Hormonally mediated effects on the female reproductive system may manifest in pathologic changes of endocrine-responsive organs and altered reproductive function. Identification of these effects requires proper assessment, which may include investigative studies of female reprod...
Identification of a pheromone regulating caste differentiation in termites.
Matsuura, Kenji; Himuro, Chihiro; Yokoi, Tomoyuki; Yamamoto, Yuuka; Vargo, Edward L; Keller, Laurent
2010-07-20
The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reigning queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes.
Identification of a pheromone regulating caste differentiation in termites
Matsuura, Kenji; Himuro, Chihiro; Yokoi, Tomoyuki; Yamamoto, Yuuka; Vargo, Edward L.; Keller, Laurent
2010-01-01
The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reining queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes. PMID:20615972
USDA-ARS?s Scientific Manuscript database
Natalisins (NTLs) are conservative neuropeptides, which are only found in arthropods and have been documented to regulate reproductive behaviors in insect species. In our previous study, we have confirmed NTL regulates the reproductive process in an important agricultural pest, Bactrocera dorsalis ...
Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies.
Matsuura, Kenji
2012-06-01
Pheromones are likely involved in all social activities of social insects including foraging, sexual behavior, defense, nestmate recognition, and caste regulation. Regulation of the number of fertile queens requires communication between reproductive and non-reproductive individuals. Queen-produced pheromones have long been believed to be the main factor inhibiting the differentiation of new reproductive individuals. However, since the discovery more than 50 years ago of the queen honeybee substance that inhibits the queen-rearing behavior of workers, little progress has been made in the chemical identification of inhibitory queen pheromones in other social insects. The recent identification of a termite queen pheromone and subsequent studies have elucidated the multifaceted roles of volatile pheromones, including functions such as a fertility signal, worker attractant, queen-queen communication signal, and antimicrobial agent. The proximate origin and evolutionary parsimony of the termite queen pheromone also are discussed.
NASA Astrophysics Data System (ADS)
Yang, Wei; Chen, Huapu; Cui, Xuefan; Zhang, Kewei; Jiang, Dongneng; Deng, Siping; Zhu, Chunhua; Li, Guangli
2017-09-01
Spotted scat (Scatophagus argus) is an economically important farmed fish, particularly in East and Southeast Asia. Because there has been little research on reproductive development and regulation in this species, the lack of a mature artificial reproduction technology remains a barrier for the sustainable development of the aquaculture industry. More genetic and genomic background knowledge is urgently needed for an in-depth understanding of the molecular mechanism of reproductive process and identification of functional genes related to sexual differentiation, gonad maturation and gametogenesis. For these reasons, we performed transcriptomic analysis on spotted scat using a multiple tissue sample mixing strategy. The Illumina RNA sequencing generated 118 510 486 raw reads. After trimming, de novo assembly was performed and yielded 99 888 unigenes with an average length of 905.75 bp. A total of 45 015 unigenes were successfully annotated to the Nr, Swiss-Prot, KOG and KEGG databases. Additionally, 23 783 and 27 183 annotated unigenes were assigned to 56 Gene Ontology (GO) functional groups and 228 KEGG pathways, respectively. Subsequently, 2 474 transcripts associated with reproduction were selected using GO term and KEGG pathway assignments, and a number of reproduction-related genes involved in sex differentiation, gonad development and gametogenesis were identified. Furthermore, 22 279 simple sequence repeat (SSR) loci were discovered and characterized. The comprehensive transcript dataset described here greatly increases the genetic information available for spotted scat and contributes valuable sequence resources for functional gene mining and analysis. Candidate transcripts involved in reproduction would make good starting points for future studies on reproductive mechanisms, and the putative sex differentiation-related genes will be helpful for sex-determining gene identification and sex-specific marker isolation. Lastly, the SSRs can serve as marker resources for future research into genetics, marker-assisted selection (MAS) and conservation biology.
USDA-ARS?s Scientific Manuscript database
Male ejaculate proteins, including both sperm and seminal fluid proteins, play an important role in mediating reproductive biology. The function of ejaculate proteins can include enabling sperm-egg interactions, enhancing sperm storage, mediating female attractiveness, and even regulating female lif...
GnRH and GnRH receptors in the pathophysiology of the human female reproductive system.
Maggi, Roberto; Cariboni, Anna Maria; Marelli, Marina Montagnani; Moretti, Roberta Manuela; Andrè, Valentina; Marzagalli, Monica; Limonta, Patrizia
2016-04-01
Human reproduction depends on an intact hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic gonadotrophin-releasing hormone (GnRH) has been recognized, since its identification in 1971, as the central regulator of the production and release of the pituitary gonadotrophins that, in turn, regulate the gonadal functions and the production of sex steroids. The characteristic peculiar development, distribution and episodic activity of GnRH-producing neurons have solicited an interdisciplinary interest on the etiopathogenesis of several reproductive diseases. The more recent identification of a GnRH/GnRH receptor (GnRHR) system in both the human endometrium and ovary has widened the spectrum of action of the peptide and of its analogues beyond its hypothalamic function. An analysis of research and review articles published in international journals until June 2015 has been carried out to comprehensively summarize both the well established and the most recent knowledge on the physiopathology of the GnRH system in the central and peripheral control of female reproductive functions and diseases. This review focuses on the role of GnRH neurons in the control of the reproductive axis. New knowledge is accumulating on the genetic programme that drives GnRH neuron development to ameliorate the diagnosis and treatment of GnRH deficiency and consequent delayed or absent puberty. Moreover, a better understanding of the mechanisms controlling the episodic release of GnRH during the onset of puberty and the ovulatory cycle has enabled the pharmacological use of GnRH itself or its synthetic analogues (agonists and antagonists) to either stimulate or to block the gonadotrophin secretion and modulate the functions of the reproductive axis in several reproductive diseases and in assisted reproduction technology. Several inputs from other neuronal populations, as well as metabolic, somatic and age-related signals, may greatly affect the functions of the GnRH pulse generator during the female lifespan; their modulation may offer new possible strategies for diagnostic and therapeutic interventions. A GnRH/GnRHR system is also expressed in female reproductive tissues (e.g. endometrium and ovary), both in normal and pathological conditions. The expression of this system in the human endometrium and ovary supports its physiological regulatory role in the processes of trophoblast invasion of the maternal endometrium and embryo implantation as well as of follicular development and corpus luteum functions. The GnRH/GnRHR system that is expressed in diseased tissues of the female reproductive tract (both benign and malignant) is at present considered an effective molecular target for the development of novel therapeutic approaches for these pathologies. GnRH agonists are also considered as a promising therapeutic approach to counteract ovarian failure in young female patients undergoing chemotherapy. Increasing knowledge about the regulation of GnRH pulsatile release, as well as the therapeutic use of its analogues, offers interesting new perspectives in the diagnosis, treatment and outcome of female reproductive disorders, including tumoral and iatrogenic diseases. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, M.; George, W.; Preslan, J.
1996-05-02
This project discusses the following studies: identification and quantitation of heavy metals and petroleum products present in Bayou Trepagnier relative to control sites; assessment of the uptake and bioaccumulation of metals and organic contaminants of interest in aquatic species; establishment and use of polarographic methods for use in metal speciation studies to identify specific chemical forms present in sediments, waters and organism; and evaluation of contaminants on reproductive function of aquatic species as potential biomarkers of exposure. 14 refs.
Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans.
Motola, Daniel L; Cummins, Carolyn L; Rottiers, Veerle; Sharma, Kamalesh K; Li, Tingting; Li, Yong; Suino-Powell, Kelly; Xu, H Eric; Auchus, Richard J; Antebi, Adam; Mangelsdorf, David J
2006-03-24
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.
USDA-ARS?s Scientific Manuscript database
Reproductive efficiency is of economic importance in commercial beef cattle production, as failure to achieve pregnancy reduces the number of calves marketed. Identification of genetic markers with predictive merit for reproductive success would facilitate early selection of females and avoid ineff...
[Environmental factors and male fertility].
Köhn, F-M; Schuppe, H C
2016-07-01
The identification of potential environmental hazards may have clinical relevance for diagnosis of male infertility. Knowledge about these factors will improve prevention of fertility disorders. Apart from drugs or factors related to lifestyle such as alcohol and tobacco smoke, various environmental and occupational agents, both chemical and physical, may impair male reproductive functions. With regard to the complex regulation of the male reproductive system, the available information concerning single exogenous factors and their mechanisms of action in humans is limited. This is also due to the fact that extrapolation of results obtained from experimental animal studies remains difficult. Nevertheless, the assessment of relevant exposures to reproductive toxicants should be carefully evaluated during diagnostic procedures of andrological patients.
SEX DIFFERENCES AND REPRODUCTIVE HORMONE INFLUENCES ON HUMAN ODOR PERCEPTION
Doty, Richard L.; Cameron, E. Leslie
2009-01-01
The question of whether men and women differ in their ability to smell has been the topic of scientific investigation for over a hundred years. Although conflicting findings abound, most studies suggest that, for at least some odorants, women outperform men on tests of odor detection, identification, discrimination, and memory. Most functional imaging and electrophysiological studies similarly imply that, when sex differences are present, they favor women. In this review we examine what is known about sex-related alterations in human smell function, including influences of the menstrual cycle, pregnancy, gonadectomy, and hormone replacement therapy on a range of olfactory measures. We conclude that the relationship between reproductive hormones and human olfactory function is complex and that simple associations between circulating levels of gonadal hormones and measures of olfactory function are rarely present. PMID:19272398
GnRH in the Human Female Reproductive Axis.
Limonta, Patrizia; Marelli, Marina Montagnani; Moretti, Roberta; Marzagalli, Monica; Fontana, Fabrizio; Maggi, Roberto
2018-01-01
Gonadotropin-releasing hormone (GnRH) is recognized as the central regulator of the functions of the pituitary-gonadal axis. The increasing knowledge on the mechanisms controlling the development and the function of GnRH-producing neurons is leading to a better diagnostic and therapeutic approach for hypogonadotropic hypogonadisms and for alterations of the puberty onset. During female life span, the function of the GnRH pulse generator may be affected by a number of inputs from other neuronal systems, offering alternative strategies for diagnostic and therapeutic interventions. Moreover, the identification of a GnRH/GnRH receptor system in both human ovary and endometrium has widened the spectrum of action of the peptide outside its hypothalamic functions. The pharmacological use of GnRH itself or its synthetic analogs (agonists and antagonists) provides a valid tool to either stimulate or block gonadotropin secretion and to modulate the female fertility in several reproductive disorders and in assisted reproduction technology. The use of GnRH agonists in young female patients undergoing chemotherapy is also considered a promising therapeutic approach to counteract iatrogenic ovarian failure. © 2018 Elsevier Inc. All rights reserved.
Tran, Tung Thanh; Hinds, Lyn A
2013-03-01
Plant extracts can inhibit fertility by adversely affecting, directly or indirectly, reproductive processes ranging from gonadal function and development to gestation. This review focuses on plant extracts that disrupt ovarian function in rodents. Extracts from at least 40 plant species exert some of their disruptive reproductive effects at the ovarian level. Of those, 13 plants induce a reduction in the number and type of ovarian follicles and also cause disruption to the oestrous cycle. Their effects are short term and reversible once treatment ceases. Protection of plant extracts to prevent their degradation before uptake in the gastrointestinal tract could enhance short-term efficacy but would not enhance the longevity of their effects. Identification and further testing of the specific chemicals responsible for reproductive effects would be beneficial. The adoption of a standard protocol for treatment and assessment of the inhibitory effects of potential control agents on reproductive function in rodents is essential. Treatment with higher concentrations of extracts in conjunction with other extracts or with other chemosterilants could have potential complementary effects and lead to more rapid and permanent changes in ovarian function. An orally delivered agent(s) that causes major depletion of all follicle types, and particularly of non-regenerating primordial follicles, could be an ideal fertility control product and serve as an additional tool for population control of pest rodents. Copyright © 2012 Society of Chemical Industry.
Identification and function of proteolysis regulators in seminal fluid.
Laflamme, Brooke A; Wolfner, Mariana F
2013-02-01
Proteins in the seminal fluid of animals with internal fertilization effect numerous responses in mated females that impact both male and female fertility. Among these proteins is the highly represented class of proteolysis regulators (proteases and their inhibitors). Though proteolysis regulators have now been identified in the seminal fluid of all animals in which proteomic studies of the seminal fluid have been conducted (as well as several other species in which they have not), a unified understanding of the importance of proteolysis to male fertilization success and other reproductive processes has not yet been achieved. In this review, we provide an overview of the identification of proteolysis regulators in the seminal fluid of humans and Drosophila melanogaster, the two species with the most comprehensively known seminal fluid proteomes. We also highlight reports demonstrating the functional significance of specific proteolysis regulators in reproductive and post-mating processes. Finally, we make broad suggestions for the direction of future research into the roles of both active seminal fluid proteolysis regulators and their inactive homologs, another significant class of seminal fluid proteins. We hope that this review aids researchers in pursuing a coordinated study of the functional significance of proteolysis regulators in semen. Copyright © 2012 Wiley Periodicals, Inc.
Lang, Carla; Costa, Flávia Regina Capellotto; Camargo, José Luís Campana; Durgante, Flávia Machado; Vicentini, Alberto
2015-01-01
Precise identification of plant species requires a high level of knowledge by taxonomists and presence of reproductive material. This represents a major limitation for those working with seedlings and juveniles, which differ morphologically from adults and do not bear reproductive structures. Near-infrared spectroscopy (FT-NIR) has previously been shown to be effective in species discrimination of adult plants, so if young and adults have a similar spectral signature, discriminant functions based on FT-NIR spectra of adults can be used to identify leaves from young plants. We tested this with a sample of 419 plants in 13 Amazonian species from the genera Protium and Crepidospermum (Burseraceae). We obtained 12 spectral readings per plant, from adaxial and abaxial surfaces of dried leaves, and compared the rate of correct predictions of species with discriminant functions for different combinations of readings. We showed that the best models for predicting species in early developmental stages are those containing spectral data from both young and adult plants (98% correct predictions of external samples), but even using only adult spectra it is still possible to attain good levels of identification of young. We obtained an average of 75% correct identifications of young plants by discriminant equations based only on adults, when the most informative wavelengths were selected. Most species were accurately predicted (75-100% correct identifications), and only three had poor predictions (27-60%). These results were obtained despite the fact that spectra of young individuals were distinct from those of adults when species were analyzed individually. We concluded that FT-NIR has a high potential in the identification of species even at different ontogenetic stages, and that young plants can be identified based on spectra of adults with reasonable confidence.
USDA-ARS?s Scientific Manuscript database
It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs ...
21 CFR 884.6120 - Assisted reproduction accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... II (special controls) (design specifications, labeling requirements, and clinical testing). ... Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group of...
21 CFR 884.6120 - Assisted reproduction accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... II (special controls) (design specifications, labeling requirements, and clinical testing). ... Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group of...
21 CFR 884.6120 - Assisted reproduction accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... II (special controls) (design specifications, labeling requirements, and clinical testing). ... Assisted reproduction accessories. (a) Identification. Assisted reproduction accessories are a group of...
Aagaard, Jan E; George, Renee D; Fishman, Lila; Maccoss, Michael J; Swanson, Willie J
2013-01-01
Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the goal of identifying the molecular basis of genetically complex traits.
21 CFR 884.6180 - Reproductive media and supplements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Reproductive media and supplements. 884.6180... Reproductive media and supplements. (a) Identification. Reproductive media and supplement are products that are used for assisted reproduction procedures. Media include liquid and powder versions of various...
21 CFR 884.6180 - Reproductive media and supplements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Reproductive media and supplements. 884.6180... Reproductive media and supplements. (a) Identification. Reproductive media and supplement are products that are used for assisted reproduction procedures. Media include liquid and powder versions of various...
21 CFR 884.6180 - Reproductive media and supplements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Reproductive media and supplements. 884.6180... Reproductive media and supplements. (a) Identification. Reproductive media and supplement are products that are used for assisted reproduction procedures. Media include liquid and powder versions of various...
21 CFR 884.6180 - Reproductive media and supplements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Reproductive media and supplements. 884.6180... Reproductive media and supplements. (a) Identification. Reproductive media and supplement are products that are used for assisted reproduction procedures. Media include liquid and powder versions of various...
21 CFR 884.6180 - Reproductive media and supplements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Reproductive media and supplements. 884.6180... Reproductive media and supplements. (a) Identification. Reproductive media and supplement are products that are used for assisted reproduction procedures. Media include liquid and powder versions of various...
21 CFR 884.6140 - Assisted reproduction micropipette fabrication instruments.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction micropipette fabrication... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6140 Assisted reproduction micropipette fabrication instruments. (a) Identification...
21 CFR 884.6140 - Assisted reproduction micropipette fabrication instruments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction micropipette fabrication... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6140 Assisted reproduction micropipette fabrication instruments. (a) Identification...
Gap junctional communication in the male reproductive system.
Pointis, Georges; Fiorini, Céline; Defamie, Norah; Segretain, Dominique
2005-12-20
Male fertility is a highly controlled process that allows proliferation, meiosis and differentiation of male germ cells in the testis, final maturation in the epididymis and also requires functional male accessory glands: seminal vesicles, prostate and corpus cavernosum. In addition to classical endocrine and paracrine controls, mainly by gonadotropins LH and FSH and steroids, there is now strong evidence that all these processes are dependent upon the presence of homocellular or heterocellular junctions, including gap junctions and their specific connexins (Cxs), between the different cell types that structure the male reproductive tract. The present review is focused on the identification of Cxs, their distribution in the testis and in different structures of the male genital tract (epididymis, seminal vesicle, prostate, corpus cavernosum), their crucial role in the control of spermatogenesis and their implication in the function of the male accessory glands, including functional smooth muscle tone. Their potential dysfunctions in some testis (spermatogenic arrest, seminoma) and prostate (benign hyperplasia, adenocarcinoma) diseases and in the physiopathology of the human erectile function are also discussed.
Genome-based identification and analysis of ionotropic receptors in Spodoptera litura.
Zhu, Jia-Ying; Xu, Zhi-Wen; Zhang, Xin-Min; Liu, Nai-Yong
2018-05-22
The ability to sense and recognize various classes of compounds is of particular importance for survival and reproduction of insects. Ionotropic receptor (IR), a sub-family of the ionotropic glutamate receptor family, has been identified as one of crucial chemoreceptor super-families, which mediates the sensing of odors and/or tastants, and serves as non-chemosensory functions. Yet, little is known about IR characteristics, evolution, and functions in Lepidoptera. Here, we identify the IR gene repertoire from a destructive polyphagous pest, Spodoptera litura. The exhaustive analyses with genome and transcriptome data lead to the identification of 45 IR genes, comprising 17 antennal IRs (A-IRs), 8 Lepidoptera-specific IRs (LS-IRs), and 20 divergent IRs (D-IRs). Phylogenetic analysis reveals that S. litura A-IRs generally retain a strict single copy within each orthologous group, and two lineage expansions are observed in the D-IR sub-family including IR100d-h and 100i-o, likely attributed to gene duplications. Results of gene structure analysis classify the SlitIRs into four types: I (intronless), II (1-3 introns), III (5-9 introns), and IV (10-18 introns). Extensive expression profiles demonstrate that the majority of SlitIRs (28/43) are enriched in adult antennae, and some are detected in gustatory-associated tissues like proboscises and legs as well as non-chemosensory organs like abdomens and reproductive tissues of both sexes. These results indicate that SlitIRs have diverse functional roles in olfaction, taste, and reproduction. Together, our study has complemented the information on chemoreceptor genes in S. litura, and meanwhile allows for target experiments to identify potential IR candidates for the control of this pest.
Genome-based identification and analysis of ionotropic receptors in Spodoptera litura
NASA Astrophysics Data System (ADS)
Zhu, Jia-Ying; Xu, Zhi-Wen; Zhang, Xin-Min; Liu, Nai-Yong
2018-06-01
The ability to sense and recognize various classes of compounds is of particular importance for survival and reproduction of insects. Ionotropic receptor (IR), a sub-family of the ionotropic glutamate receptor family, has been identified as one of crucial chemoreceptor super-families, which mediates the sensing of odors and/or tastants, and serves as non-chemosensory functions. Yet, little is known about IR characteristics, evolution, and functions in Lepidoptera. Here, we identify the IR gene repertoire from a destructive polyphagous pest, Spodoptera litura. The exhaustive analyses with genome and transcriptome data lead to the identification of 45 IR genes, comprising 17 antennal IRs (A-IRs), 8 Lepidoptera-specific IRs (LS-IRs), and 20 divergent IRs (D-IRs). Phylogenetic analysis reveals that S. litura A-IRs generally retain a strict single copy within each orthologous group, and two lineage expansions are observed in the D-IR sub-family including IR100d-h and 100i-o, likely attributed to gene duplications. Results of gene structure analysis classify the SlitIRs into four types: I (intronless), II (1-3 introns), III (5-9 introns), and IV (10-18 introns). Extensive expression profiles demonstrate that the majority of SlitIRs (28/43) are enriched in adult antennae, and some are detected in gustatory-associated tissues like proboscises and legs as well as non-chemosensory organs like abdomens and reproductive tissues of both sexes. These results indicate that SlitIRs have diverse functional roles in olfaction, taste, and reproduction. Together, our study has complemented the information on chemoreceptor genes in S. litura, and meanwhile allows for target experiments to identify potential IR candidates for the control of this pest.
Functional insights into the testis transcriptome of the edible sea urchin Loxechinus albus
Gaitán-Espitia, Juan Diego; Sánchez, Roland; Bruning, Paulina; Cárdenas, Leyla
2016-01-01
The edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L. albus gonad development and gametogenesis could provide valuable resources for aquaculture applications, management, conservation and studies about the evolution of functional and structural pathways that underlie the reproductive toolkit of marine invertebrates. Using a high-throughput sequencing technology, we explored the male gonad transcriptome of this highly fecund sea urchin. Through a de novo assembly approach we obtained 42,530 transcripts of which 15,544 (36.6%) had significant alignments to known proteins in public databases. From these transcripts, approximately 73% were functionally annotated allowing the identification of several candidate genes that are likely to play a central role in developmental processes, nutrient reservoir activity, sexual reproduction, gamete generation, meiosis, sex differentiation, sperm motility, male courtship behavior and fertilization. Additionally, comparisons with the male gonad transcriptomes of other echinoderms revealed several conserved orthologous genes, suggesting that similar functional and structural pathways underlie the reproductive development in this group and other marine invertebrates. PMID:27805042
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
Peng, Lu; Wang, Lei; Yang, Yi-Fan; Zou, Ming-Min; He, Wei-Yi; Wang, Yue; Wang, Qing; Vasseur, Liette; You, Min-Sheng
2017-12-30
As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops. Based on transcriptome sequencing, a total of 7.88Gb clean nucleotides was obtained, with 19,934 genes and 1861 new transcripts being identified. Expression profiling indicated that 61.7% of the genes were expressed (FPKM≥1) in the P. xylostella ovary. GO annotation showed that the pathways of multicellular organism reproduction and multicellular organism reproduction process, as well as gamete generation and chorion were significantly enriched. Processes that were most likely relevant to reproduction included the spliceosome, ubiquitin mediated proteolysis, endocytosis, PI3K-Akt signaling pathway, insulin signaling pathway, cAMP signaling pathway, and focal adhesion were identified in the top 20 'highly represented' KEGG pathways. Functional genes involved in oogenesis were further analyzed and validated by qRT-PCR to show their potential predominant roles in P. xylostella reproduction. Our newly developed P. xylostella ovary transcriptome provides an overview of the gene expression profiling in this specialized tissue and the functional gene network closely related to the ovary development and oogenesis. This is the first genome-wide transcriptome dataset of P. xylostella ovary that includes a subset of functionally activated genes. This global approach will be the basis for further studies on molecular mechanisms of P. xylostella reproduction aimed at screening potential molecular targets for integrated pest management. Copyright © 2017 Elsevier B.V. All rights reserved.
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
USDA-ARS?s Scientific Manuscript database
A large-scale challenge experiment using type 2 porcine reproductive and respiratory virus (PRRSV) provided new insights into the pathophysiology of reproductive PRRS in third-trimester pregnant gilts. Deep phenotyping enabled identification of maternal and fetal factors predictive of PRRS severity ...
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
Minireview: The Roles of Small RNA Pathways in Reproductive Medicine
Buchold, Gregory M.
2011-01-01
The discovery of small noncoding RNA, including P-element-induced wimpy testis-interacting RNA, small interfering RNA, and microRNA, has energized research in reproductive medicine. In the two decades since the identification of small RNA, first in Caenorhabditis elegans and then in other animals, scientists in many disciplines have made significant progress in elucidating their biology. A powerful battery of tools, including knockout mice and small RNA mimics and antagonists, has facilitated investigation into the functional roles and therapeutic potential of these small RNA pathways. Current data indicate that small RNA play significant roles in normal development and physiology and pathological conditions of the reproductive tracts of females and males. Biologically plausible mRNA targets for these microRNA are aggressively being discovered. The next phase of research will focus on elucidating the clinical utility of small RNA-selective agonists and antagonists. PMID:21546411
Silva, Joana Vieira; Yoon, Sooyeon; Domingues, Sara; Guimarães, Sofia; Goltsev, Alexander V; da Cruz E Silva, Edgar Figueiredo; Mendes, José Fernando F; da Cruz E Silva, Odete Abreu Beirão; Fardilha, Margarida
2015-01-16
Amyloid precursor protein (APP) is widely recognized for playing a central role in Alzheimer's disease pathogenesis. Although APP is expressed in several tissues outside the human central nervous system, the functions of APP and its family members in other tissues are still poorly understood. APP is involved in several biological functions which might be potentially important for male fertility, such as cell adhesion, cell motility, signaling, and apoptosis. Furthermore, APP superfamily members are known to be associated with fertility. Knowledge on the protein networks of APP in human testis and spermatozoa will shed light on the function of APP in the male reproductive system. We performed a Yeast Two-Hybrid screen and a database search to study the interaction network of APP in human testis and sperm. To gain insights into the role of APP superfamily members in fertility, the study was extended to APP-like protein 2 (APLP2). We analyzed several topological properties of the APP interaction network and the biological and physiological properties of the proteins in the APP interaction network were also specified by gene ontologyand pathways analyses. We classified significant features related to the human male reproduction for the APP interacting proteins and identified modules of proteins with similar functional roles which may show cooperative behavior for male fertility. The present work provides the first report on the APP interactome in human testis. Our approach allowed the identification of novel interactions and recognition of key APP interacting proteins for male reproduction, particularly in sperm-oocyte interaction.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.
10 CFR 1017.25 - Reproduction.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Reproduction. 1017.25 Section 1017.25 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Physical Protection Requirements § 1017.25 Reproduction. A document marked as containing UCNI may be...
10 CFR 1017.25 - Reproduction.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Reproduction. 1017.25 Section 1017.25 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) IDENTIFICATION AND PROTECTION OF UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Physical Protection Requirements § 1017.25 Reproduction. A document marked as containing UCNI may be...
21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... contrast microscopes, dissecting microscopes and inverted stage microscopes. (b) Classification. Class I... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproductive microscopes and microscope... Devices § 884.6190 Assisted reproductive microscopes and microscope accessories. (a) Identification...
A link between hypothyroidism, obesity and male reproduction.
Aiceles, Veronica; da Fonte Ramos, Cristiane
2016-01-01
Hypothyroidism is a condition in which the serum levels of thyroid hormones are below that necessary to carry out physiological functions in the body. Hypothyroidism is related to obesity as an increase in body weight gain is seen in hypothyroid patients. Moreover, an inverse correlation between free thyroxine values and body mass index has been reported. Leptin, a polypeptide hormone produced by adipocytes, was originally thought to be an antiobesity hormone due its anorexic effects on hypothalamic appetite regulation. However, nowadays it is known that leptin conveys information about the nutritional status to the brain being considered a crucial endocrine factor for regulating several physiological processes including reproduction. Since the identification of thyroid hormone and leptin receptors on the testes, these hormones are being recognized as having important roles in male reproductive functions. A clear link exists among thyroid hormones, leptin and reproduction. Both hormones can negatively affect spermatogenesis and consequently may cause male infertility. The World Health Organization (WHO) estimates the overall prevalence of primary infertility ranging from 8 to 15%. The fact that 30% of couples' inability to conceive is related to a male factor and that the longer hypothyroidism persisted, the greater the damage to the testes, strongly suggest that more studies attempting to clarify both hormones actions directly in the testes need to be conducted specially in cases of congenital hypothyroidism. Therefore, the goal of this review is to highlight the relationship of such hormones in the reproductive system.
ARTs and the problematic conceptualisation of declining reproduction.
Majumdar, Anindita
2018-01-01
The routinisation of assisted reproduction in India has led to its proliferation and the easy identification of infertility. However, clinical and popular discourse tends to focus primarily on age-related deficiencies in reproduction. Here, both the "dangers" of declining reproduction as well as the facilitation of delayed reproduction are areas of focus and eulogisation. Bringing together the diverse elements of the medico-social conversation, the aim of this commentary is to examine the ways in which the ARTs are used to make sense of declining reproduction.
Ratiani, L; Intskirveli, N; Ormotsadze, G; Sanikidze, T
2011-12-01
The aim of the study was identification of statistically reliable correlations and the cause-effect relationships between viability of red blood cells and dislipidema parametres and/or metabolic disorders, induced by age related alterations of estrogen content, in women of different ages (reproductive, menopausal) On the basis of the analysis of research results we can conclude that in the different age groups of women with atherosclerosis-induced cardiovascular diseases revealed estrogen-related dependence between Tg-s and HDL content, functional status of phereperial blood erytrotcites and severity of dislipidemia. The aterogenic index Tg/HD proved to be sensitive marker of dislipidemia in reproductive aging women, but does't reflect disorders of lipid metabolism in postmenosal women. It was proved the existence of reliable corelation between red blood cells dysfunction indicator, spherulation quality, and atherogenic index Tg/HDL highlights; however, the correlation coefficient is 2 times higher in the reproductive age as in menopause. Spherulation quality of red blood cells at low HDL content showd fast growth rate in reproductive-aged women, and was unsensetive to HDL content in postmenopasal women. It was concluded that age-related lack of estrogens in postmenopausal women indirectly contributes to decrease protection of red blood cells against oxidative damage, reduces their deformabelity and disturbances the rheological properties. So, Spherulation quality of red blood cells may be used as a diagnostic marker of severity of atherosclerosis.
Identification of Telomerase Components and Telomerase Regulating Factors in Yeast
2000-07-01
the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions...laboratory 8/87-3/95 Graduate student, University of Colorado. Advisor: Dr. Karla Kirkegaard Thesis: Analysis of Poliovirus Assembly and Genome Encapsidation...Nugent, C.I., Johnson, K.L., Sarnow, P. and K. Kirkegaard (1999). Functional coupling between replication and packaging of poliovirus replicon RNA. J
2013-01-01
Background MADS-domain transcription factors play important roles during plant development. The Arabidopsis MADS-box gene SHORT VEGETATIVE PHASE (SVP) is a key regulator of two developmental phases. It functions as a repressor of the floral transition during the vegetative phase and later it contributes to the specification of floral meristems. How these distinct activities are conferred by a single transcription factor is unclear, but interactions with other MADS domain proteins which specify binding to different genomic regions is likely one mechanism. Results To compare the genome-wide DNA binding profile of SVP during vegetative and reproductive development we performed ChIP-seq analyses. These ChIP-seq data were combined with tiling array expression analysis, induction experiments and qRT-PCR to identify biologically relevant binding sites. In addition, we compared genome-wide target genes of SVP with those published for the MADS domain transcription factors FLC and AP1, which interact with SVP during the vegetative and reproductive phases, respectively. Conclusions Our analyses resulted in the identification of pathways that are regulated by SVP including those controlling meristem development during vegetative growth and flower development whereas floral transition pathways and hormonal signaling were regulated predominantly during the vegetative phase. Thus, SVP regulates many developmental pathways, some of which are common to both of its developmental roles whereas others are specific to only one of them. PMID:23759218
Genome-Wide Mapping of Loci Explaining Variance in Scrotal Circumference in Nellore Cattle
Utsunomiya, Yuri T.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Matos, Márcia C.; Zavarez, Ludmilla B.; Ito, Pier K. R. K.; Pérez O'Brien, Ana M.; Sölkner, Johann; Porto-Neto, Laercio R.; Schenkel, Flávio S.; McEwan, John; Cole, John B.; da Silva, Marcos V. G. B.; Van Tassell, Curtis P.; Sonstegard, Tad S.; Garcia, José Fernando
2014-01-01
The reproductive performance of bulls has a high impact on the beef cattle industry. Scrotal circumference (SC) is the most recorded reproductive trait in beef herds, and is used as a major selection criterion to improve precocity and fertility. The characterization of genomic regions affecting SC can contribute to the identification of diagnostic markers for reproductive performance and uncover molecular mechanisms underlying complex aspects of bovine reproductive biology. In this paper, we report a genome-wide scan for chromosome segments explaining differences in SC, using data of 861 Nellore bulls (Bos indicus) genotyped for over 777,000 single nucleotide polymorphisms. Loci that excel from the genome background were identified on chromosomes 4, 6, 7, 10, 14, 18 and 21. The majority of these regions were previously found to be associated with reproductive and body size traits in cattle. The signal on chromosome 14 replicates the pleiotropic quantitative trait locus encompassing PLAG1 that affects male fertility in cattle and stature in several species. Based on intensive literature mining, SP4, MAGEL2, SH3RF2, PDE5A and SNAI2 are proposed as novel candidate genes for SC, as they affect growth and testicular size in other animal models. These findings contribute to linking reproductive phenotypes to gene functions, and may offer new insights on the molecular biology of male fertility. PMID:24558400
Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).
Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano
2016-01-01
The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.
Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.)
Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano
2016-01-01
The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided. PMID:27077738
Maturation and sexual ontogeny in the spangled emperor Lethrinus nebulosus.
Marriott, R J; Jarvis, N D C; Adams, D J; Gallash, A E; Norriss, J; Newman, S J
2010-04-01
The reproductive development and sexual ontogeny of spangled emperor Lethrinus nebulosus populations in the Ningaloo Marine Park (NMP) were investigated to obtain an improved understanding of its evolved reproductive strategy and data for fisheries management. Evidence derived from (1) analyses of histological data and sampled sex ratios with size and age, (2) the identification of residual previtellogenic oocytes in immature and mature testes sampled during the spawning season and (3) observed changes in testis internal structure with increasing fish size and age, demonstrated a non-functional protogynous hermaphroditic strategy (or functional gonochorism). All the smallest and youngest fish sampled were female until they either changed sex to male at a mean 277.5 mm total length (L(T)) and 2.3 years old or remained female and matured at a larger mean L(T) (392.1 mm) and older age (3.5 years). Gonad masses were similar for males and females over the size range sampled and throughout long reproductive lives (up to a maximum estimated age of c. 31 years), which was another correlate of functional gonochorism. That the mean L(T) at sex change and female maturity were below the current minimum legal size (MLS) limit (410 mm) demonstrated that the current MLS limit is effective for preventing recreational fishers in the NMP retaining at least half of the juvenile males and females in their landed catches.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6–7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification. PMID:24086666
Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids
Watts, Jennifer L.
2016-01-01
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids. PMID:26848697
Borziak, Kirill; Álvarez-Fernández, Aitor; L. Karr, Timothy; Pizzari, Tommaso; Dorus, Steve
2016-01-01
Seminal fluid proteins (SFPs) are emerging as fundamental contributors to sexual selection given their role in post-mating reproductive events, particularly in polyandrous species where the ejaculates of different males compete for fertilisation. SFP identification however remains taxonomically limited and little is known about avian SFPs, despite extensive work on sexual selection in birds. We characterize the SF proteome of the polyandrous Red junglefowl, Gallus gallus, the wild species that gave rise to the domestic chicken. We identify 1,141 SFPs, including proteins involved in immunity and antimicrobial defences, sperm maturation, and fertilisation, revealing a functionally complex SF proteome. This includes a predominant contribution of blood plasma proteins that is conserved with human SF. By comparing the proteome of young and old males with fast or slow sperm velocity in a balanced design, we identify proteins associated with ageing and sperm velocity, and show that old males that retain high sperm velocity have distinct proteome characteristics. SFP comparisons with domestic chickens revealed both qualitative and quantitative differences likely associated with domestication and artificial selection. Collectively, these results shed light onto the functional complexity of avian SF, and provide a platform for molecular studies of fertility, reproductive ageing, and domestication. PMID:27804984
Borziak, Kirill; Álvarez-Fernández, Aitor; L Karr, Timothy; Pizzari, Tommaso; Dorus, Steve
2016-11-02
Seminal fluid proteins (SFPs) are emerging as fundamental contributors to sexual selection given their role in post-mating reproductive events, particularly in polyandrous species where the ejaculates of different males compete for fertilisation. SFP identification however remains taxonomically limited and little is known about avian SFPs, despite extensive work on sexual selection in birds. We characterize the SF proteome of the polyandrous Red junglefowl, Gallus gallus, the wild species that gave rise to the domestic chicken. We identify 1,141 SFPs, including proteins involved in immunity and antimicrobial defences, sperm maturation, and fertilisation, revealing a functionally complex SF proteome. This includes a predominant contribution of blood plasma proteins that is conserved with human SF. By comparing the proteome of young and old males with fast or slow sperm velocity in a balanced design, we identify proteins associated with ageing and sperm velocity, and show that old males that retain high sperm velocity have distinct proteome characteristics. SFP comparisons with domestic chickens revealed both qualitative and quantitative differences likely associated with domestication and artificial selection. Collectively, these results shed light onto the functional complexity of avian SF, and provide a platform for molecular studies of fertility, reproductive ageing, and domestication.
He, Lin; Li, Qing; Liu, Lihua; Wang, Yuanli; Xie, Jing; Yang, Hongdan; Wang, Qun
2015-01-01
The accessory gland (AG) is an important component of the male reproductive system of arthropods, its secretions enhance fertility, some AG proteins bind to the spermatozoa and affect its function and properties. Here we report the first comprehensive catalog of the AG secreted fluid during the mature phase of the Chinese mitten crab (Eriocheir sinensis). AG proteins were separated by one-dimensional gel electrophoresis and analyzed by reverse phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Altogether, the mass spectra of 1173 peptides were detected (1067 without decoy and contaminants) which allowed for the identification of 486 different proteins annotated upon the NCBI database (http://www.ncbi.nlm.nih.gov/) and our transcritptome dataset. The mass spectrometry proteomics data have been deposited at the ProteomeXchange with identifier PXD000700. An extensive description of the AG proteome will help provide the basis for a better understanding of a number of reproductive mechanisms, including potentially spermatophore breakdown, dynamic functional and morphological changes in sperm cells and sperm acrosin enzyme vitality. Thus, the comprehensive catalog of proteins presented here can serve as a valuable reference for future studies of sperm maturation and regulatory mechanisms involved in crustacean reproduction. PMID:26305468
Does a voucher program improve reproductive health service delivery and access in Kenya?
Njuki, Rebecca; Abuya, Timothy; Kimani, James; Kanya, Lucy; Korongo, Allan; Mukanya, Collins; Bracke, Piet; Bellows, Ben; Warren, Charlotte E
2015-05-23
Current assessments on Output-Based Aid (OBA) programs have paid limited attention to the experiences and perceptions of the healthcare providers and facility managers. This study examines the knowledge, attitudes, and experiences of healthcare providers and facility managers in the Kenya reproductive health output-based approach voucher program. A total of 69 in-depth interviews with healthcare providers and facility managers in 30 voucher accredited facilities were conducted. The study hypothesized that a voucher program would be associated with improvements in reproductive health service provision. Data were transcribed and analyzed by adopting a thematic framework analysis approach. A combination of inductive and deductive analysis was conducted based on previous research and project documents. Facility managers and providers viewed the RH-OBA program as a feasible system for increasing service utilization and improving quality of care. Perceived benefits of the program included stimulation of competition between facilities and capital investment in most facilities. Awareness of family planning (FP) and gender-based violence (GBV) recovery services voucher, however, remained lower than the maternal health voucher service. Relations between the voucher management agency and accredited facilities as well as existing health systems challenges affect program functions. Public and private sector healthcare providers and facility managers perceive value in the voucher program as a healthcare financing model. They recognize that it has the potential to significantly increase demand for reproductive health services, improve quality of care and reduce inequities in the use of reproductive health services. To improve program functioning going forward, there is need to ensure the benefit package and criteria for beneficiary identification are well understood and that the public facilities are permitted greater autonomy to utilize revenue generated from the voucher program.
2013-01-01
Background Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of high (≥ 1.7; n = 288) or low (≤ −2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs using the Sequenom MassARRAY® system. Three types of SNPs were evaluated: SNPs previously reported to be associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and production traits were analyzed. Results A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22 with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele substitution effects for several SNPs associated with production traits were in the opposite direction as DPR. Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits. Conclusion SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated with DPR are likely to be important for understanding the physiology of reproduction. Given the large number of SNPs associated with DPR that were not negatively associated with production traits, it should be possible to select for DPR without compromising production. PMID:23759029
[Causes and Factors of Male Infertility].
Kolesnikova, L I; Kolesnikov, S I; Kurashova, N A; Bairova, T A
2015-01-01
The preservation of reproductive health of the population is an important factor of demographic policy of the state. According to some authors from 14 to 30% of couples of reproductive age suffer from infertility, malefactor in such marriages is detected in more than half of the cases. As you know, in recent years there has been a significant deterioration in the main indicators of reproductive function of men. Increased the number of andrological diseases, morphological disorders of the male reproductive system, almost halved the production of sperm in men of reproductive age. The reason probably lies behind a whole range ofstressfactors, such as medical ignorance, uncontrolled and inappropriate use of medication, metabolic disturbances, lack of vitamins and minerals, the impact of industrial pollutants, as well as the growth of addictive disorders (alcoholism, smoking and drug addiction). The forms of infertility differ according to its etiology and severity from minor changes to complete spermatogenesis dysfunction of the gonads, and can also occur due to genetic disorders. The lack of analysis of the relationship between clinical and genetic-biochemical components in men with infertility makes it impossible to understand the pathogenesis of infertility and to assess the risks of male infertility. High level of current medicine does not always guarantee an identification of the cause of male infertility. The article analyzes data from the review of specialized literature on the diagnosis and etiopathogenesis of male infertility. Frequency and clinical signs of pathology of the male reproductive system depend on the combinatorial effects of environmental influences, manifested most often in mutually reinforcing effect. A combination of several, seemed to be imperceptible factors makes the risk of development of male reproductive pathology very high. This situation compels specialists to conduct comprehensive studies on the men reproductive potential.
Ye, Haifeng; Li, Xiaoyan; Zheng, Tuochen; Hu, Chuan; Pan, Zezheng; Huang, Jian; Li, Jia; Li, Wei; Zheng, Yuehui
2017-01-01
To improve the separation, identification and cultivation of ovarian germline stem cells (OGSCs), to clarify the relationship between the Hippo signaling pathway effector YAP1 and the proliferation and differentiation of OGSCs in vitro and to identify the major contribution of Hippo signaling to ovarian function. Two-step enzymatic separation processes and magnetic separation were used to isolate and identify OGSCs by determining the expression of Mvh, Oct4, Nanog, Fragilis and Stella markers. Then, YAP1, as the main effector molecule in the Hippo signaling pathway, was chosen as the target gene of the study. Lentivirus containing overexpressed YAP1 or a YAP1-targeted shRNA was transduced into OGSCs. The effects of modulating the Hippo signaling pathway on the proliferation, differentiation, reproduction and endocrine function of ovaries were observed by microinjecting the lentiviral vectors with overexpressed YAP1 or YAP1 shRNA into infertile mouse models or natural mice of reproductive age. (1) The specific expression of Mvh, Oct4, Nanog, Fragilis and Stella markers was observed in isolated stem cells. Thus, the isolated cells were preliminarily identified as OGSCs. (2) The co-expression of LATS2, MST1, YAP1 and MVH was observed in isolated OGSCs. Mvh and Oct4 expression levels were significantly increased in OGSCs overexpressing YAP1 compared to GFP controls. Consistently, Mvh and Oct4 levels were significantly decreased in cells expressing YAP1-targeted shRNA. (3) After 14-75 days of YAP1 overexpression in infertile mouse models, we detected follicle regeneration in ovaries, the activation of primordial follicles and increased birth rate, accompanied by increasing levels of E2 and FSH. (4) However, we detected decreasing follicles in ovaries, lower birth rate, and decreasing E2 and FSH in serum from healthy mice of reproductive age following YAP1 shRNA expression. Methods for the isolation, identification and culture of OGSCs were successfully established. Further results indicate that isolated OGSCs can specifically recognize Hippo signaling molecules and that manipulation of YAP1 expression can be used to regulate the proliferation and differentiation of OGSCs, as well as ovarian function in mice. This study suggests that the Hippo signaling pathway may represent a new molecular target for the regulation of mouse ovarian functional remodeling. © 2017 The Author(s)Published by S. Karger AG, Basel.
Identification and preparation of sperm for ART.
Mehta, Akanksha; Sigman, Mark
2014-02-01
State-of-the-art techniques attempt to select sperm with the best functional capacity to produce pregnancy and, subsequently, healthy offspring. A variety of approaches are now being evaluated. Future approaches may allow for selection of sperm based on sperm DNA integrity, degree of aneuploidy, or apoptosis. Other approaches involve attempting to improve the in vitro function of sperm with exposure to compounds such as pentoxifylline or platelet activating factor. In the future, we are likely to see significant improvements in the ability to select the best sperm for assisted-reproductive-technology procedures and the use of these procedures in routine clinical practice. Copyright © 2014 Elsevier Inc. All rights reserved.
Phenology of brown marmorated stink bug described using female reproductive development
USDA-ARS?s Scientific Manuscript database
Identification of insect seasonality is frequently estimated through temperature-based degree-day models. We expand on the use of a temperature-based process defining timing of life stages through the incorporation of female reproductive physiology for the invasive pentatomid species Halyomorpha hal...
USDA-ARS?s Scientific Manuscript database
Reproductive success is an important component of commercial beef cattle production, and identification of DNA markers with predictive merit for reproductive success would facilitate accurate prediction of mean daughter pregnancy rate, enabling effective selection of bulls to improve female fertilit...
Very small embryonic-like stem cells: implications in reproductive biology.
Bhartiya, Deepa; Unni, Sreepoorna; Parte, Seema; Anand, Sandhya
2013-01-01
The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs) whereas primordial follicles (PFs) are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs) in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.
Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J
2017-01-01
AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%-80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.
Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J
2017-01-01
AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%–80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied. PMID:27678462
Khan, Faheem Ahmed; Liu, Hui; Zhou, Hao; Wang, Kai; Qamar, Muhammad Tahir Ul; Pandupuspitasari, Nuruliarizki Shinta; Shujun, Zhang
2017-01-01
The biology of sperm, its capability of fertilizing an egg and its role in sex ratio are the major biological questions in reproductive biology. To answer these question we integrated X and Y chromosome transcriptome across different species: Bos taurus and Sus scrofa and identified reproductive driver genes based on Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. Our strategy resulted in 11007 and 10445 unique genes consisting of 9 and 11 reproductive modules in Bos taurus and Sus scrofa, respectively. The consensus module calculation yields an overall 167 overlapped genes which were mapped to 846 DEGs in Bos taurus to finally get a list of 67 dual feature genes. We develop gene co-expression network of selected 67 genes that consists of 58 nodes (27 down-regulated and 31 up-regulated genes) enriched to 66 GO biological process (BP) including 6 GO annotations related to reproduction and two KEGG pathways. Moreover, we searched significantly related TF (ISRE, AP1FJ, RP58, CREL) and miRNAs (bta-miR-181a, bta-miR-17-5p, bta-miR-146b, bta-miR-146a) which targeted the genes in co-expression network. In addition we performed genetic analysis including phylogenetic, functional domain identification, epigenetic modifications, mutation analysis of the most important reproductive driver genes PRM1, PPP2R2B and PAFAH1B1 and finally performed a protein docking analysis to visualize their therapeutic and gene expression regulation ability. PMID:28903352
Leptin and Reproduction: Past Milestones, Present Undertakings and Future Endeavors
Chehab, Farid F.
2014-01-01
The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B and dynorphin and that could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that AgRP/NPY neurons project onto GnRH and kisspeptin neurons, allowing a crosstalk between food intake and reproduction. Finally, whereas puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. Mechanisms underlying leptin resistance in pregnancy have lagged, however the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the next decade to shed new light on these complex and essential pathways. PMID:25118207
Zafra, Adoración; Carmona, Rosario; Traverso, José A.; Hancock, John T.; Goldman, Maria H. S.; Claros, M. Gonzalo; Hiscock, Simon J.; Alche, Juan D.
2017-01-01
The olive tree is a crop of high socio-economical importance in the Mediterranean area. Sexual reproduction in this plant is an essential process, which determines the yield. Successful fertilization is mainly favored and sometimes needed of the presence of pollen grains from a different cultivar as the olive seizes a self-incompatibility system allegedly determined of the sporophytic type. The purpose of the present study was to identify key gene products involved in the function of olive pollen and pistil, in order to help elucidate the events and signaling processes, which happen during the courtship, pollen grain germination, and fertilization in olive. The use of subtractive SSH libraries constructed using, on the one hand one specific stage of the pistil development with germinating pollen grains, and on the other hand mature pollen grains may help to reveal the specific transcripts involved in the cited events. Such libraries have also been created by subtracting vegetative mRNAs (from leaves), in order to identify reproductive sequences only. A variety of transcripts have been identified in the mature pollen grains and in the pistil at the receptive stage. Among them, those related to defense, transport and oxidative metabolism are highlighted mainly in the pistil libraries where transcripts related to stress, and response to biotic and abiotic stimulus have a prominent position. Extensive lists containing information as regard to the specific transcripts determined for each stage and tissue are provided, as well as functional classifications of these gene products. Such lists were faced up to two recent datasets obtained in olive after transcriptomic and genomic approaches. The sequences and the differential expression level of the SSH-transcripts identified here, highly matched the transcriptomic information. Moreover, the unique presence of a representative number of these transcripts has been validated by means of qPCR approaches. The construction of SSH libraries using pistil and pollen, considering the high interaction between male-female counterparts, allowed the identification of transcripts with important roles in stigma physiology. The functions of many of the transcripts obtained are intimately related, and most of them are of pivotal importance in defense, pollen-stigma interaction and signaling. PMID:28955364
NASA Astrophysics Data System (ADS)
Carette, Noëlle; Engelkamp, Hans; Akpa, Eric; Pierre, Sebastien J.; Cameron, Neil R.; Christianen, Peter C. M.; Maan, Jan C.; Thies, Jens C.; Weberskirch, Ralf; Rowan, Alan E.; Nolte, Roeland J. M.; Michon, Thierry; van Hest, Jan C. M.
2007-04-01
Virus particles are probably the most precisely defined nanometre-sized objects that can be formed by protein self-assembly. Although their natural function is the storage and transport of genetic material, they have more recently been applied as scaffolds for mineralization and as containers for the encapsulation of inorganic compounds. The reproductive power of viruses has been used to develop versatile analytical methods, such as phage display, for the selection and identification of (bio)active compounds. To date, the combined use of self-assembly and reproduction has not been used for the construction of catalytic systems. Here we describe a self-assembled system based on a plant virus that has its coat protein genetically modified to provide it with a lipase enzyme. Using single-object and bulk catalytic studies, we prove that the virus-anchored lipase molecules are catalytically active. This anchored biocatalyst, unlike man-made supported catalysts, has the capability to reproduce itself in vivo, generating many independent catalytically active copies.
Sun, Haiyan; Pattnaik, Asit K; Osorio, Fernando A; Vu, Hiep L X
2016-12-01
We recently generated a fully synthetic porcine reproductive and respiratory syndrome virus strain (designated as PRRSV-CON), which confers unprecedented levels of heterologous protection. We report herein that the synthetic PRRSV-CON possesses a unique phenotype in that it induces type-I interferons (IFNs) instead of suppressing these cytokines as most of the naturally occurring PRRSV isolates do. Through gain- and loss- of-function studies, the IFN-inducing phenotype of PRRSV-CON was mapped to the 3.3kb genomic fragment encoding three viral nonstructural proteins: nsp1α, nsp1β and the N-terminal part of nsp2. Further studies indicated that a cooperation among these 3 proteins was required for effective induction of IFNs. Collectively, this study constitutes the first step toward understanding the mechanisms by which the synthetic PRRSV-CON confers heterologous protection. Copyright © 2016 Elsevier Inc. All rights reserved.
Laprise, Shari L
2010-06-01
The "holy grail" of regenerative medicine is the identification of an undifferentiated progenitor cell that is pluripotent, patient specific, and ethically unambiguous. Such a progenitor cell must also be able to differentiate into functional, transplantable tissue, while avoiding the risks of immune rejection. With reports detailing aberrant genomic imprinting associated with assisted reproductive technologies (ART) and reproductive cloning, the idea that human embryonic stem cells (hESCs) derived from surplus in vitro fertilized embryos or nuclear transfer ESCs (ntESCs) harvested from cloned embryos may harbor dangerous epigenetic errors has gained attention. Various progenitor cell sources have been proposed for human therapy, from hESCs to ntESCs, and from adult stem cells to induced pluripotent stem cells (iPS and piPS cells). This review highlights the advantages and disadvantages of each of these technologies, with particular emphasis on epigenetic stability.
Slama, Rémy; Bourguignon, Jean-Pierre; Demeneix, Barbara; Ivell, Richard; Panzica, Giancarlo; Kortenkamp, Andreas; Zoeller, R Thomas
2016-10-01
Endocrine disruptors (EDs) are defined by the World Health Organization (WHO) as exogenous compounds or mixtures that alter function(s) of the endocrine system and consequently cause adverse effects in an intact organism, or its progeny, or (sub)populations. European regulations on pesticides, biocides, cosmetics, and industrial chemicals require the European Commission to establish scientific criteria to define EDs. We address the scientific relevance of four options for the identification of EDs proposed by the European Commission. Option 1, which does not define EDs and leads to using interim criteria unrelated to the WHO definition of EDs, is not relevant. Options 2 and 3 rely on the WHO definition of EDs, which is widely accepted by the scientific community, with option 3 introducing additional categories based on the strength of evidence (suspected EDs and endocrine-active substances). Option 4 adds potency to the WHO definition, as a decision criterion. We argue that potency is dependent on the adverse effect considered and is scientifically ambiguous, and note that potency is not used as a criterion to define other particularly hazardous substances such as carcinogens and reproductive toxicants. The use of potency requires a context that goes beyond hazard identification and corresponds to risk characterization, in which potency (or, more relevantly, the dose-response function) is combined with exposure levels. There is scientific agreement regarding the adequacy of the WHO definition of EDs. The potency concept is not relevant to the identification of particularly serious hazards such as EDs. As is common practice for carcinogens, mutagens, and reproductive toxicants, a multi-level classification of ED based on the WHO definition, and not considering potency, would be relevant (corresponding to option 3 proposed by the European Commission). Slama R, Bourguignon JP, Demeneix B, Ivell R, Panzica G, Kortenkamp A, Zoeller RT. 2016. Scientific issues relevant to setting regulatory criteria to identify endocrine disrupting substances in the European Union. Environ Health Perspect 124:1497-1503; http://dx.doi.org/10.1289/EHP217.
Slama, Rémy; Bourguignon, Jean-Pierre; Demeneix, Barbara; Ivell, Richard; Panzica, Giancarlo; Kortenkamp, Andreas; Zoeller, R. Thomas
2016-01-01
Background: Endocrine disruptors (EDs) are defined by the World Health Organization (WHO) as exogenous compounds or mixtures that alter function(s) of the endocrine system and consequently cause adverse effects in an intact organism, or its progeny, or (sub)populations. European regulations on pesticides, biocides, cosmetics, and industrial chemicals require the European Commission to establish scientific criteria to define EDs. Objectives: We address the scientific relevance of four options for the identification of EDs proposed by the European Commission. Discussion: Option 1, which does not define EDs and leads to using interim criteria unrelated to the WHO definition of EDs, is not relevant. Options 2 and 3 rely on the WHO definition of EDs, which is widely accepted by the scientific community, with option 3 introducing additional categories based on the strength of evidence (suspected EDs and endocrine-active substances). Option 4 adds potency to the WHO definition, as a decision criterion. We argue that potency is dependent on the adverse effect considered and is scientifically ambiguous, and note that potency is not used as a criterion to define other particularly hazardous substances such as carcinogens and reproductive toxicants. The use of potency requires a context that goes beyond hazard identification and corresponds to risk characterization, in which potency (or, more relevantly, the dose–response function) is combined with exposure levels. Conclusions: There is scientific agreement regarding the adequacy of the WHO definition of EDs. The potency concept is not relevant to the identification of particularly serious hazards such as EDs. As is common practice for carcinogens, mutagens, and reproductive toxicants, a multi-level classification of ED based on the WHO definition, and not considering potency, would be relevant (corresponding to option 3 proposed by the European Commission). Citation: Slama R, Bourguignon JP, Demeneix B, Ivell R, Panzica G, Kortenkamp A, Zoeller RT. 2016. Scientific issues relevant to setting regulatory criteria to identify endocrine disrupting substances in the European Union. Environ Health Perspect 124:1497–1503; http://dx.doi.org/10.1289/EHP217 PMID:27108591
Xu, Xiao Hui; Chen, Hao; Sang, Ya Lin; Wang, Fang; Ma, Jun Ping; Gao, Xin-Qi; Zhang, Xian Sheng
2012-07-02
In plants, pollination is a critical step in reproduction. During pollination, constant communication between male pollen and the female stigma is required for pollen adhesion, germination, and tube growth. The detailed mechanisms of stigma-mediated reproductive processes, however, remain largely unknown. Maize (Zea mays L.), one of the world's most important crops, has been extensively used as a model species to study molecular mechanisms of pollen and stigma interaction. A comprehensive analysis of maize silk transcriptome may provide valuable information for investigating stigma functionality. A comparative analysis of expression profiles between maize silk and dry stigmas of other species might reveal conserved and diverse mechanisms that underlie stigma-mediated reproductive processes in various plant species. Transcript abundance profiles of mature silk, mature pollen, mature ovary, and seedling were investigated using RNA-seq. By comparing the transcriptomes of these tissues, we identified 1,427 genes specifically or preferentially expressed in maize silk. Bioinformatic analyses of these genes revealed many genes with known functions in plant reproduction as well as novel candidate genes that encode amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. In addition, comparison of gene sets specifically or preferentially expressed in stigmas of maize, rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana [L.] Heynh.) identified a number of homologous genes involved either in pollen adhesion, hydration, and germination or in initial growth and penetration of pollen tubes into the stigma surface. The comparison also indicated that maize shares a more similar profile and larger number of conserved genes with rice than with Arabidopsis, and that amino acid and lipid transport-related genes are distinctively overrepresented in maize. Many of the novel genes uncovered in this study are potentially involved in stigma-mediated reproductive processes, including genes encoding amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. The data also suggest that dry stigmas share similar mechanisms at early stages of pollen-stigma interaction. Compared with Arabidopsis, maize and rice appear to have more conserved functional mechanisms. Genes involved in amino acid and lipid transport may be responsible for mechanisms in the reproductive process that are unique to maize silk.
2012-01-01
Background In plants, pollination is a critical step in reproduction. During pollination, constant communication between male pollen and the female stigma is required for pollen adhesion, germination, and tube growth. The detailed mechanisms of stigma-mediated reproductive processes, however, remain largely unknown. Maize (Zea mays L.), one of the world’s most important crops, has been extensively used as a model species to study molecular mechanisms of pollen and stigma interaction. A comprehensive analysis of maize silk transcriptome may provide valuable information for investigating stigma functionality. A comparative analysis of expression profiles between maize silk and dry stigmas of other species might reveal conserved and diverse mechanisms that underlie stigma-mediated reproductive processes in various plant species. Results Transcript abundance profiles of mature silk, mature pollen, mature ovary, and seedling were investigated using RNA-seq. By comparing the transcriptomes of these tissues, we identified 1,427 genes specifically or preferentially expressed in maize silk. Bioinformatic analyses of these genes revealed many genes with known functions in plant reproduction as well as novel candidate genes that encode amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. In addition, comparison of gene sets specifically or preferentially expressed in stigmas of maize, rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana [L.] Heynh.) identified a number of homologous genes involved either in pollen adhesion, hydration, and germination or in initial growth and penetration of pollen tubes into the stigma surface. The comparison also indicated that maize shares a more similar profile and larger number of conserved genes with rice than with Arabidopsis, and that amino acid and lipid transport-related genes are distinctively overrepresented in maize. Conclusions Many of the novel genes uncovered in this study are potentially involved in stigma-mediated reproductive processes, including genes encoding amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. The data also suggest that dry stigmas share similar mechanisms at early stages of pollen-stigma interaction. Compared with Arabidopsis, maize and rice appear to have more conserved functional mechanisms. Genes involved in amino acid and lipid transport may be responsible for mechanisms in the reproductive process that are unique to maize silk. PMID:22748054
Grossmann, Jonas; Fernández, Helena; Chaubey, Pururawa M; Valdés, Ana E; Gagliardini, Valeria; Cañal, María J; Russo, Giancarlo; Grossniklaus, Ueli
2017-01-01
Performing proteomic studies on non-model organisms with little or no genomic information is still difficult. However, many specific processes and biochemical pathways occur only in species that are poorly characterized at the genomic level. For example, many plants can reproduce both sexually and asexually, the first one allowing the generation of new genotypes and the latter their fixation. Thus, both modes of reproduction are of great agronomic value. However, the molecular basis of asexual reproduction is not well understood in any plant. In ferns, it combines the production of unreduced spores (diplospory) and the formation of sporophytes from somatic cells (apogamy). To set the basis to study these processes, we performed transcriptomics by next-generation sequencing (NGS) and shotgun proteomics by tandem mass spectrometry in the apogamous fern D. affinis ssp. affinis . For protein identification we used the public viridiplantae database (VPDB) to identify orthologous proteins from other plant species and new transcriptomics data to generate a "species-specific transcriptome database" (SSTDB). In total 1,397 protein clusters with 5,865 unique peptide sequences were identified (13 decoy proteins out of 1,410, protFDR 0.93% on protein cluster level). We show that using the SSTDB for protein identification increases the number of identified peptides almost four times compared to using only the publically available VPDB. We identified homologs of proteins involved in reproduction of higher plants, including proteins with a potential role in apogamy. With the increasing availability of genomic data from non-model species, similar proteogenomics approaches will improve the sensitivity in protein identification for species only distantly related to models.
John E. Major; Alex Mosseler; Kurt H. Johnsen; Om P. Rajora; Debby C. Barsi; K.-H. Kim; J.-M. Park; Moira Campbell
2005-01-01
Hybridization between red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) BSP), lateand early-successional species, respectively, has resulted in identification and management problems. We investigated the nature and magnitude of reproductive and life-cycle success barriers in controlled intra- and inter-...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Early identification of technical data to be furnished to the Government with restrictions on use, reproduction or disclosure. 227... 227.7103-3 Early identification of technical data to be furnished to the Government with restrictions...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Early identification of technical data to be furnished to the Government with restrictions on use, reproduction or disclosure. 227... 227.7103-3 Early identification of technical data to be furnished to the Government with restrictions...
Impact of the environment on reproductive health.
1991-01-01
The WHO workshop on the impact of the environment on reproductive health is summarized. Topics include the nature of environmental factors affecting reproductive health, environmental factors blamed for declining sperm quantity and quality, the effects of natural and man-made disasters on reproductive health, chemical pollutants, how the environment damages reproductive health, and research needs for better research methodologies and surveillance data. Recommendations are made to: 1) promote international research collaboration with an emphasis on consistency of methodological approaches for assessing developmental and reproductive toxicity, on development of improved surveillance systems and data bases, an strengthening international disaster alert and evaluation systems; 2) promote research capabilities for multidisciplinary studies, for interactive studies of the environment and cellular processes, and for expansion of training and education; and 3) take action on priority problems of exposure to chemical, physical, and biological agents, of exposure to pesticides among specific populations, and of inadequate screening methods for identification of environmental chemicals. The costs of environmental injury to reproduction include subfertility, intrauterine growth retardation, spontaneous abortion, and various birth defects. Developed country's primary threats are from chemical pollution, radiation, and stress. There is a large gap in knowledge. Caution is urged in understanding the direct relationship between environmental causes and infertility. Sexual health is difficult to assess and research is suggested. Exposure to excessive vitamin A and toxic chemicals are cited as agents probably having serious effects on malformations. Sperm quality has declined over the decades; there is speculation about the potential causes. The effects of radiation such as at Chernobyl are described. Toxic chemical exposure such as in Bhopal, India killed thousands. Neurological damage is reported for fetuses and infants exposed to methyl mercury. There is the beginning of evidence that complications of pregnancy may be related to pollution levels surrounding industrial plants. Reproductive health is affected through chromosome damage and cell destruction, prenatal death, altered growth, fetal abnormalities, postnatal death, functional learning deficits, and premature aging.
Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A; Lyons, Russell E; Salin, Krishna R; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B
2016-05-07
The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world's most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium.
Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A.; Lyons, Russell E.; Salin, Krishna R.; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B.
2016-01-01
The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium. PMID:27164098
Fanson, Kerry V; Parrott, Marissa L
2015-11-01
This article is part of a Special Issue "SBN 2014". Chronic stress is known to inhibit female reproductive function. Consequently, it is often assumed that glucocorticoid (GC) concentrations should be negatively correlated with reproductive success because of the role they play in stress physiology. In contrast, a growing body of evidence indicates that GCs play an active role in promoting reproductive function. It is precisely because GCs are so integral to the entire process that disruptions to adrenal activity have negative consequences for reproduction. The goal of this paper is to draw attention to the increasing evidence showing that increases in adrenal activity are important for healthy female reproduction. Furthermore, we outline several hypotheses about the functional role(s) that GCs may play in mediating reproduction and argue that comparative studies between eutherian and marsupial mammals, which exhibit some pronounced differences in reproductive physiology, may be particularly useful for testing different hypotheses about the functional role of GCs in reproduction. Much of our current thinking about GCs and reproduction comes from research involving stress-induced levels of GCs and has led to broad assumptions about the effects of GCs on reproduction. Unfortunately, this has left a gaping hole in our knowledge about basal GC levels and how they may influence reproductive function, thereby preventing a broader understanding of adrenal physiology and obscuring potential solutions for reproductive dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.
Mowry, Annelise V; Kavazis, Andreas N; Sirman, Aubrey E; Potts, Wayne K; Hood, Wendy R
2016-01-01
Reproduction is thought to come at a cost to longevity. Based on the assumption that increased energy expenditure during reproduction is associated with increased free-radical production by mitochondria, oxidative damage has been suggested to drive this trade-off. We examined the impact of reproduction on liver mitochondrial function by utilizing post-reproductive and non-reproductive house mice (Mus musculus) living under semi-natural conditions. The age-matched post-reproductive and non-reproductive groups were compared after the reproductive females returned to a non-reproductive state, so that both groups were in the same physiological state at the time the liver was collected. Despite increased oxidative damage (p = 0.05) and elevated CuZnSOD (p = 0.002) and catalase (p = 0.04) protein levels, reproduction had no negative impacts on the respiratory function of liver mitochondria. Specifically, in a post-reproductive, maintenance state the mitochondrial coupling (i.e., respiratory control ratio) of mouse livers show no negative impacts of reproduction. In fact, there was a trend (p = 0.059) to suggest increased maximal oxygen consumption by liver mitochondria during the ADP stimulated state (i.e., state 3) in post-reproduction. These findings suggest that oxidative damage may not impair mitochondrial respiratory function and question the role of mitochondria in the trade-off between reproduction and longevity. In addition, the findings highlight the importance of quantifying the respiratory function of mitochondria in addition to measuring oxidative damage.
Kavlock, R J; Daston, G P; DeRosa, C; Fenner-Crisp, P; Gray, L E; Kaattari, S; Lucier, G; Luster, M; Mac, M J; Maczka, C; Miller, R; Moore, J; Rolland, R; Scott, G; Sheehan, D M; Sinks, T; Tilson, H A
1996-01-01
The hypothesis has been put forward that humans and wildlife species adverse suffered adverse health effects after exposure to endocrine-disrupting chemicals. Reported adverse effects include declines in populations, increases in cancers, and reduced reproductive function. The U.S. Environmental Protection Agency sponsored a workshop in April 1995 to bring together interested parties in an effort to identify research gaps related to this hypothesis and to establish priorities for future research activities. Approximately 90 invited participants were organized into work groups developed around the principal reported health effects-carcinogenesis, reproductive toxicity, neurotoxicity, and immunotoxicity-as well as along the risk assessment paradigm-hazard identification, dose-response assessment, exposure assessment, and risk characterization. Attention focused on both ecological and human health effects. In general, group felt that the hypothesis warranted a concerted research effort to evaluate its validity and that research should focus primarily on effects on development of reproductive capability, on improved exposure assessment, and on the effects of mixtures. This report summarizes the discussions of the work groups and details the recommendations for additional research. PMID:8880000
Chehab, Farid F
2014-10-01
The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin-responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B, and dynorphin and these could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that agouti-related protein/neuropeptide Y neurons project onto GnRH and kisspeptin neurons, allowing for a crosstalk between food intake and reproduction. Finally, while puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. The mechanisms underlying leptin resistance in pregnancy have lagged; however, the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the following decade to shed new light on these complex and essential pathways. © 2014 Society for Endocrinology.
Witorsch, Raphael J
2016-01-01
This article reviews the influence of the hypothalamo-pituitary-adrenocortical (HPA) axis on mammalian male and female reproduction and development of offspring and its potential impact on the identification of endocrine disruptive chemicals by in vivo assays. In the adult male rat and baboon, stress suppresses testosterone secretion via a direct inhibitory effect of elevated glucocorticoids on Leydig cells. In adult female sheep, stress disrupts reproductive function via multi-stage mechanisms involving glucocorticoid-mediated suppression of LH secretion, LH action on the ovary and the action of estradiol on its target cells (e.g., uterus). While physiological concentrations of endogenous glucocorticoids are supportive of fetal development, excessive glucocorticoids in utero (i.e., maternal stress) adversely affect mammalian offspring by "programing" abnormalities that are primarily manifest postpartum. The influence of stress on reproduction and development can also be mediated by 11β-hydroxysteroid dehydrogenase (HSD), a bi-directional oxidative:reductive pathway, which governs the balance between biologically active (reduced) endogenous glucocorticoid and inactive (oxidized) metabolites. This pathway is mediated primarily by two isozymes, 11β - HSD1 (reductase) and 11β-HSD2 (oxidase) which act both in an intracrine (intracellular) and endocrine (systemic) fashion. The 11β-HSD pathway appears to play a variety of physiological roles in mammalian reproduction and development and is a target for selected xenobiotics. The effects of the HPA axis on mammalian reproduction and development are potential confounders for in vivo bioassays in rodents employed to identify endocrine disruptive chemicals. Accordingly, consideration of the impact of the HPA axis should be incorporated into the design of bioassays for evaluating endocrine disruptors.
Novel Use of Ultrasound to Teach Reproductive System Physical Examination Skills and Pelvic Anatomy.
Parikh, Tejal; Czuzak, Maria; Bui, Naomi; Wildner, Corinna; Koch, Bryna; Leko, Elizabeth; Rappaport, William; Adhikari, Srikar; Gordon, Paul; Gura, Mike; Ellis, Susan
2018-03-01
To determine whether integration of ultrasound (US) into a reproductive system examination clinical skills lab can increase confidence in palpating key reproductive structures during testicular and bimanual pelvic examinations, reduce anxiety about conducting testicular and bimanual pelvic examinations, and improve performance on multiple-choice questions based on structure identification using US images. Second-year medical students enrolled in the Life Cycle preclinical course participated in this cross-sectional study. A single learning activity was developed to pair the teaching of the reproductive system physical examination with the use of US in the clinical skills lab. The evaluation of the teaching session consisted of a pre-post analysis of student self-reported knowledge, confidence, and anxiety. The response rate for the pre survey was 82% (n = 96), and the rate for the post survey was 79% (n = 93). Students' confidence in their ability to identify reproductive system structures on US images increased from pre to post survey. Their confidence in their ability to palpate the epididymis, uterus, and ovary during a physical examination improved, and their anxiety about conducting testicular and bimanual pelvic examinations decreased. Student satisfaction with the session was high. Students' performance on multiple-choice questions based on structure identification using US images was at 96% or higher. Our study findings support the integration of US into a reproductive system examination clinical skills lab. Medical students acquire competency and confidence in reproductive system physical examination skills with US integration. © 2017 by the American Institute of Ultrasound in Medicine.
Identification and Biological Evaluation of Coactivator Binding Inhibitors for the Estrogen Receptor
ERIC Educational Resources Information Center
Gunther, Jillian Rebecca
2009-01-01
The physiologic effects of estrogen action through the estrogen receptor (ER) are widespread, as this hormone exerts actions in both reproductive (e.g., uterus) and non-reproductive (e.g., bone, brain) tissues in both men and women. As such, the regulation of the activity of this ligand-activated transcription factor is highly relevant to the…
Sperm Proteome: What Is on the Horizon?
Mohanty, Gayatri; Swain, Nirlipta; Samanta, Luna
2015-06-01
As the mammalian spermatozoa transcends from the testis to the end of the epididymal tubule, the functionally incompetent spermatozoa acquires its fertilizing capability. Molecular changes in the spermatozoa at the posttesticular level concern qualitative and quantitative modifications of proteins along with their sugar moieties and membranous lipids mostly associated with motility, egg binding, and penetration processes. Proteomic studies have identified numerous sperm-specific proteins, and recent reports have provided a further understanding of their function with respect to male fertility. High-throughput techniques such as mass spectrometry have shown drastic potential for the identification and study of sperm proteins. In fact, compelling evidence has provided that proteins are critically important in cellular remodeling event and that aberrant expression is associated with pronounced defects in sperm function. This review highlights the posttesticular functional transformation in the epididymis and female reproductive tract with due emphasis on proteomics. © The Author(s) 2014.
Schiefthaler, Ursula; Balasubramanian, Sureshkumar; Sieber, Patrick; Chevalier, David; Wisman, Ellen; Schneitz, Kay
1999-01-01
Sexual reproduction is a salient aspect of plants, and elaborate structures, such as the flowers of angiosperms, have evolved that aid in this process. Within the flower the corresponding sex organs, the anther and the ovule, form the male and female sporangia, the pollen sac and the nucellus, respectively. However, despite their central role for sexual reproduction little is known about the mechanisms that control the establishment of these important structures. Here we present the identification and molecular characterization of the NOZZLE (NZZ) gene in the flowering plant Arabidopsis thaliana. In several nzz mutants the nucellus and the pollen sac fail to form. It indicates that NZZ plays an early and central role in the development of both types of sporangia and that the mechanisms controlling these processes share a crucial factor. In addition, NZZ may have an early function during male and female sporogenesis as well. The evolutionary aspects of these findings are discussed. NZZ encodes a putative protein of unknown function. However, based on sequence analysis we speculate that NZZ is a nuclear protein and possibly a transcription factor. PMID:10500234
NASA Astrophysics Data System (ADS)
Tseng, Po-Hao; Hsu, Kai-Chieh; Lin, Yu-Yu; Lee, Feng-Min; Lee, Ming-Hsiu; Lung, Hsiang-Lan; Hsieh, Kuang-Yeu; Chung Wang, Keh; Lu, Chih-Yuan
2018-04-01
A high performance physically unclonable function (PUF) implemented with WO3 resistive random access memory (ReRAM) is presented in this paper. This robust ReRAM-PUF can eliminated bit flipping problem at very high temperature (up to 250 °C) due to plentiful read margin by using initial resistance state and set resistance state. It is also promised 10 years retention at the temperature range of 210 °C. These two stable resistance states enable stable operation at automotive environments from -40 to 125 °C without need of temperature compensation circuit. The high uniqueness of PUF can be achieved by implementing a proposed identification (ID)-generation method. Optimized forming condition can move 50% of the cells to low resistance state and the remaining 50% remain at initial high resistance state. The inter- and intra-PUF evaluations with unlimited separation of hamming distance (HD) are successfully demonstrated even under the corner condition. The number of reproduction was measured to exceed 107 times with 0% bit error rate (BER) at read voltage from 0.4 to 0.7 V.
Mudrik, E A; Kashentseva, T A; Gamburg, E A; Politov, D V
2014-01-01
The genetic diversity of the founders of an artificial population of the Siberian crane Grus leucogeranus Pallas (rare species of cranes) was characterized using 10 microsatellite loci. It was established that the allelic diversity (on average, 5.9 alleles per locus) and genic (H(o) = 0.739) diversity of the Siberian crane is rather high and comparable with the estimations for natural populations of different crane species. Genetic passportization of the birds (119 individuals) from the register of the Siberian crane International Studbook was carried out at the initial stage. The efficiency of genetic passportization for individual identification, identification of the origin, paternity analysis, and exclusion of inbreeding was demonstrated in Siberian cranes under natural mating and artificial insemination. Cases of natural reproduction in pairs of Siberian cranes imprinted to the human and continuous storage of spermatozoa in the female reproductive ducts were registered.
Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia
2013-01-01
Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant evidence of interaction of EDCs with reproductive pathways that are under the control of the endocrine system of L. stagnalis.
Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia
2013-01-01
Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant evidence of interaction of EDCs with reproductive pathways that are under the control of the endocrine system of L. stagnalis. PMID:24363793
ERIC Educational Resources Information Center
Ball, Victoria; Moore, Kristin A.
2008-01-01
The reproductive health of American adolescents has been, and continues to be, a matter of serious concern. America's teen birth rate--already the highest among developed nations--is again on the rise, and rates of sexually transmitted diseases among American teens are very high. As such, the development and identification of effective…
Obesity and reproductive function: a review of the evidence.
Klenov, Violet E; Jungheim, Emily S
2014-12-01
Over the last decade, the evidence linking obesity to impaired reproductive function has grown. In this article, we review this evidence and discuss the underlying pathophysiology. Obese women are less likely than normal-weight women to achieve pregnancy. Female obesity adversely affects reproductive function through alterations in the hypothalamic-pituitary-ovarian axis, oocyte quality, and endometrial receptivity. It is unclear which mechanism contributes the most to subfecundity, and it is likely a cumulative process. Emerging data highlight the contribution of male obesity to impaired reproductive function and that couple obesity has synergistic adverse effects. Once pregnant, obese women are at higher risk for adverse pregnancy outcomes. Weight loss improves reproductive potential in obese patients. As obese women surpass 35 years of age, age may be more important than body mass index in determining reproductive potential. Obstetrician gynecologists need to be aware of the negative impact of obesity on reproductive function so that they appropriately counsel their patients. Further work is needed to clarify the underlying pathophysiology responsible for adverse effects of obesity on reproduction so that novel treatment approaches may be developed.
Rotllant, Guiomar; Wade, Nicholas M; Arnold, Stuart J; Coman, Gregory J; Preston, Nigel P; Glencross, Brett D
2015-08-01
The aims of this study were to identify genes involved in reproduction and lipid pathway metabolism in Penaeus monodon and correlate their expression with reproductive performance. Samples of the hepatopancreas and ovaries were obtained from a previous study of the reproductive performance of wild and domesticated P. monodon broodstock. Total mRNA from the domesticated broodstock was used to create two next generation sequencing cDNA libraries enabling the identification of 11 orthologs of key genes in reproductive and nutritional metabolic pathways in P. monodon. These were identified from the library of de novo assembled contigs, including the description of 6 newly identified genes. Quantitative RT-PCR of these genes in the hepatopancreas prior to spawning showed that the domesticated mature females significantly showed higher expression of the Pm Elovl4, Pm COX and Pm SUMO genes. The ovaries of domesticated females had a significantly decreased expression of the Pm Elovl4 genes. In the ovaries of newly spawned females, a significant correlation was observed between hepatosomatic index and the expression of Pm FABP and also between total lipid content and the expression of Pm CYP4. Although not significant, the highest levels of correlation were found between relative fecundity and Pm CRP and Pm CYP4 expression, and between hatching rate and Pm Nvd and Pm RXR expression. This study reports the discovery of genes involved in lipid synthesis, steroid biosynthesis and reproduction in P. monodon. These results indicate that genes encoding enzymes involved in lipid metabolism pathways might be potential biomarkers to assess reproductive performance. Copyright © 2015 Elsevier B.V. All rights reserved.
2013-01-01
Background Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. Results In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. Conclusions The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants. PMID:24365221
Laldinsangi, C; Vijayaprasadarao, K; Rajakumar, A; Murugananthkumar, R; Prathibha, Y; Sudhakumari, C C; Mamta, S K; Dutta-Gupta, A; Senthilkumaran, B
2014-05-01
Endocrine disrupting chemicals have raised public concern, since their effects have been found to interfere with the physiological systems of various organisms, especially during critical stage of development and reproduction. Endosulfan and malathion, pesticides widely used for agricultural purposes, have been known to disrupt physiological functions in aquatic organisms. The current work analyzes the effects of endosulfan (2.5 parts per billion [ppb]) and malathion (10 ppb) on the reproductive physiology of catfish (Clarias batrachus) by evaluating protein expression profiles after 21 days of exposure. The proteomic profile of testis and ovary after exposure to endosulfan showed downregulation of proteins such as ubiquitin and Esco2, and upregulation in melanocortin-receptor-2 respectively. Malathion exposed ovary showed upregulated prolactin levels. Identification of proteins differentially expressed in gonads due to the exposure to these pesticides may serve as crucial indications to denote their disruptive effects at the level of proteins. Copyright © 2014 Elsevier B.V. All rights reserved.
Hutchinson, James L; Rajagopal, Shalini P; Sales, Kurt J; Jabbour, Henry N
2011-07-01
Inflammatory processes are central to reproductive events including ovulation, menstruation, implantation and labour, while inflammatory dysregulation is a feature of numerous reproductive pathologies. In recent years, there has been much research into the endogenous mechanisms by which inflammatory reactions are terminated and tissue homoeostasis is restored, a process termed resolution. The identification and characterisation of naturally occurring pro-resolution mediators including lipoxins and annexin A1 has prompted a shift in the field of anti-inflammation whereby resolution is now observed as an active process, triggered as part of a normal inflammatory response. This review will address the process of resolution, discuss available evidence for expression of pro-resolution factors in the reproductive tract and explore possible roles for resolution in physiological reproductive processes and associated pathologies.
Moore, Eric R.; Bullington, Briana S.; Weisberg, Alexandra J.; Jiang, Yuan; Chang, Jeff
2017-01-01
The reproductive strategy of diatoms includes asexual and sexual phases, but in many species, including the model centric diatom Thalassiosira pseudonana, sexual reproduction has never been observed. Furthermore, the environmental factors that trigger sexual reproduction in diatoms are not understood. Although genome sequences of a few diatoms are available, little is known about the molecular basis for sexual reproduction. Here we show that ammonium reliably induces the key sexual morphologies, including oogonia, auxospores, and spermatogonia, in two strains of T. pseudonana, T. weissflogii, and Cyclotella cryptica. RNA sequencing revealed 1,274 genes whose expression patterns changed when T. pseudonana was induced into sexual reproduction by ammonium. Some of the induced genes are linked to meiosis or encode flagellar structures of heterokont and cryptophyte algae. The identification of ammonium as an environmental trigger suggests an unexpected link between diatom bloom dynamics and strategies for enhancing population genetic diversity. PMID:28686696
Impact of reproductive health on socio-economic development: a case study of Nigeria.
Adinma, J I B; Adinma, E D
2011-03-01
The link between reproductive health, sexual and reproductive right, and development was highlighted at the International Conference on Population and Development held in Egypt. Developmental disparities are related to socio-economic differences which have led to the identification of distinct socio-economic classifications of nations. Human development represents the socioeconomic standing of any nation, in addition to literacy status and life expectancy. Africa accounts for 25% of the world's landmass but remains the world's poorest continent. Nigeria, the most populous country in Africa, has policies and programmes geared towards the improvement of its socio-economic standing and overal development, with little positive result. Reproductive health is a panacea towards reversing the stalled socio-economic growth of Nigeria as evident from the linkage between reproductive health and development, highlighted in Millennium Development Goals 3, 4, 5 and 6. Fast tracking Nigeria's development requires implementation of reproductive health policies and programmes targeted on women and children.
Moore, Eric R; Bullington, Briana S; Weisberg, Alexandra J; Jiang, Yuan; Chang, Jeff; Halsey, Kimberly H
2017-01-01
The reproductive strategy of diatoms includes asexual and sexual phases, but in many species, including the model centric diatom Thalassiosira pseudonana, sexual reproduction has never been observed. Furthermore, the environmental factors that trigger sexual reproduction in diatoms are not understood. Although genome sequences of a few diatoms are available, little is known about the molecular basis for sexual reproduction. Here we show that ammonium reliably induces the key sexual morphologies, including oogonia, auxospores, and spermatogonia, in two strains of T. pseudonana, T. weissflogii, and Cyclotella cryptica. RNA sequencing revealed 1,274 genes whose expression patterns changed when T. pseudonana was induced into sexual reproduction by ammonium. Some of the induced genes are linked to meiosis or encode flagellar structures of heterokont and cryptophyte algae. The identification of ammonium as an environmental trigger suggests an unexpected link between diatom bloom dynamics and strategies for enhancing population genetic diversity.
Review article: stem cells in human reproduction.
Gargett, Caroline E
2007-07-01
The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell-like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction.
Identification and characterization of Rhox13, a novel X-linked mouse homeobox gene
Geyer, Christopher B.; Eddy, Edward M.
2008-01-01
Homeobox genes encode transcription factors whose expression organizes programs of development. A number of homeobox genes expressed in reproductive tissues have been identified recently, including a colinear cluster on the X chromosome in mice. This has led to an increased interest in understanding the role(s) of homeobox genes in regulating development of reproductive tissues including the testis, ovary, and placenta. Here we report the identification and characterization of a novel homeobox gene of the paired-like class on the X chromosome distal to the reproductive homeobox (Rhox) cluster in mice. Transcripts are found in the testis and ovary as early as 13.5 days post-coitum (dpc). Transcription ceases in the ovary by 3 days post-partum (dpp), but continues in the testis through adulthood. The Rhox13 gene encodes a 25.3 kDa protein expressed in the adult testis in germ cells at the basal aspect of the seminiferous epithelium. PMID:18675325
[Advances in the study of neuroendocrinological regulation of kisspeptin in fish reproduction].
Zhuo, Qi
2013-10-01
Kisspeptin, a key factor in the neuroendocrinological regulation of animal reproduction, is a peptide product encoded by kiss genes, which act as the natural ligand of GPR54. Over the last decade, multiple functional molecular forms of kisspeptin have been found in vertebrate species. In fish, the major molecular structural form is kisspeptin-10. The kisspeptin/GPR54 system has multiple important functions in reproduction. This review provides an overview of our current knowledge on kisspeptin and its role in regulating fish reproductive, including the distribution and location of kisspeptin neurons in the brain, the molecular polymorphism of fish kisspeptin, functional diversity, the molecular mechanism of fish reproductive regulation, and the molecular evolution of kisspeptin as well as the co-regulation of fish reproduction by kisspeptin and other functional molecules. Perspectives on the future of kisspeptin regulation in fish reproduction are also highlighted.
Importance of β-defensins in sperm function.
Dorin, Julia R; Barratt, Christopher L R
2014-09-01
Recent work in humans and mouse has confirmed the involvement of the host defence β-defensin peptides in male fertility. We discuss here the work that has implicated β-defensins in sperm function including the identification of the epididymis as the predominant site of expression of the peptides and the in vivo consequences of mutation and deletion. The potential dual role of these peptides in the regulation of infection and control of sperm maturation is compelling and may combine their antimicrobial activity with the ability of these molecules to interact with cell membrane receptors and modulate ion transport. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Steroid receptors and their ligands: Effects on male gamete functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it
In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors,more » may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens/AR mediate sperm death which is a novel field of investigation in sperm biology.« less
The importance of reproductive barriers and the effect of allopolyploidization on crop breeding
Tonosaki, Kaoru; Osabe, Kenji; Kawanabe, Takahiro; Fujimoto, Ryo
2016-01-01
Inter-specific hybrids are a useful source for increasing genetic diversity. Some reproductive barriers before and/or after fertilization prevent production of hybrid plants by inter-specific crossing. Therefore, techniques to overcome the reproductive barrier have been developed, and have contributed to hybridization breeding. In recent studies, identification of molecules involved in plant reproduction has been studied to understand the mechanisms of reproductive barriers. Revealing the molecular mechanisms of reproductive barriers may allow us to overcome reproductive barriers in inter-specific crossing, and to efficiently produce inter-specific hybrids in cross-combinations that cannot be produced through artificial techniques. Inter-specific hybrid plants can potentially serve as an elite material for plant breeding, produced through the merging of genomes of parental species by allopolyploidization. Allopolyploidization provides some benefits, such as heterosis, increased genetic diversity and phenotypic variability, which are caused by dynamic changes of the genome and epigenome. Understanding of allopolyploidization mechanisms is important for practical utilization of inter-specific hybrids as a breeding material. This review discusses the importance of reproductive barriers and the effect of allopolyploidization in crop breeding programs. PMID:27436943
Sebai, Hichem; Selmi, Slimen; Rtibi, Kais; Gharbi, Najoua; Sakly, Mohsen
2015-02-01
The authors aimed in the present study to assess the protective effect of Rosmarinus officinalis essential oils (ROEO) and Lavandula stoechas essential oils (LSEO) against reproductive damage and oxidative stress in alloxan-induced diabetic male rats. Essential oil samples were obtained from the aerial parts of the plants by hydrodistillation and analyzed by the gas chromatography-mass spectrometry (GC-MS). Rats were divided into four groups: healthy control (HC); diabetic control (DC); healthy+ROEO (H+ROEO), healthy+LSEO (H+LSEO), diabetic+ROEO (D+ROEO), and diabetic+LSEO (D+LSEO). The use of GC-MS allowed to the identification of 15 and 22 compounds in ROEO and LSEO, respectively. In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test showed that ROEO and LSEO had an important antioxidant capacity. In vivo, we initially found that ROEO and LSEO treatment protected against the decrease in alloxan-induced body weight gain, relative reproductive organ weights, testosterone level, as well as sperm quality decline. On the other hand, we showed that alloxan administration was accompanied by an oxidative stress status assessed by an increase of malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as a depletion of sulfhydril group content (-SH) and antioxidant enzyme activities as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in testis, epididymis, and sperm. More importantly, ROEO and LSEO treatment significantly protected against oxidative damage of the male reproductive organ systems in alloxan-induced diabetic rats. These findings suggested that ROEO and LSEO exerted a potential protective effect against alloxan-induced reproductive function damage and oxidative stress in male rat. The beneficial effect of ROEO and LSEO might be related, in part, to their antioxidant properties.
Insulin: its Role in the Central Control of Reproduction
Sliwowska, Joanna H.; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N.
2014-01-01
Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. PMID:24874777
Insulin: its role in the central control of reproduction.
Sliwowska, Joanna H; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N
2014-06-22
Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. Copyright © 2014 Elsevier Inc. All rights reserved.
Komisarczuk, Anna Z; Kongshaug, Heidi; Nilsen, Frank
2018-02-01
Na + /K + -ATPase has a key function in a variety of physiological processes including membrane excitability, osmoregulation, regulation of cell volume, and transport of nutrients. While knowledge about Na + /K + -ATPase function in osmoregulation in crustaceans is extensive, the role of this enzyme in other physiological and developmental processes is scarce. Here, we report characterization, transcriptional distribution and likely functions of the newly identified L. salmonis Na + /K + -ATPase (LsalNa + /K + -ATPase) α subunit in various developmental stages. The complete mRNA sequence was identified, with 3003 bp open reading frame encoding a putative protein of 1001 amino acids. Putative protein sequence of LsalNa + /K + -ATPase revealed all typical features of Na + /K + -ATPase and demonstrated high sequence identity to other invertebrate and vertebrate species. Quantitative RT-PCR analysis revealed higher LsalNa + /K + -ATPase transcript level in free-living stages in comparison to parasitic stages. In situ hybridization analysis of copepodids and adult lice revealed LsalNa + /K + -ATPase transcript localization in a wide variety of tissues such as nervous system, intestine, reproductive system, and subcuticular and glandular tissue. RNAi mediated knock-down of LsalNa + /K + -ATPase caused locomotion impairment, and affected reproduction and feeding. Morphological analysis of dsRNA treated animals revealed muscle degeneration in larval stages, severe changes in the oocyte formation and maturation in females and abnormalities in tegmental glands. Thus, the study represents an important foundation for further functional investigation and identification of physiological pathways in which Na + /K + -ATPase is directly or indirectly involved. Copyright © 2018 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-10-01
... technical data to be furnished to the Government with restrictions on use, reproduction or disclosure. 227..., DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Technical Data 227.7103-3 Early identification of technical data to be furnished to the Government with restrictions...
Code of Federal Regulations, 2014 CFR
2014-10-01
... technical data to be furnished to the Government with restrictions on use, reproduction or disclosure. 227..., DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Technical Data 227.7103-3 Early identification of technical data to be furnished to the Government with restrictions...
Code of Federal Regulations, 2012 CFR
2012-10-01
... technical data to be furnished to the Government with restrictions on use, reproduction or disclosure. 227..., DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Technical Data 227.7103-3 Early identification of technical data to be furnished to the Government with restrictions...
Patient and tissue identification in the assisted reproductive technology laboratory.
Pomeroy, Kimball O; Racowsky, Catherine
2012-06-01
Several high-profile cases involving in vitro fertilization have recently received considerable media attention and highlight the importance of assuring patient and tissue identification. Within the assisted reproductive technology (ART) laboratory, there are many steps where wrong patient or tissue identity could have drastic results. Erroneous identity can result in tragic consequences for the patient, the laboratory, and for those working in the program as a whole. Such errors can result in enormous psychological and financial costs, as well as a loss in confidence. There are several critical steps that should be taken every single time and for each specific procedure performed in the ART laboratory to ensure the correct identification of patients and their tissue. These steps should be detailed in protocols that include the method of identification, the two unique identifiers that will be used, the sources of these identifiers, and often a system in which more than one person is involved in the identification. Each protocol should ideally include a checklist that is actively used for the implementation of each procedure. The protocol should also indicate what to do if the identification does not match up, including rapid handling and notification of the patient involved in the error. All ART laboratories should instill in their employees an atmosphere of full and open disclosure for cases where mistakes are made. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Human reproductive issues in space
NASA Technical Reports Server (NTRS)
Santy, Patricia A.; Jennings, Richard T.
1992-01-01
A review of reproductive functioning in animal species studied during space flight demonstrated that most species were affected significantly by the absence of gravity and/or the presence of radiation. These two factors induced alterations in normal reproductive functioning independently of, as well as in combination with, each other. Based on animal models, several potential problem areas regarding human reproductive physiology and functioning in the space environment were identified. While there are no current space flight investigations, the animal studies suggest priorities for future research in human reproduction. Such studies will be critical for the successful colonization of the space frontier.
Sense and Nonsense in Metabolic Control of Reproduction
Schneider, Jill E.; Klingerman, Candice M.; Abdulhay, Amir
2012-01-01
An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis while they bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because metabolic energy is the most important factor that controls reproductive success and gonadal hormones affect energy intake, storage, and expenditure. Reproductive hormone secretion changes during development, and reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis. This review emphasizes the metabolic hypothesis: a sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable. PMID:22649413
Sense and nonsense in metabolic control of reproduction.
Schneider, Jill E; Klingerman, Candice M; Abdulhay, Amir
2012-01-01
An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis while they bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because metabolic energy is the most important factor that controls reproductive success and gonadal hormones affect energy intake, storage, and expenditure. Reproductive hormone secretion changes during development, and reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis. This review emphasizes the metabolic hypothesis: a sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable.
Jacobs, Arne; Hughes, Martin R; Robinson, Paige C; Adams, Colin E; Elmer, Kathryn R
2018-05-31
Identifying the genetic basis underlying phenotypic divergence and reproductive isolation is a longstanding problem in evolutionary biology. Genetic signals of adaptation and reproductive isolation are often confounded by a wide range of factors, such as variation in demographic history or genomic features. Brown trout ( Salmo trutta ) in the Loch Maree catchment, Scotland, exhibit reproductively isolated divergent life history morphs, including a rare piscivorous (ferox) life history form displaying larger body size, greater longevity and delayed maturation compared to sympatric benthivorous brown trout. Using a dataset of 16,066 SNPs, we analyzed the evolutionary history and genetic architecture underlying this divergence. We found that ferox trout and benthivorous brown trout most likely evolved after recent secondary contact of two distinct glacial lineages, and identified 33 genomic outlier windows across the genome, of which several have most likely formed through selection. We further identified twelve candidate genes and biological pathways related to growth, development and immune response potentially underpinning the observed phenotypic differences. The identification of clear genomic signals divergent between life history phenotypes and potentially linked to reproductive isolation, through size assortative mating, as well as the identification of the underlying demographic history, highlights the power of genomic studies of young species pairs for understanding the factors shaping genetic differentiation.
Diabetes mellitus induced impairment of male reproductive functions: a review.
Jangir, Ram Niwas; Jain, Gyan Chand
2014-05-01
Diabetes mellitus (DM) represents one of the greatest threats to human health all over the world. The incidence of DM is rising rapidly also including children and young persons of reproductive age. Diabetes has been associated with reproductive impairment in both men and women. Diabetes may affect male reproductive functions at multiple levels as a result of its effects on the endocrine control of spermatogenesis, steroidogenesis, sperm maturation, impairment of penile erection and ejaculation. A large number of studies both on diabetic men and experimental diabetic animals have been published on the impact of DM on male reproductive functions during the past few years but many of them have conflicting results. The present review summarizes the research finding of a large number of research papers on the reproductive functions especially on hypothalmo-pituitary-gonadal axis, spermatogenesis, histopathology of testis, synthesis and secretion of testosterone, sperm quality, ejaculatory function and fertility both in diabetic men and experimental diabetic animals.
Becker, R A; Sales, N G; Santos, G M; Santos, G B; Carvalho, D C
2015-07-01
The identification of fish larvae from two neotropical hydrographic basins using traditional morphological taxonomy and DNA barcoding revealed no conflicting results between the morphological and barcode identification of larvae. A lower rate (25%) of correct morphological identification of eggs as belonging to migratory or non-migratory species was achieved. Accurate identification of ichthyoplankton by DNA barcoding is an important tool for fish reproductive behaviour studies, correct estimation of biodiversity by detecting eggs from rare species, as well as defining environmental and management strategies for fish conservation in the neotropics. © 2015 The Fisheries Society of the British Isles.
Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang
2015-01-01
The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).
Menzel, Ralph; Swain, Suresh C; Hoess, Sebastian; Claus, Evelyn; Menzel, Stefanie; Steinberg, Christian EW; Reifferscheid, Georg; Stürzenbaum, Stephen R
2009-01-01
Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high) levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay) and endocrine disruption (YES test). Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments. PMID:19366437
Sex Hormones and Healthy Psychological Aging in Women
Navarro-Pardo, Esperanza; Holland, Carol A.; Cano, Antonio
2018-01-01
Besides their key role in reproduction, estrogens have effects in several organs in the body, as confirmed by the identification of estrogen receptors (ER) in multiple tissues. Experimental evidence has shown that estrogens have significant impacts on the central nervous system (CNS), and a key question is to what extent the fall in estrogen levels in the blood that occurs with increasing age, particularly around and following the menopause, has an impact on the cognitive function and psychological health of women, specifically regarding mood. This review will consider direct effects of menopausal changes in estrogens on the brain, including cognitive function and mood. Secondary pathways whereby health factors affected by changes in estrogens may interact with CNS functions, such as cardiovascular factors, will be reviewed as well insofar as they also have an impact on cognitive function. Finally, because decline in estrogens may induce changes in the CNS, there is interest in clarifying whether hormone therapy may offer a beneficial balance and the impact of hormone therapy on cognition will also be considered. PMID:29375366
Chapter 11.18 - Neuroendocrine Control of Female Reproduction.
The hypothalamus and pituitary are known to play roles in reproductive function. A growing body of evidence indicates that environmental toxicants can alter female reproductive function by disrupting hypothalamic control of the pituitary and subsequently the endocrine control of ...
Molecular markers: progress and prospects for understanding reproductive ecology in elasmobranchs.
Portnoy, D S; Heist, E J
2012-04-01
Application of modern molecular tools is expanding the understanding of elasmobranch reproductive ecology. High-resolution molecular markers provide information at scales ranging from the identification of reproductively isolated populations in sympatry (i.e. cryptic species) to the relationships among parents, offspring and siblings. This avenue of study has not only augmented the current understanding of the reproductive biology of elasmobranchs but has also provided novel insights that could not be obtained through experimental or observational techniques. Sharing of genetic polymorphisms across ocean basins indicates that for some species there may be gene flow on global scales. The presence, however, of morphologically similar but genetically distinct entities in sympatry suggests that reproductive isolation can occur with minimal morphological differentiation. This review discusses the recent findings in elasmobranch reproductive biology like philopatry, hybridization and polyandry while highlighting important molecular and analytical techniques. Furthermore, the review examines gaps in current knowledge and discusses how new technologies may be applied to further the understanding of elasmobranch reproductive ecology. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
USDA-ARS?s Scientific Manuscript database
A haplotype on cattle chromosome 5 carrying a recessive lethal allele was found to originate in a Holstein-Friesian foundation sire. Resequencing led to the identification of a stop-gain mutation in exon 11 of APAF1, a gene known to cause embryonic lethality and neurodevelopmental abnormalities in ...
EGFR ligands exert diverging effects on male reproductive organs.
Schneider, Marlon R; Gratao, Ana A; Dahlhoff, Maik; Boersma, Auke; Hrabé de Angelis, Martin; Hoang-Vu, Cuong; Wolf, Eckhard; Klonisch, Thomas
2010-02-01
While the EGFR and most of its ligands are expressed in the male reproductive tract, their functions in male reproduction are poorly understood. Interestingly, male transgenic mice overexpressing EGF are sterile, and transgenic mice overexpressing TGFA, another EGFR ligand, show an enlarged coagulation gland (anterior prostate) due to severe hyperplasia with focal dysplasia. We studied the male reproductive tract of transgenic mice overexpressing betacellulin (BTC-tg) under the control of a promoter conferring widespread transgene expression. Despite strong overexpression of BTC in different parts of the male reproductive tract, the gross appearance and histology of the reproductive organs of BTC-tg males were normal and the same were true for sperm parameters and the in vitro fertilization rate. Collectively, our findings demonstrate that excess of BTC exerts no deleterious effects on the structure or function of the male reproductive tract in mice and indicates unique, non-overlapping functions of specific EGFR ligands in male reproduction. Copyright 2009 Elsevier Inc. All rights reserved.
Smith, Steven E.; Schumaker, Karen S.
2016-01-01
The accumulation of sodium in soil (saline conditions) negatively affects plant growth and development. The Salt Overly Sensitive (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to remove sodium from the cytosol during vegetative development preventing its accumulation to toxic levels. In this pathway, the SOS3 and CALCINEURIN B-LIKE10 (CBL10) calcium sensors interact with the SOS2 protein kinase to activate sodium/proton exchange at the plasma membrane (SOS1) or vacuolar membrane. To determine if the same pathway functions during reproductive development in response to salt, fertility was analyzed in wild type and the SOS pathway mutants grown in saline conditions. In response to salt, CBL10 functions early in reproductive development before fertilization, while SOS1 functions mostly after fertilization when seed development begins. Neither SOS2 nor SOS3 function in reproductive development in response to salt. Loss of CBL10 function resulted in reduced anther dehiscence, shortened stamen filaments, and aborted pollen development. In addition, cbl10 mutant pistils could not sustain the growth of wild-type pollen tubes. These results suggest that CBL10 is critical for reproductive development in the presence of salt and that it functions in different pathways during vegetative and reproductive development. PMID:26979332
Thomson, R L; Buckley, J D; Moran, L J; Noakes, M; Clifton, P M; Norman, R J; Brinkworth, G D
2009-08-01
Anti-Müllerian hormone (AMH) has been proposed as a clinical predictor of improvements in reproductive function following weight loss in overweight and obese women with polycystic ovary syndrome (PCOS). This study aimed to assess whether baseline and/or change in AMH levels with weight loss predict improvements in reproductive function in overweight and obese women with PCOS. Fifty-two overweight and obese women with PCOS and reproductive impairment (age 29.8 +/- 0.8 years, BMI 36.5 +/- 0.7 kg/m(2)) followed a 20-week weight loss programme. AMH, weight, menstrual cyclicity and ovulatory function were assessed at baseline and post-intervention. Participants who responded with improvements in reproductive function (n = 26) had lower baseline AMH levels (23.5 +/- 3.7 versus 32.5 +/- 2.9 pmol/l; P = 0.03) and experienced greater weight loss (-11.7 +/- 1.2 versus -6.4 +/- 0.9 kg; P = 0.001) compared with those who did not respond (n = 26). Logistic regression analysis showed that weight loss and baseline AMH were independently related to improvements in reproductive function (P = 0.002 and P = 0.013, respectively). AMH levels did not change with weight loss in both responders and non-responders. In overweight and obese women with PCOS and reproductive dysfunction, a 20-week weight loss intervention resulted in improvements in reproductive function but no change in AMH levels. ACTRN12606000198527.
The Impact of Reproductive Technologies on Stallion Mitochondrial Function.
Peña, F J; Plaza Davila, M; Ball, B A; Squires, E L; Martin Muñoz, P; Ortega Ferrusola, C; Balao da Silva, C
2015-08-01
The traditional assessment of stallion sperm comprises evaluation of sperm motility and membrane integrity and identification of abnormal morphology of the spermatozoa. More recently, the progressive introduction of flow cytometry is increasing the number of tests available. However, compared with other sperm structures and functions, the evaluation of mitochondria has received less attention in stallion andrology. Recent research indicates that sperm mitochondria are key structures in sperm function suffering major changes during biotechnological procedures such as cryopreservation. In this paper, mitochondrial structure and function will be reviewed in the stallion, when possible specific stallion studies will be discussed, and general findings on mammalian mitochondrial function will be argued when relevant. Especial emphasis will be put on their role as source of reactive oxygen species and in their role regulating sperm lifespan, a possible target to investigate with the aim to improve the quality of frozen-thawed stallion sperm. Later on, the impact of current sperm technologies, principally cryopreservation, on mitochondrial function will be discussed pointing out novel areas of research interest with high potential to improve current sperm technologies. © 2015 Blackwell Verlag GmbH.
Fetal programming of sexual development and reproductive function.
Zambrano, Elena; Guzmán, Carolina; Rodríguez-González, Guadalupe L; Durand-Carbajal, Marta; Nathanielsz, Peter W
2014-01-25
The recent growth of interest in developmental programming of physiological systems has generally focused on the cardiovascular system (especially hypertension) and predisposition to metabolic dysfunction (mainly obesity and diabetes). However, it is now clear that the full range of altered offspring phenotypes includes impaired reproductive function. In rats, sheep and nonhuman primates, reproductive capacity is altered by challenges experienced during critical periods of development. This review will examine available experimental evidence across commonly studied experimental species for developmental programming of female and male reproductive function throughout an individual's life-course. It is necessary to consider events that occur during fetal development, early neonatal life and prior to and during puberty, during active reproductive life and aging as reproductive performance declines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Lysophosphatidic Acid (LPA) Signaling in Human and Ruminant Reproductive Tract
Wocławek-Potocka, Izabela; Rawińska, Paulina; Kowalczyk-Zieba, Ilona; Boruszewska, Dorota; Sinderewicz, Emilia; Waśniewski, Tomasz; Skarzynski, Dariusz Jan
2014-01-01
Lysophosphatidic acid (LPA) through activating its G protein-coupled receptors (LPAR 1–6) exerts diverse cellular effects that in turn influence several physiological processes including reproductive function of the female. Studies in various species of animals and also in humans have identified important roles for the receptor-mediated LPA signaling in multiple aspects of human and animal reproductive tract function. These aspects range from ovarian and uterine function, estrous cycle regulation, early embryo development, embryo implantation, decidualization to pregnancy maintenance and parturition. LPA signaling can also have pathological consequences, influencing aspects of endometriosis and reproductive tissue associated tumors. The review describes recent progress in LPA signaling research relevant to human and ruminant reproduction, pointing at the cow as a relevant model to study LPA influence on the human reproductive performance. PMID:24744506
Budak, Erdal; Fernández Sánchez, Manuel; Bellver, José; Cerveró, Ana; Simón, Carlos; Pellicer, Antonio
2006-06-01
To summarize the effects of novel hormones (leptin, ghrelin, adiponectin, resistin, and PYY3-36) secreted from adipose tissue and the gastrointestinal tract that have been discovered to exert different effects on several reproductive functions, such as the hypothalamic-pituitary-gonadal axis, embryo development, implantation physiology, and clinically relevant conditions. A MEDLINE computer search was performed to identify relevant articles. Leptin and ghrelin exert important roles on body weight regulation, eating behavior, and reproduction, acting on the central nervous system and target reproductive organs. As a marker of adequate nutritional stores, these hormones may act on the central nervous system to initiate the complex process of puberty and maintain normal reproductive function. In addition, leptin and ghrelin and their receptors are involved in reproductive events such as gonadal function, embryo development, and embryo-endometrial interaction. Leptin and ghrelin and other adipose tissue-secreted hormones have significant effects on reproduction. Acting through the brain, these hormones may serve as links between adipose tissue and the reproductive system to supply and regulate energy needs for normal reproduction and pregnancy. Future studies are needed to further clarify the role of these hormones in reproductive events and other related gynecological conditions.
Li, Ye Long; Dai, Xin Ren; Yue, Xun; Gao, Xin-Qi; Zhang, Xian Sheng
2014-10-01
Maize 1,491 small secreted peptides were identified, which were classified according to the character of peptide sequences. Partial SSP gene expressions in reproductive tissues were determined by qRT-PCR. Small secreted peptides (SSPs) are important cell-cell communication messengers in plants. Most information on plant SSPs come from Arabidopsis thaliana and Oryza sativa, while little is known about the SSPs of other grass species such as maize (Zea mays). In this study, we identified 1,491 SSP genes from maize genomic sequences. These putative SSP genes were distributed throughout the ten maize chromosomes. Among them, 611 SSPs were classified into 198 superfamilies according to their conserved domains, and 725 SSPs with four or more cysteines at their C-termini shared similar cysteine arrangements with their counterparts in other plant species. Moreover, the SSPs requiring post-translational modification, as well as defensin-like (DEFL) proteins, were identified. Further, the expression levels of 110 SSP genes were analyzed in reproductive tissues, including male flower, pollen, silk, and ovary. Most of the genes encoding basal-layer antifungal peptide-like, small coat proteins-like, thioredoxin-like proteins, γ-thionins-like, and DEFL proteins showed high expression levels in the ovary and male flower compared with their levels in silk and mature pollen. The rapid alkalinization factor-like genes were highly expressed only in the mature ovary and mature pollen, and pollen Ole e 1-like genes showed low expression in silk. The results of this study provide basic information for further analysis of SSP functions in the reproductive process of maize.
Effects of Environmental Toxicants on the Neuroendocrine Control of Female Reproduction
The hypothalamus and pituitary are known to play key roles in reproductive function. A growing body of evidence indicates that environmental toxicants can alter female reproductive function by disrupting hypothalamic control of the pituitary and subsequently, the endocrine contro...
Handler, Alfred M; Beeman, Richard W
2003-01-01
USDA-ARS scientists have made important contributions to the molecular genetic analysis of agriculturally important insects, and have been in the forefront of using this information for the development of new pest management strategies. Advances have been made in the identification and analysis of genetic systems involved in insect development, reproduction and behavior which enable the identification of new targets for control, as well as the development of highly specific insecticidal products. Other studies have been on the leading edge of developing gene transfer technology to better elucidate these biological processes though functional genomics and to develop new transgenic strains for biological control. Important contributions have also been made to the development and use of molecular markers and methodologies to identify and track insect populations. The use of molecular genetic technology and strategies will become increasingly important to pest management as genomic sequencing information becomes available from important pest insects, their targets and other associated organisms.
The Goddard and Saturn Genes Are Essential for Drosophila Male Fertility and May Have Arisen De Novo
Gubala, Anna M.; Schmitz, Jonathan F.; Kearns, Michael J.; Vinh, Tery T.; Bornberg-Bauer, Erich; Wolfner, Mariana F.
2017-01-01
New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction. PMID:28104747
Melin, Anna; Tornberg, Asa B; Skouby, Sven; Faber, Jens; Ritz, Christian; Sjödin, Anders; Sundgot-Borgen, Jorunn
2014-04-01
Low energy availability (EA) in female athletes with or without an eating disorder (ED) increases the risk of oligomenorrhoea/functional hypothalamic amenorrhoea and impaired bone health, a syndrome called the female athlete triad (Triad). There are validated psychometric instruments developed to detect disordered eating behaviour (DE), but no validated screening tool to detect persistent low EA and Triad conditions, with or without DE/ED, is available. The aim of this observational study was to develop and test a screening tool designed to identify female athletes at risk for the Triad. Female athletes (n=84) with 18-39 years of age and training ≥5 times/week filled out the Low Energy Availability in Females Questionnaire (LEAF-Q), which comprised questions regarding injuries and gastrointestinal and reproductive function. Reliability and internal consistency were evaluated in a subsample of female dancers and endurance athletes (n=37). Discriminant as well as concurrent validity was evaluated by testing self-reported data against measured current EA, menstrual function and bone health in endurance athletes from sports such as long distance running and triathlon (n=45). The 25-item LEAF-Q produced an acceptable sensitivity (78%) and specificity (90%) in order to correctly classify current EA and/or reproductive function and/or bone health. The LEAF-Q is brief and easy to administer, and relevant as a complement to existing validated DE screening instruments, when screening female athletes at risk for the Triad, in order to enable early detection and intervention.
Wahab, F; Shahab, M; Behr, R
2015-05-01
Recently, kisspeptin (KP) and gonadotropin inhibitory hormone (GnIH), two counteracting neuropeptides, have been acknowledged as significant regulators of reproductive function. KP stimulates reproduction while GnIH inhibits it. These two neuropeptides seem to be pivotal for the modulation of reproductive activity in response to internal and external cues. It is well-documented that the current metabolic status of the body is closely linked to its reproductive output. However, how reproductive function is regulated by the body's energy status is less clear. Recent studies have suggested an active participation of hypothalamic KP and GnIH in the modulation of reproductive function according to available metabolic cues. Expression of KISS1, the KP encoding gene, is decreased while expression of RFRP (NPVF), the gene encoding GnIH, is increased in metabolic deficiency conditions. The lower levels of KP, as suggested by a decrease in KISS1 gene mRNA expression, during metabolic deficiency can be corrected by administration of exogenous KP, which leads to an increase in reproductive hormone levels. Likewise, administration of RF9, a GnIH receptor antagonist, can reverse the inhibitory effect of fasting on testosterone in monkeys. Together, it is likely that the integrated function of both these hypothalamic neuropeptides works as a reproductive output regulator in response to a change in metabolic status. In this review, we have summarized literature from nonprimate and primate studies that demonstrate the involvement of KP and GnIH in the metabolic regulation of reproduction. © 2015 The authors.
Karim, Roksana; Dang, Ha; Henderson, Victor W.; Hodis, Howard N.; St John, Jan; Brinton, Roberta D.; Mack, Wendy J.
2016-01-01
Background/objectives Given the potent role of sex hormones on brain chemistry and function, we investigated the association of reproductive history indicators of hormonal exposures, including reproductive period, pregnancy, and use of hormonal contraceptives, on mid- and late-life cognition in postmenopausal women. Design Analysis of baseline data from two randomized clinical trials, the Women’s Isoflavone Soy Health (WISH) and the Early vs Late Intervention Trial of Estradiol (ELITE). Setting University academic research center Participants 830 naturally menopausal women Measurements Participants were uniformly evaluated with a cognitive battery and a structured reproductive history. Outcomes were composite scores for verbal episodic memory, executive functions, and global cognition. Reproductive variables included ages at pregnancies, menarche, and menopause, reproductive period, number of pregnancies, and use of hormones for contraception and menopausal symptoms. Multivariable linear regression evaluated associations between cognitive scores (dependent variable) and reproductive factors (independent variables), adjusting for age, race/ethnicity, income and education. Results On multivariable modeling, age at menarche ≥ 13 years of age was inversely associated with global cognition (p= 0.05). Last pregnancy after age 35 was positively associated with verbal memory (p=0.03). Use of hormonal contraceptives was positively associated with global cognition (p trend=0.04), and verbal memory (p trend=0.007). The association between hormonal contraceptive use and verbal memory and executive functions was strongest for more than 10 years of use. Reproductive period was positively associated with global cognition (p=0.04) and executive functions (p=0.04). Conclusion In this sample of healthy postmenopausal women, reproductive life events related to sex hormones, including earlier age at menarche, later age at last pregnancy, length of reproductive period, and use of oral contraceptives are positively related to aspects of cognition in later life. PMID:27996108
Santos-del-Blanco, L; Climent, J; González-Martínez, S C; Pannell, J R
2012-11-01
The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers.
Santos-del-Blanco, L.; Climent, J.; González-Martínez, S. C.; Pannell, J. R.
2012-01-01
Background and Aims The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Methods Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Key Results Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. Conclusions The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers. PMID:23002272
[Roles of sialic acids in sperm maturation and capacitation and sperm-egg recognition].
Feng, Ying; Wang, Lin; Wu, Yi-Lun; Liu, Hong-Hua; Ma, Fang
2016-10-01
Sialic acids are a subset of nine-carbon alpha-keto aldonic acids involved in various biological functions. Sialic acid on the sperm surface is closely related to sperm maturation and capacitation and sperm-egg recognition, which makes sperm negatively charged to avoid accumulation and covers some antigenic determinants there to increase the survival rate of sperm in the female reproductive tract. The loss of sialic acids is an important factor mediating sperm capacitation. Moreover, the sialic acid at the extremity of the protein polymer is involved in signal identification in sperm-egg recognition. Here, we review the current understanding of sialic acids in sperm maturation and capacitation and sperm-egg recognition.
Kundu, Mila C.; May, Margaret C.; Chosich, Justin; Bradford, Andrew P.; Lasley, Bill; Gee, Nancy; Santoro, Nanette; Appt, Susan E.; Polotsky, Alex J.
2015-01-01
The objective of the current study was to characterize luteal function in vervet monkeys. Urine from 12 adult female vervets housed at an academic research center was collected for 10 weeks from single-caged monkeys in order to assess evidence of luteal activity (ELA) as determined by urinary excretion of pregnanediol glucuronide (Pdg) and estrone conjugates (E1c). Dual energy X-ray absorptiometry (DXA) was performed on the monkeys to assess body composition, bone density, and fat mass. Menstrual cyclicity was determined using records of vaginal bleeding. ELA was observed in 9 monkeys and was characterized by a late follicular rise in E1c followed by a progressive increase in Pdg excretion. Mean menstrual cycle length was 26.7 ± 3.8 days and the average day of luteal transition was 14 ± 1.8. Three monkeys without ELA had a clearly defined E1c rise (mean 12-fold from nadir) followed by an E1c drop that was not accompanied by Pdg rise and coincided with vaginal bleeding. Among the 9 ELA monkeys, excretion of E1c tended to negatively associate with fat mass, although this finding did not reach statistical significance (r = −0.61, p = 0.08). Similar to women, vervet monkeys experience an increase in E1c late in the follicular phase of the menstrual cycle which is followed by a subsequent luteal Pdg peak. Assessment of urinary reproductive hormones allows for identification of cardinal menstrual cycle events; thus, the similarity of vervet cycles to human menstrual cycles makes them a useful model for obesity-related human reproductive impairment. PMID:23278149
Goldberg, Jay K; Wallace, Alisa K; Weiss, Stacey L
2017-09-14
Sex pheromones can perform a variety of functions ranging from revealing the location of suitable mates to being honest signals of mate quality, and they are used in the mate selection process by many species of reptile. In this study, we determined whether the skin lipids of female striped plateau lizards (Sceloporus virgatus) can predict the reproductive quality of females, thereby having the potential to serve as pheromones. Using gas chromatography/mass spectrometry, we identified 17 compounds present in skin lipids of female lizards. Using principal component analysis to compare the skin lipid profile of receptive and non-receptive females, we determined that an uncharacterized compound may allow for chemical identification of receptive mates. We also compared extracted principal components to measures of female fitness and reproductive qualities and found that the level of two 18 carbon fatty acids present in a female's skin lipids may indicate her clutch size. Finally, we compared the information content of the skin lipids to that of female-specific color ornaments to assess whether chemical and visual cues transmit different information or not. We found that the chroma of a female's orange throat patch is also related to her clutch size, suggesting that chemical signals may reinforce the information communicated by visual ornamentation in this species which would support the "backup signals" hypothesis for multiple signals.
NASA Astrophysics Data System (ADS)
Goldberg, Jay K.; Wallace, Alisa K.; Weiss, Stacey L.
2017-10-01
Sex pheromones can perform a variety of functions ranging from revealing the location of suitable mates to being honest signals of mate quality, and they are used in the mate selection process by many species of reptile. In this study, we determined whether the skin lipids of female striped plateau lizards ( Sceloporus virgatus) can predict the reproductive quality of females, thereby having the potential to serve as pheromones. Using gas chromatography/mass spectrometry, we identified 17 compounds present in skin lipids of female lizards. Using principal component analysis to compare the skin lipid profile of receptive and non-receptive females, we determined that an uncharacterized compound may allow for chemical identification of receptive mates. We also compared extracted principal components to measures of female fitness and reproductive qualities and found that the level of two 18 carbon fatty acids present in a female's skin lipids may indicate her clutch size. Finally, we compared the information content of the skin lipids to that of female-specific color ornaments to assess whether chemical and visual cues transmit different information or not. We found that the chroma of a female's orange throat patch is also related to her clutch size, suggesting that chemical signals may reinforce the information communicated by visual ornamentation in this species which would support the "backup signals" hypothesis for multiple signals.
Beadex Function in the Motor Neurons Is Essential for Female Reproduction in Drosophila melanogaster
Kairamkonda, Subhash; Nongthomba, Upendra
2014-01-01
Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons. PMID:25396431
Almeida, Natan Messias; Castro, Cibele Cardoso; Leite, Ana Virgínia; Novo, Reinaldo Rodrigo; Machado, Isabel Cristina
2013-01-01
Background and Aims Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil. Methods Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed. Key Results In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator's body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR–FR combination. Conclusions The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture. PMID:24026440
Inayat-Hussain, Salmaan H; Fukumura, Masao; Muiz Aziz, A; Jin, Chai Meng; Jin, Low Wei; Garcia-Milian, Rolando; Vasiliou, Vasilis; Deziel, Nicole C
2018-08-01
Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases. GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects. We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide. Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives. Copyright © 2018 Elsevier Ltd. All rights reserved.
Role of leptin in female reproduction.
Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Maymó, Julieta; Dueñas, José L; Varone, Cecilia; Sánchez-Margalet, Víctor
2015-01-01
Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.
Influence of Reproductive Aging of the Cow on Luteal Function and Period 1 mRNA Expression
USDA-ARS?s Scientific Manuscript database
In rodents, disruption of the circadian clock genes results in increased incidence of anovulation, irregular estrous cycles, decreased luteal function, and accelerated reproductive ageing. In cattle, reproductive ageing is associated with decreased numbers of follicles in the ovary, decreased lutea...
Naufahu, Jane; Cunliffe, Adam D; Murray, Joanne F
2013-01-01
Melanin-concentrating hormone (MCH) is an anabolic neuropeptide with multiple and diverse physiological functions including a key role in energy homoeostasis. Rodent studies have shown that the ablation of functional MCH results in a lean phenotype, increased energy expenditure and resistance to diet-induced obesity. These findings have generated interest among pharmaceutical companies vigilant for potential anti-obesity agents. Nutritional status affects reproductive physiology and behaviours, thereby optimising reproductive success and the ability to meet energetic demands. This complex control system entails the integration of direct or indirect peripheral stimuli with central effector systems and involves numerous mediators. A role for MCH in the reproductive axis has emerged, giving rise to the premise that MCH may serve as an integratory mediator between those discrete systems that regulate energy balance and reproductive function. Hence, this review focuses on published evidence concerning i) the role of MCH in energy homoeostasis and ii) the regulatory role of MCH in the reproductive axis. The question as to whether the MCH system mediates the integration of energy homoeostasis with the neuroendocrine reproductive axis and, if so, by what means has received limited coverage in the literature; evidence to date and current theories are summarised herein.
The ecology and evolutionary endocrinology of reproduction in the human female.
Vitzthum, Virginia J
2009-01-01
Human reproductive ecology (HRE) is the study of the mechanisms that link variation in reproductive traits with variation in local habitats. Empirical and theoretical contributions from biological anthropology, physiology, and demography have established the foundation necessary for developing a comprehensive understanding, grounded in life history theory (LHT), of temporal, individual, and populational variation in women's reproductive functioning. LHT posits that natural selection leads to the evolution of mechanisms that tend to allocate resources to the competing demands of growth, reproduction, and survival such that fitness is locally maximized. (That is, among alternative allocation patterns exhibited in a population, those having the highest inclusive fitness will become more common over generational time.) Hence, strategic modulation of reproductive effort is potentially adaptive because investment in a new conception may risk one's own survival, future reproductive opportunities, and/or current offspring survival. The hypothalamic-pituitary-ovarian (HPO) axis is the principal neuroendocrine pathway by which the human female modulates reproductive functioning according to the changing conditions in her habitat. Adjustments of reproductive investment in a potential conception are manifested in temporal and individual variation in ovarian cycle length, ovulation, hormone levels, and the probability of conception. Understanding the extent and causes of adaptive and non-adaptive variation in ovarian functioning is fundamental to ascertaining the proximate and remote determinants of human reproductive patterns. In this review I consider what is known and what still needs to be learned of the ecology of women's reproductive biology, beginning with a discussion of the principal explanatory frameworks in HRE and the biometry of ovarian functioning. Turning next to empirical studies, it is evident that marked variation between cycles, women, and populations is the norm rather than an aberration. Other than woman's age, the determinants of these differences are not well characterized, although developmental conditions, dietary practices, genetic variation, and epigenetic mechanisms have all been hypothesized to play some role. It is also evident that the reproductive functioning of women born and living in arduous conditions is not analogous to that of athletes, dieters, or even the lower end of the "normal range" of HPO functioning in wealthier populations. Contrary to the presumption that humans have low fecundity and an inefficient reproductive system, both theory and present evidence suggest that we may actually have very high fecundity and a reproductive system that has evolved to be flexible, ruthlessly efficient and, most importantly, strategic. Copyright 2009 Wiley-Liss, Inc.
Caloric restriction: Impact upon pituitary function and reproduction
Martin, Bronwen; Golden, Erin; Carlson, Olga D.; Egan, Josephine M.; Mattson, Mark P.; Maudsley, Stuart
2008-01-01
Reduced energy intake, or caloric restriction (CR), is known to extend life span and to retard age-related health decline in a number of different species, including worms, flies, fish, mice and rats. CR has been shown to reduce oxidative stress, improve insulin sensitivity, and alter neuroendocrine responses and central nervous system (CNS) function in animals. CR has particularly profound and complex actions upon reproductive health. At the reductionist level the most crucial physiological function of any organism is its capacity to reproduce. For a successful species to thrive, the balance between available energy (food) and the energy expenditure required for reproduction must be tightly linked. An ability to coordinate energy balance and fecundity involves complex interactions of hormones from both the periphery and the CNS and primarily centers upon the master endocrine gland, the anterior pituitary. In this review article we review the effects of CR on pituitary gonadotrope function and on the male and female reproductive axes. A better understanding of how dietary energy intake affects reproductive axis function and endocrine pulsatility could provide novel strategies for the prevention and management of reproductive dysfunction and its associated comorbidities. PMID:18329344
Chemistry supports the identification of gender-specific reproductive tissue in Tyrannosaurus rex
Schweitzer, Mary Higby; Zheng, Wenxia; Zanno, Lindsay; Werning, Sarah; Sugiyama, Toshie
2016-01-01
Medullary bone (MB), an estrogen-dependent reproductive tissue present in extant gravid birds, is texturally, histologically and compositionally distinct from other bone types. Phylogenetic proximity led to the proposal that MB would be present in non-avian dinosaurs, and recent studies have used microscopic, morphological, and regional homologies to identify this reproductive tissue in both theropod and ornithischian dinosaurs. Here, we capitalize on the unique chemical and histological fingerprint of MB in birds to characterize, at the molecular level, MB in the non-avian theropod Tyrannosaurus rex (MOR 1125), and show that the retention of original molecular components in fossils allows deeper physiological and evolutionary questions to be addressed. PMID:26975806
Chemistry supports the identification of gender-specific reproductive tissue in Tyrannosaurus rex.
Schweitzer, Mary Higby; Zheng, Wenxia; Zanno, Lindsay; Werning, Sarah; Sugiyama, Toshie
2016-03-15
Medullary bone (MB), an estrogen-dependent reproductive tissue present in extant gravid birds, is texturally, histologically and compositionally distinct from other bone types. Phylogenetic proximity led to the proposal that MB would be present in non-avian dinosaurs, and recent studies have used microscopic, morphological, and regional homologies to identify this reproductive tissue in both theropod and ornithischian dinosaurs. Here, we capitalize on the unique chemical and histological fingerprint of MB in birds to characterize, at the molecular level, MB in the non-avian theropod Tyrannosaurus rex (MOR 1125), and show that the retention of original molecular components in fossils allows deeper physiological and evolutionary questions to be addressed.
Sita, Kumari; Sehgal, Akanksha; Kumar, Jitendra; Kumar, Shiv; Singh, Sarvjeet; Siddique, Kadambot H. M.; Nayyar, Harsh
2017-01-01
Rising temperatures are proving detrimental for various agricultural crops. Cool-season legumes such as lentil (Lens culunaris Medik.) are sensitive to even small increases in temperature during the reproductive stage, hence the need to explore the available germplasm for heat tolerance as well as its underlying mechanisms. In the present study, a set of 38 core lentil accessions were screened for heat stress tolerance by sowing 2 months later (first week of January; max/min temperature >32/20°C during the reproductive stage) than the recommended date of sowing (first week of November; max/min temperature <32/20°C during the reproductive stage). Screening revealed some promising heat-tolerant genotypes (IG2507, IG3263, IG3297, IG3312, IG3327, IG3546, IG3330, IG3745, IG4258, and FLIP2009) which can be used in a breeding program. Five heat-tolerant (HT) genotypes (IG2507, IG3263, IG3745, IG4258, and FLIP2009) and five heat-sensitive (HS) genotypes (IG2821, IG2849, IG4242, IG3973, IG3964) were selected from the screened germplasm and subjected to further analysis by growing them the following year under similar conditions to probe the mechanisms associated with heat tolerance. Comparative studies on reproductive function revealed significantly higher pollen germination, pollen viability, stigmatic function, ovular viability, pollen tube growth through the style, and pod set in HT genotypes under heat stress. Nodulation was remarkably higher (1.8–22-fold) in HT genotypes. Moreover, HT genotypes produced more sucrose in their leaves (65–73%) and anthers (35–78%) that HS genotypes, which was associated with superior reproductive function and nodulation. Exogenous supplementation of sucrose to in vitro-grown pollen grains, collected from heat-stressed plants, enhanced their germination ability. Assessment of the leaves of HT genotypes suggested significantly less damage to membranes (1.3–1.4-fold), photosynthetic function (1.14–1.17-fold) and cellular oxidizing ability (1.1–1.5-fold) than HS genotypes, which was linked to higher relative leaf water content (RLWC) and stomatal conductance (gS). Consequently, HT genotypes had less oxidative damage (measured as malondialdehyde and hydrogen peroxide concentration), coupled with a higher expression of antioxidants, especially those of the ascorbate–glutathione pathway. Controlled environment studies on contrasting genotypes further supported the impact of heat stress and differentiated the response of HT and HS genotypes to varying temperatures. Our studies indicated that temperatures >35/25°C were highly detrimental for growth and yield in lentil. While HT genotypes tolerated temperatures up to 40/30°C by producing fewer pods, the HS genotypes failed to do so even at 38/28°C. The findings attributed heat tolerance to superior pollen function and higher expression of leaf antioxidants. PMID:28579994
[Human reproduction and environmental risk factors].
Petrelli, G; Mantovani, A; Menditto, A
1999-01-01
Environmental pollution is a great cause of concern, in particular, growing attention is being paid to the potential of many chemicals to affect the reproductive system in humans. The key role of prevention and control of reproductive hazards is recognized world-wide. Many chemicals have been shown to impair fertility and/or prenatal and perinatal development in experimental studies. However, a sufficient evidence of an effect on human reproduction is available for some compounds only. The use of biological markers may improve the assessment of exposure to chemicals, contribute to identify mechanisms of action and put into evidence early, reversible, biological effects. Valid biological markers are also needed in epidemiological studies: without reliable data on the level of current and past exposures it is difficult to establish a causal relationship between a pollutant and the occurrence of adverse health effects. A multidisciplinary approach to risk assessment is required. Priorities for interdisciplinary research on environmental chemicals and reproduction include the identification of susceptible population subgroups and risk assessment of exposure to multiple chemicals.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
This self-study program for the high-school level contains lessons in the following subjects: Plants and Photosynthesis; The Human Digestive System; Functions of the Blood; Human Circulation and Respiration; Reproduction of a Single Cell; Reproduction by Male and Female Cells; The Human Reproductive System; Genetics and Heredity; The Nervous…
The role of early life nutrition in programming of reproductive function.
Chadio, S; Kotsampasi, B
2014-02-01
Accumulating evidence suggest that the concept of programming can also be applied to reproductive development and function, representing an ever expanding research area. Recently issues such as peri- or even preconceptional nutrition, transgenerational effects and underlying mechanisms have received considerable attention. The present chapter presents the existed evidence and reviews the available data from numerous animal and human studies on the effects of early life nutritional environment on adult reproductive function. Specific outcomes depend on the severity, duration and stage of development when nutritional perturbations are imposed, while sex-specific effects are also manifested. Apart from undernutrition, effects of relative overnutrition as well as the complex interactions between pre- and postnatal nutrition is of high importance, especially in the context of our days obesity epidemic. Mechanisms underlying reproductive programming are yet unclear, but may include a role for epigenetic modifications. Epigenetic modulation of critical genes involved in the control of reproductive function and potential intergenerational effects represent an exciting area of interdisciplinary research toward the development of new nutritional approaches during pre- and postnatal periods to ensure reproductive health in later life.
Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang
2015-01-01
The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187
Genetic and environmental origins of obesity relevant to reproduction.
Franks, Stephen
2006-05-01
Obesity has a negative impact on reproductive health, particularly in women with polycystic ovarian syndrome (PCOS). Obesity itself is the product of both genetic and environmental influences, although the current 'epidemic' of obesity is largely related to changes in diet and lifestyle. Single gene defects leading to obesity and disordered reproductive function are rare but can are informative about metabolic pathways involved in appetite regulation. There is good evidence that PCOS has an important genetic background, which probably involves the interaction of several genes. The phenotype of PCOS and its impact on reproductive function is profoundly affected by obesity, which, in turn has both genetic and environmental influences. Understanding the genetic basis of PCOS is important but improvements in diet and lifestyle are the best means of improving reproductive function.
The relationship between gut and adipose hormones, and reproduction.
Comninos, Alexander N; Jayasena, Channa N; Dhillo, Waljit S
2014-01-01
Reproductive function is tightly regulated by nutritional status. Indeed, it has been well described that undernutrition or obesity can lead to subfertility or infertility in humans. The common regulatory pathways which control energy homeostasis and reproductive function have, to date, been poorly understood due to limited studies or inconclusive data. However, gut hormones and adipose tissue hormones have recently emerged as potential regulators of both energy homeostasis and reproductive function. A PubMed search was performed using keywords related to gut and adipose hormones and associated with keywords related to reproduction. Currently available evidence that gut (ghrelin, obestatin, insulin, peptide YY, glucagon-like peptide-1, glucose-dependent insulinotropic peptide, oxyntomodulin, cholecystokinin) and adipose hormones (leptin, adiponectin, resistin, omentin, chemerin) interact with the reproductive axis is presented. The extent, site and direction of their effects on the reproductive axis are variable and also vary depending on species, sex and pubertal stage. Gut and adipose hormones interact with the reproductive axis as well as with each other. While leptin and insulin have stimulatory effects and ghrelin has inhibitory effects on hypothalamic GnRH secretion, there is increasing evidence for their roles in other sites of the reproductive axis as well as evidence for the roles of other gut and adipose hormones in the complex interplay between nutrition and reproduction. As our understanding improves, so will our ability to identify and design novel therapeutic options for reproductive disorders and accompanying metabolic disorders.
Exploiting genomic data to identify proteins involved in abalone reproduction.
Mendoza-Porras, Omar; Botwright, Natasha A; McWilliam, Sean M; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L
2014-08-28
Aside from their critical role in reproduction, abalone gonads serve as an indicator of sexual maturity and energy balance, two key considerations for effective abalone culture. Temperate abalone farmers face issues with tank restocking with highly marketable abalone owing to inefficient spawning induction methods. The identification of key proteins in sexually mature abalone will serve as the foundation for a greater understanding of reproductive biology. Addressing this knowledge gap is the first step towards improving abalone aquaculture methods. Proteomic profiling of female and male gonads of greenlip abalone, Haliotis laevigata, was undertaken using liquid chromatography-mass spectrometry. Owing to the incomplete nature of abalone protein databases, in addition to searching against two publicly available databases, a custom database comprising genomic data was used. Overall, 162 and 110 proteins were identified in females and males respectively with 40 proteins common to both sexes. For proteins involved in sexual maturation, sperm and egg structure, motility, acrosomal reaction and fertilization, 23 were identified only in females, 18 only in males and 6 were common. Gene ontology analysis revealed clear differences between the female and male protein profiles reflecting a higher rate of protein synthesis in the ovary and higher metabolic activity in the testis. A comprehensive mass spectrometry-based analysis was performed to profile the abalone gonad proteome providing the foundation for future studies of reproduction in abalone. Key proteins involved in both reproduction and energy balance were identified. Genomic resources were utilised to build a database of molluscan proteins yielding >60% more protein identifications than in a standard workflow employing public protein databases. Copyright © 2014 Elsevier B.V. All rights reserved.
Ventura-López, Claudia; Galindo-Torres, Pavel E; Arcos, Fabiola G; Galindo-Sánchez, Clara; Racotta, Ilie S; Escobedo-Fregoso, Cristina; Llera-Herrera, Raúl; Ibarra, Ana M
2017-05-15
The increased use of massive sequencing technologies has enabled the identification of several genes known to be involved in different mechanisms associated with reproduction that so far have only been studied in vertebrates and other model invertebrate species. In order to further investigate the genes involved in Litopenaeus vannamei reproduction, cDNA and SSH libraries derived from female eyestalk and gonad were produced, allowing the identification of expressed sequences tags (ESTs) that potentially have a role in the regulation of gonadal maturation. In the present study, different transcripts involved in reproduction were identified and a number of them were characterized as full-length. These transcripts were evaluated in males and females in order to establish their tissue expression profiles during developmental stages (juvenile, subadult and adult), and in the case of females, their possible association with gonad maturation was assessed through expression analysis of vitellogenin. The results indicated that the expression of vitellogenin receptor (vtgr) and minichromosome maintenance (mcm) family members in the female gonad suggest an important role during previtellogenesis. Additionally, the expression profiles of genes such as famet, igfbp and gpcr in brain tissues suggest an interaction between the insulin/insulin-like growth factor signaling pathway (IIS) and methyl farnesoate (MF) biosynthesis for control of reproduction. Furthermore, the specific expression pattern of farnesoic acid O-methyltransferase suggests that final synthesis of MF is carried out in different target tissues, where it is regulated by esterase enzymes under a tissue-specific hormonal control. Finally, the presence of a vertebrate type steroid receptor in hepatopancreas and intestine besides being highly expressed in female gonads, suggest a role of that receptor during sexual maturation. Copyright © 2016 Elsevier Inc. All rights reserved.
Goulin, Eduardo Henrique; Savi, Daiani Cristina; Petters, Desirrê Alexia Lourenço; Kava, Vanessa; Galli-Terasawa, Lygia; Silva, Geraldo José; Glienke, Chirlei
2016-11-01
Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA. Copyright © 2016 Elsevier GmbH. All rights reserved.
Wang, Yifan; Fang, Rui; Yuan, Yuan; Pan, Ming; Hu, Min; Zhou, Yanqin; Shen, Bang; Zhao, Junlong
2016-07-01
As an obligate intracellular protozoan, Toxoplasma gondii is a successful pathogen infecting a variety of animals, including humans. As an adhesin involving in host invasion, the micronemal protein MIC3 plays important roles in host cell attachment, as well as modulation of host EGFR signaling cascade. However, the specific host proteins that interact with MIC3 are unknown and the identification of such proteins will increase our understanding of how MIC3 exerts its functions. This study was designed to identify host proteins interacting with MIC3 by yeast two-hybrid screens. Using MIC3 as bait, a library expressing mouse proteins was screened, uncovering eight mouse proteins that showed positive interactions with MIC3. Two of which, spermatogenesis-associated protein 3 (Spata3) and dickkopf-related protein 2 (Dkk2), were further confirmed to interact with MIC3 by additional protein-protein interaction tests. The results also revealed that the tandem repeat EGF domains of MIC3 were critical in mediating the interactions with the identified host proteins. This is the first study to show that MIC3 interacts with host proteins that are involved in reproduction, growth, and development. The results will provide a clearer understanding of the functions of adhesion-associated micronemal proteins in T. gondii.
A network-based method for the identification of putative genes related to infertility.
Wang, ShaoPeng; Huang, GuoHua; Hu, Qinghua; Zou, Quan
2016-11-01
Infertility has become one of the major health problems worldwide, with its incidence having risen markedly in recent decades. There is an urgent need to investigate the pathological mechanisms behind infertility and to design effective treatments. However, this is made difficult by the fact that various biological factors have been identified to be related to infertility, including genetic factors. A network-based method was established to identify new genes potentially related to infertility. A network constructed using human protein-protein interactions based on previously validated infertility-related genes enabled the identification of some novel candidate genes. These genes were then filtered by a permutation test and their functional and structural associations with infertility-related genes. Our method identified 23 novel genes, which have strong functional and structural associations with previously validated infertility-related genes. Substantial evidence indicates that the identified genes are strongly related to dysfunction of the four main biological processes of fertility: reproductive development and physiology, gametogenesis, meiosis and recombination, and hormone regulation. The newly discovered genes may provide new directions for investigating infertility. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.
Functional Amyloids in Reproduction.
Hewetson, Aveline; Do, Hoa Quynh; Myers, Caitlyn; Muthusubramanian, Archana; Sutton, Roger Bryan; Wylie, Benjamin J; Cornwall, Gail A
2017-06-29
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
The semenogelins: proteins with functions beyond reproduction?
Jonsson, M; Lundwall, A; Malm, J
2006-12-01
The coagulum proteins of human semen, semenogelins I and II, are secreted in abundance by the seminal vesicles. Their function in reproduction is poorly understood as they are rapidly degraded in ejaculated semen. However, more recent results indicate that it is time to put the semenogelins in a broader physiological perspective that goes beyond reproduction and fertility.
[Astaxanthin in male reproduction: Advances in studies].
Liu, Wei; Kang, Xiao-Fang; Shang, Xue-Jun
2016-10-01
Astaxanthin (AST) is a carotenoid with a strong antioxidant activity and has many biological functions, such as anti-inflammation, immune regulation, anti-tumor, anti-oxidation, anti-aging, and anti-apoptosis. Recent studies show that AST can effectively regulate the dynamic balance between oxidation and antioxidants in the male reproductive system, protect sperm mitochondrial function, ameliorate testicular heat stress and reproductive poison damage, promote the occurrence of sperm capacitation and acrosome reaction, regulate reproductive endocrine hormone balance, and act favorably on primary infertility or metabolic syndrome-related infertility. It also helps the treatment of late-onset hypogonadism and prostate health care. This review updates the studies of AST in male reproductive health and provides some new ideas for the prevention and treatment of male reproductive problems.
Growth Hormone and Reproduction: A Review of Endocrine and Autocrine/Paracrine Interactions
Hull, Kerry L.; Harvey, Steve
2014-01-01
The somatotropic axis, consisting of growth hormone (GH), hepatic insulin-like growth factor I (IGF-I), and assorted releasing factors, regulates growth and body composition. Axiomatically, since optimal body composition enhances reproductive function, general somatic actions of GH modulate reproductive function. A growing body of evidence supports the hypothesis that GH also modulates reproduction directly, exerting both gonadotropin-dependent and gonadotropin-independent actions in both males and females. Moreover, recent studies indicate GH produced within reproductive tissues differs from pituitary GH in terms of secretion and action. Accordingly, GH is increasingly used as a fertility adjunct in males and females, both humans and nonhumans. This review reconsiders reproductive actions of GH in vertebrates in respect to these new conceptual developments. PMID:25580121
Sex-specific inhibition and stimulation of worker-reproductive transition in a termite.
Sun, Qian; Haynes, Kenneth F; Hampton, Jordan D; Zhou, Xuguo
2017-09-06
In social insects, the postembryonic development of individuals exhibits strong phenotypic plasticity in response to the environment, thus generating the caste system. Different from eusocial Hymenoptera, in which queens dominate reproduction and inhibit worker fertility, the primary reproductive caste in termites (kings and queens) can be replaced by neotenic reproductives derived from functionally sterile individuals. Feedback regulation of nestmate differentiation into reproductives has been suggested, but the sex specificity remains inconclusive. In the eastern subterranean termite, Reticulitermes flavipes, we tested the hypothesis that neotenic reproductives regulate worker-reproductive transition in a sex-specific manner. With this R. flavipes system, we demonstrate a sex-specific regulatory mechanism with both inhibitory and stimulatory functions. Neotenics inhibit workers of the same sex from differentiating into additional reproductives but stimulate workers of the opposite sex to undergo this transition. Furthermore, this process is not affected by the presence of soldiers. Our results highlight the reproductive plasticity of termites in response to social cues and provide insights into the regulation of reproductive division of labor in a hemimetabolous social insect.
Sex-specific inhibition and stimulation of worker-reproductive transition in a termite
NASA Astrophysics Data System (ADS)
Sun, Qian; Haynes, Kenneth F.; Hampton, Jordan D.; Zhou, Xuguo
2017-10-01
In social insects, the postembryonic development of individuals exhibits strong phenotypic plasticity in response to the environment, thus generating the caste system. Different from eusocial Hymenoptera, in which queens dominate reproduction and inhibit worker fertility, the primary reproductive caste in termites (kings and queens) can be replaced by neotenic reproductives derived from functionally sterile individuals. Feedback regulation of nestmate differentiation into reproductives has been suggested, but the sex specificity remains inconclusive. In the eastern subterranean termite, Reticulitermes flavipes, we tested the hypothesis that neotenic reproductives regulate worker-reproductive transition in a sex-specific manner. With this R. flavipes system, we demonstrate a sex-specific regulatory mechanism with both inhibitory and stimulatory functions. Neotenics inhibit workers of the same sex from differentiating into additional reproductives but stimulate workers of the opposite sex to undergo this transition. Furthermore, this process is not affected by the presence of soldiers. Our results highlight the reproductive plasticity of termites in response to social cues and provide insights into the regulation of reproductive division of labor in a hemimetabolous social insect.
Effect of daily environmental temperature on farrowing rate and total born in dam line sows.
Bloemhof, S; Mathur, P K; Knol, E F; van der Waaij, E H
2013-06-01
Heat stress is known to adversely affect reproductive performance of sows. However, it is important to know on which days or periods during the reproduction cycle heat stress has the greatest effects for designing appropriate genetic or management strategies. Therefore, this study was conducted to identify days and periods that have greatest effects on farrowing rate and total born of sows using 5 different measures of heat stress. The data consisted of 22,750 records on 5024 Dutch Yorkshire dam line sows from 16 farms in Spain and Portugal. Heat stress on a given day was measured in terms of maximum temperature, diurnal temperature range and heat load. The heat load was estimated using 3 definitions considering different upper critical temperatures. Identification of days during the reproduction cycle that had maximum effect was based on the Pearson correlation between the heat stress variable and the reproduction trait, estimated for each day during the reproduction cycle. Polynomial functions were fitted to describe the trends of these correlations and the days with greatest negative correlation were considered as days with maximum effect. Correlations were greatest for maximum temperature, followed by those for heat load and diurnal temperature range. Correlations for both farrowing rate and total born were stronger in gilts than in sows. This implies that heat stress has a stronger effect on reproductive performance of gilts than of sows. Heat stress during the third week (21 to 14 d) before first insemination had largest effect on farrowing rate. Heat stress during the period between 7 d before successful insemination until 12 d after that had largest effect on total born. Correlations between temperatures on consecutive days during these periods were extremely high ( > 0.9). Therefore, for farrowing rate the maximum temperature on 21 d before first insemination and for total born the maximum temperature at day of successful insemination can be used as predictive measures of heat stress in commercial sow farms. Additionally, differences between daughter groups of sires were identified in response to high temperatures. This might indicate possibilities for genetic selection on heat tolerance.
Goldsammler, Michelle; Merhi, Zaher; Buyuk, Erkan
2018-05-09
Besides being a risk factor for multiple metabolic disorders, obesity could affect female reproduction. While increased adiposity is associated with hormonal changes that could disrupt the function of the hypothalamus and the pituitary, compelling data suggest that obesity-related hormonal and inflammatory changes could directly impact ovarian function. To review the available data related to the mechanisms by which obesity, and its associated hormonal and inflammatory changes, could affect the female reproductive function with a focus on the hypothalamic-pituitary-ovarian (HPO) axis. PubMed database search for publications in English language until October 2017 pertaining to obesity and female reproductive function was performed. The obesity-related changes in hormone levels, in particular leptin, adiponectin, ghrelin, neuropeptide Y and agouti-related protein, are associated with reproductive dysfunction at both the hypothalamic-pituitary and the ovarian levels. The pro-inflammatory molecules advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are emerging as relatively new players in the pathophysiology of obesity-related ovarian dysfunction. There is an intricate crosstalk between the adipose tissue and the inflammatory system with the HPO axis function. Understanding the mechanisms behind this crosstalk could lead to potential therapies for the common obesity-related reproductive dysfunction.
Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics
Zhou, Tao; Zhou, Zuo-Min; Guo, Xue-Jiang
2013-01-01
Proteomics strategies have been widely used in the field of male reproduction, both in basic and clinical research. Bioinformatics methods are indispensable in proteomics-based studies and are used for data presentation, database construction and functional annotation. In the present review, we focus on the functional annotation of gene lists obtained through qualitative or quantitative methods, summarizing the common and male reproduction specialized proteomics databases. We introduce several integrated tools used to find the hidden biological significance from the data obtained. We further describe in detail the information on male reproduction derived from Gene Ontology analyses, pathway analyses and biomedical analyses. We provide an overview of bioinformatics annotations in spermatogenesis, from gene function to biological function and from biological function to clinical application. On the basis of recently published proteomics studies and associated data, we show that bioinformatics methods help us to discover drug targets for sperm motility and to scan for cancer-testis genes. In addition, we summarize the online resources relevant to male reproduction research for the exploration of the regulation of spermatogenesis. PMID:23852026
Chiang, Yu-Chung; Tsai, Chi-Chu; Hsu, Tsai-Wen; Chou, Chang-Hung
2012-11-01
Microsatellite loci were developed from Imperata cylindrica, a traditional medicinal herb in Asia and among the top 10 worst invasive weeds in the world, to aid in the identification of the limits of asexual clonal individuals. A total of 21 microsatellite markers, including 18 polymorphic and three monomorphic loci, were developed from I. cylindrica using a magnetic bead enrichment protocol. The primers amplified dinucleotide, trinucleotide, and complex repeats. The number of alleles ranged from one to 19 per locus, with an observed heterozygosity ranging from 0.09 to 1.00. Several loci deviated significantly from the within-population Hardy-Weinberg equilibrium as a result of asexual clonal reproduction. These polymorphic markers should be useful tools in further studies on the identification of the range of clonal reproduction units and the selection and classification of the medicinal cultivar.
Hormonal Control of Ovarian Function Following Chlorotriazine Exposure: Effect on Reproductive Function and Mammary Gland Tumor Development.
Ralph L. Cooper, Susan C. Laws, Michael G. Narotsky, Jerome M. Goldman, and Tammy E. Stoker
Abstract
The studies review...
Gubala, Anna M; Schmitz, Jonathan F; Kearns, Michael J; Vinh, Tery T; Bornberg-Bauer, Erich; Wolfner, Mariana F; Findlay, Geoffrey D
2017-05-01
New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nuclear Receptor Coactivator Function in Reproductive Physiology and Behavior
Molenda, Heather A.; Kilts, Caitlin P.; Allen, Rachel L.; Tetel, Marc J.
2009-01-01
Gonadal steroid hormones act throughout the body to elicit changes in gene expression that result in profound effects on reproductive physiology and behavior. Steroid hormones exert many of these effects by binding to their respective intracellular receptors, which are members of a nuclear receptor superfamily of transcriptional activators. A variety of in vitro studies indicate that nuclear receptor coactivators are required for efficient transcriptional activity of steroid receptors. Many of these coactivators are found in a variety of steroid hormone-responsive reproductive tissues, including the reproductive tract, mammary gland, and brain. While many nuclear receptor coactivators have been investigated in vitro, we are only now beginning to understand their function in reproductive physiology and behavior. In this review, we discuss the general mechanisms of action of nuclear receptor coactivators in steroid-dependent gene transcription. We then review some recent and exciting findings on the function of nuclear receptor coactivators in steroid-dependent brain development and reproductive physiology and behavior. PMID:12855594
Stahlschmidt, Zachary R; Lourdais, Olivier; Lorioux, Sophie; Butler, Michael W; Davis, Jon R; Salin, Karine; Voituron, Yann; DeNardo, Dale F
2013-01-01
Current reproductive effort typically comes at a cost to future reproductive value by altering somatic function (e.g., growth or self-maintenance). Furthermore, effects of reproduction often depend on both fecundity and stage of reproduction, wherein allocation of resources into additional offspring and/or stages of reproduction results in increased costs. Despite these widely accepted generalities, interindividual variation in the effects of reproduction is common-yet the proximate basis that allows some individuals to mitigate these detrimental effects is unclear. We serially measured several variables of morphology (e.g., musculature) and physiology (e.g., antioxidant defenses) in female Children's pythons (Antaresia childreni) throughout reproduction to examine how these traits change over the course of reproduction and whether certain physiological traits are associated with reduced effects of reproduction in some individuals. Reproduction in this capital breeder was associated with changes in both morphology and physiology, but only morphological changes varied with fecundity and among specific reproductive stages. During reproduction, we detected negative relationships between morphology and self-maintenance (e.g., increased muscle allocation to reproduction was related to reduced immune function). Additionally, females that allocated resources more heavily into current reproduction also did so during future reproduction, and these females assimilated resources more efficiently, experienced reduced detriments to self-maintenance (e.g., lower levels of oxidative damage and glucocorticoids) during reproduction, and produced clutches with greater hatching success. Our results suggest that interindividual variation in specific aspects of physiology (assimilation efficiency and oxidative status) may drive variation in reproductive performance.
Neuroendocrine integration of nutritional signals on reproduction.
Evans, Maggie C; Anderson, Greg M
2017-02-01
Reproductive function in mammals is energetically costly and therefore tightly regulated by nutritional status. To enable this integration of metabolic and reproductive function, information regarding peripheral nutritional status must be relayed centrally to the gonadotropin-releasing hormone (GNRH) neurons that drive reproductive function. The metabolically relevant hormones leptin, insulin and ghrelin have been identified as key mediators of this 'metabolic control of fertility'. However, the neural circuitry through which they act to exert their control over GNRH drive remains incompletely understood. With the advent of Cre-LoxP technology, it has become possible to perform targeted gene-deletion and gene-rescue experiments and thus test the functional requirement and sufficiency, respectively, of discrete hormone-neuron signaling pathways in the metabolic control of reproductive function. This review discusses the findings from these investigations, and attempts to put them in context with what is known from clinical situations and wild-type animal models. What emerges from this discussion is clear evidence that the integration of nutritional signals on reproduction is complex and highly redundant, and therefore, surprisingly difficult to perturb. Consequently, the deletion of individual hormone-neuron signaling pathways often fails to cause reproductive phenotypes, despite strong evidence that the targeted pathway plays a role under normal physiological conditions. Although transgenic studies rarely reveal a critical role for discrete signaling pathways, they nevertheless prove to be a good strategy for identifying whether a targeted pathway is absolutely required, critically involved, sufficient or dispensable in the metabolic control of fertility. © 2017 Society for Endocrinology.
Sturgeon research update: Confirmed pallid sturgeon spawning in the Missouri River in 2007
Mac, Michael; Mestl, Gerald
2007-01-01
The U.S. Geological Survey (USGS) in partnership with the Nebraska Game and Parks Commission (NGPC) and the U.S. Army Corps of Engineers have confirmed spawning of two female pallid sturgeon in the upstream reaches of the lower Missouri River in May 2007. Combined with supporting research in reproductive physiology, identification of spawning habitat, and early life history this result provides new understanding of environmental factors (for example, photoperiod, temperature, water quality, and flow regime) that might affect reproduction of this endangered species. The purpose of this fact sheet is to provide stakeholders, scientists, and managers with some of the preliminary results from the 2007 field assessment of sturgeon reproduction in the lower Missouri River.
Functional study of Cordyceps sinensis and cordycepin in male reproduction: A review.
Chen, Yung-Chia; Chen, Ying-Hui; Pan, Bo-Syong; Chang, Ming-Min; Huang, Bu-Miin
2017-01-01
Cordyceps sinensis has various biological and pharmacological functions, and it has been claimed as a tonic supplement for sexual and reproductive dysfunctions for a long time in oriental society. In this article, the in vitro and in vivo effects of C. sinensis and cordycepin on mouse Leydig cell steroidogenesis are briefly described, the stimulatory mechanisms are summarized, and the recent findings related to the alternative substances regulating male reproductive functions are also discussed. Copyright © 2016. Published by Elsevier B.V.
Leptin and its potential interest in assisted reproduction cycles.
Catteau, A; Caillon, H; Barrière, P; Denis, M G; Masson, D; Fréour, T
2016-04-01
Leptin, an adipose hormone, has been shown to control energy homeostasis and food intake, and exert many actions on female reproductive function. Consequently, this adipokine is a pivotal factor in studies conducted on animal models and humans to decipher the mechanisms behind the infertility often observed in obese women. A systematic PubMed search was conducted on all articles, published up to January 2015 and related to leptin and its actions on energy balance and reproduction, using the following key words: leptin, reproduction, infertility, IVF and controlled ovarian stimulation. The available literature was reviewed in order to provide an overview of the current knowledge on the physiological roles of leptin, its involvement in female reproductive function and its potential interest as a prognostic marker in IVF cycles. Animal and human studies show that leptin communicates nutritional status to the central nervous system and emerging evidence has demonstrated that leptin is involved in the control of reproductive functions by acting both directly on the ovaries and indirectly on the central nervous system. With respect to the clinical use of leptin as a biomarker in IVF cycles, a systematic review of the literature suggested its potential interest as a predictor of IVF outcome, as high serum and/or follicular fluid leptin concentrations have correlated negatively with cycle outcome. However, these preliminary results remain to be confirmed. Leptin regulates energy balance and female reproductive function, mainly through its action on hypothalamic-pituitary-ovarian function, whose molecular and cellular aspects are progressively being deciphered. Preliminary studies evaluating leptin as a biomarker in human IVF seem promising but need further confirmation. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Novel function of LHFPL2 in female and male distal reproductive tract development.
Zhao, Fei; Zhou, Jun; Li, Rong; Dudley, Elizabeth A; Ye, Xiaoqin
2016-03-11
Congenital reproductive tract anomalies could impair fertility. Female and male reproductive tracts are developed from Müllerian ducts and Wolffian ducts, respectively, involving initiation, elongation and differentiation. Genetic basis solely for distal reproductive tract development is largely unknown. Lhfpl2 (lipoma HMGIC fusion partner-like 2) encodes a tetra-transmembrane protein with unknown functions. It is expressed in follicle cells of ovary and epithelial cells of reproductive tracts. A spontaneous point mutation of Lhfpl2 (LHFPL2(G102E)) leads to infertility in 100% female mice, which have normal ovarian development, ovulation, uterine development, and uterine response to exogenous estrogen stimulation, but abnormal upper longitudinal vaginal septum and lower vaginal agenesis. Infertility is also observed in ~70% mutant males, which have normal mating behavior and sperm counts, but abnormal distal vas deferens convolution resulting in complete and incomplete blockage of reproductive tract in infertile and fertile males, respectively. On embryonic day 15.5, mutant Müllerian ducts and Wolffian ducts have elongated but their duct tips are enlarged and fail to merge with the urogenital sinus. These findings provide a novel function of LHFPL2 and a novel genetic basis for distal reproductive tract development; they also emphasize the importance of an additional merging phase for proper reproductive tract development.
Sex before the State: Civic Sex, Reproductive Innovations, and Gendered Parental Identity.
Murphy, Timothy F
2017-04-01
Certain changes in the way that states classify people by sex as well as certain reproductive innovations undercut the rationale for state identification of people as male or female in signifying gendered parental relationships to children. At present, people known to the state as men may be genetic mothers to their children; people known to the state as women may be genetic fathers to their children. Synthetic gametes would make it possible for transgender men to be genetically related to children as fathers and transgender women to be genetically related to children as mothers, even if they have otherwise relied on naturally-occurring gametes to be genetic mothers and genetic fathers of children respectively. Synthetic gametes would presumably make it possible for any person to be the genetic father or genetic mother of children, even in a mix-and-match way. Other reproductive innovations will also undercut existing expectations of gendered parental identity. Uterus transplants would uncouple the maternal function of gestation from women, allowing men to share in maternity that way. Extracorporeal gestation ((ExCG)-gestation outside anyone's body-would also undercut the until-now absolute connection between female sex and maternity. In kind, effects such as these-undoing conventionally gendered parenthood-undercut the state's interest in knowing whether parents are male or female in relation to a given child, as against knowing simply whether someone stands in a parental relationship to that child, as a matter of rights and duties.
NASA Astrophysics Data System (ADS)
Martens, William
2005-04-01
Several attributes of auditory spatial imagery associated with stereophonic sound reproduction are strongly modulated by variation in interaural cross correlation (IACC) within low frequency bands. Nonetheless, a standard practice in bass management for two-channel and multichannel loudspeaker reproduction is to mix low-frequency musical content to a single channel for reproduction via a single driver (e.g., a subwoofer). This paper reviews the results of psychoacoustic studies which support the conclusion that reproduction via multiple drivers of decorrelated low-frequency signals significantly affects such important spatial attributes as auditory source width (ASW), auditory source distance (ASD), and listener envelopment (LEV). A variety of methods have been employed in these tests, including forced choice discrimination and identification, and direct ratings of both global dissimilarity and distinct attributes. Contrary to assumptions that underlie industrial standards established in 1994 by ITU-R. Recommendation BS.775-1, these findings imply that substantial stereophonic spatial information exists within audio signals at frequencies below the 80 to 120 Hz range of prescribed subwoofer cutoff frequencies, and that loudspeaker reproduction of decorrelated signals at frequencies as low as 50 Hz can have an impact upon auditory spatial imagery. [Work supported by VRQ.
Kornthong, Napamanee; Cummins, Scott F; Chotwiwatthanakun, Charoonroj; Khornchatri, Kanjana; Engsusophon, Attakorn; Hanna, Peter J; Sobhon, Prasert
2014-01-01
The central nervous system (CNS) is often intimately involved in reproduction control and is therefore a target organ for transcriptomic investigations to identify reproduction-associated genes. In this study, 454 transcriptome sequencing was performed on pooled brain and ventral nerve cord of the female mud crab (Scylla olivacea) following serotonin injection (5 µg/g BW). A total of 197,468 sequence reads was obtained with an average length of 828 bp. Approximately 38.7% of 2,183 isotigs matched with significant similarity (E value < 1e-4) to sequences within the Genbank non-redundant (nr) database, with most significant matches being to crustacean and insect sequences. Approximately 32 putative neuropeptide genes were identified from nonmatching blast sequences. In addition, we identified full-length transcripts for crustacean reproductive-related genes, namely farnesoic acid o-methyltransferase (FAMeT), estrogen sulfotransferase (ESULT) and prostaglandin F synthase (PGFS). Following serotonin injection, which would normally initiate reproductive processes, we found up-regulation of FAMeT, ESULT and PGFS expression in the female CNS and ovary. Our data here provides an invaluable new resource for understanding the molecular role of the CNS on reproduction in S. olivacea.
Environmental exposure and altered menstrual function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keye, W.R. Jr.
The impact of environmental agents and occupational factors on hypothalamic and pituitary function and menstruation are poorly understood. To date, most research related to environment, occupation, and reproduction has focused on pregnancy outcome, not menstrual function. It is imperative, however, that menstrual function be considered as an outcome variable in the study of reproduction and occupation.
Behavioral evidence for a role of chemoreception during reproduction in lake trout
Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas
2015-01-01
Chemoreception is hypothesized to influence spawning site selection, mate search, and synchronization of gamete release in chars (Salvelinus spp.), but behavioral evidence is generally lacking. Here, we provide a survey of the behavioral responses of reproductive male and female lake trout (Salvelinus namaycush) to natural conspecific chemosensory stimuli. A flow-through laboratory assay with side-by-side artificial spawning reefs was used to evaluate behavioral preferences of spawning-phase males and females for chemosensory stimuli from juveniles and from spawning-phase males and females. Males and females preferred male and juvenile stimuli over no stimuli, but only had weak preferences for female stimuli. Only females had a preference for male over juvenile stimuli when given a direct choice between the two. The unexpected observation of male attraction to male stimuli, even when offered female stimuli, indicates a fundamental difference from the existing models of chemical communication in fishes. We discuss our results from the perspectives of prespawning aggregation, mate evaluation, and spawning synchronization. Identification of specific components of the stimuli will allow confirmation of the function and may have management implications for native and invasive populations of lake trout that are ecologically and economically important.
Hanus, Robert; Vrkoslav, Vladimír; Hrdý, Ivan; Cvačka, Josef; Šobotník, Jan
2010-01-01
In 1959, P. Karlson and M. Lüscher introduced the term ‘pheromone’, broadly used nowadays for various chemicals involved in intraspecific communication. To demonstrate the term, they depicted the situation in termite societies, where king and queen inhibit the reproduction of nest-mates by an unknown chemical substance. Paradoxically, half a century later, neither the source nor the chemical identity of this ‘royal’ pheromone is known. In this study, we report for the first time the secretion of polar compounds of proteinaceous origin by functional reproductives in three termite species, Prorhinotermes simplex, Reticulitermes santonensis and Kalotermes flavicollis. Aqueous washes of functional reproductives contained sex-specific proteinaceous compounds, virtually absent in non-reproducing stages. Moreover, the presence of these compounds was clearly correlated with the age of reproductives and their reproductive status. We discuss the putative function of these substances in termite caste recognition and regulation. PMID:19939837
Koppik, Mareike; Fricke, Claudia
2017-12-01
Senescence is accompanied by loss of reproductive functions. Here, we studied reproductive ageing in Drosophila melanogaster males and asked whether the expected decline in male reproductive success is due to diminished functionality of the male accessory gland (AG). The male AG produces the majority of seminal fluid proteins (SFPs) transferred to the female at mating. SFPs induce female postmating changes and are key to male reproductive success. We measured age-dependent gene expression changes for five representative SFP genes in males from four different age groups ranging from 1 to 6 weeks after eclosion. Simultaneously, we also measured male reproductive success in postmating traits mediated by transfer of these five SFPs. We found a decreased in male SFP gene expression with advancing age and an accompanying decline in male postmating success. Hence, male reproductive senescence is associated with a decline in functionality of the male AG. While overall individual SFP genes decreased in expression, our results point towards the idea that the composition of an ejaculate might change with male age as the rate of change was variable for those five genes. © 2017 John Wiley & Sons Ltd.
Biology and biotechnology of follicle development.
Palma, Gustavo Adolfo; Argañaraz, Martin Eduardo; Barrera, Antonio Daniel; Rodler, Daniela; Mutto, Adrian Ángel; Sinowatz, Fred
2012-01-01
Growth and development of ovarian follicles require a series of coordinated events that induce morphological and functional changes within the follicle, leading to cell differentiation and oocyte development. The preantral early antral follicle transition is the stage of follicular development during which gonadotropin dependence is obtained and the progression into growing or atresia of the follicle is made. Follicular growth during this period is tightly regulated by oocyte-granulosatheca cell interactions. A cluster of early expressed genes is required for normal folliculogenesis. Granulosa cell factors stimulate the recruitment of theca cells from cortical stromal cells. Thecal factors promote granulosa cell proliferation and suppress granulosa cell apoptosis. Cell-cell and cell-extracellular matrix interactions influence the production of growth factors in the different follicular compartments (oocyte, granulosa, and theca cells). Several autocrine and paracrine factors are involved in follicular growth and differentiation; their activity is present even at the time of ovulation, decreasing the gap junction communication, and stimulating the theca cell proliferation. In addition, the identification of the factors that promote follicular growth from the preantral stage to the small antral stage may provide important information for the identification for assisted reproduction techniques.
Genetic aspects of artificial insemination with donor semen: the French CECOS Federation guidelines.
Jalbert, P; Leonard, C; Selva, J; David, G
1989-06-01
The genetic problems raised by assisted reproduction using donor gametes (AID) are numerous and often complex. They concern the legitimacy and the appropriate forms of genetic screening for both gamete donors and recipients; the identification of genetic indications justifying the use of this method of reproduction; and ascertainment of the state of health of the conceptus at birth. The experience and guidelines of the French CECOS Federation, which comprises 20 AID treatment centers, are described. The discussion emphasizes the need for an international exchange of view on this subject.
Evolution of reproductive proteins from animals and plants.
Clark, Nathaniel L; Aagaard, Jan E; Swanson, Willie J
2006-01-01
Sexual reproduction is a fundamental biological process common among eukaryotes. Because of the significance of reproductive proteins to fitness, the diversity and rapid divergence of proteins acting at many stages of reproduction is surprising and suggests a role of adaptive diversification in reproductive protein evolution. Here we review the evolution of reproductive proteins acting at different stages of reproduction among animals and plants, emphasizing common patterns. Although we are just beginning to understand these patterns, by making comparisons among stages of reproduction for diverse organisms we can begin to understand the selective forces driving reproductive protein diversity and the functional consequences of reproductive protein evolution.
Experimental reduction of intromittent organ length reduces male reproductive success in a bug
Dougherty, Liam R.; Rahman, Imran A.; Burdfield-Steel, Emily R.; Greenway, E. V. (Ginny); Shuker, David M.
2015-01-01
It is now clear in many species that male and female genital evolution has been shaped by sexual selection. However, it has historically been difficult to confirm correlations between morphology and fitness, as genital traits are complex and manipulation tends to impair function significantly. In this study, we investigate the functional morphology of the elongate male intromittent organ (or processus) of the seed bug Lygaeus simulans, in two ways. We first use micro-computed tomography (micro-CT) and flash-freezing to reconstruct in high resolution the interaction between the male intromittent organ and the female internal reproductive anatomy during mating. We successfully trace the path of the male processus inside the female reproductive tract. We then confirm that male processus length influences sperm transfer by experimental ablation and show that males with shortened processi have significantly reduced post-copulatory reproductive success. Importantly, male insemination function is not affected by this manipulation per se. We thus present rare, direct experimental evidence that an internal genital trait functions to increase reproductive success and show that, with appropriate staining, micro-CT is an excellent tool for investigating the functional morphology of insect genitalia during copulation. PMID:25972470
A simulation exercise to teach principles of bovine reproductive management.
Perry, G A; Smith, M F
2004-05-01
Students in Reproductive Management (a senior-level course with approximately 20 to 50 students per semester) at the University of Missouri-Columbia are required to participate in a simulation exercise that is designed to improve reproductive efficiency in a beef herd. During a simulated 5-yr period, students must 1) improve reproductive efficiency in a beef cow-herd through implementation of reproductive management principles; 2) determine the economic impact of reproductive management decisions in a beef herd; and 3) evaluate the constraints of different geographical locations on approaches to reproductive management. Groups of three to four students are provided with the reproductive and economic records of a farm/ranch located in different parts of North America. Students create reproductive management plans consisting of 1) detailed discussion of farm/ranch environment (climate, terrain, forage and grain availability, and stocking rate; season for breeding and calving; and justification for choice of breed); 2) assessment of current level of reproductive performance; 3) identification and economic justification of specific (measurable) objectives; 4) discussion of alternatives for accomplishing specific objectives; 5) prediction of reproductive performance (pregnancy rate, quantity of calf weaned per cow exposed, and cost per quantity of calf weaned) in response to implementation of specific management practices; and 6) an annual and 5-yr reproductive and economic summary. Students obtain livestock marketing information for their assigned location via the Internet. Spreadsheets were developed to calculate the reproductive efficiency of postpartum cows and replacement heifers based on management decisions made by the groups and to calculate a yearly economic summary for each of the 5 yr. Management decisions are justified in a written report, and oral presentations are given to the class when the project is completed. Greater than 85% of students indicated that the exercise increased their understanding of how management decisions affect reproductive efficiency and profitability in a beef operation and also provided added confidence for students that applied for beef management positions.
Heme oxygenase/carbon monoxide in the female reproductive system: an overlooked signalling pathway
Němeček, David; Dvořáková, Markéta; Sedmíková, Markéta
2017-01-01
For a long time, carbon monoxide (CO) was known for its toxic effect on organisms. But there are still many things left to discover on that molecule. CO is formed directly in the body by the enzymatic activity of heme oxygenase (HO). CO plays an important role in many physiological processes, such as cell protections (against various stress factors), and the regulation of metabolic processes. Recent research proves that CO also operates in the female reproductive system. At the centre of interest is the importance of CO for gestation. During the gestation period, CO is an important element affecting the proper function of the feto-placental unit and generally affects fetal survivability rates. Gestation is one of the most important processes of successful reproduction, although there are more relevant processes that need to be researched. While already proven that CO influences steroidogenesis and the corpus luteum survivability rate, our knowledge concerning the function and importance of CO in the reproductive system is still relatively limited. As an example, our knowledge of CO function in an oocyte, the most important cell for reproduction, is almost non-existent. The aim of this review is to summarize our current knowledge concerning the function of CO in the female reproductive system. PMID:28123837
Identification of Multiple Loci Associated with Social Parasitism in Honeybees
Pirk, Christian W.; Allsopp, Mike H.
2016-01-01
In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis. PMID:27280405
Identification of Multiple Loci Associated with Social Parasitism in Honeybees.
Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T
2016-06-01
In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.
Gene-environment interaction and male reproductive function
Axelsson, Jonatan; Bonde, Jens Peter; Giwercman, Yvonne L.; Rylander, Lars; Giwercman, Aleksander
2010-01-01
As genetic factors can hardly explain the changes taking place during short time spans, environmental and lifestyle-related factors have been suggested as the causes of time-related deterioration of male reproductive function. However, considering the strong heterogeneity of male fecundity between and within populations, genetic variants might be important determinants of the individual susceptibility to the adverse effects of environment or lifestyle. Although the possible mechanisms of such interplay in relation to the reproductive system are largely unknown, some recent studies have indicated that specific genotypes may confer a larger risk of male reproductive disorders following certain exposures. This paper presents a critical review of animal and human evidence on how genes may modify environmental effects on male reproductive function. Some examples have been found that support this mechanism, but the number of studies is still limited. This type of interaction studies may improve our understanding of normal physiology and help us to identify the risk factors to male reproductive malfunction. We also shortly discuss other aspects of gene-environment interaction specifically associated with the issue of reproduction, namely environmental and lifestyle factors as the cause of sperm DNA damage. It remains to be investigated to what extent such genetic changes, by natural conception or through the use of assisted reproductive techniques, are transmitted to the next generation, thereby causing increased morbidity in the offspring. PMID:20348940
Updates in Reproduction Coming from the Endocannabinoid System
Bradshaw, Heather B.
2014-01-01
The endocannabinoid system (ECS) is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators—deeply modulated by the activity of biosynthetic and hydrolyzing machineries—regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility. PMID:24550985
Gap junction connexins in female reproductive organs: implications for women's reproductive health.
Winterhager, Elke; Kidder, Gerald M
2015-01-01
Connexins comprise a family of ~20 proteins that form intercellular membrane channels (gap junction channels) providing a direct route for metabolites and signalling molecules to pass between cells. This review provides a critical analysis of the evidence for essential roles of individual connexins in female reproductive function, highlighting implications for women's reproductive health. No systematic review has been carried out. Published literature from the past 35 years was surveyed for research related to connexin involvement in development and function of the female reproductive system. Because of the demonstrated utility of genetic manipulation for elucidating connexin functions in various organs, much of the cited information comes from research with genetically modified mice. In some cases, a distinction is drawn between connexin functions clearly related to the formation of gap junction channels and those possibly linked to non-channel roles. Based on work with mice, several connexins are known to be required for female reproductive functions. Loss of connexin43 (CX43) causes an oocyte deficiency, and follicles lacking or expressing less CX43 in granulosa cells exhibit reduced growth, impairing fertility. CX43 is also expressed in human cumulus cells and, in the context of IVF, has been correlated with pregnancy outcome, suggesting that this connexin may be a determinant of oocyte and embryo quality in women. Loss of CX37, which exclusively connects oocytes with granulosa cells in the mouse, caused oocytes to cease growing without acquiring meiotic competence. Blocking of CX26 channels in the uterine epithelium disrupted implantation whereas loss or reduction of CX43 expression in the uterine stroma impaired decidualization and vascularization in mouse and human. Several connexins are important in placentation and, in the human, CX43 is a key regulator of the fusogenic pathway from the cytotrophoblast to the syncytiotrophoblast, ensuring placental growth. CX40, which characterizes the extravillous trophoblast (EVT), supports proliferation of the proximal EVTs while preventing them from differentiating into the invasive pathway. Furthermore, women with recurrent early pregnancy loss as well as those with endometriosis exhibit reduced levels of CX43 in their decidua. The antimalaria drug mefloquine, which blocks gap junction function, is responsible for increased risk of early pregnancy loss and stillbirth, probably due to inhibition of intercellular communication in the decidua or between trophoblast layers followed by an impairment of placental growth. Gap junctions also play a critical role in regulating uterine blood flow, contributing to the adaptive response to pregnancy. Given that reproductive impairment can result from connexin mutations in mice, it is advised that women suffering from somatic disease symptoms associated with connexin gene mutations be additionally tested for impacts on reproductive function. Better knowledge of these essential connexin functions in human female reproductive organs is important for safeguarding women's reproductive health. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Expanding the role of botanical gardens in the future of food
USDA-ARS?s Scientific Manuscript database
Collectively, the world’s more than 3,000 botanical gardens cultivate approximately one-third of known plant species in living collections, and contribute valuable information on plant identification, geographic distributions, morphology, reproduction, and traditional uses. Further, each year botan...
Identification of positional candidate genes for response to crowding stress in rainbow trout
USDA-ARS?s Scientific Manuscript database
Fish under intensive rearing conditions experience various stressors which have negative impacts on survival, growth, reproduction and fillet quality. Identifying and characterizing the molecular mechanisms underlying stress responses will facilitate the development of strategies for improving anima...
Modeling adverse environmental impacts on the reproductive system.
Sussman, N B; Mazumdar, S; Mattison, D R
1999-03-01
When priority topics are being established for the study of women's health, it is generally agreed that one important area on which to focus research is reproduction. For example, increasing attention has been directed to environmental exposures that disrupt the endocrine system and alter reproduction. These concerns also suggest the need to give greater attention to the use of animal toxicologic testing to draw inferences about human reproductive risks. Successful reproduction requires multiple simultaneous and sequential processes in both the male and female, and the effect of toxicity on reproduction-related processes is time dependent. Currently, however, the risk assessment approach does not allow for the use of multiple processes or for considering the reproductive process response as a function of time. We discuss several issues in modeling exposure effects on reproductive function for risk assessment and present an overview of approaches for reproductive risk assessment. Recommendations are provided for an effective animal study design for determining reproductive risk that addresses optimization of the duration of dosing, observation of the effects of exposure on validated biomarkers, analysis of several biomarkers for complete characterization of the exposure on the underlying biologic processes, the need for longitudinally observed exposure effects, and a procedure for estimating human reproductive risk from the animal findings. An approach to characterizing reproductive toxicity to estimate the increased fertility risks in a dibromochloropropane (DBCP)-exposed human population is illustrated, using several reproductive biomarkers simultaneously from a longitudinal rabbit inhalation study of DBCP and an interspecies extrapolation method.
Reproductive toxicity: Male and female reproductive systems as targets for chemical injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattison, D.R.; Plowchalk, D.R.; Meadows, M.J.
On the basis of current knowledge of reproductive biology and toxicology, it is apparent that chemicals affecting reproduction may elicit their effects at a number of sites in both the male and the female reproductive system. This multiplicity of targets is attributable to the dynamic nature of the reproductive system, in which the hypothalamic-pituitary-gonadal axis is controlled by precise positive and negative feedback mechanisms among its components. Interference by a xenobiotic at any level in either the male or the female reproductive system may ultimately impair hypothalamic or pituitary function. Normal gonadal processes such as spermatogenesis or oogenesis, ejaculation ormore » ovulation, hormone production by Leydig or granulosa cells, and the structure or function of the accessory reproductive structures (e.g., epididymis, fallopian tube) also appear vulnerable to xenobiotics. The reproductive system is a complex one that requires local and circulating hormones for control. This brief review illustrates a system for characterizing the mechanism of action of reproductive toxicants, as well as for defining the sites available for disruption of reproduction. Unfortunately, at present, data addressing the actual vulnerability of reproduction are sorely lacking. However, when experiments have been conducted and combined with epidemiologic data or clinical observation, it has been possible to demonstrate impairment of reproductive processes by xenobiotics. The role of environmental exposure to xenobiotics in the increase in infertility that has been observed remains to be defined. 87 references.« less
Gurven, Michael; Costa, Megan; Ben Trumble; Stieglitz, Jonathan; Beheim, Bret; Eid Rodriguez, Daniel; Hooper, Paul L; Kaplan, Hillard
2016-07-20
Women exhibit greater morbidity than men despite higher life expectancy. An evolutionary life history framework predicts that energy invested in reproduction trades-off against investments in maintenance and survival. Direct costs of reproduction may therefore contribute to higher morbidity, especially for women given their greater direct energetic contributions to reproduction. We explore multiple indicators of somatic condition among Tsimane forager-horticulturalist women (Total Fertility Rate = 9.1; n = 592 aged 15-44 years, n = 277 aged 45+). We test whether cumulative live births and the pace of reproduction are associated with nutritional status and immune function using longitudinal data spanning 10 years. Higher parity and faster reproductive pace are associated with lower nutritional status (indicated by weight, body mass index, body fat) in a cross-section, but longitudinal analyses show improvements in women's nutritional status with age. Biomarkers of immune function and anemia vary little with parity or pace of reproduction. Our findings demonstrate that even under energy-limited and infectious conditions, women are buffered from the potential depleting effects of rapid reproduction and compound offspring dependency characteristic of human life histories.
Parkinson, Kate C; Peterson, Rhett L; Mason, Jeffrey B
2017-06-01
In mammals, the relationship between reproductive function and health has been particularly difficult to define. Previously, in old, postreproductive-aged mice, replacement of senescent ovaries with new ovaries from young, actively cycling mice increased life span. We hypothesized that the same factors that increased life span would also influence health span. In the current experiments, we tested two of the seven domains of function/health, sensory function and cognition to determine if exposure of postreproductive female mice to young transplanted ovaries influenced health span. We evaluated control female CBA/J mice at six, 13 and 16months of age. Additional mice received new (60d) ovaries at 12 or 17months of age and were subsequently evaluated at 16 or 25months of age, respectively. Evaluation of sensory function included two measures of olfactory perception; olfactory identification (buried pellet test) and olfactory discrimination (novel recognition block test). We found a significant age-related decline in olfactory identification in 16-month old mice. This decline was avoided by ovarian transplantation at 12months of age. The olfactory discrimination block test revealed an age-associated increase in time spent on both the novel and familiar blocks. This trend was reversed in 16-month old new-ovary recipients. We evaluated cognitive behavior with a burrowing behavior test. We detected a significant age-related decrease in burrowing behavior at 16months of age. This age-related decrease in burrowing behavior was prevented by ovarian transplantation at 12months of age. In summary, we have shown that cognitive behavior and sensory function, which are negatively influenced by aging, can be positively influenced or restored by re-establishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females. Copyright © 2017 Elsevier Inc. All rights reserved.
Novo, Sergi; Nogués, Carme; Penon, Oriol; Barrios, Leonardo; Santaló, Josep; Gómez-Martínez, Rodrigo; Esteve, Jaume; Errachid, Abdelhamid; Plaza, José Antonio; Pérez-García, Lluïsa; Ibáñez, Elena
2014-01-01
Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of human oocytes and embryos during assisted reproduction technologies (ARTs)? The direct tagging system based on lectin-biofunctionalized polysilicon barcodes of micrometric dimensions is simple, safe and highly efficient, allowing the identification of human oocytes and embryos during the various procedures typically conducted during an assisted reproduction cycle. Measures to prevent mismatching errors (mix-ups) of the reproductive samples are currently in place in fertility clinics, but none of them are totally effective and several mix-up cases have been reported worldwide. Using a mouse model, our group has previously developed an effective direct embryo tagging system which does not interfere with the in vitro and in vivo development of the tagged embryos. This system has now been tested in human oocytes and embryos. Fresh immature and mature fertilization-failed oocytes (n = 21) and cryopreserved day 1 embryos produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) (n = 205) were donated by patients (n = 76) undergoing ARTs. In vitro development rates, embryo quality and post-vitrification survival were compared between tagged (n = 106) and non-tagged (control) embryos (n = 99). Barcode retention and identification rates were also calculated, both for embryos and for oocytes subjected to a simulated ICSI and parthenogenetic activation. Experiments were conducted from January 2012 to January 2013. Barcodes were fabricated in polysilicon and biofunctionalizated with wheat germ agglutinin lectin. Embryos were tagged with 10 barcodes and cultured in vitro until the blastocyst stage, when they were either differentially stained with propidium iodide and Hoechst or vitrified using the Cryotop method. Embryo quality was also analyzed by embryo grading and time-lapse monitoring. Injected oocytes were parthenogenetically activated using ionomycin and 6-dimethylaminopurine. Blastocyst development rates of tagged (27/58) and non-tagged embryos (24/51) were equivalent, and no significant differences in the timing of key morphokinetic parameters and the number of inner cell mass cells were detected between the two groups (tagged: 24.7 ± 2.5; non-tagged: 22.3 ± 1.9), indicating that preimplantation embryo potential and quality are not affected by the barcodes. Similarly, re-expansion rates of vitrified-warmed tagged (19/21) and non-tagged (16/19) blastocysts were similar. Global identification rates of 96.9 and 89.5% were obtained in fresh (mean barcode retention: 9.22 ± 0.13) and vitrified-warmed (mean barcode retention: 7.79 ± 0.35) tagged embryos, respectively, when simulating an automatic barcode reading process, though these rates were increased to 100% just by rotating the embryos during barcode reading. Only one of the oocytes lost one barcode during intracytoplasmic injection (100% identification rate) and all oocytes retained all the barcodes after parthenogenetic activation. Although the direct embryo tagging system developed is effective, it only allows the identification and traceability of oocytes destined for ICSI and embryos. Thus, the traceability of all reproductive samples (oocytes destined for IVF and sperm) is not yet ensured. The direct embryo tagging system developed here provides fertility clinics with a novel tool to reduce the risk of mix-ups in human ARTs. The system can also be useful in research studies that require the individual identification of oocytes or embryos and their individual tracking. This study was supported by the Sociedad Española de Fertilidad, the Spanish Ministry of Education and Science (TEC2011-29140-C03) and the Generalitat de Catalunya (2009SGR-00282 and 2009SGR-00158). The authors do not have any competing interests.
K Chandra, Amar; Sengupta, Pallav; Goswami, Haimanti; Sarkar, Mahitosh
2012-05-01
Calcium is essential for functioning of different systems including male reproduction. However, it has also been reported as chemo-castrative agent. The study has been undertaken to elucidate the effect of excessive dietary calcium on male reproductive system in animals with possible action. Adult male healthy rats fed CaCl(2) at different doses (0.5, 1.0 and 1.5 g%) in diet for 13 and 26 days to investigate reproductive parameters as well as the markers of oxidative stress. Significant alteration was found (P < 0.05) in testicular and accessory sex organs weight, epididymal sperm count, testicular steroidogenic enzyme (Δ(5) 3β-HSD and 17β-HSD) activities, serum testosterone, LH, FSH, LPO, activities of antioxidant enzymes, testicular histoarchitecture along with adrenal Δ(5) 3β-HSD activity with corticosterone level in dose- and time-dependent manner. Overall observations suggest that excessive dietary calcium enhances the generation of free-radicals resulting in structural and functional disruption of male reproduction.
Jensen, G.E.; Niemelä, J.R.; Wedebye, E.B.; Nikolov, N.G.
2008-01-01
A special challenge in the new European Union chemicals legislation, Registration, Evaluation and Authorisation of Chemicals, will be the toxicological evaluation of chemicals for reproductive toxicity. Use of valid quantitative structure–activity relationships (QSARs) is a possibility under the new legislation. This article focuses on a screening exercise by use of our own and commercial QSAR models for identification of possible reproductive toxicants. Three QSAR models were used for reproductive toxicity for the endpoints teratogenic risk to humans (based on animal tests, clinical data and epidemiological human studies), dominant lethal effect in rodents (in vivo) and Drosophila melanogaster sex-linked recessive lethal effect. A structure set of 57,014 European Inventory of Existing Chemical Substances (EINECS) chemicals was screened. A total of 5240 EINECS chemicals, corresponding to 9.2%, were predicted as reproductive toxicants by one or more of the models. The chemicals predicted positive for reproductive toxicity will be submitted to the Danish Environmental Protection Agency as scientific input for a future updated advisory classification list with advisory classifications for concern for humans owing to possible developmental toxic effects: Xn (Harmful) and R63 (Possible risk of harm to the unborn child). The chemicals were also screened in three models for endocrine disruption. PMID:19061080
Antidiabetic therapies and male reproductive function: where do we stand?
Tavares, R S; Escada-Rebelo, S; Silva, A F; Sousa, M I; Ramalho-Santos, J; Amaral, S
2018-01-01
Diabetes mellitus has been increasing at alarming rates in recent years, thus jeopardizing human health worldwide. Several antidiabetic drugs have been introduced in the market to manage glycemic levels, and proven effective in avoiding, minimizing or preventing the appearance or development of diabetes mellitus-related complications. However, and despite the established association between such pathology and male reproductive dysfunction, the influence of these therapeutic interventions on such topics have been scarcely explored. Importantly, this pathology may contribute toward the global decline in male fertility, giving the increasing preponderance of diabetes mellitus in young men at their reproductive age. Therefore, it is mandatory that the reproductive health of diabetic individuals is maintained during the antidiabetic treatment. With this in mind, we have gathered the available information and made a critical analysis regarding the effects of several antidiabetic drugs on male reproductive function. Unlike insulin, which has a clear and fundamental role on male reproductive function, the other antidiabetic therapies' effects at this level seem incoherent. In fact, studies are highly controversial possibly due to the different experimental study approaches, which, in our opinion, suggests caution when it comes to prescribing such drugs to young diabetic patients. Overall, much is still to be determined and further studies are needed to clarify the safety of these antidiabetic strategies on male reproductive system. Aspects such as the effects of insulin levels variations, consequent of insulin therapy, as well as what will be the impact of the side effect hypoglycemia, common to several therapeutic strategies discussed, on the male reproductive system are still to be addressed. © 2018 Society for Reproduction and Fertility.
ATP-binding cassette transporters in reproduction: a new frontier
Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.
2016-01-01
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as ‘gatekeepers’ at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus. PMID:26545808
Sahu, Dinesh K; Panda, Soumya P; Panda, Sujata; Das, Paramananda; Meher, Prem K; Hazra, Rupenangshu K; Peatman, Eric; Liu, Zhanjiang J; Eknath, Ambekar E; Nandi, Samiran
2013-07-15
Labeo rohita (Ham.) also called rohu is the most important freshwater aquaculture species on the Indian sub continent. Monsoon dependent breeding restricts its seed production beyond season indicating a strong genetic control about which very limited information is available. Additionally, few genomic resources are publicly available for this species. Here we sought to identify reproduction-relevant genes from normalized cDNA libraries of the brain-pituitary-gonad-liver (BPGL-axis) tissues of adult L. rohita collected during post preparatory phase. 6161 random clones sequenced (Sanger-based) from these libraries produced 4642 (75.34%) high-quality sequences. They were assembled into 3631 (78.22%) unique sequences composed of 709 contigs and 2922 singletons. A total of 182 unique sequences were found to be associated with reproduction-related genes, mainly under the GO term categories of reproduction, neuro-peptide hormone activity, hormone and receptor binding, receptor activity, signal transduction, embryonic development, cell-cell signaling, cell death and anti-apoptosis process. Several important reproduction-related genes reported here for the first time in L. rohita are zona pellucida sperm-binding protein 3, aquaporin-12, spermine oxidase, sperm associated antigen 7, testis expressed 261, progesterone receptor membrane component, Neuropeptide Y and Pro-opiomelanocortin. Quantitative RT-PCR-based analyses of 8 known and 8 unknown transcripts during preparatory and post-spawning phase showed increased expression level of most of the transcripts during preparatory phase (except Neuropeptide Y) in comparison to post-spawning phase indicating possible roles in initiation of gonad maturation. Expression of unknown transcripts was also found in prolific breeder common carp and tilapia, but levels of expression were much higher in seasonal breeder rohu. 3631 unique sequences contained 236 (6.49%) putative microsatellites with the AG (28.16%) repeat as the most frequent motif. Twenty loci showed polymorphism in 36 unrelated individuals with allele frequency ranging from 2 to 7 per locus. The observed heterozygosity ranged from 0.096 to 0.774 whereas the expected heterozygosity ranged from 0.109 to 0.801. Identification of 182 important reproduction-related genes and expression pattern of 16 transcripts in preparatory and post-spawning phase along with 20 polymorphic EST-SSRs should be highly useful for the future reproductive molecular studies and selection program in Labeo rohita. Copyright © 2013 Elsevier B.V. All rights reserved.
Women and Power: Problems of Feminine Pollution.
ERIC Educational Resources Information Center
Michaelson, Evalyn J.
The author reviews cross-cultural studies correlating women's reproductive functions with states of ritual defilement, pollution, and cultural restrictions on social behavior. Women's reproductive functions--childbirth, menstruation, and sexual intercourse--are frequently viewed as contaminating. Thus, during her menstrual period or period…
Prostaglandins and reproduction in female farm animals.
Weems, C W; Weems, Y S; Randel, R D
2006-03-01
Prostaglandins impact on ovarian, uterine, placental, and pituitary function to regulate reproduction in female livestock. They play important roles in ovulation, luteal function, maternal recognition of pregnancy, implantation, maintenance of gestation, microbial-induced abortion, parturition, postpartum uterine and ovarian infections, and resumption of postpartum ovarian cyclicity. Prostaglandins have both positive and negative effects on reproduction; they are used to synchronize oestrus, terminate pseudopregnancy in mares, induce parturition, and treat retained placenta, luteinized cysts, pyometra, and chronic endometritis. Improved therapeutic uses for prostaglandins will be developed when we understand better their involvement in implantation, maintenance of luteal function, and establishment and maintenance of pregnancy.
Common endocrine control of body weight, reproduction, and bone mass
NASA Technical Reports Server (NTRS)
Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard
2003-01-01
Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.
Choi, Ye-Na; Oh, Bong-Kyeong; Kawasaki, Ichiro; Oh, Wan-Suk; Lee, Yi; Paik, Young-Ki; Shim, Yhong-Hee
2010-02-28
The cdc25 gene, which is highly conserved in many eukaryotes, encodes a phosphatase that plays essential roles in cell cycle regulation. We identified a cdc25 ortholog in the pinewood nematode, Bursaphelenchus xylophilus. The B. xylophilus ortholog (Bx-cdc25) was found to be highly similar to Caenorhabditis elegans cdc-25.2 in sequence as well as in gene structure, both having long intron 1. The Bx-cdc25 gene was determined to be composed of seven exons and six introns in a 2,580 bp region, and was shown to encode 360 amino acids of a protein containing a highly-conserved phosphatase domain. Bx-cdc25 mRNA was hardly detectable throughout the juvenile stages but was highly expressed in eggs and in both female and male adults. Functional conservation during germline development between C. elegans cdc25 and Bx-cdc25 was revealed by Bx-cdc25 RNA interference in C. elegans.
USDA-ARS?s Scientific Manuscript database
Unfavorable genetic correlations between production and fertility traits are well documented. Genetic selection for fertility traits is slow, however, due to low heritabilities. Identification of single nucleotide polymorphisms (SNP) involved in reproduction has improved the reliability of genomic e...
The application of systematic review practices in human health assessment includes integration of multi-disciplinary evidence from epidemiological, experimental, and mechanistic studies. Although mode of action analysis relies on the evaluation of mechanistic and toxicological ou...
ERIC Educational Resources Information Center
Markham, Mary T.
2000-01-01
Introduces a unit on forest management in which students manage the school forest. Involves students in tree identification, determining the size or volume and height of trees, and evaluation of the forest for management decisions. Integrates mathematics, writing, and social studies with plant classification, plant reproduction, and the use of…
A genome-wide scan for selection signatures in Nelore cattle
USDA-ARS?s Scientific Manuscript database
Brazilian Nelore cattle have been selected for growth traits over more than four decades. In recent years, reproductive and meat quality traits have become more important because of increasing consumption, exports and consumer demand. The identification of genomic regions altered by artificial selec...
Poley, Jordan D; Sutherland, Ben J G; Jones, Simon R M; Koop, Ben F; Fast, Mark D
2016-07-04
Salmon lice, Lepeophtheirus salmonis (Copepoda: Caligidae), are highly important ectoparasites of farmed and wild salmonids, and cause multi-million dollar losses to the salmon aquaculture industry annually. Salmon lice display extensive sexual dimorphism in ontogeny, morphology, physiology, behavior, and more. Therefore, the identification of transcripts with differential expression between males and females (sex-biased transcripts) may help elucidate the relationship between sexual selection and sexually dimorphic characteristics. Sex-biased transcripts were identified from transcriptome analyses of three L. salmonis populations, including both Atlantic and Pacific subspecies. A total of 35-43 % of all quality-filtered transcripts were sex-biased in L. salmonis, with male-biased transcripts exhibiting higher fold change than female-biased transcripts. For Gene Ontology and functional analyses, a consensus-based approach was used to identify concordantly differentially expressed sex-biased transcripts across the three populations. A total of 127 male-specific transcripts (i.e. those without detectable expression in any female) were identified, and were enriched with reproductive functions (e.g. seminal fluid and male accessory gland proteins). Other sex-biased transcripts involved in morphogenesis, feeding, energy generation, and sensory and immune system development and function were also identified. Interestingly, as observed in model systems, male-biased L. salmonis transcripts were more frequently without annotation compared to female-biased or unbiased transcripts, suggesting higher rates of sequence divergence in male-biased transcripts. Transcriptome differences between male and female L. salmonis described here provide key insights into the molecular mechanisms controlling sexual dimorphism in L. salmonis. This analysis offers targets for parasite control and provides a foundation for further analyses exploring critical topics such as the interaction between sex and drug resistance, sex-specific factors in host-parasite relationships, and reproductive roles within L. salmonis.
Tamura, Kei; Kobayashi, Yasuhisa; Hirooka, Asuka; Takanami, Keiko; Oti, Takumi; Jogahara, Takamichi; Oda, Sen-Ichi; Sakamoto, Tatsuya; Sakamoto, Hirotaka
2017-05-01
Several regions of the brain and spinal cord control male reproductive function. We previously demonstrated that the gastrin-releasing peptide (GRP) system, located in the lumbosacral spinal cord of rats, controls spinal centers to promote penile reflexes during male copulatory behavior. However, little information exists on the male-specific spinal GRP system in animals other than rats. The objective of this study was to examine the functional generality of the spinal GRP system in mammals using the Asian house musk shrew (Suncus murinus; suncus named as the laboratory strain), a specialized placental mammal model. Mice are also used for a representative model of small laboratory animals. We first isolated complementary DNA encoding GRP in suncus. Phylogenetic analysis revealed that suncus preproGRP was clustered to an independent branch. Reverse transcription-PCR showed that GRP and its receptor mRNAs were both expressed in the lumbar spinal cord of suncus and mice. Immunohistochemistry for GRP demonstrated that the sexually dimorphic GRP system and male-specific expression/distribution patterns of GRP in the lumbosacral spinal cord in suncus are similar to those of mice. In suncus, we further found that most GRP-expressing neurons in males also express androgen receptors, suggesting that this male-dominant system in suncus is also androgen-dependent. Taken together, these results indicate that the sexually dimorphic spinal GRP system exists not only in mice but also in suncus, suggesting that this system is a conserved property in mammals. J. Comp. Neurol. 525:1586-1598, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ovarian function's role during cancer cachexia progression in the female mouse.
Hetzler, Kimbell L; Hardee, Justin P; LaVoie, Holly A; Murphy, E Angela; Carson, James A
2017-05-01
Cachexia is a debilitating condition that occurs with chronic disease, including cancer; our research has shown that some regulation of cancer cachexia progression is affected by sex differences. The Apc Min/+ mouse is genetically predisposed to develop intestinal tumors; IL-6 signaling and hypogonadism are associated with cachexia severity in the male. This relationship in the female warrants further investigation, as we have shown that the ability of IL-6 to induce cachexia differs between the sexes. Since ovarian reproductive function relies on a complex system of endocrine signaling to affect whole body homeostasis, we examined the relationship between ovarian reproductive function and progression of cancer cachexia in the female Apc Min/+ mouse. Our study of ovarian reproductive function in female Apc Min/+ mice showed disease-related cessation of estrous cycling (acyclicity) in 38% of mice. Acyclicity, including morphological and functional losses and enhanced muscle inflammatory gene expression, was associated with severe cachexia. Interestingly, ovariectomy rescued body weight and muscle mass and function but increased muscle sensitivity to systemic IL-6 overexpression. In conclusion, our results provide evidence for a relationship between ovarian reproductive function and cachexia progression in female Apc Min/+ mice. Copyright © 2017 the American Physiological Society.
No Evidence for a Trade-Off between Reproductive Investment and Immunity in a Rodent
Xu, Yan-Chao; Yang, Deng-Bao; Wang, De-Hua
2012-01-01
Life history theory assumes there are trade-offs between competing functions such as reproduction and immunity. Although well studied in birds, studies of the trade-offs between reproduction and immunity in small mammals are scarce. Here we examined whether reduced immunity is a consequence of reproductive effort in lactating Brandt's voles (Lasiopodomys brandtii). Specifically, we tested the effects of lactation on immune function (Experiment I). The results showed that food intake and resting metabolic rate (RMR) were higher in lactating voles (6≤ litter size ≤8) than that in non-reproductive voles. Contrary to our expectation, lactating voles also had higher levels of serum total Immunoglobulin G (IgG) and anti-keyhole limpet hemocyanin (KLH) IgG and no change in phytohemagglutinin (PHA) response and anti-KLH Immunoglobulin M (IgM) compared with non-reproductive voles, suggesting improved rather than reduced immune function. To further test the effect of differences in reproductive investment on immunity, we compared the responses between natural large (n≥8) and small litter size (n≤6) (Experiment II) and manipulated large (11–13) and small litter size (2–3) (Experiment III). During peak lactation, acquired immunity (PHA response, anti-KLH IgG and anti-KLH IgM) was not significantly different between voles raising large or small litters in both experiments, despite the measured difference in reproductive investment (greater litter size, litter mass, RMR and food intake in the voles raising larger litters). Total IgG was higher in voles with natural large litter size than those with natural small litter size, but decreased in the enlarged litter size group compared with control and reduced group. Our results showed that immune function is not suppressed to compensate the high energy demands during lactation in Brandt's voles and contrasting the situation in birds, is unlikely to be an important aspect mediating the trade-off between reproduction and survival. PMID:22649512
Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L.; Deviche, Pierre
2015-01-01
ABSTRACT Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary–gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. PMID:26333925
Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre
2015-07-10
Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none has investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's Towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone (T) responsiveness of the HPG axis. Wild-caught birds were either ad libitum-fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma T response to GnRH challenge. Energy deficiency did, however, decrease the plasma T responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting in decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.
Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre
2015-09-01
Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.
USDA-ARS?s Scientific Manuscript database
The objectives of this study were (1) to evaluate the ability of trenbolone acetate (TBA) administered in tandem with LHRH immunization to suppress reproductive function in beef bulls and (2) to examine the effects of LHRH and androgen (TBA) signaling on pituitary function. In order to address thes...
Musumeci, Giuseppe; Castorina, Sergio; Castrogiovanni, Paola; Loreto, Carla; Leonardi, Rosi; Aiello, Flavia Concetta; Magro, Gaetano; Imbesi, Rosa
2015-01-01
The pituitary gland and the hypothalamus are morphologically and functionally associated in the endocrine and neuroendocrine control of other endocrine glands. They therefore play a key role in a number of regulatory feedback processes that co-ordinate the whole endocrine system. Here we review the neuroendocrine system, from the discoveries that led to its identification to some recently clarified embryological, functional, and morphological aspects. In particular we review the pituitary gland and the main notions related to its development, organization, cell differentiation, and vascularization. Given the crucial importance of the factors controlling neuroendocrine system development to understand parvocellular neuron function and the aetiology of the congenital disorders related to hypothalamic-pituitary axis dysfunction, we also provide an overview of the molecular and genetic studies that have advanced our knowledge in the field. Through the action of the hypothalamus, the pituitary gland is involved in the control of a broad range of key aspects of our lives: the review focuses on the hypothalamic-pituitary-gonadal axis, particularly GnRH, whose abnormal secretion is associated with clinical conditions involving delayed or absent puberty and reproductive dysfunction. Copyright © 2015 Elsevier GmbH. All rights reserved.
EFFECTS OF SELENIUM ON MALLARD DUCK REPRODUCTION AND IMMUNE FUNCTION
Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. Our objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of a...
Robker, Rebecca L; Watson, Laura N; Robertson, Sarah A; Dunning, Kylie R; McLaughlin, Eileen A; Russell, Darryl L
2014-01-01
The STAT3 transcription factor is a pleiotropic transducer of signalling by hormones, growth factors and cytokines that has been identified in the female reproductive tract from oocytes and granulosa cells of the ovary to uterine epithelial and stromal cells. In the present study we used transgenic models to investigate the importance of STAT3 for reproductive performance in these different tissues. The Cre-LoxP system was used to delete STAT3 in oocytes by crossing Stat3fl/fl with Zp3-cre+ mice, or in ovarian granulosa cells and uterine stroma by crossing with Amhr2-Cre+ mice. Surprisingly, deletion of STAT3 in oocytes had no effect on fertility indicating that the abundance of STAT3 protein in maturing oocytes and fertilized zygotes is not essential to these developmental stages. In Stat3fl/fl;Amhr2-cre+ females impaired fertility was observed through significantly fewer litters and smaller litter size. Ovulation rate, oocyte fertilization and development to blastocyst were unaffected in this line; however, poor recombination efficiency in granulosa cells had yielded no net change in STAT3 protein abundance. In contrast, uteri from these mice showed STAT3 protein depletion selectively from the stomal compartment. A significant reduction in number of viable fetuses on gestational day 18, increased fetal resorptions and disrupted placental morphology were evident causes of the reduced fertility. In conclusion, this study defines an important role for STAT3 in uterine stromal cells during embryo implantation and the development of a functional placenta.
Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei
2017-07-01
Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.
The Use of Proteomics in Assisted Reproduction.
Kosteria, Ioanna; Anagnostopoulos, Athanasios K; Kanaka-Gantenbein, Christina; Chrousos, George P; Tsangaris, George T
2017-01-01
Despite the explosive increase in the use of Assisted Reproductive Technologies (ART) over the last 30 years, their success rates remain suboptimal. Proteomics is a rapidly-evolving technology-driven science that has already been widely applied in the exploration of human reproduction and fertility, providing useful insights into its physiology and leading to the identification of numerous proteins that may be potential biomarkers and/or treatment targets of a successful ART pregnancy. Here we present a brief overview of the techniques used in proteomic analyses and attempt a comprehensive presentation of recent data from mass spectrometry-based proteomic studies in humans, regarding all components of ARTs, including the male and female gamete, the derived zygote and embryo, the endometrium and, finally, the ART offspring both pre- and postnatally. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Kongshaug, Heidi; Horsberg, Tor Einar; Male, Rune; Nilsen, Frank; Dalvin, Sussie
2018-01-01
The salmon louse is a marine ectoparasitic copepod on salmonid fishes. Its lifecycle consists of eight developmental stages, each separated by a molt. In crustaceans and insects, molting and reproduction is controlled by circulating steroid hormones such as 20-hydroxyecdysone. Steroid hormones are synthesized from cholesterol through catalytic reactions involving a 7,8-dehydrogenase Neverland and several cytochrome P450 genes collectively called the Halloween genes. In this study, we have isolated and identified orthologs of neverland, disembodied and shade in the salmon louse (Lepeophtheirus salmonis) genome. Tissue-specific expression analysis show that the genes are expressed in intestine and reproductive tissue. In addition, levels of the steroid hormones ecdysone, 20-hydroxyecdysone and ponasterone A were measured during the reproductive stage of adult females and in early life stages. PMID:29401467
Reproductive choice in Islam: gender and state in Iran and Tunisia.
Obermeyer, C M
1994-01-01
This report examines the extent to which reproductive choice is compatible with Islamic principles. It presents the argument that the impact of Islam on reproductive choice is largely a function of the political context in which gender issues are defined. Indicators of reproductive health in countries of the Middle East are reviewed and the way these relate to constraints on reproductive choice is assessed. The examples of Tunisia and Iran are used to illustrate the way in which Islam is invoked to legitimate conflicting positions concerning women and their reproductive options.
Amphibian model species Xenopus tropicalis is currently being utilized by EPA in the development of a standardized in vivo reproductive toxicity assay. Perturbations to the hypothalamic-pituitary-gonadal axis from exposure to endocrine disrupting compounds during larval develop...
Health costs of reproduction are minimal despite high fertility, mortality and subsistence lifestyle
Gurven, Michael; Costa, Megan; Ben Trumble; Stieglitz, Jonathan; Beheim, Bret; Eid Rodriguez, Daniel; Hooper, Paul L.; Kaplan, Hillard
2016-01-01
Women exhibit greater morbidity than men despite higher life expectancy. An evolutionary life history framework predicts that energy invested in reproduction trades-off against investments in maintenance and survival. Direct costs of reproduction may therefore contribute to higher morbidity, especially for women given their greater direct energetic contributions to reproduction. We explore multiple indicators of somatic condition among Tsimane forager-horticulturalist women (Total Fertility Rate = 9.1; n = 592 aged 15–44 years, n = 277 aged 45+). We test whether cumulative live births and the pace of reproduction are associated with nutritional status and immune function using longitudinal data spanning 10 years. Higher parity and faster reproductive pace are associated with lower nutritional status (indicated by weight, body mass index, body fat) in a cross-section, but longitudinal analyses show improvements in women’s nutritional status with age. Biomarkers of immune function and anemia vary little with parity or pace of reproduction. Our findings demonstrate that even under energy-limited and infectious conditions, women are buffered from the potential depleting effects of rapid reproduction and compound offspring dependency characteristic of human life histories. PMID:27436412
The role of the leptin in reproduction.
Cervero, Ana; Domínguez, Francisco; Horcajadas, José A; Quiñonero, Alicia; Pellicer, Antonio; Simón, Carlos
2006-06-01
Since its discovery in 1994, leptin has appeared to be a pleiotrophic hormone, governing energy homeostasis and affecting many tissues in the body. Numerous pieces of evidence have accumulated showing that leptin potentially plays an important role in the control of the reproductive function. This review presents the major concepts for the role of leptin in the modulation of reproductive function. As a marker of the nutritional status, leptin affects the hypothalamo-pituitary-gonadal axis, regulating gonadotrophin-releasing hormone and luteinising hormone secretion, and appears to be a permissive factor in the onset of the puberty. This protein and its receptor have been found in the reproductive tissues, indicating that this system could be also implicated in several processes such as embryo development, implantation and pregnancy. Moreover, disorders of the leptin system have been related to some reproductive pathologies such as pre-eclampsia and polycystic ovary syndrome. However, controversy surrounds several aspects of the action of leptin in reproduction that require a deeper investigation of this system. Results to date suggest that this system could be implicated in important reproductive processes such as embryonic development and implantation. Moreover, understanding the role of leptin might be useful for new treatments in reproductive pathologies.
Metabolic influences on neuroendocrine regulation of reproduction.
Navarro, Víctor M; Kaiser, Ursula B
2013-08-01
Reproduction is a tightly regulated function in which many mechanisms contribute to ensure the survival of the species. Among those, due to the elevated energy requirements of reproduction, metabolic factors exert a pivotal role in the control of hypothalamic-pituitary-gonadal axis. Although this control may occur at multiple levels of the axis, the majority of interactions between metabolic and reproductive systems take place in the hypothalamus. In this article, we present an overview of the state-of-the-art knowledge regarding the metabolic regulation of reproduction at the central level. We aim to identify the neuroanatomical location where both functions interconnect by discussing the likelihood of each component of the neuronal hierarchical network controlling gonadotropin-releasing hormone (GnRH) release to be first-order responders to metabolic cues, especially the peripheral metabolic signals leptin, insulin, and ghrelin. Latest evidence suggests that the primary action of leptin, insulin, and ghrelin to regulate reproduction is located upstream of the main central elicitors of gonadotropin release, Kiss1 and GnRH neurons, and neuroanatomically separated from their metabolic action. The study of the neuronal interactions between the mechanisms governing metabolism and reproduction offers the platform to overcome or treat a number of prevailing metabolic and/or reproductive conditions.
Kisspeptin modulates sexual and emotional brain processing in humans.
Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S
2017-02-01
Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).
Design: Reviewed articles indexed in PubMed from 1999-2007 addressing environment and puberty, menstrual and ovarian function, fertility, and menopause. Results: The strongest evidence of environmental contaminant exposures interfering with healthy reproductive function in adu...
Ruiz, Mayté; French, Susannah S; Demas, Gregory E; Martins, Emília P
2010-02-01
The energetic resources in an organism's environment are essential for executing a wide range of life-history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases, and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to Escherichia coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. Copyright 2009 Elsevier Inc. All rights reserved.
Ruiz, Mayté; French, Susannah S.; Demas, Gregory E.; Martins, Emília P.
2009-01-01
The energetic resources in an organism’s environment are essential for executing a wide range of life history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases; and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to E. coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. PMID:19800885
MECHANISMS OF MALE REPRODUCTIVE TOXICITY: BED, BATH AND BEYOND
Male reproductive function depends upon the integration of a great number of highly complex biological processes and their endocrine support. Therefore it is not surprising that male reproductive health can be impaired by exposures to drugs and environmental toxicants that impact...
DNA Metabarcoding of Amazonian Ichthyoplankton Swarms.
Maggia, M E; Vigouroux, Y; Renno, J F; Duponchelle, F; Desmarais, E; Nunez, J; García-Dávila, C; Carvajal-Vallejos, F M; Paradis, E; Martin, J F; Mariac, C
2017-01-01
Tropical rainforests harbor extraordinary biodiversity. The Amazon basin is thought to hold 30% of all river fish species in the world. Information about the ecology, reproduction, and recruitment of most species is still lacking, thus hampering fisheries management and successful conservation strategies. One of the key understudied issues in the study of population dynamics is recruitment. Fish larval ecology in tropical biomes is still in its infancy owing to identification difficulties. Molecular techniques are very promising tools for the identification of larvae at the species level. However, one of their limits is obtaining individual sequences with large samples of larvae. To facilitate this task, we developed a new method based on the massive parallel sequencing capability of next generation sequencing (NGS) coupled with hybridization capture. We focused on the mitochondrial marker cytochrome oxidase I (COI). The results obtained using the new method were compared with individual larval sequencing. We validated the ability of the method to identify Amazonian catfish larvae at the species level and to estimate the relative abundance of species in batches of larvae. Finally, we applied the method and provided evidence for strong temporal variation in reproductive activity of catfish species in the Ucayalí River in the Peruvian Amazon. This new time and cost effective method enables the acquisition of large datasets, paving the way for a finer understanding of reproductive dynamics and recruitment patterns of tropical fish species, with major implications for fisheries management and conservation.
Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein
2016-01-01
Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.
Mendoza-Porras, Omar; Botwright, Natasha A; Reverter, Antonio; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L
2017-12-01
Inefficient control of temperate abalone spawning prevents pair-wise breeding and production of abalone with highly marketable traits. Traditionally, abalone farmers have used a combination of UV irradiation and application of temperature gradients to the tank water to artificially induce spawning. Proteins are known to regulate crucial processes such as respiration, muscle contraction, feeding, growth and reproduction. Spawning as a pre-requisite of abalone reproduction is likely to be regulated, in part, by endogenous proteins. A first step in elucidating the mechanisms that regulate spawning is to identify which proteins are directly involved during spawning. The present study examined protein expression following traditional spawning induction in the Haliotis laevigata female. Gonads were collected from abalone in the following physiological states: (1) spawning; (2) post-spawning; and (3) failed-to-spawn. Differential protein abundance was initially assessed using two-dimensional difference in-gel electrophoresis coupled with mass spectrometry for protein identification. A number of reproductive proteins such as vitellogenin, vitelline envelope zona pellucida domain 29 and prohibitin, and metabolic proteins such as thioredoxin peroxidase, superoxide dismutase and heat shock proteins were identified. Differences in protein abundance levels between physiological states were further assessed using scheduled multiple reaction monitoring mass spectrometry. Positive associations were observed between the abundance of specific proteins, such as heat shock cognate 70 and peroxiredoxin 6, and the propensity or failure to spawn in abalone. These findings have contributed to better understand both the effects of oxidative and heat stress over abalone physiology and their influence on abalone spawning. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein
2016-01-01
Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants. PMID:27253370
Basic Methods for the Study of Reproductive Ecology of Fish in Aquaria.
Fukuda, Kazuya; Sunobe, Tomoki
2017-07-20
Captive-rearing observations are valuable for revealing aspects of fish behavior and ecology when continuous field investigations are impossible. Here, a series of basic techniques are described to enable observations of the reproductive behavior of a wild-caught gobiid fish, as a model, kept in an aquarium. The method focuses on three steps: collection, transport, and observations of reproductive ecology of a substrate spawner. Essential aspects of live fish collection and transport are (1) preventing injury to the fish, and (2) careful acclimation to the aquarium. Preventing harm through injuries such as scratches or a sudden change of water pressure is imperative when collecting live fish, as any physical damage is likely to negatively affect the survival and later behavior of the fish. Careful acclimation to aquaria decreases the incidence death and mitigates the shock of transport. Observations during captive rearing include (1) the identification of individual fish and (2) monitoring spawned eggs without negative effects to the fish or eggs, thereby enabling detailed investigation of the study species' reproductive ecology. The subcutaneous injection of a visible implant elastomer (VIE) tag is a precise method for the subsequent identification of individual fish, and it can be used with a wide size range of fish, with minimal influence on their survival and behavior. If the study species is a substrate spawner that deposits adhesive eggs, an artificial nest site constructed from polyvinyl chloride (PVC) pipe with the addition of a removable waterproof sheet will facilitate counting and monitoring the eggs, lessening the investigator's influence on the nest-holding and egg-guarding behavior of the fish. Although this basic method entails techniques that are seldom mentioned in detail in research articles, they are fundamental for undertaking experiments that require the captive rearing of a wild fish.
Ovarian function’s role during cancer cachexia progression in the female mouse
Hetzler, Kimbell L.; Hardee, Justin P.; LaVoie, Holly A.; Murphy, E. Angela
2017-01-01
Cachexia is a debilitating condition that occurs with chronic disease, including cancer; our research has shown that some regulation of cancer cachexia progression is affected by sex differences. The ApcMin/+ mouse is genetically predisposed to develop intestinal tumors; IL-6 signaling and hypogonadism are associated with cachexia severity in the male. This relationship in the female warrants further investigation, as we have shown that the ability of IL-6 to induce cachexia differs between the sexes. Since ovarian reproductive function relies on a complex system of endocrine signaling to affect whole body homeostasis, we examined the relationship between ovarian reproductive function and progression of cancer cachexia in the female ApcMin/+ mouse. Our study of ovarian reproductive function in female ApcMin/+ mice showed disease-related cessation of estrous cycling (acyclicity) in 38% of mice. Acyclicity, including morphological and functional losses and enhanced muscle inflammatory gene expression, was associated with severe cachexia. Interestingly, ovariectomy rescued body weight and muscle mass and function but increased muscle sensitivity to systemic IL-6 overexpression. In conclusion, our results provide evidence for a relationship between ovarian reproductive function and cachexia progression in female ApcMin/+ mice. PMID:28292759
The transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) male reproductive organs.
Azevedo, Renata V D M; Dias, Denise B S; Bretãs, Jorge A C; Mazzoni, Camila J; Souza, Nataly A; Albano, Rodolpho M; Wagner, Glauber; Davila, Alberto M R; Peixoto, Alexandre A
2012-01-01
It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. We generated 2678 high quality ESTs ("Expressed Sequence Tags") of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies.
The Transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) Male Reproductive Organs
Bretãs, Jorge A. C.; Mazzoni, Camila J.; Souza, Nataly A.; Albano, Rodolpho M.; Wagner, Glauber; Davila, Alberto M. R.; Peixoto, Alexandre A.
2012-01-01
Background It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. Methods/Principal Findings We generated 2678 high quality ESTs (“Expressed Sequence Tags”) of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). Conclusions The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies. PMID:22496818
Olmo, L; Ashley, K; Young, J R; Suon, S; Thomson, P C; Windsor, P A; Bush, R D
2017-01-01
This study aimed to identify factors associated with cattle reproductive output in rural smallholder farms in Cambodia in order to determine the main causes of reproductive failure and design efficient interventions for improvement. The majority of the nation's beef is produced on smallholder farms where productivity is constrained by poor animal reproductivity reflected in the recent livestock population decline of approximately 13 % from 2009 to 2013. Farmers (n = 240) from 16 villages from five provinces were surveyed in mid-2015 to determine their baseline knowledge, attitude and practices (KAP) associated with cattle reproduction. In addition, 16 case studies from three of these provinces were conducted to provide a more detailed assessment of current cattle reproductive husbandry practices. In order to assess the reproductive impact of previously implemented interventions, an endpoint KAP survey and longitudinal health and husbandry study from three Cambodian provinces conducted between 2008 and 2013 were also analysed. Three multivariable prediction models (two KAP and one longitudinal) identified the following significant factors associated with the reproductive outcomes 'number of calves born' or probability that cows 'gave birth': target feeding (P = 0.074), growing vegetables (P = 0.005), attitudes towards cattle vaccination (P = 0.010), improving bull selection (P = 0.032), local breed use (P = 0.005), number of joining attempts (P < 0.001), discontinuation of animal draught practices (P = 0.003) and retention of breeding animals (P < 0.001). The identification of significant factors and interventions in this study has led to intervention recommendations that can potentially improve reproductive efficiency, combat the declining cattle population and improve smallholder capacity to supply to expanding regional meat demand in South-East Asia and China.
Evaluation of reproductive status in Atlantic Tripletail by traditional and nonlethal approaches
Parr, R. T.; Jennings, Cecil A.; Denslow, N. D.; Kroll, K.J.; Bringolf, R.B.
2016-01-01
Reproductive biology information is an important tool for fishery management actions such as the identification of spawning areas and the development of protective size limits, bag limits, and seasons. Such information for the management of Atlantic TripletailLobotes surinamensis is currently limited, particularly in the western Atlantic Ocean, as information regarding the reproductive biology of this species is sparse in the published literature. To this end, we determined the reproductive status of tripletail and compared the results of a nonlethal sampling method, plasma vitellogenin (VTG) analysis, with those of two traditional (lethal) methods, gonadosomatic index (GSI) and gonad histology. A total of 223 (122 male and 101 female) tripletail were sampled over 2 years near Jekyll Island, Georgia. Gonad histology indicated that 107 (94%) of the male tripletail were in the spawning-capable reproductive phase. Female tripletail were found in all reproductive phases, but only nine (8.9%) were in the spawning-capable phase. Plasma VTG was strongly related to GSI in females (R2 = 0.832, n = 77), and female GSI differed significantly among reproductive phases (p < 0.0001). The estimated length at which 50% (L50) of female tripletail reached maturity was 463 mm; however, the L50 for male tripletail could not be determined because of the lack of immature fish within the study sample. Our study provides valuable information for the management of tripletail and indicates that a nonlethal approach (plasma VTG) may be useful for differentiating developing and spawning-capable females from males and from females in other reproductive phases.
77 FR 65913 - Privacy Act of 1974: Systems of Records.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... performing clerical, stenographic, or data analysis functions, or by reproduction of records by electronic or... performing clerical, stenographic, or data analysis functions, or by reproduction of records by electronic or... Services (OGIS) National Archives and Records Administration, in connection with mediation of FOIA requests...
Meyer, Régis E; Delaage, Michèle; Rosset, Roland; Capri, Michèle; Aït-Ahmed, Ounissa
2010-11-16
Sexual reproduction relies on two key events: formation of cells with a haploid genome (the gametes) and restoration of diploidy after fertilization. Therefore the underlying mechanisms must have been evolutionary linked and there is a need for evidence that could support such a model. We describe the identification and the characterization of yem1, the first yem-alpha mutant allele (V478E), which to some extent affects diploidy reduction and its restoration. Yem-alpha is a member of the Ubinuclein/HPC2 family of proteins that have recently been implicated in playing roles in chromatin remodeling in concert with HIRA histone chaperone. The yem1 mutant females exhibited disrupted chromosome behavior in the first meiotic division and produced very low numbers of viable progeny. Unexpectedly these progeny did not display paternal chromosome markers, suggesting that they developed from diploid gametes that underwent gynogenesis, a form of parthenogenesis that requires fertilization. We focus here on the analysis of the meiotic defects exhibited by yem1 oocytes that could account for the formation of diploid gametes. Our results suggest that yem1 affects chromosome segregation presumably by affecting kinetochores function in the first meiotic division. This work paves the way to further investigations on the evolution of the mechanisms that support sexual reproduction.
Defining a Computational Framework for the Assessment of ...
The Adverse Outcome Pathway (AOP) framework describes the effects of environmental stressors across multiple scales of biological organization and function. This includes an evaluation of the potential for each key event to occur across a broad range of species in order to determine the taxonomic applicability of each AOP. Computational tools are needed to facilitate this process. Recently, we developed a tool that uses sequence homology to evaluate the applicability of molecular initiating events across species (Lalone et al., Toxicol. Sci., 2016). To extend our ability to make computational predictions at higher levels of biological organization, we have created the AOPdb. This database links molecular targets identified associated with key events in the AOPwiki to publically available data (e.g. gene-protein, pathway, species orthology, ontology, chemical, disease) including ToxCast assay information. The AOPdb combines different data types in order to characterize the impacts of chemicals to human health and the environment and serves as a decision support tool for case study development in the area of taxonomic applicability. As a proof of concept, the AOPdb allows identification of relevant molecular targets, biological pathways, and chemical and disease associations across species for four AOPs from the AOP-Wiki (https://aopwiki.org): Estrogen receptor antagonism leading to reproductive dysfunction (Aop:30); Aromatase inhibition leading to reproductive d
Identification and molecular characterization of Parkin in Clonorchis sinensis.
Bai, Xuelian; Kim, Tae Im; Lee, Ji-Yun; Dai, Fuhong; Hong, Sung-Jong
2015-02-01
Clonorchis sinensis habitating in the bile duct of mammals causes clonorchiasis endemic in East Asian countries. Parkin is a RING-between-RING protein and has E3-ubiquitin ligase activity catalyzing ubiquitination and degradation of substrate proteins. A cDNA clone of C. sinensis was predicted to encode a polypeptide homologous to parkin (CsParkin) including 5 domains (Ubl, RING0, RING1, IBR, and RING2). The cysteine and histidine residues binding to Zn(2+) were all conserved and participated in formation of tertiary structural RINGs. Conserved residues were also an E2-binding site in RING1 domain and a catalytic cysteine residue in the RING2 domain. Native CsParkin was determined to have an estimated molecular weight of 45.7 kDa from C. sinensis adults by immunoblotting. CsParkin revealed E3-ubiquitin ligase activity and higher expression in metacercariae than in adults. CsParkin was localized in the locomotive and male reproductive organs of C. sinensis adults, and extensively in metacercariae. Parkin has been found to participate in regulating mitochondrial function and energy metabolism in mammalian cells. From these results, it is suggested that CsParkin play roles in energy metabolism of the locomotive organs, and possibly in protein metabolism of the reproductive organs of C. sinensis.
Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review.
Solomon, Keith R; Carr, James A; Du Preez, Louis H; Giesy, John P; Kendall, Ronald J; Smith, Ernest E; Van Der Kraak, Glen J
2008-01-01
The herbicide atrazine is widely used in agriculture for the production of corn and other crops. Because of its physical and chemical properties, atrazine is found in small concentrations in surface waters--habitats for some species. A number of reports on the effects of atrazine on aquatic vertebrates, mostly amphibians, have been published, yet there is inconsistency in the effects reported, and inconsistency between studies in different laboratories. We have brought the results and conclusions of all of the relevant laboratory and field studies together in this critical review and assessed causality using procedures for the identification of causative agents of disease and ecoepidemiology derived from Koch's postulates and the Bradford-Hill guidelines. Based on a weight of evidence analysis of all of the data, the central theory that environmentally relevant concentrations of atrazine affect reproduction and/or reproductive development in fish, amphibians, and reptiles is not supported by the vast majority of observations. The same conclusions also hold for the supporting theories such as induction of aromatase, the enzyme that converts testosterone to estradiol. For other responses, such as immune function, stress endocrinology, parasitism, or population-level effects, there are no indications of effects or there is such a paucity of good data that definitive conclusions cannot be made.
[The function of ERα in male reproductive system].
Dong, Yu-Hang; Wei, Jin-Hua; Li, Zhen
2014-12-01
Estrogen receptors (ERs), including two sub-types ERα and ERβ, belong to the steroid hormone superfamily of nuclear receptors. ERα distributes in the male reproductive system and plays a crucial role in the regulation of male reproduction through estrogen-dependent and -independent ways. In this article, we mainly reviewed the molecular structure, mode of action and location of ERα in the male reproductive system, and explored the mechanism of ERα in regulating the male reproductive system by analyzing different animal models of disrupted ERα.
USDA-ARS?s Scientific Manuscript database
Unfavorable genetic correlations between production and fertility traits are well documented. Genetic selection for fertility traits is slow, however, due to low heritabilities. Identification of single nucleotide polymorphisms (SNP) involved in reproduction could improve reliability of genomic esti...
USDA-ARS?s Scientific Manuscript database
With the recent advent of genomic tools for cattle, several recessive conditions affecting fertility have been identified and selected against, such as deficiency of uridine monophosphate synthase, complex vertebral malformation, and brachyspina. The current report refines the location of a recessiv...
USDA-ARS?s Scientific Manuscript database
Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...
USDA-ARS?s Scientific Manuscript database
Soybeans (Glycine max) are known to be sensitive to flooding stress. Flooding at the reproductive stage can reduce soybean yield by 50%. However, recent screening efforts have resulted in the identification of genotypes differing in susceptibility to flooding. The flooding tolerant genotype PI 40810...
The cost of testing chemicals as reproductive toxicants precludes the possibility of evaluating large chemical inventories without a robust strategic approach for setting priorities. The use of quantitative structure-activity relationships (QSARs) in early hazard identification m...
Curriculum Guide in Sex Education for the TMR.
ERIC Educational Resources Information Center
Steward, Kathy L.
Presented is a sex education curriculum guide for teachers of trainable retarded students ages 12 to 21 years. The guide is divided into six units: body parts, gender identification, and restroom signs; living things; reproduction; growth; adolescence, menstruation, and street language; and maturity (including sexual feelings and birth control).…
Laboratory Animal Management: Wild Birds.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.
This is a report on the care and use of wild birds in captivity as research animals. Chapters are presented on procurement and identification, housing, nutrition, health of birds and personnel, reproduction in confinement, and surgical procedures. Also included are addresses of federal, state, and provencial regulatory agencies concerned with wild…
Heifetz, Yael; Lindner, Moshe; Garini, Yuval; Wolfner, Mariana F
2014-03-31
Upon mating, regions of the female reproductive tract mature and alter their function [1-3], for example to facilitate storage of sperm or control the release of eggs [4-6]. The female's nervous system and neuromodulators play important roles in her responses to mating [7-13]. However, it is difficult to reconcile the reproductive tract's many changing but coordinated events with the small set of neuromodulators present [14-18]. We hypothesized that each part of the reproductive tract contains a characteristic combination of neuromodulators that confer unique identities on each region and that postmating changes in these combinations coordinate subsequent actions. We examined the presence, locations, and levels of neuromodulators and related molecules ("signaling molecules") in the reproductive tract of Drosophila melanogaster females before and after mating: the biogenic amine octopamine, which regulates ovulation rate in Drosophila and locusts [7, 14-20]; serotonin, which regulates muscle contraction in locust oviducts [21]; and the FMRF amide dromyosuppressin, which regulates contraction of Drosophila heart muscle [22] and may regulate muscle contractions in the reproductive tract, if it is expressed there. We find that separate aspects of mating (sperm, seminal proteins, and physical effects) independently modulate the release of signaling molecules. Each reproductive tract subregion displays a characteristic combination of signaling molecule release, resulting in a unique functional identity. These patterns, and thus functions, change reproducibly after mating. Thus, one event (mating) promotes new combinations of signaling molecules that endow different parts of the reproductive tract with unique temporal and spatial identities that facilitate many aspects of fertilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ma, Xiaodong; Ma, Jianchao; Fan, Di; Li, Chaofeng; Jiang, Yuanzhong; Luo, Keming
2016-01-01
Higher plants have been shown to experience a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase during its postembryonic development and distinct lateral organ morphologies have been observed at the different development stages. Populus euphratica, commonly known as a desert poplar, has developed heteromorphic leaves during its development. The TCP family genes encode a group of plant-specific transcription factors involved in several aspects of plant development. In particular, TCPs have been shown to influence leaf size and shape in many herbaceous plants. However, whether these functions are conserved in woody plants remains unknown. In the present study, we carried out genome-wide identification of TCP genes in P. euphratica and P. trichocarpa, and 33 and 36 genes encoding putative TCP proteins were found, respectively. Phylogenetic analysis of the poplar TCPs together with Arabidopsis TCPs indicated a biased expansion of the TCP gene family via segmental duplications. In addition, our results have also shown a correlation between different expression patterns of several P. euphratica TCP genes and leaf shape variations, indicating their involvement in the regulation of leaf shape development. PMID:27605130
Biology and Biotechnology of Follicle Development
Palma, Gustavo Adolfo; Argañaraz, Martin Eduardo; Barrera, Antonio Daniel; Rodler, Daniela; Mutto, Adrian Ángel; Sinowatz, Fred
2012-01-01
Growth and development of ovarian follicles require a series of coordinated events that induce morphological and functional changes within the follicle, leading to cell differentiation and oocyte development. The preantral early antral follicle transition is the stage of follicular development during which gonadotropin dependence is obtained and the progression into growing or atresia of the follicle is made. Follicular growth during this period is tightly regulated by oocyte-granulosatheca cell interactions. A cluster of early expressed genes is required for normal folliculogenesis. Granulosa cell factors stimulate the recruitment of theca cells from cortical stromal cells. Thecal factors promote granulosa cell proliferation and suppress granulosa cell apoptosis. Cell-cell and cell-extracellular matrix interactions influence the production of growth factors in the different follicular compartments (oocyte, granulosa, and theca cells). Several autocrine and paracrine factors are involved in follicular growth and differentiation; their activity is present even at the time of ovulation, decreasing the gap junction communication, and stimulating the theca cell proliferation. In addition, the identification of the factors that promote follicular growth from the preantral stage to the small antral stage may provide important information for the identification for assisted reproduction techniques. PMID:22666170
Effect of dystocia on subsequent reproductive performance and functional longevity in Holstein cows.
Ghavi Hossein-Zadeh, N
2016-10-01
The objective of this study was to evaluate the effect of dystocia on the reproductive performance and functional longevity in Iranian Holsteins. Data consisted of 1 467 064 lactation records of 581 421 Holstein cows from 3083 herds which were collected by the Animal Breeding Center of Iran from April 1987 to February 2014. Reproduction traits in this study included interval from first to second calving, days open and days from first calving to first service. The generalized linear model was used for the statistical analysis of reproductive traits. Survival analysis was performed using the Weibull proportional hazards models to analyse the impact of dystocia on functional longevity. The incidence of dystocia had an adverse effect on the reproductive performance of dairy cows. Therefore, reproductive traits deteriorated along with increase in dystocia score (p < 0.05). The culling risk was increased along with increase in the score of dystocia (p < 0.0001). The greatest culling risk was observed in primiparous cows, small herds and low-yielding cows (p < 0.0001). Also, the lowest culling risk was found for cows calving at the youngest age (<27 months), and cows with age at first calving >33 months had the greatest risk (p < 0.0001). The results of current study indicated that dystocia had important negative effects on the reproductive performance and functional longevity in dairy cows, and it should be avoided as much as possible to provide a good perspective in the scope of economic and animal welfare issues in dairy herds. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Sitnik, Jessica L; Francis, Carmen; Hens, Korneel; Huybrechts, Roger; Wolfner, Mariana F; Callaerts, Patrick
2014-03-01
Members of the M13 class of metalloproteases have been implicated in diseases and in reproductive fitness. Nevertheless, their physiological role remains poorly understood. To obtain a tractable model with which to analyze this protein family's function, we characterized the gene family in Drosophila melanogaster and focused on reproductive phenotypes. The D. melanogaster genome contains 24 M13 class protease homologs, some of which are orthologs of human proteases, including neprilysin. Many are expressed in the reproductive tracts of either sex. Using RNAi we individually targeted the five Nep genes most closely related to vertebrate neprilysin, Nep1-5, to investigate their roles in reproduction. A reduction in Nep1, Nep2, or Nep4 expression in females reduced egg laying. Nep1 and Nep2 are required in the CNS and the spermathecae for wild-type fecundity. Females that are null for Nep2 also show defects as hosts of sperm competition as well as an increased rate of depletion for stored sperm. Furthermore, eggs laid by Nep2 mutant females are fertilized normally, but arrest early in embryonic development. In the male, only Nep1 was required to induce normal patterns of female egg laying. Reduction in the expression of Nep2-5 in the male did not cause any dramatic effects on reproductive fitness, which suggests that these genes are either nonessential for male fertility or perform redundant functions. Our results suggest that, consistent with the functions of neprilysins in mammals, these proteins are also required for reproduction in Drosophila, opening up this model system for further functional analysis of this protein class and their substrates.
Sitnik, Jessica L.; Francis, Carmen; Hens, Korneel; Huybrechts, Roger; Wolfner, Mariana F.; Callaerts, Patrick
2014-01-01
Members of the M13 class of metalloproteases have been implicated in diseases and in reproductive fitness. Nevertheless, their physiological role remains poorly understood. To obtain a tractable model with which to analyze this protein family’s function, we characterized the gene family in Drosophila melanogaster and focused on reproductive phenotypes. The D. melanogaster genome contains 24 M13 class protease homologs, some of which are orthologs of human proteases, including neprilysin. Many are expressed in the reproductive tracts of either sex. Using RNAi we individually targeted the five Nep genes most closely related to vertebrate neprilysin, Nep1-5, to investigate their roles in reproduction. A reduction in Nep1, Nep2, or Nep4 expression in females reduced egg laying. Nep1 and Nep2 are required in the CNS and the spermathecae for wild-type fecundity. Females that are null for Nep2 also show defects as hosts of sperm competition as well as an increased rate of depletion for stored sperm. Furthermore, eggs laid by Nep2 mutant females are fertilized normally, but arrest early in embryonic development. In the male, only Nep1 was required to induce normal patterns of female egg laying. Reduction in the expression of Nep2-5 in the male did not cause any dramatic effects on reproductive fitness, which suggests that these genes are either nonessential for male fertility or perform redundant functions. Our results suggest that, consistent with the functions of neprilysins in mammals, these proteins are also required for reproduction in Drosophila, opening up this model system for further functional analysis of this protein class and their substrates. PMID:24395329
Zhou, Dongsheng; Zhuo, Yong; Che, Lianqiang; Lin, Yan; Fang, Zhengfeng; Wu, De
2014-07-01
People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days' interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus-pituitary-gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.
Many biochemical endpoints currently are used to describe endocrine function in fish; however, the sensitivity of these parameters as biomarkers of impaired reproduction or sexual development is not well understood. In the present study, adult Japanese medaka (Oryzias latipes) we...
EFFECTS OF METAM SODIUM ON REPRODUCTIVE FUNCTION IN THE FEMALE RAT
Metam sodium (MS) is a soil fumigant and Category III pesticide with a relatively low toxicity in mammals. But, there is some indication that it can impair rodent reproductive function. In ovariectomized, estradiol-primed rats, a single ip injection was reported to block the lute...
78 FR 41962 - Privacy Act of 1974: Systems of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-12
..., or data analysis functions, or by reproduction of records by electronic or other means. Recipients of... Information Act (FOIA), and to facilitate OGIS' offering of mediation services to resolve disputes between... performing clerical, stenographic, or data analysis functions, or by reproduction of records by electronic or...
Mastitis effects on reproductive performance in dairy cattle: a review.
Kumar, Narender; Manimaran, A; Kumaresan, A; Jeyakumar, S; Sreela, L; Mooventhan, P; Sivaram, M
2017-04-01
The reproductive performance of dairy animals is influenced by several factors, and accumulating lines of evidence indicate that mastitis is one of the determinants. Most of the published information relating mastitis with reproduction has evolved based on retrospective approach rather than controlled clinical studies. The complex nature of both mastitis and reproduction could be a limiting factor for understanding their relationship in detail. In this review, we analyzed the available retrospective studies on the effects of clinical mastitis on reproductive function and explained the possible mechanisms by which mastitis affects reproduction in dairy animals.
Prenatal programming of neuroendocrine reproductive function.
Evans, Neil P; Bellingham, Michelle; Robinson, Jane E
2016-07-01
It is now well recognized that the gestational environment can have long-lasting effects not only on the life span and health span of an individual but also, through potential epigenetic changes, on future generations. This article reviews the "prenatal programming" of the neuroendocrine systems that regulate reproduction, with a specific focus on the lessons learned using ovine models. The review examines the critical roles played by steroids in normal reproductive development before considering the effects of prenatal exposure to exogenous steroid hormones including androgens and estrogens, the effects of maternal nutrition and stress during gestation, and the effects of exogenous chemicals such as alcohol and environment chemicals. In so doing, it becomes evident that, to maximize fitness, the regulation of reproduction has evolved to be responsive to many different internal and external cues and that the GnRH neurosecretory system expresses a degree of plasticity throughout life. During fetal life, however, the system is particularly sensitive to change and at this time, the GnRH neurosecretory system can be "shaped" both to achieve normal sexually differentiated function but also in ways that may adversely affect or even prevent "normal function". The exact mechanisms through which these programmed changes are brought about remain largely uncharacterized but are likely to differ depending on the factor, the timing of exposure to that factor, and the species. It would appear, however, that some afferent systems to the GnRH neurons such as kisspeptin, may be critical in this regard as it would appear to be sensitive to a wide variety of factors that can program reproductive function. Finally, it has been noted that the prenatal programming of neuroendocrine reproductive function can be associated with epigenetic changes, which would suggest that in addition to direct effects on the exposed offspring, prenatal programming could have transgenerational effects on reproductive potential. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Evolution and functional divergence of NLRP genes in mammalian reproductive systems
2009-01-01
Background NLRPs (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing Proteins) are members of NLR (Nod-like receptors) protein family. Recent researches have shown that NLRP genes play important roles in both mammalian innate immune system and reproductive system. Several of NLRP genes were shown to be specifically expressed in the oocyte in mammals. The aim of the present work was to study how these genes evolved and diverged after their duplication, as well as whether natural selection played a role during their evolution. Results By using in silico methods, we have evaluated the evolution and functional divergence of NLRP genes, in particular of mouse reproduction-related Nlrp genes. We found that (1) major NLRP genes have been duplicated before the divergence of mammals, with certain lineage-specific duplications in primates (NLRP7 and 11) and in rodents (Nlrp1, 4 and 9 duplicates); (2) tandem duplication events gave rise to a mammalian reproduction-related NLRP cluster including NLRP2, 4, 5, 7, 8, 9, 11, 13 and 14 genes; (3) the function of mammalian oocyte-specific NLRP genes (NLRP4, 5, 9 and 14) might have diverged during gene evolution; (4) recent segmental duplications concerning Nlrp4 copies and vomeronasal 1 receptor encoding genes (V1r) have been undertaken in the mouse; and (5) duplicates of Nlrp4 and 9 in the mouse might have been subjected to adaptive evolution. Conclusion In conclusion, this study brings us novel information on the evolution of mammalian reproduction-related NLRPs. On the one hand, NLRP genes duplicated and functionally diversified in mammalian reproductive systems (such as NLRP4, 5, 9 and 14). On the other hand, during evolution, different lineages adapted to develop their own NLRP genes, particularly in reproductive function (such as the specific expansion of Nlrp4 and Nlrp9 in the mouse). PMID:19682372
Zhang, X; Davis, M E; Moeller, S J; Ottobre, J S
2013-09-01
Reproductive performance of animals affects lifetime productivity. However, improvement of reproductive traits via direct selection is generally slow due to low heritability. Therefore, identification of indicator traits for reproductive performance may enhance genetic response. Previous studies showed that serum IGF-I concentration is a candidate indicator for growth and reproductive traits. The objective of our study was to estimate the variances or covariances of IGF-I concentration with reproductive traits. Data were collected from a divergent selection experiment for serum IGF-I concentration at the Eastern Agricultural Research Station owned by The Ohio State University. The study included a total of 2,662 calves in the 1989 to 2005 calf crops. Variance or covariance components were estimated for direct and maternal genetic effects, maternal environment effects, environment effects, and phenotypic effects using an animal model in a multiple-trait, derivative-free, restricted maximum likelihood (MTDFREML, Boldman et al., 1995) computer program. Direct additive genetic correlations suggest that selection for greater IGF-I concentration (heritability = 0.50 ± 0.07) could lead to increased conception rate (heritability = 0.11 ± 0.06, r = 0.32, P < 0.001) and calving rate (heritability = 0.13 ± 0.06, r = 0.43, P < 0.001) and decreased age at first calving in heifers (heritability = 0.35 ± 0.20, r = -0.40, P < 0.001).
Apomixis in hawkweed: Mendel's experimental nemesis.
Koltunow, Anna M G; Johnson, Susan D; Okada, Takashi
2011-03-01
Mendel used hawkweeds and other plants to verify the laws of inheritance he discovered using Pisum. Trait segregation was not evident in hawkweeds because many form seeds asexually by apomixis. Meiosis does not occur during female gametophyte formation and the mitotically formed embryo sacs do not require fertilization for seed development. The resulting progeny retain a maternal genotype. Hawkweeds in Hieracium subgenus Pilosella form mitotic embryo sacs by apospory. The initiation of sexual reproduction is required to stimulate apospory in ovules and to promote the function of the dominant locus, LOSS OF APOMEIOSIS, which stimulates the differentiation of somatic aposporous initial (AI) cells near sexually programmed cells. As AI cells undergo nuclear mitosis the sexual pathway terminates. The function of the dominant locus LOSS OF PARTHENOGENESIS in aposporous embryo sacs enables fertilization-independent embryo and endosperm development. Deletion of either locus results in partial reversion to sexual reproduction, and loss of function in both loci results in reversion to sexual development. In these apomicts, sexual reproduction is therefore the default reproductive mode upon which apomixis is superimposed. These loci are unlikely to encode factors critical for sexual reproduction but might recruit the sexual pathway to enable apomixis. Incomplete functional penetrance of these dominant loci is likely to lead to the generation of rare sexual progeny also derived from these facultative apomicts.
Age-dependent trade-offs between immunity and male, but not female, reproduction.
McNamara, Kathryn B; van Lieshout, Emile; Jones, Therésa M; Simmons, Leigh W
2013-01-01
Immune function is costly and must be traded off against other life-history traits, such as gamete production. Studies of immune trade-offs typically focus on adult individuals, yet the juvenile stage can be a highly protracted period when reproductive resources are acquired and immune challenges are ubiquitous. Trade-offs during development are likely to be important, yet no studies have considered changes in adult responses to immune challenges imposed at different stages of juvenile development. By manipulating the timing of a bacterial immune challenge to the larvae of the cotton bollworm moth, we examined potential trade-offs between investment into immunity at different stages of juvenile development (early or late) and subsequent adult reproductive investment into sperm or egg production. Our data reveal an age-dependent trade-off between juvenile immune function and adult male reproductive investment. Activation of the immune response during late development resulted in a reduced allocation of resources to eupyrene (fertilizing) sperm production. Immune activation from the injection procedure itself (irrespective of whether individuals were injected with an immune elicitor or a control solution) also caused reproductive trade-offs; males injected early in development produced fewer apyrene (nonfertilizing) sperm. Contrary to many other studies, our study demonstrates these immune trade-offs under ad libitum nutritional conditions. No trade-offs were observed between female immune activation and adult reproductive investment. We suggest the differences in trade-offs observed between male sperm types and the absence of reproductive trade-offs in females may be the result of ontogenetic differences in gamete production in this species. Our data reveal developmental windows when trade-offs between immune function and gametic investment are made, and highlight the importance of considering multiple developmental periods when making inferences regarding the fundamental trade-offs expected between immune function and reproduction. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
NASA Astrophysics Data System (ADS)
Huang, Huiyang; Li, Linming; Ye, Haihui; Feng, Biyun; Li, Shaojing
2013-03-01
Gonadotropin-releasing hormone (GnRH) is a crucial peptide for the regulation of reproduction. Using immunological techniques, we investigated the presence of GnRH in horseshoe crab Tachypleus tridentatus. Octopus GnRH-like immunoreactivity, tunicate GnRH-like immunoreactivity, and lamprey GnRH-I-like immunoreactivity were detected in the neurons and fibers of the protocerebrum. However, no mammal GnRH-like immunoreactivity or lamprey GnRH-III-like immunoreactivity was observed. Our results suggest that a GnRH-like factor, an ancient peptide, existed in the brain of T. tridentatus and may be involved in the reproductive endocrine system.
Ågmo, Anders
2017-01-01
Intrasexual competition is an important element of natural selection in which the most attractive conspecific has a considerable reproductive advantage over the others. The conspecifics that are approached first often become the preferred mate partners, and could thus from a biological perspective have a reproductive advantage. This underlines the importance of the initial approach and raises the question of what induces this approach, or what makes a conspecific attractive. Identification of the sensory modalities crucial for the activation of approach is necessary for elucidating the central nervous processes involved in the activation of sexual motivation and eventually copulatory behavior. The initial approach to a potential mate depends on distant stimuli in the modalities of audition, olfaction, vision, and other undefined characteristics. This study investigated the role of the different modalities and the combination of these modalities in the sexual incentive value of a female rat. This study provides evidence that the presence of a single-sensory stimulus with one modality (olfaction, vision, or ‘others’, but not audition) is sufficient to attenuate the preference for a social contact with a male rat. However, a multisensory stimulus of multiple modalities is necessary to induce preference for the stimulus over social contact to a level of an intact receptive female. The initial approach behavior, therefore, seems to be induced by the combination of at least two modalities among which olfaction is crucial. This suggests that there is a cooperative function for the different modalities in the induction of approach behavior of a potential mate. PMID:28306729
Wolfe, Andrew; Divall, Sara; Wu, Sheng
2014-01-01
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. PMID:24929098
Diamanti-Kandarakis, Evanthia; Papalou, Olga; Kandaraki, Eleni A; Kassi, Georgia
2017-02-01
Nutrition can generate oxidative stress and trigger a cascade of molecular events that can disrupt oxidative and hormonal balance. Nutrient ingestion promotes a major inflammatory and oxidative response at the cellular level in the postprandial state, altering the metabolic state of tissues. A domino of unfavorable metabolic changes is orchestrated in the main metabolic organs, including adipose tissue, skeletal muscle, liver and pancreas, where subclinical inflammation, endothelial dysfunction, mitochondrial deregulation and impaired insulin response and secretion take place. Simultaneously, in reproductive tissues, nutrition-induced oxidative stress can potentially violate delicate oxidative balance that is mandatory to secure normal reproductive function. Taken all the above into account, nutrition and its accompanying postprandial oxidative stress, in the unique context of female hormonal background, can potentially compromise normal metabolic and reproductive functions in women and may act as an active mediator of various metabolic and reproductive disorders. © 2017 European Society of Endocrinology.
Reproductive biology of the Panama graysby Cephalopholis panamensis (Teleostei: Epinephelidae).
Erisman, B E; Craig, M T; Hastings, P A
2010-04-01
The reproductive biology of the Panama graysby Cephalopholis panamensis was studied from collections and behavioural observations made in the Gulf of California from 2001 to 2006. Histological examinations, particularly the identification of gonads undergoing sexual transition, confirmed a protogynous hermaphroditic sexual pattern. The population structure and mating behaviour provided further support for protogyny. Size and age distributions by sex were bimodal, with males larger and older than females and sex ratios biased towards females. Mating groups consisted of a large male and several smaller females, and courtship occurred in pairs during the evening. Results on spawning periodicity and seasonality were incomplete, but histological data, monthly gonado-somatic indices (I(G)) and behavioural observations suggest that adults spawned around the full moon from May to September. Certain aspects of their reproductive biology (e.g. protogyny and low egg production) indicate that C. panamensis is particularly vulnerable to fishing and would benefit from a management policy in Mexico.
Kisspeptin modulates sexual and emotional brain processing in humans
Comninos, Alexander N.; Wall, Matthew B.; Demetriou, Lysia; Shah, Amar J.; Clarke, Sophie A.; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K.; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M.; Jayasena, Channa N.; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A.; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Wilson, Steven Ray; Brown, Rachel C.; Thomas, Sarah A.; Bloom, Stephen R.; Dhillo, Waljit S.
2017-01-01
BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC). PMID:28112678
USDA-ARS?s Scientific Manuscript database
In lower termites, functionally sterile larval helpers are totipotent, capable of becoming reproductively active with the loss of their colony’s king or queen. Full reproductive development may take several weeks, but initiation of this response most likely occurs shortly after colony members detect...
The JH1 Haplotype-a newly discovered marker for infertility in the jersy breed
USDA-ARS?s Scientific Manuscript database
The focus on production traits in genetic selection programs with little consideration for traits associated with reproduction has contributed to the decline in reproductive function. Moreover, there is a negative genetic correlation between milk yield and reproduction so that selection for yield ca...
A short-term reproduction assay with the fathead minnow has been developed to detect chemicals with the potential to disrupt reproductive endocrine functions controlled by estrogen- and androgen-mediated pathways. The objective of this study was to characterize the responses of t...
Measuring reproductive tourism through an analysis of Indian ART clinic Websites.
Deonandan, Raywat; Loncar, Mirhad; Rahman, Prinon; Omar, Sabrina
2012-01-01
India is fast becoming the most prominent player in the global industry of reproductive tourism, in which infertile people cross international borders to seek assisted reproduction technologies. This study was conducted to better understand the extent and manner in which Indian clinics seek foreign clients. A systematic search of official Indian assisted reproduction technologies clinic Websites was undertaken, and instances noted where foreign clients were overtly targeted, and where maternal surrogacy was overtly offered. A total of 159 clinics with Web addresses were identified, though only 78 had functioning Websites. All were published in English, with the majority clustered in the states of Maharashtra (14) and Gujarat (9). Of the 78 functioning Websites, 53 (68%) featured some mention of maternal surrogacy services, and 42 (54%) made overt overtures to foreign clients. Qualitative appeals to foreigners included instructions for international adoption, visa application, and the legal parental disposition of the surrogate. All Maharashtran clinic Websites that mentioned surrogacy also overtly featured reproductive tourism. Preimplantation diagnosis services were not offered disproportionately by clinics mentioning reproductive tourism. Based upon clinic online profiles, reproductive tourism comprises a substantial fraction of India's assisted reproduction technologies clinics' business focus, clustering around its most tourist-friendly locales, and surrogacy may be a strong motivator for international clientele.
Abrams, Elizabeth T; Miller, Elizabeth M
2011-01-01
Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Copyright © 2011 Wiley Periodicals, Inc.
Liver ERα regulates AgRP neuronal activity in the arcuate nucleus of female mice.
Benedusi, Valeria; Della Torre, Sara; Mitro, Nico; Caruso, Donatella; Oberto, Alessandra; Tronel, Claire; Meda, Clara; Maggi, Adriana
2017-04-26
Recent work revealed the major role played by liver Estrogen Receptor α (ERα) in the regulation of metabolic and reproductive functions. By using mutant mice with liver-specific ablation of Erα, we here demonstrate that the hepatic ERα is essential for the modulation of the activity of Agouti Related Protein (AgRP) neurons in relation to the reproductive cycle and diet. Our results suggest that the alterations of hepatic lipid metabolism due to the lack of liver ERα activity are responsible for a neuroinflammatory status that induces refractoriness of AgRP neurons to reproductive and dietary stimuli. The study therefore points to the liver ERα as a necessary sensor for the coordination of systemic energy metabolism and reproductive functions.
Mastronardi, Claudio; Smiley, Gregory G; Raber, Jacob; Kusakabe, Takashi; Kawaguchi, Akio; Matagne, Valerie; Dietzel, Anja; Heger, Sabine; Mungenast, Alison E; Cabrera, Ricardo; Kimura, Shioko; Ojeda, Sergio R
2006-12-20
Thyroid transcription factor 1 (TTF1) [also known as Nkx2.1 (related to the NK-2 class of homeobox genes) and T/ebp (thyroid-specific enhancer-binding protein)], a homeodomain gene required for basal forebrain morphogenesis, remains expressed in the hypothalamus after birth, suggesting a role in neuroendocrine function. Here, we show an involvement of TTF1 in the control of mammalian puberty and adult reproductive function. Gene expression profiling of the nonhuman primate hypothalamus revealed that TTF1 expression increases at puberty. Mice in which the Ttf1 gene was ablated from differentiated neurons grew normally and had normal basal ganglia/hypothalamic morphology but exhibited delayed puberty, reduced reproductive capacity, and a short reproductive span. These defects were associated with reduced hypothalamic expression of genes required for sexual development and deregulation of a gene involved in restraining puberty. No extrapyramidal impairments associated with basal ganglia dysfunction were apparent. Thus, although TTF1 appears to fulfill only a morphogenic function in the ventral telencephalon, once this function is satisfied in the hypothalamus, TTF1 remains active as part of the transcriptional machinery controlling female sexual development.
Sex steroids effects in normal endocrine pancreatic function and diabetes.
Morimoto, Sumiko; Jiménez-Trejo, Francisco; Cerbón, Marco
2011-01-01
Traditionally the role of sexual steroid hormones was focused primarily on reproductive organs: the breast, female reproductive tract (uterus, mammary gland, and ovary), and male reproductive tract (testes, epididymis and prostate), however our current understanding of tissue-specific effects of sex steroids has elucidated new aspects in its functionality. Recent data have shown that many other tissues are targets of those hormones in addition to classical reproductive organs. The pancreas (which performs both endocrine and exocrine functions), has proven to be an extragonadal target of sexual steroid hormone action. The endocrine pancreas has a pivotal role on carbohydrate homeostasis and deterioration in function produces diabetes. Diabetes is a metabolic disorder that has high prevalence worldwide, particularly in developing countries. It has been shown that steroid hormones have an important role in susceptibility and development of diabetes in animal models, in humans its role is less clear, however the most evident effect is on the perimenopausal women, in this stage the decrease in gonadal steroids produces an increase on susceptibility to develop diabetes mellitus; in men, hypoandrogenism is associated with an increased prevalence of insulin resistance. This review focused on the effects of sexual steroids on pancreatic function and diabetes.
[Impact of end-stage renal disease and kidney transplantation on the reproductive system].
Delesalle, A-S; Robin, G; Provôt, F; Dewailly, D; Leroy-Billiard, M; Peigné, M
2015-01-01
Chronic renal failure leads to many metabolic disorders affecting reproductive function. For men, hypergonadotropic hypogonadism, hyperprolactinemia, spermatic alterations, decreased libido and erectile dysfunction are described. Kidney transplantation improves sperm parameters and hormonal function within 2 years. But sperm alterations may persist with the use of immunosuppressive drugs. In women, hypothalamic-pituitary-ovarian axis dysfunction due to chronic renal failure results in menstrual irregularities, anovulation and infertility. After kidney transplantation, regular menstruations usually start 1 to 12 months after transplantation. Fertility can be restored but luteal insufficiency can persist. Moreover, 4 to 20% of women with renal transplantation suffer from premature ovarian failure syndrome. In some cases, assisted reproductive technologies can be required and imply risks of ovarian hyperstimulation syndrome and must be performed with caution. Pregnancy risks for mother, fetus and transplant are added to assisted reproductive technologies ones. Only 7 authors have described assisted reproductive technologies for patients with kidney transplantation. No cases of haemodialysis patients have been described yet. So, assisted reproductive technologies management requires a multidisciplinary approach with obstetrics, nephrology and reproductive medicine teams' agreement. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
EFFECTS OF 3 WEEK EXPOSURES TO METAM SODIUM ON REPRODUCTIVE FUNCTION IN THE FEMALE RAT
Metam sodium (MS) is a soil fumigant and Category III pesticide with a relatively low toxicity in mammals. But, there is some indication that it can impair rodent reproductive function. In ovariectomized, estradiol-primed rats, a single ip injection was reported to block the lute...
EFFECTS OF 3 WEEK EXPOSURES ON REPRODUCTIVE FUNCTION IN THE FEMALE RAT TO METAM SODIUM
Metam sodium (MS) is a soil fumigant and Category III pesticide with a relatively low toxicity in mammals. But, there is some indication that it can impair rodent reproductive function. In ovariectomized, estradiol-primed rats, a single ip injection was reported to block the lute...
BRCA Mutations, DNA Repair Deficiency, and Ovarian Aging1
Oktay, Kutluk; Turan, Volkan; Titus, Shiny; Stobezki, Robert; Liu, Lin
2015-01-01
Oocyte aging has a significant impact on reproductive outcomes both quantitatively and qualitatively. However, the molecular mechanisms underlying the age-related decline in reproductive success have not been fully addressed. BRCA is known to be involved in homologous DNA recombination and plays an essential role in double-strand DNA break repair. Given the growing body of laboratory and clinical evidence, we performed a systematic review on the current understanding of the role of DNA repair in human reproduction. We find that BRCA mutations negatively affect ovarian reserve based on convincing evidence from in vitro and in vivo results and prospective studies. Because decline in the function of the intact gene occurs at an earlier age, women with BRCA1 mutations exhibit accelerated ovarian aging, unlike those with BRCA2 mutations. However, because of the still robust function of the intact allele in younger women and because of the masking of most severe cases by prophylactic oophorectomy or cancer, it is less likely one would see an effect of BRCA mutations on fertility until later in reproductive age. The impact of BRCA2 mutations on reproductive function may be less visible because of the delayed decline in the function of normal BRCA2 allele. BRCA1 function and ataxia-telangiectasia-mutated (ATM)-mediated DNA repair may also be important in the pathogenesis of age-induced increase in aneuploidy. BRCA1 is required for meiotic spindle assembly, and cohesion function between sister chromatids is also regulated by ATM family member proteins. Taken together, these findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian aging. PMID:26224004
Awruch, Cynthia A.; Jones, Susan M.; Asorey, Martin García; Barnett, Adam
2014-01-01
Identification of the importance of habitats that are frequently used by any species is essential to a complete understanding of the species' biology and to incorporate their ecological role into conservation and management programmes. In this context, the present study investigated whether Tasmanian coastal waters have any reproductive relevance for the broadnose sevengill shark (Notorynchus cepedianus). Although this species is a large coast-associated apex predator in these areas, there is a complete gap in understanding the role that these coastal systems could play in its reproduction. Reproductive hormones were used as a non-lethal method to address the reproductive biology of this species. Females seemed to have at least a bi-annual reproductive cycle, being pregnant for ∼1 year and spending at least 1 year non-pregnant, with the ovulatory cycle separated from gestation. Mature females were found to be ovulating, in the initial stages of pregnancy, resting or starting a new vitellogenic cycle. Notorynchus cepedianus did not use these coastal habitats for mating or as a pupping ground. Although the mating season was distinguished between September to April, only 22% of males showed mating scars during the peak of the mating period and no near-term pregnant females were observed. Thus, despite these coastal waters being an important foraging ground for this species, these areas did not have any reproductive relevance. In consequence, future management and conservation planning programmes need to identify whether there are other areas in Tasmania that play a critical role for reproductive purposes in this species. Finally, although previous studies have linked reproductive hormones with external examination of the gonads to validate the use of steroids as a non-lethal tool to address reproduction, the present study used this methodology without killing any animals. This has important implications for conservation programmes of threatened and endangered species worldwide where the methodology cannot be validated. PMID:27293634
Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review
Kawwass, Jennifer F.; Summer, Ross; Kallen, Caleb B.
2015-01-01
Obesity is a risk factor for infertility and adverse reproductive outcomes. Adipose tissue is an important endocrine gland that secretes a host of endocrine factors, called adipokines, which modulate diverse physiologic processes including appetite, metabolism, cardiovascular function, immunity and reproduction. Altered adipokine expression in obese individuals has been implicated in the pathogenesis of a host of health disorders including diabetes and cardiovascular disease. It remains unclear whether adipokines play a significant role in the pathogenesis of adverse reproductive outcomes in obese individuals and, if so, whether the adipokines are acting directly or indirectly on the peripheral reproductive tissues. Many groups have demonstrated that receptors for the adipokines leptin and adiponectin are expressed in peripheral reproductive tissues and that these adipokines are likely, therefore, to exert direct effects on these tissues. Many groups have tested for direct effects of leptin and adiponectin on reproductive tissues including the testis, ovary, uterus, placenta and egg/embryo. The hypothesis that decreased fertility potential or adverse reproductive outcomes may result, at least in part, from defects in adipokine signaling within reproductive tissues has also been tested. Here, we present a critical analysis of published studies with respect to two adipokines, leptin and adiponectin, for which significant data have been generated. Our evaluation reveals significant inconsistencies and methodological limitations regarding the direct effects of these adipokines on peripheral reproductive tissues. We also observe a pervasive failure to account for in vivo data that challenge observations made in vitro. Overall, while leptin and adiponectin may directly modulate peripheral reproductive tissues, existing data suggest that these effects are minor and non-essential to human or mouse reproductive function. Current evidence suggests that direct effects of leptin or adiponectin on peripheral reproductive tissues are unlikely to factor significantly in the adverse reproductive outcomes observed in obese individuals. PMID:25964237
Similar Gender Dimorphism in the Costs of Reproduction across the Geographic Range of Fraxinus ornus
Verdú, Miguel; Spanos, Kostas; čaňová, Ingrid; Slobodník, Branko; Paule, Ladislav
2007-01-01
Background and Aims The reproductive costs for individuals with the female function have been hypothesized to be greater than for those with the male function because the allocation unit per female flower is very high due to the necessity to nurture the embryos until seed dispersal occurs, while the male reproductive allocation per flower is lower because it finishes once pollen is shed. Consequently, males may invest more resources in growth than females. This prediction was tested across a wide geographical range in a tree with a dimorphic breeding system (Fraxinus ornus) consisting of males and hermaphrodites functioning as females. The contrasting ecological conditions found across the geographical range allowed the evaluation of the hypothesis that the reproductive costs of sexual dimorphism varies with environmental stressors. Methods By using random-effects meta-analysis, the differences in the reproductive and vegetative investment of male and hermaphrodite trees of F. ornus were analysed in 10 populations from the northern (Slovakia), south-eastern (Greece) and south-western (Spain) limits of its European distribution. The variation in gender-dimorphism with environmental stress was analysed by running a meta-regression between these effect sizes and the two environmental stress indicators: one related to temperature (the frost-free period) and another related to water availability (moisture deficit). Key Results Most of the effect sizes showed that males produced more flowers and grew more quickly than hermaphrodites. Gender differences in reproduction and growth were not minimized or maximized under adverse climatic conditions such as short frost-free periods or severe aridity. Conclusions The lower costs of reproduction for F. ornus males allow them to grow more quickly than hermaphrodites, although such differences in sex-specific reproductive costs are not magnified under stressful conditions. PMID:17098751
Roy, Subhrajyoti; Chaudhuri, Tapas Kumar
2017-04-01
Diplazium esculentum, a commonly consumed seasonal vegetable, has been reported to have some pathological effects in some animals. But, its effect on the male reproductive function has not yet been studied. To investigate the effects of boiled D. esculentum (BDE), the form which human consumes, on male reproductive functions of Swiss albino mice. Male (120 in no.) and female (80 in no.) Swiss albino mice (6-8 weeks of age) were fed orally with 80, 160 and 320 mg/kg bw of BDE within a span of 180 d. After the treatment, body weight, absolute- and relative-testis weight, relative-weight of other organs, their biochemical parameters, hypo-osmotic swelling test (HOST) of spermatozoa, testis histology and fertility and fecundity tests were performed to justify the toxic effects of D. esculentum on male reproductive functions. Significant dose- and time-dependent decreases were observed in body weight, absolute- and relative-testis weight, relative-weights of other organs and their biochemical parameters, percentage of live spermatozoa and percentage of fertility and fecundity in BDE fed mice. Significant decreases were observed in diameter, perimeter and area of the seminiferous tubules of mice treated for 180 d. The percentage of empty seminiferous tubules was increased significantly in BDE treated mice when compared to the controls. These results suggest that the intake of D. esculentum, even after cooking, may induce infertility by altering the male reproductive function, and therefore, should be evaluated further as a potential antifertility agent.
The SLIT/ROBO pathway: a regulator of cell function with implications for the reproductive system
Dickinson, Rachel E; Duncan, W Colin
2010-01-01
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction. PMID:20100881
The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system.
Dickinson, Rachel E; Duncan, W Colin
2010-04-01
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction.
Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes
Liu, Honglin; Gu, Xi; Boots, Christina; Moley, Kelle H.
2015-01-01
Obesity, diabetes, and related metabolic disorders are major health issues worldwide. As the epidemic of metabolic disorders continues, the associated medical comorbidities, including the detrimental impact on reproduction, increase as well. Emerging evidence suggests that the effects of maternal nutrition on reproductive outcomes are likely to be mediated, at least in part, by oocyte metabolism. Well-balanced and timed energy metabolism is critical for optimal development of oocytes. To date, much of our understanding of oocyte metabolism comes from the effects of extrinsic nutrients on oocyte maturation. In contrast, intrinsic regulation of oocyte development by metabolic enzymes, intracellular mediators, and transport systems is less characterized. Specifically, decreased acid transport proteins levels, increased glucose/lipid content and elevated reactive oxygen species in oocytes have been implicated in meiotic defects, organelle dysfunction and epigenetic alteration. Therefore, metabolic disturbances in oocytes may contribute to the diminished reproductive potential experienced by women with metabolic disorders. In-depth research is needed to further explore the underlying mechanisms. This review also discusses several approaches for metabolic analysis. Metabolomic profiling of oocytes, the surrounding granulosa cells, and follicular fluid will uncover the metabolic networks regulating oocyte development, potentially leading to the identification of oocyte quality markers and prevention of reproductive disease and poor outcomes in offspring. PMID:25280482
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... community programs critical places for identification and early intervention of abuse. Domestic violence is... physical and/or sexual IPV. The impact of domestic violence on women's reproductive health is pervasive and... community collaborations available in the urban AI/AN population in the United States. The DVPI aims to...
Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that some DBPs are associated with cancer or adverse reproductive/developmental effects in human populations, and other studies have shown that certain DBPs cause similar h...
Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations, and some cause cancer in laboratory animals. As a result, the U...
Drinking water disinfection by-products (DBPs) are of concern because epidemiologic studies have shown that they are associated with bladder cancer and adverse reproductive/developmental effects in human populations. There is almost no information on high molecular weight DBPs (>...
Drinking water disinfection by-products (DBPs) are of concern because some epidemiologic studies have shown that they are associated with cancer or adverse reproductive/developmental effects in human populations. While more than 500 DBPs have been reported in drinking water, the...
Teaching Flower Structure & Floral Formulae--A Mix of the Real & Virtual Worlds
ERIC Educational Resources Information Center
Burrows, Geoff
2010-01-01
The study of flower structure is essential in plant identification and in understanding sexual reproduction in plants, pollination syndromes, plant breeding, and fruit structure. Thus, study of flower structure and construction of floral formulae are standard parts of first-year university botany and biology courses. These activities involve…
NASA space biology accomplishments, 1983-84
NASA Technical Reports Server (NTRS)
Halstead, T. W.; Dutcher, F. R.; Pleasant, L. G.
1984-01-01
Approximately 42 project summaries from NASA's Space Biology Program are presented. Emphasis is placed on gravitational effects on plant and animal life. The identification of gravity perception; the effects of weightlessness on genetic integrity, cellular differentiation, reproduction, development, growth, maturation, and senescence; and how gravity affects and controls physiology, morphology, and behavior of organisms are studied.
Segner, Helmut; Verburg-van Kemenade, B M Lidy; Chadzinska, Magdalena
2017-01-01
The present review discusses the communication between the hypothalamic-pituitary-gonad (HPG) axis and the immune system of vertebrates, attempting to situate the HPG-immune interaction into the context of life history trade-offs between reproductive and immune functions. More specifically, (i) we review molecular and cellular interactions between hormones of the HPG axis, and, as far as known, the involved mechanisms on immune functions, (ii) we evaluate whether the HPG-immune crosstalk serves as proximate mechanism mediating reproductive-immune trade-offs, and (iii) we ask whether the nature of the HPG-immune interaction is conserved throughout vertebrate evolution, despite the changes in immune functions, reproductive modes, and life histories. In all vertebrate classes studied so far, HPG hormones have immunomodulatory functions, and indications exist that they contribute to reproduction-immunity resource trade-offs, although the very limited information available for most non-mammalian vertebrates makes it difficult to judge how comparable or different the interactions are. There is good evidence that the HPG-immune crosstalk is part of the proximate mechanisms underlying the reproductive-immune trade-offs of vertebrates, but it is only one factor in a complex network of factors and processes. The fact that the HPG-immune interaction is flexible and can adapt to the functional and physiological requirements of specific life histories. Moreover, the assumption of a relatively fixed pattern of HPG influence on immune functions, with, for example, androgens always leading to immunosuppression and estrogens always being immunoprotective, is probably oversimplified, but the HPG-immune interaction can vary depending on the physiological and envoironmental context. Finally, the HPG-immune interaction is not only driven by resource trade-offs, but additional factors such as, for instance, the evolution of viviparity shape this neuroendocrine-immune relationship. Copyright © 2016 Elsevier Ltd. All rights reserved.
Girão, Luciana Coe; Lopes, Ariadna Valentina; Tabarelli, Marcelo; Bruna, Emilio M.
2007-01-01
Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits) and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems) in 10 fragments and 10 tracts of forest interior (control plots). As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated). The most conspicuous differences were the lack of three pollination systems in fragments-pollination by birds, flies and non-flying mammals-and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores) for pollination systems (−30.3%), floral types (−23.6%), and floral sizes (−20.8%) in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and greatly reduces the functional diversity of tree assemblages in fragmented landscapes. PMID:17878943
Relaxin family peptides in the male reproductive system--a critical appraisal.
Ivell, Richard; Kotula-Balak, Malgorzata; Glynn, Danielle; Heng, Kee; Anand-Ivell, Ravinder
2011-02-01
The human genome project has identified, besides ovarian relaxin (RLN), six other relaxin-like molecules (RLN3, H1-RLN, INSL3-6), most of which appear to be expressed in the testis and/or male reproductive system, together with four different G-protein-coupled receptors responsive to one or other of these peptides. Earlier work on relaxin in the male assumed the simplistic hypothesis of only a single relaxin-like entity. This review systematically examines the expression and physiology of relaxin-like molecules in the male reproductive system in order to reappraise the importance of this hormone system for male reproductive function. Although there are important species differences, only INSL3 and INSL6 appear to be generally expressed at a moderately high level within the testis, whereas ovarian RLN is consistently a major secretory product of the prostate epithelium. However, all members of this relaxin-like family appear to be expressed also at a low level in different organs of the male reproductive system, suggesting possible autocrine/paracrine effects. The four receptors (RXFP1-4) for these peptides are also expressed to differing levels in both somatic and seminiferous compartments of the testis and in the prostate, supporting relevant functions for most members of this interesting peptide family. Recent studies of relaxin family peptides in prostate pathology highlight their functional importance in the clinical context as potential causative, diagnostic and therapeutic agents and warrant more specific and detailed studies of their roles also in regard to male fertility and other aspects of male reproductive function.
Triclocarban (TCC) is a widely used antimicrobial agent that is routinely detected in surface waters. The present study was designed to examine TCC’s efficacy and mode of action as a reproductive toxicant in fish. Reproductively mature Pimephales promelas were continuously ...
USDA-ARS?s Scientific Manuscript database
Age at puberty is a moderately heritable trait and an early indicator of sow reproductive longevity. Gilts that express first estrus early in life are characterized by improved reproductive longevity and lifetime productivity. These traits are dependent on the function of the hypothalamic-pituitary-...
USDA-ARS?s Scientific Manuscript database
Dominance rank in animal societies is correlated with changes in both reproductive physiology and behavior. In some social insects, dominance status is used to determine a reproductive division of labor, where a few colony members reproduce while most remain functionally sterile. Changes in reproduc...
Adipokines in human reproduction.
Dupont, Joëlle; Pollet-Villard, Xavier; Reverchon, Maxime; Mellouk, Namya; Levy, Rachel
2015-10-01
Adipose tissue communicates with other central and peripheral organs by the synthesis and release of substances called adipokines. The most studied adipokine is leptin but others have been recently identified including resistin, adiponectin, chemerin, omentin and visfatin. These adipokines have a critical role in the development of obesity-related complications and inflammatory conditions. However, they are also involved in other functions in the organism including reproductive functions. Indeed, many groups have demonstrated that adipokine receptors, such as adiponectin and chemerin, but also adipokines themselves (adiponectin, chemerin, resistin, visfatin and omentin) are expressed in human peripheral reproductive tissues and that these adipokines are likely to exert direct effects on these tissues. After a brief description of these new adipokines, an overview of their actions in different human reproductive organs (hypothalamus, pituitary, ovary, testis, uterus and placenta) will be presented. Finally, comments will be made on the eventual alterations of these adipokines in reproductive disorders, with special attention to polycystic ovary syndrome, a disease characterized by dysfunction of gonadal axis and systemic nerve endocrine metabolic network with a prevalence of up to 10% in women of reproductive age.
Genome-wide association for heifer reproduction and calf performance traits in beef cattle.
Akanno, Everestus C; Plastow, Graham; Fitzsimmons, Carolyn; Miller, Stephen P; Baron, Vern; Ominski, Kimberly; Basarab, John A
2015-12-01
The aim of this study was to identify SNP markers that associate with variation in beef heifer reproduction and performance of their calves. A genome-wide association study was performed by means of the generalized quasi-likelihood score (GQLS) method using heifer genotypes from the BovineSNP50 BeadChip and estimated breeding values for pre-breeding body weight (PBW), pregnancy rate (PR), calving difficulty (CD), age at first calving (AFC), calf birth weight (BWT), calf weaning weight (WWT), and calf pre-weaning average daily gain (ADG). Data consisted of 785 replacement heifers from three Canadian research herds, namely Brandon Research Centre, Brandon, Manitoba, University of Alberta Roy Berg Kinsella Ranch, Kinsella, Alberta, and Lacombe Research Centre, Lacombe, Alberta. After applying a false discovery rate correction at a 5% significance level, a total of 4, 3, 3, 9, 6, 2, and 1 SNPs were significantly associated with PBW, PR, CD, AFC, BWT, WWT, and ADG, respectively. These SNPs were located on chromosomes 1, 5-7, 9, 13-16, 19-21, 24, 25, and 27-29. Chromosomes 1, 5, and 24 had SNPs with pleiotropic effects. New significant SNPs that impact functional traits were detected, many of which have not been previously reported. The results of this study support quantitative genetic studies related to the inheritance of these traits, and provides new knowledge regarding beef cattle quantitative trait loci effects. The identification of these SNPs provides a starting point to identify genes affecting heifer reproduction traits and performance of their calves (BWT, WWT, and ADG). They also contribute to a better understanding of the biology underlying these traits and will be potentially useful in marker- and genome-assisted selection and management.
Phylogenomic detection and functional prediction of genes potentially important for plant meiosis.
Zhang, Luoyan; Kong, Hongzhi; Ma, Hong; Yang, Ji
2018-02-15
Meiosis is a specialized type of cell division necessary for sexual reproduction in eukaryotes. A better understanding of the cytological procedures of meiosis has been achieved by comprehensive cytogenetic studies in plants, while the genetic mechanisms regulating meiotic progression remain incompletely understood. The increasing accumulation of complete genome sequences and large-scale gene expression datasets has provided a powerful resource for phylogenomic inference and unsupervised identification of genes involved in plant meiosis. By integrating sequence homology and expression data, 164, 131, 124 and 162 genes potentially important for meiosis were identified in the genomes of Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii and Pogonatum aloides, respectively. The predicted genes were assigned to 45 meiotic GO terms, and their functions were related to different processes occurring during meiosis in various organisms. Most of the predicted meiotic genes underwent lineage-specific duplication events during plant evolution, with about 30% of the predicted genes retaining only a single copy in higher plant genomes. The results of this study provided clues to design experiments for better functional characterization of meiotic genes in plants, promoting the phylogenomic approach to the evolutionary dynamics of the plant meiotic machineries. Copyright © 2017 Elsevier B.V. All rights reserved.
Abedi, Parvin; Jorfi, Maryam; Afshari, Poorandokht; Fakhri, Ahmad
2017-08-01
This study aimed to evaluate the relation between health-promoting lifestyle and sexual function among women of reproductive age. In this cross-sectional study, 1200 women were recruited randomly from 10 public health centers in Ahvaz, Iran. A demographic questionnaire, Health Promoting Lifestyle Profile 2 (HPLP2), and Female Sexual Function Index (FSFI) were used for data collection. The inclusion criteria were as follows: women aged 15-45 years, married, monogamous, and having basic literacy. Data were analyzed using Kruskal-Wallis test, chi-square test, Spearman correlation coefficient, and logistic regression. All aspects of sexual function showed a significant relationship with different dimensions of HPLP2, except for pain and physical activity ( p < 0.001). Women who had better self-actualization were more likely to have better sexual function than other women (OR = 1.10, 95% CI: 1.06-1.14, p < 0.001). Other variables like responsibility, interpersonal relations and stress management also showed a significant correlation with sexual function. Results of this study showed that health-promoting lifestyle dimensions are significantly related to all aspects of sexual function in women of reproductive age. Health policy makers should take lifestyle-related factors of reproductive-aged women into account when seeking to improve the sexual wellbeing of this population. Further attention should also be given to assessing the direction of causality.
Han, Xue; Cui, Zhihong; Zhou, Niya; Ma, Mingfu; Li, Lianbing; Li, Yafei; Lin, Hui; Ao, Lin; Shu, Weiqun; Liu, Jinyi; Cao, Jia
2014-03-01
This study was designed to investigate the phthalates exposure levels in general population in Chongqing City of China, and to determine the possible associations between phthalate exposure and male reproductive function parameters. We recruited 232 general men through Chongqing Family Planning Research Institute and Reproductive Center of Chongqing. In a single spot urine sample from each man, phthalate metabolites, including mono-butyl phthalate (MBP), mono-ethyl phthalate (MEP), mono-(2-ethylhexyl) phthalate (MEHP), mono-benzyl phthalate (MBzP), phthalic acid (PA), and total PA were analyzed using solid phase extraction and coupled with high-performance liquid chromatography and detection by tandem mass spectrometry. Semen parameters were dichotomized based on World Health Organization reference values. Sperm DNA damage were analyzed using the alkaline single-cell gel electrophoresis assay. Reproductive hormones were determined in serum by the radioimmunoassay kit. We observed a weak association between urinary MBP concentration and sperm concentration in Chongqing general population. MBP levels above the median were 1.97 times (95% confidence interval [CI] 0.97-4.04) more likely to have sperm concentration below the reference value. There were no other associations between phthalate metabolites and reproductive function parameters after adjusted for potential risk factors. Our study suggested that general population in Chongqing area of China exposure to the environmental level of phthalate have weak or without adverse effects on the reproduction. Copyright © 2013 Elsevier GmbH. All rights reserved.
Reproductive physiology of the male camelid.
Bravo, P W; Johnson, L W
1994-07-01
The physiology of reproduction with emphasis on endocrinology of llamas and alpacas is addressed. Information regarding male anatomy, puberty, testicular function, semen description, and sexual behavior is also included.
Fort, Douglas J; Mathis, Michael; Fort, Chelsea E; Fort, Hayley M; Bacon, Jamie P
2015-06-01
A modified tier 1 Endocrine Disruptor Screening Program (EDSP) 21-d fish short-term reproduction assay (FSTRA) was used to evaluate the effects of sediment exposure from freshwater and brackish ponds in Bermuda on reproductive fecundity and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus). Reproductively active male and female fish were exposed to control sediment and sediment from 2 freshwater ponds (fathead minnow) and 2 marine ponds (killifish) contaminated with polyaromatic hydrocarbons and metals via flow-through exposure for 21 d. Reproductive fecundity was monitored daily. At termination, the status of the reproductive endocrine system was assessed by the gonadosomatic index, gonadal histology, plasma steroids (estrogen [E2], testosterone [T], and 11-ketotestosterone [11-KT]), steroidogenic enzymes (aromatase and combined 3β/17β -hydroxysteroid dehydrogenase [3β/17β-HSD]), and plasma vitellogenin (VTG). Decreased reproductive fecundity, lower male body weight, and altered endocrinological measures of reproductive status were observed in both species. Higher plasma T levels in female minnows and 11-KT levels in both male and female minnows and female killifish exposed to freshwater and brackish sediments, respectively. Decreased female E2 and VTG levels and gonadal cytochrome P19 (aromatase) activity were also found in sediment exposed females from both species. No effect on female 3β/17β-HSD activity was found in either species. The FSTRA provided a robust model capable of modification to evaluate reproductive effects of sediment exposure in fish. © 2015 SETAC.
Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms.
Zhang, Yufeng; Hood, Wendy R
2016-10-15
Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. © 2016. Published by The Company of Biologists Ltd.
Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms
Zhang, Yufeng
2016-01-01
ABSTRACT Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. PMID:27802148
Meeting Report: Atmospheric Pollution and Human Reproduction
Slama, Rémy; Darrow, Lyndsey; Parker, Jennifer; Woodruff, Tracey J.; Strickland, Matthew; Nieuwenhuijsen, Mark; Glinianaia, Svetlana; Hoggatt, Katherine J.; Kannan, Srimathi; Hurley, Fintan; Kalinka, Jaroslaw; Šrám, Radim; Brauer, Michael; Wilhelm, Michelle; Heinrich, Joachim; Ritz, Beate
2008-01-01
Background There is a growing body of epidemiologic literature reporting associations between atmospheric pollutants and reproductive outcomes, particularly birth weight and gestational duration. Objectives The objectives of our international workshop were to discuss the current evidence, to identify the strengths and weaknesses of published epidemiologic studies, and to suggest future directions for research. Discussion Participants identified promising exposure assessment tools, including exposure models with fine spatial and temporal resolution that take into account time–activity patterns. More knowledge on factors correlated with exposure to air pollution, such as other environmental pollutants with similar temporal variations, and assessment of nutritional factors possibly influencing birth outcomes would help evaluate importance of residual confounding. Participants proposed a list of points to report in future publications on this topic to facilitate research syntheses. Nested case–control studies analyzed using two-phase statistical techniques and development of cohorts with extensive information on pregnancy behaviors and biological samples are promising study designs. Issues related to the identification of critical exposure windows and potential biological mechanisms through which air pollutants may lead to intrauterine growth restriction and premature birth were reviewed. Conclusions To make progress, this research field needs input from toxicology, exposure assessment, and clinical research, especially to aid in the identification and exposure assessment of feto-toxic agents in ambient air, in the development of early markers of adverse reproductive outcomes, and of relevant biological pathways. In particular, additional research using animal models would help better delineate the biological mechanisms underpinning the associations reported in human studies. PMID:18560536
DNA Metabarcoding of Amazonian Ichthyoplankton Swarms
Maggia, M. E.; Vigouroux, Y.; Renno, J. F.; Duponchelle, F.; Desmarais, E.; Nunez, J.; García-Dávila, C.; Carvajal-Vallejos, F. M.; Paradis, E.; Martin, J. F.; Mariac, C.
2017-01-01
Tropical rainforests harbor extraordinary biodiversity. The Amazon basin is thought to hold 30% of all river fish species in the world. Information about the ecology, reproduction, and recruitment of most species is still lacking, thus hampering fisheries management and successful conservation strategies. One of the key understudied issues in the study of population dynamics is recruitment. Fish larval ecology in tropical biomes is still in its infancy owing to identification difficulties. Molecular techniques are very promising tools for the identification of larvae at the species level. However, one of their limits is obtaining individual sequences with large samples of larvae. To facilitate this task, we developed a new method based on the massive parallel sequencing capability of next generation sequencing (NGS) coupled with hybridization capture. We focused on the mitochondrial marker cytochrome oxidase I (COI). The results obtained using the new method were compared with individual larval sequencing. We validated the ability of the method to identify Amazonian catfish larvae at the species level and to estimate the relative abundance of species in batches of larvae. Finally, we applied the method and provided evidence for strong temporal variation in reproductive activity of catfish species in the Ucayalí River in the Peruvian Amazon. This new time and cost effective method enables the acquisition of large datasets, paving the way for a finer understanding of reproductive dynamics and recruitment patterns of tropical fish species, with major implications for fisheries management and conservation. PMID:28095487
Meeting report: atmospheric pollution and human reproduction.
Slama, Rémy; Darrow, Lyndsey; Parker, Jennifer; Woodruff, Tracey J; Strickland, Matthew; Nieuwenhuijsen, Mark; Glinianaia, Svetlana; Hoggatt, Katherine J; Kannan, Srimathi; Hurley, Fintan; Kalinka, Jaroslaw; Srám, Radim; Brauer, Michael; Wilhelm, Michelle; Heinrich, Joachim; Ritz, Beate
2008-06-01
There is a growing body of epidemiologic literature reporting associations between atmospheric pollutants and reproductive outcomes, particularly birth weight and gestational duration. The objectives of our international workshop were to discuss the current evidence, to identify the strengths and weaknesses of published epidemiologic studies, and to suggest future directions for research. Participants identified promising exposure assessment tools, including exposure models with fine spatial and temporal resolution that take into account time-activity patterns. More knowledge on factors correlated with exposure to air pollution, such as other environmental pollutants with similar temporal variations, and assessment of nutritional factors possibly influencing birth outcomes would help evaluate importance of residual confounding. Participants proposed a list of points to report in future publications on this topic to facilitate research syntheses. Nested case-control studies analyzed using two-phase statistical techniques and development of cohorts with extensive information on pregnancy behaviors and biological samples are promising study designs. Issues related to the identification of critical exposure windows and potential biological mechanisms through which air pollutants may lead to intrauterine growth restriction and premature birth were reviewed. To make progress, this research field needs input from toxicology, exposure assessment, and clinical research, especially to aid in the identification and exposure assessment of feto-toxic agents in ambient air, in the development of early markers of adverse reproductive outcomes, and of relevant biological pathways. In particular, additional research using animal models would help better delineate the biological mechanisms underpinning the associations reported in human studies.
Hunt, Kathleen E; Rolland, Rosalind M; Kraus, Scott D
2015-10-01
The North Atlantic right whale, Eubalaena glacialis (NARW), a critically endangered species that has been under intensive study for nearly four decades, provides an excellent case study for applying modern methods of conservation physiology to large whales. By combining long-term sighting histories of known individuals with physiological data from newer techniques (e.g., body condition estimated from photographs; endocrine status derived from fecal samples), physiological state and levels of stress can be estimated despite the lack of any method for nonlethal capture of large whales. Since traditional techniques for validating blood assays cannot be used in large whales, assays of fecal hormones have been validated using information on age, sex, and reproductive state derived from an extensive NARW photo-identification catalog. Using this approach, fecal glucocorticoids have been found to vary dramatically with reproductive state. It is therefore essential that glucocorticoid data be interpreted in conjunction with reproductive data. A case study correlating glucocorticoids with chronic noise is presented as an example. Keys to a successful research program for this uncatchable species have included: consistent population monitoring over decades, data-sharing across institutions, an extensive photo-identification catalog that documents individual histories, and consistent efforts at noninvasive collection of samples over years. Future research will require flexibility to adjust to changing distributions of populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Cotton, Leanne M.; O’Bryan, Moira K.; Hinton, Barry T.
2008-01-01
The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system. PMID:18216218
Cotton, Leanne M; O'Bryan, Moira K; Hinton, Barry T
2008-04-01
The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system.
Johnston, Daniel S; Jelinsky, Scott A; Zhi, Yu; Finger, Joshua N; Kopf, Gregory S; Wright, William W
2007-12-01
In an effort to identify novel targets for the development of nonhormonal male contraceptives, genome-wide transcriptional profiling of the rat testis was performed. Specifically, enzymatically purified spermatogonia plus early spermatocyctes, pachytene spermatocytes, round spermatids, and Sertoli cells was analyzed along with microdissected rat seminiferous tubules at stages I, II-III, IV-V, VI, VIIa,b, VIIc,d, VIII, IX- XI, XII, XIII-XIV of the cycle of the seminiferous epithelium using RAE 230_2.0 microarrays. The combined analysis of these studies identified 16,971 expressed probe sets on the array. How these expression data, combined with additional bioinformatic data analysis and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis, led to the identification of 58 genes that have 1000-fold higher expression transcriptionally in the testis when compared to over 20 other nonreproductive tissues is described. The products of these genes may play important roles in testicular and/or sperm function, and further investigation on their utility as nonhormonal contraceptive targets is warranted. Moreover, these microarray data have been used to expedite the identification of a mutation in RIKEN cDNA 2410004F06 gene as likely being responsible for spermatogenic failure in a line of infertile mice generated by N-ethyl-N-nitrosourea (ENU) mutagenesis. The microarray data and the qRT-PCR data described are available in the Mammalian Reproductive Genetics database (http://mrg.genetics.washington.edu/).
Vitamin D is necessary for reproductive functions of the male rat.
Kwiecinski, G G; Petrie, G I; DeLuca, H F
1989-05-01
The effect of vitamin D deficiency on the fertility and reproductive capacity of male rats was investigated. Male weanling rats were fed vitamin D-deficient or vitamin D-replete diets until maturity, and mated to age-matched, vitamin D-replete females. Vitamin D-deficient males were capable of reproduction. However, successful matings, i.e., presence of sperm in the vaginal tract of the female, by vitamin D-deficient males were reduced by 45% when compared to matings by vitamin D-replete males. Fertility (successful pregnancies in sperm-positive females) was reduced by 73% in litters from vitamin D-deficient male inseminations when compared to litters from females inseminated by vitamin D-replete males. These results demonstrate that vitamin D and its metabolites are necessary for normal reproductive functions in the male rat.
Role of pigment epithelium-derived factor in the reproductive system.
Chuderland, Dana; Ben-Ami, Ido; Bar-Joseph, Hadas; Shalgi, Ruth
2014-10-01
The physiological function of the female reproductive organs is hormonally controlled. In each cycle, the reproductive organs undergo tissue modifications that are accompanied by formation and destruction of blood vessels. Proper angiogenesis requires an accurate balance between stimulatory and inhibitory signals, provided by pro- and anti-angiogenic factors. As with many other tissues, vascular endothelial growth factor (VEGF) appears to be one of the major pro-angiogenic factors in the female reproductive organs. Pigment epithelium-derived factor (PEDF) is a non-inhibitory member of the serine protease inhibitors (serpin) superfamily, possessing potent physiologic anti-angiogenic activity that negates VEGF activity. The role of PEDF in decreasing abnormal neovascularization by exerting its anti-angiogenic effect that inhibits pro-angiogenic factors, including VEGF, has been investigated mainly in the eye and in cancer. This review summarizes the function of PEDF in the reproductive system, showing its hormonal regulation and its anti-angiogenic activity. Furthermore, some pathologies of the female reproductive organs, including endometriosis, ovarian hyperstimulation syndrome, polycystic ovary syndrome, and others, are associated with a faulty angiogenic process. This review illuminates the role of PEDF in their pathogenesis and treatment. Collectively, we can conclude that although PEDF seems to play an essential role in the physiology and pathophysiology of the reproductive system, its full role and mechanism of action still need to be elucidated. © 2014 Society for Reproduction and Fertility.
Clinical investigations of receptive and expressive musical functions after stroke
Rosslau, Ken; Steinwede, Daniel; Schröder, C.; Herholz, Sibylle C.; Lappe, Claudia; Dobel, Christian; Altenmüller, Eckart
2015-01-01
There is a long tradition of investigating various disorders of musical abilities after stroke. These impairments, associated with acquired amusia, can be highly selective, affecting only music perception (i.e., receptive abilities/functions) or expression (music production abilities), and some patients report that these may dramatically influence their emotional state. The aim of this study was to systematically test both the melodic and rhythmic domains of music perception and expression in left- and right-sided stroke patients compared to healthy subjects. Music perception was assessed using rhythmic and melodic discrimination tasks, while tests of expressive function involved the vocal or instrumental reproduction of rhythms and melodies. Our approach revealed deficits in receptive and expressive functions in stroke patients, mediated by musical expertise. Those patients who had experienced a short period of musical training in childhood and adolescence performed better in the receptive and expressive subtests compared to those without any previous musical training. While discrimination of specific musical patterns was unimpaired after a left-sided stroke, patients with a right-sided stroke had worse results for fine melodic and rhythmic analysis. In terms of expressive testing, the most consistent results were obtained from a test that required patients to reproduce sung melodies. This implies that the means of investigating production abilities can impact the identification of deficits. PMID:26124731
Clinical investigations of receptive and expressive musical functions after stroke.
Rosslau, Ken; Steinwede, Daniel; Schröder, C; Herholz, Sibylle C; Lappe, Claudia; Dobel, Christian; Altenmüller, Eckart
2015-01-01
There is a long tradition of investigating various disorders of musical abilities after stroke. These impairments, associated with acquired amusia, can be highly selective, affecting only music perception (i.e., receptive abilities/functions) or expression (music production abilities), and some patients report that these may dramatically influence their emotional state. The aim of this study was to systematically test both the melodic and rhythmic domains of music perception and expression in left- and right-sided stroke patients compared to healthy subjects. Music perception was assessed using rhythmic and melodic discrimination tasks, while tests of expressive function involved the vocal or instrumental reproduction of rhythms and melodies. Our approach revealed deficits in receptive and expressive functions in stroke patients, mediated by musical expertise. Those patients who had experienced a short period of musical training in childhood and adolescence performed better in the receptive and expressive subtests compared to those without any previous musical training. While discrimination of specific musical patterns was unimpaired after a left-sided stroke, patients with a right-sided stroke had worse results for fine melodic and rhythmic analysis. In terms of expressive testing, the most consistent results were obtained from a test that required patients to reproduce sung melodies. This implies that the means of investigating production abilities can impact the identification of deficits.
Verma, Jitendra Kumar; Wardhan, Vijay; Singh, Deepali; Chakraborty, Subhra; Chakraborty, Niranjan
2018-03-28
Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa , Zea mays , Sorghum bicolor , Cicer arietinum , and Vitis vinifera , and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii , Physcomitrella patens , and Amborella trichopoda , revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice ( OsAlba ), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.
Rhee, Gyu Seek; Cho, Dae Hyun; Won, Yong Hyuck; Seok, Ji Hyun; Kim, Soon Sun; Kwack, Seung Jun; Lee, Rhee Da; Chae, Soo Yeong; Kim, Jae Woo; Lee, Byung Mu; Park, Kui Lea; Choi, Kwang Sik
2005-12-10
Each specific protein has an individual gene encoding it, and a foreign gene introduced to a plant can be used to synthesize a new protein. The identification of potential reproductive and developmental toxicity from novel proteins produced by genetically modified (GM) crops is a difficult task. A science-based risk assessment is needed in order to use GM crops as a conventional foodstuff. In this study, the specific characteristics of GM food and low-level chronic exposure were examined using a five-generation animal study. In each generation, rats were fed a solid pellet containing 5% GM potato and non-GM potato for 10 wk prior to mating in order to assess the potential reproductive and developmental toxic effects. In the multigeneration animal study, there were no GM potato-related changes in body weight, food consumption, reproductive performance, and organ weight. Polymerase chain reaction (PCR) was carried out using extracted genomic DNA to examine the possibility of gene persistence in the organ tissues after a long-term exposure to low levels of GM feed. In each generation, the gene responsible for bar was not found in any of the reproductive organs of the GM potato-treated male and female rats, and the litter-related indexes did not show any genetically modified organism (GMO)-related changes. The results suggest that genetically modified crops have no adverse effects on the multigeneration reproductive-developmental ability.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee. General Function of the...] Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
... Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee. General Function of the...] Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
... Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee. General Function of the...] Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee. General Function of the...] Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice...
Ghrelin – A Pleiotropic Hormone Secreted from Endocrine X/A-Like Cells of the Stomach
Stengel, Andreas; Taché, Yvette
2012-01-01
The gastric X/A-like endocrine cell receives growing attention due to its peptide products with ghrelin being the best characterized. This peptide hormone was identified a decade ago as a stimulator of food intake and to date remains the only known peripherally produced and centrally acting orexigenic hormone. In addition, subsequent studies identified numerous other functions of this peptide including the stimulation of gastrointestinal motility, the maintenance of energy homeostasis and an impact on reproduction. Moreover, ghrelin is also involved in the response to stress and assumed to play a role in coping functions and exert a modulatory action on immune pathways. Our knowledge on the regulation of ghrelin has markedly advanced during the past years by the identification of the ghrelin acylating enzyme, ghrelin-O-acyltransferase, and by the description of changes in expression, activation, and release under different metabolic as well as physically and psychically challenging conditions. However, our insight on regulatory processes of ghrelin at the cellular and subcellular levels is still very limited and warrants further investigation. PMID:22355282
Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu
2014-01-01
The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268
Wolfe, Andrew; Divall, Sara; Wu, Sheng
2014-10-01
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Høyer, Birgit Bjerre; Lenters, Virissa; Giwercman, Aleksander; Jönsson, Bo A G; Toft, Gunnar; Hougaard, Karin S; Bonde, Jens Peter E; Specht, Ina Olmer
2018-03-01
The purpose of this review is to systematically review the literature linking di-2-ethylhexyl phthalate (DEHP) exposure with effects on reproductive health in adult males. Thirty-three papers were included of which 28 were cross-sectional. Twenty-one papers investigated semen samples, 18 investigated reproductive hormones, and three studies investigated time to pregnancy. Studies revealed some but inconsistent indications that higher urinary DEHP metabolite levels are associated with an increase in the proportion of spermatozoa with damaged DNA and to a decrease in sperm concentration and motility. A negative association between DEHP metabolites and testosterone levels was more consistent. DEHP metabolites do not seem to be associated with a delay in time to pregnancy, but data are sparse. The studies on DEHP exposure and reproductive biomarkers in men converge to support the hypothesis that DEHP exposure is related to impaired male reproductive function. Longitudinal studies are needed to establish if the observed associations are causal.
Use of pluripotent stem cells for reproductive medicine: are we there yet?
Duggal, Galbha; Heindryckx, Björn; Deroo, Tom; De Sutter, Petra
2014-01-01
In recent years, pluripotent stem cells have demonstrated to be exciting tools to understand embryonic development, cell lineage specification, tissue generation and repair, and various other biological processes. In addition, the identification and isolation of germ line stem cells has given more insight into germ cell biology at the molecular level and into the underlying causes of infertility which was not possible earlier. The recent derivation of in vitro derived sperm and oocytes from pluripotent stem cells in the mouse model represents a major breakthrough in the field and substantiates the critical relevance of stem cells as a potential alternative resource for treating infertility. Although the past years have yielded compelling information in understanding germ cell development via in vitro stem cell assays, extended investigative research is necessary in order to derive fully functional 'artificial gametes' in a safe way for future therapeutic applications.
Fleming, Damarius S; Miller, Laura C
2018-04-01
It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs have emerged as having an important role in the immune system in humans. The study uses transcriptomic read counts to profile the type and quantity of both well and lesser characterized sncRNAs, such as microRNAs and small nucleolar RNAs to identify and quantify the classes of sncRNA expressed in whole blood between healthy and highly pathogenic PRRSV-infected pigs. Our results returned evidence on nine classes of sncRNA, four of which were consistently statistically significantly different based on Fisher's Exact Test, that can be detected and possibly interrogated for their effect on host dysregulation during PRRSV infections. Published by Elsevier Inc.
A-to-I RNA editing independent of ADARs in filamentous fungi
Wang, Chenfang; Xu, Jin-Rong; Liu, Huiquan
2016-01-01
ABSTRACT ADAR mediated A-to-I RNA editing is thought to be unique to animals and occurs mainly in the non-coding regions. Recently filamentous fungi such as Fusarium graminearum were found to lack orthologs of animal ADARs but have stage-specific A-to-I editing during sexual reproduction. Unlike animals, majority of editing sites are in the coding regions and often result in missense and stop loss changes in fungi. Furthermore, whereas As in RNA stems are targeted by animal ADARs, RNA editing in fungi preferentially targets As in hairpin loops, implying that fungal RNA editing involves mechanisms related to editing of the anticodon loop by ADATs. Identification and characterization of fungal adenosine deaminases and their stage-specific co-factors may be helpful to understand the evolution of human ADARs. Fungi also can be used to study biological functions of missense and stop loss RNA editing events in eukaryotic organisms. PMID:27533598
After a dozen years of progress the origin of angiosperms is still a great mystery.
Frohlich, Michael W; Chase, Mark W
2007-12-20
Here we discuss recent advances surrounding the origin of angiosperms. Putatively primitive characters are now much better understood because of a vastly improved understanding of angiosperm phylogenetics, and recent discoveries of fossil flowers have provided an increasingly detailed picture of early diversity in the angiosperms. The 'anthophyte theory', the dominant concept of the 1980s and 1990s, has been eclipsed; Gnetales, previously thought to be closest to the angiosperms, are related instead to other extant gymnosperms, probably most closely to conifers. Finally, new theories of flower origins have been proposed based on gene function, duplication and loss, as well as on morphology. Further studies of genetic mechanisms that control reproductive development in seed plants provide a most promising avenue for further research, including tests of these recent theories. Identification of fossils with morphologies that convincingly place them close to angiosperms could still revolutionize understanding of angiosperm origins.
Leptin: physiology and pathophysiology.
Frühbeck, G; Jebb, S A; Prentice, A M
1998-09-01
The identification and sequencing of the ob gene and its product, leptin, in late 1994 opened new insights in the study of the mechanisms controlling body weight and led to a surge of research activity. During this time, a considerable body of knowledge regarding leptin's actions has been accumulated and the field continues to expand rapidly. Currently there is particular interest in the interaction of leptin with other peripheral and neural mechanisms to regulate body weight, reproduction and immunological response. In this review, we attempt to place the current state of knowledge about leptin in the broader perspective of physiology, including its structural characteristics, receptors, binding proteins, signalling pathways, regulation of adipose tissue expression and production, secretion patterns, clearance mechanisms and functional effects. In addition, leptin's involvement in the pathophysiology of obesity, anorexia nervosa, diabetes mellitus, polycystic ovary syndrome, acquired immunodeficiency syndrome, cancer, nephropathy, thyroid disease, Cushing's syndrome and growth hormone deficiency will be reviewed.
Brusch, George A; Billy, Gopal; Blattman, Joseph N; DeNardo, Dale F
Resource availability can impact immune function, with the majority of studies of such influences focusing on the allocation of energy investment into immune versus other physiological functions. When energy is a limited resource, performance trade-offs can result, compromising immunity. Dehydration is also considered a physiological challenge resulting from the limitation of a vital resource, yet previous research has found a positive relationship between dehydration and innate immune performance. However, these studies did not examine the effects of dehydration on immunity when there was another concurrent, substantial physiological challenge. Thus, we examined the impact of reproduction and water deprivation, individually and in combination, on immune performance in Children's pythons (Antaresia childreni). We collected blood samples from free-ranging A. childreni to evaluate osmolality and innate immune function (lysis, agglutination, bacterial growth inhibition) during the austral dry season, when water availability is limited and this species is typically reproducing. To examine how reproduction and water imbalance, both separately and combined, impact immune function, we used a laboratory-based 2 × 2 experiment. Our results demonstrate that A. childreni experience significant dehydration during the dry season and that, overall, osmolality, regardless of the underlying cause (seasonal rainfall, water deprivation, or reproduction), is positively correlated with increased innate immune performance.
Gene expression profiling of adult female tissues in feeding Rhipicephalus microplus cattle ticks.
Stutzer, Christian; van Zyl, Willem A; Olivier, Nicholas A; Richards, Sabine; Maritz-Olivier, Christine
2013-06-01
The southern cattle tick, Rhipicephalus microplus, is an economically important pest, especially for resource-poor countries, both as a highly adaptive invasive species and prominent vector of disease. The increasing prevalence of resistance to chemical acaricides and variable efficacy of current tick vaccine candidates highlight the need for more effective control methods. In the absence of a fully annotated genome, the wealth of available expressed sequence tag sequence data for this species presents a unique opportunity to study the genes that are expressed in tissues involved in blood meal acquisition, digestion and reproduction during feeding. Utilising a custom oligonucleotide microarray designed from available singletons (BmiGI Version 2.1) and expressed sequence tag sequences of R. microplus, the expression profiles in feeding adult female midgut, salivary glands and ovarian tissues were compared. From 13,456 assembled transcripts, 588 genes expressed in all three tissues were identified from fed adult females 20 days post infestation. The greatest complement of genes relate to translation and protein turnover. Additionally, a number of unique transcripts were identified for each tissue that relate well to their respective physiological/biological function/role(s). These transcripts include secreted anti-hemostatics and defense proteins from the salivary glands for acquisition of a blood meal, proteases as well as enzymes and transporters for digestion and nutrient acquisition from ingested blood in the midgut, and finally proteins and associated factors involved in DNA replication and cell-cycle control for oogenesis in the ovaries. Comparative analyses of adult female tissues during feeding enabled the identification of a catalogue of transcripts that may be essential for successful feeding and reproduction in the cattle tick, R. microplus. Future studies will increase our understanding of basic tick biology, allowing the identification of shared proteins/pathways among different tissues that may offer novel targets for the development of new tick control strategies. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Babin, Patrick J
2008-04-30
Vitellogenin (Vtg) derivatives are the main egg-yolk proteins in most oviparous animal species, and are, therefore, key players in reproduction and embryo development. Conserved synteny and phylogeny were used to identify a Vtg gene cluster (VGC) that had been evolutionarily conserved in most oviparous vertebrates, encompassing the three linked Vtgs on chicken (Gallus gallus) chromosome 8. Tandem arranged homologs to chicken VtgII and VtgIII were retrieved in similar locations in Xenopus (Xenopus tropicalis) and homologous transcribed inverted genes were found in medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), pufferfish (Takifugu rubripes), and Tetrahodon (Tetraodon nigroviridis), while zebrafish (Danio rerio) Vtg3 may represent a residual trace of VGC in this genome. Vtgs were not conserved in the paralogous chromosomal segment attributed to a whole-genome duplication event in the ancestor of teleosts, while tandem duplicated forms have survived the recent African clawed frog (Xenopus laevis) tetraploidization. Orthologs to chicken VtgI were found in similar locations in teleost fish, as well as in the platypus (Ornithorhynchus anatinus). Additional Vtg fragments found suggested that VGC had been conserved in this egg-laying mammal. A low ratio of nonsynonymous-to-synonymous substitution values and the paucity of pseudogene features suggest functional platypus Vtg products. Genomic identification of Vtgs, Apob, and Mtp in this genome, together with maximum likelihood and Bayesian inference phylogenetic analyses, support the existence of these three large lipid transfer protein superfamily members at the base of the mammalian lineage. In conclusion, the establishment of a VGC in the vertebrate lineage predates the divergence of ray-finned fish and tetrapods and the shift in reproductive and developmental strategy observed between prototherians and therians may be associated with its loss, as shown by its absence from the genomic resources currently available from therians.
Clayton, Anita H; Harsh, Veronica
2016-03-01
Women experience multiple changes in social and reproductive statuses across the life span which can affect sexual functioning. Various phases of the sexual response cycle may be impacted and can lead to sexual dysfunction. Screening for sexual problems and consideration of contributing factors such as neurobiology, reproductive life events, medical problems, medication use, and depression can help guide appropriate treatment and thereby improve the sexual functioning and quality of life of affected women. Treatment options include psychotropic medications, hormone therapy, and psychotherapy.
Martyniuk, Christopher J; Doperalski, Nicholas J; Prucha, Melinda S; Zhang, Ji-Liang; Kroll, Kevin J; Conrow, Roxanne; Barber, David S; Denslow, Nancy D
2016-09-01
Lake Apopka (FL, USA) has elevated levels of some organochlorine pesticides in its sediments and a portion of its watershed has been designated a US Environmental Protection Agency Superfund site. This study assessed reproductive endpoints in Florida largemouth bass (LMB) (Micropterus salmoides floridanus) after placement into experimental ponds adjacent to Lake Apopka. LMB collected from a clean reference site (DeLeon Springs) were stocked at two periods of time into ponds constructed in former farm fields on the north shore of the lake. LMB were stocked during early and late oogenesis to determine if there were different effects of contamination on LMB that may be attributed to their reproductive stage. LMB inhabiting the ponds for ~4months had anywhere from 2 to 800 times higher contaminant load for a number of organochlorine pesticides (e.g. p, p'-DDE, methoxychlor) compared to control animals. Gonadosomatic index and plasma vitellogenin were not different between reproductively-stage matched LMB collected at reference sites compared to those inhabiting the ponds. However, plasma 17β-estradiol was lower in LMB inhabiting the Apopka ponds compared to ovary stage-matched LMB from the St. Johns River, a site used as a reference site. Sub-network enrichment analysis revealed that genes related to reproduction (granulosa function, oocyte development), endocrine function (steroid metabolism, hormone biosynthesis), and immune function (T cell suppression, leukocyte accumulation) were differentially expressed in the ovaries of LMB placed into the ponds. These data suggest that (1) LMB inhabiting the Apopka ponds showed disrupted reproduction and immune responses and that (2) gene expression profiles provided site-specific information by discriminating LMB from different macro-habitats. Copyright © 2016 Elsevier Inc. All rights reserved.
Genome-wide association and identification of candidate genes for age at puberty in swine
USDA-ARS?s Scientific Manuscript database
Reproductive efficiency has a great impact on the economic success of pork production. Gilts comprise a significant portion of breeding females and gilts that reach puberty earlier tend to stay in the herd longer and be more productive. About 10 to 30% of gilts never farrow a litter and the most com...
USDA-ARS?s Scientific Manuscript database
ALV-J (subgroup J avian leucosis virus) is a kind of oncogenic exogenous retrovirus and diseases associated with ALV-J have caused severe reproduction problems in the poultry industry worldwide. However, the pathogenesis of ALV-J-induced tumor formation is still unclear. In recent years, circRNAs ar...
USDA-ARS?s Scientific Manuscript database
The resistant line Auburn 623RNR and a number of elite breeding lines derived from it remain the most important source of root-knot nematode (RKN) resistance because they exhibit the highest level of resistance to RKN known to date in Upland cotton (Gossypium hirsutum L). Prior genetic mapping analy...
Darwin's legacy: the forms, function and sexual diversity of flowers
Barrett, Spencer C. H.
2010-01-01
Charles Darwin studied floral biology for over 40 years and wrote three major books on plant reproduction. These works have provided the conceptual foundation for understanding floral adaptations that promote cross-fertilization and the mechanisms responsible for evolutionary transitions in reproductive systems. Many of Darwin's insights, gained from careful observations and experiments on diverse angiosperm species, remain remarkably durable today and have stimulated much current research on floral function and the evolution of mating systems. Here I review Darwin's seminal contributions to reproductive biology and provide an overview of the current status of research on several of the main topics to which he devoted considerable effort, including the consequences to fitness of cross- versus self-fertilization, the evolution and function of stylar polymorphisms, the adaptive significance of heteranthery, the origins of dioecy and related gender polymorphisms, and the transition from animal pollination to wind pollination. Post-Darwinian perspectives on floral function now recognize the importance of pollen dispersal and male outcrossed siring success in shaping floral adaptation. This has helped to link work on pollination biology and mating systems, two subfields of reproductive biology that remained largely isolated during much of the twentieth century despite Darwin's efforts towards integration. PMID:20047864
To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes
Hoey, Andrew S.; Bellwood, David R.; Barnett, Adam
2012-01-01
Functionally coupled biomechanical systems are widespread in nature and are viewed as major constraints on evolutionary diversification, yet there have been few attempts to explore the implications of performing multiple functions within a single anatomical structure. Paternally mouthbrooding cardinalfishes present an ideal system to investigate the constraints of functional coupling as the oral jaws of male fishes are directly responsible for both feeding and reproductive functions. To test the effects of (i) mouthbrooding on feeding and (ii) feeding on reproductive potential we compared the feeding apparatus between sexes of nine species of cardinalfish and compared brood characteristics among species from different trophic groups, respectively. Mouthbrooding was strongly associated with the morphology of the feeding apparatus in males. Male cardinalfishes possessed longer heads, snouts and jaws than female conspecifics irrespective of body size, trophic group or evolutionary history. Conversely, reproductive potential also appeared to be related to trophic morphology. Piscivorous cardinalfishes produced larger, but fewer eggs, and had smaller brood volumes than species from the two invertebrate feeding groups. These interrelationships suggest that feeding and reproduction in the mouth of cardinalfishes may be tightly coupled. If so this may, in part, have contributed to the limited morphological diversification exhibited by cardinalfishes. PMID:22319124
To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes.
Hoey, Andrew S; Bellwood, David R; Barnett, Adam
2012-06-22
Functionally coupled biomechanical systems are widespread in nature and are viewed as major constraints on evolutionary diversification, yet there have been few attempts to explore the implications of performing multiple functions within a single anatomical structure. Paternally mouthbrooding cardinalfishes present an ideal system to investigate the constraints of functional coupling as the oral jaws of male fishes are directly responsible for both feeding and reproductive functions. To test the effects of (i) mouthbrooding on feeding and (ii) feeding on reproductive potential we compared the feeding apparatus between sexes of nine species of cardinalfish and compared brood characteristics among species from different trophic groups, respectively. Mouthbrooding was strongly associated with the morphology of the feeding apparatus in males. Male cardinalfishes possessed longer heads, snouts and jaws than female conspecifics irrespective of body size, trophic group or evolutionary history. Conversely, reproductive potential also appeared to be related to trophic morphology. Piscivorous cardinalfishes produced larger, but fewer eggs, and had smaller brood volumes than species from the two invertebrate feeding groups. These interrelationships suggest that feeding and reproduction in the mouth of cardinalfishes may be tightly coupled. If so this may, in part, have contributed to the limited morphological diversification exhibited by cardinalfishes.
The role of adiponectin in reproduction: from polycystic ovary syndrome to assisted reproduction
Michalakis, Konstantinos G.; Segars, James H.
2011-01-01
Objective To summarize the effects of the adipokine adiponectin on the reproductive endocrine system, from the hypothalamic-pituitary axis to the gonads and target tissues of the reproductive system. Design A Medline computer search was performed to identify relevant articles. Setting Research institution. Intervention(s) None. Result(s) Adiponectin is a hormone secreted by adipose tissue that acts to reduce insulin resistance and atherogenic damage, but it also exerts actions in other tissues. Adiponectin mediates its actions in the periphery mainly via two receptors, AdipoR1 and AdipoR2. Adiponectin receptors are present in many reproductive tissues, including the central nervous system, ovaries, oviduct, endometrium, and testes. Adiponectin influences gonadotropin release, normal pregnancy, and assisted reproduction outcomes. Conclusion(s) Adiponectin, a beneficial adipokine, represents a major link between obesity and reproduction. Higher levels of adiponectin are associated with improved menstrual function and better outcomes in assisted reproductive cycles. PMID:20561616
Butts, Samantha F; Freeman, Ellen W; Sammel, Mary D; Queen, Kaila; Lin, Hui; Rebbeck, Timothy R
2012-06-01
Although smoking has a known association with hot flashes, the factors distinguishing smokers at greatest risk for menopausal symptoms have not been well delineated. Recent evidence supports a relationship between menopausal symptoms and variants in several genes encoding enzymes that metabolize substrates such as sex steriods, xenobiotics, and catechols. It is currently not known whether the impact of smoking on hot flashes is modified by the presence of such variants. The objective of the study was to investigate the relationship between smoking and hot flash occurrence as a function of genetic variation in sex steroid-metabolizing enzymes. A cross-sectional analysis of data from the Penn Ovarian Aging study, an ongoing population-based cohort of late reproductive-aged women, was performed. Smoking behavior was characterized. Single-nucleotide polymorphisms in five genes were investigated: COMT Val158Met (rs4680), CYP1A2*1F (rs762551), CYP1B1*4 (Asn452Ser, rs1800440), CYP1B1*3 (Leu432Val, rs1056836), and CYP3A4*1B (rs2740574). Compared with nonsmokers, European-American COMT Val158Met double-variant carriers who smoked had increased odds of hot flashes [adjusted odds ratio (AOR) 6.15, 95% confidence interval (CI) 1.32-28.78)]; European-American COMT Val158Met double-variant carriers who smoked heavily had more frequent moderate or severe hot flashes than nonsmokers (AOR 13.7, 95% CI 1.2-154.9). European-American CYP 1B1*3 double-variant carriers who smoked described more frequent moderate or severe hot flashes than nonsmoking (AOR 20.6, 95% CI 1.64-257.93) and never-smoking (AOR 20.59, 95% CI 1.39-304.68) carriers, respectively. African-American single-variant CYP 1A2 carriers who smoked were more likely to report hot flashes than the nonsmoking carriers (AOR 6.16, 95% CI 1.11-33.91). This is the first report demonstrating the effects of smoking within the strata of gene variants involved in sex steroid metabolism on hot flashes in late reproductive-age women. The identification of individuals with a genetic susceptibility to smoking-related menopausal symptoms could contribute to interventions targeted at reducing reproductive morbidity both in the menopause and across the reproductive life course.
2010-01-01
Background Sexual reproduction relies on two key events: formation of cells with a haploid genome (the gametes) and restoration of diploidy after fertilization. Therefore the underlying mechanisms must have been evolutionary linked and there is a need for evidence that could support such a model. Results We describe the identification and the characterization of yem1, the first yem-alpha mutant allele (V478E), which to some extent affects diploidy reduction and its restoration. Yem-alpha is a member of the Ubinuclein/HPC2 family of proteins that have recently been implicated in playing roles in chromatin remodeling in concert with HIRA histone chaperone. The yem1 mutant females exhibited disrupted chromosome behavior in the first meiotic division and produced very low numbers of viable progeny. Unexpectedly these progeny did not display paternal chromosome markers, suggesting that they developed from diploid gametes that underwent gynogenesis, a form of parthenogenesis that requires fertilization. Conclusions We focus here on the analysis of the meiotic defects exhibited by yem1 oocytes that could account for the formation of diploid gametes. Our results suggest that yem1 affects chromosome segregation presumably by affecting kinetochores function in the first meiotic division. This work paves the way to further investigations on the evolution of the mechanisms that support sexual reproduction. PMID:21080953
Khosa, Jiffinvir S.; Lee, Robyn; Bräuning, Sophia; Lord, Janice; Pither-Joyce, Meeghan; McCallum, John; Macknight, Richard C.
2016-01-01
Researchers working on model plants have derived great benefit from developing genomic and genetic resources using ‘reference’ genotypes. Onion has a large and highly heterozygous genome making the sharing of germplasm and analysis of sequencing data complicated. To simplify the discovery and analysis of genes underlying important onion traits, we are promoting the use of the homozygous double haploid line ‘CUDH2107’ by the onion research community. In the present investigation, we performed transcriptome sequencing on vegetative and reproductive tissues of CUDH2107 to develop a multi-organ reference transcriptome catalogue. A total of 396 million 100 base pair paired reads was assembled using the Trinity pipeline, resulting in 271,665 transcript contigs. This dataset was analysed for gene ontology and transcripts were classified on the basis of putative biological processes, molecular function and cellular localization. Significant differences were observed in transcript expression profiles between different tissues. To demonstrate the utility of our CUDH2107 transcriptome catalogue for understanding the genetic and molecular basis of various traits, we identified orthologues of rice genes involved in male fertility and flower development. These genes provide an excellent starting point for studying the molecular regulation, and the engineering of reproductive traits. PMID:27861615
Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.
Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen
2014-05-01
Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes. Copyright © 2013 John Wiley & Sons, Ltd.
Brain Sex Matters: estrogen in cognition and Alzheimer’s disease
Li, Rena; Cui, Jie; Shen, Yong
2014-01-01
Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissues such as liver, heart, muscle, bone and the brain. During the past decade, increasing evidence suggests that brain estrogen can not only be synthesized by neurons, but also by astrocytes. Brain estrogen also works locally at the site of synthesis in paracrine and/or intracrine fashion to maintain important tissue-specific functions. Here, we will focus on the biology of brain estrogen and its impact on cognitive function and Alzheimer’s disease. This comprehensive review provides new insights into brain estrogens by presenting a better understanding of the tissue-specific estrogen effects and their roles in healthy ageing and cognitive function. PMID:24418360
Yang, Heng; Liu, Xianxia; Hu, Guangdong; Xie, Yifan; Lin, Shan; Zhao, Zongsheng; Chen, Jingbo
2018-05-05
Given the important role of nutritional status for reproductive performance, we aimed to explore the potential microRNA (miRNA)-mRNA pairs and their regulatory roles associated with nutritional status in seasonal reproducing sheep. Individual ewes were treated with and without 0.3 kg/day concentrates, and the body condition score, estrus rate, and related miRNAs and target genes were compared. A total of 261 differentially expressed miRNAs were identified, including 148 hypothalamus-expressed miRNAs and 113 ovary-expressed miRNAs, and 349 target genes were predicted to be associated with nutritional status and seasonal reproduction in sheep. Ultimately, the miR-200b-GNAQ pair was screened and validated as differentially expressed, and a dual luciferase reporter assay showed that miR-200b could bind to the 3'-untranslated region of GNAQ to mediate the hypothalamic-pituitary-ovarian axis. Thus, miR-200b and its target gene GNAQ likely represent an important negative feedback loop, providing a link between nutritional status and seasonal reproduction in sheep toward enhancing reproductive performance and productivity. Copyright © 2018. Published by Elsevier Inc.
Oceanographic drivers and mistiming processes shape breeding success in a seabird
2016-01-01
Understanding the processes driving seabirds' reproductive performance through trophic interactions requires the identification of seasonal pulses in marine productivity. We investigated the sequence of environmental and biological processes driving the reproductive phenology and performance of the storm petrel (Hydrobates pelagicus) in the Western Mediterranean. The enhanced light and nutrient availability at the onset of water stratification (late winter/early spring) resulted in annual consecutive peaks in relative abundance of phytoplankton, zooplankton and ichthyoplankton. The high energy-demanding period of egg production and chick rearing coincided with these successive pulses in food availability, pointing to a phenological adjustment to such seasonal patterns with important fitness consequences. Indeed, delayed reproduction with respect to the onset of water stratification resulted in both hatching and breeding failure. This pattern was observed at the population level, but also when confounding factors such as individuals' age or experience were also accounted for. We provide the first evidence of oceanographic drivers leading to the optimal time-window for reproduction in an inshore seabird at southern European latitudes, along with a suitable framework for assessing the impact of environmentally driven changes in marine productivity patterns in seabird performance. PMID:26962134
Oceanographic drivers and mistiming processes shape breeding success in a seabird.
Ramírez, Francisco; Afán, Isabel; Tavecchia, Giacomo; Catalán, Ignacio A; Oro, Daniel; Sanz-Aguilar, Ana
2016-03-16
Understanding the processes driving seabirds' reproductive performance through trophic interactions requires the identification of seasonal pulses in marine productivity. We investigated the sequence of environmental and biological processes driving the reproductive phenology and performance of the storm petrel (Hydrobates pelagicus) in the Western Mediterranean. The enhanced light and nutrient availability at the onset of water stratification (late winter/early spring) resulted in annual consecutive peaks in relative abundance of phytoplankton, zooplankton and ichthyoplankton. The high energy-demanding period of egg production and chick rearing coincided with these successive pulses in food availability, pointing to a phenological adjustment to such seasonal patterns with important fitness consequences. Indeed, delayed reproduction with respect to the onset of water stratification resulted in both hatching and breeding failure. This pattern was observed at the population level, but also when confounding factors such as individuals' age or experience were also accounted for. We provide the first evidence of oceanographic drivers leading to the optimal time-window for reproduction in an inshore seabird at southern European latitudes, along with a suitable framework for assessing the impact of environmentally driven changes in marine productivity patterns in seabird performance. © 2016 The Author(s).
Male pregnancy in seahorses and pipefish: beyond the mammalian model.
Stölting, Kai N; Wilson, Anthony B
2007-09-01
Pregnancy has been traditionally defined as the period during which developing embryos are incubated in the body after egg-sperm union. Despite strong similarities between viviparity in mammals and other vertebrate groups, researchers have historically been reluctant to use the term pregnancy for non-mammals in recognition of the highly developed form of viviparity in eutherians. Syngnathid fishes (seahorses and pipefishes) have a unique reproductive system, where the male incubates developing embryos in a specialized brooding structure in which they are aerated, osmoregulated, protected and likely provisioned during their development. Recent insights into physiological, morphological and genetic changes associated with syngnathid reproduction provide compelling evidence that male incubation in these species is a highly specialized form of reproduction akin to other forms of viviparity. Here, we review these recent advances, highlighting similarities and differences between seahorse and mammalian pregnancy. Understanding the changes associated with the parallel evolution of male pregnancy in the two major syngnathid lineages will help to identify key innovations that facilitated the development of this unique form of reproduction and, through comparison with other forms of live bearing, may allow the identification of a common set of characteristics shared by all viviparous organisms.
Drinan, Daniel P.; Webb, Molly A. H.; Naish, Kerry A.; Kalinowski, Steven T.; Boyer, Matthew C.; Steed, Amber C.; Shepard, Bradley B.; Muhlfeld, Clint C.
2015-01-01
Hybridization between introduced and native fauna is a risk to native species and may threaten the long-term persistence of numerous taxa. Rainbow Trout Oncorhynchus mykiss has been one of the most widely introduced species around the globe and often hybridizes with native Cutthroat Trout O. clarkii in the Rocky Mountains. Previous work has shown that hybridization negatively affects reproductive success, but identification of the traits contributing to that reduction has been elusive. In this study, we used a combination of field and laboratory techniques to assess how hybridization with Rainbow Trout affects seven traits during several stages of Westslope Cutthroat Trout development: embryonic survival, ova size, ova energy concentration, sperm motility, juvenile weight, juvenile survival, and burst swimming endurance. Rainbow Trout admixture was correlated with an increase in embryonic survival and ova energy concentration but with a decrease in juvenile weight and burst swimming endurance. These correlations differed from previously observed patterns of reproductive success and likely do not explain the declines in reproductive success associated with admixture. Future investigation of additional, unstudied traits and the use of different environments may shed light on the traits responsible for reproductive success in admixed Cutthroat Trout.
[Mechanisms of electromagnetic radiation damaging male reproduction].
Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming
2012-08-01
More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.
Predicting Post-Harvest Performance of Advance Red Oak Reproduction in the Southern Appalachians
David L. Loftis
1990-01-01
Models are presented for predicting: (1) height growth of red oak advance reproduction after clearcutting, and (2) the probability of stems becoming dominants or codominants in new stands as a function of preharvest size of advance reproduction andsitequafity. The second model permits silviculturists to predict, prior to harvest, the contribution to a new stand of an...
Triclocarban (TCC) is a widely used antimicrobial agent that is routinely detected in surface waters. The present study was designed to examine TCC’s efficacy and mode of action as a reproductive toxicant in fish. Reproductively mature Pimephales promelas were continuously expose...
Effects of plant sex on range distributions and allocation to reproduction.
Johnson, Marc T J; Smith, Stacey D; Rausher, Mark D
2010-05-01
Despite an abundance of theory, few empirical studies have explored the ecological and evolutionary consequences of sex. We used a comparative phylogenetic approach to examine whether transitions between sexual and asexual reproduction are associated with changes in the size and distribution of species' geographical ranges, and their investment in reproduction. Here, we reconstructed the phylogeny of the genus Oenothera sections Oenothera and Calylophus (Onagraceae), which contain 35 sexual and 30 functionally asexual species. From each species, we collected data on the geographical distribution and variation in plant traits related to reproduction. Functionally asexual species occurred at higher latitudes, but did not differ in range size, compared with sexual species. Transitions to asexuality were associated with decreased investment in floral structures, including the length of petals, floral tubes and styles. Decreased anther size and increased seed size within asexual species also suggest altered allocation to male and female fitness. The observed range shifts are consistent with superior colonization of environments by asexual species following glaciation, and the observed changes in reproductive allocation support predictions made by models relating to the evolution of selfing. Our results suggest that the evolutionary consequences of asexual reproduction might be less restrictive than previously thought.
Source sparsity control of sound field reproduction using the elastic-net and the lasso minimizers.
Gauthier, P-A; Lecomte, P; Berry, A
2017-04-01
Sound field reproduction is aimed at the reconstruction of a sound pressure field in an extended area using dense loudspeaker arrays. In some circumstances, sound field reproduction is targeted at the reproduction of a sound field captured using microphone arrays. Although methods and algorithms already exist to convert microphone array recordings to loudspeaker array signals, one remaining research question is how to control the spatial sparsity in the resulting loudspeaker array signals and what would be the resulting practical advantages. Sparsity is an interesting feature for spatial audio since it can drastically reduce the number of concurrently active reproduction sources and, therefore, increase the spatial contrast of the solution at the expense of a difference between the target and reproduced sound fields. In this paper, the application of the elastic-net cost function to sound field reproduction is compared to the lasso cost function. It is shown that the elastic-net can induce solution sparsity and overcomes limitations of the lasso: The elastic-net solves the non-uniqueness of the lasso solution, induces source clustering in the sparse solution, and provides a smoother solution within the activated source clusters.
TCTEX1D4 Interactome in Human Testis: Unraveling the Function of Dynein Light Chain in Spermatozoa
Freitas, Maria João; Korrodi-Gregório, Luís; Morais-Santos, Filipa; da Cruz e Silva, Edgar
2014-01-01
Abstract Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function. PMID:24606217
Foxl2 function in ovarian development.
Uhlenhaut, Nina Henriette; Treier, Mathias
2006-07-01
Foxl2 is a forkhead transcription factor essential for proper reproductive function in females. Human patients carrying mutations in the FOXL2 gene display blepharophimosis/ptosis/epicanthus inversus syndrome (BPES), an autosomal dominant disease associated with eyelid defects and premature ovarian failure in females. Recently, animal models for BPES have been developed that in combination with a catalogue of human FOXL2 mutations provide further insight into its molecular function. Mice homozygous mutant for Foxl2 display craniofacial malformations and female infertility. The analysis of the murine phenotype has revealed that Foxl2 is required for granulosa cell function. These ovarian somatic cells surround and nourish the oocyte and play an important role in follicle formation and activation. Mutations upstream of FOXL2 in humans, not affecting the coding sequence itself, have also been shown to cause BPES, which points to the existence of a distant regulatory element necessary for proper gene expression. The same regulatory sequences may be deleted in the goat polled intersex syndrome (PIS), in which FoxL2 expression is severely reduced. Sequence comparison of FoxL2 from several vertebrate species has shown that it is a highly conserved gene involved in ovary development. Thus, the detailed understanding of Foxl2 function and regulation and the identification of its transcriptional targets may open new avenues for the treatment of female infertility in the future.
Elle, Elizabeth; Meagher, Thomas R
2000-12-01
According to Bateman's principle, male fitness in entomophilous plant species should be limited by mating opportunity, which is influenced by the size or number of flowers. We determined male-specific fitness consequences of floral phenotype in andromonoecious Solanum carolinense, examined the relationship between male and female reproductive success within plants, and evaluated the distribution of functional gender among plants. A maximum likelihood-based paternity analysis, based on multilocus allozyme phenotypes of parents and offspring from four experimental plots, was used to determine male reproductive success and its relationship to floral phenotype. Male success was enhanced by an increase in the proportion of male flowers produced but not by an increase in total flower number, even though all flowers contain male parts. Larger flower size increased male success in only one plot. Male and female reproductive success were negatively correlated, and plants varied in functional gender from completely female to completely male. This gender specialization may occur because hermaphroditic and male flowers differ in their ability to contribute to male and female success. Although sex allocation theory predicts a positive relationship between the size or number of plant parts and reproductive success, this study indicates that aspects of floral morphology that affect gender specialization should also be considered.
Feng, Nan; Song, Gaoyuan; Guan, Jiantao; Chen, Kai; Jia, Meiling; Huang, Dehua; Wu, Jiajie; Zhang, Lichao; Kong, Xiuying; Geng, Shuaifeng
2017-01-01
Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikelet initiation to floral organ differentiation. K-means clustering and stage-specific transcript identification detected dynamically expressed homeologs of important transcription regulators in spikelet and floral meristems that may be involved in spikelet initiation, floret meristem specification, and floral organ patterning, as inferred from their homologs in model plants. Small RNA transcriptome sequencing discovered key microRNAs that were differentially expressed during wheat inflorescence development alongside their target genes, suggesting that miRNA-mediated regulatory mechanisms for floral development may be conserved in cereals and Arabidopsis. Our analysis was further substantiated by the functional characterization of the ARGONAUTE1d (AGO1d) gene, which was initially expressed in stamen primordia and later in the tapetum during anther maturation. In agreement with its stage-specific expression pattern, the loss of function of the predominantly expressed B homeolog of AGO1d in a tetraploid durum wheat mutant resulted in smaller anthers with more infertile pollens than the wild type and a reduced grain number per spike. Together, our work provides a first glimpse of the gene regulatory networks in wheat inflorescence development that may be pivotal for floral and grain development, highlighting potential targets for genetic manipulation to improve future wheat yields. PMID:28515146
Silk amino acids improve physical stamina and male reproductive function of mice.
Shin, Sunhee; Yeon, Seongho; Park, Dongsun; Oh, Jiyoung; Kang, Hyomin; Kim, Sunghyun; Joo, Seong Soo; Lim, Woo-Taek; Lee, Jeong-Yong; Choi, Kyung-Chul; Kim, Ki Yon; Kim, Seung Up; Kim, Jong-Choon; Kim, Yun-Bae
2010-01-01
The effects of a silk amino acid (SAA) preparation on the physical stamina and male reproductive function of mice were investigated. Eight-week-old male ICR mice (29-31 g) were orally administered SAA (50, 160 or 500 mg/kg) for 44 d during 30-min daily swimming exercise. The mice were subjected to a weight-loaded (5% of body weight) forced swimming on the 14th, 28th and 42nd day to determine maximum swimming time, and after a 2-d recovery period (treated with SAA without swimming exercise), parameters related to fatigue and reproductive function were analyzed from blood, muscles and reproductive organs. Repeated swimming exercise increased the maximum swimming time to some extent, in spite of a marked reduction in body weight gain, and SAA further enhanced the stamina in a dose-dependent manner. Forced swimming exercises increased blood parameters of tissue injury, but depleted blood glucose and tissue glycogen, which were substantially prevented by SAA treatment. In addition, SAA significantly reduced the muscular thiobarbituric acid-reactive substances and blood corticosterone content increased by forced swimming. Swimming exercise decreased the blood testosterone level, which was recovered by SAA, leading to enhanced sperm counts. These combined results indicate that SAA not only enhances physical stamina by minimizing damage to tissues, including muscles, as well as preventing energy depletion caused by swimming stress, but also improves male reproductive function by increasing testosterone and sperm counts.
Jacobs, Emily G; Weiss, Blair; Makris, Nikos; Whitfield-Gabrieli, Sue; Buka, Stephen L; Klibanski, Anne; Goldstein, Jill M
2017-05-01
Converging preclinical and human evidence indicates that the decline in ovarian estradiol production during the menopausal transition may play a mechanistic role in the neuronal changes that occur early in the aging process. Here, we present findings from a population-based fMRI study characterizing regional and network-level differences in working memory (WM) circuitry in midlife men and women (N = 142; age range 46-53), as a function of sex and reproductive stage. Reproductive histories and hormonal evaluations were used to determine menopausal status. Participants performed a verbal WM task during fMRI scanning. Results revealed robust differences in task-evoked responses in dorsolateral prefrontal cortex and hippocampus as a function of women's reproductive stage, despite minimal variance in chronological age. Sex differences in regional activity and functional connectivity that were pronounced between men and premenopausal women were diminished for postmenopausal women. Critically, analyzing data without regard to sex or reproductive status obscured group differences in the circuit-level neural strategies associated with successful working memory performance. These findings underscore the importance of reproductive age and hormonal status, over and above chronological age, for understanding sex differences in the aging of memory circuitry. Further, these findings suggest that early changes in working memory circuitry are evident decades before the age range typically targeted in cognitive aging studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Novo, Sergi; Penon, Oriol; Barrios, Leonardo; Nogués, Carme; Santaló, Josep; Durán, Sara; Gómez-Matínez, Rodrigo; Samitier, Josep; Plaza, José Antonio; Pérez-García, Luisa; Ibáñez, Elena
2013-06-01
Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of cultured embryos? The results achieved provide a proof of concept for a direct embryo tagging system using biofunctionalized polysilicon barcodes, which could help to minimize the risk of mismatching errors (mix-ups) in human assisted reproduction technologies. Even though the occurrence of mix-ups is rare, several cases have been reported in fertility clinics around the world. Measures to prevent the risk of mix-ups in human assisted reproduction technologies are therefore required. Mouse embryos were tagged with 10 barcodes and the effectiveness of the tagging system was tested during fresh in vitro culture (n=140) and after embryo cryopreservation (n = 84). Finally, the full-term development of tagged embryos was evaluated (n =105). Mouse pronuclear embryos were individually rolled over wheat germ agglutinin-biofunctionalized polysilicon barcodes to distribute them uniformly around the ZONA PELLUCIDA surface. Embryo viability and retention of barcodes were determined during 96 h of culture. The identification of tagged embryos was performed every 24 h in an inverted microscope and without embryo manipulation to simulate an automatic reading procedure. Full-term development of the tagged embryos was assessed after their transfer to pseudo-pregnant females. To test the validity of the embryo tagging system after a cryopreservation process, tagged embryos were frozen at the 2-cell stage using a slow freezing protocol, and followed in culture for 72 h after thawing. Neither the in vitro or in vivo development of tagged embryos was adversely affected. The tagging system also proved effective during an embryo cryopreservation process. Global identification rates higher than 96 and 92% in fresh and frozen-thawed tagged embryos, respectively, were obtained when simulating an automatic barcode reading system, although these rates could be increased to 100% by simply rotating the embryos during the reading process. The direct embryo tagging developed here has exclusively been tested in mouse embryos. Its effectiveness in other species, such as the human, is currently being tested. The direct embryo tagging system developed here, once tested in human embryos, could provide fertility clinics with a novel tool to reduce the risk of mix-ups in human assisted reproduction technologies.
Impact of Marine Drugs on Animal Reproductive Processes
Silvestre, Francesco; Tosti, Elisabetta
2009-01-01
The discovery and description of bioactive substances from natural sources has been a research topic for the last 50 years. In this respect, marine animals have been used to extract many new compounds exerting different actions. Reproduction is a complex process whose main steps are the production and maturation of gametes, their activation, the fertilisation and the beginning of development. In the literature it has been shown that many substances extracted from marine organisms may have profound influence on the reproductive behaviour, function and reproductive strategies and survival of species. However, despite the central importance of reproduction and thus the maintenance of species, there are still few studies on how reproductive mechanisms are impacted by marine bioactive drugs. At present, studies in either marine and terrestrial animals have been particularly important in identifying what specific fine reproductive mechanisms are affected by marine-derived substances. In this review we describe the main steps of the biology of reproduction and the impact of substances from marine environment and organisms on the reproductive processes. PMID:20098597
Chang, Hsun-Ming; Qiao, Jie; Leung, Peter C K
2016-12-01
Initially identified for their capability to induce heterotopic bone formation, bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor β superfamily. Using cellular and molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as potent regulators of ovarian follicular function. The bi-directional communication of oocytes and the surrounding somatic cells is mandatory for normal follicle development and oocyte maturation. This review summarizes the current knowledge on the physiological role and molecular determinants of these ovarian regulatory factors within the human germline-somatic regulatory loop. The regulation of ovarian function remains poorly characterized in humans because, while the fundamental process of follicular development and oocyte maturation is highly similar across species, most information on the regulation of ovarian function is obtained from studies using rodent models. Thus, this review focuses on the studies that used human biological materials to gain knowledge about human ovarian biology and disorders and to develop strategies for preventing, diagnosing and treating these abnormalities. Relevant English-language publications describing the roles of BMPs or growth differentiation factors (GDFs) in human ovarian biology and phenotypes were comprehensively searched using PubMed and the Google Scholar database. The publications included those published since the initial identification of BMPs in the mammalian ovary in 1999 through July 2016. Studies using human biological materials have revealed the expression of BMPs, GDFs and their putative receptors as well as their molecular signaling in the fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells) of the ovarian follicles throughout follicle development. With the availability of recombinant human BMPs/GDFs and the development of immortalized human cell lines, functional studies have demonstrated the physiological role of intra-ovarian BMPs/GDFs in all aspects of ovarian functions, from follicle development to steroidogenesis, cell-cell communication, oocyte maturation, ovulation and luteal function. Furthermore, there is crosstalk between these potent ovarian regulators and the endocrine signaling system. Dysregulation or naturally occurring mutations within the BMP system may lead to several female reproductive diseases. The latest development of recombinant BMPs, synthetic BMP inhibitors, gene therapy and tools for BMP-ligand sequestration has made the BMP pathway a potential therapeutic target in certain human fertility disorders; however, further clinical trials are needed. Recent studies have indicated that GDF8 is an intra-ovarian factor that may play a novel role in regulating ovarian functions in the human ovary. Intra-ovarian BMPs/GDFs are critical regulators of folliculogenesis and human ovarian functions. Any dysregulation or variations in these ligands or their receptors may affect the related intracellular signaling and influence ovarian functions, which accounts for several reproductive pathologies and infertility. Understanding the normal and pathological roles of intra-ovarian BMPs/GDFs, especially as related to GC functions and follicular fluid levels, will inform innovative approaches to fertility regulation and improve the diagnosis and treatment of ovarian disorders. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Pereira, Joana I F; Pires, Raquel S A; Araújo-Pedrosa, Anabela F; Canavarro, Maria Cristina C S P
2018-05-01
The literature has been conceptualizing pregnancy occurrence as a multiphase event. However, the different combinations of decisions and behaviors leading to pregnancy that end in abortion remain unexplored in the literature. The aims of the study were to describe the reproductive and relational trajectories leading to pregnancy in women who decide to abort and to explore the differences in this process according to women's age [adolescents (<20 years old) vs. adults]. In this cross-sectional study, 426 women [246 adolescents (58.4%), 177 adults (41.6%)] who chose abortion were recruited. Data on reproductive and relational characteristics were collected through a self-report questionnaire at 16 healthcare services that provide abortion. The variables were introduced in trajectories according to the criterion of temporal sequence between them: age at first sexual intercourse, relationship type, pregnancy planning, use of contraception, identification of contraceptive failure, and occurrence of pregnancy. Seven trajectories leading to pregnancy were identified. The most frequent trajectory (30.8%) included women who 1) were involved in a long-term romantic relationship, 2) did not plan the pregnancy, 3) were using contraception, and 4) did not identify the contraceptive failure that led to pregnancy. Although this was the most frequent trajectory for both age groups, the remaining trajectories showed a different distribution. Compared to adolescents, adult women's trajectories more frequently included casual relationships with non-use of contraception, or contraceptive use with no contraceptive failure identification. Our study highlights the need to recognize the multiplicity of reproductive and relational trajectories leading to pregnancies that end in abortion and their specificities according to women's age. These findings have important implications for abortion counselling and for the development of age-appropriate guidelines for preventive interventions, by drawing attention to prioritization of different contexts of intervention according women's age. Copyright © 2018 Elsevier B.V. All rights reserved.
Towards an ontogenetic understanding of inflorescence diversity
Claßen-Bockhoff, Regine; Bull-Hereñu, Kester
2013-01-01
Backgrounds and Aims Conceptual and terminological conflicts in inflorescence morphology indicate a lack of understanding of the phenotypic diversity of inflorescences. In this study, an ontogeny-based inflorescence concept is presented considering different meristem types and developmental pathways. By going back to the ontogenetic origin, diversity is reduced to a limited number of types and terms. Methods Species from 105 genera in 52 angiosperm families are investigated to identify their specific reproductive meristems and developmental pathways. Based on these studies, long-term experience with inflorescences and literature research, a conceptual framework for the understanding of inflorescences is presented. Key Results Ontogeny reveals that reproductive systems traditionally called inflorescences fall into three groups, i.e. ‘flowering shoot systems’ (FSS), ‘inflorescences’ sensu stricto and ‘floral units’ (FUs). Our concept is, first, based on the identification of reproductive meristem position and developmental potential. The FSS, defined as a seasonal growth unit, is used as a reference framework. As the FSS is a leafy shoot system bearing reproductive units, foliage and flowering sequence play an important role. Second, the identification of two different flower-producing meristems is essential. While ‘inflorescence meristems’ (IMs) share acropetal primordia production with vegetative meristems, ‘floral unit meristems’ (FUMs) resemble flower meristems in being indeterminate. IMs produce the basic inflorescence types, i.e. compound and simple racemes, panicles and botryoids. FUMs give rise to dense, often flower-like units (e.g. heads). They occur solitarily at the FSS or occupy flower positions in inflorescences, rendering the latter thyrses in the case of cymose branching. Conclusions The ontogenetic concept differs from all existing inflorescence concepts in being based on meristems and developmental processes. It includes clear terms and allows homology statements. Transitional forms are an explicit part of the concept, illustrating the ontogenetic potential for character transformation in evolution. PMID:23445936
Williams, N I; Caston-Balderrama, A L; Helmreich, D L; Parfitt, D B; Nosbisch, C; Cameron, J L
2001-06-01
Cross-sectional studies of exercise-induced reproductive dysfunction have documented a high proportion of menstrual cycle disturbances in women involved in strenuous exercise training. However, longitudinal studies have been needed to examine individual susceptibility to exercise-induced reproductive dysfunction and to elucidate the progression of changes in reproductive function that occur with strenuous exercise training. Using the female cynomolgus monkey (Macaca fascicularis), we documented changes in menstrual cyclicity and patterns of LH, FSH, estradiol, and progesterone secretion as the animals developed exercise-induced amenorrhea. As monkeys gradually increased running to 12.3 +/- 0.9 km/day, body weight did not change significantly although food intake remained constant. The time spent training until amenorrhea developed varied widely among animals (7-24 months; mean = 14.3 +/- 2.2 months) and was not correlated with initial body weight, training distance, or food intake. Consistent changes in function of the reproductive axis occurred abruptly, one to two menstrual cycles before the development of amenorrhea. These included significant declines in plasma reproductive hormone concentrations, an increase in follicular phase length, and a decrease in luteal phase progesterone secretion. These data document a high level of interindividual variability in the development of exercise-induced reproductive dysfunction, delineate the progression of changes in reproductive hormone secretion that occur with exercise training, and illustrate an abrupt transition from normal cyclicity to an amenorrheic state in exercising individuals, that is not necessarily associated with weight loss.
Singh, N K; Eliash, N; Stein, I; Kamer, Y; Ilia, Z; Rafaeli, A; Soroker, V
2016-04-01
The ectoparasitic mite Varroa destructor is one of the major threats to apiculture. Using a behavioural choice bioassay, we determined that phoretic mites were more successful in reaching a bee than reproductive mites, suggesting an energy trade-off between reproduction and host selection. We used both chemo-ecological and molecular strategies to identify the regulation of the olfactory machinery of Varroa and its association with reproduction. We focused on transcription regulation. Using primers designed to the conserved DNA binding region of transcription factors, we identified a gene transcript in V. destructor homologous to the pheromone receptor transcription factor (PRTF) gene of Pediculus humanus corporis. Quantitative PCR (qPCR) revealed that this PRTF-like gene transcript is expressed in the forelegs at higher levels than in the body devoid of forelegs. Subsequent comparative qPCR analysis showed that transcript expression was significantly higher in the phoretic as compared to the reproductive stage. Electrophysiological and behavioural studies revealed a reduction in the sensitivity of PRTF RNA interference-silenced mites to bee headspace, consistent with a reduction in the mites' ability to reach a host. In addition, vitellogenin expression was stimulated in PRTF-silenced mites to similar levels as found in reproductive mites. These data shed light upon the regulatory mechanism of host chemosensing in V. destructor. © 2016 The Royal Entomological Society.
Wildhaber, M.L.; Papoulias, D.M.; DeLonay, A.J.; Tillitt, D.E.; Bryan, J.L.; Annis, M.L.; Allert, J.A.
2005-01-01
Monthly sampling of shovelnose sturgeon Scaphirhynchus platorynchus, a biological surrogate for the endangered pallid sturgeon Scaphirhynchus albus, was conducted to develop a multiseasonal profile of reproductive stages. Data collected included histological characteristics of gonads from wild caught fish and laboratory and field ultrasonic and endoscopic images. These data were used to compare effectiveness of ultrasonic and endoscopic techniques at identifying gender of adult shovelnose sturgeon at different reproductive stages. The least invasive method (i.e. ultrasound) was least effective while the most invasive (i.e. endoscope through an abdominal incision) was the most effective at identifying shovelnose sturgeon gender. In most cases, success rate for identifying males was greater than females, with success at identifying both genders greater in more advanced reproductive stages. Concomitantly, for most months average reproductive stage was more advanced for males than females. April and May were the months with the most advanced reproductive stage, and were the months when ultrasound was most effective. Methods were also applied in the Upper Missouri River to validate their use on pallid sturgeon Scaphirhynchus albus. Ultrasound was successful at identifying pallid sturgeon gender, however, endoscopic examination through the urogenital duct was only successful at identifying pallid sturgeon gender when the urogenital duct was not opaque. ?? 2005 The Fisheries Society of the British Isles.
Du, Wenxiao; Zeng, Fanrong
2016-12-14
Adults of the lady beetle species Harmonia axyridis (Pallas) are bred artificially en masse for classic biological control, which requires egg-laying by the H. axyridis ovary. Development-related genes may impact the growth of the H. axyridis adult ovary but have not been reported. Here, we used integrative time-series RNA-seq analysis of the ovary in H. axyridis adults to detect development-related genes. A total of 28,558 unigenes were functionally annotated using seven types of databases to obtain an annotated unigene database for ovaries in H. axyridis adults. We also analysed differentially expressed genes (DEGs) between samples. Based on a combination of the results of this bioinformatics analysis with literature reports and gene expression level changes in four different stages, we focused on the development of oocyte reproductive stem cell and yolk formation process and identified 26 genes with high similarity to development-related genes. 20 DEGs were randomly chosen for quantitative real-time PCR (qRT-PCR) to validate the accuracy of the RNA-seq results. This study establishes a robust pipeline for the discovery of key genes using high-throughput sequencing and the identification of a class of development-related genes for characterization.
Obstetric violence: a new framework for identifying challenges to maternal healthcare in Argentina.
Vacaflor, Carlos Herrera
2016-05-01
Argentina has recognized women's right to not be subjected to obstetric violence, the violence exercised by health personnel on the body and reproductive processes of pregnant women, as expressed through dehumanizing treatment, medicalization abuse, and the conversion of natural processes of reproduction into pathological ones. Argentina's legislative decision to frame this abuse and mistreatment of women under the rubric of gender-based violence permits the identification of failures in both the healthcare system and women's participation in society. This article examines how applying the Violence Against Women framework to address issues of abuse and mistreatment of women during maternal health care provides a beneficial approach for analyzing such embedded structural problems from public health, human rights, and ethics perspectives. The framework of Violence Against Women seeks to transform existing harmful cultural practices, not only through the protection of women's reproductive autonomy, but also through the empowerment of women's participation in society. Copyright © 2016 Elsevier Inc. All rights reserved.
EFFECT OF GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS), BROMOCHLOROACETIC ACID (BCA) AND MOLINATE ON REPRODUCTIVE FUNCTION IN CD-1 MALE MICE. D.K. Tarka1,2 , G.R. Klinefelter2, J.C. Rockett2, J.D. Suarez2, N.L. Roberts2 and J.M. Rogers1,2. 1 University of North Carol...
Leslie, P W; Campbell, K L; Little, M A; Kigondu, C S
1996-02-01
The frequently reported observation that nomadic populations have lower fertility than their settled counterparts is often attributed to what are perceived as harsh, stressful conditions under which the nomads live. But the consequences of the hypothesized stresses for the reproductive biology or demography of these populations have been documented only a little. Traditionally, the Turkana of northwest Kenya are nomadic herders, but increasing numbers have settled on agricultural development schemes. We used an array of hormonal assays along with anthropometric indexes of nutritional status and interviews covering reproductive history, recent menstruation, diet, and health to compare reproductive function in nomadic and settled Turkana women. First morning urine samples were collected for three consecutive days during a series of surveys. Human choriogonadotropin (hCG; a marker for pregnancy), luteinizing hormone (LH; an indicator of ovulation), and pregnanediol glucuronide (PdG; an indicator of postovulatory luteal function) were assessed in the field with commercially available dipstick enzyme immunoassays. These assays along with the interview data allowed us to determine the reproductive status (e.g., pregnant or cycling, and if cycling, which phase of the ovarian cycle) of 166 nomadic and 194 settled Turkana women. The cross-sectional classifications allowed inferences of conception rates and normality of ovarian function. Follow-up surveys provided rates of pregnancy loss. Compared with the settled women, the nomadic women exhibited lower pregnancy rates and cycling nomadic women were less likely to show evidence of ovulation or luteal function. These results suggest that reproductive function of the nomadic women is diminished relative to the settled women. However, the settled women experienced a much higher rate of pregnancy loss, which may mean that their effective fecundability is in fact lower than that of the nomadic women. This study is the first to apply such a wide range of hormonal assays in the field. It demonstrates that field-based assays are feasible and robust and can play an important role in epidemiological and biodemographic studies, even in remote locations under conditions that would ordinarily be considered incompatible with on-site laboratory analysis.
microRNA in Human Reproduction.
Eisenberg, Iris; Kotaja, Noora; Goldman-Wohl, Debra; Imbar, Tal
2015-01-01
microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.
Aging and male reproductive function: a mitochondrial perspective.
Amaral, Sandra; Amaral, Alexandra; Ramalho-Santos, Joao
2013-01-01
Researching the effects of aging in the male reproductive system is not trivial. Not only are multiple changes at molecular, cellular and endocrine levels involved, but any findings must be discussed with variable individual characteristics, as well as with lifestyle and environmental factors. Age-related changes in the reproductive system include any aspect of reproductive function, from deregulation of the hypothalamic-pituitary-gonadal axis and of local auto/paracrine interactions, to effects on testicular stem cells, defects in testicular architecture and spermatogenesis, or sperm with decreased functionality. Several theories place mitochondria at the hub of cellular events related to aging, namely regarding the accumulation of oxidative damage to cells and tissues, a process in which these organelles play a prominent role, although alternative theories have also emerged. However, oxidative stress is not the only process involved in mitochondrial-related aging; mitochondrial energy metabolism, changes in mitochondrial DNA or in mitochondrial-dependent testosterone production are also important. Crucially, all these issues are likely interdependent. We will review evidence that suggests that mitochondria constitute a common link between aging and fertility loss.
Bennell, K L; Brukner, P D; Malcolm, S A
1996-09-01
It is apparent that bone density in male athletes can be reduced without a concomitant decrease in testosterone, suggesting that bone density and testosterone concentrations in the normal range are not closely related in male athletes. Further research is necessary to monitor concurrent changes in bone density and testosterone over a period of time in exercising males. In any case, the effect of exercise on the male reproductive system does not appear as extreme as that which can occur in female athletes, and any impact on bone density is not nearly as evident. These results imply that factors apart from testosterone concentrations must be responsible for the observed osteopenia in some male athletes. Many factors have the potential to adversely affect bone density, independently of alterations in reproductive function. These include low calcium intake, energy deficit, weight loss, psychological stress, and low body fat, all of which may be associated with intense endurance training. Future research investigating skeletal health in male athletes should include a thorough assessment of reproductive function in addition to these other factors.
Linton, Danielle M; Macdonald, David W
2018-04-10
Climate is known to influence breeding phenology and reproductive success in temperate-zone bats, but long-term population level studies and interspecific comparisons are rare. Investigating the extent to which intrinsic (i.e. age), and extrinsic (i.e. spring weather conditions), factors influence such key demographic parameters as the proportion of females becoming pregnant, or completing lactation, each breeding season, is vital to understanding of bat population ecology and life-history traits. Using data from 12 breeding seasons (2006-2017), encompassing the reproductive histories of 623 Myotis daubentonii and 436 Myotis nattereri adult females, we compare rates of recruitment to the breeding population and show that these species differ in their relative sensitivity to environmental conditions and climatic variation, affecting annual reproductive success at the population level. We demonstrate that (1) spring weather conditions influence breeding phenology, with warm, dry and calm conditions leading to earlier parturition dates and advanced juvenile development, whilst cold, wet and windy weather delays birth timing and juvenile growth; (2) reproductive rates in first-year females are influenced by spring weather conditions in that breeding season and in the preceding breeding season when each cohort was born. Pregnancy and lactation rates were both higher when favourable spring foraging conditions were more prevalent; (3) reproductive success increases with age in both species, but at different rates; (4) reproductive rates were consistently higher, and showed less interannual variation, in second-year and older M. daubentonii (mean 91.55% ± 0.05 SD) than M. nattereri (mean 72.74% ± 0.15 SD); (5) estimates of reproductive success at the population level were highly correlated with the size of the juvenile cohort recorded each breeding season. Improving understanding of the influence of environmental conditions, especially extreme climatic fluctuations, and the identification of critical periods (i.e. spring for reproductive female bats in temperate zones), which have disproportionate and lasting impacts on breeding phenology and reproductive success at a population level, is critical for improving predictions of the likely impact of climate change on bat populations. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Current knowledge and future challenges in camelid reproduction.
Tibary, A; Anouassi, A; Sghiri, A; Khatir, H
2007-01-01
Reproductive biology research on camelids offers some interesting peculiarities and challenges to scientists and animal production specialists. The objective of this paper is to review camelid reproduction, advances in reproductive physiology and reproductive biotechnologies in camelids and discuss some areas for further research. In the female, the focus has been on understanding follicular dynamics. This has allowed development of synchronization and superovulation strategies to support embryo transfer technologies which are now commonly used in camels. Some advances have been achieved in preservation of embryos by vitrification. Fertilization, early embryo development and embryo signaling for maternal recognition of pregnancy are still not fully understood. New information on the interaction of the developing embryo and the endometrium may shed some light on this signaling as well as the mechanism of prevention of luteolysis. The presence of a seminal ovulation-inducing factor (OIF) was confirmed in llamas and alpacas. Chronology of oocytes maturation has been described. In vitro production of embryos has been achieved resulting in successful pregnancies and births in the dromedary. These techniques offer a new tool for the production and study of interspecies/cross-species embryos and their effect on pregnancy. Male reproductive function remains poorly studied. Semen preservation and artificial insemination still present many challenges and are not used in production at the moment. The involvement of climatic and nutritional conditions as well as the role of leptin in the regulation of reproductive function need to be evaluated.
FT Duplication Coordinates Reproductive and Vegetative Growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Chuan-Yu; Adams, Joshua P.; Kim, Hyejin
2011-01-01
Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles ofmore » vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.« less
[Impact of cell phone radiation on male reproduction].
Kang, Ning; Shang, Xue-Jun; Huang, Yu-Feng
2010-11-01
With the popularized use cell phones, more and more concern has been aroused over the effects of their radiation on human health, particularly on male reproduction. Cell phone radiation may cause structural and functional injuries of the testis, alteration of semen parameters, reduction of epididymal sperm concentration and decline of male fertility. This article presents an overview on the impact of cell phone radiation on male reproduction.
de Moura, Stéfanie Menezes; Artico, Sinara; Lima, Cássio; Nardeli, Sarah Muniz; Berbel, Ana; Oliveira-Neto, Osmundo Brilhante; Grossi-de-Sá, Maria Fátima; Ferrándiz, Cristina; Madueño, Francisco; Alves-Ferreira, Márcio
2017-03-01
Expression analysis of the AG -subfamily members from G. hirsutum during flower and fruit development. Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several studies have reported the identification and expression of the transcription factor family MADS-box members in cotton ovules and fibers; however, their roles are still elusive during the reproductive development in cotton. In this study, we evaluated the expression profiles of five MADS-box genes (GhMADS3, GhMADS4, GhMADS5, GhMADS6 and GhMADS7) belonging to the AGAMOUS-subfamily in Gossypium hirsutum. Phylogenetic and protein sequence analyses were performed using diploid (G. arboreum, G. raimondii) and tetraploid (G. barbadense, G. hirsutum) cotton genomes, as well as the AG-subfamily members from Arabidopsis thaliana, Petunia hybrida and Antirrhinum majus. qPCR analysis showed that the AG-subfamily genes had high expression during flower and fruit development in G. hirsutum. In situ hybridization analysis also substantiates the involvement of AG-subfamily members on reproductive tissues of G. hirsutum, including ovule and ovary. The effect of plant hormones on AG-subfamily genes expression was verified in cotton fruits treated with gibberellin, auxin and brassinosteroid. All the genes were significantly regulated in response to auxin, whereas only GhMADS3, GhMADS4 and GhMADS7 genes were also regulated by brassinosteroid treatment. In addition, we have investigated the GhMADS3 and GhMADS4 overexpression effects in Arabidopsis plants. Interestingly, the transgenic plants from both cotton AG-like genes in Arabidopsis significantly altered the fruit size compared to the control plants. This alteration suggests that cotton AG-like genes might act regulating fruit formation. Our results demonstrate that members of the AG-subfamily in G. hirsutum present a conserved expression profile during flower development, but also demonstrate their expression during fruit development and in response to phytohormones.
Chapter 22: Female Reproductive Toxicology
The female reproductive system provides multiple targets for environmental toxicants with the hypothalamic-pituitary-ovarian axis. Moreover, the functional impact of a chemical can differ, depending on the species involved and the parameters of exposure. While cross-species compa...
Involvement of galectin-1 in reproduction: past, present and future.
Barrientos, Gabriela; Freitag, Nancy; Tirado-González, Irene; Unverdorben, Laura; Jeschke, Udo; Thijssen, Victor L J L; Blois, Sandra M
2014-01-01
After recognition of its pivotal contribution to fetomaternal tolerance, the study of galectin-1 (gal-1) functions in the context of pregnancy became an attractive topic in reproductive medicine. Despite considerable advances in the understanding of the immuno- and growth-regulatory properties of gal-1 at the fetal-maternal interface, many functional aspects of this lectin in reproduction are only emerging. The published literature was searched using Pubmed focusing on gal-1 signalling and functional properties at the maternal-fetal interface, including data on its implication in pregnancy disorders and malignancies of the female reproductive system. Papers discussing animal and human studies were included. This review provides an overview of gal-1 functions during pregnancy, such as modulation of maternal immune responses and roles in embryo implantation and placentation. We also emphasize the role of gal-1 in key regulatory processes, including trophoblast migration, invasion, syncytium formation and expression of non-classical MHC class I molecules (HLA-G). In addition, we argue in favour of gal-1 pro-angiogenic properties, as observed in tumourigenesis and other pathological settings, and its implication in the angiogenesis process associated with early gestation. The involvement of gal-1 in the regulation of different processes during the establishment, development and maintenance of pregnancy could be described as unique. Gal-1 has emerged as an important lectin with major functions in pregnancy.
Male reprotoxicity and endocrine disruption
Campion, Sarah; Catlin, Natasha; Heger, Nicholas; McDonnell, Elizabeth V.; Pacheco, Sara E.; Saffarini, Camelia; Sandrof, Moses A.; Boekelheide, Kim
2013-01-01
Mammalian reproductive tract development is a tightly regulated process that can be disrupted following exposure to drugs, toxicants, endocrine disrupting chemicals or other compounds via alterations to gene and protein expression or epigenetic regulation. Indeed, the impacts of developmental exposure to certain toxicants may not be fully realized until puberty or adulthood when the reproductive tract becomes sexually mature and altered functionality is manifested. Exposures that occur later in life, once development is complete, can also disrupt the intricate hormonal and paracrine interactions responsible for adult functions, such as spermatogenesis. In this chapter, the biology and toxicology of the male reproductive tract is explored, proceeding through the various life stages including in utero development, puberty, adulthood and senescence. Special attention is given to the discussion of endocrine disrupting chemicals, chemical mixtures, low dose effects, transgenerational effects, and potential exposure-related causes of male reproductive tract cancers. PMID:22945574
Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide
Salguero-Gómez, Roberto; Jones, Owen R.; Jongejans, Eelke; Blomberg, Simon P.; Hodgson, David J.; Mbeau-Ache, Cyril; Zuidema, Pieter A.; de Kroon, Hans; Buckley, Yvonne M.
2016-01-01
The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast–slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast–slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments. PMID:26699477
Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide.
Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke; Blomberg, Simon P; Hodgson, David J; Mbeau-Ache, Cyril; Zuidema, Pieter A; de Kroon, Hans; Buckley, Yvonne M
2016-01-05
The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.
The Rate of Evolution of Postmating-Prezygotic Reproductive Isolation in Drosophila
Turissini, David A; McGirr, Joseph A; Patel, Sonali S; David, Jean R; Matute, Daniel R
2018-01-01
Abstract Reproductive isolation is an intrinsic aspect of species formation. For that reason, the identification of the precise isolating traits, and the rates at which they evolve, is crucial to understanding how species originate and persist. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has studied the rates of evolution of postmating-prezygotic (PMPZ) barriers. We measured the magnitude of two barriers to gene flow that act after mating occurs but before fertilization. We also measured the magnitude of a premating barrier (female mating rate in nonchoice experiments) and two postzygotic barriers (hybrid inviability and hybrid sterility) for all pairwise crosses of all nine known extant species within the melanogaster subgroup. Our results indicate that PMPZ isolation evolves faster than hybrid inviability but slower than premating isolation. Next, we partition postzygotic isolation into different components and find that, as expected, hybrid sterility evolves faster than hybrid inviability. These results lend support for the hypothesis that, in Drosophila, reproductive isolation mechanisms (RIMs) that act early in reproduction (or in development) tend to evolve faster than those that act later in the reproductive cycle. Finally, we tested whether there was evidence for reinforcing selection at any RIM. We found no evidence for generalized evolution of reproductive isolation via reinforcement which indicates that there is no pervasive evidence of this evolutionary process. Our results indicate that PMPZ RIMs might have important evolutionary consequences in initiating speciation and in the persistence of new species. PMID:29048573
Bombard, Yvonne; Miller, Fiona A; Hayeems, Robin Z; Wilson, Brenda J; Carroll, June C; Paynter, Martha; Little, Julian; Allanson, Judith; Bytautas, Jessica P; Chakraborty, Pranesh
2012-01-01
Newborn screening (NBS) programs aim to identify affected infants before the onset of treatable disorders. Historically, benefits to the family and society were considered secondary to this clinical benefit; yet, recent discourse defending expanded NBS has argued that screening can in part be justified by secondary benefits, such as learning reproductive risk information to support family planning (‘reproductive benefit'). Despite increased attention to these secondary benefits of NBS, stakeholders' values remain unknown. We report a mixed methods study that included an examination of providers' views toward the pursuit of reproductive risk information through NBS, using sickle cell disorder carrier status as an example. We surveyed a stratified random sample of 1615 providers in Ontario, and interviewed 42 providers across 7 disciplines. A majority endorsed the identification of reproductive risks as a goal of NBS (74–77%). Providers' dominant rationale was that knowledge of carrier status is an important and inherent benefit of NBS as it allows people to make reproductive choices, which is consistent with the goals of disease prevention. However, some challenged its appropriateness, questioning its logic, timing and impact on disease prevention. Others were sensitive to intruding on individuals' choices or children's independent rights. While the dominant view is consistent with discourse defending expanded NBS, it deviates from the traditional screening principles that underpin most public health interventions. Broader discussion of the balance between benefits to screened individuals and those to families and societies, in the context of public health programs, is needed. PMID:22071888
Women's Sexual Health and Reproductive Function After SCI.
Courtois, Frédérique; Alexander, Marcalee; McLain, Amie B Jackson
2017-01-01
Sexual function and to a lesser extent reproduction are often disrupted in women with spinal cord injuries (SCI), who must be educated to better understand their sexual and reproductive health. Women with SCI are sexually active; they can use psychogenic or reflexogenic stimulation to obtain sexual pleasure and orgasm. Treatment should consider a holistic approach using autonomic standards to describe remaining sexual function and to assess both genital function and psychosocial factors. Assessment of genital function should include thoracolumbar dermatomes, vulvar sensitivity (touch, pressure, vibration), and sacral reflexes. Self-exploration should include not only clitoral stimulation, but also stimulation of the vagina (G spot), cervix, and nipples conveyed by different innervation sources. Treatments may consider PDE5 inhibitors and flibanserin on an individual basis, and secondary consequences of SCI should address concerns with spasticity, pain, incontinence, and side effects of medications. Psychosocial issues must be addressed as possible contributors to sexual dysfunctions (eg, lower self-esteem, past sexual history, depression, dating habits). Pregnancy is possible for women with SCI; younger age at the time of injury and at the time of pregnancy being significant predictors of successful pregnancy, along with marital status, motor score, mobility, and occupational scores. Pregnancy may decrease the level of functioning (eg, self-care, ambulation, upper-extremity tasks), may involve complications (eg, decubitus ulcers, weight gain, urological complications), and must be monitored for postural hypotension and autonomic dysreflexia. Taking into consideration the physical and psychosocial determinants of sexuality and childbearing allows women with SCI to achieve positive sexual and reproductive health.
USDA-ARS?s Scientific Manuscript database
To better understand the olfactory mechanism in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), one of the most serious insect pests of rice in Asia, we have established six partial transcriptomes from antennae, tarsus, and reproductive organs of male and female adults. A total of 102 genes...
Mammals of the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cothran, E.G.; Smith, M.H.; Wolff, J.O.
1991-12-31
This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification.more » A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ``The Forbearer Census`` and ``White-tailed Deer Studies``. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master`s theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.« less
Mammals of the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cothran, E.G.; Smith, M.H.; Wolff, J.O.
1991-01-01
This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification.more » A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, The Forbearer Census'' and White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.« less
Proteomic Analysis of Pachytene Spermatocytes of Sterile Hybrid Male Mice.
Wang, Lu; Guo, Yueshuai; Liu, Wenjing; Zhao, Weidong; Song, Gendi; Zhou, Tao; Huang, Hefeng; Guo, Xuejiang; Sun, Fei
2016-09-01
Incompatibilities in interspecific hybrids, such as reduced hybrid fertility and lethality, are common features resulting from reproductive isolation that lead to speciation. Subspecies crosses of house mice produce offspring in which one sex is infertile or absent, yet the molecular mechanisms of hybrid sterility are poorly understood. In this study, we observed extensive asynapsis of chromosomes and disturbance of the sex body in pachytene spermatocytes of sterile F1 males (PWK/Ph female × C57BL/6J male). We report the high-confidence identification of 4005 proteins in the pachytene spermatocytes of fertile F1 males (PWK/Ph male × C57BL/6J female) and sterile F1 males (PWK/Ph female × C57BL/6J male), of which 215 were upregulated and 381 were downregulated. Bioinformatics analysis of the proteome led to the identification of 43 and 59 proteins known to be essential for male meiosis and spermatogenesis in mice, respectively. Characterization of the proteome of pachytene spermatocytes associated with hybrid male sterility provides an inventory of proteins that is useful for understanding meiosis and the mechanisms of hybrid male infertility. © 2016 by the Society for the Study of Reproduction, Inc.
Stress and the HPA Axis: Balancing Homeostasis and Fertility
Whirledge, Shannon
2017-01-01
An organism’s reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic–pituitary–adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development. PMID:29064426
A single gene causes both male sterility and segregation distortion in Drosophila hybrids.
Phadnis, Nitin; Orr, H Allen
2009-01-16
A central goal of evolutionary biology is to identify the genes and evolutionary forces that cause speciation, the emergence of reproductive isolation between populations. Despite the identification of several genes that cause hybrid sterility or inviability-many of which have evolved rapidly under positive Darwinian selection-little is known about the ecological or genomic forces that drive the evolution of postzygotic isolation. Here, we show that the same gene, Overdrive, causes both male sterility and segregation distortion in F1 hybrids between the Bogota and U.S. subspecies of Drosophila pseudoobscura. This segregation distorter gene is essential for hybrid sterility, a strong reproductive barrier between these young taxa. Our results suggest that genetic conflict may be an important evolutionary force in speciation.
Environmental factors, epigenetics, and developmental origin of reproductive disorders.
Ho, Shuk-Mei; Cheong, Ana; Adgent, Margaret A; Veevers, Jennifer; Suen, Alisa A; Tam, Neville N C; Leung, Yuet-Kin; Jefferson, Wendy N; Williams, Carmen J
2017-03-01
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of "Developmental Origins of Health and Disease" (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p'-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Zieba, D A; Szczesna, M; Klocek-Gorka, B; Williams, G L
2008-12-01
Photoperiod and nutrition both exert major influences on reproduction. Thus, it seems axiomatic that seasonal rhythms in ovulation are influenced by nutrition. In this context, leptin is one of the most important hormonal signals involved in the control of energy homeostasis, feeding behavior and reproductive function in mammals. However, the number of published investigations establishing a functional interaction between leptin and photoperiodism in seasonal breeders is limited. In common with most seasonally-breeding mammals, sheep exhibit robust circannual cycles in body weight and reproduction, which are driven mainly by changes in day-length. Recently, attention has focused on the role of leptin in this process, particularly in its roles as a major peripheral signal controlling appetite, melatonin and prolactin secretion. The purpose herein is to review current concepts in the overall biology of leptin, to summarize its influence on the hypothalamic-pituitary axis, and to highlight recent developments in our understanding of its interaction with season in regulating appetite, body weight and reproduction in seasonally-breeding mammals. The latter observations may be important in delineating states of leptin resistance and obesity in humans.
Brain serotonin, psychoactive drugs, and effects on reproduction.
Ayala, María Elena
2009-12-01
Serotonin, a biogenic amine, is present in significant amounts in many structures of the CNS. It is involved in regulation of a wide variety of physiological functions, such as sensory and motor functions, memory, mood, and secretion of hormones including reproductive hormones. It has also been implicated in the etiology of a range of psychiatric disorders such as anxiety, depression, and eating disorders, along with other conditions such as obesity and migraine. While some drugs that affect serotonin, such as fenfluramine and fluoxetine, have been successfully used in treatment of a range of psychiatric diseases, others, such as the amphetamine analogues MDMA and METH, are potent psychostimulant drugs of abuse. Alterations in serotonergic neurons caused by many of these drugs are well characterized; however, little is known about the reproductive consequences of such alterations. This review evaluates the effects of drugs such as MDMA, pCA, fenfluramine, and fluoxetine on serotonergic transmission in the brain, examines the relationships of these drug effects with the neuroendocrine mechanisms modulating reproductive events such as gonadotropin secretion, ovulation, spermatogenesis, and sexual behavior in animal models, and discusses possible reproductive implications of these drugs in humans.
Environmental Factors, Epigenetics, and Developmental Origin of Reproductive Disorders
Ho, Shuk-Mei; Cheong, Ana; Adgent, Margaret A.; Veevers, Jennifer; Suen, Alisa A.; Tam, Neville N.C.; Leung, Yuet-Kin; Jefferson, Wendy N.; Williams, Carmen J.
2016-01-01
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of “Developmental Origins of Health and Disease” (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p′-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects. PMID:27421580
Maffucci, Jacqueline A.; Gore, Andrea C.
2009-01-01
The hypothalamic-pituitary-gonadal (HPG) axis undergoes a number of changes throughout the reproductive life cycle that are responsible for the development, puberty, adulthood, and senescence of reproductive systems. This natural progression is dictated by the neural network controlling the hypothalamus including the cells that synthesize and release gonadotropin-releasing hormone (GnRH) and their regulatory neurotransmitters. Glutamate and GABA are the primary excitatory and inhibitory neurotransmitters in the central nervous system, and as such contribute a great deal to modulating this axis throughout the lifetime via their actions on receptors in the hypothalamus, both directly on GnRH neurons as well as indirectly though other hypothalamic neural networks. Interactions among GnRH neurons, glutamate, and GABA, including the regulation of GnRH gene and protein expression, hormone release, and modulation by estrogen, are critical to age-appropriate changes in reproductive function. Here, we present evidence for the modulation of GnRH neurosecretory cells by the balance of glutamate and GABA in the hypothalamus, and the functional consequences of these interactions on reproductive physiology across the life cycle. PMID:19349036
The mare model for follicular maturation and reproductive aging in the woman.
Carnevale, E M
2008-01-01
Reproductive aging and assisted reproduction are becoming progressively more relevant in human medicine. Research with human subjects is limited in many aspects, and consequently animal models may have considerable utility. Such models have provided insight into follicular function, oocyte maturation, and reproductive aging. However, models are often selected based on factors other than physiological or functional similarities. Although the mare has received limited attention as a model for reproduction in women, comparisons between these species indicate that the mare has many attributes of a good model. As the mare ages, cyclic and hormonal changes parallel those of older women. The initial sign of reproductive aging in both species is a shortening of the reproductive cycle with elevated concentrations of FSH. Subsequently, cycles become longer with intermittent ovulations and elevated concentrations of FSH and LH. Reproduction ceases with failure of follicular growth and elevated gonadotropins, apparently because of ovarian failure. In the older woman and mare, oocytes have been maintained in meiotic arrest for decades -- approximately four to five for the woman and two to three for the mare; in both species, reduced oocyte quality is the end factor identified in age-associated infertility. After induction of oocyte maturation in vivo, the timeline to ovulation is the same for the mare and woman, suggesting a comparable sequence of events. The mare's anatomy, long follicular phase and single dominant follicle provide a foundation for studies in oocyte and follicular development. The aim of this review is to evaluate the mare as an animal model to study age-associated changes in reproduction and to improve our understanding of oocyte and follicular maturation in vivo.
Prokineticins in central and peripheral control of human reproduction.
Traboulsi, Wael; Brouillet, Sophie; Sergent, Frederic; Boufettal, Houssine; Samouh, Naima; Aboussaouira, Touria; Hoffmann, Pascale; Feige, Jean Jacques; Benharouga, Mohamed; Alfaidy, Nadia
2015-11-01
Prokineticin 1 (PROK1) and (PROK2), are two closely related proteins that were identified as the mammalian homologs of their two amphibian homologs, mamba intestinal toxin (MIT-1) and Bv8. PROKs activate two G-protein linked receptors (prokineticin receptor 1 and 2, PROKR1 and PROKR2). Both PROK1 and PROK2 have been found to regulate a stunning array of biological functions. In particular, PROKs stimulate gastrointestinal motility, thus accounting for their family name "prokineticins". PROK1 acts as a potent angiogenic mitogen, thus earning its other name, endocrine gland-derived vascular endothelial factor. In contrast, PROK2 signaling pathway has been shown to be a critical regulator of olfactory bulb morphogenesis and sexual maturation. During the last decade, strong evidences established the key roles of prokineticins in the control of human central and peripheral reproductive processes. PROKs act as main regulators of the physiological functions of the ovary, uterus, placenta, and testis, with marked dysfunctions in various pathological conditions such as recurrent pregnancy loss, and preeclampsia. PROKs have also been associated to the tumor development of some of these organs. In the central system, prokineticins control the migration of GnRH neurons, a key process that controls reproductive functions. Importantly, mutations in PROK2 and PROKR2 are associated to the development of Kallmann syndrome, with direct consequences on the reproductive system. This review describes the finely tuned actions of prokineticins in the control of the central and peripheral reproductive processes. Also, it discusses future research directions for the use of these cytokines as diagnostic markers for several reproductive diseases.
Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T
2016-08-01
Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.
Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.
Greco, Tiffany; Hovda, David A; Prins, Mayumi L
2015-02-01
Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc.
Why are the seed cones of conifers so diverse at pollination?
Losada, Juan M; Leslie, Andrew B
2018-06-08
Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.
Fletcher, Quinn E; Dantzer, Ben; Boonstra, Rudy
2015-12-01
Activation of the hypothalamic-pituitary-adrenal (HPA) axis culminates in the release of glucocorticoids (henceforth CORT), which have wide-reaching physiological effects. Three hypotheses potentially explain seasonal variation in CORT. The enabling hypothesis predicts that reproductive season CORT exceeds post-reproductive season CORT because CORT enables reproductive investment. The inhibitory hypothesis predicts the opposite because CORT can negatively affect reproductive function. The costs of reproduction hypothesis predicts that HPA axis condition declines over and following the reproductive season. We tested these hypotheses in wild male red-backed voles (Myodes rutilus) during the reproductive and post-reproductive seasons. We quantified CORT levels in response to restraint stress tests consisting of three blood samples (initial, stress-induced, and recovery). Mineralocorticoid (MR) and glucocorticoid (GR) receptor mRNA levels in the brain were also quantified over the reproductive season. Total CORT (tCORT) in the initial and stress-induced samples were greater in the post-reproductive than in the reproductive season, which supported the inhibitory hypothesis. Conversely, free CORT (fCORT) did not differ between the reproductive and post-reproductive seasons, which was counter to both the enabling and inhibitory hypotheses. Evidence for HPA axis condition decline in CORT as well as GR and MR mRNA over the reproductive season (i.e. costs of reproduction hypothesis) was mixed. Moreover, all of the parameters that showed signs of declining condition over the reproductive season did not also show signs of declining condition over the post-reproductive season suggesting that the costs resulting from reproductive investment had subsided. In conclusion, our results suggest that different aspects of the HPA axis respond differently to seasonal changes and reproductive investment. Copyright © 2015 Elsevier Inc. All rights reserved.
Feed Intake Regulation: Interface with the reproductive axis
USDA-ARS?s Scientific Manuscript database
It is well established that reproductive function is metabolically gated. Numerous peripheral metabolic signals contribute to regulation of feeding behavior and energy homeostasis. However, the mechanisms whereby energy stores and metabolic cues influence appetite, energy homeostasis and fertility ...
EFFECTS OF ENVIRONMENTAL ANTIANDROGENS ON REPRODUCTIVE DEVELOPMENT IN EXPERIMENTAL ANIMALS
In mammals, the androgens testosterone (T) and dihydrotestosterone (DHT) are critical for normal male reproductive development and function. In humans, drugs that act as androgen receptor (AR) agonists and antagonists or inhibit fetal steroidogenesis can cause pseudohermaphrodi...
CUMULATIVE DEVELOPMENTAL EFFECTS OF ENDOCRINE DISRUPTERS: SYNERGY OR ADDITIVITY?
Exposure to chemicals with hormonal activity during critical developmental periods can disrupt reproductive function and development. Within the last decade, several classes of pesticides and toxic substances have been shown to disrupt differentiation of the male rat reproductive...
Ibáñez, Carlos A.; Erthal, Rafaela P.; Ogo, Fernanda M.; Peres, Maria N. C.; Vieira, Henrique R.; Conejo, Camila; Tófolo, Laize P.; Francisco, Flávio A.; da Silva Silveira, Sandra; Malta, Ananda; Pavanello, Audrei; Martins, Isabela P.; da Silva, Paulo H. O.; Jacinto Saavedra, Lucas Paulo; Gonçalves, Gessica D.; Moreira, Veridiana M.; Alves, Vander S.; da Silva Franco, Claudinéia C.; Previate, Carina; Gomes, Rodrigo M.; de Oliveira Venci, Renan; Dias, Francielle R. S.; Armitage, James A.; Zambrano, Elena; Mathias, Paulo C. F.; Fernandes, Glaura S. A.; Palma-Rigo, Kesia
2017-01-01
An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health. PMID:29163186
Ibáñez, Carlos A; Erthal, Rafaela P; Ogo, Fernanda M; Peres, Maria N C; Vieira, Henrique R; Conejo, Camila; Tófolo, Laize P; Francisco, Flávio A; da Silva Silveira, Sandra; Malta, Ananda; Pavanello, Audrei; Martins, Isabela P; da Silva, Paulo H O; Jacinto Saavedra, Lucas Paulo; Gonçalves, Gessica D; Moreira, Veridiana M; Alves, Vander S; da Silva Franco, Claudinéia C; Previate, Carina; Gomes, Rodrigo M; de Oliveira Venci, Renan; Dias, Francielle R S; Armitage, James A; Zambrano, Elena; Mathias, Paulo C F; Fernandes, Glaura S A; Palma-Rigo, Kesia
2017-01-01
An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO 2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.
Govin, Jerome; Gaucher, Jonathan; Ferro, Myriam; Debernardi, Alexandra; Garin, Jerome; Khochbin, Saadi; Rousseaux, Sophie
2012-01-01
After meiosis, during the final stages of spermatogenesis, the haploid male genome undergoes major structural changes, resulting in a shift from a nucleosome-based genome organization to the sperm-specific, highly compacted nucleoprotamine structure. Recent data support the idea that region-specific programming of the haploid male genome is of high importance for the post-fertilization events and for successful embryo development. Although these events constitute a unique and essential step in reproduction, the mechanisms by which they occur have remained completely obscure and the factors involved have mostly remained uncharacterized. Here, we sought a strategy to significantly increase our understanding of proteins controlling the haploid male genome reprogramming, based on the identification of proteins in two specific pools: those with the potential to bind nucleic acids (basic proteins) and proteins capable of binding basic proteins (acidic proteins). For the identification of acidic proteins, we developed an approach involving a transition-protein (TP)-based chromatography, which has the advantage of retaining not only acidic proteins due to the charge interactions, but also potential TP-interacting factors. A second strategy, based on an in-depth bioinformatic analysis of the identified proteins, was then applied to pinpoint within the lists obtained, male germ cells expressed factors relevant to the post-meiotic genome organization. This approach reveals a functional network of DNA-packaging proteins and their putative chaperones and sheds a new light on the way the critical transitions in genome organizations could take place. This work also points to a new area of research in male infertility and sperm quality assessments.
Leptin and reproduction: a review.
Moschos, Stergios; Chan, Jean L; Mantzoros, Christos S
2002-03-01
To review recent advances in understanding the role of leptin in the physiology and pathophysiology of reproduction, with a focus on relevant clinical situations. A MEDLINE computer search was performed to identify relevant articles. Leptin, an adipocyte hormone important in regulating energy homeostasis, interacts with the reproductive axis at multiple sites, with stimulatory effects at the hypothalamus and pituitary and inhibitory actions at the gonads. More recently, leptin has been shown to play a role in other target reproductive organs, such as the endometrium, placenta, and mammary gland, with corresponding influences on important physiologic processes such as menstruation, pregnancy, and lactation. As a marker of whether nutritional stores are adequate, leptin may act in concert with gonadotropins and the growth hormone axis to initiate the complex process of puberty. Conditions in which nutritional status is suboptimal, such as eating disorders, exercise-induced amenorrhea, and functional hypothalamic amenorrhea, are associated with low serum leptin levels; and conditions with excess energy stores or metabolic disturbances, such as obesity and polycystic ovarian syndrome, often have elevated serum or follicular fluid leptin levels, raising the possibility that relative leptin deficiency or resistance may be at least partly responsible for the reproductive abnormalities that occur with these conditions. Leptin may act as the critical link between adipose tissue and the reproductive system, indicating whether adequate energy reserves are present for normal reproductive function. Future interventional studies involving leptin administration are expected to further clarify this role of leptin and may provide new therapeutic options for the reproductive dysfunction associated with states of relative leptin deficiency or resistance.
Lourdais, O; Brischoux, F; DeNardo, D; Shine, R
2004-07-01
In many species the high energetic demands of reproduction induce a negative energy balance, and thus females must rely on tissue catabolism to complete the reproductive process. Previous works have shown that both fat and protein are energy resources during prolonged fasting in vertebrates. While many ecological studies on energy costs of reproduction have focused on variations in fat stores, the impact of protein investment on the female has not been thoroughly investigated. Notably, as there is no specialized storage form for proteins, intense catabolism is likely to entail structural (musculature) loss that may compromise maternal physical performance after reproduction. Measurements on captive rainbow boas ( Epicrates cenchria maurus) confirm that reproducing females undergo significant protein catabolism (as indicated by elevated plasma uric acid levels) and show considerable musculature loss during gestation (as detected by reduced width of the epaxial muscles). Protein mobilization entailed a significant functional loss that was illustrated by decrements in tests of strength and constriction after parturition. In wild situations, such effects are likely to decrease the snakes' ability to forage and apprehend prey. Hence, the time period needed to recover from reproduction can be extended not only because the female must compensate losses of both fat stores and functional muscle, but also because the ability to do so may be compromised. Performance alteration is likely to be of equal or greater importance than reduced energy stores in the physiological mediation of elevated post-reproduction mortality rates and infrequent reproductive bouts (e.g. biannual or triannual), two common ecological traits of female snakes.
Circadian rhythms and reproduction.
Boden, Michael J; Kennaway, David J
2006-09-01
There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.
Neuroendocrine control of reproductive aging: roles of GnRH neurons.
Yin, Weiling; Gore, Andrea C
2006-03-01
The process of reproductive senescence in many female mammals, including humans, is characterized by a gradual transition from regular reproductive cycles to irregular cycles to eventual acyclicity, and ultimately a loss of fertility. In the present review, the role of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons is considered in this context. GnRH neurons provide the primary driving force upon the other levels of the reproductive axis. With respect to aging, GnRH cells undergo changes in biosynthesis, processing and release of the GnRH decapeptide. GnRH neurons also exhibit morphologic and ultrastructural alterations that appear to underlie these biosynthetic properties. Thus, functional and morphologic changes in the GnRH neurosecretory system may play causal roles in the transition to acyclicity. In addition, GnRH neurons are regulated by numerous inputs from neurotransmitters, neuromodulators and glia. The relationship among GnRH cells and their inputs at the cell body (thereby affecting GnRH biosynthesis) and the neuroterminal (thereby affecting GnRH neurosecretion) is crucial to the function of the GnRH system, with age-related changes in these relationships contributing to the reproductive senescent process. Therefore, the aging hypothalamus is characterized by changes intrinsic to the GnRH cell, as well as its regulatory inputs, which summate to contribute to a loss of reproductive competence in aging females.
Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction.
Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S
2013-01-01
Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction.
Phthalate exposure and reproductive parameters in young men from the general Swedish population.
Axelsson, Jonatan; Rylander, Lars; Rignell-Hydbom, Anna; Jönsson, Bo A G; Lindh, Christian H; Giwercman, Aleksander
2015-12-01
In animals, exposure to certain phthalates negatively affects the male reproductive function. Human results are conflicting and mostly based on subfertile males, in whom the association between exposure and reproductive function may differ from the general population. To study if levels of phthalate metabolites were associated with semen quality and reproductive hormones in general Swedish men. We recruited 314 young men delivering semen, urine and blood samples at the same visit. We analyzed reproductive hormones and several semen parameters including progressive motility and high DNA stainability (HDS)-a marker for sperm immaturity. In urine, we analyzed metabolites of phthalates, including diethylhexyl phthalate (DEHP). We studied associations between urinary levels of the metabolites and seminal as well as serum reproductive parameters, accounting for potential confounders. DEHP metabolite levels, particularly urinary mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), were negatively associated with progressive sperm motility, which was 11 (95% CI: 5.0-17) percentage points lower in the highest quartile of MECPP than in the lowest. Further, men in the highest quartile of the DEHP metabolite monoethylhexyl phthalate had 27% (95% CI: 5.5%-53%) higher HDS than men in the lowest quartile. DEHP metabolite levels seemed negatively associated with sperm motility and maturation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia
2017-10-01
The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF) are expressed in several tissues of male and female reproductive tract, playing an important role in the regulation of basic biological processes. The activation of c-KIT by SCF controls, cell survival and death, cell differentiation and migration. Also, the SCF/c-KIT system has been implicated in carcinogenesis of reproductive tissues due to its altered expression pattern or overactivation in consequence of gain-of-functions mutations. Over the years, it has also been shown that hormones, the primary regulators of reproductive function and causative agents in the case of hormone-dependent cancers, are also able to control the SCF/c-KIT tissue levels. Therefore, it is liable to suppose that disturbed SCF/c-KIT expression driven by (de)regulated hormone actions can be a relevant step towards carcinogenesis. The present review describes the SCF and c-KIT expression in cancers of reproductive tissues, discussing the implications of the hormonal regulation of the SCF/c-KIT system in cancer development. Understanding the relationship between hormonal imbalance and the SCF/c-KIT expression and activity would be relevant in the context of novel therapeutic approaches in reproductive cancers. Copyright © 2017 Elsevier B.V. All rights reserved.
Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions
Huo, Xiaona; Chen, Dan; He, Yonghua; Zhu, Wenting; Zhou, Wei; Zhang, Jun
2015-01-01
Background: Bisphenol-A (BPA) is widely used and ubiquitous in the environment. Animal studies indicate that BPA affects reproduction, however, the gene-environment interaction mechanism(s) involved in this association remains unclear. We performed a literature review to summarize the evidence on this topic. Methods: A comprehensive search was conducted in PubMed using as keywords BPA, gene, infertility and female reproduction. Full-text articles in both human and animals published in English prior to December 2014 were selected. Results: Evidence shows that BPA can interfere with endocrine function of hypothalamic-pituitary axis, such as by changing gonadotropin-releasing hormones (GnRH) secretion in hypothalamus and promoting pituitary proliferation. Such actions affect puberty, ovulation and may even result in infertility. Ovary, uterus and other reproductive organs are also targets of BPA. BPA exposure impairs the structure and functions of female reproductive system in different times of life cycle and may contribute to infertility. Both epidemiological and experimental evidences demonstrate that BPA affects reproduction-related gene expression and epigenetic modification that are closely associated with infertility. The detrimental effects on reproduction may be lifelong and transgenerational. Conclusions: Evidence on gene-environment interactions, especially from human studies, is still limited. Further research on this topic is warranted. PMID:26371021
Origination of asexual plantlets in three species of Crassulaceae.
Guo, Jiansheng; Liu, Hailiang; He, Yangyang; Cui, Xianghuan; Du, Xiling; Zhu, Jian
2015-03-01
During asexual plant reproduction, cells from different organs can be reprogrammed to produce new individuals, a process that requires the coordination of cell cycle reactivation with the acquisition of other cellular morphological characteristics. However, the factors that influence the variety of asexual reproduction have not yet been determined. Here, we report on plantlet formation in Kalanchoe daigremontiana, Graptopetalum paraguayense, and Crassula portulacea (Crassulaceae) and analyse the effect of initiating cells on asexual reproduction in these three species. Additionally, the roles of WUSCHEL (WUS) and CUP-SHAPED COTYLEDON 1 (CUC1) in the asexual reproduction of these species were analysed through qRT-PCR. Our results indicated that pre-existing stem cell-like cells at the sites of asexual reproduction were responsible for the formation of plantlets. These cells were arrested in different phases of the cell cycle and showed different cell morphological characteristics and cell counts. The accumulation of auxin and cytokinin at the sites of asexual plantlet formation indicated their important functions, particularly for cell cycle reactivation. These differences may influence the pattern and complexity of asexual reproduction in these Crassulaceae species. Additionally, the dynamic expression levels of CUC1 and WUS may indicate that CUC1 functions in the formation of callus and shoot meristems; whereas, WUS was only associated with shoot induction.
Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.
Ikegami, Keisuke; Yoshimura, Takashi
2016-02-01
Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Interactions between prolactin and kisspeptin to control reproduction.
Donato, Jose; Frazão, Renata
2016-01-01
Prolactin is best known for its effects of stimulating mammary gland development and lactogenesis. However, prolactin is a pleiotropic hormone that is able to affect several physiological functions, including fertility. Prolactin receptors (PRLRs) are widely expressed in several tissues, including several brain regions and reproductive tract organs. Upon activation, PRLRs may exert prolactin's functions through several signaling pathways, although the recruitment of the signal transducer and activator of transcription 5 causes most of the known effects of prolactin. Pathological hyperprolactinemia is mainly due to the presence of a prolactinoma or pharmacological effects induced by drugs that interact with the dopamine system. Notably, hyperprolactinemia is a frequent cause of reproductive dysfunction and may lead to infertility in males and females. Recently, several studies have indicated that prolactin may modulate the reproductive axis by acting on specific populations of hypothalamic neurons that express the Kiss1 gene. The Kiss1 gene encodes neuropeptides known as kisspeptins, which are powerful activators of gonadotropin-releasing hormone neurons. In the present review, we will summarize the current knowledge about prolactin's actions on reproduction. Among other aspects, we will discuss whether the interaction between prolactin and the Kiss1-expressing neurons can affect reproduction and how kisspeptins may become a novel therapeutic approach to treat prolactin-induced infertility.
Wei, Dong; Tian, Chuan-Bei; Liu, Shi-Huo; Wang, Tao; Smagghe, Guy; Jia, Fu-Xian; Dou, Wei; Wang, Jin-Jun
2016-06-01
In the male reproductive system of insects, the male accessory glands and ejaculatory duct (MAG/ED) are important organs and their primary function is to enhance the fertility of spermatozoa. Proteins secreted by the MAG/ED are also known to induce post-mating changes and immunity responses in the female insect. To understand the gene expression profile in the MAG/ED of the oriental fruit fly Bactrocera dorsalis (Hendel), that is an important pest in fruits, we performed an Illumina-based deep sequencing of mRNA. This yielded 54,577,630 clean reads corresponding to 4.91Gb total nucleotides that were assembled and clustered to 30,669 unigenes (average 645bp). Among them, 20,419 unigenes were functionally annotated to known proteins/peptides in Gene Orthology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes pathway databases. Typically, many genes were involved in immunity and these included microbial recognition proteins and antimicrobial peptides. Subsequently, the inducible expression of these immunity-related genes was confirmed by qRT-PCR analysis when insects were challenged with immunity-inducible factors, suggesting their function in guaranteeing fertilization success. Besides, we identified some important reproductive genes such as juvenile hormone- and ecdysteroid-related genes in this de novo assembly. In conclusion, this transcriptomic sequencing of B. dorsalis MAG/ED provides insights to facilitate further functional research of reproduction, immunity and molecular evolution of reproductive proteins in this important agricultural pest. Copyright © 2015 Elsevier Inc. All rights reserved.
Analgesic use in pregnancy and male reproductive development
Hurtado-Gonzalez, Pablo; Mitchell, Rod T.
2017-01-01
Purpose of review Male reproductive disorders are common and increasing in incidence in many countries. Environmental factors (including pharmaceuticals) have been implicated in the development of these disorders. This review aims to summarise the emerging epidemiological and experimental evidence for a potential role of in-utero exposure to analgesics in the development of male reproductive disorders. Recent findings A number of epidemiological studies have demonstrated an association between in-utero exposure to analgesics and the development of cryptorchidism, although these findings are not consistent across all studies. Where present, these associations primarily relate to exposure during the second trimester of pregnancy. In-vivo and in-vitro experimental studies have demonstrated variable effects of exposure to analgesics on Leydig cell function in the fetal testis of rodents, particularly in terms of testosterone production. These effects frequently involve exposures that are in excess of those to which humans are exposed. Investigation of the effects of analgesics on human fetal testis have also demonstrated effects on Leydig cell function. Variation in species, model system, dosage and timing of exposure is likely to contribute to differences in the findings between studies. Summary There is increasing evidence for analgesic effects on the developing testis that have the potential to impair reproductive function. However, the importance of these findings in relation to human-relevant exposures and the risk of male reproductive disorders remains unclear. PMID:28277341
A Physiological Signature of the Cost of Reproduction Associated with Parental Care.
Fowler, Melinda A; Williams, Tony D
2017-12-01
Costs of reproduction are an integral and long-standing component of life-history theory, but we still know relatively little about the specific physiological mechanisms underlying these trade-offs. We experimentally manipulated workload during parental care in female European starlings (Sturnus vulgaris) using attachment of radios and/or wing clipping and assessed measures of workload, current breeding productivity, future fecundity, and survival (local return rate) in relation to treatment. Females with wing clipping and radio attachment paid a clear cost of reproduction compared with all other treatment groups: they had lower future fecundity and lower return rates despite having lower current breeding productivity. We then measured 13 physiological traits, including measures of aerobic/metabolic capacity, oxidative stress and muscle damage, intermediary metabolism and energy supply, and immune function. Our results show that the cost of reproduction in females with wing clipping and radio attachment was associated with lower oxygen-carrying capacity (lower hematocrit and hemoglobin levels), lower energy reserves (plasma nonesterified fatty acid and triglyceride levels), decreased immune function (lower haptoglobin levels), and elevated levels of oxidative stress (higher levels of dROMs [reactive oxygen metabolites] and lower levels of the endogenous antioxidant uric acid). Our study provides evidence that costs of reproduction involve a widespread decline in physiological function across multiple physiological systems consistent with long-standing ideas of cumulative "wear and tear" and allostatic load.
[Reproductive disorders in women with celiac disease. Effect of the etiotropic therapy].
Bykova, S V; Sabel'nikova, E A; Parfenov, A I; Gudkova, R B; Krums, L M; Chikunova, B Z
2011-01-01
Violation of reproductive function in patients with celiac disease can manifest as delayed puberty, infertility, amenorrhea, premature menopause, spontaneous abortion, low birth weight. The aim of the study was to establish the frequency and nature of reproductive function violation in patients with CD in the Russian Federation. The study included 132 women (average age 38,5 +/- 1,17 years) with CD observed in CSRIG in the period from 2000 to 2010. Comparison group consisted 105 women (average age 38,7 +/- 1,6 years) with predominantly functional bowel disorders (irritable bowel syndrome, functional constipation, functional bloating, inert colon). Were took into account information regarding obstetric history, physical and laboratory signs of malabsorption syndrome (MS) study of antibodies to alpha-gliadin immunoglobulin (IG) A class (AGA) and tissue transglutaminase (AtTG). The average age of onset of menses was 14,3 +/- 1,4 years, and in the control group - 13,0 +/- 1,3 years (p > 0.05), half of patients with C (43.9%) had menstruation begun at age 15 years and older, while 7.6% of the women--aged 17 and older. In the comparison group menses beginning after 15 years was only at 13.3% of women. In 61.3% of patients with CD was irregular menstrual cycle while in the comparison group such violations were noted in 13.3% (p < 0.001). Prolonged periods of amenorrhea we observed in women with newly diagnosed GC 3 times more likely than the comparison group: 43.9% and 11.4% respectively (p < 0.01). They also had nearly 3 times more likely to occur spontaneous miscarriage: at 46.9% and 14.3% respectively (p < 0.01). The frequency of dead children birth was about the same: 2.3% and 1.9% respectively (p > 0.05). The frequency of reproductive disorders increased with the growth of the severity of MS. In 43% of women after 6-8 months of strict adherence to a gluten-free diet (GFD) had disappeared amenorrhea and there were regular menses. Three women of childbearing age, strictly abided the GFD and had a history of repeated spontaneous abortion during the year managed to get pregnant and give birth to healthy full-term baby. Reproductive disorders in women with celiac disease are significantly more likely than at women with functional bowel disease. One of the reasons of reproductive disorders in patients with CD can be malabsorption of necessary nutrients in the small intestine. The presence of reproductive disorders should be considered as a risk factor for celiac disease, so these women should be screened for celiac disease.
Reproduction Symposium: developmental programming of reproductive and metabolic health.
Padmanabhan, V; Veiga-Lopez, A
2014-08-01
Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the developmental origin of fertility and metabolic disorders. Studies with the environmental endocrine disruptor bisphenol A (BPA) show that reproductive disruptions found in prenatal BPA-treated sheep are similar to those seen in prenatal T-treated sheep. The ubiquitous exposure to endocrine disrupting compounds with steroidogenic potential via the environment and food sources calls for studies addressing the impact of developmental exposure to environmental steroid mimics on reproductive function.
Duressa, Tewodros Firdissa; Boonen, Kurt; Hayakawa, Yoichi; Huybrechts, Roger
2015-12-01
Growth blocking peptides (GBPs) are recognized as insect cytokines that take part in multifaceted functions including immune system activation and growth retardation. The peptides induce hemocyte spreading in vitro, which is considered as the initial step in hemocyte activation against infection in many insect species. Therefore, in this study, we carried out a series of in vitro bioassay driven fractionations of Locusta migratoria hemolymph combined with mass spectrometry to identify locust hemocyte activation factors belonging to the family of insect GBPs. We identified the locust hemocyte spreading peptide (locust GBP) as a 28-mer peptide encoded at the C-terminus of a 64 amino acid long precursor polypeptide. As demonstrated by QRT-PCR, the gene encoding the locust GBP precursor (proGBP) was expressed in large quantities in diverse locust tissues including fat body, endocrine glands, central nervous system, reproductive tissues and flight muscles. In contrary, hemocytes, gut tissues and Malpighian tubules displayed little expression of the proGBP transcript. The bioactive peptide induces transient depletion of hemocytes in vivo and when injected in last instar nymphs it extends the larval growth phase and postpones adult molting. In addition, we identified a functional homologous hemocyte spreading peptide in Schistocerca gregaria. Copyright © 2015 Elsevier Inc. All rights reserved.
Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana
Abraham Juárez, María Jazmín; Hernández Cárdenas, Rocío; Santoyo Villa, José Natzul; O’Connor, Devin; Sluis, Aaron; Hake, Sarah; Ordaz-Ortiz, José; Terry, Leon; Simpson, June
2015-01-01
In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as ‘Sister of PIN1’ (denoted AtqSoPIN1). Quantitative real-time reverse transcription–PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation. PMID:25911746
Kershaw-Young, C M; Stuart, C; Evans, G; Maxwell, W M C
2013-05-01
In order to advance the development of cryopreservation and other assisted reproductive technologies in camelids it is necessary to eliminate the viscous component of the seminal plasma without impairing sperm function. It has been postulated that glycosaminoglycans (GAGs) or proteoglycans are responsible for this viscosity. This study investigated the effect of the GAG enzymes hyaluronidase, chondroitinase ABC and keratanase and the proteases papain and proteinase K on seminal plasma viscosity and sperm function in order to aid identification of the cause of seminal plasma viscosity and propose methods for the reduction of viscosity. Sperm motility, DNA integrity, acrosome integrity and viability were assessed during 2h incubation. All enzymes reduced seminal plasma viscosity compared to control (P<0.001) although papain was most effective, completely eliminating viscosity within 30 min of treatment. Sperm motility and DNA integrity was not affected by enzyme treatment. The proportion of viable, acrosome intact sperm was reduced in all enzyme treated samples except those treated with papain (P<0.001). These findings suggest that proteins, not GAGs are the main cause of alpaca seminal plasma viscosity. Papain treatment of alpaca semen may be a suitable technique for reduction of seminal plasma viscosity prior to sperm cryopreservation. Copyright © 2013 Elsevier B.V. All rights reserved.
Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement
USDA-ARS?s Scientific Manuscript database
Background: Semen ejaculates contain heterogeneous sperm populations that can jeopardize male fertility. Recent development of nanotechnology in physiological systems may have applications in reproductive biology. Here, we used magnetic nanoparticles as a novel strategy for sperm purification to imp...
Foetal exposure to phthalates is known to adversely impact male reproductive development and function. Developmental anomalies of reproductive tract have been attributed to impaired testosterone synthesis. However, species differences in the ability to produce testosterone have...
Propiconazole inhibits steroidogenesis and reproduction in the fathead minnow (Pimephales promelas)
This study assessed effects of the conazole-fungicide propiconazole on endocrine function and reproductive success of the fathead minnow, using an experimental approach based on previously defined adverse outcome pathways (AOPs) for chemicals that inhibit steroidogenesis in fish...
Non-invasive reproductive and stress endocrinology in amphibian conservation physiology
Narayan, E. J.
2013-01-01
Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo–pituitary–interrenal axis) and the reproductive endocrine system (the hypothalamo–pituitary–gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology for advancing amphibian conservation physiology. It also provides key technical considerations for future research that will increase the accuracy and reliability of the data and the value of non-invasive endocrinology within the conceptual framework of conservation physiology. PMID:27293595
Introduction: circadian rhythm and its disruption: impact on reproductive function.
Casper, Robert F; Gladanac, Bojana
2014-08-01
Almost all forms of life have predictable daily or circadian rhythms in molecular, endocrine, and behavioral functions. In mammals, a central pacemaker located in the suprachiasmatic nuclei coordinates the timing of these rhythms. Daily light exposure that affects the retina of the eye directly influences this area, which is required to align endogenous processes to the appropriate time of day. The present "Views and Reviews" articles discuss the influence of circadian rhythms, especially nightly secretion of melatonin, on reproductive function and parturition. In addition, an examination is made of problems that arise from recurrent circadian rhythm disruption associated with changes in light exposure patterns common to modern day society. Finally, a possible solution to prevent disruptions in circadian phase markers by filtering out short wavelengths from nocturnal light is reviewed. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
The effect of environmental contaminants on testicular function.
Mathur, Premendu Prakash; D'Cruz, Shereen Cynthia
2011-07-01
Male reproductive health has deteriorated considerably in the last few decades. Nutritional, socioeconomic, lifestyle and environmental factors (among others) have been attributed to compromising male reproductive health. In recent years, a large volume of evidence has accumulated that suggests that the trend of decreasing male fertility (in terms of sperm count, quality and other changes in male reproductive health) might be due to exposure to environmental toxicants. These environmental contaminants can mimic natural oestrogens and target testicular spermatogenesis, steroidogenesis, and the function of both Sertoli and Leydig cells. Most environmental toxicants have been shown to induce reactive oxygen species, thereby causing a state of oxidative stress in various compartments of the testes. However, the molecular mechanism(s) of action of the environmental toxicants on the testis have yet to be elucidated. This review discusses the effects of some of the more commonly used environmental contaminants on testicular function through the induction of oxidative stress and apoptosis.
Sperm proteins in teleostean and chondrostean (sturgeon) fishes.
Li, Ping; Hulak, Martin; Linhart, Otomar
2009-11-01
Sperm proteins in the seminal plasma and spermatozoa of teleostean and chondrostean have evolved adaptations due to the changes in the reproductive environment. Analysis of the composition and functions of these proteins provides new insights into sperm motility and fertilising abilities, thereby creating possibilities for improving artificial reproduction and germplasm resource conservation technologies (e.g. cryopreservation). Seminal plasma proteins are involved in the protection of spermatozoa during storage in the reproductive system, whereas all spermatozoa proteins contribute to the swimming and fertilising abilities of sperm. Compared to mammalian species, little data are available on fish sperm proteins and their functions. We review here the current state of the art in this field and focus on relevant subjects that require attention. Future research should concentrate on protein functions and their mode of action in fish species, especially on the role of spermatozoa surface proteins during fertilisation and on a description of sturgeon sperm proteins.
Why cellular communication during plant reproduction is particularly mediated by CRP signalling.
Bircheneder, Susanne; Dresselhaus, Thomas
2016-08-01
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Parental conflict and blue egg coloration in a seabird
NASA Astrophysics Data System (ADS)
Morales, Judith; Torres, Roxana; Velando, Alberto
2010-02-01
When both parents provide offspring care, equal sharing of costly parental duties may enhance reproductive success. This is crucial for longlived species, where increased parental effort in current reproduction profoundly affects future reproduction. Indication of reproductive value or willingness to invest in reproduction may promote matching responses by mates, thus reducing the conflict over care. In birds with biparental care, blue-green eggshell color may function as a signal of reproductive value that affects parental effort, as predicted by the signaling hypothesis of blue-green eggshell coloration. However, this hypothesis has not been explored during incubation, when the potential stimulus of egg color is present, and has been little studied in longlived birds. We experimentally studied if egg color affected incubation patterns in the blue-footed booby, a longlived species with biparental care and blue eggs. We exchanged fresh eggs between nests of the same laying date and recorded parental incubation effort on the following 4 days. Although egg color did not affect male effort, original eggshell color was correlated with pair matching in incubation. Exchanged eggshell color did not affect incubation patterns. This suggests that biliverdin-based egg coloration reflects female quality features that are associated with pair incubation effort or that blue-footed boobies mate assortatively high-quality pairs incubating more colorful clutches. An intriguing possibility is that egg coloration facilitates an equal sharing of incubation, the signal being functional only during a short period close to laying. Results also suggest that indication of reproductive value reduces the conflict over care.
Plant reproduction in spaceflight environments
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Kuang, A.; Porterfield, D. M.
1997-01-01
Because plant reproduction is a complex developmental process there are many possible sites of perturbation by the unusual environments of orbital spacecraft. Previous long-duration experiments on Soviet platforms shared features of slowed development through the vegetative stage of plant growth and aborted reproductive function. Our goal has been to understand how special features of the spaceflight environment impact physiological function and reproductive development. In a series of short-duration experiments in the Shuttle mid-deck we studied early reproductive development in Arabidopsis thaliana. Pollen and ovule development aborted at an early stage in the first experiment on STS-54 which utilized closed plant growth chambers. Post-flight analysis suggested that the plants may have been carbon dioxide limited. Subsequent experiments utilized carbon dioxide enrichment (on STS-51) and cabin air flow-through with an air exchange system (on STS-68). Both modifications allowed pollen and ovule development to occur normally on orbit, and full reproductive development up to the stage of an immature seed occurred on STS-68. However, analysis of plant roots from these experiments demonstrated a limitation in rootzone aeration in the spaceflight material that was not mitigated by these procedures. In the future, additional resources (crew time, upgraded flight hardware, and special platforms) will invite more elaborate, long-duration experimentation. On the ISS, a variable speed centrifuge and upgraded plant habitats will permit detailed experiments on the role of gravity in shaping the plant micro-environment, and what influence this plays during reproduction.
Advances in human reproductive ecology.
Ellison, P T
1994-01-01
Human reproductive ecology pertains to reproduction biology and changes due to environmental influences. The research literature relies on clinical, epidemiological, and demographic analysis. The emphasis is on normal, nonpathological states and a broad range of ecological conditions. This review focused on the importance of age and energetic stress from ecological conditions rather than dieting or self-directed exercise in changing female fecundity. The literature on male reproductive ecology is still small but growing. J.W. Wood provided a comprehensive overview of the field. Natural fertility, as defined by Henry, is the lack of parity-specific fertility limitation. There is evidence that fertility can vary widely in natural fertility populations. There are consistent age patterns among different natural fertility populations. Doring found that there was higher frequency of anovulatory and luteal insufficiency in cycles during perimenarche and perimenopausal periods. Infertility studies have shown declines in pregnancy rates in women over the age of 30 years. Ovum donation evaluations have found both uterine age and ovarian and oocyte age to be related to the probability of a successful pregnancy. Basal follicle stimulating hormone and the endometrial thickness are important predictors of ovarian capacity and related to age and declining fecundity. Much of the literature on fecundity is derived from women with impaired reproductive physiology. In Lipson and Ellison's study of healthy women, average follicular and average luteal estradiol values declined with increasing subject age. Low follicular levels were correlated with smaller follicular size, low oocyte fertilizability, reduced endometrial thickness, and low pregnancy rates. Comparisons across populations have shown that populations experience declines in luteal function with age, but levels of luteal functions varied widely. Chronic conditions which slow growth and delay reproductive maturation may impact on lower ovarian function throughout adult life. There is a range of ovarian function along a continuum due to energetic stress. Evidence from the Lese in Zaire, the Tamang of Nepal, and Polish farm women outside Crakow suggest that workload affects ovarian function. Luteal function and ovulatory frequency is lower when women are losing weight. Among the Tamang losing weight between seasons there was evidence of lower ovarian function during the monsoon season. Polish farm women who work very hard in summer had lower ovarian function. The effect of lactation on amenorrhea appears to be due to the energetic stress on the mother in the intensity and duration of suckling. Women in poorer nutritional status may require more intense suckling. Seasonality of energy balance may be related to seasonality of female fecundity and conceptions.
Male reproductive health and yoga
Sengupta, Pallav; Chaudhuri, Prasenjit; Bhattacharya, Koushik
2013-01-01
Now-a-days reproductive health problems along with infertility in male is very often observed. Various Assisted Reproductive Technologies have been introduced to solve the problem, but common people cannot afford the cost of such procedures. Various ayurvedic and other alternative medicines, along with regular yoga practice are proven to be not only effective to enhance the reproductive health in men to produce a successful pregnancy, but also to regulate sexual desire in men who practice celibacy. Yoga is reported to reduce stress and anxiety, improve autonomic functions by triggering neurohormonal mechanisms by the suppression of sympathetic activity, and even, today, several reports suggested regular yoga practice from childhood is beneficial for reproductive health. In this regard the present review is aimed to provide all the necessary information regarding the effectiveness of yoga practice to have a better reproductive health and to prevent infertility. PMID:23930026
Fujii, Junichi; Iuchi, Yoshihito; Okada, Futoshi
2005-09-02
Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox) systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems.
Aumer, Denise; Mumoki, Fiona N; Pirk, Christian W W; Moritz, Robin F A
2018-03-20
Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring. In the extreme, worker reproduction can turn into social parasitism as in Apis mellifera capensis. These intraspecific parasites occupy a host colony, kill the resident queen, and take over the reproductive monopoly. Because they exhibit a queenlike behavior and are also treated like queens by the fellow workers, they are so-called pseudoqueens. Here, we compare the development of parasitic pseudoqueens and social workers at different time points using fat body transcriptome data. Two complementary analysis methods-a principal component analysis and a time course analysis-led to the identification of a core set of genes involved in the transition from a social worker into a highly fecund parasitic pseudoqueen. Comparing our results on pseudoqueens with gene expression data of honeybee queens revealed many similarities. In addition, there was a set of specific transcriptomic changes in the parasitic pseudoqueens that differed from both, queens and social workers, which may be typical for the development of the social parasitism in A. m. capensis.
NASA Astrophysics Data System (ADS)
Aumer, Denise; Mumoki, Fiona N.; Pirk, Christian W. W.; Moritz, Robin F. A.
2018-04-01
Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring. In the extreme, worker reproduction can turn into social parasitism as in Apis mellifera capensis. These intraspecific parasites occupy a host colony, kill the resident queen, and take over the reproductive monopoly. Because they exhibit a queenlike behavior and are also treated like queens by the fellow workers, they are so-called pseudoqueens. Here, we compare the development of parasitic pseudoqueens and social workers at different time points using fat body transcriptome data. Two complementary analysis methods—a principal component analysis and a time course analysis—led to the identification of a core set of genes involved in the transition from a social worker into a highly fecund parasitic pseudoqueen. Comparing our results on pseudoqueens with gene expression data of honeybee queens revealed many similarities. In addition, there was a set of specific transcriptomic changes in the parasitic pseudoqueens that differed from both, queens and social workers, which may be typical for the development of the social parasitism in A. m. capensis.
Application of failure mode and effect analysis in an assisted reproduction technology laboratory.
Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola
2016-08-01
Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Leptospirosis in sheep and goats under tropical conditions.
Martins, Gabriel; Lilenbaum, Walter
2014-01-01
Inadequate management practices and poor reproductive performance have been reported as fundamental factors on reducing the levels of productivity in livestock. Different pathogens have been reported in small ruminants' herds/flocks with reproductive failures. The aim of the present study was to review aspects of leptospirosis in small ruminants, mainly its impact on reproduction and consequently on productivity of the herds/flocks under tropical conditions. Leptospiral infection in goats and sheep is common in several countries, and those species can also act as carriers of leptospires. Severe disease is often associated to young animals and is frequently associated to incidental serovars. In contrast, subclinical infection is mainly characterized by reproductive problems, such as infertility, abortion, occurrence of stillbirths, and weak lambs/goat kids. Moreover, laboratorial tests are essential to achieve an accurate diagnosis of the infection. Microscopic agglutination test is the most common indirect test of leptospirosis, being used worldwide. In small ruminants, PCR consists on a recommendable method for diagnosing animals that carry leptospires. Control of leptospirosis in small ruminants involves measures such as the identification and treatment of the carriers and other sources of infection, quarantine in acquired animals, and systematic immunization with commercial vaccines containing the circulating serovars in the herd/flock. Productivity of small ruminant breeding can dramatically increase with adequate sanitary conditions and control of leptospirosis. Immunization of all the animals combined to the treatment of carriers may successfully control the infection and importantly reduce the economic reproductive hazards that are observed under tropical conditions.
2014-09-01
17 days later. MRSA, methicillin - resistant Staphylococcus aureus ; TEN, toxic epidermal necrolysis. TABLE 2. Patient Characteristics at the Time of...Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting...Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION
Personnel-General: Army Substance Abuse Program Civilian Services
2001-10-15
destroyed. Additional reproduction and distribution of completed records is prohibited. c. SECTION I. IDENTIFICATION. (1) Block I. Date of Report. Enter...AMPHETAMINE B BARBITUATES C COCAINE H HALLUCINOGENS (LSD) M METHAQUALONE, SEDATIVE, HYPNOTIC , OR ANXIOLYTIC O OPIATES P PHENCYCLIDINE (PCP) T CANNABIS...Table 5–6 Codes for TABLE F (T-DIAG-CODE) Code Rejection Reason 30390 ALCOHOL DEPENDENCE 30400 OPIOID DEPENDENCE 30410 SEDATIVE, HYPNOTIC , OR ANXIOLYTIC
Hulshof, Catherine M; Stegen, James C; Swenson, Nathan G; Enquist, Carolyn A F; Enquist, Brian J
2012-01-01
Plants are expected to differentially allocate resources to reproduction, growth, and survival in order to maximize overall fitness. Life history theory predicts that the allocation of resources to reproduction should occur at the expense of vegetative growth. Although it is known that both organism size and resource availability can influence life history traits, few studies have addressed how size dependencies of growth and reproduction and variation in resource supply jointly affect the coupling between growth and reproduction. In order to understand the relationship between growth and reproduction in the context of resource variability, we utilize a long-term observational data set consisting of 670 individual trees over a 10-year period within a local population of Bursera simaruba (L.) Sarg. We (1) quantify the functional form and variability in the growth-reproduction relationship at the population and individual-tree level and (2) develop a theoretical framework to understand the allometric dependence of growth and reproduction. Our findings suggest that the differential responses of allometric growth and reproduction to resource availability, both between years and between microsites, underlie the apparent relationship between growth and reproduction. Finally, we offer an alternative approach for quantifying the relationship between growth and reproduction that accounts for variation in allometries.
Mechanisms linking energy balance and reproduction: impact of prenatal environment.
Rhinehart, Erin M
2016-01-01
The burgeoning field of metabolic reproduction regulation has been gaining momentum due to highly frequent discoveries of new neuroendocrine factors regulating both energy balance and reproduction. Universally throughout the animal kingdom, energy deficits inhibit the reproductive axis, which demonstrates that reproduction is acutely sensitive to fuel availability. Entrainment of reproductive efforts with energy availability is especially critical for females because they expend large amounts of energy on gestation and lactation. Research has identified an assortment of both central and peripheral factors involved in the metabolic regulation of reproduction. From an evolutionary perspective, these mechanisms likely evolved to optimize reproductive fitness in an environment with an unpredictable food supply and regular bouts of famine. To be effective, however, the mechanisms responsible for the metabolic regulation of reproduction must also retain developmental plasticity to allow organisms to adapt their reproductive strategies to their particular niche. In particular, the prenatal environment has emerged as a critical developmental window for programming the mechanisms responsible for the metabolic control of reproduction. This review will discuss the current knowledge about hormonal and molecular mechanisms that entrain reproduction with prevailing energy availability. In addition, it will provide an evolutionary, human life-history framework to assist in the interpretation of findings on gestational programming of the female reproductive function, with a focus on pubertal timing as an example. Future research should aim to shed light on mechanisms underlying the prenatal modulation of the adaptation to an environment with unstable resources in a way that optimizes reproductive fitness.
Women's Sexual Health and Reproductive Function After SCI
Alexander, Marcalee; McLain, Amie B. (Jackson)
2017-01-01
Sexual function and to a lesser extent reproduction are often disrupted in women with spinal cord injuries (SCI), who must be educated to better understand their sexual and reproductive health. Women with SCI are sexually active; they can use psychogenic or reflexogenic stimulation to obtain sexual pleasure and orgasm. Treatment should consider a holistic approach using autonomic standards to describe remaining sexual function and to assess both genital function and psychosocial factors. Assessment of genital function should include thoracolumbar dermatomes, vulvar sensitivity (touch, pressure, vibration), and sacral reflexes. Self-exploration should include not only clitoral stimulation, but also stimulation of the vagina (G spot), cervix, and nipples conveyed by different innervation sources. Treatments may consider PDE5 inhibitors and flibanserin on an individual basis, and secondary consequences of SCI should address concerns with spasticity, pain, incontinence, and side effects of medications. Psychosocial issues must be addressed as possible contributors to sexual dysfunctions (eg, lower self-esteem, past sexual history, depression, dating habits). Pregnancy is possible for women with SCI; younger age at the time of injury and at the time of pregnancy being significant predictors of successful pregnancy, along with marital status, motor score, mobility, and occupational scores. Pregnancy may decrease the level of functioning (eg, self-care, ambulation, upper-extremity tasks), may involve complications (eg, decubitus ulcers, weight gain, urological complications), and must be monitored for postural hypotension and autonomic dysreflexia. Taking into consideration the physical and psychosocial determinants of sexuality and childbearing allows women with SCI to achieve positive sexual and reproductive health. PMID:29339874