growth period even though photosynthetic rates increased ≈7% in high CO2 treatments and decreased ≈10% in high temperature treatments. Additionally, CO2 enhancement decreased root respiration and high temperatures increased shoot respiration. Based on CO2 exchange rates, CO2 fertilization should have increased relative growth rates (RGR) and high temperatures should have decreased RGR. Higher photosynthetic rates caused by CO2 fertilization appear to have been mitigated during the second month of exposure to treatment conditions by a ≈3% decrease in allocation of biomass to leaves and a ≈9% increase in root:shoot ratio. It was not clear why diminished photosynthetic rates and increased respiration rates

  17. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    SciTech Connect

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.; Harsh, James B.; Gill, Richard; Thomashow, Linda; Dohnalkova, Alice; Stacks, Daryl; Letourneau, Melissa; Keller, Chester K.

    2014-01-10

    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months of plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.

  18. Reproductive failure in Arabidopsis thaliana under transient carbohydrate limitation: flowers and very young siliques are jettisoned and the meristem is maintained to allow successful resumption of reproductive growth.

    PubMed

    Lauxmann, Martin A; Annunziata, Maria G; Brunoud, Géraldine; Wahl, Vanessa; Koczut, Andrzej; Burgos, Asdrubal; Olas, Justyna J; Maximova, Eugenia; Abel, Christin; Schlereth, Armin; Soja, Aleksandra M; Bläsing, Oliver E; Lunn, John E; Vernoux, Teva; Stitt, Mark

    2016-04-01

    The impact of transient carbon depletion on reproductive growth in Arabidopsis was investigated by transferring long-photoperiod-grown plants to continuous darkness and returning them to a light-dark cycle. After 2 days of darkness, carbon reserves were depleted in reproductive sinks, and RNA in situ hybridization of marker transcripts showed that carbon starvation responses had been initiated in the meristem, anthers and ovules. Dark treatments of 2 or more days resulted in a bare-segment phenotype on the floral stem, with 23-27 aborted siliques. These resulted from impaired growth of immature siliques and abortion of mature and immature flowers. Depolarization of PIN1 protein and increased DII-VENUS expression pointed to rapid collapse of auxin gradients in the meristem and inhibition of primordia initiation. After transfer back to a light-dark cycle, flowers appeared and formed viable siliques and seeds. A similar phenotype was seen after transfer to sub-compensation point irradiance or CO2 . It also appeared in a milder form after a moderate decrease in irradiance and developed spontaneously in short photoperiods. We conclude that Arabidopsis inhibits primordia initiation and aborts flowers and very young siliques in C-limited conditions. This curtails demand, safeguarding meristem function and allowing renewal of reproductive growth when carbon becomes available again. © 2015 John Wiley & Sons Ltd.

  19. Age, growth, and reproductive biology of three catostomids from the Apalachicola River, Florida

    USGS Publications Warehouse

    Grabowski, Timothy B.; Young, S.P.; Isely, J.J.; Ely, Patrick C.

    2012-01-01

    Riverine catostomids can show a wide range of interspecific variation in life-history characteristics. Understanding these differences is an important consideration in evaluating the sensitivity of these fishes to disturbance and in formulating effective conservation strategies, particularly when dealing with an assemblage consisting of multiple species within a watershed. We collected Apalachicola redhorse Moxostoma n. sp. cf. poecilurum (n = 125), spotted sucker Minytrema melanops (n = 94), and quillback Carpiodes cyprinus (n = 94) to determine age, growth, and reproductive biology of spawning catostomids in the Apalachicola River, Florida, during 2007. Quillback was the smallest in total length at age; longest-lived; most fecund; and produced the smallest eggs. Apalachicola redhorse was the largest in body size; had an intermediate life span; and produced the fewest yet largest eggs. Spotted sucker was more similar to Apalachicola redhorse in most characteristics. Growth during ages 1-3 in all three species seemed to be negatively related to the proportion of observations of extreme flow, both high (Q90) and low (Q10), per year and a positive response in growth rate to high flows (>Q75 but < Q90). However, Apalachicola redhorse and spotted sucker growth was more sensitive to flow conditions than that of quillback. Our results suggest the life histories and ecological response of Apalachicola River catostomids to flow regulation are important components for developing strategies that incorporate the needs of these fishery resources into an ecosystem-based management approach.

  20. Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks.

    PubMed

    Trumbore, Susan; Czimczik, Claudia I; Sierra, Carlos A; Muhr, Jan; Xu, Xiaomei

    2015-11-01

    Trees contain non-structural carbon (NSC), but it is unclear for how long these reserves are stored and to what degree they are used to support plant activity. We used radiocarbon ((14)C) to show that the carbon (C) in stemwood NSC can achieve ages of several decades in California oaks. We separated NSC into two fractions: soluble (∼50% sugars) and insoluble (mostly starch) NSC. Soluble NSC contained more C than insoluble NSC, but we found no consistent trend in the amount of either pool with depth in the stem. There was no systematic difference in C age between the two fractions, although ages increased with stem depth. The C in both NSC fractions was consistently younger than the structural C from which they were extracted. Together, these results indicate considerable inward mixing of NSC within the stem and rapid exchange between soluble and insoluble pools, compared with the timescale of inward mixing. We observed similar patterns in sympatric evergreen and deciduous oaks and the largest differences among tree stems with different growth rates. The (14)C signature of carbon dioxide (CO2) emitted from tree stems was higher than expected from very recent photoassimilates, indicating that the mean age of C in respiration substrates included a contribution from C fixed years previously. A simple model that tracks NSC produced each year, followed by loss (through conversion to CO2) in subsequent years, matches our observations of inward mixing of NSC in the stem and higher (14)C signature of stem CO2 efflux. Together, these data support the idea of continuous accumulation of NSC in stemwood and that 'vigor' (growth rate) and leaf habit (deciduous vs evergreen) control NSC pool size and allocation.

  1. Endogenous Synthesis of Amino Acids Limits Growth, Lactation, and Reproduction in Animals12

    PubMed Central

    Hou, Yongqing; Yao, Kang; Yin, Yulong; Wu, Guoyao

    2016-01-01

    Amino acids (AAs) are building blocks of protein. Eight AAs (Ala, Asn, Asp, Glu, Gln, Gly, Pro, and Ser) are formed by all animals, whereas de novo synthesis of Arg occurs in a species-specific manner in most mammals (e.g., humans, pigs, and rats). Synthesizable AAs were traditionally classified as nutritionally nonessential for animals, because they were thought to be formed in sufficient amounts. However, this assumption is not supported by evidence showing that 1) rats grow slowly when their diets do not contain Arg, Glu, or Gln despite adequate provision of all other proteinogenous AAs; 2) pigs cannot achieve maximum growth, lactation, or reproduction performance when fed corn- and soybean meal-based diets meeting National Research Council–recommended requirements of protein and AAs without supplemental Arg, Glu, Gln, Gly, or Pro; 3) chickens exhibit increases in lean tissue gain and feed efficiency when their diets are supplemented with Glu, Gln, Gly, and Pro; 4) lactating cows cannot obtain maximum milk protein production without a postruminal supply of Gln or Pro; 5) fish cannot achieve maximum growth when diets do not contain Gln or Pro; and 6) men fail to sustain spermatogenesis when fed an Arg-deficient diet. Quantitative analysis of nitrogen metabolism showed that AA synthesis in animals is constrained by both precursor availability and enzyme activity. Taken together, these findings support the conclusion that the endogenous synthesis of AAs limits growth, lactation, and reproduction in animals. This new knowledge can guide the optimization of human nutrition for improving health and well-being. PMID:26980816

  2. Herbivores influence the growth, reproduction, and morphology of a widespread Arctic willow.

    PubMed

    Christie, Katie S; Ruess, Roger W; Lindberg, Mark S; Mulder, Christa P

    2014-01-01

    Shrubs have expanded in Arctic ecosystems over the past century, resulting in significant changes to albedo, ecosystem function, and plant community composition. Willow and rock ptarmigan (Lagopus lagopus, L. muta) and moose (Alces alces) extensively browse Arctic shrubs, and may influence their architecture, growth, and reproduction. Furthermore, these herbivores may alter forage plants in such a way as to increase the quantity and accessibility of their own food source. We estimated the effect of winter browsing by ptarmigan and moose on an abundant, early-successional willow (Salix alaxensis) in northern Alaska by comparing browsed to unbrowsed branches. Ptarmigan browsed 82-89% of willows and removed 30-39% of buds, depending on study area and year. Moose browsed 17-44% of willows and browsed 39-55% of shoots. Browsing inhibited apical dominance and activated axillary and adventitious buds to produce new vegetative shoots. Ptarmigan- and moose-browsed willow branches produced twice the volume of shoot growth but significantly fewer catkins the following summer compared with unbrowsed willow branches. Shoots on browsed willows were larger and produced 40-60% more buds compared to unbrowsed shoots. This process of shoot production at basal parts of the branch is the mechanism by which willows develop a highly complex "broomed" architecture after several years of browsing. Broomed willows were shorter and more likely to be re-browsed by ptarmigan, but not moose. Ptarmigan likely benefit from the greater quantity and accessibility of buds on previously browsed willows and may increase the carrying capacity of their own habitat. Despite the observed tolerance of willows to browsing, their vertical growth and reproduction were strongly inhibited by moose and ptarmigan. Browsing by these herbivores therefore needs to be considered in future models of shrub expansion in the Arctic.

  3. Endogenous Synthesis of Amino Acids Limits Growth, Lactation, and Reproduction in Animals.

    PubMed

    Hou, Yongqing; Yao, Kang; Yin, Yulong; Wu, Guoyao

    2016-03-01

    Amino acids (AAs) are building blocks of protein. Eight AAs (Ala, Asn, Asp, Glu, Gln, Gly, Pro, and Ser) are formed by all animals, whereas de novo synthesis of Arg occurs in a species-specific manner in most mammals (e.g., humans, pigs, and rats). Synthesizable AAs were traditionally classified as nutritionally nonessential for animals, because they were thought to be formed in sufficient amounts. However, this assumption is not supported by evidence showing that 1) rats grow slowly when their diets do not contain Arg, Glu, or Gln despite adequate provision of all other proteinogenous AAs; 2) pigs cannot achieve maximum growth, lactation, or reproduction performance when fed corn- and soybean meal-based diets meeting National Research Council-recommended requirements of protein and AAs without supplemental Arg, Glu, Gln, Gly, or Pro; 3) chickens exhibit increases in lean tissue gain and feed efficiency when their diets are supplemented with Glu, Gln, Gly, and Pro; 4) lactating cows cannot obtain maximum milk protein production without a postruminal supply of Gln or Pro; 5) fish cannot achieve maximum growth when diets do not contain Gln or Pro; and 6) men fail to sustain spermatogenesis when fed an Arg-deficient diet. Quantitative analysis of nitrogen metabolism showed that AA synthesis in animals is constrained by both precursor availability and enzyme activity. Taken together, these findings support the conclusion that the endogenous synthesis of AAs limits growth, lactation, and reproduction in animals. This new knowledge can guide the optimization of human nutrition for improving health and well-being.

  4. Herbivores Influence the Growth, Reproduction, and Morphology of a Widespread Arctic Willow

    PubMed Central

    Christie, Katie S.; Ruess, Roger W.; Lindberg, Mark S.; Mulder, Christa P.

    2014-01-01

    Shrubs have expanded in Arctic ecosystems over the past century, resulting in significant changes to albedo, ecosystem function, and plant community composition. Willow and rock ptarmigan (Lagopus lagopus, L. muta) and moose (Alces alces) extensively browse Arctic shrubs, and may influence their architecture, growth, and reproduction. Furthermore, these herbivores may alter forage plants in such a way as to increase the quantity and accessibility of their own food source. We estimated the effect of winter browsing by ptarmigan and moose on an abundant, early-successional willow (Salix alaxensis) in northern Alaska by comparing browsed to unbrowsed branches. Ptarmigan browsed 82–89% of willows and removed 30–39% of buds, depending on study area and year. Moose browsed 17–44% of willows and browsed 39–55% of shoots. Browsing inhibited apical dominance and activated axillary and adventitious buds to produce new vegetative shoots. Ptarmigan- and moose-browsed willow branches produced twice the volume of shoot growth but significantly fewer catkins the following summer compared with unbrowsed willow branches. Shoots on browsed willows were larger and produced 40–60% more buds compared to unbrowsed shoots. This process of shoot production at basal parts of the branch is the mechanism by which willows develop a highly complex “broomed” architecture after several years of browsing. Broomed willows were shorter and more likely to be re-browsed by ptarmigan, but not moose. Ptarmigan likely benefit from the greater quantity and accessibility of buds on previously browsed willows and may increase the carrying capacity of their own habitat. Despite the observed tolerance of willows to browsing, their vertical growth and reproduction were strongly inhibited by moose and ptarmigan. Browsing by these herbivores therefore needs to be considered in future models of shrub expansion in the Arctic. PMID:25047582

  5. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant.

    PubMed

    Miller, Tom E X; Tenhumberg, Brigitte; Louda, Svata M

    2008-02-01

    Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.

  6. Effects of space allocation within a deep-bedded finishing system on pig growth performance, fatty acid composition and pork quality.

    PubMed

    Patton, B S; Huff-Lonergan, E; Honeyman, M S; Kerr, B J; Lonergan, S M

    2008-03-01

    The objectives of the current study were to determine the degree to which space allocation in a deep-bedded system influences swine performance and pork quality. The deep-bedded method employed was hoop structures, which are large, tent-like shelters with cornstalks or straw for bedding. One hundred gilts ranging in weight from 59 to 71 kg were randomly assigned to treatments of low (0.70 m2 per pig, n = 50) or high (1.13 m2 per pig, n = 50) space allocation. During the 45-day experimental period, gilts were ad libitum fed a two-phase diet. Six gilts per treatment were used for carcass composition and pork quality evaluation for each replication. Five replications were conducted over a period of 4 months. Pigs finished with greater space allocation had smaller longissimus muscle area and produced pork that appeared to be darker. Variations in fatty acid composition and lipid percentage of subcutaneous adipose and longissimus dorsi muscle were observed when space allocation was changed within hoop structures. Less space resulted in greater proportion of lipid present as polyunsaturated fatty acids. Greater space allocation resulted in lower total lipid in subcutaneous pork adipose tissue. Space allocation did not affect fat firmness. Replications spanned the months of August to November, with temperatures ranging from 32°C to -2°C within the hoop structure. As environmental temperature declined, the proportion of monounsaturated fatty acids increased. Providing more space during finishing in these systems had only a small affect on pig growth and pork quality. Variations observed from replication to replication at fluctuating temperatures provide insight to seasonal differences in growth and adipose tissue composition and firmness. Therefore, finishing pigs in these systems may lead to seasonal variation in lipid composition.

  7. Direct and indirect effects of episodic frost on plant growth and reproduction in subalpine wildflowers.

    PubMed

    Pardee, Gabriella L; Inouye, David W; Irwin, Rebecca E

    2017-08-14

    Frost is an important episodic event that damages plant tissues through the formation of ice crystals at or below freezing temperatures. In montane regions, where climate change is expected to cause earlier snow melt but may not change the last frost-free day of the year, plants that bud earlier might be directly impacted by frost through damage to flower buds and reproductive structures. However, the indirect effects of frost mediated through changes in plant-pollinator interactions have rarely been explored. We examined the direct and pollinator-mediated indirect effects of frost on three wildflower species in southwestern Colorado, USA, Delphinium barbeyi (Ranunculaceae), Erigeron speciosus (Asteraceae), and Polemonium foliosissimum (Polemoniaceae), by simulating moderate (-1 to -5°C) frost events in early spring in plants in situ. Subsequently, we measured plant growth, and upon flowering measured flower morphology and phenology. Throughout the flowering season, we monitored pollinator visitation and collected seeds to measure plant reproduction. We found that frost had species-specific direct and indirect effects. Frost had direct effects on two of the three species. Frost significantly reduced flower size, total flowers produced, and seed production of Erigeron. Furthermore, frost reduced aboveground plant survival and seed production for Polemonium. However, we found no direct effects of frost on Delphinium. When we considered the indirect impacts of frost mediated through changes in pollinator visitation, one species, Erigeron, incurred indirect, negative effects of frost on plant reproduction through changes in floral traits and pollinator visitation, along with direct effects. Overall, we found that flowering plants exhibited species-specific direct and pollinator-mediated indirect responses to frost, thus suggesting that frost may play an important role in affecting plant communities under climate change. © 2017 John Wiley & Sons Ltd.

  8. The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrene, E.; Francois, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-05-01

    The extent to which wood growth is limited by carbon (C) supply (i.e. source control) or by cambial activity (i.e. sink control) will strongly determine the responses of trees to global changes. Nevertheless, the physiological processes that are responsible for limiting forest growth are still a matter of debate. The aim of this study was to evaluate the key determinants of the annual C allocation to wood along large soil and climate regional gradients over France. The study was conducted for five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). The drivers of stand biomass growth were assessed on both inter-site and inter-annual scales. Our data set comprised field measurements performed at 49 sites (931 site-years) that included biometric measurements and a variety of stand characteristics (e.g. soil water holding capacity, leaf area index). It was complemented with process-based simulations when possible explanatory variables could not be directly measured (e.g. annual and seasonal tree C balance, bioclimatic water stress indices). Specifically, the relative influences of tree C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in the stand C allocation to wood was predominantly driven by age-related decline. The direct effects of temperature and water stress on sink activity (i.e. effects independent from their effects on the C supply) exerted a strong influence on the annual stand wood growth in all of the species considered, including deciduous temperate species. The lagged effect of the past environmental conditions (e.g. the previous year's water stress and low C uptake) significantly affected the annual C allocation to wood. The C supply

  9. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability

    USGS Publications Warehouse

    Lorenzen, B.; Brix, H.; Mendelssohn, I.A.; McKee, K.L.; Miao, S.L.

    2001-01-01

    The effects of phosphorus (P) and oxygen availability on growth, biomass allocation and nutrient use efficiency in Cladium jamaicense Crantz and Typha domingensis Pers. were studied in a growth facility equipped with steady-state hydroponic rhizotrons. The treatments included four P concentrations (10, 40, 80 and 500 ??g I-1) and two oxygen concentration (8.0 and <0.5 mg O2 I-1) in the culture solutions. In Cladium, no clear relationship was found between P availability and growth rate (19-37 mg g-1 d-1), the above to below ground biomass ratio (A/B) (mean = 4.6), or nitrogen use efficiency (NUE) (mean = 72 g dry weight g-1 N). However, the ratio between root supported tissue (leaves, rhizomes and ramets) and root biomass (S/R) (5.6-8) increased with P availability. In contrast, the growth rate (48-89 mg g-1 d-1) and the biomass ratios A/B (2.4-6.1) and S/R (5.4-10.3) of Typha increased with P availability, while NUE (71-30 g dry weight g-1 N) decreased. The proportion of root laterals was similar in the two species, but Typha had thinner root laterals (diameter = 186 ??m) than Cladium (diameter = 438 ??m) indicating a larger root surface area in Typha. The two species had a similar P use efficiency (PUE) at 10 ??g PI-1 (mean = 1134 g dry weight g-1 P) and at 40 and 80 ??g PI-1 (mean = 482 dry weight g-1 P) but the N/P ratio indicated imbalances in nutrient uptake at a higher P concentration (40 ??g PI-1) in Typha than in Cladium (10 ??g PI-1). The two species had similar root specific P accumulation rate at the two lowest P levels, whereas Typha had 3-13-fold higher P uptake rates at the two highest P levels, indicating a higher nutrient uptake capacity in Typha. The experimental oxygen concentration in the rhizosphere had only limited effect on the growth of the two species and had little effect on biomass partitioning and nutrient use efficiency. The aerenchyma in these species was probably sufficient to maintain adequate root oxygenation under partially oxygen

  10. Epidermal growth factor binding and receptor distribution in the mouse reproductive tract during development

    SciTech Connect

    Bossert, N.L.; Nelson, K.G.; Ross, K.A.; Takahashi, T.; McLachlan, J.A. )

    1990-11-01

    The ontogeny of the epidermal growth factor (EGF) receptor in the different cell types in the neonatal and immature mouse uterus and vagina was examined. Immunohistochemical examination of prenatal and neonatal reproductive tracts with a polyclonal antibody to the EGF receptor shows immunoreactive EGF receptors as early as Day 13 of gestation. Autoradiographic analysis of tissue sections at 3 to 17 days of age (the day of birth is Day 1) demonstrates that both uterine and vaginal epithelial and stromal cells are capable of binding 125I-labeled EGF. Both the 125I-labeled EGF autoradiography and immunohistochemistry in whole tissue show higher EGF receptor levels in the uterine epithelium than the uterine stroma. The presence of EGF receptors was also confirmed by affinity labeling and Scatchard analysis of isolated uterine cell types at 7 and/or 17 days of age. However, in contrast to the autoradiography and immunohistochemistry data of intact tissue, the affinity labeling and Scatchard data of isolated cells indicate that the uterine stroma contains higher levels of EGF receptor than that of the uterine epithelium. The reason for this discrepancy between the different techniques is, as yet, unknown. Regardless of the differences in the actual numbers of EGF receptors obtained, our data demonstrate that the developing mouse reproductive tract contains immunoreactive EGF receptors that are capable of binding 125I-labeled EGF.

  11. Reproduction and Growth in a Murine Model of Early Life-Onset Inflammatory Bowel Disease

    PubMed Central

    Nagy, Eniko; Rodriguiz, Ramona M.; Wetsel, William C.; MacIver, Nancie J.; Hale, Laura P.

    2016-01-01

    Studies in transgenic murine models have provided insight into the complexity underlying inflammatory bowel disease (IBD), a disease hypothesized to result from an injurious immune response against intestinal microbiota. We recently developed a mouse model of IBD that phenotypically and histologically resembles human childhood-onset ulcerative colitis (UC), using mice that are genetically modified to be deficient in the cytokines TNF and IL-10 (“T/I” mice). Here we report the effects of early life onset of colon inflammation on growth and reproductive performance of T/I mice. T/I dams with colitis often failed to get pregnant or had small litters with pups that failed to thrive. Production was optimized by breeding double homozygous mutant T/I males to females homozygous mutant for TNF deficiency and heterozygous for deficiency of IL-10 (“T/I-het” dams) that were not susceptible to spontaneous colon inflammation. When born to healthy (T/I-het) dams, T/I pups initially gained weight similarly to wild type (WT) pups and to their non-colitis-susceptible T/I-het littermates. However, their growth curves diverged between 8 and 13 weeks, when most T/I mice had developed moderate to severe colitis. The observed growth failure in T/I mice occurred despite a significant increase in their food consumption and in the absence of protein loss in the stool. This was not due to TNF-induced anorexia or altered food consumption due to elevated leptin levels. Metabolic studies demonstrated increased consumption of oxygen and water and increased production of heat and CO2 in T/I mice compared to their T/I-het littermates, without differences in motor activity. Based on the clinical similarities of this early life onset model of IBD in T/I mice to human IBD, these results suggest that mechanisms previously hypothesized to explain growth failure in children with IBD require re-evaluation. The T/I mouse model may be useful for further investigation of such mechanisms and for

  12. Reproduction and Growth in a Murine Model of Early Life-Onset Inflammatory Bowel Disease.

    PubMed

    Nagy, Eniko; Rodriguiz, Ramona M; Wetsel, William C; MacIver, Nancie J; Hale, Laura P

    2016-01-01

    Studies in transgenic murine models have provided insight into the complexity underlying inflammatory bowel disease (IBD), a disease hypothesized to result from an injurious immune response against intestinal microbiota. We recently developed a mouse model of IBD that phenotypically and histologically resembles human childhood-onset ulcerative colitis (UC), using mice that are genetically modified to be deficient in the cytokines TNF and IL-10 ("T/I" mice). Here we report the effects of early life onset of colon inflammation on growth and reproductive performance of T/I mice. T/I dams with colitis often failed to get pregnant or had small litters with pups that failed to thrive. Production was optimized by breeding double homozygous mutant T/I males to females homozygous mutant for TNF deficiency and heterozygous for deficiency of IL-10 ("T/I-het" dams) that were not susceptible to spontaneous colon inflammation. When born to healthy (T/I-het) dams, T/I pups initially gained weight similarly to wild type (WT) pups and to their non-colitis-susceptible T/I-het littermates. However, their growth curves diverged between 8 and 13 weeks, when most T/I mice had developed moderate to severe colitis. The observed growth failure in T/I mice occurred despite a significant increase in their food consumption and in the absence of protein loss in the stool. This was not due to TNF-induced anorexia or altered food consumption due to elevated leptin levels. Metabolic studies demonstrated increased consumption of oxygen and water and increased production of heat and CO2 in T/I mice compared to their T/I-het littermates, without differences in motor activity. Based on the clinical similarities of this early life onset model of IBD in T/I mice to human IBD, these results suggest that mechanisms previously hypothesized to explain growth failure in children with IBD require re-evaluation. The T/I mouse model may be useful for further investigation of such mechanisms and for development

  13. Insulin-like growth factor-I as a possible hormonal mediator of nutritional regulation of reproduction in cattle.

    PubMed

    Zulu, Victor Chisha; Nakao, Toshihiko; Sawamukai, Yutaka

    2002-08-01

    The current review aims to establish insulin-like growth factor-1 (IGF-I) as the factor that signals nutritional status to the reproductive axis, and show that assessment of IGF-I in blood early postpartum during the negative energy balance (NEB) period could be used to predict both nutritional and reproductive status in dairy cattle. The review also explores the effect of nutritional status on circulating IGF-I concentrations and the endocrine role of IGF-I on the reproductive axis. IGF-I plays an important role in gonadotropin-induced folliculogenesis, ovarian steroidogenesis and corpus luteum (CL) function. It also modulates pituitary and hypothalamus function. IGF-I clearly has an endocrine role on the reproductive axis. Severe under nutrition significantly reduces plasma IGF-I concentrations. During the critical period of NEB in high yielding dairy cattle early postpartum, IGF-I concentrations are low in blood and its levels are positively correlated to energy status and reproductive function during this period. Changes in circulating IGF-I immediately postpartum may help predict both nutritional and reproductive status in dairy cattle. IGF-I is therefore one of the long sought factors that signal nutritional status to the reproductive axis.

  14. Evidence of developmental niche construction in dung beetles: effects on growth, scaling and reproductive success.

    PubMed

    Schwab, Daniel B; Casasa, Sofia; Moczek, Armin P

    2017-09-24

    Niche construction occurs when organisms modify their environments and alter selective conditions through their physiology and behaviours. Such modifications can bias phenotypic variation and enhance organism-environment fit. Yet few studies exist that experimentally assess the degree to which environmental modifications shape developmental and fitness outcomes, how their influences may differ among species and identify the underlying proximate mechanisms. Here, we experimentally eliminate environmental modifications from the developmental environment of Onthophagus dung beetles. We show that these modifications (1) differentially influence growth among species, (2) consistently shape scaling relationships in fitness-related traits, (3) are necessary for the maintenance of sexual dimorphism, (4) influence reproductive success among females of at least one species and (5) implicate larval cultivation of an external rumen as a possible mechanism for environmental modification. Our results present evidence that Onthophagus larvae engage in niche construction, and that this is a fundamental component of beetle development and fitness. © 2017 John Wiley & Sons Ltd/CNRS.

  15. Effects of Female Dietary Restriction in a Rabbit Growth Line During Rearing on Reproductive Performance and Embryo Quality.

    PubMed

    Naturil-Alfonso, C; Lavara, R; Vicente, J S; Marco-Jiménez, F

    2016-02-01

    Maternal diet prior to mating has an effect on reproductive performance. We analysed the effect of maternal dietary restriction during rearing on reproductive performance, the embryo development and foetal growth. Females were categorized in two groups: (i) does with ad libitum access to feed or (ii) restricted. Two experiments were performed: (i) after 1 month, receptive females from both experimental groups were artificially inseminated and the reproductive performance was recorded during three reproductive cycles; at the first insemination, the body weight and perirenal fat thickness were recorded, and (ii) females from both experimental groups were inseminated, and 24 h later, embryos were recovered and transferred to recipient females from a maternal line. Later, embryonic implantation was assessed at day 14 by laparoscopy and foetal growth was monitored by ultrasound examination. In experiment 1, no differences in kindling rate was found, but prolificacy was showed to be higher in ad libitum does, which also were heavier than restricted ones. In experiment 2, no differences among does either in body weight, in perirenal fat thickness or in reproductive performance (ovulation rate and embryo recovery rate) were related to differences in feed intake. However, despite similar embryonic implantation losses, embryos from restricted females demonstrated higher foetal and gestational losses. Embryos from restricted does presented lower foetal growth than embryos from ad libitum does. Therefore, our results demonstrated that nutrition before first conception in a rabbit line selected for growth rate may impact on the embryo and results in a disturbance in gestational losses and foetal growth over all reproductive life. © 2015 Blackwell Verlag GmbH.

  16. The dynamics of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth.

    NASA Astrophysics Data System (ADS)

    Guillemot, Joannès; Martin-StPaul, Nicolas K.; Dufrêne, Eric; François, Christophe; Soudani, Kamel; Ourcival, Jean-Marc; Leadley, Paul; Delpierre, Nicolas

    2015-04-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will strongly determines the responses of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study was i) to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in four tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex and Picea abies) ii) to implement the identified key drivers in a new C allocation scheme within the CASTANEA terrestrial biosphere model (TBM). Combining field measurements and process-based simulations at 49 sites (931 site-years), our analyses revealed that the inter-site variability in C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. Our study supports the premise that European forest growth is under a complex panel of source- and sink- limitations, contradicting the simple source control implemented in most TBMs. The implementation of these combined forest growth limitations in the CASTANEA model significantly improved its performance when evaluated against independent stand growth data at the regional scale (mainland France, >10000 plots). We finally discuss how the sink imitation affects the CASTANEA simulated projections of forest productivity along the 21th century, especially with respect to the expected fertilizing effect of increasing atmospheric

  17. Growth rates, reproductive phenology, and pollination ecology of Espeletia grandiflora (Asteraceae), a giant Andean caulescent rosette.

    PubMed

    Fagua, J C; Gonzalez, V H

    2007-01-01

    From March 2001 to December 2002, we studied the reproductive phenology, pollination ecology, and growth rates of Espeletia grandiflora Humb. and Bonpl. (Asteraceae), a giant caulescent rosette from the Páramos of the Eastern Andes of Colombia. Espeletia grandiflora was found to be predominantly allogamous and strongly self-incompatible. Bumblebees (Bombus rubicundus and B. funebris) were the major pollinators of E. grandiflora, although moths, hummingbirds, flies, and beetles also visited flowers. Inflorescence development began in March and continued through August to September. Plants flowered for 30 - 96 days with a peak from the beginning of October through November. The percentage of flowering plants strongly differed among size classes and between both years. Seed dispersal occurred as early as September through May of the following year. The average absolute growth rate for juveniles and adults rate was 7.6 cm/year. Given the scarcity of floral visitors at high altitudes due to climatic conditions, we suggest that even small contributions from a wide range of pollinators might be advantageous for pollination of E. grandiflora. Long-term studies on different populations of E. grandiflora are required to determine if the high growth rates are representative, to quantify the variation in the flowering behavior within and among populations, and to establish if nocturnal pollination is a trait that is exclusive to our population of E. grandiflora.

  18. Nanoplastic affects growth of S. obliquus and reproduction of D. magna.

    PubMed

    Besseling, Ellen; Wang, Bo; Lürling, Miquel; Koelmans, Albert A

    2014-10-21

    The amount of nano- and microplastic in the aquatic environment rises due to the industrial production of plastic and the degradation of plastic into smaller particles. Concerns have been raised about their incorporation into food webs. Little is known about the fate and effects of nanoplastic, especially for the freshwater environment. In this study, effects of nano-polystyrene (nano-PS) on the growth and photosynthesis of the green alga Scenedesmus obliquus and the growth, mortality, neonate production, and malformations of the zooplankter Daphnia magna were assessed. Nano-PS reduced population growth and reduced chlorophyll concentrations in the algae. Exposed Daphnia showed a reduced body size and severe alterations in reproduction. Numbers and body size of neonates were lower, while the number of neonate malformations among neonates rose to 68% of the individuals. These effects of nano-PS were observed between 0.22 and 103 mg nano-PS/L. Malformations occurred from 30 mg of nano-PS/L onward. Such plastic concentrations are much higher than presently reported for marine waters as well as freshwater, but may eventually occur in sediment pore waters. As far as we know, these results are the first to show that direct life history shifts in algae and Daphnia populations may occur as a result of exposure to nanoplastic.

  19. Reconciling contradictory findings of herbivore impacts on spotted knapweed (Centaurea stoebe) growth and reproduction.

    PubMed

    Knochel, David G; Seastedt, Timothy R

    2010-10-01

    Substantial controversy surrounds the efficacy of biological control insects to reduce densities of Centaurea stoebe, a widespread, aggressive invasive plant in North America. We developed a graphical model to conceptualize the conditions required to explain the current contradictory findings, and then employed a series of manipulations to evaluate C. stoebe responses to herbivores. We manipulated soil nitrogen and competition in a field population and measured attack rates of a foliage and seed feeder (Larinus minutus), two gall flies (Urophora spp.), and a root feeder (Cyphocleonus achates), as well as their effects on the growth and reproduction of C. stoebe. Nitrogen limitation and competing vegetation greatly reduced C. stoebe growth. L. minutus most intensively reduced seed production in low-nitrogen soils, and removal of neighboring vegetation increased Larinus numbers per flower head and the percentage of flowers attacked by 15% and 11%, respectively. Cyphocleonus reduced flower production and aboveground biomass over two years, regardless of resources or competition. Our results, in conjunction with other published studies, demonstrate that positive, neutral, and negative plant growth responses to herbivory can be generated. However, under realistic field conditions and in the presence of multiple herbivores, our work repudiates earlier studies that indicate insect herbivores increase C. stoebe dominance.

  20. Genetic parameters for growth, reproductive and maternal traits in a multibreed meat sheep population

    PubMed Central

    2009-01-01

    The genetic parameters for growth, reproductive and maternal traits in a multibreed meat sheep population were estimated by applying the Average Information Restricted Maximum Likelihood method to an animal model. Data from a flock supported by the Programa de Melhoramento Genético de Caprinos e Ovinos de Corte (GENECOC) were used. The traits studied included birth weight (BW), weaning weight (WW), slaughter weight (SW), yearling weight (YW), weight gain from birth to weaning (GBW), weight gain from weaning to slaughter (GWS), weight gain from weaning to yearling (GWY), age at first lambing (AFL), lambing interval (LI), gestation length (GL), lambing date (LD - number of days between the start of breeding season and lambing), litter weight at birth (LWB) and litter weight at weaning (LWW). The direct heritabilities were 0.35, 0.81, 0.65, 0.49, 0.20, 0.15 and 0.39 for BW, WW, SW, YW, GBW, GWS and GWY, respectively, and 0.04, 0.06, 0.10, 0.05, 0.15 and 0.11 for AFL, LI, GL, LD, LWB and LWW, respectively. Positive genetic correlations were observed among body weights. In contrast, there was a negative genetic correlation between GBW and GWS (-0.49) and GBW and GWY (-0.56). Positive genetic correlations were observed between AFL and LI, LI and GL, and LWB and LWW. These results indicate a strong maternal influence in this herd and the presence of sufficient genetic variation to allow mass selection for growth traits. Additive effects were of little importance for reproductive traits, and other strategies are necessary to improve the performance of these animals. PMID:21637451

  1. Genetic parameters for growth, reproductive and maternal traits in a multibreed meat sheep population.

    PubMed

    Lôbo, Ana Maria Bezerra Oliveira; Lôbo, Raimundo Nonato Braga; Paiva, Samuel Rezende; de Oliveira, Sônia Maria Pinheiro; Facó, Olivardo

    2009-10-01

    The genetic parameters for growth, reproductive and maternal traits in a multibreed meat sheep population were estimated by applying the Average Information Restricted Maximum Likelihood method to an animal model. Data from a flock supported by the Programa de Melhoramento Genético de Caprinos e Ovinos de Corte (GENECOC) were used. The traits studied included birth weight (BW), weaning weight (WW), slaughter weight (SW), yearling weight (YW), weight gain from birth to weaning (GBW), weight gain from weaning to slaughter (GWS), weight gain from weaning to yearling (GWY), age at first lambing (AFL), lambing interval (LI), gestation length (GL), lambing date (LD - number of days between the start of breeding season and lambing), litter weight at birth (LWB) and litter weight at weaning (LWW). The direct heritabilities were 0.35, 0.81, 0.65, 0.49, 0.20, 0.15 and 0.39 for BW, WW, SW, YW, GBW, GWS and GWY, respectively, and 0.04, 0.06, 0.10, 0.05, 0.15 and 0.11 for AFL, LI, GL, LD, LWB and LWW, respectively. Positive genetic correlations were observed among body weights. In contrast, there was a negative genetic correlation between GBW and GWS (-0.49) and GBW and GWY (-0.56). Positive genetic correlations were observed between AFL and LI, LI and GL, and LWB and LWW. These results indicate a strong maternal influence in this herd and the presence of sufficient genetic variation to allow mass selection for growth traits. Additive effects were of little importance for reproductive traits, and other strategies are necessary to improve the performance of these animals.

  2. Effects of above- and belowground herbivory on growth, pollination, and reproduction in cucumber.

    PubMed

    Barber, Nicholas A; Adler, Lynn S; Bernardo, Holly L

    2011-02-01

    Plants experience unique challenges due to simultaneous life in two spheres, above- and belowground. Interactions with other organisms on one side of the soil surface may have impacts that extend across this boundary. Although our understanding of plant-herbivore interactions is derived largely from studies of leaf herbivory, belowground root herbivores may affect plant fitness directly or by altering interactions with other organisms, such as pollinators. In this study, we investigated the effects of leaf herbivory, root herbivory, and pollination on plant growth, subsequent leaf herbivory, flower production, pollinator attraction, and reproduction in cucumber (Cucumis sativus). We manipulated leaf and root herbivory with striped cucumber beetle (Acalymma vittatum) adults and larvae, respectively, and manipulated pollination with supplemental pollen. Both enhanced leaf and root herbivory reduced plant growth, and leaf herbivory reduced subsequent leaf damage. Plants with enhanced root herbivory produced 35% fewer female flowers, while leaf herbivory had no effect on flower production. While leaf herbivory reduced the time that honey bees spent probing flowers by 29%, probing times on root-damaged plants were over twice as long as those on control plants. Root herbivory increased pollen limitation for seed production in spite of increased honey bee preference for plants with root damage. Leaf damage and hand-pollination treatments had no effect on fruit production, but plants with enhanced root damage produced 38% fewer fruits that were 25% lighter than those on control plants. Despite the positive effect of belowground damage on honey bee visitation, root herbivory had a stronger negative effect on plant reproduction than leaf herbivory. These results demonstrate that the often-overlooked effects of belowground herbivores may have profound effects on plant performance.

  3. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia

    PubMed Central

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure. PMID:26580558

  4. Palladium uptake by Pisum sativum: partitioning and effects on growth and reproduction.

    PubMed

    Ronchini, Matteo; Cherchi, Laura; Cantamessa, Simone; Lanfranchi, Marco; Vianelli, Alberto; Gerola, Paolo; Berta, Graziella; Fumagalli, Alessandro

    2015-05-01

    Environmental palladium levels are increasing because of anthropogenic activities. The considerable mobility of the metal, due to solubilisation phenomena, and its known bioavailability may indicate interactions with higher organisms. The aim of the study was to determine the Pd uptake and distribution in the various organs of the higher plant Pisum sativum and the metal-induced effects on its growth and reproduction. P. sativum was grown in vermiculite with a modified Hoagland's solution of nutrients in the presence of Pd at concentrations ranging 0.10-25 mg/L. After 8-10 weeks in a controlled environment room, plants were harvested and dissected to isolate the roots, stems, leaves, pods and peas. The samples were analysed for Pd content using AAS and SEM-EDX. P. sativum absorbed Pd, supplied as K₂PdCl₄, beginning at seed germination and continuing throughout its life. Minimal doses (0.10-1.0 mg Pd/L) severely inhibited pea reproductive processes while showing a peculiar hormetic effect on root development. Pd concentrations ≥1 mg/L induced developmental delay, with late growth resumption, increased leaf biomass (up to 25%) and a 15-20% reduction of root mass. Unsuccessful repeated blossoming efforts led to misshapen pods and no seed production. Photosynthesis was also disrupted. The absorbed Pd (ca. 0.5 % of the supplied metal) was primarily fixed in the root, specifically in the cortex, reaching concentrations up to 200 μg/g. The metal moved through the stem (up to 1 μg/g) to the leaves (2 μg/g) and pods (0.3 μg/g). The presence of Pd in the pea fruits, together with established evidence of environmental Pd accumulation and bioavailability, suggests possible contamination of food plants and propagation in the food chain and must be the cause for concern.

  5. Anemonefish depletion reduces survival, growth, reproduction and fishery productivity of mutualistic anemone-anemonefish colonies

    NASA Astrophysics Data System (ADS)

    Frisch, Ashley J.; Rizzari, Justin R.; Munkres, Katherine P.; Hobbs, Jean-Paul A.

    2016-06-01

    Intimate knowledge of both partners in a mutualism is necessary to understand the ecology and evolution of each partner, and to manage human impacts that asymmetrically affect one of the partners. Although anemonefishes and their host anemones are iconic mutualists and widely sought by ornamental fisheries, the degree to which anemones depend on anemonefishes, and thus the colony-level effects of collecting anemonefishes, is not well understood. We tracked the size and abundance of anemone Entacmaea quadricolor and anemonefish Amphiprion melanopus colonies for 3 yr after none, some, or all of the resident anemonefish were experimentally removed. Total and partial removal of anemonefish had rapid and sustained negative effects on growth, reproduction and survival of anemones, as well as cascading effects on recruitment and productivity of anemonefish in the remaining colony. As predicted, total removal of anemonefish caused acute declines in size and abundance of anemones, although most anemone colonies (76 %) slowly resumed growth and reproduction after the arrival of anemonefish recruits, which subsequently grew and defended the hosts. Partial removal of anemonefish had similar but typically less severe effects on anemones. Remarkably, the colony-level effects on anemones and anemonefish were proportional to the size and number of anemonefish that were experimentally removed. In particular, anemone survival and anemonefish productivity were highest when one or more adult anemonefish remained in the colony, suggesting that adult fish not only enhanced the protection of anemones, but also increased the recruitment and/or survival of conspecifics. We conclude that the relationship between E. quadricolor and A. melanopus is not only obligate, but also demographically rigid and easily perturbed by anemonefish fisheries. Clearly, these two species must be managed together as a unit and with utmost precaution. To this end, we propose several tangible management actions

  6. Effects of lithium on growth, maturation, reproduction and gene expression in the nematode Caenorhabditis elegans.

    PubMed

    Inokuchi, Ayako; Yamamoto, Ryoko; Morita, Fumiyo; Takumi, Shota; Matsusaki, Hiromi; Ishibashi, Hiroshi; Tominaga, Nobuaki; Arizono, Koji

    2015-09-01

    Lithium (Li) has been widely used to treat bipolar disorder, and industrial use of Li has been increasing; thus, environmental pollution and ecological impacts of Li have become a concern. This study was conducted to clarify the potential biological effects of LiCl and Li(2)CO(3) on a nematode, Caenorhabditis elegans as a model system for evaluating soil contaminated with Li. Exposure of C. elegans to LiCl and Li(2)CO(3) decreased growth/maturation and reproduction. The lowest observed effect concentrations for growth, maturation and reproduction were 1250, 313 and 10 000 µm, respectively, for LiCl and 750, 750 and 3000 µm, respectively, for Li(2)CO(3). We also investigated the physiological function of LiCl and LiCO(3) in C. elegans using DNA microarray analysis as an eco-toxicogenomic approach. Among approximately 300 unique genes, including metabolic genes, the exposure to 78 µm LiCl downregulated the expression of 36 cytochrome P450, 16 ABC transporter, 10 glutathione S-transferase, 16 lipid metabolism and two vitellogenin genes. On the other hand, exposure to 375 µm Li(2)CO(3) downregulated the expression of 11 cytochrome P450, 13 ABC transporter, 13 lipid metabolism and one vitellogenin genes. No gene was upregulated by LiCl or Li(2)CO(3). These results suggest that LiCl and Li(2)CO(3) potentially affect the biological and physiological function in C. elegans associated with alteration of the gene expression such as metabolic genes. Our data also provide experimental support for the utility of toxicogenomics by integrating gene expression profiling into a toxicological study of an environmentally important organism such as C. elegans. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Effects of chronic dietary copper exposure on growth and reproduction of Daphnia magna.

    PubMed

    De Schamphelaere, Karel A C; Janssen, Colin R

    2004-08-01

    A matter of current, intense debate with regard to the effects of metals on biological systems is the potential toxicity of metals associated with food particles. Recently developed biotic ligand models (BLM), which predict the toxicity of waterborne metals, may not be valid if the dietary exposure route contributes to metal toxicity. The present study is, to our knowledge, the first that investigates the potential toxicity of dietary copper to a freshwater invertebrate (i.e., Daphnia magna) feeding on a live diet (i.e., the green alga Pseudokircheneriella subcapitata). Algae were exposed for 3 d to different copper concentrations, resulting in algal copper burdens between approximately 6.2 X 10(-16) and 250 x 10(-16) g cell(-1). These algae were then used as food in chronic, 21-d D. magna toxicity tests in which growth, reproduction, and copper accumulation were assessed. Three exposure scenarios were tested: A waterborne exposure, a dietary exposure, and a combined waterborne and dietary exposure. Although exposure to dietary copper resulted in an increased copper body burden of the adult daphnids, it did not contribute to toxicity and did not affect the 21-d effect concentrations expressed as waterborne copper, indicating that the previously established good predictive capacity of the chronic D. magna BLM is not affected. On the contrary, exposure to the highest dietary copper levels resulted in an increase of as much as 75% in growth and reproduction. To our knowledge, this is the first evidence that dietary copper exposure of a freshwater invertebrate feeding on a live diet resulted in a beneficial effect.

  8. Growth and Reproduction of Glyphosate-Resistant and Susceptible Populations of Kochia scoparia.

    PubMed

    Kumar, Vipan; Jha, Prashant

    2015-01-01

    Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure.

  9. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species.

    PubMed

    Ozga, Jocelyn A; Kaur, Harleen; Savada, Raghavendra P; Reinecke, Dennis M

    2017-04-01

    Legume crops are grown throughout the world and provide an excellent food source of digestible protein and starch, as well as dietary fibre, vitamins, minerals, and flavonoids. Fruit and seeds from legumes are also an important source of vegetables for a well-balanced diet. A trend in elevated temperature as a result of climate change increases the risk of a heat stress-induced reduction in legume crop yield. High temperatures during the crop reproductive development phase are particularly detrimental to fruit/seed production because the growth and development of the reproductive tissues are sensitive to small changes in temperature. Hormones are signalling molecules that play important roles in a plant's ability to integrate different environmental inputs and modify their developmental processes to optimize growth, survival, and reproduction. This review focuses on the hormonal regulation of reproductive development and heat stress-induced alteration of this regulation during (i) pollination, (ii) early fruit set, and (iii) seed development that affects fruit/seed yield in legume and other model crops. Further understanding of hormone-regulated reproductive growth under non-stress and heat-stress conditions can aid in trait selection and the development of gene modification strategies and cultural practices to improve heat tolerance in legume crops contributing to improved food security. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. On the reproductive energetics of chorusing males: Energy depletion profiles, restoration and growth in two sympatric species of Ranidella (Anura).

    PubMed

    Mac Nally, Ralph C

    1981-01-01

    The reproductive activity of males of two species of Ranidella was recorded for four years. Linear densities and vocal activity were monitored, and correlated with rainfall. Energy and ash content of somatic tissue were examined during the course of breeding seasons. Depletions of energy reserves in somatic tissue, fat-bodies and livers were charted through each breeding season. Allometric equations linking these energetic quantities with snout-vent length were used to estimate the growth between breeding seasons of soma, fat-bodies and livers. Males invest heavily in current reproduction and relatively little in growth. Virtually all of a male's reproductive expenditure is directed to mechanisms of intrasexual competition for matings rather than investment in gonads, gametes or parental behavior.

  11. Incorporating Temperature-driven Seasonal Variation in Survival, Growth, and Reproduction Models for Small Fish

    EPA Science Inventory

    Seasonal variation in survival and reproduction can be a large source of prediction uncertainty in models used for conservation and management. A seasonally varying matrix population model is developed that incorporates temperature-driven differences in mortality and reproduction...

  12. Incorporating Temperature-driven Seasonal Variation in Survival, Growth, and Reproduction Models for Small Fish

    EPA Science Inventory

    Seasonal variation in survival and reproduction can be a large source of prediction uncertainty in models used for conservation and management. A seasonally varying matrix population model is developed that incorporates temperature-driven differences in mortality and reproduction...

  13. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories.

    PubMed

    Randriamanana, Tendry R; Nybakken, Line; Lavola, Anu; Aphalo, Pedro J; Nissinen, Katri; Julkunen-Tiitto, Riitta

    2014-05-01

    Plant defence theories have recently evolved in such a way that not only the quantity but also the quality of mineral nutrients is expected to influence plant constitutive defence. Recently, an extended prediction derived from the protein competition model (PCM) suggested that nitrogen (N) limitation is more important for the production of phenolic compounds than phosphorus (P). We aimed at studying sexual differences in the patterns of carbon allocation to growth and constitutive defence in relation to N and P availability in Populus tremula L. seedlings. We compared the gender responses in photosynthesis, growth and whole-plant allocation to phenolic compounds at different combination levels of N and P, and studied how they are explained by the main plant defence theories. We found no sexual differences in phenolic concentrations, but interestingly, slow-growing females had higher leaf N concentration than did males, and genders differed in their allocation priority. There was a trade-off between growth and the production of flavonoid-derived phenylpropanoids on one hand, and between the production of salicylates and flavonoid-derived phenylpropanoids on the other. Under limited nutrient conditions, females prioritized mineral nutrient acquisition, flavonoid and condensed tannin (CT) production, while males invested more in above-ground biomass. Salicylate accumulation followed the growth differentiation balance hypothesis as low N mainly decreased the production of leaf and stem salicylate content while the combination of both low N and low P increased the amount of flavonoids and CTs allocated to leaves and to a lesser extent stems, which agrees with the PCM. We suggest that such a discrepancy in the responses of salicylates and flavonoid-derived CTs is linked to their clearly distinct biosynthetic origins and/or their metabolic costs. © The Author 2014. Published by Oxford University Press. All rights reserved.

  14. Reproductive parameters of double transgenic zebrafish (Danio rerio) males overexpressing both the growth hormone (GH) and its receptor (GHR).

    PubMed

    Silva, Ana Cecilia Gomes; Almeida, Daniela Volcan; Nornberg, Bruna Felix; Pereira, Jessica Ribeiro; Pires, Diego Martins; Corcini, Carine Dahl; Junior, Antonio Sergio Varela; Marins, Luis Fernando

    2017-02-01

    Growth hormone (GH) transgenesis presents a high potential application in aquaculture. However, excess GH may have serious consequences due to pleiotropic actions. In order to study these effects in zebrafish (Danio rerio), two transgenic lines were developed. The first expresses GH ubiquitously and constitutively (F0104 line), while the second expresses the GH receptor in a muscle-specific manner (Myo-GHR line). Results from the F0104 line showed accelerated growth but increased reproductive difficulties, while Myo-GHR did not show the expected increase in muscle mass. Since the two lines appeared to display complementary characteristics, a double transgenic (GH/GHR) was created via crossing between them. This double transgenic displayed accelerated growth, however reproductive parameters remained uncertain. The objective of the present study was to determine the reproductive capacity of males of this new line, by evaluating sperm parameters, expression of spermatogenesis-related genes, and reproductive tests. Double transgenics showed a strong recovery in almost all sperm parameters analyzed when compared to the F0104 line. Gene expression analyses revealed that Anti-Müllerian Hormone gene (amh) appeared to be primarily responsible for this recovery. Reproductive tests showed that double transgenic males did not differ from non-transgenics. It is possible that GHR excess in the muscle tissues of double transgenics may have contributed to lower circulating GH levels and thus reduced the negative effects of this hormone with respect to reproduction. Therefore, it is clear that GH-transgenesis technology should take into account the need to obtain adequate levels of circulating hormone in order to achieve maximum growth with minimal negative side effects.

  15. Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae.

    PubMed

    Higginson, Andrew D; Delf, Jon; Ruxton, Graeme D; Speed, Michael P

    2011-03-01

    1. Utilization of plant secondary compounds for antipredator defence is common in immature herbivorous insects. Such defences may incur a cost to the animal, either in terms of survival, growth rate or in the reproductive success. 2. A common defence in lepidopterans is the regurgitation of semi-digested material containing the defensive compounds of the food plant, a defence which has led to gut specialization in this order. Regurgitation is often swift in response to cuticular stimulation and deters predators from consuming or parasitizing the larva. The loss of food and other gut material seems likely to impact on fitness, but evidence is lacking. 3. Here, we raised larvae of the common crop pest Pieris brassicae on commercial cabbage leaves, simulated predator attacks throughout the larval period, and measured life-history responses. 4. We found that the probability of survival to pupation decreased with increasing frequency of attacks, but this was because of regurgitation rather than the stimulation itself. There was a growth cost to the defence such that the more regurgitant that individuals produced over the growth period, the smaller they were at pupation. 5. The number of mature eggs in adult females was positively related to pupal mass, but this relationship was only found when individuals were not subjected to a high frequency of predator simulation. This suggests that there might be cryptic fitness costs to common defensive responses that are paid despite apparent growth rate being maintained. 6. Our results demonstrate a clear life-history cost of an antipredator defence in a model pest species and show that under certain conditions, such as high predation threat, the expected relationship between female body size and potential fecundity can be disrupted.

  16. A Trade-Off between Reproduction and Feather Growth in the Barn Swallow (Hirundo rustica)

    PubMed Central

    Saino, Nicola; Romano, Maria; Rubolini, Diego; Ambrosini, Roberto; Romano, Andrea; Caprioli, Manuela; Costanzo, Alessandra; Bazzi, Gaia

    2014-01-01

    Physiological trade-offs mediated by limiting energy, resources or time constrain the simultaneous expression of major functions and can lead to the evolution of temporal separation between demanding activities. In birds, plumage renewal is a demanding activity, which accomplishes fundamental functions, such as allowing thermal insulation, aerodynamics and socio-sexual signaling. Feather renewal is a very expensive and disabling process, and molt is often partitioned from breeding and migration. However, trade-offs between feather renewal and breeding have been only sparsely studied. In barn swallows (Hirundo rustica) breeding in Italy and undergoing molt during wintering in sub-Saharan Africa, we studied this trade-off by removing a tail feather from a large sample of individuals and analyzing growth bar width, reflecting feather growth rate, and length of the growing replacement feather in relation to the stage in the breeding cycle at removal and clutch size. Growth bar width of females and length of the growing replacement feather of both sexes were smaller when the original feather had been removed after clutch initiation. Importantly, in females both growth bar width and replacement feather length were negatively predicted by clutch size, and more strongly so for large clutches and when feather removal occurred immediately after clutch completion. Hence, we found strong, coherent evidence for a trade-off between reproduction, and laying effort in particular, and the ability to generate new feathers. These results support the hypothesis that the derived condition of molting during wintering in long-distance migrants is maintained by the costs of overlapping breeding and molt. PMID:24826890

  17. A trade-off between reproduction and feather growth in the barn swallow (Hirundo rustica).

    PubMed

    Saino, Nicola; Romano, Maria; Rubolini, Diego; Ambrosini, Roberto; Romano, Andrea; Caprioli, Manuela; Costanzo, Alessandra; Bazzi, Gaia

    2014-01-01

    Physiological trade-offs mediated by limiting energy, resources or time constrain the simultaneous expression of major functions and can lead to the evolution of temporal separation between demanding activities. In birds, plumage renewal is a demanding activity, which accomplishes fundamental functions, such as allowing thermal insulation, aerodynamics and socio-sexual signaling. Feather renewal is a very expensive and disabling process, and molt is often partitioned from breeding and migration. However, trade-offs between feather renewal and breeding have been only sparsely studied. In barn swallows (Hirundo rustica) breeding in Italy and undergoing molt during wintering in sub-Saharan Africa, we studied this trade-off by removing a tail feather from a large sample of individuals and analyzing growth bar width, reflecting feather growth rate, and length of the growing replacement feather in relation to the stage in the breeding cycle at removal and clutch size. Growth bar width of females and length of the growing replacement feather of both sexes were smaller when the original feather had been removed after clutch initiation. Importantly, in females both growth bar width and replacement feather length were negatively predicted by clutch size, and more strongly so for large clutches and when feather removal occurred immediately after clutch completion. Hence, we found strong, coherent evidence for a trade-off between reproduction, and laying effort in particular, and the ability to generate new feathers. These results support the hypothesis that the derived condition of molting during wintering in long-distance migrants is maintained by the costs of overlapping breeding and molt.

  18. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts

    Treesearch

    A.S. Adams; C.R. Currie; Y. Cardoza; K.D. Klepzig; K.F. Raffa

    2009-01-01

    Bark beetles are associated with diverse assemblages of microorganisms, many of which affect their interactions with host plants and natural enemies. We tested how bacterial associates of three bark beetles with various types of host relationships affect growth and reproduction of their symbiotic fungi. Fungi were exposed to volatiles...

  19. Reproductive efficiency and shade avoidance plasticity under simulated competition.

    PubMed

    Fazlioglu, Fatih; Al-Namazi, Ali; Bonser, Stephen P

    2016-07-01

    Plant strategy and life-history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life-history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life-history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants.

  20. Models of knot and stem development in black spruce trees indicate a shift in allocation priority to branches when growth is limited

    PubMed Central

    Duchateau, Emmanuel; Auty, David; Mothe, Frédéric; Longuetaud, Fleur; Ung, Chhun Huor

    2015-01-01

    The branch autonomy principle, which states that the growth of individual branches can be predicted from their morphology and position in the forest canopy irrespective of the characteristics of the tree, has been used to simplify models of branch growth in trees. However, observed changes in allocation priority within trees towards branches growing in light-favoured conditions, referred to as ‘Milton’s Law of resource availability and allocation,’ have raised questions about the applicability of the branch autonomy principle. We present models linking knot ontogeny to the secondary growth of the main stem in black spruce (Picea mariana (Mill.) B.S.P.), which were used to assess the patterns of assimilate allocation over time, both within and between trees. Data describing the annual radial growth of 445 stem rings and the three-dimensional shape of 5,377 knots were extracted from optical scans and X-ray computed tomography images taken along the stems of 10 trees. Total knot to stem area increment ratios (KSR) were calculated for each year of growth, and statistical models were developed to describe the annual development of knot diameter and curvature as a function of stem radial increment, total tree height, stem diameter, and the position of knots along an annual growth unit. KSR varied as a function of tree age and of the height to diameter ratio of the stem, a variable indicative of the competitive status of the tree. Simulations of the development of an individual knot showed that an increase in the stem radial growth rate was associated with an increase in the initial growth of the knot, but also with a shorter lifespan. Our results provide support for ‘Milton’s Law,’ since they indicate that allocation priority is given to locations where the potential return is the highest. The developed models provided realistic simulations of knot morphology within trees, which could be integrated into a functional-structural model of tree growth and above

  1. Helminths infection patterns in a lizard (Tropidurus hispidus) population from a semiarid neotropical area: associations between female reproductive allocation and parasite loads.

    PubMed

    Galdino, Conrado A B; Ávila, Robson W; Bezerra, Castiele H; Passos, Daniel C; Melo, Gabriela C; Zanchi-Silva, Djan

    2014-12-01

    This study reports helminth infection patterns of the lizard Tropidurus hispidus from an area of semiarid caatinga in northeastern Brazil (Ceará state). The lizard population was parasitized by 8 helminth species, and the species composition of the component community resembles that found for other Neotropical lizards. The prevalence of parasites was higher for males compared with females, whereas no relation was found between intensity of infection of 2 parasites (Parapharyngodon alvarengai and Physaloptera lutzi) and the lizards body size. For reproductive females, parasite infection intensity was negatively correlated to reproductive investment.

  2. Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet

    PubMed Central

    Hoskins, Jessica L.; Janion-Scheepers, Charlene; Chown, Steven L.; Duffy, Grant A.

    2015-01-01

    Although significant progress has been made using insect taxa as model organisms, non-tracheated terrestrial arthropods, such as Collembola, are underrepresented as model species. This underrepresentation reflects the difficulty in maintaining populations of specialist Collembola species in the laboratory. Until now, no species from the family Neanuridae have been successfully reared. Here we use controlled growth experiments to provide explicit evidence that the species Neanura muscorum can be raised under laboratory conditions when its diet is supplemented with slime mould. Significant gains in growth were observed in Collembola given slime mould rather than a standard diet of algae-covered bark. These benefits are further highlighted by the reproductive success of the experimental group and persistence of laboratory breeding stocks of this species and others in the family. The necessity for slime mould in the diet is attributed to the ‘suctorial’ mouthpart morphology characteristic of the Neanuridae. Maintaining laboratory populations of neanurid Collembola species will facilitate their use as model organisms, paving the way for studies that will broaden the current understanding of the environmental physiology of arthropods. PMID:26153104

  3. Effects of boron and selenium on mallard reproduction and duckling growth and survival

    USGS Publications Warehouse

    Stanley, T.R.; Smith, G.J.; Hoffman, D.J.; Heinz, G.H.; Rosscoe, R.

    1996-01-01

    Boron (B) and selenium (Se) sometimes occur together in high concentrations in the environment and can accumulate in plants and invertebrates consumed by waterfowl. One hundred twenty-six pairs of breeding mallards (Anas platyrhynchos) were fed diets supplemented with B (as boric acid) at 0, 450, or 900 ppm, in combination with Se (as seleno-DL-methionine) at 0, 3.5, or 7 ppm, in a replicated factorial experiment. Ducklings produced received the same treatment combination as their parents. Boron and Se accumulated in adult liver, egg, and duckling liver. In adults, B and Se caused weight loss, and B decreased hemoglobin concentration, egg weight, and egg fertility. Both B and Se reduced hatching success and duckling weight, and B reduced duckling growth and duckling production, and caused several alterations in duckling liver biochemistry. Duckling survival was not reduced by B or Se, and neither B nor Se had histopathologic effects on adult or duckling liver, kidney, or spleen. There was little evidence of interaction between B and Se. This study demonstrated that B and Se, in the chemical forms and at the dietary levels administered in this study, can adversely affect mallard reproduction and duckling growth.

  4. Growth, reproductive biology and life cycle of the vermicomposting earthworm, Perionyx ceylanensis Mich. (Oligochaeta: Megascolecidae).

    PubMed

    Karmegam, Natchimuthu; Daniel, Thilagavathy

    2009-10-01

    In the present study, an attempt has been made to study the growth, reproduction and life cycle of the earthworm, Perionyx ceylanensis Mich. in cowdung for the period of 340 days. Results showed that the overall mean growth rate was 1.79, 1.57 and 1.34 mg/worm/day respectively for the worms cultured singly, in batches of four and eight. Cocoon production rate was found between 0.85 and 0.94 cocoons/worm/day and the hatching success between 74.67% and 82.67%. The majority of the cocoons (95.16-96.77%) hatched only one hatchling. Worms raised singly also produced viable cocoons indicating that P. ceylanensis reproduce parthenogenetically. The life cycle of the worms cultured singly was +/-57 days and it was +/-50 days for the worms cultured in batches of four and eight. There is a vast scope to utilize P. ceylanensis for vermiculture practices due to short period of life cycle.

  5. Growth and reproductive performance of sambar deer in Sabal Forest Reserve of Sarawak, Malaysia.

    PubMed

    Dahlan, Ismail; Dawend, Jiwan

    2013-10-01

    We examined the growth, reproduction, rutting behavior, and health status of sambar deer (Cervus unicolor brookei) in secondary Acacia mangium plantation. The data were collected over 11 years from a breeding herd of 21 stags and 33 hinds in Sabal Forest Reserve, Sarawak, Malaysia. Brody's growth model of the pooled data is Y t  = 148.56 (1 - 0.98e(-0.023t)), which estimates that maximum weights of adults are 184 and 115 kg for males and females respectively. Sambar deer are nonseasonal breeders with the breeding peak in February. Although the earliest age at which a female reached sexual maturity was 11 months, the mean age was 23 ± 7 months. Mean age of first fawning was 32 ± 8 months. Mean gestation period was 259 ± 12 days (n = 82). Stags shed antlers mostly between March and July. Velvet hardens at 103 ± 27 days (n = 23), and velvet harvesting is best at 7-9 weeks when antler length is 25-30 cm. Sambar deer are suitable as a farm species in forest plantations and have a vast potential to uplift rural living standards.

  6. Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet.

    PubMed

    Hoskins, Jessica L; Janion-Scheepers, Charlene; Chown, Steven L; Duffy, Grant A

    2015-07-08

    Although significant progress has been made using insect taxa as model organisms, non-tracheated terrestrial arthropods, such as Collembola, are underrepresented as model species. This underrepresentation reflects the difficulty in maintaining populations of specialist Collembola species in the laboratory. Until now, no species from the family Neanuridae have been successfully reared. Here we use controlled growth experiments to provide explicit evidence that the species Neanura muscorum can be raised under laboratory conditions when its diet is supplemented with slime mould. Significant gains in growth were observed in Collembola given slime mould rather than a standard diet of algae-covered bark. These benefits are further highlighted by the reproductive success of the experimental group and persistence of laboratory breeding stocks of this species and others in the family. The necessity for slime mould in the diet is attributed to the 'suctorial' mouthpart morphology characteristic of the Neanuridae. Maintaining laboratory populations of neanurid Collembola species will facilitate their use as model organisms, paving the way for studies that will broaden the current understanding of the environmental physiology of arthropods.

  7. Growth and reproduction of laboratory-reared neanurid Collembola using a novel slime mould diet

    NASA Astrophysics Data System (ADS)

    Hoskins, Jessica L.; Janion-Scheepers, Charlene; Chown, Steven L.; Duffy, Grant A.

    2015-07-01

    Although significant progress has been made using insect taxa as model organisms, non-tracheated terrestrial arthropods, such as Collembola, are underrepresented as model species. This underrepresentation reflects the difficulty in maintaining populations of specialist Collembola species in the laboratory. Until now, no species from the family Neanuridae have been successfully reared. Here we use controlled growth experiments to provide explicit evidence that the species Neanura muscorum can be raised under laboratory conditions when its diet is supplemented with slime mould. Significant gains in growth were observed in Collembola given slime mould rather than a standard diet of algae-covered bark. These benefits are further highlighted by the reproductive success of the experimental group and persistence of laboratory breeding stocks of this species and others in the family. The necessity for slime mould in the diet is attributed to the ‘suctorial’ mouthpart morphology characteristic of the Neanuridae. Maintaining laboratory populations of neanurid Collembola species will facilitate their use as model organisms, paving the way for studies that will broaden the current understanding of the environmental physiology of arthropods.

  8. Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana.

    PubMed

    Lozano-Sotomayor, Paulina; Chávez Montes, Ricardo A; Silvestre-Vañó, Marina; Herrera-Ubaldo, Humberto; Greco, Raffaella; Pablo-Villa, Jeanneth; Galliani, Bianca M; Diaz-Ramirez, David; Weemen, Mieke; Boutilier, Kim; Pereira, Andy; Colombo, Lucia; Madueño, Francisco; Marsch-Martínez, Nayelli; de Folter, Stefan

    2016-11-01

    Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM expression affects meristematic tissues and reproductive organ development, including the gynoecium, which is the female reproductive structure and is determinant for fertility and sexual reproduction. A microarray analysis indicates that DKM overexpression affects the expression of cell cycle, cell wall, organ initiation, cell elongation, hormone homeostasis, and meristem activity genes. Furthermore, DKM can interact in yeast and in planta with proteins involved in shoot apical meristem maintenance such as WUSCHEL, KNAT1/BP, KNAT2 and JAIBA, and with proteins involved in medial tissue development in the gynoecium such as HECATE, BELL1 and NGATHA1. Taken together, our results highlight the relevance of DKM as a negative modulator of Arabidopsis growth and reproductive development.

  9. Impacts of an endoparasitic copepod, Ismaila belciki, on the reproduction, growth and survivorship of its nudibranch host, Janolus fuscus.

    PubMed

    Wolf, Maya; Young, Craig M

    2014-05-01

    Copepods from the genus Ismaila are large endoparasites that inhabit the main body cavity and/or cerata of opisthobranch molluscs. These parasites exhibit many life history characteristics typically found in parasitic castrators, yet the actual impact of infection on reproduction, growth or survivorship of the hosts are unknown. On the Oregon (USA) coast, Ismaila belciki can infect over 80% of their hermaphroditic hosts, Janolus fuscus. In laboratory mating experiments, we compared the reproductive output (egg mass weight, number of egg capsules, number of viable embryos) and the gonadal somatic index of infected versus uninfected J. fuscus. Infected J. fuscus could produce viable sperm and copulate. Mating with an infected individual did not limit a sea slug's reproductive output. However, infected J. fuscus had significantly lower reproductive output (by 34-54%), producing smaller egg masses with fewer capsules and viable embryos. Infected hosts had significantly lower gonadal somatic index than their uninfected counterparts, although there was no significant difference in gonadal somatic index between hosts with single and double infections. By collecting the egg sacs produced by the copepod parasite during experiments, we estimated that 25-34% of the host's reproductive output is usurped by the parasite and re-directed to the parasite's own reproduction. In the laboratory, infection did not alter growth in J. fuscus. However, infection significantly decreased survivorship in mature (but not immature) nudibranch hosts. These results suggest that I. belciki is not a true castrator, but it does reduce the reproductive output of its host and may therefore limit the natural population size of J. fuscus. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  10. Effect on growth and reproduction of hormone immersed and masculinized fighting fish Betta splendens.

    PubMed

    Kirankumar, Santhakumar; Pandian, Thavamani Jegajothivel

    2002-11-01

    To produce all-male progenies in the fighting fish, Betta splendens, six groups of fry were subjected to discrete immersion treatment at different 17alpha-methyltestosterone (MT) doses (viz. 100, 200, 500, 700, 900, and 1,000 microg/l) for a constant duration (3 hr/day) and frequency (second, fifth, and eighth day after hatching). The treatment at 900 microg/l led to 98% masculinization and 71% survival at sexual maturity. Treated groups, which showed significant deviation from the 1:1 sex ratio, were classified into two different series: S1 and S2. The groups that showed nearly cent-percent masculinization were classified as S1, and the other groups were classified as S2. The S1 males showed remarkably slower growth and attained 3.5 cm total length compared to 6.0 cm attained by a normal male. The S2 males attained 5.4 cm total length. Apart from these morphological defects, both S1 and S2 males suffered functional (decreased sperm count and sperm motility) and behavioral defects (incomplete embracing during mating) in their reproductive ability, leading to approximately 50% and 30% reduction in fecundity per mating, respectively. The cumulative fecundity loss suffered by the S1 male during its active reproductive phase is discussed. When normal and sex-reversed males were presented, a female preferred the former. Progeny testing of the sex-reversed males showed the occurrence of 12.75% males, indicating the possible role of autosomal genes in the sex determination mechanism of this species. Discrete immersion treatment at optimal/super-optimal doses ensured not only a higher percentage of masculinization, but also a higher frequency of homogametic males (XX). Copyright 2002 Wiley-Liss, Inc.

  11. Fibroblast growth factor signaling deficiencies impact female reproduction and kisspeptin neurons in mice.

    PubMed

    Tata, Brooke K; Chung, Wilson C J; Brooks, Leah R; Kavanaugh, Scott I; Tsai, Pei-San

    2012-04-01

    Fibroblast growth factor (FGF) signaling is essential for the development of the gonadotropin-releasing hormone (GnRH) system. Mice harboring deficiencies in Fgf8 or Fgf receptor 1 (Fgfr1) suffer a significant loss of GnRH neurons, but their reproductive phenotypes have not been examined. This study examined if female mice hypomorphic for Fgf8, Fgfr1, or both (compound hypomorphs) exhibited altered parameters of pubertal onset, estrous cyclicity, and fertility. Further, we examined the number of kisspeptin (KP)-immunoreactive (ir) neurons in the anteroventral periventricular/periventricular nuclei (AVPV/PeV) of these mice to assess if changes in the KP system, which stimulates the GnRH system, could contribute to the reproductive phenotypes. Single hypomorphs (Fgfr1(+/-) or Fgf8(+/-)) had normal timing for vaginal opening (VO) but delayed first estrus. However, after achieving the first estrus, they underwent normal expression of estrous cycles. In contrast, the compound hypomorphs underwent early VO and normal first estrus, but had disorganized estrous cycles that subsequently reduced their fertility. KP immunohistochemistry on Postnatal Day 15, 30, and 60 transgenic female mice revealed that female compound hypomorphs had significantly more KP-ir neurons in the AVPV/PeV compared to their wild-type littermates, suggesting increased KP-ir neurons may drive early VO but could not maintain the cyclic changes in GnRH neuronal activity required for female fertility. Overall, these data suggest that Fgf signaling deficiencies differentially alter the parameters of female pubertal onset and cyclicity. Further, these deficiencies led to changes in the AVPV/PeV KP-ir neurons that may have contributed to the accelerated VO in the compound hypomorphs.

  12. Chemical dispersant potentiates crude oil impacts on growth, reproduction, and gene expression in Caenorhabditis elegans.

    PubMed

    Zhang, Yanqiong; Chen, Dongliang; Ennis, Adrien C; Polli, Joseph R; Xiao, Peng; Zhang, Baohong; Stellwag, Edmund J; Overton, Anthony; Pan, Xiaoping

    2013-02-01

    The economic, environmental, and human health impacts of the deepwater horizon (DWH) oil spill have been of significant concern in the general public and among scientists. This study employs parallel experiments to test the effects of crude oil from the DWH oil well, chemical dispersant Corexit 9500A, and dispersant-oil mixture on growth and reproduction in the model organism Caenorhabditis elegans. Both the crude oil and the dispersant significantly inhibited the reproduction of C. elegans. Dose-dependent inhibitions of hatched larvae production were observed in worms exposed to both crude oil and dispersant. Importantly, the chemical dispersant Corexit 9500A potentiated crude oil effects; dispersant-oil mixture induced more significant effects than oil or dispersant-alone exposures. While oil-alone exposure and dispersant-alone exposure have none to moderate inhibitory effects on hatched larvae production, respectively, the mixture of dispersant and oil induced much more significant inhibition of offspring production. The production of hatched larvae was almost completely inhibited by several high concentrations of the dispersant-oil mixture. This suggests a sensitive bioassay for future investigation of oil/dispersant impacts on organisms. We also investigated the effects of crude oil/dispersant exposure at the molecular level by measuring the expressions of 31 functional genes. Results showed that the dispersant and the dispersant-oil mixture induced aberrant expressions of 12 protein-coding genes (cat-4, trxr-2, sdhb-1, lev-8, lin-39, unc-115, prdx-3, sod-1, acr-16, ric-3, unc-68, and acr-8). These 12 genes are associated with a variety of biological processes, including egg-laying, oxidative stress, muscle contraction, and neurological functions. In summary, the toxicity potentiating effect of chemical dispersant must be taken into consideration in future crude oil cleanup applications.

  13. CO(2) enrichment reduces reproductive dominance in competing stands of Ambrosia artemisiifolia (common ragweed).

    PubMed

    Stinson, K A; Bazzaz, F A

    2006-02-01

    Plants growing in dense stands may not equally acquire or utilize extra carbon gained in elevated CO(2). As a result, reproductive differences between dominant and subordinate plants may be altered under rising CO(2) conditions. We hypothesized that elevated CO(2) would enhance the reproductive allocation of shaded, subordinate Ambrosia artemisiifolia L. (Asteraceae) individuals more than that of light-saturated dominants. We grew stands of A. artemisiifolia at either 360 or 720 muL L(-1) CO(2) levels and measured the growth and reproductive responses of competing individuals. To test whether elevated CO(2) altered size and reproductive inequalities within stands, we compared stand-level coefficients of variation (CV) in height growth and final shoot, root, and reproductive organ biomasses. Elevated CO(2) enhanced biomass and reduced the CV for all aspects of plant growth, especially reproductive biomass. Allocation to reproduction was higher in the elevated CO(2) than in the ambient treatment, and this difference was more pronounced in small, rather than large plant positive relationships between the CV and total stand productivity declined under elevated CO(2), indicating that growth enhancements to smaller plants diminished the relative biomass advantages of larger plants in increasingly crowded conditions. We conclude that elevated CO(2) stimulates stand-level reproduction while CO(2)-induced growth gains of subordinate A. artemisiifolia plants minimize differences in the reproductive output of small and large plants. Thus, more individuals are likely to produce greater amounts of seeds and pollen in future populations of this allergenic weed.

  14. Individual optimization efforts and population dynamics: a mathematical model for the evolution of resource allocation strategies, with applications to reproductive and mating systems.

    PubMed

    Jost, Jürgen; Pepper, John

    2008-03-01

    We develop a formal framework for the optimal allocation of limited resources that includes and clarifies the interplay between individual optimization and the resulting effects at the population level. As an example, in regard to the evolution of sexual recombination, the paradox of the twofold cost of sex is avoided by distinguishing between the evolution of recombination and the subsequent emergence and stability of different mating types as a result of individual optimization within a population that benefits from recombination.

  15. Whole-plant C allocation priorities: do secondary metabolites and VOCs matter?

    NASA Astrophysics Data System (ADS)

    Hartmann, Henrik; Huang, Jianbei; Forkelova, Lenka; Behrendt, Thomas; Reichelt, Michael; Hammerbacher, Almuth

    2017-04-01

    Whole-plant carbon (C) allocation is a critical issue for understanding plant functioning and has been studied for many decades. Plants fix CO2 from the atmosphere and partition the resulting photosynthetic products (carbohydrates) among several functional pools including growth of structural and reproductive biomass, metabolic processes like respiration but also for the synthesis of secondary metabolites promoting defense and communication. Allocation to secondary metabolites is conceptually viewed as a trade-off between growth and defense. Plants either invest carbohydrates to produce biomass which may be lost - at least partially -to herbivory or they increase allocation to secondary metabolites to deter herbivores from consuming existing biomass. While conceptually intuitive, trade-off hypotheses all suffer from one important shortcoming: the whole-plant carbon balance, critical for determining trade-off relationships, is usually unknown. In the research group on Plant Allocation, we manipulate and measure the whole-plant carbon balance in different species and use tracers to investigate carbon fluxes through the plant and into functional allocation pools. Inducing carbon limitation by reducing atmospheric [CO2] allows us to infer allocation priorities. In this presentation I will show several examples of studies on whole-plant carbon allocation patterns in different plant species. These investigations include assessments of different functional pools like growth, storage, secondary metabolites and volatile emissions as well as the underlying phytohormonal patterns and show that allocation to secondary metabolites and volatiles has a high priority in the whole-plant carbon balance.

  16. Plant growth with new fluorescent lamps : II. Growth and reproduction of mature bean plants and dwarf marigold plants.

    PubMed

    Thomas, A S; Dunn, S

    1966-06-01

    Bean and marigold plants were grown to maturity under several kinds of fluorescent lamps to evaluate the effects of spectral differences on development and reproduction. Six kinds of lamps were tested including five lamps that were used in closely related experiments on tomato seedling growth (THOMAS and DUNN, 1967). Evaluation was by fresh- and dry-weight yields of immature and mature pods, and of vegetative tops of plants for bean; and by flowering and fresh-and dry-weight yields for marigold.Bean plants grown under two experimental lamps, Com I and IR III produced significantly higher fresh- and dry-weight yields of both mature and total pods than under Warm-white lamps. This effect could be attributed largely to the considerable energy emitted by the experimental lamps in the red and far-red, as compared to a larger emission in the green and blue for the Warm-white lamps. The differences in the yields for immature pods and vegetative portions of the mature tops were not significant.In a comparison of the effects of three experimental lamps with those of three commercial lamps on growth response of bean plants, the yields were in general higher for the experimental lamps, except for immature pods. The yields of vegetative tops were significantly greater for the 78/22 lamp over the yields for all other lamps. The larger proportion of red and far-red light emitted by the experimental lamps is again the probable cause of the higher yields with these lamps.Two sets of experiments on growth and flowering of marigold under various experimental and commercial lamps were largely inconclusive although there was some indication of beneficial effects by the experimental lamps.In general, the results with bean agree with those for tomato (THOMAS and DUNN, 1967), in that best growth was obtained with a lamp high in red light emission, a moderate amount in the far-red, and very little in the blue part of the spectrum.

  17. Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival

    USGS Publications Warehouse

    Stanley, T.R.; Spann, J.W.; Smith, G.J.; Rosscoe, R.

    1994-01-01

    Arsenic (As) and selenium (Se) occur together in high concentrations in the environment and can accumulate in aquatic plants and invertebrates consumed by waterfowl. Ninety-nine pairs of breeding mallards (Anas platyrhynchos) were fed diets supplemented with As (sodium arsenate) at 0, 25, 100, or 400 ug/g, in combination with Se (seleno-DL-methionine) at 0 or 10 ug/g, in a replicated factorial experiment. Ducklings produced were placed on the same treatment combination as their parents. Arsenic accumulated in adult liver and egg, reduced adult weight gain and liver weight, delayed the onset of egg laying, decreased whole egg weight, and caused eggshell thinning. Arsenic did not affect hatching success and was not teratogenic. In ducklings, As accumulated in the liver and reduced body weight, growth, and liver weight. Arsenic did not increase duckling mortality, but it did decrease overall duckling production. Selenium accumulated in adult liver and egg, was teratogenic, and decreased hatching success. Selenium did not affect adult weight, liver weight, survival, onset of egg laying, egg fertility, egg weight, or eggshell thickness. In ducklings, Se accumulated in the liver and reduced body weight and growth, and increased liver weight. Selenium increased duckling mortality and decreased overall duckling production. Antagonistic interactions between As and Se occurred whereby As reduced Se accumulation in liver and egg, and alleviated the effects of Se on hatching success and embryo deformities. It was demonstrated that As and Se, in the chemical forms and at the dietary levels administered in this study, can adversely affect mallard reproduction and duckling growth and survival, and that As can alleviate toxic effects of Se.

  18. Age, growth and reproduction of Sarcocheilichthys nigripinnis from the Qingyi Stream in the Huangshan Mountains.

    PubMed

    Yan, Yunzhi; Xu, Yinsheng; Chu, Ling; He, Shan; Chen, Yifeng

    2012-06-01

    Identifying the life-history strategies of fish and their associations with the surrounding environment is the basic foundation in the conservation and sustainable utilization of fish species. We examined the age, growth, and reproduction of Sarcocheilichthys nigripinnis using 352 specimens collected monthly from May 2009 to April 2010 in the Qingyi Stream. We found the sex ratio of this study population was 0.58:1 (female: male), significantly different from expected 1:1. Females and males both comprised four age groups. The annuli on the scales were formed during February and March. No obvious between-sex difference was observed in length-weight and length-scale-radius relationships. The total length in back-calculation significantly increased with age for both sexes, but did not differ significantly at each age between the two sexes. An inflection point was observed in the growth curves given by the von Bertalanffy growth function for total weight. At this inflection point, fish were 3.95 years. Both sexes reach their 50% sex maturity at age 2, when females and males were 94.7 mm and 103.0 mm total length. The temporal pattern of the gonado-somatic index corresponded to a spawning period that occurred from April through July. The non-synchronicity of egg diameter in each mature ovary during the breeding period suggested these fish may be batch spawners. The absolute fecundity increased significantly with total length and weight, whereas no significant correlation was observed between the relative fecundity and body size.

  19. Estimation of the relationship between growth, consumption, and energy allocation in juvenile pacific cod (Gadus macrocephalus) as a function of temperature and ration

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Ashwin; Heintz, Ron

    2016-10-01

    Pacific cod (Gadus macrocephalus) are generalist predators in the Gulf of Alaska (GOA), and are an important predator on other commercially important species. Efficient management of this species can benefit by knowing how these fish adapt to changing environmental conditions, with a focus on how growth and condition are affected by changes in temperature and diet. We conducted a feeding study to understand the relationship between growth, ration, and temperature, and how these factors interact to affect energy allocation strategies. Since growth and condition of juveniles can determine recruitment into the population, this study focused on growth and consumption of age 1+Pacific cod held over 4 temperature treatments (4 °C, 8 °C, 12 °C, and 16 °C) and 3 ration levels (unlimited ration, medium ration, and low ration). We also compared cellular nucleic acid (RNA/DNA) ratios, an instantaneous growth index, total-body lipid, and proximate composition between fish. At 4 °C, 8 °C, and 12 °C, fish at medium and low rations had higher growth rates relative to fish at high rations. Higher food consumption appears to negatively affect digestive ability, assimilation efficiency, and nutrient utilization. RNA/DNA was clearly correlated with growth rates at 4 °C and 8 °C, but this relationship did not hold at higher temperatures. A secondary growth study was conducted to test the reliability of the growth/consumption models derived from the main growth study. Temperature influenced energy reserves (lipid) while tissue growth (protein) was influenced by ration level. Average lipid values were higher at 4 °C than at 8 °C or 12 °C, suggesting a predisposition to heightened lipid synthesis at colder temperatures. Longer durations of warmer water temperature in the GOA could consequently affect energy allocation strategies, with dietary changes in the field potentially amplifying this effect in cold and warm years. This energy allocation strategy could be detrimental

  20. Effects of food availability on growth and reproduction of the deep-sea pedunculate barnacle Heteralepas canci

    NASA Astrophysics Data System (ADS)

    Yasuda, Natsumi; Miyamoto, Norio; Fujiwara, Yoshihiro; Yamamoto, Tomoko; Yusa, Yoichi

    2016-02-01

    Sessile animals living on continental shelves or slopes may adjust their growth and reproduction according to temporally and spatially variable food availability, but little information is available on these animals to date. We collected the pedunculate barnacle Heteralepas canci on a continental slope at a depth of 229 m off Cape Nomamisaki in southern Japan. We developed a rearing method for the barnacles and studied their growth and reproduction at different food levels in the laboratory. A total of 136 individual H. canci were fed with Artemia salina larvae and brewer's yeast at three different food levels for 100 days. Both the growth and the ovary development were delayed when food availability was low, whereas the survival rate was lower at the high food level. In addition, an individual survived under complete starvation for 167 days. We concluded that H. canci has plastic life history traits that are adaptive for variable food availability.

  1. Influence of atmospheric [CO2] on growth, carbon allocation and cost of plant tissues on leaf nitrogen concentration maintenance in nodulated Medicago sativa

    NASA Astrophysics Data System (ADS)

    Pereyra, Gabriela; Hartmann, Henrik; Ziegler, Waldemar; Michalzik, Beate; Gonzalez-Meler, Miquel; Trumbore, Susan

    2015-04-01

    Plant carbon (C) allocation and plant metabolic processes (i.e. photosynthesis and respiration) can be affected by changes in C availability, for example from changing atmospheric [CO2]. In nodulated plants, C availability may also influence nitrogen (N) fixation by bacteriods. But C allocation and N fixation are often studied independently and hence do not allow elucidating interactive effects. We investigated how different atmospheric [CO2] (Pleistocene: 170 ppm, ambient: 400 ppm and projected future: 700 ppm) influence plant growth, allocation to nodules, and the ratio of photosynthesis-to-respiration (R:A) as an indicator of C cost in Medicago sativa inoculated with Ensifer meliloti. M. sativa grew c. 38% more nodules at 400 ppm and 700 ppm than at 170 ppm. However, ratios of above- and belowground plant biomass to nodule biomass were constant over time and independent of atmospheric [CO2]. Total non-structural carbohydrate concentrations were not significantly different between plants grown at 400 and 700 ppm, but were four to five-fold higher than in 170 ppm plants. Leaf level N concentration was similar across treatments, but N-based photosynthetic rates were 82% and 93% higher in leaves of plants grown at 400 and 700 ppm, respectively, than plants grown at 170 ppm. In addition, leaf R:A was greater (48% or 55%) in plants grown at 170 ppm than plants grown at 400 and 700 ppm. Similarly, the greatest proportion of assimilated CO2 released by root respiration occurred in rhizobial plants growing at 170 ppm. Our results suggest that C limitation in nodulated Medicago sativa plants did not influence C allocation to nodule biomass but caused a proportionally greater allocation of C to belowground respiration, most likely to bacteriods. This suggests that N tissue concentration was maintained at low [CO2] by revving up bacteriod metabolism and at the expense of non-structural carbohydrate reserves.

  2. Reproduction-Immunity Trade-Offs in Insects.

    PubMed

    Schwenke, Robin A; Lazzaro, Brian P; Wolfner, Mariana F

    2016-01-01

    Immune defense and reproduction are physiologically and energetically demanding processes and have been observed to trade off in a diversity of female insects. Increased reproductive effort results in reduced immunity, and reciprocally, infection and activation of the immune system reduce reproductive output. This trade-off can manifest at the physiological level (within an individual) and at the evolutionary level (genetic distinction among individuals in a population). The resource allocation model posits that the trade-off arises because of competition for one or more limiting resources, and we hypothesize that pleiotropic signaling mechanisms regulate allocation of that resource between reproductive and immune processes. We examine the role of juvenile hormone, 20-hydroxyecdysone, and insulin/insulin-like growth factor-like signaling in regulating both oogenesis and immune system activity, and propose a signaling network that may mechanistically regulate the trade-off. Finally, we discuss implications of the trade-off in an ecological and evolutionary context.

  3. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions.

    PubMed

    Almaghrabi, Omar A; Massoud, Samia I; Abdelmoneim, Tamer S

    2013-01-01

    Numerous species of soil bacteria which flourish in the rhizosphere of plants or around plant tissues stimulate plant growth and reduce nematode population by antagonistic behavior. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The effects of six isolates of PGPR Pseudomonas putida, Pseudomonas fluorescens, Serratia marcescens, Bacillus amyloliquefaciens, Bacillus subtilis and Bacillus cereus, were studied on tomato plant growth and root knot nematode reproduction after 45 days from nematode infection. The highest number of shoot dry weight/g (43.00 g) was detected in the plant treated with S. marcescens; then P. putida (34.33 g), B. amyloliquefaciens (31.66 g), P. fluorescens (30.0 g), B. subtilis (29.0 g), B. cereus (27.0 g) and nematode alone (untreated) 20 g/plant. While the highest number of plant height was observed when plant was treated with S. marcescens, P. fluorescens, P. putida, B. amyloliquefaciens and P. putida 52.66, 50.66, 48 and 48 cm respectively. No significant differences were seen between previous treatments but only had significant differences compared with untreated plant. The highest number of fruit/plant was observed when plants were treated with S. marcescens (10.66), then B. amyloliquefaciens (8.66), P. putida (8), P. fluorescens (8) and B. cereus (7.66). No significant differences between the last 4 treatments, but all had significant differences compared with untreated plants. The highest weight of plant yield (g) was observed with S. marcescens (319.6 g/plant) and the lowest weight of plant yield was observed in plants treated with nematode alone (untreated). On the other hand, the lowest numbers of J2/10 g of soil (78), galls/root, (24.33) galls/root, egg masses/root (12.66) and egg/egg masses were observed in the plants treated with S. marcescens.

  4. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions

    PubMed Central

    Almaghrabi, Omar A.; Massoud, Samia I.; Abdelmoneim, Tamer S.

    2012-01-01

    Numerous species of soil bacteria which flourish in the rhizosphere of plants or around plant tissues stimulate plant growth and reduce nematode population by antagonistic behavior. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The effects of six isolates of PGPR Pseudomonas putida, Pseudomonas fluorescens, Serratia marcescens, Bacillus amyloliquefaciens, Bacillus subtilis and Bacillus cereus, were studied on tomato plant growth and root knot nematode reproduction after 45 days from nematode infection. The highest number of shoot dry weight/g (43.00 g) was detected in the plant treated with S. marcescens; then P. putida (34.33 g), B. amyloliquefaciens (31.66 g), P. fluorescens (30.0 g), B. subtilis (29.0 g), B. cereus (27.0 g) and nematode alone (untreated) 20 g/plant. While the highest number of plant height was observed when plant was treated with S. marcescens, P. fluorescens, P. putida, B. amyloliquefaciens and P. putida 52.66, 50.66, 48 and 48 cm respectively. No significant differences were seen between previous treatments but only had significant differences compared with untreated plant. The highest number of fruit/plant was observed when plants were treated with S. marcescens (10.66), then B. amyloliquefaciens (8.66), P. putida (8), P. fluorescens (8) and B. cereus (7.66). No significant differences between the last 4 treatments, but all had significant differences compared with untreated plants. The highest weight of plant yield (g) was observed with S. marcescens (319.6 g/plant) and the lowest weight of plant yield was observed in plants treated with nematode alone (untreated). On the other hand, the lowest numbers of J2/10 g of soil (78), galls/root, (24.33) galls/root, egg masses/root (12.66) and egg/egg masses were observed in the plants treated with S. marcescens. PMID:23961220

  5. Effects of space allocation within a deep bedded finishing system on swine growth performance, fatty acid composition and pork quality

    USDA-ARS?s Scientific Manuscript database

    The objectives of the current study were to determine the degree to which space allocation in a deep-bedded system influences swine performance and pork quality. The deep-bedded method employed was hoop structures which are large, tent-like shelters with cornstalks or straw for bedding. One hundred ...

  6. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis

    SciTech Connect

    Tartaglio, Virginia; Rennie, Emilie A.; Cahoon, Rebecca; Wang, George; Baidoo, Edward; Mortimer, Jennifer C.; Cahoon, Edgar B.; Scheller, Henrik V.

    2016-09-19

    Sphingolipids are a major component of plant plasma membranes and endomembranes, and mediate a diverse range of biological processes. Study of the highly glycosylated glycosyl inositol phosphorylceramide (GIPC) sphingolipids has been slow as a result of challenges associated with the extractability of GIPCs, and their functions in the plant remain poorly characterized. We recently discovered an Arabidopsis GIPC glucuronosyltransferase, INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE 1 (IPUT1), which is the first enzyme in the GIPC glycosylation pathway. Plants homozygous for the iput1 loss-of-function mutation were unobtainable, and so the developmental effects of reduced GIPC glucuronosylation could not be analyzed in planta. Using a pollen-specific rescue construct, we have here isolated homozygous iput1 mutants. The iput1 mutants show severe dwarfism, compromised pollen tube guidance, and constitutive activation of salicyclic acid-mediated defense pathways. The mutants also possess reduced GIPCs, increased ceramides, and an increased incorporation of short-chain fatty acids and dihydroxylated bases into inositol phosphorylceramides and GIPCs. The assignment of a direct role for GIPC glycan head groups in the impaired processes in iput1 mutants is complicated by the vast compensatory changes in the sphingolipidome; however, our results reveal that the glycosylation steps of GIPC biosynthesis are important regulated components of sphingolipid metabolism. In conclusion, this study corroborates previously suggested roles for GIPC glycans in plant growth and defense, suggests important role s for them in reproduction and demonstrates that the entire sphingolipidome is sensitive to their status.

  7. A Plastic Vegetative Growth Threshold Governs Reproductive Capacity in Aspergillus nidulans.

    PubMed

    Noble, Luke M; Holland, Linda M; McLauchlan, Alisha J; Andrianopoulos, Alex

    2016-11-01

    Ontogenetic phases separating growth from reproduction are a common feature of cellular life. Long recognized for flowering plants and animals, early literature suggests this life-history component may also be prevalent among multicellular fungi. We establish the basis of developmental competence-the capacity to respond to induction of asexual development-in the filamentous saprotroph Aspergillus nidulans, describing environmental influences, including genotype-by-environment interactions among precocious mutants, gene expression associated with wild type and precocious competence acquisition, and the genetics of competence timing. Environmental effects are consistent with a threshold driven by metabolic rate and organism density, with pH playing a particularly strong role in determining competence timing. Gene expression diverges significantly over the competence window, despite a lack of overt morphological change, with differentiation in key metabolic, signaling, and cell trafficking processes. We identify five genes for which mutant alleles advance competence timing, including the conserved GTPase RasB (AN5832) and ambient pH sensor PalH (AN6886). In all cases examined, inheritance of competence timing is complex and non-Mendelian, with F1 progeny showing highly variable transgressive timing and dominant parental effects with a weak contribution from progeny genotype. Competence provides a new model for nutrient-limited life-cycle phases, and their elaboration from unicellular origins. Further work is required to establish the hormonal and bioenergetic basis of the trait across fungi, and underlying mechanisms of variable inheritance.

  8. [Effects of population density and culture volume on the growth and reproduction of Moina irrasa].

    PubMed

    Chen, Li-Na; Li, Yu-Ying; Deng, Dao-Gui; Jin, Xian-Wen; Ge, Qian; Wang, Shao-Qin

    2012-07-01

    A laboratory experiment was conducted to study the effects of different population density (D1 : 100 ind x L(-1), D2 : 150 ind x L(-1), D3 : 300 ind x L(-1)) and culture volume (V1: 50 mL, V2 : 100 mL, V3 : 400 mL) on the growth and reproduction of Moina irrasa at 25 degrees C. At the same culture density, the body length of the M. irrasa females at their first pregnancy, the first brood, and the total offsprings per female decreased with the increase of culture volumes, while the sex ratio (male/female) of the offsprings was in adverse. At the same culture volumes, the total offsprings per female decreased with the increase of culture density. At D1 V1, the body length of the females at their first pregnancy (0.95 +/- 0.10 mm) and the total offsprings (171.3 +/- 19.8 ind) per female were the maximum. At D3V2, the sex ratio was the maximum (0.54 +/- 0.05). Culture density, culture volume, and their interactions significantly affected the total offsprings per female and the sex ratio (P < 0.001).

  9. Experimental reproduction of poult enteritis syndrome: clinical findings, growth response, and microbiology.

    PubMed

    Jindal, N; Patnayak, D P; Ziegler, A F; Lago, A; Goyal, S M

    2009-05-01

    Poult enteritis syndrome (PES) is an infectious disease of turkey poults characterized by diarrhea, dullness, and depression. Five experiments were conducted to reproduce the disease in turkey poults using intestinal contents of PES-affected birds. In all experiments, poults at 14 d of age were divided into 4 groups and were orally given 2 mL of unfiltered supernatant, filtered supernatant, sediment dissolved in PBS, or PBS alone. Inocula in experiments 1, 3, and 5 consisted of intestinal contents from PES-affected birds of less than 2 wk of age, whereas those in experiments 2 and 4 consisted of intestinal contents from PES-affected birds of 4 to 6 wk of age. Poults in all groups were observed daily for clinical signs. The BW and microbiological criteria in experiments 1, 3, and 5 were evaluated at 5, 10, and 15 d postinoculation, whereas in experiments 2 and 4, these observations were made at 10 and 20 d postinoculation. Rotavirus, astrovirus, and Salmonella were present in all 5 inocula. Diarrhea and depression were the major signs in poults given PES material. Significant retardation of growth was observed in poults given any of the 3 PES materials, but this effect was more pronounced in poults given the sediment inoculum. Rotavirus, astrovirus, and Salmonella were detected in poults given PES material. In some cases, enterovirus was also detected. No major difference was noticed in experimental reproduction of PES when intestinal contents from different age birds were used as the inoculum.

  10. Preliminary data on growth and reproduction of Cobitis simplicispina from Turkey.

    PubMed

    Ekmekçi, Fitnat Güler; Erk'akan, Füsun

    2003-01-01

    Preliminary data on growth and reproduction parameters of Cobitis simplicispina from Darýözü Creek in the Kizilimak basin in Kirşehir-Turkey were presented. The age of the specimens collected during a period between March and June 2002, ranged from 1+ to 4+. The observed maximum total length of males is 91.8 mm, and 97 mm for females. The von Bertalanffy equation for male and female specimens was found to be Lt=93.01(1-exp(-0.408(t+0.821))) and Lt=94.42(1-exp(-0.488(t+0.458))), respectively. The length-weight relationship was expressed as log W= 3.009x SL -5.171 when all specimens were taken into account. The range of absolute fecundity extended from 320 to 2141 eggs and the diameter of ripe eggs varied between 1.00 and 1.25 mm. The gonadosomatic index suggested that spawning took place in April.

  11. Growth and reproductive biology of loaches Cobitis sp. in Lake Lucień, Poland.

    PubMed

    Kostrzewa, Joanna; Przybylski, Mirosław; Marszał, Lidia; Valladolid, Maria

    2003-01-01

    Five age-classes and their corresponding average body lengths of loaches from Lake Lucień were determined by the Bhattacharya method. The maximum observed length was 112 mm for females and 91 mm for males. The von Bertalanffy equation defining growth pattern was L(T) = 116 (1-exp (-0.401(t+0.02. Body length distribution of females and males differed significantly (chi2 = 91.295; df=9; P<0.00). Sex ratio showed the dominance of females in the studied population (M:F = 1:1.75; chi2 =18.00; P<0.01). Females were sexually mature at 56 mm TL and males at 52 mm TL. Female gonad weight increased with body size. The frequency distribution of egg diameters revealed 3 groups of oocytes. The average absolute fecundity was 2180 eggs and ranged from 418 to 6800 per gonad. The number of the largest oocytes (>0.6 mm in diameter) ranged from 208 to 975 (average 501) and was used to estimate fecundity at the moment of spawning. Both fecundity measures are related to body length of females their regression lines were parallel and did not differ in the coefficient of slope. The gonadosomatic index value, as an approximate measure of reproductive effort, was rather small (average IGS = 10.44 ranged from 5.12 to 17.88).

  12. Effect of temperature on growth and reproduction of the epigeic earthworm, Eudrilus Eugeniae (Kinberg).

    PubMed

    Shagoti, U M; Amoji, S D; Biradar, V A; Biradar, P M

    2001-07-01

    Influence of temperature on growth and reproduction of Eudrilus eugeniae has been investigated by laboratory culturing at regulated 25.0 degrees C, 30.0 degrees C, 37.5 degrees C and 40.0 degrees C and in fluctuating (22.7-27.3 degrees C) room temperature of prevailing (winter) season over 16 weeks. All worms died during first and tenth week at 40.0 degrees C and 37.5 degrees C respectively. Weight (biomass) and growth of worms cultured at different temperature varied significantly (P<0.01). The mean growth (mg/g live weight/day) at 25.0 degrees C., 30.0 degrees C, 35.0 degrees C, 37.5 degrees C and in fluctuating temperatures was 1,074.04 +/- 6.07, 1,554.01 degrees 192.37, 148.1 +/- 15.28, 192.83 +/- 25.8 and 1450.4 +/- 162.1 respectively. Growth declined after maturity drastically with coccon production. At 25.0 degrees C though worms are sexually mature, they failed to produce cocoons within 16 weeks whereas, at 35.0 degrees C and 37.5 degrees C they did not sexually mature. Worms attained sexual maturity at a mean weight of about 1000 mg/worm. The mean per cent maturity was higher and earlier in fluctuating temperatures and at 30.0 degrees C than at 25.0 degrees C. Cocoon production was observed only at 30.0 degrees C and in fluctuating temperatures with a mean of 0.9 and 1.5 cocoons/ wom/week and the cumulative cocoon number of 10.8 and 14.7/worm over 16th week respectively. The fluctuating temperature of uncontrolled room environment and 30.0 degrees C were favorable for various life activities of the worms. Eudrilus eugeniae appears to have range of temperature optima more than 25.0 degrees C and less than 28 degrees C. The climatic conditions prevailing in whole of the peninsular India during winter season are favourable for employing this worm in intensive field scale vermiculturing practices.

  13. Growth, mortality, and reproduction of Tagelus plebeius (Bivalvia: Solecurtidae) in Southeast Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Camila Fernanda; Corte, Guilherme Nascimento; Yokoyama, Leonardo Querobim; Abrahão, Jolnnye Rodrigues; Amaral, Antônia Cecília Zacagnini

    2015-03-01

    Tagelus plebeius (Lightfoot, 1786) is a stout razor clam that is economically exploited in several countries, including several local fisheries along the Brazilian coast. Despite its wide distribution and economic importance, there are few studies that have examined the population biology of this species. This study aimed to improve the current knowledge about the biology of T. plebeius by investigating its growth and mortality on a subtropical sandy beach in Southeast Brazil over a 1-year period. In addition, the reproduction of T. plebeius was analyzed through qualitative and quantitative histological analyses during the last 7 months of the study. The parameters of the von Bertalanffy growth function were estimated to be L ∞ = 74.14 mm, K = 0.52 year-1, C = 0.47, and WP = 0.94. The instantaneous mortality rate ( Z) was 2.16 year-1, and the life span was 2.58 years. We confirmed variations ( H = 651.35; P < 0.05) in the shell length over the months of the study, and the recruitment was higher—but still low—in summer. Four cohorts were observed in the distribution of shell length frequencies. The sex ratio of the population was 1:1 during the study period, and a synchronism in gonadal development and spawning was found between males and females. The high mortality ( Z) and low recruitment rates can be interpreted as reflecting that the population of T. plebeius is under a low restoration process and could be an indication that this species has an endangered status in the study area.

  14. The growth and reproduction performance of TALEN-mediated β-lactoglobulin-knockout bucks.

    PubMed

    Ge, Hengtao; Cui, Chenchen; Liu, Jun; Luo, Yan; Quan, Fusheng; Jin, Yaping; Zhang, Yong

    2016-10-01

    With the technological development of several engineered endonucleases (EENs), such as zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and CRISPR/Cas9, gene targeting by homologous recombination has been efficiently improved to generate site-specifically genetically modified livestock. However, few studies have been done to investigate the health and fertility of these animals. The purpose of the present study is to investigate if gene targeting events and a recloning procedure would affect the production traits of EEN-mediated gene targeted bucks. TALEN-mediated β-lactoglobulin (BLG) gene mono-allelic knockout (BLG (+/-)) goats and bi-allelic knockout (BLG (-/-)) buck produced by using sequential gene targeting combined with recloning in fibroblasts from BLG (+/-) buck were used to evaluate their health and fertility. Birth weight and postnatal growth of BLG (+/-) bucks were similar to the wild-type goats. None of the parameters for both fresh and frozen-thawed semen quality were significantly different in BLG (+/-) or BLG (-/-) bucks compared to their corresponding comparators. In vitro fertilization (IVF) test revealed that the proportion of IVF oocytes developing to the blastocyst stage was identical among BLG (+/-), BLG (-/-) and wild-type bucks. Conception rates of artificial insemination were respectively 42.3, 38.0 and 42.6 % for frozen-thawed semen from the BLG (+/-), BLG (-/-) and wild-type bucks. In addition, germline transmission of the targeted BLG modification was in accordance with Mendelian rules. These results demonstrated that the analyzed growth and reproductive traits were not impacted by targeting BLG gene and recloning, implicating the potential for dairy goat breeding of BLG (+/-) and BLG (-/-) bucks.

  15. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice

    NASA Astrophysics Data System (ADS)

    Weng, Fei; Zhang, Wujun; Wu, Xiaoran; Xu, Xia; Ding, Yanfeng; Li, Ganghua; Liu, Zhenghui; Wang, Shaohua

    2017-04-01

    The objectives of this study were to explore the mechanism by which the lodging resistance of the rice population during the late growth period responds to low-temperature, overcast and rainy weather during the reproductive growth stage. Field experiments were conducted using indica rice Yliangyou2 (lodging-resistance variety), IIyou084 (lodging-susceptible variety) and japonica rice Wuyunjing23 (lodging-resistance variety) and W3668 (lodging- susceptible variety) in 2013 (high temperature and strong radiation during the rice reproductive growth stage), 2012 and 2014 (low temperature and weak radiation during rice reproductive growth stage). The results showed that the length of the basal internodes and the height of the gravitational centres were greater in plants grown in 2014. Dry weight of basal culms, culm diameter, lignin content and total content of structural carbohydrates (lignin and cellulose) in basal internodes were reduced in these plants, causing a significant reduction in the bending stress and lodging resistance of the rice stems. Low-temperature, overcast and rainy weather had a greater effect on lodging resistance in indica rice compared with japonica rice. This was reflected in a greater reduction in the lignin content of the indica rice stems, which yielded a significantly lower breaking strength and bending stress.

  16. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice

    PubMed Central

    Weng, Fei; Zhang, Wujun; Wu, Xiaoran; Xu, Xia; Ding, Yanfeng; Li, Ganghua; Liu, Zhenghui; Wang, Shaohua

    2017-01-01

    The objectives of this study were to explore the mechanism by which the lodging resistance of the rice population during the late growth period responds to low-temperature, overcast and rainy weather during the reproductive growth stage. Field experiments were conducted using indica rice Yliangyou2 (lodging-resistance variety), IIyou084 (lodging-susceptible variety) and japonica rice Wuyunjing23 (lodging-resistance variety) and W3668 (lodging- susceptible variety) in 2013 (high temperature and strong radiation during the rice reproductive growth stage), 2012 and 2014 (low temperature and weak radiation during rice reproductive growth stage). The results showed that the length of the basal internodes and the height of the gravitational centres were greater in plants grown in 2014. Dry weight of basal culms, culm diameter, lignin content and total content of structural carbohydrates (lignin and cellulose) in basal internodes were reduced in these plants, causing a significant reduction in the bending stress and lodging resistance of the rice stems. Low-temperature, overcast and rainy weather had a greater effect on lodging resistance in indica rice compared with japonica rice. This was reflected in a greater reduction in the lignin content of the indica rice stems, which yielded a significantly lower breaking strength and bending stress. PMID:28422161

  17. Use of an organotypic mammalian in vitro follicle growth (IVFG) assay to facilitate female reproductive toxicity screening

    PubMed Central

    Xu, Yuanming; Duncan, Francesca E.; Xu, Min; Woodruff, Teresa K.

    2015-01-01

    Screening of pharmaceutical, chemical, and environmental compounds for their effects on reproductive health relies on in vivo studies. More robust and efficient methods to assess thes effects are needed. Here we adapted and validated an organotypic in vitro follicle growth (IVFG) assay to determine the impact of compounds on markers of ovarian function. We isolated mammalian follicles and cultured them in the presence of compounds with 1) known fertotoxicity (i.e., toxicity to the reproductive system; cyclophosphamide and cisplatin); 2) no known fertotoxicity (nalbuphine); and 3) unknown fertotoxicity (Corexit EC 9500 A; CE). In each case we assayed follicle growth, hormone production, and the ability of follicle-enclosed oocytes to resume meiosis and produce a mature egg. We found that cyclophosphamide and cisplatin caused dose-dependent disruption of follicle dynamics, whereas nalbuphine did not. The reproductive toxicity of CE, an oil dispersant used heavily during the 2010 Deepwater Horizon oil spill, has never been examined in a mammalian system. We found that CE compromised follicle morphology and functional parameters. Our findings demonstrate that this IVFG assay system can be used to distinguish fertotoxic from non-toxic compounds, providing an in vitro tool for assessing effects of chemical compounds on reproductive function and health. PMID:25689754

  18. Zinc allocation and re-allocation in rice

    PubMed Central

    Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E. L.; Struik, Paul C.

    2014-01-01

    Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using 70Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg−1 dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement. PMID:24478788

  19. Production, reproduction, health, and growth traits in backcross Holstein × Jersey cows and their Holstein contemporaries.

    PubMed

    Bjelland, D W; Weigel, K A; Hoffman, P C; Esser, N M; Coblentz, W K; Halbach, T J

    2011-10-01

    A total of 648 purebred Holstein and 319 backcross Holstein × Jersey dairy cattle were compared for production, reproduction, health, linear type, and growth traits. Animals were born between 2003 and 2009 and were housed in the University of Wisconsin-Madison Integrated Dairy Facility. All animals had Holstein dams; lactating dams were mated to unproven Holstein sires to produce purebred (control) Holsteins or to unproven F(1) Jersey × Holstein crossbred sires to produce backcross animals, whereas nulliparous dams were mated to proven Holstein sires to produce purebred (other) Holsteins. Traits were analyzed using mixed linear models with effects of season of birth, age of dam, sire, birth year of sire, days in milk, lactation, and linear type score evaluator. Control Holsteins had greater 305-d milk yield (12,645 vs. 11,456 kg), 305-d mature equivalent milk yield (13,420 vs. 12,180 kg), peak daily milk yield (49.5 vs. 46.4 kg), total lactation milk yield (11,556 vs. 10,796 kg), and daily fat-corrected milk yield (43 vs. 40 kg) compared with backcrosses. Days open and services per conception as a heifer or cow did not differ between control Holsteins, other Holsteins, or backcrosses. The proportion of first-parity births that required assistance was less in control Holsteins than in backcross cows (3.7 vs. 11.2%). The incidence of scours or respiratory problems in calves did not differ between control Holsteins, other Holsteins, and backcrosses, nor did the incidence of mastitis, injury, or feet problems. Control Holstein heifers were heavier (629 vs. 557 kg), with greater hip height (145 vs. 139 cm), body length (167 vs. 163 cm), heart girth (205 vs. 198 cm), and hip width (54 vs. 53 cm) at 22 mo of age. On a 50-point scale for linear type traits, Holsteins were larger in stature compared with backcrosses (41 vs. 28), had wider rumps (37 vs. 33), and wider rear udders (34 vs. 32). Results of this study suggest that backcross Holstein × Jersey cattle have

  20. Shortleaf pine reproduction abundance and growth in pine-oak stands in the Missouri Ozarks

    Treesearch

    Elizabeth M. Blizzard; Doyle Henken; John M. Kabrick; Daniel C. Dey; David R. Larsen; David Gwaze

    2007-01-01

    We conducted an operational study to evaluate effect of site preparation treatments on pine reproduction density and the impact of overstory basal area and understory density on pine reproduction height and basal diameter in pine-oak stands in the Missouri Ozarks. Stands were harvested to or below B-level stocking, but patchiness of the oak decline lead to some plots...

  1. Birth weight, intrauterine growth retardation and fetal susceptibility to porcine reproductive and respiratory syndrome virus

    USDA-ARS?s Scientific Manuscript database

    The severity of porcine reproductive and respiratory syndrome was compared in pregnant gilts originating from high and low birth weight litters. One-hundred and eleven pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus on gestation day 85 (±1) were necrop...

  2. Growth and reproduction of the sea snake, Emydocephalus ijimae, in the central Ryukyus, Japan: a mark and recapture study.

    PubMed

    Masunaga, Gen; Ota, Hidetoshi

    2003-04-01

    A mark and recapture study was carried out for three years on a population of the Ijima's sea snake, Emydocephalus ijimae, in the coastal shallow water of Zamamijima Island, central Ryukyus, Japan. The relatively high recapture (47% of 167 marked snakes) suggests that E. ijimae is a particularly philopatric, sedentary species among the sea snakes. The sex ratio (male: female), approximately 1.6:1, significantly skewed from 1:1. The growth rate in SVL declined with growth, with females thoroughly growing better than males. Males and females were estimated to begin reproductive activity in the second or third summer and the third spring after birth, respectively. Frequency of female reproduction is guessed to vary from annual to biennial, or even less frequent.

  3. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis.

    PubMed

    Jayne, Benjamin; Quigley, Martin

    2014-02-01

    Despite a large body of literature that describes the effects of arbuscular mycorrhizal colonization on plant response to water deficit, reviews of these works have been mainly in narrative form, and it is therefore difficult to quantify the magnitude of the effect. We performed a meta-analysis to examine the effect of mycorrhizal colonization on growth and yield of plants exposed to water deficit stress. Data were compared in the context of annual vs. perennial pl