Science.gov

Sample records for reproductive synchrony predicts

  1. Female reproductive synchrony predicts skewed paternity across primates

    PubMed Central

    Nunn, Charles L.; Schülke, Oliver

    2008-01-01

    Recent studies have uncovered remarkable variation in paternity within primate groups. To date, however, we lack a general understanding of the factors that drive variation in paternity skew among primate groups and across species. Our study focused on hypotheses from reproductive skew theory involving limited control and the use of paternity “concessions” by investigating how paternity covaries with the number of males, female estrous synchrony, and rates of extragroup paternity. In multivariate and phylogenetically controlled analyses of data from 27 studies on 19 species, we found strong support for a limited control skew model, with reproductive skew within groups declining as female reproductive synchrony and the number of males per group increase. Of these 2 variables, female reproductive synchrony explained more of the variation in paternity distributions. To test whether dominant males provide incentives to subordinates to resist matings by extragroup males, that is, whether dominants make concessions of paternity, we derived a novel prediction that skew is lower within groups when threat from outside the group exists. This prediction was not supported as a primary factor underlying patterns of reproductive skew among primate species. However, our approach revealed that if concessions occur in primates, they are most likely when female synchrony is low, as these conditions provide alpha male control of paternity that is assumed by concessions models. Collectively, our analyses demonstrate that aspects of male reproductive competition are the primary drivers of reproductive skew in primates. PMID:19018288

  2. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub.

    PubMed

    Rodríguez-Pérez, Javier; Traveset, Anna

    2016-01-01

    Flowering phenology and synchrony with biotic and abiotic resources are crucial traits determining the reproductive success in insect-pollinated plants. In seasonal climates, plants flowering for long periods should assure reproductive success when resources are more predictable. In this work, we evaluated the relationship between flowering phenology and synchrony and reproductive success in Hypericum balearicum, a shrub flowering all year round but mainly during spring and summer. We studied two contrasting localities (differing mostly in rainfall) during 3 years, and at different biological scales spanning from localities to individual flowers and fruits. We first monitored (monthly) flowering phenology and reproductive success (fruit and seed set) of plants, and assessed whether in the locality with higher rainfall plants had longer flowering phenology and synchrony and relatively higher reproductive success within or outside the flowering peak. Secondly, we censused pollinators on H. balearicum individuals and measured reproductive success along the flowering peak of each locality to test for an association between (i) richness and abundance of pollinators and (ii) fruit and seed set, and seed weight. We found that most flowers (∼90 %) and the highest fruit set (∼70 %) were produced during the flowering peak of each locality. Contrary to expectations, plants in the locality with lower rainfall showed more relaxed flowering phenology and synchrony and set more fruits outside the flowering peak. During the flowering peak of each locality, the reproductive success of early-flowering individuals depended on a combination of both pollinator richness and abundance and rainfall; by contrast, reproductive success of late-flowering individuals was most dependent on rainfall. Plant species flowering for long periods in seasonal climates, thus, appear to be ideal organisms to understand how flowering phenology and synchrony match with biotic and abiotic resources, and

  3. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub

    PubMed Central

    Rodríguez-Pérez, Javier; Traveset, Anna

    2016-01-01

    Flowering phenology and synchrony with biotic and abiotic resources are crucial traits determining the reproductive success in insect-pollinated plants. In seasonal climates, plants flowering for long periods should assure reproductive success when resources are more predictable. In this work, we evaluated the relationship between flowering phenology and synchrony and reproductive success in Hypericum balearicum, a shrub flowering all year round but mainly during spring and summer. We studied two contrasting localities (differing mostly in rainfall) during 3 years, and at different biological scales spanning from localities to individual flowers and fruits. We first monitored (monthly) flowering phenology and reproductive success (fruit and seed set) of plants, and assessed whether in the locality with higher rainfall plants had longer flowering phenology and synchrony and relatively higher reproductive success within or outside the flowering peak. Secondly, we censused pollinators on H. balearicum individuals and measured reproductive success along the flowering peak of each locality to test for an association between (i) richness and abundance of pollinators and (ii) fruit and seed set, and seed weight. We found that most flowers (∼90 %) and the highest fruit set (∼70 %) were produced during the flowering peak of each locality. Contrary to expectations, plants in the locality with lower rainfall showed more relaxed flowering phenology and synchrony and set more fruits outside the flowering peak. During the flowering peak of each locality, the reproductive success of early-flowering individuals depended on a combination of both pollinator richness and abundance and rainfall; by contrast, reproductive success of late-flowering individuals was most dependent on rainfall. Plant species flowering for long periods in seasonal climates, thus, appear to be ideal organisms to understand how flowering phenology and synchrony match with biotic and abiotic resources, and

  4. Reproductive synchrony in a recovering bottlenecked sea turtle population.

    PubMed

    Plot, Virginie; de Thoisy, Benoît; Blanc, Stéphane; Kelle, Laurent; Lavergne, Anne; Roger-Bérubet, Hélène; Tremblay, Yann; Fossette, Sabrina; Georges, Jean-Yves

    2012-03-01

    1. The assessment of species extinction risk has been well established for some time now. Assessing the potential for recovery in endangered species is however much more challenging, because complementary approaches are required to detect reliable signals of positive trends. 2. This study combines genetics, demography and behavioural data at three different time-scales to assess historical and recent population changes and evidence of reproductive synchrony in a small population of olive ridley sea turtle Lepidochelys olivacea. Lepidochelys is considered as the most extraordinary example of reproductive synchrony in reptiles, yet to date, it has only been reported in large populations. 3. Using Bayesian coalescent-based models on microsatellite nuclear DNA variability, we demonstrate that effective population size in olive ridleys nesting in French Guiana has dramatically declined by 99% over the last 20 centuries. This low current population size is further illustrated by the absence of genetic mitochondrial DNA diversity in the present nesting population. Yet, monitoring of nesting sites in French Guiana suggests a possible recovery of the population over the last decade. 4. Satellite telemetry shows that over the first 14 days of their 28-days inter-nesting interval, i.e. when eggs maturation is likely to occur, gravid females disperse over the continental shelf. They then gather together with a striking spatiotemporal consistency close to the nesting site, where they later emerge for their second nesting event. 5. Our results therefore suggest that reproductive synchrony also occurs in small populations. Olive ridleys may ensure this synchrony by adjusting the duration of the second half of their inter-nesting interval prior to landing, possibly through social mediation. 6. Such reproductive synchrony may be related to the maintenance of some species-specific strategy despite former collapse and may contribute to the present population recovery. The gregarious

  5. Reproductive synchrony in a recovering bottlenecked sea turtle population.

    PubMed

    Plot, Virginie; de Thoisy, Benoît; Blanc, Stéphane; Kelle, Laurent; Lavergne, Anne; Roger-Bérubet, Hélène; Tremblay, Yann; Fossette, Sabrina; Georges, Jean-Yves

    2012-03-01

    1. The assessment of species extinction risk has been well established for some time now. Assessing the potential for recovery in endangered species is however much more challenging, because complementary approaches are required to detect reliable signals of positive trends. 2. This study combines genetics, demography and behavioural data at three different time-scales to assess historical and recent population changes and evidence of reproductive synchrony in a small population of olive ridley sea turtle Lepidochelys olivacea. Lepidochelys is considered as the most extraordinary example of reproductive synchrony in reptiles, yet to date, it has only been reported in large populations. 3. Using Bayesian coalescent-based models on microsatellite nuclear DNA variability, we demonstrate that effective population size in olive ridleys nesting in French Guiana has dramatically declined by 99% over the last 20 centuries. This low current population size is further illustrated by the absence of genetic mitochondrial DNA diversity in the present nesting population. Yet, monitoring of nesting sites in French Guiana suggests a possible recovery of the population over the last decade. 4. Satellite telemetry shows that over the first 14 days of their 28-days inter-nesting interval, i.e. when eggs maturation is likely to occur, gravid females disperse over the continental shelf. They then gather together with a striking spatiotemporal consistency close to the nesting site, where they later emerge for their second nesting event. 5. Our results therefore suggest that reproductive synchrony also occurs in small populations. Olive ridleys may ensure this synchrony by adjusting the duration of the second half of their inter-nesting interval prior to landing, possibly through social mediation. 6. Such reproductive synchrony may be related to the maintenance of some species-specific strategy despite former collapse and may contribute to the present population recovery. The gregarious

  6. Infanticide and within-clutch competition select for reproductive synchrony in a cooperative bird.

    PubMed

    Riehl, Christina

    2016-08-01

    Reproduction among members of social animal groups is often highly synchronized, but neither the selective advantages nor the proximate causes of synchrony are fully understood. Here I investigate the evolution of hatching synchrony in the Greater Ani (Crotophaga major), a communally nesting bird in which several unrelated females contribute eggs to a large, shared clutch. Hatching synchrony is variable, ranging from complete synchrony to moderate asynchrony, and is determined by the onset of incubation of the communal clutch. Data from a 10-year field study indicate that individual reproductive success is highest in synchronous groups, and that nestlings that hatch in the middle of the hatching sequence are most likely to survive. Nestling mortality is high in asynchronous clutches because early-hatching nestlings are more likely to be killed by adult group members, whereas late-hatching nestlings are more likely to starve due competition with their older nest-mates. Therefore, the timing of hatching appears to be under stabilizing selection from infanticide and resource competition acting in concert. These results provide empirical support for models predicting that synchrony may evolve as an adaptive counter-strategy to infanticide, and they highlight the importance of competition in shaping the timing of reproduction in social groups.

  7. Infanticide and within-clutch competition select for reproductive synchrony in a cooperative bird.

    PubMed

    Riehl, Christina

    2016-08-01

    Reproduction among members of social animal groups is often highly synchronized, but neither the selective advantages nor the proximate causes of synchrony are fully understood. Here I investigate the evolution of hatching synchrony in the Greater Ani (Crotophaga major), a communally nesting bird in which several unrelated females contribute eggs to a large, shared clutch. Hatching synchrony is variable, ranging from complete synchrony to moderate asynchrony, and is determined by the onset of incubation of the communal clutch. Data from a 10-year field study indicate that individual reproductive success is highest in synchronous groups, and that nestlings that hatch in the middle of the hatching sequence are most likely to survive. Nestling mortality is high in asynchronous clutches because early-hatching nestlings are more likely to be killed by adult group members, whereas late-hatching nestlings are more likely to starve due competition with their older nest-mates. Therefore, the timing of hatching appears to be under stabilizing selection from infanticide and resource competition acting in concert. These results provide empirical support for models predicting that synchrony may evolve as an adaptive counter-strategy to infanticide, and they highlight the importance of competition in shaping the timing of reproduction in social groups. PMID:27346386

  8. Predicting synchrony in heterogeneous pulse coupled oscillators.

    PubMed

    Talathi, Sachin S; Hwang, Dong-Uk; Miliotis, Abraham; Carney, Paul R; Ditto, William L

    2009-08-01

    Pulse coupled oscillators (PCOs) represent an ubiquitous model for a number of physical and biological systems. Phase response curves (PRCs) provide a general mathematical framework to analyze patterns of synchrony generated within these models. A general theoretical approach to account for the nonlinear contributions from higher-order PRCs in the generation of synchronous patterns by the PCOs is still lacking. Here, by considering a prototypical example of a PCO network, i.e., two synaptically coupled neurons, we present a general theory that extends beyond the weak-coupling approximation, to account for higher-order PRC corrections in the derivation of an approximate discrete map, the stable fixed point of which can predict the domain of 1:1 phase locked synchronous states generated by the PCO network.

  9. High reproductive synchrony of Acropora (Anthozoa: Scleractinia) in the Gulf of Aqaba, Red Sea

    PubMed Central

    Bouwmeester, Jessica; Berumen, Michael L.

    2015-01-01

    Coral spawning in the northern Gulf of Aqaba has been reported to be asynchronous, making it almost unique when compared to other regions in the world. Here, we document the reproductive condition of Acropora corals in early June 2014 in Dahab, in the Gulf of Aqaba, 125 km south of previous studies conducted in Eilat, Israel. Seventy-eight percent of Acropora colonies from 14 species had mature eggs, indicating that most colonies will spawn on or around the June full moon, with a very high probability of multi-species synchronous spawning. Given the proximity to Eilat, we predict that a comparable sampling protocol would detect similar levels of reproductive synchrony throughout the Gulf of Aqaba consistent with the hypothesis that high levels of spawning synchrony are a feature of all speciose coral assemblages. PMID:25653848

  10. [Interpopulation reproductive synchrony of Agave cocui (Agavaceae) in Venezuela].

    PubMed

    Figueredo, Carmen J; Villegas, José Luis; Nassar, Jafet M

    2011-09-01

    Agave cocui (Agavaceae) is a species with broad distribution in arid and semiarid areas of Venezuela and Colombia. Despite of its ecological importance as a source of food for wildlife, and its economic value for production of a spirit drink, studies on the reproductive ecology of the species are relatively rare. In this study, we conducted a one-year evaluation of the flowering and fruiting phenology of A. cocui in the eight representative localities of the species' distribution in Venezuela. Within each study site, we chose an area with a minimum of 50 reproductive individuals and followed their reproductive phenophases with the help of binoculars, using six qualitative cathegories (emerging reproductive stalk, flowers, inmature fruits, mature fruits, bulbils and dry stalk) every two months. Emergence of the reproductive stalk in most of the examined populations began in September (rainy season), although this event delayed two months in a few populations. We detected significant negative correlations between precipitation and the percentage of flowering occurrence in four of the eight populations. Floral resources are available for flower visitors during approximately five months of the year (January-May). In most populations production of flowers initiated in January (dry season), and for Western Venezuela and Andean regions, the flowering main peak occurred in January. Localities from the Central and Eastern Coast exhibited the flowering peak in March, showing a delay of approximately two months with respect to other populations. Beginning of fruit set varied among localities from January to May; however, peak production of mature fruits concentrated in May, and fruit occurrence varied broadly between 5.2 and 85%. Bulbil production was detected in all populations and varied greatly among them (maximum percentage per population: 26.19-92.10%). High flowering synchronicity (Phenophase Overlapping Index: 0.756 and 0.999) was observed among all populations

  11. Enforcement of reproductive synchrony via policing in a clonal ant.

    PubMed

    Teseo, Serafino; Kronauer, Daniel J C; Jaisson, Pierre; Châline, Nicolas

    2013-02-18

    In insect societies, worker policing controls genetic conflicts between individuals and increases colony efficiency. However, disentangling relatedness from colony-level effects is usually impossible. We studied policing in the parthenogenetic ant Cerapachys biroi, where genetic conflicts are absent due to clonality and reproduction is synchronized through stereotyped colony cycles. We show that larval cues regulate the cycles by suppressing ovarian activity and that individuals that fail to respond to these cues are policed and executed by their nestmates. These individuals are genetically identical to other colony members, confirming the absence of intracolonial genetic conflicts. At the same time, they bear distinct cuticular hydrocarbon profiles, which could serve as proximate recognition cues for policing. Policing in C. biroi keeps uncontrolled reproduction at bay and thereby maintains the colony-level phenotype. This study shows that policing can enforce adaptive colony-level phenotypes in societies with minimal or no potential genetic conflicts. In analogy to immunosurveillance on cancer cells in genetically homogeneous multicellular organisms, colony efficiency is improved via the control of individuals that do not respond properly to regulatory signals and compromise the functioning of the higher-level unit.

  12. Reproductive investment, synchrony and recruitment success in marine broadcast spawners: Effects of mating system and habitat (exposed shore versus estuary).

    PubMed

    Monteiro, Carla A; Serrão, Ester A; Pearson, Gareth A

    2015-12-01

    The timing and synchrony of gamete release in broadcast spawners have important implications for fertilization success, recruitment and to explain differences in reproductive success under distinct reproductive modes in sympatry. Our objective was to compare the reproductive timing and investment for sister species with contrasting mating systems; Fucus guiryi (selfing hermaphroditic) and Fucus vesiculosus (dioecious) in habitats with different wave exposures (exposed shore and estuary). Over two months, daily gamete release, recruitment and population structure were recorded. Our results show spawning synchrony between species and habitats, but release events in hermaphrodites occupied broader temporal windows in estuarine than exposed shore habitats. On the exposed shore both species increased the synchrony of release and amount of eggs. In the estuary, hermaphrodites relied on broader temporal spawning windows and a larger canopy, and the dioecious species had higher recruitment success, important factors determining persistence.

  13. Reproductive investment, synchrony and recruitment success in marine broadcast spawners: Effects of mating system and habitat (exposed shore versus estuary).

    PubMed

    Monteiro, Carla A; Serrão, Ester A; Pearson, Gareth A

    2015-12-01

    The timing and synchrony of gamete release in broadcast spawners have important implications for fertilization success, recruitment and to explain differences in reproductive success under distinct reproductive modes in sympatry. Our objective was to compare the reproductive timing and investment for sister species with contrasting mating systems; Fucus guiryi (selfing hermaphroditic) and Fucus vesiculosus (dioecious) in habitats with different wave exposures (exposed shore and estuary). Over two months, daily gamete release, recruitment and population structure were recorded. Our results show spawning synchrony between species and habitats, but release events in hermaphrodites occupied broader temporal windows in estuarine than exposed shore habitats. On the exposed shore both species increased the synchrony of release and amount of eggs. In the estuary, hermaphrodites relied on broader temporal spawning windows and a larger canopy, and the dioecious species had higher recruitment success, important factors determining persistence. PMID:26183537

  14. Comparative study of reproductive synchrony at various scales in deep-sea echinoderms

    NASA Astrophysics Data System (ADS)

    Baillon, Sandrine; Hamel, Jean-François; Mercier, Annie

    2011-03-01

    This study examined the influence of temporal and spatial factors on the determination of reproductive cycles in selected deep-water echinoderms. The prevalence of inter-individual synchrony in the gametogenesis of three ubiquitous species, Phormosoma placenta (Echinoidea), Hippasteria phrygiana (Asteroidea) and Mesothuria lactea (Holothuroidea) collected off the coast of Newfoundland and Labrador (eastern Canada), was determined. Analyses revealed diverse degrees of gametogenic asynchrony at the scales examined (within trawls, between trawls over similar or different periods, as well as among depths and locations over the same period). Taken as a whole, samples did not show any annual or seasonal patterns, whereas some sets of samples, taken over a particular time period in the same area and at the same depth, revealed well synchronized maturing and/or spawning periods in P. placenta and H. phrygiana. This study presents evidence that determination of reproductive cycles in many deep-sea species may be affected by low sampling resolution inherent to most deep-sea studies. More accurate assessments of reproductive patterns and periodicities may require much tighter collection designs as several species are likely to rely on long-term or transient pairing and aggregation to synchronize their breeding activities.

  15. Don't worry, be (moderately) happy: Mothers' anxiety and positivity during pregnancy independently predict lower mother-infant synchrony.

    PubMed

    Moore, Ginger A; Quigley, Kelsey M; Voegtline, Kristin M; DiPietro, Janet A

    2016-02-01

    Maternal positivity and mother-infant synchrony have been linked, independently, to beneficial infant outcomes; however, research that has examined relations between the two has found that higher positivity is associated with lower synchrony. Methodological issues may inform this counter-intuitive association and clinical theory supports its validity. This study examined the theory that heightened positivity associated with anxiety is a way of avoiding negative emotion and contributes to lower synchrony because it interferes with appropriate responding to infant cues. We examined mothers' (N=75) self-reported anxiety and verbal expression of positivity during pregnancy in relation to mother-infant synchrony at 6 months post-partum. Verbal positivity was assessed using linguistic analysis of interviews about pregnancy experiences. Mother and infant affect and gaze were coded during interaction and synchrony was computed as the correlation between mother and infant behaviors. Higher verbal positivity and anxiety during pregnancy independently predicted lower mother-infant synchrony, suggesting distinct pathways to the same degree of synchrony with potentially different consequences for infant development.

  16. Don't worry, be (moderately) happy: Mothers' anxiety and positivity during pregnancy independently predict lower mother-infant synchrony.

    PubMed

    Moore, Ginger A; Quigley, Kelsey M; Voegtline, Kristin M; DiPietro, Janet A

    2016-02-01

    Maternal positivity and mother-infant synchrony have been linked, independently, to beneficial infant outcomes; however, research that has examined relations between the two has found that higher positivity is associated with lower synchrony. Methodological issues may inform this counter-intuitive association and clinical theory supports its validity. This study examined the theory that heightened positivity associated with anxiety is a way of avoiding negative emotion and contributes to lower synchrony because it interferes with appropriate responding to infant cues. We examined mothers' (N=75) self-reported anxiety and verbal expression of positivity during pregnancy in relation to mother-infant synchrony at 6 months post-partum. Verbal positivity was assessed using linguistic analysis of interviews about pregnancy experiences. Mother and infant affect and gaze were coded during interaction and synchrony was computed as the correlation between mother and infant behaviors. Higher verbal positivity and anxiety during pregnancy independently predicted lower mother-infant synchrony, suggesting distinct pathways to the same degree of synchrony with potentially different consequences for infant development. PMID:26705933

  17. Hypothalamic gonadotropin-releasing hormone (GnRH) receptor neurons fire in synchrony with the female reproductive cycle.

    PubMed

    Schauer, Christian; Tong, Tong; Petitjean, Hugues; Blum, Thomas; Peron, Sophie; Mai, Oliver; Schmitz, Frank; Boehm, Ulrich; Leinders-Zufall, Trese

    2015-08-01

    Gonadotropin-releasing hormone (GnRH) controls mammalian reproduction via the hypothalamic-pituitary-gonadal (hpg) axis, acting on gonadotrope cells in the pituitary gland that express the GnRH receptor (GnRHR). Cells expressing the GnRHR have also been identified in the brain. However, the mechanism by which GnRH acts on these potential target cells remains poorly understood due to the difficulty of visualizing and identifying living GnRHR neurons in the central nervous system. We have developed a mouse strain in which GnRHR neurons express a fluorescent marker, enabling the reliable identification of these cells independent of the hormonal status of the animal. In this study, we analyze the GnRHR neurons of the periventricular hypothalamic nucleus in acute brain slices prepared from adult female mice. Strikingly, we find that the action potential firing pattern of these neurons alternates in synchrony with the estrous cycle, with pronounced burst firing during the preovulatory period. We demonstrate that GnRH stimulation is sufficient to trigger the conversion from tonic to burst firing in GnRHR neurons. Furthermore, we show that this switch in the firing pattern is reversed by a potent GnRHR antagonist. These data suggest that endogenous GnRH acts on GnRHR neurons and triggers burst firing in these cells during late proestrus and estrus. Our data have important clinical implications in that they indicate a novel mode of action for GnRHR agonists and antagonists in neurons of the central nervous system that are not part of the classical hpg axis.

  18. Hypothalamic gonadotropin-releasing hormone (GnRH) receptor neurons fire in synchrony with the female reproductive cycle

    PubMed Central

    Schauer, Christian; Tong, Tong; Petitjean, Hugues; Blum, Thomas; Peron, Sophie; Mai, Oliver; Schmitz, Frank; Boehm, Ulrich

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) controls mammalian reproduction via the hypothalamic-pituitary-gonadal (hpg) axis, acting on gonadotrope cells in the pituitary gland that express the GnRH receptor (GnRHR). Cells expressing the GnRHR have also been identified in the brain. However, the mechanism by which GnRH acts on these potential target cells remains poorly understood due to the difficulty of visualizing and identifying living GnRHR neurons in the central nervous system. We have developed a mouse strain in which GnRHR neurons express a fluorescent marker, enabling the reliable identification of these cells independent of the hormonal status of the animal. In this study, we analyze the GnRHR neurons of the periventricular hypothalamic nucleus in acute brain slices prepared from adult female mice. Strikingly, we find that the action potential firing pattern of these neurons alternates in synchrony with the estrous cycle, with pronounced burst firing during the preovulatory period. We demonstrate that GnRH stimulation is sufficient to trigger the conversion from tonic to burst firing in GnRHR neurons. Furthermore, we show that this switch in the firing pattern is reversed by a potent GnRHR antagonist. These data suggest that endogenous GnRH acts on GnRHR neurons and triggers burst firing in these cells during late proestrus and estrus. Our data have important clinical implications in that they indicate a novel mode of action for GnRHR agonists and antagonists in neurons of the central nervous system that are not part of the classical hpg axis. PMID:26063780

  19. Reassessing the Determinants of Breeding Synchrony in Ungulates

    PubMed Central

    English, Annie K.; Chauvenet, Aliénor L. M.; Safi, Kamran; Pettorelli, Nathalie

    2012-01-01

    Predicting the consequences of climate change is a major challenge in ecology and wildlife management. While the impact of changes in climatic conditions on distribution ranges has been documented for many organisms, the consequences of changes in resource dynamics for species' overall performance have seldom been investigated. This study addresses this gap by identifying the factors shaping the reproductive synchrony of ungulates. In temporally-variable environments, reproductive phenology of individuals is a key determinant of fitness, with the timing of reproduction affecting their reproductive output and future performance. We used a satellite-based index of resource availability to explore how the level of seasonality and inter-annual variability in resource dynamics affect birth season length of ungulate populations. Contrary to what was previously thought, we found that both the degree of seasonal fluctuation in resource dynamics and inter-annual changes in resource availability influence the degree of birth synchrony within wild ungulate populations. Our results highlight how conclusions from previous interspecific analyses, which did not consider the existence of shared life-history among species, should be treated with caution. They also support the existence of a multi-faceted link between temporal variation in resource availability and breeding synchrony in terrestrial mammals, and increase our understanding of the mechanisms shaping reproductive synchrony in large herbivores, thus enhancing our ability to predict the potential impacts of climate change on biodiversity. PMID:22911793

  20. Correlation and prediction uncertainties in the CyberKnife Synchrony respiratory tracking system

    SciTech Connect

    Pepin, Eric W.; Wu, Huanmei; Zhang, Yuenian; Lord, Bryce

    2011-07-15

    Purpose: The CyberKnife uses an online prediction model to improve radiation delivery when treating lung tumors. This study evaluates the prediction model used by the CyberKnife radiation therapy system in terms of treatment margins about the gross tumor volume (GTV). Methods: From the data log files produced by the CyberKnife synchrony model, the uncertainty in radiation delivery can be calculated. Modeler points indicate the tracked position of the tumor and Predictor points predict the position about 115 ms in the future. The discrepancy between Predictor points and their corresponding Modeler points was analyzed for 100 treatment model data sets from 23 de-identified lung patients. The treatment margins were determined in each anatomic direction to cover an arbitrary volume of the GTV, derived from the Modeler points, when the radiation is targeted at the Predictor points. Each treatment model had about 30 min of motion data, of which about 10 min constituted treatment time; only these 10 min were used in the analysis. The frequencies of margin sizes were analyzed and truncated Gaussian normal functions were fit to each direction's distribution. The standard deviation of each Gaussian distribution was then used to describe the necessary margin expansions in each signed dimension in order to achieve the desired coverage. In this study, 95% modeler point coverage was compared to 99% modeler coverage. Two other error sources were investigated: the correlation error and the targeting error. These were added to the prediction error to give an aggregate error for the CyberKnife during treatment of lung tumors. Results: Considering the magnitude of 2{sigma} from the mean of the Gaussian in each signed dimension, the margin expansions needed for 95% modeler point coverage were 1.2 mm in the lateral (LAT) direction and 1.7 mm in the anterior-posterior (AP) direction. For the superior-inferior (SI) direction, the fit was poor; but empirically, the expansions were 3.5 mm

  1. Synchrony-Desynchrony in the Tripartite Model of Fear: Predicting Treatment Outcome in Clinically Phobic Children

    PubMed Central

    Allen, Kristy Benoit; Allen, Ben; Austin, Kristin E.; Waldron, Jonathan C.; Ollendick, Thomas H.

    2015-01-01

    The tripartite model of fear posits that the fear response entails three loosely coupled components: subjective distress, behavioral avoidance, and physiological arousal. The concept of synchrony vs. desynchrony describes the degree to which changes in the activation of these components vary together (synchrony), independently, or inversely (both forms of desynchrony) over time. The present study assessed synchronony-desynchrony and its relationship to treatment outcome in a sample of 98 children with specific phobias both prior to and 1 week after receiving one-session treatment, a 3 hour cognitive-behavioral intervention. The results suggest an overall pattern of desynchronous change whereby youth improved on behavioral avoidance and subjective distress following treatment, but their level of cardiovascular reactivity remained stable. However, we found evidence that synchronous change on the behavioral avoidance and subjective distress components was related to better treatment outcome, whereas desynchronous change on these components was related to poorer treatment outcome. These findings suggest that a fuller understanding of the three response systems and their interrelations in phobic youth may assist us in the assessment and treatment of these disorders, potentially leading to a more person-centered approach and eventually to enhanced treatment outcomes. PMID:26073497

  2. EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke.

    PubMed

    Dubovik, Sviatlana; Ptak, Radek; Aboulafia, Tatiana; Magnin, Cécile; Gillabert, Nicole; Allet, Lara; Pignat, Jean-Michel; Schnider, Armin; Guggisberg, Adrian G

    2013-01-01

    Functional brain networks are known to be affected by focal brain lesions. However, the clinical relevance of these changes remains unclear. This study assesses resting-state functional connectivity (FC) with electroencephalography (EEG) and relates observed topography of FC to cognitive and motor deficits in patients three months after ischemic stroke. Twenty patients (mean age 61.3 years, range 37-80, 9 females) and nineteen age-matched healthy participants (mean age 66.7 years, range 36-88, 13 females) underwent a ten-minute EEG-resting state examination. The neural oscillations at each grey matter voxel were reconstructed using an adaptive spatial filter and imaginary component of coherence (IC) was calculated as an index of FC. Maps representing mean connectivity value at each voxel were correlated with the clinical data. Compared to healthy controls, alpha band IC of stroke patients was locally reduced in brain regions critical to observed behavioral deficits. A voxel-wise Pearson correlation of clinical performances with FC yielded maps of the neural structures implicated in motor, language, and executive function. This correlation was again specific to alpha band coherence. Ischemic lesions decrease the synchrony of alpha band oscillations between affected brain regions and the rest of the brain. This decrease is linearly related to cognitive and motor deficits observed in the patients.

  3. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment.

    PubMed

    Cole, Ella F; Long, Peter R; Zelazowski, Przemyslaw; Szulkin, Marta; Sheldon, Ben C

    2015-11-01

    Population-level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite-derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green-up for a 385-ha mixed-deciduous woodland. Using data spanning 13 years, we demonstrate that annual population-level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite-derived spring vegetation phenology. We go on to show that timing of local vegetation green-up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote-sensed vegetation phenology and reproductive phenology in both species. Marked within-population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small-scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within-population variation

  4. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment.

    PubMed

    Cole, Ella F; Long, Peter R; Zelazowski, Przemyslaw; Szulkin, Marta; Sheldon, Ben C

    2015-11-01

    Population-level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite-derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green-up for a 385-ha mixed-deciduous woodland. Using data spanning 13 years, we demonstrate that annual population-level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite-derived spring vegetation phenology. We go on to show that timing of local vegetation green-up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote-sensed vegetation phenology and reproductive phenology in both species. Marked within-population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small-scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within-population variation

  5. Endogenous rhythms influence interpersonal synchrony.

    PubMed

    Zamm, Anna; Wellman, Chelsea; Palmer, Caroline

    2016-05-01

    Interpersonal synchrony, the temporal coordination of actions between individuals, is fundamental to social behaviors from conversational speech to dance and music-making. Animal models indicate constraints on synchrony that arise from endogenous rhythms: Intrinsic periodic behaviors or processes that continue in the absence of change in external stimulus conditions. We report evidence for a direct causal link between endogenous rhythms and interpersonal synchrony in a music performance task, which places high demands on temporal coordination. We first establish that endogenous rhythms, measured by spontaneous rates of individual performance, are stable within individuals across stimulus materials, limb movements, and time points. We then test a causal link between endogenous rhythms and interpersonal synchrony by pairing each musician with a partner who is either matched or mismatched in spontaneous rate and by measuring their joint behavior up to 1 year later. Partners performed melodies together, using either the same or different hands. Partners who were matched for spontaneous rate showed greater interpersonal synchrony in joint performance than mismatched partners, regardless of hand used. Endogenous rhythms offer potential to predict optimal group membership in joint behaviors that require temporal coordination. PMID:26820249

  6. Does energy availability predict gastropod reproductive strategies?

    PubMed Central

    McClain, Craig R.; Filler, Ryan; Auld, Josh R.

    2014-01-01

    The diversity of reproductive strategies in nature is shaped by a plethora of factors including energy availability. For example, both low temperatures and limited food availability could increase larval exposure to predation by slowing development, selecting against pelagic and/or feeding larvae. The frequency of hermaphroditism could increase under low food availability as population density (and hence mate availability) decreases. We examine the relationship between reproductive/life-history traits and energy availability for 189 marine gastropod families. Only larval type was related to energy availability with the odds of having planktotrophic larvae versus direct development decreasing by 1% with every one-unit increase in the square root of carbon flux. Simultaneous hermaphroditism also potentially increases with carbon flux, but this effect disappears when accounting for evolutionary relationships among taxa. Our findings are in contrast to some theory and empirical work demonstrating that hermaphroditism should increase and planktotrophic development should decrease with decreasing productivity. Instead, they suggest that some reproductive strategies are too energetically expensive at low food availabilities, or arise only when energy is available, and others serve to capitalize on opportunities for aggregation or increased energy availability. PMID:25009058

  7. Computing with neural synchrony.

    PubMed

    Brette, Romain

    2012-01-01

    Neurons communicate primarily with spikes, but most theories of neural computation are based on firing rates. Yet, many experimental observations suggest that the temporal coordination of spikes plays a role in sensory processing. Among potential spike-based codes, synchrony appears as a good candidate because neural firing and plasticity are sensitive to fine input correlations. However, it is unclear what role synchrony may play in neural computation, and what functional advantage it may provide. With a theoretical approach, I show that the computational interest of neural synchrony appears when neurons have heterogeneous properties. In this context, the relationship between stimuli and neural synchrony is captured by the concept of synchrony receptive field, the set of stimuli which induce synchronous responses in a group of neurons. In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. This theory of synchrony-based computation shows that relative spike timing may indeed have computational relevance, and suggests new types of neural network models for sensory processing with appealing computational properties.

  8. Computing with Neural Synchrony

    PubMed Central

    Brette, Romain

    2012-01-01

    Neurons communicate primarily with spikes, but most theories of neural computation are based on firing rates. Yet, many experimental observations suggest that the temporal coordination of spikes plays a role in sensory processing. Among potential spike-based codes, synchrony appears as a good candidate because neural firing and plasticity are sensitive to fine input correlations. However, it is unclear what role synchrony may play in neural computation, and what functional advantage it may provide. With a theoretical approach, I show that the computational interest of neural synchrony appears when neurons have heterogeneous properties. In this context, the relationship between stimuli and neural synchrony is captured by the concept of synchrony receptive field, the set of stimuli which induce synchronous responses in a group of neurons. In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. This theory of synchrony-based computation shows that relative spike timing may indeed have computational relevance, and suggests new types of neural network models for sensory processing with appealing computational properties. PMID:22719243

  9. Long-term reproductive behaviour of woody plants across seven Bornean forest types in the Gunung Palung National Park (Indonesia): suprannual synchrony, temporal productivity and fruiting diversity.

    PubMed

    Cannon, Charles H; Curran, Lisa M; Marshall, Andrew J; Leighton, Mark

    2007-10-01

    For 68 months, we observed the reproductive behaviour of 7288 woody plants (172 figs, 1457 climbers and 5659 trees) spanning major soil and elevational gradients. Two 2-3 month community-wide supra-annual fruiting events were synchronized across five forest types, coinciding with ENSO events. At least 27 genera in 24 families restricted their reproduction to these events, which involved a substantial proportion of tree diversity (> 80% of phylogenetic diversity). During these events, mean reproductive levels (8.5%) represented an almost four-fold increase compared with other months. These patterns indicate a strong behavioural advantage to this unusual reproductive behaviour. Montane forest experienced a single, separate fruiting peak while the peat swamp forest did not participate. Excluding these events, no temporal reproductive pattern was detectable, at either the landscape or forest type. These phenological patterns have major implications for the conservation of frugivore communities, with montane and swamp forests acting as 'keystone' forests.

  10. Biodiversity ensures plant-pollinator phenological synchrony against climate change.

    PubMed

    Bartomeus, Ignasi; Park, Mia G; Gibbs, Jason; Danforth, Bryan N; Lakso, Alan N; Winfree, Rachael

    2013-11-01

    Climate change has the potential to alter the phenological synchrony between interacting mutualists, such as plants and their pollinators. However, high levels of biodiversity might buffer the negative effects of species-specific phenological shifts and maintain synchrony at the community level, as predicted by the biodiversity insurance hypothesis. Here, we explore how biodiversity might enhance and stabilise phenological synchrony between a valuable crop, apple and its native pollinators. We combine 46 years of data on apple flowering phenology with historical records of bee pollinators over the same period. When the key apple pollinators are considered altogether, we found extensive synchrony between bee activity and apple peak bloom due to complementarity among bee species' activity periods, and also a stable trend over time due to differential responses to warming climate among bee species. A simulation model confirms that high biodiversity levels can ensure plant-pollinator phenological synchrony and thus pollination function.

  11. Gamma synchrony predicts neuron-neuron correlations and correlations with motor behavior in extrastriate visual area MT.

    PubMed

    Lee, Joonyeol; Lisberger, Stephen G

    2013-12-11

    Correlated variability of neuronal responses is an important factor in estimating sensory parameters from a population response. Large correlations among neurons reduce the effective size of a neural population and increase the variation of the estimates. They also allow the activity of one neuron to be informative about impending perceptual decisions or motor actions on single trials. In extrastriate visual area MT of the rhesus macaque, for example, some but not all neurons show nonzero "choice probabilities" for perceptual decisions or non-zero "MT-pursuit" correlations between the trial-by-trial variations in neural activity and smooth pursuit eye movements. To understand the functional implications of zero versus nonzero correlations between neural responses and impending perceptions or actions, we took advantage of prior observations that specific frequencies of local field potentials reflect the correlated activity of neurons. We found that the strength of the spike-field coherence of a neuron in the gamma-band frequency range is related to the size of its MT-pursuit correlations for eye direction, as well as to the size of the neuron-neuron correlations. Spike-field coherence predicts MT-pursuit correlations better for direction than for speed, perhaps because the topographic organization of direction preference in MT is more amenable to creating meaningful local field potentials. We suggest that the relationship between spiking and local-field potentials is stronger for neurons that have larger correlations with their neighbors; larger neuron-neuron correlations create stronger MT-pursuit correlations. Neurons that lack strong correlations with their neighbors also have weaker correlations with pursuit behavior, but still could drive pursuit strongly.

  12. Monitoring spike train synchrony.

    PubMed

    Kreuz, Thomas; Chicharro, Daniel; Houghton, Conor; Andrzejak, Ralph G; Mormann, Florian

    2013-03-01

    Recently, the SPIKE-distance has been proposed as a parameter-free and timescale-independent measure of spike train synchrony. This measure is time resolved since it relies on instantaneous estimates of spike train dissimilarity. However, its original definition led to spuriously high instantaneous values for eventlike firing patterns. Here we present a substantial improvement of this measure that eliminates this shortcoming. The reliability gained allows us to track changes in instantaneous clustering, i.e., time-localized patterns of (dis)similarity among multiple spike trains. Additional new features include selective and triggered temporal averaging as well as the instantaneous comparison of spike train groups. In a second step, a causal SPIKE-distance is defined such that the instantaneous values of dissimilarity rely on past information only so that time-resolved spike train synchrony can be estimated in real time. We demonstrate that these methods are capable of extracting valuable information from field data by monitoring the synchrony between neuronal spike trains during an epileptic seizure. Finally, the applicability of both the regular and the real-time SPIKE-distance to continuous data is illustrated on model electroencephalographic (EEG) recordings. PMID:23221419

  13. Human reproductive costs and the predicted response to dietary restriction.

    PubMed

    Arking, Robert

    2007-09-01

    The question has arisen in the literature as to whether dietary restriction (DR) will have a significant effect on human longevity. I initially use literature data to estimate the energy costs necessary to carry a human from conception to caloric self-sufficiency to be approximately 12.6 x 10(6)kcal, which amounts to approximately 25% of the the two parents' combined daily caloric intake for 20 years. Similar levels of financial costs are expended in developed societies. Thus, human reproductive costs are high enough to permit a DR response. I then review four different models relating diet and life span, three of which have been previously used to estimate the effects of DR on humans. A review of the pertinent literature suggests that these three models, while plausible, are not capable of making robust predictions that are consistent with human data not used in their development. Given this weakness, none of the predictions made by these theories should be relied on for policy development at this time. The fourth, or biocultural model, examined combines biologic and cultural factors. Human longevity is more complex than our model systems have led us to believe, and thus any solution will require the development of a new quantitative model. The outlines of a suggested quantitative biocultural model based on the prior model of Crews and the disposable soma model of Shanley and Kirkwood are presented and a prediction of the possible data outcomes is made. If the human cultural pro-longevity practices can be quantified in terms of their effect on energy allocation, then this model may serve in future as a realistic quantitative model capable of identifying pertinent pathways and making robust predictions.

  14. Long-range neural synchrony in behavior

    PubMed Central

    Harris, Alexander Z.; Gordon, Joshua A.

    2015-01-01

    Long-range synchrony between distant brain regions accompanies multiple forms of behavior. This review compares and contrasts the methods by which long-range synchrony is evaluated in both humans and model animals. Three examples of behaviorally-relevant long-range synchrony are discussed in detail: gamma-frequency synchrony during visual perception; hippocampal-prefrontal synchrony during working memory; and prefrontal-amygdala synchrony during anxiety. Implications for circuit mechanism, translation, and clinical relevance are discussed. PMID:25897876

  15. Stabilizing synchrony by inhomogeneity

    PubMed Central

    Bolhasani, Ehsan; Valizadeh, Alireza

    2015-01-01

    We show that for two weakly coupled identical neuronal oscillators with strictly positive phase resetting curve, isochronous synchrony can only be seen in the absence of noise and an arbitrarily weak noise can destroy entrainment and generate intermittent phase slips. Small inhomogeneity–mismatch in the intrinsic firing rate of the neurons–can stabilize the phase locking and lead to more precise relative spike timing of the two neurons. The results can explain how for a class of neuronal models, including leaky integrate-fire model, inhomogeneity can increase correlation of spike trains when the neurons are synaptically connected. PMID:26338691

  16. Spatial synchrony in cisco recruitment

    USGS Publications Warehouse

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.

    2015-01-01

    We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.

  17. Brief Report: A Pilot Study of Parent-Child Biobehavioral Synchrony in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Baker, Jason K.; Fenning, Rachel M.; Howland, Mariann A.; Baucom, Brian R.; Moffitt, Jacquelyn; Erath, Stephen A.

    2015-01-01

    The theory of biobehavioral synchrony proposes that the predictive power of parent-child attunement likely lies in the manner with which behaviors are aligned with relevant biological processes. Symptoms of autism spectrum disorder (ASD) may challenge the formation of behavioral and physiological synchrony, but maintenance of such parent-child…

  18. Discovery of a secular trend in Cayo Santiago macaque reproduction.

    PubMed

    Hernández-Pacheco, Raisa; Rawlins, Richard G; Kessler, Matthew J; Delgado, Diana L; Ruiz-Lambides, Angelina V; Sabat, Alberto M

    2016-02-01

    Reproductive synchrony and the consequent clustering of births are hypothesized to be regulated by seasonal changes in rainfall and food availability. Such climate-related seasonality is, however, questionable in tropical populations occupying temporally invariant habitats year round. Using the long-term data of the Cayo Santiago rhesus macaques from 1973 to 2013, this study distinguishes synchrony (a greater than chance clustering of births) from seasonality (a cluster of births during a period of the year when abiotic conditions are favorable) and shows that females are highly synchronized (>72% of births in a 3-month period) but the effects of environmental zeitgebers on reproduction are overridden by biological factors. Specifically, biotic and abiotic factors including (i) loss of immature offspring; (ii) population density; (iii) age at delivery; (iv) rainfall; and (v) changes in colony management were modeled in relation to the annual onset of births and the median birth date. Females experiencing loss of immature offspring had an interbirth interval of <365 days in average and the proportion of these females increased up to 48% due to changes in colony management overtime, although reproductive synchrony increased with increasing population density. A secular trend in both the onset of births and the median date of birth is documented and the model predicts that the median birth date will advance across all calendar-based seasons by 2050. The secular trend in reproduction appears to be triggered by changes in the age at delivery of females, the absence of physiological constraints from maternal investment due to offspring loss, shorter interbirth interval, and a higher degree of coordination due to increasing population density. This study challenges the reproductive phenology previously described for rhesus macaques highlighting the importance of long-term studies in addressing the ultimate causes of reproductive synchrony. PMID:26540010

  19. Discovery of a secular trend in Cayo Santiago macaque reproduction.

    PubMed

    Hernández-Pacheco, Raisa; Rawlins, Richard G; Kessler, Matthew J; Delgado, Diana L; Ruiz-Lambides, Angelina V; Sabat, Alberto M

    2016-02-01

    Reproductive synchrony and the consequent clustering of births are hypothesized to be regulated by seasonal changes in rainfall and food availability. Such climate-related seasonality is, however, questionable in tropical populations occupying temporally invariant habitats year round. Using the long-term data of the Cayo Santiago rhesus macaques from 1973 to 2013, this study distinguishes synchrony (a greater than chance clustering of births) from seasonality (a cluster of births during a period of the year when abiotic conditions are favorable) and shows that females are highly synchronized (>72% of births in a 3-month period) but the effects of environmental zeitgebers on reproduction are overridden by biological factors. Specifically, biotic and abiotic factors including (i) loss of immature offspring; (ii) population density; (iii) age at delivery; (iv) rainfall; and (v) changes in colony management were modeled in relation to the annual onset of births and the median birth date. Females experiencing loss of immature offspring had an interbirth interval of <365 days in average and the proportion of these females increased up to 48% due to changes in colony management overtime, although reproductive synchrony increased with increasing population density. A secular trend in both the onset of births and the median date of birth is documented and the model predicts that the median birth date will advance across all calendar-based seasons by 2050. The secular trend in reproduction appears to be triggered by changes in the age at delivery of females, the absence of physiological constraints from maternal investment due to offspring loss, shorter interbirth interval, and a higher degree of coordination due to increasing population density. This study challenges the reproductive phenology previously described for rhesus macaques highlighting the importance of long-term studies in addressing the ultimate causes of reproductive synchrony.

  20. Maximal variability of phase synchrony in cortical networks with neuronal avalanches.

    PubMed

    Yang, Hongdian; Shew, Woodrow L; Roy, Rajarshi; Plenz, Dietmar

    2012-01-18

    Ongoing interactions among cortical neurons often manifest as network-level synchrony. Understanding the spatiotemporal dynamics of such spontaneous synchrony is important because it may (1) influence network response to input, (2) shape activity-dependent microcircuit structure, and (3) reveal fundamental network properties, such as an imbalance of excitation (E) and inhibition (I). Here we delineate the spatiotemporal character of spontaneous synchrony in rat cortex slice cultures and a computational model over a range of different E-I conditions including disfacilitated (antagonized AMPA, NMDA receptors), unperturbed, and disinhibited (antagonized GABA(A) receptors). Local field potential was recorded with multielectrode arrays during spontaneous burst activity. Synchrony among neuronal groups was quantified based on phase-locking among recording sites. As network excitability was increased from low to high, we discovered three phenomena at an intermediate excitability level: (1) onset of synchrony, (2) maximized variability of synchrony, and (3) neuronal avalanches. Our computational model predicted that these three features occur when the network operates near a unique balanced E-I condition called "criticality." These results were invariant to changes in the measurement spatial extent, spatial resolution, and frequency bands. Our findings indicate that moderate average synchrony, which is required to avoid pathology, occurs over a limited range of E-I conditions and emerges together with maximally variable synchrony. If variable synchrony is detrimental to cortical function, this is a cost paid for moderate average synchrony. However, if variable synchrony is beneficial, then by operating near criticality the cortex may doubly benefit from moderate mean and maximized variability of synchrony.

  1. Gaze Synchrony between Mothers with Mood Disorders and Their Infants: Maternal Emotion Dysregulation Matters

    PubMed Central

    Lotzin, Annett; Romer, Georg; Schiborr, Julia; Noga, Berit; Schulte-Markwort, Michael; Ramsauer, Brigitte

    2015-01-01

    A lowered and heightened synchrony between the mother’s and infant’s nonverbal behavior predicts adverse infant development. We know that maternal depressive symptoms predict lowered and heightened mother-infant gaze synchrony, but it is unclear whether maternal emotion dysregulation is related to mother-infant gaze synchrony. This cross-sectional study examined whether maternal emotion dysregulation in mothers with mood disorders is significantly related to mother-infant gaze synchrony. We also tested whether maternal emotion dysregulation is relatively more important than maternal depressive symptoms in predicting mother-infant gaze synchrony, and whether maternal emotion dysregulation mediates the relation between maternal depressive symptoms and mother-infant gaze synchrony. We observed 68 mothers and their 4- to 9-month-old infants in the Still-Face paradigm during two play interactions, before and after social stress was induced. The mothers’ and infants’ gaze behaviors were coded using microanalysis with the Maternal Regulatory Scoring System and Infant Regulatory Scoring System, respectively. The degree of mother-infant gaze synchrony was computed using time-series analysis. Maternal emotion dysregulation was measured by the Difficulties in Emotion Regulation Scale; depressive symptoms were assessed using the Beck Depression Inventory. Greater maternal emotion dysregulation was significantly related to heightened mother-infant gaze synchrony. The overall effect of maternal emotion dysregulation on mother-infant gaze synchrony was relatively more important than the effect of maternal depressive symptoms in the five tested models. Maternal emotion dysregulation fully mediated the relation between maternal depressive symptoms and mother-infant gaze synchrony. Our findings suggest that the effect of the mother’s depressive symptoms on the mother-infant gaze synchrony may be mediated by the mother’s emotion dysregulation. PMID:26657941

  2. Gaze Synchrony between Mothers with Mood Disorders and Their Infants: Maternal Emotion Dysregulation Matters.

    PubMed

    Lotzin, Annett; Romer, Georg; Schiborr, Julia; Noga, Berit; Schulte-Markwort, Michael; Ramsauer, Brigitte

    2015-01-01

    A lowered and heightened synchrony between the mother's and infant's nonverbal behavior predicts adverse infant development. We know that maternal depressive symptoms predict lowered and heightened mother-infant gaze synchrony, but it is unclear whether maternal emotion dysregulation is related to mother-infant gaze synchrony. This cross-sectional study examined whether maternal emotion dysregulation in mothers with mood disorders is significantly related to mother-infant gaze synchrony. We also tested whether maternal emotion dysregulation is relatively more important than maternal depressive symptoms in predicting mother-infant gaze synchrony, and whether maternal emotion dysregulation mediates the relation between maternal depressive symptoms and mother-infant gaze synchrony. We observed 68 mothers and their 4- to 9-month-old infants in the Still-Face paradigm during two play interactions, before and after social stress was induced. The mothers' and infants' gaze behaviors were coded using microanalysis with the Maternal Regulatory Scoring System and Infant Regulatory Scoring System, respectively. The degree of mother-infant gaze synchrony was computed using time-series analysis. Maternal emotion dysregulation was measured by the Difficulties in Emotion Regulation Scale; depressive symptoms were assessed using the Beck Depression Inventory. Greater maternal emotion dysregulation was significantly related to heightened mother-infant gaze synchrony. The overall effect of maternal emotion dysregulation on mother-infant gaze synchrony was relatively more important than the effect of maternal depressive symptoms in the five tested models. Maternal emotion dysregulation fully mediated the relation between maternal depressive symptoms and mother-infant gaze synchrony. Our findings suggest that the effect of the mother's depressive symptoms on the mother-infant gaze synchrony may be mediated by the mother's emotion dysregulation. PMID:26657941

  3. Psychosocial effects of perceived emotional synchrony in collective gatherings.

    PubMed

    Páez, Dario; Rimé, Bernard; Basabe, Nekane; Wlodarczyk, Anna; Zumeta, Larraitz

    2015-05-01

    In a classic theory, Durkheim (1912) predicted that because of the social sharing of emotion they generate, collective gatherings bring participants to a stage of collective effervescence in which they experience a sense of union with others and a feeling of empowerment accompanied by positive affect. This would lead them to leave the collective situation with a renewed sense of confidence in life and in social institutions. A century after Durkheim's predictions of these effects, though, they remained untested as a whole. This article reports 4 studies, 2 correlational, 1 semilongitudinal, and 1 experimental, assessing the positive effects of participation in either positively valenced (folkloric marches) or negatively valenced (protest demonstrations) collective gatherings. Results confirmed that collective gatherings consistently strengthened collective identity, identity fusion, and social integration, as well as enhancing personal and collective self-esteem and efficacy, positive affect, and positive social beliefs among participants. In line with a central tenet of the theory, emotional communion, or perceived emotional synchrony with others mediated these effects. Higher perceived emotional synchrony was associated with stronger emotional reactions, stronger social support, and higher endorsement of social beliefs and values. Participation in symbolic collective gatherings also particularly reinforced identity fusion when perceived emotional synchrony was high. The respective contributions of perceived emotional synchrony and flow, or optimal experience, were also assessed. Whereas perceived emotional synchrony emerged as strongly related to the various social outcomes, flow was observed to be related first to collective efficacy and self-esteem, and thus, to encompass mainly empowerment effects. PMID:25822033

  4. Establishing a Statistical Link between Network Oscillations and Neural Synchrony.

    PubMed

    Zhou, Pengcheng; Burton, Shawn D; Snyder, Adam C; Smith, Matthew A; Urban, Nathaniel N; Kass, Robert E

    2015-10-01

    Pairs of active neurons frequently fire action potentials or "spikes" nearly synchronously (i.e., within 5 ms of each other). This spike synchrony may occur by chance, based solely on the neurons' fluctuating firing patterns, or it may occur too frequently to be explicable by chance alone. When spike synchrony above chances levels is present, it may subserve computation for a specific cognitive process, or it could be an irrelevant byproduct of such computation. Either way, spike synchrony is a feature of neural data that should be explained. A point process regression framework has been developed previously for this purpose, using generalized linear models (GLMs). In this framework, the observed number of synchronous spikes is compared to the number predicted by chance under varying assumptions about the factors that affect each of the individual neuron's firing-rate functions. An important possible source of spike synchrony is network-wide oscillations, which may provide an essential mechanism of network information flow. To establish the statistical link between spike synchrony and network-wide oscillations, we have integrated oscillatory field potentials into our point process regression framework. We first extended a previously-published model of spike-field association and showed that we could recover phase relationships between oscillatory field potentials and firing rates. We then used this new framework to demonstrate the statistical relationship between oscillatory field potentials and spike synchrony in: 1) simulated neurons, 2) in vitro recordings of hippocampal CA1 pyramidal cells, and 3) in vivo recordings of neocortical V4 neurons. Our results provide a rigorous method for establishing a statistical link between network oscillations and neural synchrony. PMID:26465621

  5. Establishing a Statistical Link between Network Oscillations and Neural Synchrony

    PubMed Central

    Zhou, Pengcheng; Burton, Shawn D.; Snyder, Adam C.; Smith, Matthew A.; Urban, Nathaniel N.; Kass, Robert E.

    2015-01-01

    Pairs of active neurons frequently fire action potentials or “spikes” nearly synchronously (i.e., within 5 ms of each other). This spike synchrony may occur by chance, based solely on the neurons’ fluctuating firing patterns, or it may occur too frequently to be explicable by chance alone. When spike synchrony above chances levels is present, it may subserve computation for a specific cognitive process, or it could be an irrelevant byproduct of such computation. Either way, spike synchrony is a feature of neural data that should be explained. A point process regression framework has been developed previously for this purpose, using generalized linear models (GLMs). In this framework, the observed number of synchronous spikes is compared to the number predicted by chance under varying assumptions about the factors that affect each of the individual neuron’s firing-rate functions. An important possible source of spike synchrony is network-wide oscillations, which may provide an essential mechanism of network information flow. To establish the statistical link between spike synchrony and network-wide oscillations, we have integrated oscillatory field potentials into our point process regression framework. We first extended a previously-published model of spike-field association and showed that we could recover phase relationships between oscillatory field potentials and firing rates. We then used this new framework to demonstrate the statistical relationship between oscillatory field potentials and spike synchrony in: 1) simulated neurons, 2) in vitro recordings of hippocampal CA1 pyramidal cells, and 3) in vivo recordings of neocortical V4 neurons. Our results provide a rigorous method for establishing a statistical link between network oscillations and neural synchrony. PMID:26465621

  6. Unconscious errors enhance prefrontal-occipital oscillatory synchrony.

    PubMed

    Cohen, Michael X; van Gaal, Simon; Ridderinkhof, K Richard; Lamme, Victor A F

    2009-01-01

    The medial prefrontal cortex (MFC) is critical for our ability to learn from previous mistakes. Here we provide evidence that neurophysiological oscillatory long-range synchrony is a mechanism of post-error adaptation that occurs even without conscious awareness of the error. During a visually signaled Go/No-Go task in which half of the No-Go cues were masked and thus not consciously perceived, response errors enhanced tonic (i.e., over 1-2 s) oscillatory synchrony between MFC and occipital cortex (OCC) leading up to and during the subsequent trial. Spectral Granger causality analyses demonstrated that MFC --> OCC directional synchrony was enhanced during trials following both conscious and unconscious errors, whereas transient stimulus-induced occipital --> MFC directional synchrony was independent of errors in the previous trial. Further, the strength of pre-trial MFC-occipital synchrony predicted individual differences in task performance. Together, these findings suggest that synchronous neurophysiological oscillations are a plausible mechanism of MFC-driven cognitive control that is independent of conscious awareness. PMID:19956401

  7. Bordered tug-of-war models are neither general nor predictive of reproductive skew.

    PubMed

    Nonacs, Peter

    2010-10-21

    Models of reproductive skew assume reproductive shares are either conceded, competed over, or both. Previous mathematical evaluations found that simultaneous concessions and contests are evolutionarily unstable. Recently, Shen and Reeve (2010) challenged these conclusions and developed a series of sub-models they argued to be a unified approach to reproductive skew: the general bordered tug-of-war (BTOW). However, BTOW fails as a general model for two reasons: (1) the BTOW strategy cannot invade populations where individuals either only compete for or only concede reproductive shares and (2) contrary to Shen and Reeve's assertion, BTOW populations are easily invaded by strategies with fewer or no concessions, but competing at lower levels. The failure of BTOW as a general model has major implications for interpreting experiments on reproductive skew. A large number of studies have measured the effects of genetic relatedness and competitive ability on reproductive skew, with a great majority finding no significant correlation between variation in within-group relatedness or competitive ability and across-group differences in skew. No model of reproductive skew except one variant of the BTOW predicts such results. With the rejection of BTOW as a valid general model, it is clear that these results are contradictory to reproductive skew theory rather than supportive of it.

  8. Activity predicts male reproductive success in a polygynous lizard.

    PubMed

    Keogh, J Scott; Noble, Daniel W A; Wilson, Eleanor E; Whiting, Martin J

    2012-01-01

    Activity patterns and social interactions play a key role in determining reproductive success, although this is poorly understood for species that lack overt social behaviour. We used genetic paternity analysis to quantify both multiple paternity and the relative roles of activity and social behaviour in determining reproductive success in a nondescript Australian lizard. During the breeding season we intensively followed and recorded the behaviour of a group of seven males and 13 females in a naturalistic outdoor enclosure to examine the relative roles of body size, activity and social interactions in determining male fertilization success. We found multiple paternity in 42% of clutches. No single behaviour was a significant predictor of male fertilization success in isolation, but male-female association, interactions and courtship explained 41% of the variation in male fertilization success. Males with the highest number of offspring sired invested heavily in interacting with females but spent very little time in interactions with males. These same males also sired offspring from more clutches. When taken collectively, an index of overall male activity, including locomotion and all social interactions, significantly explained 81% of the variation in the total number of offspring sired and 90% of the variation in the number of clutches in which males sired offspring. We suggest that the most successful male strategy is a form of endurance rivalry in which active mate searching and interactions with females have the greatest fitness benefits.

  9. Brief Report: A Pilot Study of Parent-Child Biobehavioral Synchrony in Autism Spectrum Disorder.

    PubMed

    Baker, Jason K; Fenning, Rachel M; Howland, Mariann A; Baucom, Brian R; Moffitt, Jacquelyn; Erath, Stephen A

    2015-12-01

    The theory of biobehavioral synchrony proposes that the predictive power of parent-child attunement likely lies in the manner with which behaviors are aligned with relevant biological processes. Symptoms of autism spectrum disorder (ASD) may challenge the formation of behavioral and physiological synchrony, but maintenance of such parent-child attunement could prove beneficial. The present study is the first to examine parent-child physiological synchrony in ASD. Parent and child electrodermal activity (EDA) was measured continuously during naturalistic free play. Parent-child EDA synchrony (positive covariation) was positively correlated with observed parent-child emotional attunement. Hierarchical linear modeling revealed that child ASD symptoms moderated the association between parent EDA and child EDA, such that EDA synchrony was stronger for children with lower ASD symptom levels.

  10. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    USGS Publications Warehouse

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, Dawn M.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001–2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter’s linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  11. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    USGS Publications Warehouse

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  12. The predicted influence of climate change on lesser prairie-chicken reproductive parameters.

    PubMed

    Grisham, Blake A; Boal, Clint W; Haukos, David A; Davis, Dawn M; Boydston, Kathy K; Dixon, Charles; Heck, Willard R

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  13. Feather and faecal corticosterone concentrations predict future reproductive decisions in harlequin ducks (Histrionicus histrionicus).

    PubMed

    Hansen, Warren K; Bate, Lisa J; Landry, Devin W; Chastel, Olivier; Parenteau, Charline; Breuner, Creagh W

    2016-01-01

    Understanding sources of reproductive variation can inform management and conservation decisions, population ecology and life-history theory. Annual reproductive variation can drive population growth rate and can be influenced by factors from across the annual cycle (known as carry-over effects). The majority of studies, however, focus solely on the role of current environmental events. Past events often influence future reproductive decisions and success but can be logistically difficult to collect and quantify, especially in migratory species. Recent work indicates that glucocorticoids may prove good indicators to evaluate carry-over effects across life-history transitions. Here, we evaluated three different measures of glucocorticoid physiology (feathers, faeces and plasma) to evaluate the predictability of future breeding decision in the harlequin duck (Histrionicus histrionicus). We collected tail and back feathers, plasma and faeces for glucocorticoid analysis, and fitted female harlequin ducks with very high-frequency transmitters to track their breeding decisions. Both back feathers (moulted immediately before the current season) and faecal glucocorticoid metabolites were identified as important predictive factors of reproductive decisions; high concentrations of glucocorticoid metabolites in back feathers and faeces predicted a higher likelihood of reproductive deferral for the year. Although back and tail feather corticosterone concentrations were correlated, tail feathers (moulted at the end of the previous breeding season) did not predict breeding decisions. Plasma corticosterone concentrations were collected over too broad a time range after capture to be useful in this study. This study demonstrates the utility of non-invasive corticosterone metrics in predicting breeding decisions and supports the use of feathers to measure carry-over effects in migratory birds. With this technique, we identified the prenuptial moult as an important life

  14. Feather and faecal corticosterone concentrations predict future reproductive decisions in harlequin ducks (Histrionicus histrionicus)

    PubMed Central

    Hansen, Warren K.; Bate, Lisa J.; Landry, Devin W.; Chastel, Olivier; Parenteau, Charline; Breuner, Creagh W.

    2016-01-01

    Understanding sources of reproductive variation can inform management and conservation decisions, population ecology and life-history theory. Annual reproductive variation can drive population growth rate and can be influenced by factors from across the annual cycle (known as carry-over effects). The majority of studies, however, focus solely on the role of current environmental events. Past events often influence future reproductive decisions and success but can be logistically difficult to collect and quantify, especially in migratory species. Recent work indicates that glucocorticoids may prove good indicators to evaluate carry-over effects across life-history transitions. Here, we evaluated three different measures of glucocorticoid physiology (feathers, faeces and plasma) to evaluate the predictability of future breeding decision in the harlequin duck (Histrionicus histrionicus). We collected tail and back feathers, plasma and faeces for glucocorticoid analysis, and fitted female harlequin ducks with very high-frequency transmitters to track their breeding decisions. Both back feathers (moulted immediately before the current season) and faecal glucocorticoid metabolites were identified as important predictive factors of reproductive decisions; high concentrations of glucocorticoid metabolites in back feathers and faeces predicted a higher likelihood of reproductive deferral for the year. Although back and tail feather corticosterone concentrations were correlated, tail feathers (moulted at the end of the previous breeding season) did not predict breeding decisions. Plasma corticosterone concentrations were collected over too broad a time range after capture to be useful in this study. This study demonstrates the utility of non-invasive corticosterone metrics in predicting breeding decisions and supports the use of feathers to measure carry-over effects in migratory birds. With this technique, we identified the prenuptial moult as an important life

  15. Use of social indices to predict reproductive success in canvasbacks

    USGS Publications Warehouse

    Serie, J.R.; Cowardin, L.M.

    1990-01-01

    We correlated temporal changes in social groupings of canvasbacks (Aythya valisineria) breeding near Minnedosa, Manitoba, with an independent estimate of hen success during 1974-80. Roadside counts of pairs, lone males, and flocked males were made along transects at 5-day intervals, normalized to percentages to allow comparisons among years, and plotted to obtain measurements of selected areas between and under the curves. An estimate of hen success was regressed on these selected graph areas each year to derive a predictive equation. Graph areas (social indices) determined from temporal changes in the proportion of pairs, lone males, and flocked males correlated (ri?? = 0.69-0.93) with hen success. This technique avoids the need for pair counts, nest searches, and brood counts and provides managers with a useful index to evaluate local management practices and to predict yearly production in time for setting hunting regulations.

  16. Nonverbal synchrony of head- and body-movement in psychotherapy: different signals have different associations with outcome

    PubMed Central

    Ramseyer, Fabian; Tschacher, Wolfgang

    2014-01-01

    Objective: The coordination of patient’s and therapist’s bodily movement – nonverbal synchrony – has been empirically shown to be associated with psychotherapy outcome. This finding was based on dynamic movement patterns of the whole body. The present paper is a new analysis of an existing dataset (Ramseyer and Tschacher, 2011), which extends previous findings by differentiating movements pertaining to head and upper-body regions. Method: In a sample of 70 patients (37 female, 33 male) treated at an outpatient psychotherapy clinic, we quantified nonverbal synchrony with an automated objective video-analysis algorithm (motion energy analysis). Head- and body-synchrony was quantified during the initial 15 min of video-recorded therapy sessions. Micro-outcome was assessed with self-report post-session questionnaires provided by patients and their therapists. Macro-outcome was measured with questionnaires that quantified attainment of treatment goals and changes in experiencing and behavior at the end of therapy. Results: The differentiation of head- and body-synchrony showed that these two facets of motor coordination were differentially associated with outcome. Head-synchrony predicted global outcome of therapy, while body-synchrony did not, and body-synchrony predicted session outcome, while head-synchrony did not. Conclusion: The results pose an important amendment to previous findings, which showed that nonverbal synchrony embodied both outcome and interpersonal variables of psychotherapy dyads. The separation of head- and body-synchrony suggested that distinct mechanisms may operate in these two regions: Head-synchrony embodied phenomena with a long temporal extension (overall therapy success), while body-synchrony embodied phenomena of a more immediate nature (session-level success). More explorations with fine-grained analyses of synchronized phenomena in nonverbal behavior may shed additional light on the embodiment of psychotherapy process. PMID

  17. Elevated glucocorticoid concentrations during gestation predict reduced reproductive success in subordinate female banded mongooses

    PubMed Central

    Sanderson, J. L.; Nichols, H. J.; Marshall, H. H.; Vitikainen, E. I. K.; Thompson, F. J.; Walker, S. L.; Cant, M. A.; Young, A. J.

    2015-01-01

    Dominant females in social species have been hypothesized to reduce the reproductive success of their subordinates by inducing elevated circulating glucocorticoid (GC) concentrations. However, this ‘stress-related suppression' hypothesis has received little support in cooperatively breeding species, despite evident reproductive skews among females. We tested this hypothesis in the banded mongoose (Mungos mungo), a cooperative mammal in which multiple females conceive and carry to term in each communal breeding attempt. As predicted, lower ranked females had lower reproductive success, even among females that carried to term. While there were no rank-related differences in faecal glucocorticoid (fGC) concentrations prior to gestation or in the first trimester, lower ranked females had significantly higher fGC concentrations than higher ranked females in the second and third trimesters. Finally, females with higher fGC concentrations during the third trimester lost a greater proportion of their gestated young prior to their emergence from the burrow. Together, our results are consistent with a role for rank-related maternal stress in generating reproductive skew among females in this cooperative breeder. While studies of reproductive skew frequently consider the possibility that rank-related stress reduces the conception rates of subordinates, our findings highlight the possibility of detrimental effects on reproductive outcomes even after pregnancies have become established. PMID:26510673

  18. Elevated glucocorticoid concentrations during gestation predict reduced reproductive success in subordinate female banded mongooses.

    PubMed

    Sanderson, J L; Nichols, H J; Marshall, H H; Vitikainen, E I K; Thompson, F J; Walker, S L; Cant, M A; Young, A J

    2015-10-01

    Dominant females in social species have been hypothesized to reduce the reproductive success of their subordinates by inducing elevated circulating glucocorticoid (GC) concentrations. However, this 'stress-related suppression' hypothesis has received little support in cooperatively breeding species, despite evident reproductive skews among females. We tested this hypothesis in the banded mongoose (Mungos mungo), a cooperative mammal in which multiple females conceive and carry to term in each communal breeding attempt. As predicted, lower ranked females had lower reproductive success, even among females that carried to term. While there were no rank-related differences in faecal glucocorticoid (fGC) concentrations prior to gestation or in the first trimester, lower ranked females had significantly higher fGC concentrations than higher ranked females in the second and third trimesters. Finally, females with higher fGC concentrations during the third trimester lost a greater proportion of their gestated young prior to their emergence from the burrow. Together, our results are consistent with a role for rank-related maternal stress in generating reproductive skew among females in this cooperative breeder. While studies of reproductive skew frequently consider the possibility that rank-related stress reduces the conception rates of subordinates, our findings highlight the possibility of detrimental effects on reproductive outcomes even after pregnancies have become established. PMID:26510673

  19. Voice and Handgrip Strength Predict Reproductive Success in a Group of Indigenous African Females

    PubMed Central

    Sorokowska, Agnieszka; Sorokowski, Piotr; Mberira, Mara; Bartels, Astrid; Gallup, Gordon G.

    2012-01-01

    Evolutionary accounts of human traits are often based on proxies for genetic fitness (e.g., number of sex partners, facial attractiveness). Instead of using proxies, actual differences in reproductive success is a more direct measure of Darwinian fitness. Certain voice acoustics such as fundamental frequency and measures of health such as handgrip strength correlate with proxies of fitness, yet there are few studies showing the relation of these traits to reproduction. Here, we explore whether the fundamental frequency of the voice and handgrip strength account for differences in actual reproduction among a population of natural fertility humans. Our results show that both fundamental frequency and handgrip strength predict several measures of reproductive success among a group of indigenous Namibian females, particularly amongst the elderly, with weight also predicting reproductive outcomes among males. These findings demonstrate that both hormonally regulated and phenotypic quality markers can be used as measures of Darwinian fitness among humans living under conditions that resemble the evolutionary environment of Homo sapiens. We also argue that these findings provide support for the Grandmother Hypothesis. PMID:22870251

  20. Macroecology of Sexual Selection: A Predictive Conceptual Framework for Large-Scale Variation in Reproductive Traits.

    PubMed

    Machado, Glauco; Buzatto, Bruno A; García-Hernández, Solimary; Macías-Ordóñez, Rogelio

    2016-09-01

    Abiotic factors exert direct and indirect influences on behavioral, morphological, and life-history traits. Because some of these traits are related to reproduction, there is a causal link between climatic conditions and the expression of reproductive traits. This link allows us to generate predictions on how reproductive traits vary in large geographic scales. Here we formalize this macroecological framework, present some general predictions, and explore empirical examples using harvestmen as study organisms. Our results show that the length of breeding season in harvestmen is primarily influenced by the number of warm months and that precipitation plays a secondary role in modulating the period devoted to reproduction. Moreover, we show that the probability of resource defense polygyny increases with longer breeding seasons and that the presence of this type of mating system positively affects the magnitude of sexual dimorphism in harvestmen. Finally, the presence of postovipositional parental care is also influenced by the length of breeding season but not by actual evapotranspiration, which is our proxy for the intensity of biotic interactions. We argue that the macroecological framework proposed here may be a fruitful field of investigation, with important implications for our understanding of sexual selection and the evolution of reproductive traits in both animals and plants. PMID:27513913

  1. Synchrony - Cyberknife Respiratory Compensation Technology

    SciTech Connect

    Ozhasoglu, Cihat Saw, Cheng B.; Chen Hungcheng; Burton, Steven; Komanduri, Krishna; Yue, Ning J.; Huq, Saiful M.; Heron, Dwight E.

    2008-07-01

    Studies of organs in the thorax and abdomen have shown that these organs can move as much as 40 mm due to respiratory motion. Without compensation for this motion during the course of external beam radiation therapy, the dose coverage to target may be compromised. On the other hand, if compensation of this motion is by expansion of the margin around the target, a significant volume of normal tissue may be unnecessarily irradiated. In hypofractionated regimens, the issue of respiratory compensation becomes an important factor and is critical in single-fraction extracranial radiosurgery applications. CyberKnife is an image-guided radiosurgery system that consists of a 6-MV LINAC mounted to a robotic arm coupled through a control loop to a digital diagnostic x-ray imaging system. The robotic arm can point the beam anywhere in space with 6 degrees of freedom, without being constrained to a conventional isocenter. The CyberKnife has been recently upgraded with a real-time respiratory tracking and compensation system called Synchrony. Using external markers in conjunction with diagnostic x-ray images, Synchrony helps guide the robotic arm to move the radiation beam in real time such that the beam always remains aligned with the target. With the aid of Synchrony, the tumor motion can be tracked in three-dimensional space, and the motion-induced dosimetric change to target can be minimized with a limited margin. The working principles, advantages, limitations, and our clinical experience with this new technology will be discussed.

  2. Plant reproductive allocation predicts herbivore dynamics across spatial and temporal scales.

    PubMed

    Miller, Tom E X; Tyre, Andrew J; Louda, Svata M

    2006-11-01

    Life-history theory suggests that iteroparous plants should be flexible in their allocation of resources toward growth and reproduction. Such plasticity could have consequences for herbivores that prefer or specialize on vegetative versus reproductive structures. To test this prediction, we studied the response of the cactus bug (Narnia pallidicornis) to meristem allocation by tree cholla cactus (Opuntia imbricata). We evaluated the explanatory power of demographic models that incorporated variation in cactus relative reproductive effort (RRE; the proportion of meristems allocated toward reproduction). Field data provided strong support for a single model that defined herbivore fecundity as a time-varying, increasing function of host RRE. High-RRE plants were predicted to support larger insect populations, and this effect was strongest late in the season. Independent field data provided strong support for these qualitative predictions and suggested that plant allocation effects extend across temporal and spatial scales. Specifically, late-season insect abundance was positively associated with interannual changes in cactus RRE over 3 years. Spatial variation in insect abundance was correlated with variation in RRE among five cactus populations across New Mexico. We conclude that plant allocation can be a critical component of resource quality for insect herbivores and, thus, an important mechanism underlying variation in herbivore abundance across time and space.

  3. Body Condition Indices Predict Reproductive Success but Not Survival in a Sedentary, Tropical Bird

    PubMed Central

    Milenkaya, Olga; Catlin, Daniel H.; Legge, Sarah; Walters, Jeffrey R.

    2015-01-01

    Body condition may predict individual fitness because those in better condition have more resources to allocate towards improving their fitness. However, the hypothesis that condition indices are meaningful proxies for fitness has been questioned. Here, we ask if intraspecific variation in condition indices predicts annual reproductive success and survival. We monitored a population of Neochmia phaeton (crimson finch), a sedentary, tropical passerine, for reproductive success and survival over four breeding seasons, and sampled them for commonly used condition indices: mass adjusted for body size, muscle and fat scores, packed cell volume, hemoglobin concentration, total plasma protein, and heterophil to lymphocyte ratio. Our study population is well suited for this research because individuals forage in common areas and do not hold territories such that variation in condition between individuals is not confounded by differences in habitat quality. Furthermore, we controlled for factors that are known to impact condition indices in our study population (e.g., breeding stage) such that we assessed individual condition relative to others in the same context. Condition indices that reflect energy reserves predicted both the probability of an individual fledging young and the number of young produced that survived to independence, but only during some years. Those that were relatively heavy for their body size produced about three times more independent young compared to light individuals. That energy reserves are a meaningful predictor of reproductive success in a sedentary passerine supports the idea that energy reserves are at least sometimes predictors of fitness. However, hematological indices failed to predict reproductive success and none of the indices predicted survival. Therefore, some but not all condition indices may be informative, but because we found that most indices did not predict any component of fitness, we question the ubiquitous interpretation of

  4. Body Condition Indices Predict Reproductive Success but Not Survival in a Sedentary, Tropical Bird.

    PubMed

    Milenkaya, Olga; Catlin, Daniel H; Legge, Sarah; Walters, Jeffrey R

    2015-01-01

    Body condition may predict individual fitness because those in better condition have more resources to allocate towards improving their fitness. However, the hypothesis that condition indices are meaningful proxies for fitness has been questioned. Here, we ask if intraspecific variation in condition indices predicts annual reproductive success and survival. We monitored a population of Neochmia phaeton (crimson finch), a sedentary, tropical passerine, for reproductive success and survival over four breeding seasons, and sampled them for commonly used condition indices: mass adjusted for body size, muscle and fat scores, packed cell volume, hemoglobin concentration, total plasma protein, and heterophil to lymphocyte ratio. Our study population is well suited for this research because individuals forage in common areas and do not hold territories such that variation in condition between individuals is not confounded by differences in habitat quality. Furthermore, we controlled for factors that are known to impact condition indices in our study population (e.g., breeding stage) such that we assessed individual condition relative to others in the same context. Condition indices that reflect energy reserves predicted both the probability of an individual fledging young and the number of young produced that survived to independence, but only during some years. Those that were relatively heavy for their body size produced about three times more independent young compared to light individuals. That energy reserves are a meaningful predictor of reproductive success in a sedentary passerine supports the idea that energy reserves are at least sometimes predictors of fitness. However, hematological indices failed to predict reproductive success and none of the indices predicted survival. Therefore, some but not all condition indices may be informative, but because we found that most indices did not predict any component of fitness, we question the ubiquitous interpretation of

  5. Temporal variation in the synchrony of weather and its consequences for spatiotemporal population dynamics.

    PubMed

    Allstadt, Andrew J; Liebhold, Andrew M; Johnson, Derek M; Davis, Robert E; Haynes, Kyle J

    2015-11-01

    Over large areas, synchronous fluctuations in population density are often attributed to environmental stochasticity (e.g., weather) shared among local populations. This concept was first advanced by Patrick Moran who showed, based on several assumptions, that long-term population synchrony will equal the synchrony of environmental stochasticity among locations. We examine the consequences of violating one of Moran's assumptions, namely that environmental synchrony is constant through time. We demonstrate that the synchrony of weather conditions from regions across the United States varied considerably from 1895 to 2010. Using a simulation model modified from Moran's original study, we show that temporal variation in environmental synchrony can cause changes in population synchrony, which in turn can temporarily increase or decrease the amplitude of regional-scale population fluctuations. A case study using the gypsy moth (Lymantria dispar) provides empirical support for these predictions. This study provides theoretical and empirical evidence that temporal variation in environmental synchrony can be used to identify factors that synchronize population fluctuations and highlights a previously underappreciated cause of variability in population dynamics.

  6. Temporal variation in the synchrony of weather and its consequences for spatiotemporal population dynamics.

    PubMed

    Allstadt, Andrew J; Liebhold, Andrew M; Johnson, Derek M; Davis, Robert E; Haynes, Kyle J

    2015-11-01

    Over large areas, synchronous fluctuations in population density are often attributed to environmental stochasticity (e.g., weather) shared among local populations. This concept was first advanced by Patrick Moran who showed, based on several assumptions, that long-term population synchrony will equal the synchrony of environmental stochasticity among locations. We examine the consequences of violating one of Moran's assumptions, namely that environmental synchrony is constant through time. We demonstrate that the synchrony of weather conditions from regions across the United States varied considerably from 1895 to 2010. Using a simulation model modified from Moran's original study, we show that temporal variation in environmental synchrony can cause changes in population synchrony, which in turn can temporarily increase or decrease the amplitude of regional-scale population fluctuations. A case study using the gypsy moth (Lymantria dispar) provides empirical support for these predictions. This study provides theoretical and empirical evidence that temporal variation in environmental synchrony can be used to identify factors that synchronize population fluctuations and highlights a previously underappreciated cause of variability in population dynamics. PMID:27070013

  7. Lead effects on the predictability of reproductive behavior in fathead minnows (Pimephales promelas): A mathematical model

    SciTech Connect

    Alados, C.L.; Weber, D.N.

    1999-10-01

    Lead (Pb) has been shown to affect the behavior of a wide variety of vertebrates, including fish, amphibians, and mammals. This article re-examines previous data on the effect of short-term, sublethal levels of waterborne Pb on the reproductive behavior of fathead minnows (Pimephales promelas). Previous research has found that Pb decreased the time spent in displaying specific reproductive behaviors in male minnows. Because each activity performed within a sequence depends upon previous parts of the sequence, the reproductive behavior of fish is not randomly distributed but is presented as a long-range self-similar correlation. By treating these data as a fractal dimension, it is now possible to determine changes in the long-term correlation of different behavioral sequences involved in nest maintenance owing to Pb exposure, both before and after adult males attain reproductive maturity. The authors hypothesized that the scaling exponent of this fluctuation varies in relation with environmental contaminants. Known Pb-induced changes in hormonal activity may account for changes in observed reproductive and nest maintenance behaviors. Pb-exposed fish exhibited higher levels of predictability in their behavioral sequences, i.e., they demonstrated an increase in the scaling parameter of the fluctuation {alpha}. However, if Pb was introduced after sexual maturity was observed, there was no significant difference in the scaling component {alpha}. Thus, the use of fractal dimension may provide a useful tool to analyze the effects of environmental contaminants and other stresses.

  8. Examination of menstrual synchrony among women basketball players.

    PubMed

    Weller, A; Weller, L

    1995-01-01

    Based on the hypothesis that olfactory communication may underlie menstrual synchrony, we examined menstrual synchrony among eight professional basketball teams in the Israeli womens' major basketball league. We investigated whether team synchrony occurred, whether best friends among the teammates synchronized, and whether menstrual-related or social-interaction factors were associated with synchrony. Synchrony was not found among the teams nor among best friends. No meaningful relation was found between synchrony and menstrual-related or social-interaction variables.

  9. Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants

    PubMed Central

    Nord, Eric A.; Shea, Katriona; Lynch, Jonathan P.

    2011-01-01

    Background and Aims Timing of reproduction is a key life-history trait that is regulated by resource availability. Delayed reproduction in soils with low phosphorus availability is common among annuals, in contrast to the accelerated reproduction typical of other low-nutrient environments. It is hypothesized that this anomalous response arises from the high marginal value of additional allocation to root growth caused by the low mobility of phosphorus in soils. Methods To better understand the benefits and costs of such delayed reproduction, a two-resource dynamic allocation model of plant growth and reproduction is presented. The model incorporates growth, respiration, and carbon and phosphorus acquisition of both root and shoot tissue, and considers the reallocation of resources from senescent leaves. The model is parameterized with data from Arabidopsis and the optimal reproductive phenology is explored in a range of environments. Key Results The model predicts delayed reproduction in low-phosphorus environments. Reproductive timing in low-phosphorus environments is quite sensitive to phosphorus mobility, but is less sensitive to the temporal distribution of mortality risks. In low-phosphorus environments, the relative metabolic cost of roots was greater, and reproductive allocation reduced, compared with high-phosphorus conditions. The model suggests that delayed reproduction in response to low phosphorus availability may be reduced in plants adapted to environments where phosphorus mobility is greater. Conclusions Delayed reproduction in low-phosphorus soils can be a beneficial response allowing for increased acquisition and utilization of phosphorus. This finding has implications both for efforts to breed crops for low-phosphorus soils, and for efforts to understand how climate change may impact plant growth and productivity in low-phosphorus environments. PMID:21712299

  10. Building trust: Heart rate synchrony and arousal during joint action increased by public goods game.

    PubMed

    Mitkidis, Panagiotis; McGraw, John J; Roepstorff, Andreas; Wallot, Sebastian

    2015-10-01

    The physiological processes underlying trust are subject of intense interest in the behavioral sciences. However, very little is known about how trust modulates the affective link between individuals. We show here that trust has an effect on heart rate arousal and synchrony, a result consistent with research on joint action and experimental economics. We engaged participants in a series of joint action tasks which, for one group of participants, was interleaved with a PGG, and measured their heart synchrony and arousal. We found that the introduction of the economic game shifted participants' attention to the dynamics of the interaction. This was followed by increased arousal and synchrony of heart rate profiles. Also, the degree of heart rate synchrony was predictive of participants' expectations regarding their partners in the economic game. We conclude that the above changes in physiology and behavior are shaped by the valuation of other people's social behavior, and ultimately indicate trust building process.

  11. Economic benefits of using adaptive predictive models of reproductive toxicity in the context of a tiered testing program

    EPA Science Inventory

    A predictive model of reproductive toxicity, as observed in rat multigeneration reproductive (MGR) studies, was previously developed using high throughput screening (HTS) data from 36 in vitro assays mapped to 8 genes or gene-sets from Phase I of USEPA ToxCast research program, t...

  12. Month of birth predicted reproductive success and fitness in pre-modern Canadian women.

    PubMed Central

    Lummaa, Virpi; Tremblay, Marc

    2003-01-01

    Conditions experienced during early development affect human health and survival in adulthood, but whether such effects have consequences for fitness is not known. One surrogate for early conditions is month of birth, which is known to influence health and survival in many human populations. We show that in nineteenth century Canada, month of birth predicted a woman's fitness measured by the number of grandchildren produced, with the genetic contribution to the following generations by women born in different months differing by over seven grandchildren. This difference was mainly caused by differences in the reproductive rates of both mothers and their offspring, rather than differences in their survival. Women born in the best months of the year had longer reproductive lifespans, larger numbers of live births and raised more offspring to adulthood than those who were born in the worst months. Furthermore, the offspring of those women born in the best months also had greater reproductive rates, suggesting that month of birth also influenced a mother's ability to invest in her offspring. Our results suggest that early conditions may have important consequences for human lifetime reproductive performance within and between generations, and that timing of birth had large effects on fitness in this rural community. PMID:14667351

  13. In the company of cowbirds, Molothrus ater ater: robust patterns of sociability predict reproductive performance.

    PubMed

    Kohn, Gregory M; King, Andrew P; Dohme, Rebekka; Meredith, Gwendŵr R; West, Meredith J

    2013-02-01

    Many species exhibit behavioral tendencies that are stable over time and across contexts. Robust variation in sociability, or the propensity to approach others, is widespread across the vertebrates. Nonetheless, the influence of sociability on reproductive performance is largely unknown. In this study, we explore the relationship between sociability and reproductive behavior in flocks of Brown-headed Cowbirds (Molothrus ater ater). In spring 2011, we separated birds into three large aviaries based on the number of approaches they initiated and received during fall 2010. Females were separated into high, intermediate, and low sociable flocks, while male sociability was spread evenly across the three flocks. Here we report for the first time that different patterns of social approach tendencies in the fall predicted reproductive behavior in the spring. The high sociable flocks contained more laying females who produced more eggs in contrast to the other flocks. Male courtship behavior was comparable across the three flocks. These findings suggest that robust variation in sociability is an important factor in reproductive performance.

  14. Exit from Synchrony in Joint Improvised Motion

    PubMed Central

    Dahan, Assi; Noy, Lior; Hart, Yuval; Mayo, Avi; Alon, Uri

    2016-01-01

    Motion synchrony correlates with effective and well-rated human interaction. However, people do not remain locked in synchrony; Instead, they repeatedly enter and exit synchrony. In many important interactions, such as therapy, marriage and parent-infant communication, it is the ability to exit and then re-enter synchrony that is thought to build strong relationship. The phenomenon of entry into zero-phase synchrony is well-studied experimentally and in terms of mathematical modeling. In contrast, exit-from-synchrony is under-studied. Here, we focus on human motion coordination, and examine the exit-from-synchrony phenomenon using experimental data from the mirror game paradigm, in which people perform joint improvised motion, and from human tracking of computer-generated stimuli. We present a mathematical mechanism that captures aspects of exit-from-synchrony in human motion. The mechanism adds a random motion component when the accumulated velocity error between the players is small. We introduce this mechanism to several models for human coordinated motion, including the widely studied HKB model, and the predictor-corrector model of Noy, Dekel and Alon. In all models, the new mechanism produces realistic simulated behavior when compared to experimental data from the mirror game and from tracking of computer generated stimuli, including repeated entry and exit from zero-phase synchrony that generates a complexity of motion similar to that of human players. We hope that these results can inform future research on exit-from-synchrony, to better understand the dynamics of coordinated action of people and to enhance human-computer and human-robot interaction. PMID:27711185

  15. Measuring multiple spike train synchrony.

    PubMed

    Kreuz, Thomas; Chicharro, Daniel; Andrzejak, Ralph G; Haas, Julie S; Abarbanel, Henry D I

    2009-10-15

    Measures of multiple spike train synchrony are essential in order to study issues such as spike timing reliability, network synchronization, and neuronal coding. These measures can broadly be divided in multivariate measures and averages over bivariate measures. One of the most recent bivariate approaches, the ISI-distance, employs the ratio of instantaneous interspike intervals (ISIs). In this study we propose two extensions of the ISI-distance, the straightforward averaged bivariate ISI-distance and the multivariate ISI-diversity based on the coefficient of variation. Like the original measure these extensions combine many properties desirable in applications to real data. In particular, they are parameter-free, time scale independent, and easy to visualize in a time-resolved manner, as we illustrate with in vitro recordings from a cortical neuron. Using a simulated network of Hindemarsh-Rose neurons as a controlled configuration we compare the performance of our methods in distinguishing different levels of multi-neuron spike train synchrony to the performance of six other previously published measures. We show and explain why the averaged bivariate measures perform better than the multivariate ones and why the multivariate ISI-diversity is the best performer among the multivariate methods. Finally, in a comparison against standard methods that rely on moving window estimates, we use single-unit monkey data to demonstrate the advantages of the instantaneous nature of our methods. PMID:19591867

  16. Tracking the Changes in Synchrony of the Electrophysiological Activity as the Uterus Approaches Labor Using Magnetomyographic Technique

    PubMed Central

    Govindan, Rathinaswamy B.; Siegel, Eric; Mckelvey, Samantha; Murphy, Pam; Lowery, Curtis L.

    2015-01-01

    The objective of the study was to perform serial magnetomyographic examinations in order to detect changes in synchrony characteristics of myometrial electrophysiological activity as women approach labor. Of the total of 56 patients recruited, the results of 149 examinations from 29 patients were included in the analysis. The global synchrony across each sensor spread over the abdomen was computed and quantified as synchronization index. The mean and the median value of the global synchrony were computed and correlated with time to active labor from the last recording. Overall, synchrony increased as the patient approached active labor (P = .035). Furthermore, mean synchronization index increased twice as fast in the nonnulliparous group compared to the nulliparous group (P = .039). The changes in synchrony of uterine electrophysiological activity near term could aid in prediction of labor. PMID:25352329

  17. Predicting reproductive success from hormone concentrations in the common tern (Sterna hirundo) while considering food abundance.

    PubMed

    Riechert, Juliane; Becker, Peter H; Chastel, Olivier

    2014-11-01

    In birds, reproductive success is mainly a function of skill or environmental conditions, but it can also be linked to hormone concentrations due to their effect on behavior and individual decisions made during reproduction. For example, a high prolactin concentration is required to express parental behaviors such as incubation or guarding and feeding the young. Corticosterone level, on the other hand, is related to energy allocation or stress and foraging or provisioning effort. In this study, we measured individual baseline prolactin and corticosterone between 2006 and 2012 in breeding common terns (Sterna hirundo) using blood-sucking bugs. Reproductive parameters as well as prey abundance on a local and a wider scale were also determined during this period. Baseline prolactin and corticosterone varied significantly between years, as did breeding success. At the individual level, prolactin was positively and corticosterone was negatively linked to herring and sprat abundance. At the population level, we also found a negative link between corticosterone and prey abundance, probably reflecting overall foraging conditions. High prolactin during incubation was mainly predictive of increased hatching success, potentially by supporting more constant incubation and nest-guarding behavior. It was also positively linked to a lesser extent with fledging success, which could indicate a high feeding rate of young. Corticosterone concentration was positively related to high breeding success, which may be due to increased foraging activity and feeding of young. In general, our study shows that baseline prolactin and corticosterone levels during incubation can predict reproductive success, despite the presence of an interval between sampling and hatching or fledging of young.

  18. Observed and predicted reproduction of Ceriodaphnia dubia exposed to chloride, sulfate, and bicarbonate

    USGS Publications Warehouse

    Lasier, Peter J.; Hardin, Ian R.

    2010-01-01

    Chronic toxicities of Cl-, SO42-, and HCO3- to Ceriodaphnia dubia were evaluated in low- and moderate-hardness waters using a three-brood reproduction test method. Toxicity tests of anion mixtures were used to determine interaction effects and to produce models predicting C. dubia reproduction. Effluents diluted with low- and moderate-hardness waters were tested with animals acclimated to low- and moderate-hardness conditions to evaluate the models and to assess the effects of hardness and acclimation. Sulfate was significantly less toxic than Cl- and HCO3- in both types of water. Chloride and HCO3- toxicities were similar in low-hardness water, but HCO3- was the most toxic in moderate-hardness water. Low acute-to-chronic ratios indicate that toxicities of these anions will decrease quickly with dilution. Hardness significantly reduced Cl- and SO42- toxicity but had little effect on HCO3-. Chloride toxicity decreased with an increase in Na+ concentration, and CO3- toxicity may have been reduced by the dissolved organic carbon in effluent. Multivariate models using measured anion concentrations in effluents with low to moderate hardness levels provided fairly accurate predictions of reproduction. Determinations of toxicity for several effluents differed significantly depending on the hardness of the dilution water and the hardness of the water used to culture test animals. These results can be used to predict the contribution of elevated anion concentrations to the chronic toxicity of effluents; to identify effluents that are toxic due to contaminants other than Cl-, SO42-, and HCO3-; and to provide a basis for chemical substitutions in manufacturing processes.

  19. Getting the right traits: reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species.

    PubMed

    Moravcová, Lenka; Pyšek, Petr; Jarošík, Vojtěch; Pergl, Jan

    2015-01-01

    To better understand the effect of species traits on plant invasion, we collected comparative data on 20 reproductive and dispersal traits of 93 herbaceous alien species in the Czech Republic, central Europe, introduced after 1500 A. D. We explain plant invasion success, expressed by two measures: invasiveness, i.e. whether the species is naturalized but non-invasive, or invasive; and dominance in plant communities expressed as the mean cover in vegetation plots. We also tested how important reproductive and dispersal traits are in models including other characteristics generally known to predict invasion outcome, such as plant height, life history and residence time. By using regression/classification trees we show that the biological traits affect invasion success at all life stages, from reproduction (seed production) to dispersal (propagule properties), and the ability to compete with resident species (height). By including species traits information not usually available in multispecies analyses, we provide evidence that traits do play important role in determining the outcome of invasion and can be used to distinguish between alien species that reach the final stage of the invasion process and dominate the local communities from those that do not. No effect of taxonomy ascertained in regression and classification trees indicates that the role of traits in invasiveness should be assessed primarily at the species level.

  20. Impacts of Hydrological and Biogeochemical Process Synchrony Transcend Scale

    NASA Astrophysics Data System (ADS)

    Spence, C.; Kokelj, S.; McCluskie, M.; Hedstrom, N.

    2015-12-01

    In portions of the circumpolar north, there are documented cases of increases in annual inorganic nitrogen loading. Confounding the explanation of this phenomenon is a lack of accompanying annual trends in streamflow, precipitation or atmospheric nitrogen deposition. Evidence from Canada's subarctic suggests this dichotomy could be due to three key non-linearities in the predominant biogeochemical and hydrological processes. Because snowfall changes to rainfall near the zero degree air temperature isotherm, there has been an increase in late autumn rainfall across the region due to earlier passage of precipitation generating cold fronts. Runoff generation in cold regions is often a storage threshold-mediated process, and the enhanced rainfall results in more common exceedance of these thresholds and higher winter streamflow. Finally, net mineralization rates in regional lakes peak in winter following the onset of ice cover. Subtle increases in monthly rainfall at specific times of the year can permit hydro-chemical process synchrony within watersheds that enhances annual inorganic nitrogen loading, implying that the impacts of process synchrony transcend scale. The presence of shifts in nitrogen export suggests that sustained regular process synchrony can modify system states. Sound understanding of system processes and interactions across scales will be needed to properly predict impacts and make sound decisions when managing watersheds and competing resource demands.

  1. Rapid weight gain after birth predicts life history and reproductive strategy in Filipino males.

    PubMed

    Kuzawa, Christopher W; McDade, Thomas W; Adair, Linda S; Lee, Nanette

    2010-09-28

    Ecological cues during prenatal and postnatal development may allow organisms to adjust reproductive strategy. The hypothalamic-pituitary-gonadal (HPG) axis is a prime candidate for adaptive plasticity as a result of its critical period of birth to 6 mo (B6M) in humans and the role of testosterone in the development and maintenance of costly sexually dimorphic somatic and behavioral traits. We hypothesized that weight velocity specific to B6M would predict male life history characteristics, including maturational timing, reproductive hormones, adult size, strength, and sexual activity. Data come from 770 Filipino men (age 20.5-22.5 y) followed since birth, with predictor variables including birth weight and weight velocities calculated at 6-mo intervals during the first 2 y of life. As expected, infants who were breastfed experienced less diarrhea, lived in wealthier households with better hygiene, and grew faster from B6M. Males with rapid B6M growth reached puberty earlier and, as young adults, had higher testosterone levels, were taller, more muscular, and had higher grip strength. They also had sex earlier and were more likely to report having had sex in the past month, resulting in more lifetime sex partners. Relationships between B6M weight gain and physical outcomes were generally not present or weaker in female subjects. We conclude that rapid weight gain specific to the brief postnatal hypothalamic-pituitary-gonadal critical period predicts early maturation and sexual activity, elevated hormone production, and more costly adult somatic characteristics among the male subjects in this sample. These findings provide evidence for early life developmental plasticity in male life history and reproductive strategy in humans.

  2. Gravid Spot Predicts Developmental Progress and Reproductive Output in a Livebearing Fish, Gambusia holbrooki

    PubMed Central

    Norazmi-Lokman, Nor Hakim; Purser, G. J.; Patil, Jawahar G.

    2016-01-01

    In most livebearing fish, the gravid spot is an excellent marker to identify brooding females, however its use to predict progress of embryonic development, brood size, timing of parturition and overall reproductive potential of populations remain unexplored. Therefore, to understand these relationships, this study quantified visual attributes (intensity and size) of the gravid spot in relation to key internal development in Gambusia holbrooki. Observations show that the colour of the gravid spot arises from progressive melanisation on the surface of the ovarian sac at its hind margin, rather than melanisation of the developing embryos or the skin of the brooding mother. More importantly, the gravid spot intensity and size were closely linked with both developmental stages and clutch size, suggesting their reliable use as external surrogates of key internal developmental in the species. Using predictive consistency of the gravid spot, we also determined the effect of rearing temperature (23°C and 25°C) on gestation period and parturition behaviour. The results show that gestation period was significantly reduced (F = 364.58; df = 1,48; P˃0.05) at 25°C. However there was no significant difference in average number of fry parturated in the two temperature groups (P<0.05), reaffirming that gravid spot intensity is a reliable predictor of reproductive output. The parturition in the species occurred predominantly in the morning and in contrast to earlier reports, tails of the fry emerged first with a few exceptions of head-first, twin and premature births. This study demonstrates utility of the gravid spot for downstream reproductive investigations in a live-bearing fish both in the field and laboratory. The reproducibility of the relationships (intensity with both developmental stage and clutch size), imply that they are also relevant to wild populations that experience varying temperature climes and stressors, significant deviations of which may serve as

  3. Rapid weight gain after birth predicts life history and reproductive strategy in Filipino males

    PubMed Central

    Kuzawa, Christopher W.; McDade, Thomas W.; Adair, Linda S.; Lee, Nanette

    2010-01-01

    Ecological cues during prenatal and postnatal development may allow organisms to adjust reproductive strategy. The hypothalamic-pituitary-gonadal (HPG) axis is a prime candidate for adaptive plasticity as a result of its critical period of birth to 6 mo (B6M) in humans and the role of testosterone in the development and maintenance of costly sexually dimorphic somatic and behavioral traits. We hypothesized that weight velocity specific to B6M would predict male life history characteristics, including maturational timing, reproductive hormones, adult size, strength, and sexual activity. Data come from 770 Filipino men (age 20.5–22.5 y) followed since birth, with predictor variables including birth weight and weight velocities calculated at 6-mo intervals during the first 2 y of life. As expected, infants who were breastfed experienced less diarrhea, lived in wealthier households with better hygiene, and grew faster from B6M. Males with rapid B6M growth reached puberty earlier and, as young adults, had higher testosterone levels, were taller, more muscular, and had higher grip strength. They also had sex earlier and were more likely to report having had sex in the past month, resulting in more lifetime sex partners. Relationships between B6M weight gain and physical outcomes were generally not present or weaker in female subjects. We conclude that rapid weight gain specific to the brief postnatal hypothalamic-pituitary-gonadal critical period predicts early maturation and sexual activity, elevated hormone production, and more costly adult somatic characteristics among the male subjects in this sample. These findings provide evidence for early life developmental plasticity in male life history and reproductive strategy in humans. PMID:20837542

  4. Using mechanistic models to understand synchrony in forest insect populations: the North American gypsy moth as a case study.

    PubMed

    Abbott, Karen C; Dwyer, Greg

    2008-11-01

    In many forest insects, subpopulations fluctuate concurrently across large geographical areas, a phenomenon known as population synchrony. Because of the large spatial scales involved, empirical tests to identify the causes of synchrony are often impractical. Simple models are, therefore, a useful aid to understanding, but data often seem to contradict model predictions. For instance, chaotic population dynamics and limited dispersal are not uncommon among synchronous forest defoliators, yet both make it difficult to achieve synchrony in simple models. To test whether this discrepancy can be explained by more realistic models, we introduced dispersal and spatially correlated stochasticity into a mechanistic population model for the North American gypsy moth Lymantria dispar. The resulting model shows both chaotic dynamics and spatial synchrony, suggesting that chaos and synchrony can be reconciled by the incorporation of realistic dynamics and spatial structure. By relating alterations in model structure to changes in synchrony levels, we show that the synchrony is due to a combination of spatial covariance in environmental stochasticity and the origins of chaos in our multispecies model.

  5. How robust is dispersal-induced spatial synchrony?

    PubMed

    Zhang, Yuxiang; Lutscher, Frithjof; Guichard, Frédéric

    2015-03-01

    Many biological populations fluctuate in synchrony over large geographic regions. This behavior may increase the chance of extinction. The combination of time-scale separation between interacting species and weak spatial linear diffusive coupling is one mechanism that can generate synchrony; however, accounting for travel time between habitat patches may destabilize this synchrony. Here, we show that ubiquitous behavioral aspects of dispersal (e.g., predator avoidance), implemented as nonlinear diffusive coupling, may also destabilize synchrony. In addition, these aspects interact with travel-time delays and amplify mechanisms that destroy synchrony. Our work suggests that dispersal-induced synchrony is more rare than typically assumed.

  6. Can blood or follicular fluid levels of presepsin predict reproductive outcomes in ART; a preliminary study.

    PubMed

    Ovayolu, Ali; Özdamar, Özkan; Gün, İsmet; Arslanbuga, Cansev Yılmaz; Sofuoğlu, Kenan; Tunalı, Gülden; Topuz, Samet

    2015-01-01

    Many stages of COH protocols are considered to potentiate a state of systemic inflammation. The limit beyond which inflammation has negative impacts on the formation of conception and the reproductive outcomes are compromised still remains unclear. Presepsin is a novel biomarker for diagnosing systemic inflammation and sepsis. We aimed to investigate whether plasma and follicular fluid presepsin values on oocyte pick-up (OPU) day, embryo transfer (ET) day and pregnancy test (PT) days could predict reproductive outcomes during IVF treatment in women with UEI. Patients were assigned to two groups according to pregnancy test results; pregnant (Group 1) and non-pregnant (Group 2). From all patients included in the study, 2 cc of venous blood was sampled on the three days and follicular fluid (FF) was collected during oocyte retrieval. Plasma presepsin, CRP and WBC values and FF presepsin values were measured and compared between the 2 groups. There was no significant difference between FF and plasma presepsin levels on the OPU day (298±797.4 ve 352.9±657.1; P=0.701, respectively). Plasma WBC, CRP and presepsin levels on the OPU, ET and PT days and FF presepsin levels on OPU day were not different between the 2 groups. Plasma presepsin course on the separate 3 days were different between the groups.

  7. Shy birds play it safe: personality in captivity predicts risk responsiveness during reproduction in the wild.

    PubMed

    Cole, Ella F; Quinn, John L

    2014-05-01

    Despite a growing body of evidence linking personality to life-history variation and fitness, the behavioural mechanisms underlying these relationships remain poorly understood. One mechanism thought to play a key role is how individuals respond to risk. Relatively reactive and proactive (or shy and bold) personality types are expected to differ in how they manage the inherent trade-off between productivity and survival, with bold individuals being more risk-prone with lower survival probability, and shy individuals adopting a more risk-averse strategy. In the great tit (Parus major), the shy-bold personality axis has been well characterized in captivity and linked to fitness. Here, we tested whether 'exploration behaviour', a captive assay of the shy-bold axis, can predict risk responsiveness during reproduction in wild great tits. Relatively slow-exploring (shy) females took longer than fast-exploring (bold) birds to resume incubation after a novel object, representing an unknown threat, was attached to their nest-box, with some shy individuals not returning within the 40 min trial period. Risk responsiveness was consistent within individuals over days. These findings provide rare, field-based experimental evidence that shy individuals prioritize survival over reproductive investment, supporting the hypothesis that personality reflects life-history variation through links with risk responsiveness. PMID:24829251

  8. Shy birds play it safe: personality in captivity predicts risk responsiveness during reproduction in the wild.

    PubMed

    Cole, Ella F; Quinn, John L

    2014-05-01

    Despite a growing body of evidence linking personality to life-history variation and fitness, the behavioural mechanisms underlying these relationships remain poorly understood. One mechanism thought to play a key role is how individuals respond to risk. Relatively reactive and proactive (or shy and bold) personality types are expected to differ in how they manage the inherent trade-off between productivity and survival, with bold individuals being more risk-prone with lower survival probability, and shy individuals adopting a more risk-averse strategy. In the great tit (Parus major), the shy-bold personality axis has been well characterized in captivity and linked to fitness. Here, we tested whether 'exploration behaviour', a captive assay of the shy-bold axis, can predict risk responsiveness during reproduction in wild great tits. Relatively slow-exploring (shy) females took longer than fast-exploring (bold) birds to resume incubation after a novel object, representing an unknown threat, was attached to their nest-box, with some shy individuals not returning within the 40 min trial period. Risk responsiveness was consistent within individuals over days. These findings provide rare, field-based experimental evidence that shy individuals prioritize survival over reproductive investment, supporting the hypothesis that personality reflects life-history variation through links with risk responsiveness.

  9. Interpersonal synchrony increases prosocial behavior in infants.

    PubMed

    Cirelli, Laura K; Einarson, Kathleen M; Trainor, Laurel J

    2014-11-01

    Adults who move together to a shared musical beat synchronously as opposed to asynchronously are subsequently more likely to display prosocial behaviors toward each other. The development of musical behaviors during infancy has been described previously, but the social implications of such behaviors in infancy have been little studied. In Experiment 1, each of 48 14-month-old infants was held by an assistant and gently bounced to music while facing the experimenter, who bounced either in-synchrony or out-of-synchrony with the way the infant was bounced. The infants were then placed in a situation in which they had the opportunity to help the experimenter by handing objects to her that she had ‘accidently’ dropped. We found that 14-month-old infants were more likely to engage in altruistic behavior and help the experimenter after having been bounced to music in synchrony with her, compared to infants who were bounced to music asynchronously with her. The results of Experiment 2, using anti-phase bouncing, suggest that this is due to the contingency of the synchronous movements as opposed to movement symmetry. These findings support the hypothesis that interpersonal motor synchrony might be one key component of musical engagement that encourages social bonds among group members, and suggest that this motor synchrony to music may promote the very early development of altruistic behavior. PMID:25513669

  10. Oxidative stress predicts long-term resight probability and reproductive success in Scopoli's shearwater (Calonectris diomedea)

    PubMed Central

    Costantini, David; Dell'Omo, Giacomo

    2015-01-01

    A major challenge in conservation physiology is to find out biomarkers that reliably reflect individual variation in wear and tear. Recent work has suggested that biomarkers of oxidative stress may provide an additional tool to assess the health state of individuals and to predict fitness perspectives. In this study, we assessed whether three biomarkers of plasma oxidative status predicted the following factors: (i) the resight probability as breeder in the next seasons; and (ii) the cumulative reproductive output over multiple years in Scopoli’s shearwaters (Calonectris diomedea) using a 7 year individual-based data set. Our results show that shearwaters having higher levels of a marker of oxidative damage (reactive oxygen metabolites) in 2008 had a lower resight probability in the next years and a lower number of chicks raised from 2008 to 2014. In contrast, two biomarkers of antioxidant defences (non-enzymatic antioxidant capacity of plasma and thiols) did not have any predictive value. Increased concentrations of plasma reactive oxygen metabolites, together with the significant individual repeatability over time in this metric of oxidative stress found in numerous studies, suggest that this metric might serve as a blood-derived biomarker for health and fitness perspectives in birds and, possibly, also in other taxa. PMID:27293709

  11. Phenological indices of avian reproduction: cryptic shifts and prediction across large spatial and temporal scales

    PubMed Central

    Gullett, Philippa; Hatchwell, Ben J; Robinson, Robert A; Evans, Karl L

    2013-01-01

    Climate change-induced shifts in phenology have important demographic consequences, and are frequently used to assess species' sensitivity to climate change. Therefore, developing accurate phenological predictions is an important step in modeling species' responses to climate change. The ability of such phenological models to predict effects at larger spatial and temporal scales has rarely been assessed. It is also not clear whether the most frequently used phenological index, namely the average date of a phenological event across a population, adequately captures phenological shifts in the distribution of events across the season. We use the long-tailed tit Aegithalos caudatus (Fig. 1) as a case study to explore these issues. We use an intensive 17-year local study to model mean breeding date and test the capacity of this local model to predict phenology at larger spatial and temporal scales. We assess whether local models of breeding initiation, termination, and renesting reveal phenological shifts and responses to climate not detected by a standard phenological index, that is, population average lay date. These models take predation timing/intensity into account. The locally-derived model performs well at predicting phenology at the national scale over several decades, at both high and low temperatures. In the local model, a trend toward warmer Aprils is associated with a significant advance in termination dates, probably in response to phenological shifts in food supply. This results in a 33% reduction in breeding season length over 17 years – a substantial loss of reproductive opportunity that is not detected by the index of population average lay date. We show that standard phenological indices can fail to detect patterns indicative of negative climatic effects, potentially biasing assessments of species' vulnerability to climate change. More positively, we demonstrate the potential of detailed local studies for developing broader-scale predictive models of

  12. Synchrony between sensory and cognitive networks is associated with subclinical variation in autistic traits

    PubMed Central

    Young, Jacob S.; Smith, David V.; Coutlee, Christopher G.; Huettel, Scott A.

    2015-01-01

    Individuals with autistic spectrum disorders exhibit distinct personality traits linked to attentional, social, and affective functions, and those traits are expressed with varying levels of severity in the neurotypical and subclinical population. Variation in autistic traits has been linked to reduced functional and structural connectivity (i.e., underconnectivity, or reduced synchrony) with neural networks modulated by attentional, social, and affective functions. Yet, it remains unclear whether reduced synchrony between these neural networks contributes to autistic traits. To investigate this issue, we used functional magnetic resonance imaging to record brain activation while neurotypical participants who varied in their subclinical scores on the Autism-Spectrum Quotient (AQ) viewed alternating blocks of social and nonsocial stimuli (i.e., images of faces and of landscape scenes). We used independent component analysis (ICA) combined with a spatiotemporal regression to quantify synchrony between neural networks. Our results indicated that decreased synchrony between the executive control network (ECN) and a face-scene network (FSN) predicted higher scores on the AQ. This relationship was not explained by individual differences in head motion, preferences for faces, or personality variables related to social cognition. Our findings build on clinical reports by demonstrating that reduced synchrony between distinct neural networks contributes to a range of subclinical autistic traits. PMID:25852527

  13. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony

    PubMed Central

    An, Sungwon; Harang, Rich; Meeker, Kirsten; Granados-Fuentes, Daniel; Tsai, Connie A.; Mazuski, Cristina; Kim, Jihee; Doyle, Francis J.; Petzold, Linda R.; Herzog, Erik D.

    2013-01-01

    Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light–dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or “phase tumbling”, could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag. PMID:24167276

  14. Predicting chronic copper and nickel reproductive toxicity to Daphnia pulex-pulicaria from whole-animal metabolic profiles.

    PubMed

    Taylor, Nadine S; Kirwan, Jennifer A; Johnson, Craig; Yan, Norman D; Viant, Mark R; Gunn, John M; McGeer, James C

    2016-05-01

    The emergence of omics approaches in environmental research has enhanced our understanding of the mechanisms underlying toxicity; however, extrapolation from molecular effects to whole-organism and population level outcomes remains a considerable challenge. Using environmentally relevant, sublethal, concentrations of two metals (Cu and Ni), both singly and in binary mixtures, we integrated data from traditional chronic, partial life-cycle toxicity testing and metabolomics to generate a statistical model that was predictive of reproductive impairment in a Daphnia pulex-pulicaria hybrid that was isolated from an historically metal-stressed lake. Furthermore, we determined that the metabolic profiles of organisms exposed in a separate acute assay were also predictive of impaired reproduction following metal exposure. Thus we were able to directly associate molecular profiles to a key population response - reproduction, a key step towards improving environmental risk assessment and management. PMID:26854702

  15. Predicting chronic copper and nickel reproductive toxicity to Daphnia pulex-pulicaria from whole-animal metabolic profiles.

    PubMed

    Taylor, Nadine S; Kirwan, Jennifer A; Johnson, Craig; Yan, Norman D; Viant, Mark R; Gunn, John M; McGeer, James C

    2016-05-01

    The emergence of omics approaches in environmental research has enhanced our understanding of the mechanisms underlying toxicity; however, extrapolation from molecular effects to whole-organism and population level outcomes remains a considerable challenge. Using environmentally relevant, sublethal, concentrations of two metals (Cu and Ni), both singly and in binary mixtures, we integrated data from traditional chronic, partial life-cycle toxicity testing and metabolomics to generate a statistical model that was predictive of reproductive impairment in a Daphnia pulex-pulicaria hybrid that was isolated from an historically metal-stressed lake. Furthermore, we determined that the metabolic profiles of organisms exposed in a separate acute assay were also predictive of impaired reproduction following metal exposure. Thus we were able to directly associate molecular profiles to a key population response - reproduction, a key step towards improving environmental risk assessment and management.

  16. Spatially explicit models, generalized reproduction numbers and the prediction of patterns of waterborne disease

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Gatto, M.; Mari, L.; Casagrandi, R.; Righetto, L.; Bertuzzo, E.; Rodriguez-Iturbe, I.

    2012-12-01

    still lacking. Here, we show that the requirement that all the local reproduction numbers R0 be larger than unity is neither necessary nor sufficient for outbreaks to occur when local settlements are connected by networks of primary and secondary infection mechanisms. To determine onset conditions, we derive general analytical expressions for a reproduction matrix G0 explicitly accounting for spatial distributions of human settlements and pathogen transmission via hydrological and human mobility networks. At disease onset, a generalized reproduction number Λ0 (the dominant eigenvalue of G0) must be larger than unity. We also show that geographical outbreak patterns in complex environments are linked to the dominant eigenvector and to spectral properties of G0. Tests against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation networks, demonstrate that eigenvectors of G0 provide a synthetic and effective tool for predicting the disease course in space and time. Networked connectivity models, describing the interplay between hydrology, epidemiology and social behavior sustaining human mobility, thus prove to be key tools for emergency management of waterborne infections.

  17. More than reflections: Empathy in motivational interviewing includes language style synchrony between therapist and client

    PubMed Central

    Lord, Sarah Peregrine; Sheng, Elisa; Imel, Zac E.; Baer, John; Atkins, David C.

    2016-01-01

    Empathy is a basic psychological process that involves the development of synchrony in dyads. It is also a foundational ingredient in specific, evidence-based behavioral treatments like motivational interviewing (MI). Ratings of therapist empathy typically rely on a gestalt, “felt sense” of therapist understanding and the presence of specific verbal behaviors like reflective listening. These ratings do not provide a direct test of psychological processes like behavioral synchrony that are theorized to be an important component of empathy in psychotherapy. To explore a new objective indicator of empathy, we hypothesized that synchrony in language style (i.e., matching how statements are phrased) between client and therapists would predict gestalt ratings of empathy over and above the contribution of reflections. We analyzed 122 MI transcripts with high and low empathy ratings based on the Motivational Interviewing Treatment Integrity (MITI) global rating scale. Linguistic inquiry and word count was used to estimate language style synchrony (LSS) of adjacent client and therapist talk turns. High empathy sessions showed greater LSS across 11 language style categories compared to low empathy sessions (p < .01), and overall, average LSS was notably higher in high empathy vs. low empathy sessions (d = 0.62). Regression analyses showed that LSS was predictive of empathy ratings over and above reflection counts; a 1 SD increase in LSS is associated with 2.4 times increase in the odds of a high empathy rating, controlling for therapist reflections (odds ratio = 2.4, 95% CI: 1.36, 4.24, p < .01). These findings suggest empathy ratings are related to synchrony in language style, over and above synchrony of content as measured by therapist reflections. Novel indicators of therapist empathy may have implications for the study of MI process as well as the training of therapists. PMID:25892166

  18. More than reflections: empathy in motivational interviewing includes language style synchrony between therapist and client.

    PubMed

    Lord, Sarah Peregrine; Sheng, Elisa; Imel, Zac E; Baer, John; Atkins, David C

    2015-05-01

    Empathy is a basic psychological process that involves the development of synchrony in dyads. It is also a foundational ingredient in specific, evidence-based behavioral treatments like motivational interviewing (MI). Ratings of therapist empathy typically rely on a gestalt, "felt sense" of therapist understanding and the presence of specific verbal behaviors like reflective listening. These ratings do not provide a direct test of psychological processes like behavioral synchrony that are theorized to be an important component of empathy in psychotherapy. To explore a new objective indicator of empathy, we hypothesized that synchrony in language style (i.e., matching how statements are phrased) between client and therapists would predict gestalt ratings of empathy over and above the contribution of reflections. We analyzed 122 MI transcripts with high and low empathy ratings based on the Motivational Interviewing Treatment Integrity global rating scale. Linguistic inquiry and word count was used to estimate language style synchrony (LSS) of adjacent client and therapist talk turns. High-empathy sessions showed greater LSS across 11 language style categories compared with low-empathy sessions (p<.01), and overall, average LSS was notably higher in high-empathy versus low-empathy sessions (d=0.62). Regression analyses showed that LSS was predictive of empathy ratings over and above reflection counts; a 1 SD increase in LSS is associated with a 2.4 times increase in the odds of a high-empathy rating, controlling for therapist reflections (odds ratio=2.4; 95% CI: 1.36; 4.24, p<.01). These findings suggest empathy ratings are related to synchrony in language style, over and above synchrony of content as measured by therapist reflections. Novel indicators of therapist empathy may have implications for the study of MI process as well as the training of therapists.

  19. Male heterozygosity predicts territory size, song structure and reproductive success in a cooperatively breeding bird.

    PubMed Central

    Seddon, Nathalie; Amos, William; Mulder, Raoul A.; Tobias, Joseph A.

    2004-01-01

    Recent studies of non-social animals have shown that sexually selected traits signal at least one measure of genetic quality: heterozygosity. To determine whether similar cues reveal group quality in more complex social systems, we examined the relationship between territory size, song structure and heterozygosity in the subdesert mesite (Monias benschi), a group-living bird endemic to Madagascar. Using nine polymorphic microsatellite loci, we found that heterozygosity predicted both the size of territories and the structure of songs used to defend them: more heterozygous groups had larger territories, and more heterozygous males used longer, lower-pitched trills in their songs. Heterozygosity was linked to territory size and song structure in males, but not in females, implying that these traits are sexually selected by female choice and/or male-male competition. To our knowledge, this study provides the first direct evidence in any animal that territory size is related to genetic diversity. We also found a positive association between seasonal reproductive success and heterozygosity, suggesting that this heritable characteristic is a reliable indicator of group quality and fitness. Given that heterozygosity predicts song structure in males, and can therefore be determined by listening to acoustic cues, we identify a mechanism by which social animals may assess rival groups, prospective partners and group mates, information of potential importance in guiding decisions related to conflict, breeding and dispersal. PMID:15315898

  20. Male heterozygosity predicts territory size, song structure and reproductive success in a cooperatively breeding bird.

    PubMed

    Seddon, Nathalie; Amos, William; Mulder, Raoul A; Tobias, Joseph A

    2004-09-01

    Recent studies of non-social animals have shown that sexually selected traits signal at least one measure of genetic quality: heterozygosity. To determine whether similar cues reveal group quality in more complex social systems, we examined the relationship between territory size, song structure and heterozygosity in the subdesert mesite (Monias benschi), a group-living bird endemic to Madagascar. Using nine polymorphic microsatellite loci, we found that heterozygosity predicted both the size of territories and the structure of songs used to defend them: more heterozygous groups had larger territories, and more heterozygous males used longer, lower-pitched trills in their songs. Heterozygosity was linked to territory size and song structure in males, but not in females, implying that these traits are sexually selected by female choice and/or male-male competition. To our knowledge, this study provides the first direct evidence in any animal that territory size is related to genetic diversity. We also found a positive association between seasonal reproductive success and heterozygosity, suggesting that this heritable characteristic is a reliable indicator of group quality and fitness. Given that heterozygosity predicts song structure in males, and can therefore be determined by listening to acoustic cues, we identify a mechanism by which social animals may assess rival groups, prospective partners and group mates, information of potential importance in guiding decisions related to conflict, breeding and dispersal.

  1. Infant negative reactivity defines the effects of parent-child synchrony on physiological and behavioral regulation of social stress.

    PubMed

    Pratt, Maayan; Singer, Magi; Kanat-Maymon, Yaniv; Feldman, Ruth

    2015-11-01

    How infants shape their own development has puzzled developmentalists for decades. Recent models suggest that infant dispositions, particularly negative reactivity and regulation, affect outcome by determining the extent of parental effects. Here, we used a microanalytic experimental approach and proposed that infants with varying levels of negative reactivity will be differentially impacted by parent-infant synchrony in predicting physiological and behavioral regulation of increasing social stress during an experimental paradigm. One hundred and twenty-two mother-infant dyads (4-6 months) were observed in the face-to-face still face (SF) paradigm and randomly assigned to three experimental conditions: SF with touch, standard SF, and SF with arms' restraint. Mother-infant synchrony and infant negative reactivity were observed at baseline, and three mechanisms of behavior regulation were microcoded; distress, disengagement, and social regulation. Respiratory sinus arrhythmia baseline, reactivity, and recovery were quantified. Structural equation modeling provided support for our hypothesis. For physiological regulation, infants high in negative reactivity receiving high mother-infant synchrony showed greater vagal withdrawal, which in turn predicted comparable levels of vagal recovery to that of nonreactive infants. In behavioral regulation, only infants low in negative reactivity who received high synchrony were able to regulate stress by employing social engagement cues during the SF phase. Distress was reduced only among calm infants to highly synchronous mothers, and disengagement was lowest among highly reactive infants experiencing high mother-infant synchrony. Findings chart two pathways by which synchrony may bolster regulation in infants of high and low reactivity. Among low reactive infants, synchrony builds a social repertoire for handling interpersonal stress, whereas in highly reactive infants, it constructs a platform for repeated reparation of

  2. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: Computational Modeling

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We developed a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (DRTC)...

  3. Oscillatory synchrony as a mechanism of attentional processing.

    PubMed

    Gregoriou, Georgia G; Paneri, Sofia; Sapountzis, Panagiotis

    2015-11-11

    The question of how the brain selects which stimuli in our visual field will be given priority to enter into perception, to guide our actions and to form our memories has been a matter of intense research in studies of visual attention. Work in humans and animal models has revealed an extended network of areas involved in the control and maintenance of attention. For many years, imaging studies in humans constituted the main source of a systems level approach, while electrophysiological recordings in non-human primates provided insight into the cellular mechanisms of visual attention. Recent technological advances and the development of sophisticated analytical tools have allowed us to bridge the gap between the two approaches and assess how neuronal ensembles across a distributed network of areas interact in visual attention tasks. A growing body of evidence suggests that oscillatory synchrony plays a crucial role in the selective communication of neuronal populations that encode the attended stimuli. Here, we discuss data from theoretical and electrophysiological studies, with more emphasis on findings from humans and non-human primates that point to the relevance of oscillatory activity and synchrony for attentional processing and behavior. These findings suggest that oscillatory synchrony in specific frequencies reflects the biophysical properties of specific cell types and local circuits and allows the brain to dynamically switch between different spatio-temporal patterns of activity to achieve flexible integration and selective routing of information along selected neuronal populations according to behavioral demands. This article is part of a Special Issue entitled SI: Prediction and Attention.

  4. Let’s Dance Together: Synchrony, Shared Intentionality and Cooperation

    PubMed Central

    Reddish, Paul; Fischer, Ronald; Bulbulia, Joseph

    2013-01-01

    Previous research has shown that the matching of rhythmic behaviour between individuals (synchrony) increases cooperation. Such synchrony is most noticeable in music, dance and collective rituals. As well as the matching of behaviour, such collective performances typically involve shared intentionality: performers actively collaborate to produce joint actions. Over three experiments we examined the importance of shared intentionality in promoting cooperation from group synchrony. Experiment 1 compared a condition in which group synchrony was produced through shared intentionality to conditions in which synchrony or asynchrony were created as a by-product of hearing the same or different rhythmic beats. We found that synchrony combined with shared intentionality produced the greatest level of cooperation. To examinef the importance of synchrony when shared intentionality is present, Experiment 2 compared a condition in which participants deliberately worked together to produce synchrony with a condition in which participants deliberately worked together to produce asynchrony. We found that synchrony combined with shared intentionality produced the greatest level of cooperation. Experiment 3 manipulated both the presence of synchrony and shared intentionality and found significantly greater cooperation with synchrony and shared intentionality combined. Path analysis supported a reinforcement of cooperation model according to which perceiving synchrony when there is a shared goal to produce synchrony provides immediate feedback for successful cooperation so reinforcing the group’s cooperative tendencies. The reinforcement of cooperation model helps to explain the evolutionary conservation of traditional music and dance performances, and furthermore suggests that the collectivist values of such cultures may be an essential part of the mechanisms by which synchrony galvanises cooperative behaviours. PMID:23951106

  5. Predicting the reproduction strategies of several microalgae through their genome sequences

    NASA Astrophysics Data System (ADS)

    Guo, Li; Yang, Guanpin

    2015-06-01

    Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environmental conditions. Understanding the reproduction strategy of some microalgae is required to breed them in large scale culture industry. Instead of direct observation of sex and sexual reproduction under microscope, the whole set or the majority of core meiosis genes may evidence the sex and sexual reproduction in the unicellular algae, as the meiosis is necessary for maintaining the genomic stability and the advantages of genetic recombination. So far, the available genome sequences and bioinformatic tools (in this study, homolog searching and phylogenetic analysis) allow us to propose that at least 20 core meiosis genes (among them ≥6 must be meiosis specific) are enough for an alga to maintain its sexual reproduction. According to this assumption and the genome sequences, it is possible that sexual reproduction was carried out by Micromonas pusilla and Cyanidioschyzon merolae, while asexual reproduction was adopted by Bigelowiella natans, Guillardia theta, Nannochloropsis gaditana, N. oceanica, Chlorella variablis, Phaeodactylum tricornutum and Thalassiosira pseudonana. This understanding will facilitate the breeding trials of some economic microalgae ( e.g., N. gaditana, N. oceanica, C. variablis and P. tricornutum). However, the reproduction strategies of these microalgae need to be proved by further biological experiments.

  6. Predicting the reproduction strategies of several microalgae through their genome sequences

    NASA Astrophysics Data System (ADS)

    Guo, Li; Yang, Guanpin

    2014-10-01

    Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environmental conditions. Understanding the reproduction strategy of some microalgae is required to breed them in large scale culture industry. Instead of direct observation of sex and sexual reproduction under microscope, the whole set or the majority of core meiosis genes may evidence the sex and sexual reproduction in the unicellular algae, as the meiosis is necessary for maintaining the genomic stability and the advantages of genetic recombination. So far, the available genome sequences and bioinformatic tools (in this study, homolog searching and phylogenetic analysis) allow us to propose that at least 20 core meiosis genes (among them ≥6 must be meiosis specific) are enough for an alga to maintain its sexual reproduction. According to this assumption and the genome sequences, it is possible that sexual reproduction was carried out by Micromonas pusilla and Cyanidioschyzon merolae, while asexual reproduction was adopted by Bigelowiella natans, Guillardia theta, Nannochloropsis gaditana, N. oceanica, Chlorella variablis, Phaeodactylum tricornutum and Thalassiosira pseudonana. This understanding will facilitate the breeding trials of some economic microalgae (e.g., N. gaditana, N. oceanica, C. variablis and P. tricornutum). However, the reproduction strategies of these microalgae need to be proved by further biological experiments.

  7. Enhancing “theory of mind” through behavioral synchrony

    PubMed Central

    Baimel, Adam; Severson, Rachel L.; Baron, Andrew S.; Birch, Susan A. J.

    2015-01-01

    Theory of mind refers to the abilities underlying the capacity to reason about one’s own and others’ mental states. This ability is critical for predicting and making sense of the actions of others, is essential for efficient communication, fosters social learning, and provides the foundation for empathic concern. Clearly, there is incredible value in fostering theory of mind. Unfortunately, despite being the focus of a wealth of research over the last 40 years relatively little is known about specific strategies for fostering social perspective taking abilities. We provide a discussion of the rationale for applying one specific strategy for fostering efficient theory of mind—that of engaging in “behavioral synchrony” (i.e., the act of keeping together in time with others). Culturally evolved collective rituals involving synchronous actions have long been held to act as social glue. Specifically, here we present how behavioral synchrony tunes our minds for reasoning about other minds in the process of fostering social coordination and cooperation, and propose that we can apply behavioral synchrony as a tool for enhancing theory of mind. PMID:26157415

  8. Economic benefits of using adaptive predictive models of reproductive toxicity in the context of a tiered testing program.

    PubMed

    Martin, Matthew T; Knudsen, Thomas B; Judson, Richard S; Kavlock, Robert J; Dix, David J

    2012-02-01

    A predictive model of reproductive toxicity, as observed in rat multigeneration reproductive (MGR) studies, was previously developed using high throughput screening (HTS) data from 36 in vitro assays mapped to 8 genes or gene-sets from Phase I of USEPA ToxCast research program, the proof-of-concept phase in which 309 toxicologically well characterized chemicals were testing in over 500 HTS assays. The model predicted the effects on male and female reproductive function with a balanced accuracy of 80%. In a theoretical examination of the potential impact of the model, two case studies were derived representing different tiered testing scenarios to: 1) screen-out chemicals with low predicted probability of effect; and 2) screen-in chemicals with a high probability of causing adverse reproductive effects. We define 'testing cost efficiency' as the total cost divided by the number of positive chemicals expected in the definitive guideline toxicity study. This would approach $2.11 M under the current practice. Under case study 1, 22% of the chemicals were screened-out due to low predicted probability of adverse reproductive effect and a misclassification rate of 12%, yielding a test cost efficiency of $1.87 M. Under case study 2, 13% of chemicals were screened-in yielding a testing cost efficiency of $1.13 M per test-positive chemical. Applying the model would also double the total number of positives identified. It should be noted that the intention of the case studies is not to provide a definitive mechanism for screening-in or screening-out chemicals or account for the indirect costs of misclassification. The case studies demonstrate the customizability of the model as a tool in chemical testing decision-making. The predictive model of reproductive toxicity will continue to evolve as new assays become available to fill recognized biological gaps and will be combined with other predictive models, particularly models of developmental toxicity, to form an initial tier

  9. Pair bonds: arrival synchrony in migratory birds.

    PubMed

    Gunnarsson, T G; Gill, J A; Sigurbjörnsson, T; Sutherland, W J

    2004-10-01

    Synchronous arrival of pairs of migratory birds at their breeding grounds is important for maintaining pair bonds and is achieved by pairs that remain together all year round. Here we show that arrival is also synchronized in paired individuals of a migratory shorebird, the black-tailed godwit (Limosa limosa islandica), even though they winter hundreds of kilometres apart and do not migrate together. The mechanisms required to achieve this synchrony and prevent 'divorce' illustrate the complexity of migratory systems. PMID:15470417

  10. The ChemScreen project to design a pragmatic alternative approach to predict reproductive toxicity of chemicals.

    PubMed

    van der Burg, Bart; Wedebye, Eva Bay; Dietrich, Daniel R; Jaworska, Joanna; Mangelsdorf, Inge; Paune, Eduard; Schwarz, Michael; Piersma, Aldert H; Kroese, E Dinant

    2015-08-01

    There is a great need for rapid testing strategies for reproductive toxicity testing, avoiding animal use. The EU Framework program 7 project ChemScreen aimed to fill this gap in a pragmatic manner preferably using validated existing tools and place them in an innovative alternative testing strategy. In our approach we combined knowledge on critical processes affected by reproductive toxicants with knowledge on the mechanistic basis of such effects. We used in silico methods for prescreening chemicals for relevant toxic effects aiming at reduced testing needs. For those chemicals that need testing we have set up an in vitro screening panel that includes mechanistic high throughput methods and lower throughput assays that measure more integrative endpoints. In silico pharmacokinetic modules were developed for rapid exposure predictions via diverse exposure routes. These modules to match in vitro and in vivo exposure levels greatly improved predictivity of the in vitro tests. As a further step, we have generated examples how to predict reproductive toxicity of chemicals using available data. We have executed formal validations of panel constituents and also used more innovative manners to validate the test panel using mechanistic approaches. We are actively engaged in promoting regulatory acceptance of the tools developed as an essential step towards practical application, including case studies for read-across purposes. With this approach, a significant saving in animal use and associated costs seems very feasible.

  11. Low Reproductive Rate Predicts Species Sensitivity to Habitat Loss: A Meta-Analysis of Wetland Vertebrates

    PubMed Central

    Quesnelle, Pauline E.; Lindsay, Kathryn E.; Fahrig, Lenore

    2014-01-01

    We tested the hypotheses that species with greater mobility and/or higher reproductive rates are less sensitive to habitat loss than species with lower mobility and/or reproductive rates by conducting a meta-analysis of wetland vertebrate responses to wetland habitat loss. We combined data from 90 studies conducted worldwide that quantified the relationship between wetland amount in a landscape and population abundance of at least one wetland species to determine if mobility (indexed as home range size and body length) and annual reproductive rate influence species responses to wetland loss. When analyzed across all taxa, animals with higher reproductive rates were less sensitive to wetland loss. Surprisingly, we did not find an effect of mobility on response to wetland loss. Overall, wetland mammals and birds were more sensitive to wetland loss than were reptiles and amphibians. Our results suggest that dispersal between habitat patches is less important than species’ reproductive rates for population persistence in fragmented landscapes. This implies that immigration and colonization rate is most strongly related to reproduction, which determines the total number of potential colonists. PMID:24651675

  12. Millisecond Timescale Synchrony among Hippocampal Neurons

    PubMed Central

    Amarasingham, Asohan; Mizuseki, Kenji; Buzsáki, György

    2014-01-01

    Inhibitory neurons in cortical circuits play critical roles in composing spike timing and oscillatory patterns in neuronal activity. These roles in turn require coherent activation of interneurons at different timescales. To investigate how the local circuitry provides for these activities, we applied resampled cross-correlation analyses to large-scale recordings of neuronal populations in the cornu ammonis 1 (CA1) and CA3 regions of the hippocampus of freely moving rats. Significant counts in the cross-correlation of cell pairs, relative to jittered surrogate spike-trains, allowed us to identify the effective couplings between neurons in CA1 and CA3 hippocampal regions on the timescale of milliseconds. In addition to putative excitatory and inhibitory monosynaptic connections, we uncovered prominent millisecond timescale synchrony between cell pairs, observed as peaks in the central 0 ms bin of cross-correlograms. This millisecond timescale synchrony appeared to be independent of network state, excitatory input, and γ oscillations. Moreover, it was frequently observed between cells of differing putative interneuronal type, arguing against gap junctions as the sole underlying source. Our observations corroborate recent in vitro findings suggesting that inhibition alone is sufficient to synchronize interneurons at such fast timescales. Moreover, we show that this synchronous spiking may cause stronger inhibition and rebound spiking in target neurons, pointing toward a potential function for millisecond synchrony of interneurons in shaping and affecting timing in pyramidal populations within and downstream from the circuit. PMID:25378164

  13. Regular synchrony lattices for product coupled cell networks.

    PubMed

    Aguiar, Manuela A D; Dias, Ana Paula S

    2015-01-01

    There are several ways for constructing (bigger) networks from smaller networks. We consider here the cartesian and the Kronecker (tensor) product networks. Our main aim is to determine a relation between the lattices of synchrony subspaces for a product network and the component networks of the product. In this sense, we show how to obtain the lattice of regular synchrony subspaces for a product network from the lattices of synchrony subspaces for the component networks. Specifically, we prove that a tensor of subspaces is of synchrony for the product network if and only if the subspaces involved in the tensor are synchrony subspaces for the component networks of the product. We also show that, in general, there are (irregular) synchrony subspaces for the product network that are not described by the synchrony subspaces for the component networks, concluding that, in general, it is not possible to obtain the all synchrony lattice for the product network from the corresponding lattices for the component networks. We also make the following remark concerning the fact that the cartesian and Kronecker products, as graph operations, are quite different, implying that the associated coupled cell systems have distinct structures. Although, the kinds of dynamics expected to occur are difficult to compare, we establish an inclusion relation between the lattices of synchrony subspaces for the cartesian and Kronecker products. PMID:25637919

  14. Regular synchrony lattices for product coupled cell networks.

    PubMed

    Aguiar, Manuela A D; Dias, Ana Paula S

    2015-01-01

    There are several ways for constructing (bigger) networks from smaller networks. We consider here the cartesian and the Kronecker (tensor) product networks. Our main aim is to determine a relation between the lattices of synchrony subspaces for a product network and the component networks of the product. In this sense, we show how to obtain the lattice of regular synchrony subspaces for a product network from the lattices of synchrony subspaces for the component networks. Specifically, we prove that a tensor of subspaces is of synchrony for the product network if and only if the subspaces involved in the tensor are synchrony subspaces for the component networks of the product. We also show that, in general, there are (irregular) synchrony subspaces for the product network that are not described by the synchrony subspaces for the component networks, concluding that, in general, it is not possible to obtain the all synchrony lattice for the product network from the corresponding lattices for the component networks. We also make the following remark concerning the fact that the cartesian and Kronecker products, as graph operations, are quite different, implying that the associated coupled cell systems have distinct structures. Although, the kinds of dynamics expected to occur are difficult to compare, we establish an inclusion relation between the lattices of synchrony subspaces for the cartesian and Kronecker products.

  15. Personality traits of pair members predict pair compatibility and reproductive success in a socially monogamous parrot breeding in captivity.

    PubMed

    Fox, Rebecca A; Millam, James R

    2014-01-01

    While pair behavioral compatibility seems to be a determinant of reproductive success in at least some species of monogamous birds, the specific factors underlying among-pair variation in behavioral compatibility remain poorly understood. However, recent research on the relationship between personality traits and reproductive success in several species of socially monogamous birds suggests that the fit between mates' personality traits might play a role in determining behavioral compatibility. To test this hypothesis, we used ten pairs formed by free choice from a captive population of cockatiels (Nymphicus hollandicus) to investigate whether personality ratings could be used to predict pair compatibility and reproductive success in pairs breeding for the first time. We found that pairs that ultimately hatched eggs paired disassortatively for agreeableness (an aggregate measure of social style which measures birds' tendency to be aggressive vs. gentle, submissive, and tolerant of others' behavior), and, as predicted, showed lower intrapair aggression and better coordination during incubation. Conversely, unsuccessful pairs paired assortatively for agreeableness, showed higher levels of intrapair aggression, and showed poorer coordination during incubation. Our results suggest that personality measurements may provide a useful adjunct to other information currently used in selecting mates for birds breeding in captivity.

  16. Nutrient synchrony: sound in theory, elusive in practice.

    PubMed

    Hall, M B; Huntington, G B

    2008-04-01

    The concept of improving animal performance by going beyond simply meeting requirements and synchronizing ruminal availability of protein and energy has been with us for at least 3 decades. Although theoretically appealing, research and field results have not supported this approach to diet formulation. Why? Essential to successful ruminal synchrony is the ability to predict available amounts and fates of diverse substrates. The substrates come from varied sources; their efficiencies of use and yields of products are affected by inherent properties, interactions, transformations, and passage. However, substrate quality and availability in the rumen are affected only in part by diet. For example, NPN, true protein, and peptides are contributed by diet and intraruminal recycling, with additional endogenous NPN contributions by the cow. Changes in factors that alter the rate or extent of substrate fermentation, such as the rate of passage or ruminal pH, can alter nutrient yield from the rumen and must be accounted for in order for synchrony to work. Our ability to estimate ruminally available substrate is also challenged by normal variation in feed composition and imprecision in component and digestibility analyses. Current in vitro assays may not be adequate to accurately describe the digestibility of feed components in vivo in mixed diets. There are some indications that the amount or pattern of supply of fermentable carbohydrate has a greater impact on microbial production and efficiency than does the pattern of protein supply. Animal responses to modifications in the supply of true protein from the rumen may be masked if additional protein is oxidized by tissues or if AA from endogenous sources cover deficiencies. Animal factors, such as response to immune challenge and sustained damage to tissues, will also affect partitioning of nutrients for production and may alter an animal's response to changes in nutrient supply. With the array of factors internal and

  17. The reproductive health needs of refugees: emerging consensus attracts predictable controversy.

    PubMed

    Cohen, S A

    1998-10-01

    According to the UN High Commissioner for Refugees, there are approximately 40 million refugees and other internally displaced people worldwide, with the overwhelming majority coming from and still living in developed countries. 80% of all refugees are estimated to be women and children. Many refugees spend months and even years in what are designed to be temporary settings where efforts are made to accommodate their basic needs such as food, clean water, shelter, security, and primary health care during emergency situations. Women refugees, however, have certain unique needs beyond what traditionally have been considered basic in relief programs. Many women in developing countries suffer considerable health risks during the best of times due to their poverty or low social status. When fleeing conflict or natural disaster, their health status is at even higher risk of being compromised by severe living conditions and the complete absence of reproductive health services. The recognition that women refugees often face serious and sometimes life-threatening reproductive health-related situations led to the development of a field manual on reproductive health for use at the local level. Planned for publication in late 1998 or early 1999, the guide will describe the goals of a minimum array of reproductive health services in the early phase of an emergency and provide direct guidance on care relating to sexual violence, STDs, family planning, adolescents' needs, and other reproductive health concerns such as female genital mutilation and treatment for septic and incomplete abortion. The manual has garnered worldwide attention and support, as well as scrutiny by abortion opponents in the US, in particular New Jersey Republican Representative Chris Smith.

  18. Cognitive Style and Synchrony in Measures of Anxiety.

    ERIC Educational Resources Information Center

    Strohmer, Douglas C.; And Others

    1983-01-01

    Examined the extent to which a cognitive style variable, integrative complexity, was related to synchrony between behavioral and self-report measures of anxiety in counseling students (N=26). During a therapy analogue two measures of anxiety were taken. Results indicated a substantial dependence of synchrony/desynchrony on cognitive style.…

  19. Small-scale spatial distribution and oogenetic synchrony in brittlestars (Echinodermata: Ophiuroidea)

    NASA Astrophysics Data System (ADS)

    Doyle, Gina M.; Hamel, Jean-François; Mercier, Annie

    2014-01-01

    There is increasing evidence that spatial factors modulate reproductive processes over large (>150 km) and medium (10-100 km) scales in marine taxa, but few studies have explicitly determined the degree of inter-individual synchrony in gamete development at smaller scales within benthic populations. Using a ubiquitous broadcast-spawning species, the brittlestar Ophiopholis aculeata, we assessed variations in gametogenic activity over the annual reproductive cycle at various scales. Quantitative indices of oogenic maturity were compared in females collected: (1) in two substrata at a given site (distant ˜200-300 m), (2) among clusters of individuals living in relatively close proximity (˜10-50 m), and (3) within each cluster of individuals collected under/inside a given substratum (˜2-20 cm). Gametogenic maturity was also examined in females collected from distant sites (˜50-150 km). At the main study site, oogenic cohesion was greater within and among clusters of a given substratum than between substrata, and differences in reproductive output and spawning periods occurred between individuals from the two substrata studied. At the finest scale (within clusters of individuals) oogenic synchrony was maximal just before spawning. Comparing samples from distant geographic locations (>50 km) showed significant asynchrony outside the pre-spawning period. The present study shows that relatively high levels of asynchrony in gamete maturation may exist among conspecifics of a seemingly homogeneous population, except at the closest scale (within clusters) at the culmination of the reproductive cycle (near spawning). This emphasizes the likely interplay of inter-individual exchanges and small-scale distribution on the fine coordination of reproductive events.

  20. Stress and success: individual differences in the glucocorticoid stress response predict behavior and reproductive success under high predation risk.

    PubMed

    Vitousek, Maren N; Jenkins, Brittany R; Safran, Rebecca J

    2014-11-01

    A fundamental element of how vertebrates respond to stressors is by rapidly elevating circulating glucocorticoid hormones. Individual variation in the magnitude of the glucocorticoid stress response has been linked with reproductive success and survival. But while the adaptive value of this response is believed to stem in part from changes in the expression of hormone-mediated behaviors, it is not clear how the behavior of stronger and weaker glucocorticoid responders differs during reproduction, or during exposure to ecologically relevant stressors. Here we report that in a population of barn swallows (Hirundo rustica erythrogaster) experiencing high rates of nest predation, circulating levels of corticosterone (the primary avian glucocorticoid) during exposure to a standardized stressor predict aspects of subsequent behavior and fitness. Individuals that mounted a stronger corticosterone stress response during the early reproductive period did not differ in clutch size, but fledged fewer offspring. Parents with higher stress-induced corticosterone during the early reproductive period later provisioned their nestlings at lower rates. Additionally, in the presence of a model predator stress-induced corticosterone was positively associated with the latency to return to the nest, but only among birds that were observed to return. Model comparisons revealed that stress-induced hormones were better predictors of the behavioral and fitness effects of exposure to transient, ecologically relevant stressors than baseline corticosterone. These findings are consistent with functional links between individual variation in the hormonal and behavioral response to stressors. If such links occur, then selection on the heritable components of the corticosterone stress response could promote adaptation to novel environments or predation regimes.

  1. Reproductive ambition predicts partnered, but not unpartnered, women's preferences for masculine men.

    PubMed

    Watkins, Christopher D

    2012-08-01

    Changing circumstances alter the costs and benefits of choosing different mates and are thought to be reflected in women's mate preferences. Indeed, several lines of reasoning, and some prior studies, suggest that individual differences in women's preferences for cues of men's underlying health will be more apparent among partnered women than among unpartnered women. The current study shows that preferences for male faces with masculine shape cues, characteristics that are thought to signal men's underlying health, are positively correlated with partnered, but not unpartnered, women's reported reproductive ambition (i.e., their desire to become pregnant). These findings (1) present new evidence for systematic variation in women's mating strategies, (2) suggest that partnership status may be important for potentially adaptive variation in women's mate preferences, and (3) suggest that reproductive ambition may influence women's mate preferences. Alternative explanations for these findings, focusing on the possible effects of a range of variables that may be correlated with reproductive ambition in partnered women and influence their masculinity preferences, are also discussed. PMID:22804699

  2. Unsupervised Synchrony Discovery in Human Interaction

    PubMed Central

    Chu, Wen-Sheng; Zeng, Jiabei; De la Torre, Fernando; Cohn, Jeffrey F.; Messinger, Daniel S.

    2016-01-01

    People are inherently social. Social interaction plays an important and natural role in human behavior. Most computational methods focus on individuals alone rather than in social context. They also require labelled training data. We present an unsupervised approach to discover interpersonal synchrony, referred as to two or more persons preforming common actions in overlapping video frames or segments. For computational efficiency, we develop a branch-and-bound (B&B) approach that affords exhaustive search while guaranteeing a globally optimal solution. The proposed method is entirely general. It takes from two or more videos any multi-dimensional signal that can be represented as a histogram. We derive three novel bounding functions and provide efficient extensions, including multi-synchrony detection and accelerated search, using a warm-start strategy and parallelism. We evaluate the effectiveness of our approach in multiple databases, including human actions using the CMU Mocap dataset [1], spontaneous facial behaviors using group-formation task dataset [37] and parent-infant interaction dataset [28]. PMID:27346988

  3. Synchrony in Metapopulations with Sporadic Dispersal

    NASA Astrophysics Data System (ADS)

    Jeter, Russell; Belykh, Igor

    2015-06-01

    We study synchronization in ecological networks under the realistic assumption that the coupling among the patches is sporadic/stochastic and due to rare and short-term meteorological conditions. Each patch is described by a tritrophic food chain model, representing the producer, consumer, and predator. If all three species can migrate, we rigorously prove that the network can synchronize as long as the migration occurs frequently, i.e. fast compared to the period of the ecological cycle, even though the network is disconnected most of the time. In the case where only the top trophic level (i.e. the predator) can migrate, we reveal an unexpected range of intermediate switching frequencies where synchronization becomes stable in a network which switches between two nonsynchronous dynamics. As spatial synchrony increases the danger of extinction, this counterintuitive effect of synchrony emerging from slower switching dispersal can be destructive for overall metapopulation persistence, presumably expected from switching between two dynamics which are unfavorable to extinction.

  4. Intensity of Territorial Marking Predicts Wolf Reproduction: Implications for Wolf Monitoring

    PubMed Central

    García, Emilio J.

    2014-01-01

    Background The implementation of intensive and complex approaches to monitor large carnivores is resource demanding, restricted to endangered species, small populations, or small distribution ranges. Wolf monitoring over large spatial scales is difficult, but the management of such contentious species requires regular estimations of abundance to guide decision-makers. The integration of wolf marking behaviour with simple sign counts may offer a cost-effective alternative to monitor the status of wolf populations over large spatial scales. Methodology/Principal Findings We used a multi-sampling approach, based on the collection of visual and scent wolf marks (faeces and ground scratching) and the assessment of wolf reproduction using howling and observation points, to test whether the intensity of marking behaviour around the pup-rearing period (summer-autumn) could reflect wolf reproduction. Between 1994 and 2007 we collected 1,964 wolf marks in a total of 1,877 km surveyed and we searched for the pups' presence (1,497 howling and 307 observations points) in 42 sampling sites with a regular presence of wolves (120 sampling sites/year). The number of wolf marks was ca. 3 times higher in sites with a confirmed presence of pups (20.3 vs. 7.2 marks). We found a significant relationship between the number of wolf marks (mean and maximum relative abundance index) and the probability of wolf reproduction. Conclusions/Significance This research establishes a real-time relationship between the intensity of wolf marking behaviour and wolf reproduction. We suggest a conservative cutting point of 0.60 for the probability of wolf reproduction to monitor wolves on a regional scale combined with the use of the mean relative abundance index of wolf marks in a given area. We show how the integration of wolf behaviour with simple sampling procedures permit rapid, real-time, and cost-effective assessments of the breeding status of wolf packs with substantial implications to monitor

  5. Flowering synchrony and floral display size affect pollination success in a deceit-pollinated tropical orchid

    NASA Astrophysics Data System (ADS)

    Parra-Tabla, Victor; Vargas, Carlos F.

    2007-07-01

    ue to frequency-dependent negative selection, a strong relationship between reproductive phenology traits and pollination success is expected in deceit-pollinated species. This paper assesses the effects of floral display size on both female (fruit production) and male (pollen removal) pollination success in a population of the deceit-pollinated tropical orchid Myrmecophila christinae during two consecutive years (1998-1999). Low pollen removal (˜9% of total flowers) and fruit production values (˜3% of total flowers) were recorded during both years. As expected, binary logistic regressions showed a significant negative effect of floral synchrony, and a positive effect of floral display size on both male and female success, although these effects varied across years. Pollination rates in the field and in hand pollinations suggest a doubling in pollinator abundance between years. Results suggest that floral display size and flowering synchrony are of adaptive value for M. christinae. However, between-year fluctuations might indicate that reproductive phenology traits in deceit-pollinated species undergo fluctuating selection regimes among years and are probably linked to short-term changes in environmental (abiotic and biotic) conditions.

  6. Vitamin D status predicts reproductive fitness in a wild sheep population

    PubMed Central

    Handel, Ian; Watt, Kathryn A.; Pilkington, Jill G.; Pemberton, Josephine M.; Macrae, Alastair; Scott, Philip; McNeilly, Tom N.; Berry, Jacqueline L.; Clements, Dylan N.; Nussey, Daniel H.; Mellanby, Richard J.

    2016-01-01

    Vitamin D deficiency has been associated with the development of many human diseases, and with poor reproductive performance in laboratory rodents. We currently have no idea how natural selection directly acts on variation in vitamin D metabolism due to a total lack of studies in wild animals. Here, we measured serum 25 hydroxyvitamin D (25(OH)D) concentrations in female Soay sheep that were part of a long-term field study on St Kilda. We found that total 25(OH)D was strongly influenced by age, and that light coloured sheep had higher 25(OH)D3 (but not 25(OH)D2) concentrations than dark sheep. The coat colour polymorphism in Soay sheep is controlled by a single locus, suggesting vitamin D status is heritable in this population. We also observed a very strong relationship between total 25(OH)D concentrations in summer and a ewe’s fecundity the following spring. This resulted in a positive association between total 25(OH)D and the number of lambs produced that survived their first year of life, an important component of female reproductive fitness. Our study provides the first insight into naturally-occurring variation in vitamin D metabolites, and offers the first evidence that vitamin D status is both heritable and under natural selection in the wild. PMID:26757805

  7. Quantifying temporal ventriloquism in audiovisual synchrony perception.

    PubMed

    Kuling, Irene A; Kohlrausch, Armin; Juola, James F

    2013-10-01

    The integration of visual and auditory inputs in the human brain works properly only if the components are perceived in close temporal proximity. In the present study, we quantified cross-modal interactions in the human brain for audiovisual stimuli with temporal asynchronies, using a paradigm from rhythm perception. In this method, participants had to align the temporal position of a target in a rhythmic sequence of four markers. In the first experiment, target and markers consisted of a visual flash or an auditory noise burst, and all four combinations of target and marker modalities were tested. In the same-modality conditions, no temporal biases and a high precision of the adjusted temporal position of the target were observed. In the different-modality conditions, we found a systematic temporal bias of 25-30 ms. In the second part of the first and in a second experiment, we tested conditions in which audiovisual markers with different stimulus onset asynchronies (SOAs) between the two components and a visual target were used to quantify temporal ventriloquism. The adjusted target positions varied by up to about 50 ms and depended in a systematic way on the SOA and its proximity to the point of subjective synchrony. These data allowed testing different quantitative models. The most satisfying model, based on work by Maij, Brenner, and Smeets (Journal of Neurophysiology 102, 490-495, 2009), linked temporal ventriloquism and the percept of synchrony and was capable of adequately describing the results from the present study, as well as those of some earlier experiments. PMID:23868564

  8. Social status does not predict responses to Seoul virus infection or reproductive success among male Norway rats.

    PubMed

    Hinson, Ella R; Hannah, Michele F; Norris, Douglas E; Glass, Gregory E; Klein, Sabra L

    2006-03-01

    Trade-offs exist among life history strategies that are used to increase survival and reproduction; such that, males that engage in more competitive behaviors may be more susceptible to infection. Hantaviruses are transmitted horizontally between rodents through the passage of virus in saliva during wounding and male rodents are more likely to be infected with hantaviruses than females. To determine whether a trade-off exists between dominance and susceptibility to Seoul virus infection, male Long Evans rats were group housed (3/cage) with a female rat and aggressive and subordinate behaviors were monitored during a 10 day group housing condition. After behavioral testing, males were individually housed, inoculated with Seoul virus, and blood, saliva, and fecal samples were collected. Dominant males initiated more aggressive encounters than subordinate males. Dominant and subordinate males, however, had similar steroid hormone concentrations, anti-Seoul virus IgG responses, and weight gain over the course of infection. A similar proportion of dominant and subordinate males shed virus in saliva and feces during infection. Using microsatellite DNA markers paternity was assigned to pups derived during the group housing period. In contrast to our initial hypothesis, dominant and subordinate males sired a similar percentage of pups. Taken together, host social status may not predict reproductive success or susceptibility to hantaviruses in rodent reservoir populations.

  9. Prediction of psychological functioning one year after the predictive test for Huntington's disease and impact of the test result on reproductive decision making.

    PubMed

    Decruyenaere, M; Evers-Kiebooms, G; Boogaerts, A; Cassiman, J J; Cloostermans, T; Demyttenaere, K; Dom, R; Fryns, J P; Van den Berghe, H

    1996-09-01

    For people at risk for Huntington's disease, the anxiety and uncertainty about the future may be very burdensome and may be an obstacle to personal decision making about important life issues, for example, procreation. For some at risk persons, this situation is the reason for requesting predictive DNA testing. The aim of this paper is two-fold. First, we want to evaluate whether knowing one's carrier status reduces anxiety and uncertainty and whether it facilitates decision making about procreation. Second, we endeavour to identify pretest predictors of psychological adaptation one year after the predictive test (psychometric evaluation of general anxiety, depression level, and ego strength). The impact of the predictive test result was assessed in 53 subjects tested, using pre- and post-test psychometric measurement and self-report data of follow up interviews. Mean anxiety and depression levels were significantly decreased one year after a good test result; there was no significant change in the case of a bad test result. The mean personality profile, including ego strength, remained unchanged one year after the test. The study further shows that the test result had a definite impact on reproductive decision making. Stepwise multiple regression analyses were used to select the best predictors of the subject's post-test reactions. The results indicate that a careful evaluation of pretest ego strength, depression level, and coping strategies may be helpful in predicting post-test reactions, independently of the carrier status. Test result (carrier/ non-carrier), gender, and age did not significantly contribute to the prediction. About one third of the variance of post-test anxiety and depression level and more than half of the variance of ego strength was explained, implying that other psychological or social aspects should also be taken into account when predicting individual post-test reactions.

  10. Personality Traits in Rhesus Macaques (Macaca mulatta) Are Heritable but Do Not Predict Reproductive Output.

    PubMed

    Brent, Lauren J N; Semple, Stuart; Maclarnon, Ann; Ruiz-Lambides, Angelina; Gonzalez-Martinez, Janis; Platt, Michael L

    2014-02-01

    There is growing evidence that behavioral tendencies, or "personalities," in animals are an important aspect of their biology, yet their evolutionary basis is poorly understood. Specifically, how individual variation in personality arises and is subsequently maintained by selection remains unclear. To address this gap, studies of personality require explicit incorporation of genetic information. Here, we explored the genetic basis of personality in rhesus macaques by determining the heritability of personality components and by examining the fitness consequences of those components. We collected observational data for 108 adult females living in three social groups in a free-ranging population via focal animal sampling. We applied principal component analysis to nine spontaneously occurring behaviors and identified six putative personality components, which we named Meek, Bold, Aggressive, Passive, Loner, and Nervous. All components were repeatable and heritable, with heritability estimates ranging from 0.14 to 0.35. We found no evidence of an association with reproductive output, measured either by infant survival or by interbirth interval, for any of the personality components. This finding suggests either that personality does not have fitness-related consequences in this population or that selection has acted to reduce fitness-associated variation in personality.

  11. Measurements of spatial population synchrony: influence of time series transformations.

    PubMed

    Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël

    2015-09-01

    Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.

  12. Measurements of spatial population synchrony: influence of time series transformations.

    PubMed

    Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël

    2015-09-01

    Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies. PMID:25953116

  13. Validation, acceptance, and extension of a predictive model of reproductive toxicity using ToxCast data

    EPA Science Inventory

    The EPA ToxCast research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I tested 309 well-characterized chemicals (mostly pesticides) in over 500 assays of different molecular targets, cellular responses an...

  14. Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening

    EPA Science Inventory

    The EPA ToxCast research program uses high throughput screening for bioactivity profiling and predicting the toxicity of large numbers of chemicals. ToxCast Phase‐I tested 309 well‐characterized chemicals in over 500 assays for a wide range of molecular targets and cellular respo...

  15. Predictive Signatures from ToxCast Data for Chronic, Developmental and Reproductive Toxicity Endpoints

    EPA Science Inventory

    The EPA ToxCast program is using in vitro assay data and chemical descriptors to build predictive models for in vivo toxicity endpoints. In vitro assays measure activity of chemicals against molecular targets such as enzymes and receptors (measured in cell-free and cell-based sys...

  16. Interhemispheric synchrony in the neonatal EEG revisited: activation synchrony index as a promising classifier.

    PubMed

    Koolen, Ninah; Dereymaeker, Anneleen; Räsänen, Okko; Jansen, Katrien; Vervisch, Jan; Matic, Vladimir; De Vos, Maarten; Van Huffel, Sabine; Naulaers, Gunnar; Vanhatalo, Sampsa

    2014-01-01

    A key feature of normal neonatal EEG at term age is interhemispheric synchrony (IHS), which refers to the temporal co-incidence of bursting across hemispheres during trace alternant EEG activity. The assessment of IHS in both clinical and scientific work relies on visual, qualitative EEG assessment without clearly quantifiable definitions. A quantitative measure, activation synchrony index (ASI), was recently shown to perform well as compared to visual assessments. The present study was set out to test whether IHS is stable enough for clinical use, and whether it could be an objective feature of EEG normality. We analyzed 31 neonatal EEG recordings that had been clinically classified as normal (n = 14) or abnormal (n = 17) using holistic, conventional visual criteria including amplitude, focal differences, qualitative synchrony, and focal abnormalities. We selected 20-min epochs of discontinuous background pattern. ASI values were computed separately for different channel pair combinations and window lengths to define them for the optimal ASI intraindividual stability. Finally, ROC curves were computed to find trade-offs related to compromised data lengths, a common challenge in neonatal EEG studies. Using the average of four consecutive 2.5-min epochs in the centro-occipital bipolar derivations gave ASI estimates that very accurately distinguished babies clinically classified as normal vs. abnormal. It was even possible to draw a cut-off limit (ASI~3.6) which correctly classified the EEGs in 97% of all cases. Finally, we showed that compromising the length of EEG segments from 20 to 5 min leads to increased variability in ASI-based classification. Our findings support the prior literature that IHS is an important feature of normal neonatal brain function. We show that ASI may provide diagnostic value even at individual level, which strongly supports its use in prospective clinical studies on neonatal EEG as well as in the feature set of upcoming EEG classifiers

  17. Factors defining a pacemaker region for synchrony in the hippocampus

    PubMed Central

    Wittner, Lucia; Miles, Richard

    2007-01-01

    Synchronous activities of neuronal populations are often initiated in a pacemaker region and spread to recruit other regions. Here we examine factors that define a pacemaker site. The CA3a region acts as the pacemaker for disinhibition induced synchrony in guinea pig hippocampal slices and CA3b is a follower region. We found CA3a pyramidal cells were more excitable and fired in bursts more frequently than CA3b cells. CA3a cells had more complex dendritic arbors than CA3b cells especially in zones targetted by recurrent synapses. The product of the density of pyramidal cell axon terminals and dendritic lengths in innervated zones predicted a higher recurrent synaptic connectivity in the CA3a than in the CA3b region. We show that some CA3a cells but few CA3b cells behave as pacemaker cells by firing early during population events and by recruiting follower cells to fire. With a greater excitability and enhanced synaptic connectivity these CA3a cells may also possess initiating functions for other hippocampal ensemble activities initiated in this region. PMID:17823211

  18. Developing predictive approaches to characterize adaptive responses of the reproductive endocrine axis to aromatase inhibition: II. Computational modeling.

    PubMed

    Breen, Miyuki; Villeneuve, Daniel L; Ankley, Gerald T; Bencic, David C; Breen, Michael S; Watanabe, Karen H; Lloyd, Alun L; Conolly, Rory B

    2013-06-01

    Endocrine-disrupting chemicals can affect reproduction and development in humans and wildlife. We developed a computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (DRTC) behaviors for endocrine effects of the aromatase inhibitor, fadrozole (FAD). The model describes adaptive responses to endocrine stress involving regulated secretion of a generic gonadotropin (LH/FSH) from the hypothalamic-pituitary complex. For model development, we used plasma 17β-estradiol (E2) concentrations and ovarian cytochrome P450 (CYP) 19A aromatase mRNA data from two time-course experiments, each of which included both an exposure and a depuration phase, and plasma E2 data from a third 4-day study. Model parameters were estimated using E2 concentrations for 0, 0.5, and 3 µg/l FAD exposure concentrations, and good fits to these data were obtained. The model accurately predicted CYP19A mRNA fold changes for controls and three FAD doses (0, 0.5, and 3 µg/l) and plasma E2 dose response from the 4-day study. Comparing the model-predicted DRTC with experimental data provided insight into how the feedback control mechanisms in the HPG axis mediate these changes: specifically, adaptive changes in plasma E2 levels occurring during exposure and "overshoot" occurring postexposure. This study demonstrates the value of mechanistic modeling to examine and predict dynamic behaviors in perturbed systems. As this work progresses, we will obtain a refined understanding of how adaptive responses within the vertebrate HPG axis affect DRTC behaviors for aromatase inhibitors and other types of endocrine-active chemicals and apply that knowledge in support of risk assessments.

  19. Recruitment synchrony of yellow perch (Perca flavescens, Percidae) in the Great Lakes region, 1966–2008

    USGS Publications Warehouse

    Honsey, Andrew E.; Bunnell, David; Troy, Cary D.; Fielder, David G.; Thomas, Michael V.; Knight, Carey T.; Chong, Stephen; Hook, Tomas O.

    2016-01-01

    Population-level reproductive success (recruitment) of many fish populations is characterized by high inter-annual variation and related to annual variation in key environmental factors (e.g., climate). When such environmental factors are annually correlated across broad spatial scales, spatially separated populations may display recruitment synchrony (i.e., the Moran effect). We investigated inter-annual (1966–2008) variation in yellow perch (Perca flavescens, Percidae) recruitment using 16 datasets describing populations located in four of the five Laurentian Great Lakes (Erie, Huron, Michigan, and Ontario) and Lake St. Clair. We indexed relative year class strength using catch-curve residuals for each year-class across 2–4 years and compared relative year-class strength among sampling locations. Results indicate that perch recruitment is positively synchronized across the region. In addition, the spatial scale of this synchrony appears to be broader than previous estimates for both yellow perch and freshwater fish in general. To investigate potential factors influencing relative year-class strength, we related year-class strength to regional indices of annual climatic conditions (spring-summer air temperature, winter air temperature, and spring precipitation) using data from 14 weather stations across the Great Lakes region. We found that mean spring-summer temperature is significantly positively related to recruitment success among Great Lakes yellow perch populations.

  20. A synaptic mechanism for network synchrony

    PubMed Central

    Alford, Simon T.; Alpert, Michael H.

    2014-01-01

    Within neural networks, synchronization of activity is dependent upon the synaptic connectivity of embedded microcircuits and the intrinsic membrane properties of their constituent neurons. Synaptic integration, dendritic Ca2+ signaling, and non-linear interactions are crucial cellular attributes that dictate single neuron computation, but their roles promoting synchrony and the generation of network oscillations are not well understood, especially within the context of a defined behavior. In this regard, the lamprey spinal central pattern generator (CPG) stands out as a well-characterized, conserved vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized oscillations in which neural elements from the systems to cellular level that control rhythmic locomotion have been determined. We review the current evidence for the synaptic basis of oscillation generation with a particular emphasis on the linkage between synaptic communication and its cellular coupling to membrane processes that control oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic function found in many vertebrate systems to the accessible lamprey central nervous system in which the relationship between neural network activity and behavior is well understood. This enables us to address how Ca2+ signaling in spinal neuron dendrites orchestrate oscillations that drive network behavior. PMID:25278839

  1. Evaluating Interpersonal Synchrony: Wavelet Transform Toward an Unstructured Conversation.

    PubMed

    Fujiwara, Ken; Daibo, Ikuo

    2016-01-01

    This study examined whether interpersonal synchrony could be extracted using spectrum analysis (i.e., wavelet transform) in an unstructured conversation. Sixty-two female undergraduates were randomly paired and they engaged in a 6-min unstructured conversation. Interpersonal synchrony was evaluated by calculating the cross-wavelet coherence of the time-series movement data, extracted using a video-image analysis software. The existence of synchrony was tested using a pseudo-synchrony paradigm. In addition, the frequency at which the synchrony occurred and the distribution of the relative phase was explored. The results showed that the value of cross-wavelet coherence was higher in the experimental participant pairs than in the pseudo pairs. Further, the coherence value was higher in the frequency band under 0.5 Hz. These results support the validity of evaluating interpersonal synchron Behavioral mimicry and interpersonal syyby using wavelet transform even in an unstructured conversation. However, the role of relative phase was not clear; there was no significant difference between each relative-phase region. The theoretical contribution of these findings to the area of interpersonal coordination is discussed.

  2. Evaluating Interpersonal Synchrony: Wavelet Transform Toward an Unstructured Conversation

    PubMed Central

    Fujiwara, Ken; Daibo, Ikuo

    2016-01-01

    This study examined whether interpersonal synchrony could be extracted using spectrum analysis (i.e., wavelet transform) in an unstructured conversation. Sixty-two female undergraduates were randomly paired and they engaged in a 6-min unstructured conversation. Interpersonal synchrony was evaluated by calculating the cross-wavelet coherence of the time-series movement data, extracted using a video-image analysis software. The existence of synchrony was tested using a pseudo-synchrony paradigm. In addition, the frequency at which the synchrony occurred and the distribution of the relative phase was explored. The results showed that the value of cross-wavelet coherence was higher in the experimental participant pairs than in the pseudo pairs. Further, the coherence value was higher in the frequency band under 0.5 Hz. These results support the validity of evaluating interpersonal synchron Behavioral mimicry and interpersonal syyby using wavelet transform even in an unstructured conversation. However, the role of relative phase was not clear; there was no significant difference between each relative-phase region. The theoretical contribution of these findings to the area of interpersonal coordination is discussed. PMID:27148125

  3. Plant phenological synchrony increases under rapid within-spring warming.

    PubMed

    Wang, Cong; Tang, Yanhong; Chen, Jin

    2016-01-01

    Phenological synchrony influences many ecological processes. Recent climate change has altered the synchrony of phenology, but little is known about the underlying mechanisms. Here using in situ phenological records from Europe, we found that the standard deviation (SD, as a measure of synchrony) of first leafing day (FLD) and the SD of first flowering day (FFD) among local plants were significantly smaller in the years and/or in the regions with a more rapid within-spring warming speed (WWS, the linear slope of the daily mean temperature against the days during spring, in (o)C/day) with correlation coefficients of -0.75 and -0.48 for FLD and -0.55 and -0.23 for FFD. We further found that the SDs of temperature sensitivity of local plants were smaller under the rapid WWS conditions with correlation coefficients of -0.46 and -0.33 for FLD and FFD respectively. This study provides the first evidence that the within-season rate of change of the temperature but not the magnitude determines plant phenological synchrony. It implies that temporally, the asymmetric seasonal climatic warming may decrease the synchrony via increasing WWS, especially in arctic regions; spatially, plants in coastal and low latitude areas with low WWS would have more diverse spring phenological traits. PMID:27145698

  4. Evaluating Interpersonal Synchrony: Wavelet Transform Toward an Unstructured Conversation.

    PubMed

    Fujiwara, Ken; Daibo, Ikuo

    2016-01-01

    This study examined whether interpersonal synchrony could be extracted using spectrum analysis (i.e., wavelet transform) in an unstructured conversation. Sixty-two female undergraduates were randomly paired and they engaged in a 6-min unstructured conversation. Interpersonal synchrony was evaluated by calculating the cross-wavelet coherence of the time-series movement data, extracted using a video-image analysis software. The existence of synchrony was tested using a pseudo-synchrony paradigm. In addition, the frequency at which the synchrony occurred and the distribution of the relative phase was explored. The results showed that the value of cross-wavelet coherence was higher in the experimental participant pairs than in the pseudo pairs. Further, the coherence value was higher in the frequency band under 0.5 Hz. These results support the validity of evaluating interpersonal synchron Behavioral mimicry and interpersonal syyby using wavelet transform even in an unstructured conversation. However, the role of relative phase was not clear; there was no significant difference between each relative-phase region. The theoretical contribution of these findings to the area of interpersonal coordination is discussed. PMID:27148125

  5. Plant phenological synchrony increases under rapid within-spring warming

    PubMed Central

    Wang, Cong; Tang, Yanhong; Chen, Jin

    2016-01-01

    Phenological synchrony influences many ecological processes. Recent climate change has altered the synchrony of phenology, but little is known about the underlying mechanisms. Here using in situ phenological records from Europe, we found that the standard deviation (SD, as a measure of synchrony) of first leafing day (FLD) and the SD of first flowering day (FFD) among local plants were significantly smaller in the years and/or in the regions with a more rapid within-spring warming speed (WWS, the linear slope of the daily mean temperature against the days during spring, in oC/day) with correlation coefficients of −0.75 and −0.48 for FLD and −0.55 and −0.23 for FFD. We further found that the SDs of temperature sensitivity of local plants were smaller under the rapid WWS conditions with correlation coefficients of −0.46 and −0.33 for FLD and FFD respectively. This study provides the first evidence that the within-season rate of change of the temperature but not the magnitude determines plant phenological synchrony. It implies that temporally, the asymmetric seasonal climatic warming may decrease the synchrony via increasing WWS, especially in arctic regions; spatially, plants in coastal and low latitude areas with low WWS would have more diverse spring phenological traits. PMID:27145698

  6. The Subjective Sensation of Synchrony: An Experimental Study

    PubMed Central

    Llobera, Joan; Charbonnier, Caecilia; Chagué, Sylvain; Preissmann, Delphine; Antonietti, Jean-Philippe; Ansermet, François; Magistretti, Pierre J.

    2016-01-01

    People performing actions together have a natural tendency to synchronize their behavior. Consistently, people doing a task together build internal representations not only of their actions and goals, but also of the other people performing the task. However, little is known about which are the behavioral mechanisms and the psychological factors affecting the subjective sensation of synchrony, or “connecting” with someone else. In this work, we sought to find which factors induce the subjective sensation of synchrony, combining motion capture data and psychological measures. Our results show that the subjective sensation of synchrony is affected by performance quality together with task category, and time. Psychological factors such as empathy and negative subjective affects also correlate with the subjective sensation of synchrony. However, when people estimate synchrony as seen from a third person perspective, their psychological factors do not affect the accuracy of the estimation. We suggest that to feel this sensation it is necessary to, first, have a good joint performance and, second, to assume the existence of an attention monitoring mechanism that reports that the attention of both participants (self and other) is focused on the task. PMID:26870943

  7. POPULATION SYNCHRONY WITHIN AND AMONG LEPIDOPTERA SPECIES IN RELATION TO WEATHER, PHYLOGENY, AND LARVEL PHENOLOGY

    EPA Science Inventory

    1. The population dynamics of native herbivore species in central Appalachian deciduous forests were studied by analysing patterns of synchrony among intra- and interspecific populations and weather. 2. Spatial synchrony of 10 Lepidoptera species and three weather variables (min...

  8. Pre-ictal increase in theta synchrony between the hippocampus and prefrontal cortex in a rat model of temporal lobe epilepsy.

    PubMed

    Broggini, Ana Clara Silveira; Esteves, Ingrid Miranda; Romcy-Pereira, Rodrigo Neves; Leite, João Pereira; Leão, Richardson Naves

    2016-05-01

    The pathologically synchronized neuronal activity in temporal lobe epilepsy (TLE) can be triggered by network events that were once normal. Under normal conditions, hippocampus and medial prefrontal cortex (mPFC) work in synchrony during a variety of cognitive states. Abnormal changes in this circuit may aid to seizure onset and also help to explain the high association of TLE with mood disorders. We used a TLE rat model generated by perforant path (PP) stimulation to understand whether synchrony between dorsal hippocampal and mPFC networks is altered shortly before a seizure episode. We recorded hippocampal and mPFC local field potentials (LFPs) of animals with spontaneous recurrent seizures (SRSs) to verify the connectivity between these regions. We showed that SRSs decrease hippocampal theta oscillations whereas coherence in theta increases over time prior to seizure onset. This increase in synchrony is accompanied by a stronger coupling between hippocampal theta and mPFC gamma oscillation. Finally, using Granger causality we showed that hippocampus/mPFC synchrony increases in the pre-ictal phase and this increase is likely to be caused by hippocampal networks. The dorsal hippocampus is not directly connected to the mPFC; however, the functional coupling in theta between these two structures rises pre-ictally. Our data indicates that the increase in synchrony between dorsal hippocampus and mPFC may be predictive of seizures and may help to elucidate the network mechanisms that lead to seizure generation. PMID:26953232

  9. Auditory Neuropathy/Dys-synchrony and Its Perceptual Consequences

    PubMed Central

    Rance, Gary

    2005-01-01

    Auditory neuropathy/dys-synchrony is a form of hearing impairment in which cochlear outer hair cell function is spared but neural transmission in the auditory pathway is disordered. This condition, or group of conditions with a common physiologic profile, accounts for approximately 7% of permanent childhood hearing loss and a significant (but as yet undetermined) proportion of adult impairment. This paper presents an overview of the mechanisms underlying auditory neuropathy/dys-synchrony-type hearing loss and the clinical profile for affected patients. In particular it examines the perceptual consequences of auditory neuropathy/dys-synchrony, which are quite different from those associated with sensorineural hearing loss, and considers currently available, and future management options. PMID:15920648

  10. Impairments of Social Motor Synchrony Evident in Autism Spectrum Disorder

    PubMed Central

    Fitzpatrick, Paula; Frazier, Jean A.; Cochran, David M.; Mitchell, Teresa; Coleman, Caitlin; Schmidt, R. C.

    2016-01-01

    Social interactions typically involve movements of the body that become synchronized over time and both intentional and spontaneous interactional synchrony have been found to be an essential part of successful human interaction. However, our understanding of the importance of temporal dimensions of social motor synchrony in social dysfunction is limited. Here, we used a pendulum coordination paradigm to assess dynamic, process-oriented measures of social motor synchrony in adolescents with and without autism spectrum disorder (ASD). Our data indicate that adolescents with ASD demonstrate less synchronization in both spontaneous and intentional interpersonal coordination. Coupled oscillator modeling suggests that ASD participants assembled a synchronization dynamic with a weaker coupling strength, which corresponds to a lower sensitivity and decreased attention to the movements of the other person, but do not demonstrate evidence of a delay in information transmission. The implication of these findings for isolating an ASD-specific social synchronization deficit that could serve as an objective, bio-behavioral marker is discussed.

  11. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea

    NASA Astrophysics Data System (ADS)

    Bouwmeester, J.; Baird, A. H.; Chen, C. J.; Guest, J. R.; Vicentuan, K. C.; Berumen, M. L.

    2015-03-01

    Early work on coral reproduction in the far northern Red Sea suggested that the spawning times of ecologically abundant species did not overlap, unlike on the Great Barrier Reef where many species spawn with high synchrony. In contrast, recent work in the northern and central Red Sea indicates a high degree of synchrony in the reproductive condition of Acropora species: over 90 % of species sampled in April/May contain mature gametes. However, it has yet to be determined when most Acropora release their gametes. In addition, there is a lack of data for other ecologically important scleractinian species such as merulinids and poritids. Here, we document the date and time of spawning for 51 species in the central Red Sea over three consecutive years, and the month of spawning for an additional 17 species inferred from the presence of mature gametes. Spawning occurs on nights around the full moon, the spawning season lasts at least 4 months from April until July, and observations are consistent with the few other records from the Red Sea. The number of Acropora species spawning was highest in April with 13 species spawning two nights before the full moon in 2011, 13 species spawning on the night of the full moon in 2012, and eight species spawning four nights after the full moon in 2013. The total number of species spawning was high in April, May, and June and involved 15-19 species per month in 2012. Only four species spawned in July 2012. Few regions worldwide have been similarly sampled and include the Philippines, Okinawa in Japan, and Palau, where spawning patterns are very similar to those in the central Red Sea and where corals spawn on nights around the full moon over a period of 3-4 months. In particular, in all four locations, Acropora are among the first species to spawn. Our results add to a growing body of evidence indicating that multi-species spawning synchrony is a feature of all speciose coral assemblages.

  12. Maladaptive Neural Synchrony in Tinnitus: Origin and Restoration

    PubMed Central

    Eggermont, Jos J.; Tass, Peter A.

    2015-01-01

    Tinnitus is the conscious perception of sound heard in the absence of physical sound sources external or internal to the body, reflected in aberrant neural synchrony of spontaneous or resting-state brain activity. Neural synchrony is generated by the nearly simultaneous firing of individual neurons, of the synchronization of membrane-potential changes in local neural groups as reflected in the local field potentials, resulting in the presence of oscillatory brain waves in the EEG. Noise-induced hearing loss, often resulting in tinnitus, causes a reorganization of the tonotopic map in auditory cortex and increased spontaneous firing rates and neural synchrony. Spontaneous brain rhythms rely on neural synchrony. Abnormal neural synchrony in tinnitus appears to be confined to specific frequency bands of brain rhythms. Increases in delta-band activity are generated by deafferented/deprived neuronal networks resulting from hearing loss. Coordinated reset (CR) stimulation was developed in order to specifically counteract such abnormal neuronal synchrony by desynchronization. The goal of acoustic CR neuromodulation is to desynchronize tinnitus-related abnormal delta-band oscillations. CR neuromodulation does not require permanent stimulus delivery in order to achieve long-lasting desynchronization or even a full-blown anti-kindling but may have cumulative effects, i.e., the effect of different CR epochs separated by pauses may accumulate. Unlike other approaches, acoustic CR neuromodulation does not intend to reduce tinnitus-related neuronal activity by employing lateral inhibition. The potential efficacy of acoustic CR modulation was shown in a clinical proof of concept trial, where effects achieved in 12 weeks of treatment delivered 4–6 h/day persisted through a preplanned 4-week therapy pause and showed sustained long-term effects after 10 months of therapy, leading to 75% responders. PMID:25741316

  13. Spikes, synchrony, and attentive learning by laminar thalamocortical circuits.

    PubMed

    Grossberg, Stephen; Versace, Massimiliano

    2008-07-01

    This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single-cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current source densities and local field potentials; and single-cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, learning, and consciousness. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.

  14. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.

    PubMed

    Iler, Amy M; Inouye, David W; Høye, Toke T; Miller-Rushing, Abraham J; Burkle, Laura A; Johnston, Eleanor B

    2013-08-01

    Variation in species' responses to abiotic phenological cues under climate change may cause changes in temporal overlap among interacting taxa, with potential demographic consequences. Here, we examine associations between the abiotic environment and plant-pollinator phenological synchrony using a long-term syrphid fly-flowering phenology dataset (1992-2011). Degree-days above freezing, precipitation, and timing of snow melt were investigated as predictors of phenology. Syrphids generally emerge after flowering onset and end their activity before the end of flowering. Neither flowering nor syrphid phenology has changed significantly over our 20-year record, consistent with a lack of directional change in climate variables over the same time frame. Instead we document interannual variability in the abiotic environment and phenology. Timing of snow melt was the best predictor of flowering onset and syrphid emergence. Snow melt and degree-days were the best predictors of the end of flowering, whereas degree-days and precipitation best predicted the end of the syrphid period. Flowering advanced at a faster rate than syrphids in response to both advancing snow melt and increasing temperature. Different rates of phenological advancements resulted in more days of temporal overlap between the flower-syrphid community in years of early snow melt because of extended activity periods. Phenological synchrony at the community level is therefore likely to be maintained for some time, even under advancing snow melt conditions that are evident over longer term records at our site. These results show that interacting taxa may respond to different phenological cues and to the same cues at different rates but still maintain phenological synchrony over a range of abiotic conditions. However, our results also indicate that some individual plant species may overlap with the syrphid community for fewer days under continued climate change. This highlights the role of interannual variation

  15. Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes.

    PubMed

    Smith, Tim J; Mital, Parag K

    2013-01-01

    Does viewing task influence gaze during dynamic scene viewing? Research into the factors influencing gaze allocation during free viewing of dynamic scenes has reported that the gaze of multiple viewers clusters around points of high motion (attentional synchrony), suggesting that gaze may be primarily under exogenous control. However, the influence of viewing task on gaze behavior in static scenes and during real-world interaction has been widely demonstrated. To dissociate exogenous from endogenous factors during dynamic scene viewing we tracked participants' eye movements while they (a) freely watched unedited videos of real-world scenes (free viewing) or (b) quickly identified where the video was filmed (spot-the-location). Static scenes were also presented as controls for scene dynamics. Free viewing of dynamic scenes showed greater attentional synchrony, longer fixations, and more gaze to people and areas of high flicker compared with static scenes. These differences were minimized by the viewing task. In comparison with the free viewing of dynamic scenes, during the spot-the-location task fixation durations were shorter, saccade amplitudes were longer, and gaze exhibited less attentional synchrony and was biased away from areas of flicker and people. These results suggest that the viewing task can have a significant influence on gaze during a dynamic scene but that endogenous control is slow to kick in as initial saccades default toward the screen center, areas of high motion and people before shifting to task-relevant features. This default-like viewing behavior returns after the viewing task is completed, confirming that gaze behavior is more predictable during free viewing of dynamic than static scenes but that this may be due to natural correlation between regions of interest (e.g., people) and motion. PMID:23863509

  16. An assessment of anti-Müllerian hormone in predicting mating outcomes in female hamsters that have undergone natural and chemically-accelerated reproductive aging.

    PubMed

    Roosa, Kristen A; Zysling, Devin A; Place, Ned J

    2015-04-01

    In mammals, female fertility declines with age due in part to a progressive loss of ovarian follicles. The rate of follicle decline varies among individuals making it difficult to predict the age of onset of reproductive senescence. Serum anti-Müllerian hormone (AMH) concentrations correlate with the numbers of ovarian follicles, and therefore, AMH could be a useful predictor of female fertility. In women and some production animals, AMH is used to identify which individuals will respond best to ovarian stimulation for assisted reproductive technologies. However, few studies have evaluated AMH's predictive value in unassisted reproduction, and they have yielded conflicting results. To assess the predictive value of AMH in the context of reproductive aging, we prospectively measured serum AMH in 9-month-old Siberian hamsters shortly before breeding them. Female Siberian hamsters experience substantial declines in fertility and fecundity by 9months of age. We also measured serum AMH in 5-month-old females treated with 4-vinylcyclohexene diepoxide (VCD), which selectively destroys ovarian follicles and functionally accelerates ovarian aging. Vehicle-treated 5-month-old females served as controls. AMH concentrations were significantly reduced in VCD-treated females yet many females with low AMH reproduced successfully. On average, both young and old hamsters that littered had higher AMH concentrations than females that did not. However, some females with relatively high AMH concentrations failed to litter, whereas several with low AMH succeeded. Our results suggest that mean AMH concentration can predict mating outcomes on a population or group level, but on an individual basis, a single AMH determination is less informative.

  17. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition II: Computational Modeling

    EPA Science Inventory

    ABSTRACT Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We developed a mechanistic mathematical model of the hypothalamic­ pituitary-gonadal (HPG) axis in female fathead minnows to predic...

  18. Metaphors of Synchrony: Emergence and Differentiation of Online Chat Devices

    ERIC Educational Resources Information Center

    Latzko-Toth, Guillaume

    2010-01-01

    Through a detailed account of the history of online chat devices, this article shows the emergence, over time, of two distinct interactional formats underlying these social media. They may be captured by two generic metaphors of synchrony: "conference" (a gathering in a virtual place where unfocused interactions and group sociability occur) and…

  19. Phase synchrony reveals organization in human atrial fibrillation.

    PubMed

    Vidmar, David; Narayan, Sanjiv M; Rappel, Wouter-Jan

    2015-12-15

    It remains unclear if human atrial fibrillation (AF) is spatially nonhierarchical or exhibits a hierarchy of organization sustained by sources. We utilize activation times obtained at discrete locations during AF to compute the phase synchrony between tissue regions, to examine underlying spatial dynamics throughout both atria. We construct a binary synchronization network and show that this network can accurately define regions of coherence in coarse-grained in silico data. Specifically, domains controlled by spiral waves exhibit regions of high phase synchrony. We then apply this analysis to clinical data from patients experiencing cardiac arrhythmias using multielectrode catheters to simultaneously record from a majority of both atria. We show that pharmaceutical intervention with ibutilide organizes activation by increasing the size of the synchronized domain in AF and quantify the increase in temporal organization when arrhythmia changes from fibrillation to tachycardia. Finally, in recordings from 24 patients in AF we show that the level of synchrony is spatially broad with some patients showing large spatially contiguous regions of synchronization, while in others synchrony is localized to small pockets. Using computer simulations, we show that this distribution is inconsistent with distributions obtained from simulations that mimic multiwavelet reentry but is consistent with mechanisms in which one or more spatially conserved spiral waves is surrounded by tissue in which activation is disorganized. PMID:26475585

  20. Infant Perception of Audio-Visual Speech Synchrony

    ERIC Educational Resources Information Center

    Lewkowicz, David J.

    2010-01-01

    Three experiments investigated perception of audio-visual (A-V) speech synchrony in 4- to 10-month-old infants. Experiments 1 and 2 used a convergent-operations approach by habituating infants to an audiovisually synchronous syllable (Experiment 1) and then testing for detection of increasing degrees of A-V asynchrony (366, 500, and 666 ms) or by…

  1. Early development of synchrony in cortical activations in the human

    PubMed Central

    Koolen, N.; Dereymaeker, A.; Räsänen, O.; Jansen, K.; Vervisch, J.; Matic, V.; Naulaers, G.; De Vos, M.; Van Huffel, S.; Vanhatalo, S.

    2016-01-01

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. PMID:26876605

  2. Phenological changes and reduced seasonal synchrony in western Poland

    NASA Astrophysics Data System (ADS)

    Sparks, Tim H.; Górska-Zajączkowska, Maria; Wójtowicz, Wanda; Tryjanowski, Piotr

    2011-05-01

    Botanical gardens offer continuity for phenological recording in observers, protocols and plant specimens that may not be achievable from other sources. Here, we examine phenological change and synchrony from one such garden in western Poland. We analysed 66 botanical phenophases and 18 interphase intervals recorded between 1977 and 2007 from the Poznań Botanical Garden. These were examined for trends through time and responsiveness to temperature. Furthermore, we derived measures of synchrony for start of spring and end of autumn events to assess if these had changed over time. All 39 events with a mean date before mid-July demonstrated a significant negative relationship with temperature. Where autumn events were significantly related to temperature, they indicated a positive relationship. Typically, spring events showed an advance over time and autumn events a delay. Interphase intervals tended to lengthen over the study period. The measures of synchrony changed significantly over time suggesting less synchrony among spring events and also among autumn events. In combination, these results suggest increases in growing season length. However, responses to a changing climate were species-specific. Thus, the transitions from winter into spring and from autumn into winter are becoming less clearly defined.

  3. A Case of Hand Waving: Action Synchrony and Person Perception

    ERIC Educational Resources Information Center

    Macrae, C. Neil; Duffy, Oonagh K.; Miles, Lynden K.; Lawrence, Julie

    2008-01-01

    While previous research has demonstrated that people's movements can become coordinated during social interaction, little is known about the cognitive consequences of behavioral synchrony. Given intimate links between the systems that regulate perception and action, we hypothesized that the synchronization of movements during a dyadic interaction…

  4. Changes in large-scale climate alter spatial synchrony of aphid pests

    NASA Astrophysics Data System (ADS)

    Sheppard, Lawrence W.; Bell, James R.; Harrington, Richard; Reuman, Daniel C.

    2016-06-01

    Spatial synchrony, the tendency of distant populations to fluctuate similarly, is a major concern in ecology. Except in special circumstances, researchers historically had difficulty identifying drivers of synchrony in field systems. Perhaps for this reason, the possibility that changes in large-scale climatic drivers may modify synchrony, thereby impacting ecosystems and human concerns, has been little examined. Here, we use wavelets to determine environmental drivers of phenological synchrony across Britain for 20 aphid species, most major crop pests. Consistently across species, changes in drivers produced large changes in aphid synchrony. Different drivers acted on different timescales: using a new wavelet analogue of the Moran theorem, we show that on long timescales (>4 years), 80% of synchrony in aphid first flights is due to synchrony in winter climate; but this explanation accounts for less short-timescale (<=4 years) synchrony. Changes in aphid synchrony over time also differed by timescale: long-timescale synchrony fell from before 1993 to after, caused by similar changes in winter climate; whereas short-timescale synchrony increased. Shifts in winter climate are attributable to the North Atlantic Oscillation, an important climatic phenomenon, so effects described here may influence other taxa. This study documents a new way that climatic changes influence populations, through altered Moran effects.

  5. Past performance of assisted reproduction technologies as a model to predict future progress: a proposed addendum to Moore's law.

    PubMed

    Cohen, Jacques; Alikani, Mina; Bisignano, Alexander

    2012-12-01

    The ultimate goal of IVF is to achieve healthy, single, live births following each single-embryo transfer. A timeline for this eventuality has never been defined. National implantation rates from 2003-2010 provided by the Society for Assisted Reproductive Technologies (SART) in the USA were evaluated. Regression analysis was applied to the annual trends. A high correlation was noted showing a linear increase from year to year ranging between 0.3% and 1.5% when maternal age was not higher than 42. This relationship can be retrospectively applied to earlier SART data reports. This incline may be partly technology driven and resembles Moore's law, which describes annual improvements in microchip performance. Based on the assumption that technology will continue to drive progress, the length of time required to reach 100% implantation was calculated. The interval varied between 43 years (AD 2053) for the youngest age group (<35 years old) and 294 years for the 41-42-year age group. The timeframe is shifted for the younger patients to an earlier date of 2027 if a subset of clinics with high implantation regression slopes and low variance is selected. The implications of these findings for infertility treatment and fertility preservation are discussed. Success after IVF has steadily improved. Data from US-based clinics are annually collected by the Society for Assisted Reproductive Technologies (SART; www.sart.org). Through SART, individual clinic's outcomes may be assessed. Although live birth and pregnancy are considered the gold standard of success, the investigators took the approach that those outcomes are often biased due to transfer of multiple embryos. The present analysis was therefore performed on individual embryos, by using the implantation rate to compare national and individual clinic datasets. National implantation rates show a linear increase from year to year ranging between 0.3% and 1.5% for patients aged <43 years. We postulate that this linear trend

  6. The plausibility of visual information for hand ownership modulates multisensory synchrony perception.

    PubMed

    Zopf, Regine; Friedman, Jason; Williams, Mark A

    2015-08-01

    We are frequently changing the position of our bodies and body parts within complex environments. How does the brain keep track of one's own body? Current models of body ownership state that visual body ownership cues such as viewed object form and orientation are combined with multisensory information to correctly identify one's own body, estimate its current location and evoke an experience of body ownership. Within this framework, it may be possible that the brain relies on a separate perceptual analysis of body ownership cues (e.g. form, orientation, multisensory synchrony). Alternatively, these cues may interact in earlier stages of perceptual processing-visually derived body form and orientation cues may, for example, directly modulate temporal synchrony perception. The aim of the present study was to distinguish between these two alternatives. We employed a virtual hand set-up and psychophysical methods. In a two-interval force-choice task, participants were asked to detect temporal delays between executed index finger movements and observed movements. We found that body-specifying cues interact in perceptual processing. Specifically, we show that plausible visual information (both form and orientation) for one's own body led to significantly better detection performance for small multisensory asynchronies compared to implausible visual information. We suggest that this perceptual modulation when visual information plausible for one's own body is present is a consequence of body-specific sensory predictions. PMID:25980691

  7. Dose Addition Models Based on Biologically Relevant Reductions in Fetal Testosterone Accurately Predict Postnatal Reproductive Tract Alterations by a Phthalate Mixture in Rats.

    PubMed

    Howdeshell, Kembra L; Rider, Cynthia V; Wilson, Vickie S; Furr, Johnathan R; Lambright, Christy R; Gray, L Earl

    2015-12-01

    Challenges in cumulative risk assessment of anti-androgenic phthalate mixtures include a lack of data on all the individual phthalates and difficulty determining the biological relevance of reduction in fetal testosterone (T) on postnatal development. The objectives of the current study were 2-fold: (1) to test whether a mixture model of dose addition based on the fetal T production data of individual phthalates would predict the effects of a 5 phthalate mixture on androgen-sensitive postnatal male reproductive tract development, and (2) to determine the biological relevance of the reductions in fetal T to induce abnormal postnatal reproductive tract development using data from the mixture study. We administered a dose range of the mixture (60, 40, 20, 10, and 5% of the top dose used in the previous fetal T production study consisting of 300 mg/kg per chemical of benzyl butyl (BBP), di(n)butyl (DBP), diethyl hexyl phthalate (DEHP), di-isobutyl phthalate (DiBP), and 100 mg dipentyl (DPP) phthalate/kg; the individual phthalates were present in equipotent doses based on their ability to reduce fetal T production) via gavage to Sprague Dawley rat dams on GD8-postnatal day 3. We compared observed mixture responses to predictions of dose addition based on the previously published potencies of the individual phthalates to reduce fetal T production relative to a reference chemical and published postnatal data for the reference chemical (called DAref). In addition, we predicted DA (called DAall) and response addition (RA) based on logistic regression analysis of all 5 individual phthalates when complete data were available. DA ref and DA all accurately predicted the observed mixture effect for 11 of 14 endpoints. Furthermore, reproductive tract malformations were seen in 17-100% of F1 males when fetal T production was reduced by about 25-72%, respectively. PMID:26350170

  8. Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling

    PubMed Central

    Hu, Hang

    2015-01-01

    Precise spike synchrony has been widely reported in the central nervous system, but its functional role in encoding, processing, and transmitting information is yet unresolved. Of particular interest is firing synchrony between inhibitory cortical interneurons, thought to drive various cortical rhythms such as gamma oscillations, the hallmark of cognitive states. Precise synchrony can arise between two interneurons connected electrically, through gap junctions, chemically, through fast inhibitory synapses, or dually, through both types of connections, but the properties of synchrony generated by these different modes of connectivity have never been compared in the same data set. In the present study we recorded in vitro from 152 homotypic pairs of two major subtypes of mouse neocortical interneurons: parvalbumin-containing, fast-spiking (FS) interneurons and somatostatin-containing (SOM) interneurons. We tested firing synchrony when the two neurons were driven to fire by long, depolarizing current steps and used a novel synchrony index to quantify the strength of synchrony, its temporal precision, and its dependence on firing rate. We found that SOM-SOM synchrony, driven solely by electrical coupling, was less precise than FS-FS synchrony, driven by inhibitory or dual coupling. Unlike SOM-SOM synchrony, FS-FS synchrony was strongly firing rate dependent and was not evident at the prototypical 40-Hz gamma frequency. Computer simulations reproduced these differences in synchrony without assuming any differences in intrinsic properties, suggesting that the mode of coupling is more important than the interneuron subtype. Our results provide novel insights into the mechanisms and properties of interneuron synchrony and point out important caveats in current models of cortical oscillations. PMID:25972585

  9. Designing a deep brain stimulator to suppress pathological neuronal synchrony.

    PubMed

    Montaseri, Ghazal; Yazdanpanah, Mohammad Javad; Bahrami, Fariba

    2015-03-01

    Some of neuropathologies are believed to be related to abnormal synchronization of neurons. In the line of therapy, designing effective deep brain stimulators to suppress the pathological synchrony among neuronal ensembles is a challenge of high clinical relevance. The stimulation should be able to disrupt the synchrony in the presence of latencies due to imperfect knowledge about parameters of a neuronal ensemble and stimulation impacts on the ensemble. We propose an adaptive desynchronizing deep brain stimulator capable of dealing with these uncertainties. We analyze the collective behavior of the stimulated neuronal ensemble and show that, using the designed stimulator, the resulting asynchronous state is stable. Simulation results reveal the efficiency of the proposed technique. PMID:25601718

  10. Large-scale selection synchrony of Tetrahymena thermophila.

    PubMed

    Hill, R J; Kroft, T; Zuker, M; Smith, I C

    1986-08-01

    A method is described, based on the phagocytosis of colloidal ferrite particles, which gives highly synchronous populations of Tetrahymena thermophila. To ensure a successful synchrony, the cell culture doubling time, the limits of the phagocytic period and the distribution of cell stages must first be determined. Once these parameters are known, synchrony can be achieved under a variety of growth conditions and with cultures ranging in volume from a few millilitres to 12 litres or more. The main advantages of the method are that the apparatus required is simple, large volumes of cells can be handled easily, and the synchronous populations can be prepared within a few hours. In principle, the method should be applicable to any cell population in which phagocytosis occurs discontinuously over the cell cycle.

  11. Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza

    NASA Astrophysics Data System (ADS)

    Viboud, Cécile; Bjørnstad, Ottar N.; Smith, David L.; Simonsen, Lone; Miller, Mark A.; Grenfell, Bryan T.

    2006-04-01

    Quantifying long-range dissemination of infectious diseases is a key issue in their dynamics and control. Here, we use influenza-related mortality data to analyze the between-state progression of interpandemic influenza in the United States over the past 30 years. Outbreaks show hierarchical spatial spread evidenced by higher pairwise synchrony between more populous states. Seasons with higher influenza mortality are associated with higher disease transmission and more rapid spread than are mild ones. The regional spread of infection correlates more closely with rates of movement of people to and from their workplaces (workflows) than with geographical distance. Workflows are described in turn by a gravity model, with a rapid decay of commuting up to around 100 km and a long tail of rare longer range flow. A simple epidemiological model, based on the gravity formulation, captures the observed increase of influenza spatial synchrony with transmissibility; high transmission allows influenza to spread rapidly beyond local spatial constraints.

  12. A minimal model of self-consistent partial synchrony

    NASA Astrophysics Data System (ADS)

    Clusella, Pau; Politi, Antonio; Rosenblum, Michael

    2016-09-01

    We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto–Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field.

  13. Counting multidimensional objects: implications for the neural-synchrony theory.

    PubMed

    Goldfarb, Liat; Treisman, Anne

    2013-03-01

    It has been suggested that a neural instantiation of the temporary multidimensional representations of objects might be synchrony of firing between the neurons representing the features that co-occur in a given location. In this article, we direct attention to a logical problem that arises when certain synchrony assumptions are applied to real situations in which multiple multidimensional objects are presented. We demonstrate a new behavioral effect that shows that this logical problem coincides with a genuine behavioral problem. Even when a display contains only a small number of objects characterized by features on two dimensions, the representation of the display becomes difficult when, according to our described assumptions, the object representations cannot be simultaneously synchronized on both features. This article outlines a new principle that governs object representation, and the experimental results might be unique behavioral evidence for a neural-based theory of feature binding. PMID:23334446

  14. Neural Synchrony in Cortical Networks: History, Concept and Current Status

    PubMed Central

    Uhlhaas, Peter J.; Pipa, Gordon; Lima, Bruss; Melloni, Lucia; Neuenschwander, Sergio; Nikolić, Danko; Singer, Wolf

    2009-01-01

    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies. PMID:19668703

  15. Assessing instantaneous synchrony of nonlinear nonstationary oscillators in the brain.

    PubMed

    Fine, Ananda S; Nicholls, David P; Mogul, David J

    2010-01-30

    Neuronal populations throughout the brain achieve levels of synchronous electrophysiological activity as a consequence of both normal brain function as well as during pathological states such as in epileptic seizures. Understanding this synchrony and being able to quantitatively assess the dynamics with which neuronal oscillators across the brain couple their activity is a critical component toward decoding such complex behavior. Commonly applied techniques to resolve relationships between oscillators typically make assumptions of linearity and stationarity that are likely not to be valid for complex neural signals. In this study, intracranial electroencephalographic activity was recorded bilaterally in both hippocampi and in anteromedial thalamus of rat under normal conditions and during hypersynchronous seizure activity induced by focal injection of the epileptogenic agent kainic acid. Nonlinear oscillators were first extracted using empirical mode decomposition. The technique of eigenvalue decomposition was used to assess global phase synchrony of the highest energy oscillators. The Hilbert analytical technique was then used to measure instantaneous phase synchrony of these oscillators as they evolved in time. To test the reliability of this method, we first applied it to a system of two coupled Rössler attractors under varying levels of coupling with small frequency mismatch. The application of these analytical techniques to intracranially recorded brain signals provides a means for assessing how complex oscillatory behavior in the brain evolves and changes during both normal activity and as a consequence of diseased states without making restrictive and possibly erroneous assumptions of the linearity and stationarity of the underlying oscillatory activity.

  16. Impairments of Social Motor Synchrony Evident in Autism Spectrum Disorder.

    PubMed

    Fitzpatrick, Paula; Frazier, Jean A; Cochran, David M; Mitchell, Teresa; Coleman, Caitlin; Schmidt, R C

    2016-01-01

    Social interactions typically involve movements of the body that become synchronized over time and both intentional and spontaneous interactional synchrony have been found to be an essential part of successful human interaction. However, our understanding of the importance of temporal dimensions of social motor synchrony in social dysfunction is limited. Here, we used a pendulum coordination paradigm to assess dynamic, process-oriented measures of social motor synchrony in adolescents with and without autism spectrum disorder (ASD). Our data indicate that adolescents with ASD demonstrate less synchronization in both spontaneous and intentional interpersonal coordination. Coupled oscillator modeling suggests that ASD participants assembled a synchronization dynamic with a weaker coupling strength, which corresponds to a lower sensitivity and decreased attention to the movements of the other person, but do not demonstrate evidence of a delay in information transmission. The implication of these findings for isolating an ASD-specific social synchronization deficit that could serve as an objective, bio-behavioral marker is discussed. PMID:27630599

  17. Sync or sink? Interpersonal synchrony impacts self-esteem

    PubMed Central

    Lumsden, Joanne; Miles, Lynden K.; Macrae, C. Neil

    2014-01-01

    Synchronized behavior has significant social influence both in terms of everyday activities (e.g., walking and talking) as well as via more historical contexts (e.g., cultural rituals). Grounded in the science of coordination dynamics, previous research has revealed that interpersonal synchrony has numerous affiliative and pro-social consequences, such as enhanced rapport, cooperation, and social-cognitive functioning. The current study sought to explore the impact of intentional synchrony versus asynchrony on an individual’s self-esteem and their feelings of social connection with a partner. The results revealed that individuals felt better about themselves following a period of synchronous compared to asynchronous movement, while they also perceived a greater self-other overlap with their partner. These findings not only extend previous research on social connections following interpersonal synchrony, but also provide the first demonstration of an influence on self-evaluations. Overall, it appears that moving in time with others may result in us feeling better about ourselves compared to moving to our own rhythm. PMID:25285090

  18. Impairments of Social Motor Synchrony Evident in Autism Spectrum Disorder

    PubMed Central

    Fitzpatrick, Paula; Frazier, Jean A.; Cochran, David M.; Mitchell, Teresa; Coleman, Caitlin; Schmidt, R. C.

    2016-01-01

    Social interactions typically involve movements of the body that become synchronized over time and both intentional and spontaneous interactional synchrony have been found to be an essential part of successful human interaction. However, our understanding of the importance of temporal dimensions of social motor synchrony in social dysfunction is limited. Here, we used a pendulum coordination paradigm to assess dynamic, process-oriented measures of social motor synchrony in adolescents with and without autism spectrum disorder (ASD). Our data indicate that adolescents with ASD demonstrate less synchronization in both spontaneous and intentional interpersonal coordination. Coupled oscillator modeling suggests that ASD participants assembled a synchronization dynamic with a weaker coupling strength, which corresponds to a lower sensitivity and decreased attention to the movements of the other person, but do not demonstrate evidence of a delay in information transmission. The implication of these findings for isolating an ASD-specific social synchronization deficit that could serve as an objective, bio-behavioral marker is discussed. PMID:27630599

  19. Masting promotes individual- and population-level reproduction by increasing pollination efficiency.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Linhart, Yan B; Mooney, Kailen A

    2014-04-01

    Masting is a reproductive strategy defined as the intermittent and synchronized production of large seed crops by a plant population. The pollination efficiency hypothesis proposes that masting increases pollination success in plants. Despite its general appeal, no previous studies have used long-term data together with population- and individual-level analyses to assess pollination efficiency between mast and non-mast events. Here we rigorously tested the pollination efficiency hypothesis in ponderosa pine (Pinus ponderosa), a long-lived monoecious, wind-pollinated species, using a data set on 217 trees monitored annually for 20 years. Relative investment in male and female function by individual trees did not vary between mast and non-mast years. At both the population and individual level, the rate of production of mature female cones relative to male strobili production was higher in mast than non-mast years, consistent with the predicted benefit of reproductive synchrony on reproductive success. In addition, at the individual level we found a higher conversion of unfertilized female conelets into mature female cones during a mast year compared to a non-mast year. Collectively, parallel results at the population and individual tree level provide robust evidence for the ecological, and potentially also evolutionary, benefits of masting through increased pollination efficiency.

  20. Why Synchrony Matters during Mother-Child Interactions: A Systematic Review

    PubMed Central

    Leclère, Chloë; Viaux, Sylvie; Avril, Marie; Achard, Catherine; Chetouani, Mohamed; Missonnier, Sylvain; Cohen, David

    2014-01-01

    Background Assessment of mother-child interactions is a core issue of early child development and psychopathology. This paper focuses on the concept of “synchrony” and examines (1) how synchrony in mother-child interaction is defined and operationalized; (2) the contribution that the concept of synchrony has brought to understanding the nature of mother-child interactions. Method Between 1977 and 2013, we searched several databases using the following key-words: « synchrony » « interaction » and « mother-child ». We focused on studies examining parent-child interactions among children aged 2 months to 5 years. From the 63 relevant studies, we extracted study description variables (authors, year, design, number of subjects, age); assessment conditions and modalities; and main findings. Results The most common terms referring to synchrony were mutuality, reciprocity, rhythmicity, harmonious interaction, turn-taking and shared affect; all terms were used to characterize the mother-child dyad. As a consequence, we propose defining synchrony as a dynamic and reciprocal adaptation of the temporal structure of behaviors and shared affect between interactive partners. Three main types of assessment methods for studying synchrony emerged: (1) global interaction scales with dyadic items; (2) specific synchrony scales; and (3) micro-coded time-series analyses. It appears that synchrony should be regarded as a social signal per se as it has been shown to be valid in both normal and pathological populations. Better mother-child synchrony is associated with familiarity (vs. unknown partner), a healthy mother (vs. pathological mother), typical development (vs. psychopathological development), and a more positive child outcomes. Discussion Synchrony is a key feature of mother-infant interactions. Adopting an objective approach in studying synchrony is not a simple task given available assessment tools and due to its temporality and multimodal expression. We propose an

  1. The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator.

    PubMed

    Li, Wen-Chang; Merrison-Hort, Robert; Zhang, Hong-Yan; Borisyuk, Roman

    2014-04-23

    Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left-right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony.

  2. Spike synchrony generated by modulatory common input through NMDA-type synapses.

    PubMed

    Wagatsuma, Nobuhiko; von der Heydt, Rüdiger; Niebur, Ernst

    2016-09-01

    Common excitatory input to neurons increases their firing rates and the strength of the spike correlation (synchrony) between them. Little is known, however, about the synchronizing effects of modulatory common input. Here, we show that modulatory common input with the slow synaptic kinetics of N-methyl-d-aspartate (NMDA) receptors enhances firing rates and also produces synchrony. Tight synchrony (correlations on the order of milliseconds) always increases with modulatory strength. Unexpectedly, the relationship between strength of modulation and strength of loose synchrony (tens of milliseconds) is not monotonic: The strongest loose synchrony is obtained for intermediate modulatory amplitudes. This finding explains recent neurophysiological results showing that in cortical areas V1 and V2, presumed modulatory top-down input due to contour grouping increases (loose and tight) synchrony but that additional modulatory input due to top-down attention does not change tight synchrony and actually decreases loose synchrony. These neurophysiological findings are understood from our model of integrate-and-fire neurons under the assumption that contour grouping as well as attention lead to additive modulatory common input through NMDA-type synapses. In contrast, circuits with common projections through model α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors did not exhibit the paradoxical decrease of synchrony with increased input. Our results suggest that NMDA receptors play a critical role in top-down response modulation in the visual cortex. PMID:27486111

  3. An attempt to extend the Habitat Harshness Hypothesis to tidal flats: A case study of Anomalocardia brasiliana (Bivalvia: Veneridae) reproductive biology

    NASA Astrophysics Data System (ADS)

    Corte, Guilherme Nascimento; Yokoyama, Leonardo Querobim; Amaral, A. Cecília Z.

    2014-10-01

    The Habitat Harshness Hypothesis (HHH) predicts that populations inhabiting the intertidal area of a dissipative beach should produce more gametes and have a longer reproductive cycle than those inhabiting an intermediate or reflective beach. This hypothesis was proposed for the exposed morphodynamic continuum between the reflective and dissipative states; however, no attempt has been made thus far to verify whether the HHH is valid for tidal flats. In this study, we analysed the reproductive cycle of Anomalocardia brasiliana in an intermediate beach and in a tidal flat and compared the results to determine whether the reproductive cycles of A. brasiliana were in agreement with the predictions of the HHH and to examine the possibility of extending this hypothesis to tidal flats. A continuous spawning season and synchrony between sexes were observed at both sites, although the reproductive effort was higher in the intermediate beach. The results of this first attempt did not support the extension of the HHH to tidal flats. It is possible that hypotheses that take into account only physical variables may not be the most adequate for describing environments with such a high species richness and high abundance as tidal flats. Nevertheless, other studies are necessary to confidently expand or refute the HHH with regard to tidal flats, and this topic should be considered as a priority in future investigations in sandy beach ecology.

  4. Climatically driven synchrony of gerbil populations allows large-scale plague outbreaks.

    PubMed

    Kausrud, Kyrre Linné; Viljugrein, Hildegunn; Frigessi, Arnoldo; Begon, Mike; Davis, Stephen; Leirs, Herwig; Dubyanskiy, Vladimir; Stenseth, Nils Chr

    2007-08-22

    In central Asia, the great gerbil (Rhombomys opimus) is the main host for the bacterium Yersinia pestis, the cause of bubonic plague. In order to prevent plague outbreaks, monitoring of the great gerbil has been carried out in Kazakhstan since the late 1940s. We use the resulting data to demonstrate that climate forcing synchronizes the dynamics of gerbils over large geographical areas. As it is known that gerbil densities need to exceed a threshold level for plague to persist, synchrony in gerbil abundance across large geographical areas is likely to be a condition for plague outbreaks at similar large scales. Here, we substantiate this proposition through autoregressive modelling involving the normalized differentiated vegetation index as a forcing covariate. Based upon predicted climate changes, our study suggests that during the next century, plague epizootics may become more frequent in central Asia.

  5. Mechanisms of interpersonal sway synchrony and stability

    PubMed Central

    Reynolds, Raymond F.; Osler, Callum J.

    2014-01-01

    Here we explain the neural and mechanical mechanisms responsible for synchronizing sway and improving postural control during physical contact with another standing person. Postural control processes were modelled using an inverted pendulum under continuous feedback control. Interpersonal interactions were simulated either by coupling the sensory feedback loops or by physically coupling the pendulums with a damped spring. These simulations precisely recreated the timing and magnitude of sway interactions observed empirically. Effects of firmly grasping another person's shoulder were explained entirely by the mechanical linkage. This contrasted with light touch and/or visual contact, which were explained by a sensory weighting phenomenon; each person's estimate of upright was based on a weighted combination of veridical sensory feedback combined with a small contribution from their partner. Under these circumstances, the model predicted reductions in sway even without the need to distinguish between self and partner motion. Our findings explain the seemingly paradoxical observation that touching a swaying person can improve postural control. PMID:25339686

  6. Does the level of reproductive knowledge specific to inflammatory bowel disease predict childlessness among women with inflammatory bowel disease?

    PubMed Central

    Huang, Vivian W; Chang, Hsiu-Ju; Kroeker, Karen I; Goodman, Karen J; Hegadoren, Kathleen M; Dieleman, Levinus A; Fedorak, Richard N

    2015-01-01

    BACKGROUND: Women with inflammatory bowel disease (IBD) may choose to remain childless due to a lack of IBD-specific reproductive knowledge. OBJECTIVES: To examine the effects of IBD-specific reproductive knowledge and discussion of family planning with a physician on childlessness among women with IBD. METHODS: Female IBD patients 18 to 45 years of age completed the Crohn’s and Colitis Pregnancy Knowledge questionnaire (CCPKnow), and answered questions regarding reproductive history, plans to have children and discussion of family planning with a physician. CCPKnow scores were grouped according to poor (0 to 7), adequate (8 to 10), good (11 to 13) and very good (14 to 17). RESULTS: Of 434 eligible women, 248 (57.1%) completed the questionnaires. Of these 248 women, 51.6% were childless and, among these, 12.9% were voluntarily childless and 12.1% were trying to become pregnant. Childless women had a lower median CCPKnow score than women with children (6.0 versus 8.0; P=0.001). After adjusting for current age and marital status, each one point increase in the CCPKnow score corresponded to 8% lower odds of childlessness (OR 0.92 [95% CI 0.86 to 0.99]), 9% lower odds of voluntary child-lessness (OR 0.91 [95% CI 0.79 to 1.0]) and 20% higher odds of trying to become pregnant (OR 1.2 [95% CI 1.0 to 1.4]). Discussion of family planning with a gastroenterologist corresponded to 72% lower odds of a poor CCPKnow score (OR 0.28 [95% CI 0.15 to 0.53]) and of voluntary childlessness (OR 0.28 [95% CI 0.057 to 1.3]). CONCLUSION: In the present study, higher IBD-specific reproductive knowledge lowered the odds of childlessness among women with IBD. Discussion of family planning with a physician was associated with higher CCPKnow scores and lower odds of voluntary childlessness. PMID:25803020

  7. Role of audiovisual synchrony in driving head orienting responses.

    PubMed

    Ho, Cristy; Gray, Rob; Spence, Charles

    2013-06-01

    Many studies now suggest that optimal multisensory integration sometimes occurs under conditions where auditory and visual stimuli are presented asynchronously (i.e. at asynchronies of 100 ms or more). Such observations lead to the suggestion that participants' speeded orienting responses might be enhanced following the presentation of asynchronous (as compared to synchronous) peripheral audiovisual spatial cues. Here, we report a series of three experiments designed to investigate this issue. Upon establishing the effectiveness of bimodal cuing over the best of its unimodal components (Experiment 1), participants had to make speeded head-turning or steering (wheel-turning) responses toward the cued direction (Experiment 2), or an incompatible response away from the cue (Experiment 3), in response to random peripheral audiovisual stimuli presented at stimulus onset asynchronies ranging from -100 to 100 ms. Race model inequality analysis of the results (Experiment 1) revealed different mechanisms underlying the observed multisensory facilitation of participants' head-turning versus steering responses. In Experiments 2 and 3, the synchronous presentation of the component auditory and visual cues gave rise to the largest facilitation of participants' response latencies. Intriguingly, when the participants had to subjectively judge the simultaneity of the audiovisual stimuli, the point of subjective simultaneity occurred when the auditory stimulus lagged behind the visual stimulus by 22 ms. Taken together, these results appear to suggest that the maximally beneficial behavioural (head and manual) orienting responses resulting from peripherally presented audiovisual stimuli occur when the component signals are presented in synchrony. These findings suggest that while the brain uses precise temporal synchrony in order to control its orienting responses, the system that the human brain uses to consciously judge synchrony appears to be less fine tuned.

  8. Statistical detection of EEG synchrony using empirical bayesian inference.

    PubMed

    Singh, Archana K; Asoh, Hideki; Takeda, Yuji; Phillips, Steven

    2015-01-01

    There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries. PMID:25822617

  9. Persistence, chaos and synchrony in ecology and epidemiology.

    PubMed

    Earn, D J; Rohani, P; Grenfell, B T

    1998-01-01

    The decline of species in natural habitats concerns ecologists, who view extinction as a danger and conservation of biological diversity as a goal. In contrast, the proliferation of 'undesirable' species is the principal concern of epidemiologists, who view persistence as a problem and eradication as an achievement. While ecologists and epidemiologists have essentially opposite goals, the mathematical structure of the population dynamics that they study is very similar. We briefly review the similarities and differences between these two fields, emphasizing recent work in both areas on the effects of spatial synchrony and dynamical chaos. We hope to stimulate further cross-fertilization of ideas between the disciplines.

  10. Persistence, chaos and synchrony in ecology and epidemiology.

    PubMed Central

    Earn, D J; Rohani, P; Grenfell, B T

    1998-01-01

    The decline of species in natural habitats concerns ecologists, who view extinction as a danger and conservation of biological diversity as a goal. In contrast, the proliferation of 'undesirable' species is the principal concern of epidemiologists, who view persistence as a problem and eradication as an achievement. While ecologists and epidemiologists have essentially opposite goals, the mathematical structure of the population dynamics that they study is very similar. We briefly review the similarities and differences between these two fields, emphasizing recent work in both areas on the effects of spatial synchrony and dynamical chaos. We hope to stimulate further cross-fertilization of ideas between the disciplines. PMID:9470213

  11. Timing and synchrony of parturition in Alaska caribou

    USGS Publications Warehouse

    Adams, L.; Dale, B.

    1998-01-01

    Timing of parturition of caribou varies with in populations, but the relative influences of nutritional condition of females during the autumn breeding season and during gestaton on that variation is not known. We determined timing of parturition of caribou in Denali National Park, Alaska, during 1984-1995, which had wide variation in snowfall that influenced nutritional condition and productivity of females. The first young were observed each year between 4 and 15 May. Annual median dates of parturition for radiocollared females during 1987-1995 varied from 13 to 21 May.Synchrony of births did not vary significantly among years. Females

  12. Impacts of moonlight on fish reproduction.

    PubMed

    Ikegami, Taro; Takeuchi, Yuki; Hur, Sung-Pyo; Takemura, Akihiro

    2014-04-01

    The waxing and waning cycle of the moon is repeated at approximately 1-month intervals, and concomitant changes occur in the levels of moonlight and cueing signals detected by organisms on the earth. In the goldlined spinefoot Siganus guttatus, a spawner lunar-synchronized around the first quarter moon, periodic changes in moonlight are used to cue gonadal development and gamete release. Rearing of mature fish under artificial constant full moon and new moon conditions during the spawning season leads to disruption or delay of synchronous spawning around the predicted moon phase. Melatonin, an endogenous transducer of the environmental light/dark cycle, increases in the blood and in the pineal gland around the new moon period and decreases around the full moon period. In synchrony with melatonin fluctuation, melatonin receptor(s) mRNA abundance is higher during the new moon period than during the full moon. The melatonin/melatonin receptor system is likely affected by moonlight. Measurements of the expression patterns of clock genes in neural tissues demonstrate that Cryptochrome (Cry1 and Cry3) and Period (Per2) fluctuate with lunar periodicity, the former peaking in the medial part of the brain around the first quarter moon period, and the latter peaking in the pineal gland around the full moon. Some clock genes may respond to periodic changes in moon phase and appear to be involved in the generation of lunar-related rhythmicity in lunar spawners. Thus, some fish use moonlight-related periodicities as reliable information for synchronizing the timing of reproductive events.

  13. One in the Dance: Musical Correlates of Group Synchrony in a Real-World Club Environment

    PubMed Central

    Ellamil, Melissa; Berson, Joshua; Wong, Jen; Buckley, Louis; Margulies, Daniel S.

    2016-01-01

    Previous research on interpersonal synchrony has mainly investigated small groups in isolated laboratory settings, which may not fully reflect the complex and dynamic interactions of real-life social situations. The present study expands on this by examining group synchrony across a large number of individuals in a naturalistic environment. Smartphone acceleration measures were recorded from participants during a music set in a dance club and assessed to identify how group movement synchrony covaried with various features of the music. In an evaluation of different preprocessing and analysis methods, giving more weight to front-back movement provided the most sensitive and reliable measure of group synchrony. During the club music set, group synchrony of torso movement was most strongly associated with pulsations that approximate walking rhythm (100–150 beats per minute). Songs with higher real-world play counts were also correlated with greater group synchrony. Group synchrony thus appears to be constrained by familiarity of the movement (walking action and rhythm) and of the music (song popularity). These findings from a real-world, large-scale social and musical setting can guide the development of methods for capturing and examining collective experiences in the laboratory and for effectively linking them to synchrony across people in daily life. PMID:27764167

  14. Timing and synchrony of births in bighorn sheep: implications for reintroduction and conservation

    USGS Publications Warehouse

    Klaver, Robert W.; Jericho C. Whiting,; Daniel D. Olson,; Justin M. Shannon,; Terry Bowyer,; Jerran T. Flinders,

    2012-01-01

    Implications: Consideration should be given to the adjustment of timing and synchrony of births when reintroducing bighorns, especially when animals are released into different ecoregions. Also, biologists should select release sites that are ecologically similar to source areas, thereby reducing potential negative effects of animals adjusting timing and synchrony of births to environmental conditions of restoration areas.

  15. Nonverbal Synchrony in Psychotherapy: Coordinated Body Movement Reflects Relationship Quality and Outcome

    ERIC Educational Resources Information Center

    Ramseyer, Fabian; Tschacher, Wolfgang

    2011-01-01

    Objective: The authors quantified nonverbal synchrony--the coordination of patient's and therapist's movement--in a random sample of same-sex psychotherapy dyads. The authors contrasted nonverbal synchrony in these dyads with a control condition and assessed its association with session-level and overall psychotherapy outcome. Method: Using an…

  16. A spiking Basal Ganglia model of synchrony, exploration and decision making.

    PubMed

    Mandali, Alekhya; Rengaswamy, Maithreye; Chakravarthy, V Srinivasa; Moustafa, Ahmed A

    2015-01-01

    To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either "explore" or "exploit" or "not to take any action" for which the Basal Ganglia (BG) is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP) of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson's disease). Key BG nuclei such as the Sub Thalamic Nucleus (STN), Globus Pallidus externus (GPe) and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al., 2006) and an n-armed bandit task (Bourdaud et al., 2008). The model shows that exploration levels could be controlled by STN's lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN's lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson's patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior. PMID:26074761

  17. A spiking Basal Ganglia model of synchrony, exploration and decision making

    PubMed Central

    Mandali, Alekhya; Rengaswamy, Maithreye; Chakravarthy, V. Srinivasa; Moustafa, Ahmed A.

    2015-01-01

    To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either “explore” or “exploit” or “not to take any action” for which the Basal Ganglia (BG) is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP) of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson's disease). Key BG nuclei such as the Sub Thalamic Nucleus (STN), Globus Pallidus externus (GPe) and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al., 2006) and an n-armed bandit task (Bourdaud et al., 2008). The model shows that exploration levels could be controlled by STN's lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN's lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson's patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior. PMID:26074761

  18. Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia

    PubMed Central

    van Panhuis, Willem G.; Choisy, Marc; Xiong, Xin; Chok, Nian Shong; Akarasewi, Pasakorn; Iamsirithaworn, Sopon; Lam, Sai K.; Chong, Chee K.; Lam, Fook C.; Phommasak, Bounlay; Vongphrachanh, Phengta; Bouaphanh, Khamphaphongphane; Rekol, Huy; Hien, Nguyen Tran; Thai, Pham Quang; Duong, Tran Nhu; Chuang, Jen-Hsiang; Liu, Yu-Lun; Ng, Lee-Ching; Shi, Yuan; Tayag, Enrique A.; Roque, Vito G.; Lee Suy, Lyndon L.; Jarman, Richard G.; Gibbons, Robert V.; Velasco, John Mark S.; Yoon, In-Kyu; Burke, Donald S.; Cummings, Derek A. T.

    2015-01-01

    Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼107 km2. We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997–1998, which was followed by a period of extremely low incidence in 2001–2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997–1998 and the strongest El Niño episode of the century. Multiannual dengue cycles (2–5 y) were highly coherent with the Oceanic Niño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia. PMID:26438851

  19. Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia.

    PubMed

    van Panhuis, Willem G; Choisy, Marc; Xiong, Xin; Chok, Nian Shong; Akarasewi, Pasakorn; Iamsirithaworn, Sopon; Lam, Sai K; Chong, Chee K; Lam, Fook C; Phommasak, Bounlay; Vongphrachanh, Phengta; Bouaphanh, Khamphaphongphane; Rekol, Huy; Hien, Nguyen Tran; Thai, Pham Quang; Duong, Tran Nhu; Chuang, Jen-Hsiang; Liu, Yu-Lun; Ng, Lee-Ching; Shi, Yuan; Tayag, Enrique A; Roque, Vito G; Lee Suy, Lyndon L; Jarman, Richard G; Gibbons, Robert V; Velasco, John Mark S; Yoon, In-Kyu; Burke, Donald S; Cummings, Derek A T

    2015-10-20

    Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼ 10(7) km(2). We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997-1998, which was followed by a period of extremely low incidence in 2001-2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997-1998 and the strongest El Niño episode of the century. Multiannual dengue cycles (2-5 y) were highly coherent with the Oceanic Niño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia.

  20. Aspects of reproductive ecology and benthic-pelagic coupling in the sub-antarctic sea cucumber Pseudostichopus mollis (Theel)

    NASA Astrophysics Data System (ADS)

    Morgan, Andrew; Neal, Lance

    2012-07-01

    For deeper regions of the continental shelf environmental cues entraining reproduction in echinoderms are often absent, which contributes to adoption of continuous reproduction, having larger eggs, and a lecithotrophic mode of larval development. In the present study the sub-Antarctic sea cucumber Pseudostichopus mollis from the family Synallactidae was obtained during June (winter) and September (spring) from a depth of approximately 300 m north of the Auckland Islands in an area abundant in biogenic sediments. Samples were processed for body indices and gonad development. Features characteristic of non-continuous reproduction were exhibited. Although a larger egg size was found (212±14 μm), two distinct winter cohorts of oocytes occurred (41-81 and 161-201 μm) and body wall weight fluctuations (7.6% increase in males and 27.5% reduction in females) coincided with changes in gonad indices between sample dates. For males gonad as a proportion of body wall weight decreased from 3.31±0.9 to 2.11±0.37% and for females it increased from 1.59±0.28 to 2.5±0.30%. For both sample dates the gonad of males maintained mature spermatozoa whereas female gonad shifted from mainly recovery and growth of oocytes to growth and advanced growth of mature oocytes. In habitats with low or variable food availability intermittent reproduction is predicted as resources are too low for a high reproductive effort and too erratic for synchrony. A pattern of reproduction where fluctuations in seasonal organic input into an accumulated benthic food source initiates and synchronises gametogenesis for future spawning is proposed.

  1. Mating activity and sperm penetration assay in prediction of the reproduction potential of domestic goose ganders in a harem system.

    PubMed

    Gumułka, Małgorzata; Rozenboim, Israel

    2015-10-01

    In a natural mating system, the sexual behavior of birds has an important role in fertility success. Non-competitive mating system provides special conditions to study gander-goose interactions. Behavioral and physiological data from a domestic geese breeding flock was used to determine interrelationships between mating activity (MA) parameters, sperm penetration assay (SPA), plasma testosterone (T) concentration, and fertility (F). Moreover, variation in the frequency of gander-goose interactions during the intensive breeding period and the diurnal rhythm (short day - 10L:14D) were evaluated. The 2-/3-year-old ganders (n=15) and 1-/3-year-old geese (1♂:4♀) were observed. On the basis of successful copulation (SCop), groups of ganders with low (33.3%), intermediate (40%), and high (26.7%) frequency were categorized. Frequency of SCop was greater in the morning than in the afternoon. For the entire breeding period, SPA results obtained for the low frequency group were less than for the intermediate group. Fertility success for ganders from both low and intermediate groups was similar. There was a lack of association between MA, plasma T concentration, and SPA results. However, SCop was positively correlated with fertility. It is recommended that SCop be considered as a prognostic parameter for monitoring of ganders' reproductive potential. It is recommended that the sexual behavior of ganders be evaluated before the 1200h of the day. The SCop with an average frequency of 0.4-0.8 times during the day light hours appears to be associated with fertility results that are satisfactory for geese husbandry. Additionally, the SPA may be considered for identification of ganders with poor reproductive potential to facilitate the decision of changes in harem social structure during the first half of the breeding season.

  2. Mating activity and sperm penetration assay in prediction of the reproduction potential of domestic goose ganders in a harem system.

    PubMed

    Gumułka, Małgorzata; Rozenboim, Israel

    2015-10-01

    In a natural mating system, the sexual behavior of birds has an important role in fertility success. Non-competitive mating system provides special conditions to study gander-goose interactions. Behavioral and physiological data from a domestic geese breeding flock was used to determine interrelationships between mating activity (MA) parameters, sperm penetration assay (SPA), plasma testosterone (T) concentration, and fertility (F). Moreover, variation in the frequency of gander-goose interactions during the intensive breeding period and the diurnal rhythm (short day - 10L:14D) were evaluated. The 2-/3-year-old ganders (n=15) and 1-/3-year-old geese (1♂:4♀) were observed. On the basis of successful copulation (SCop), groups of ganders with low (33.3%), intermediate (40%), and high (26.7%) frequency were categorized. Frequency of SCop was greater in the morning than in the afternoon. For the entire breeding period, SPA results obtained for the low frequency group were less than for the intermediate group. Fertility success for ganders from both low and intermediate groups was similar. There was a lack of association between MA, plasma T concentration, and SPA results. However, SCop was positively correlated with fertility. It is recommended that SCop be considered as a prognostic parameter for monitoring of ganders' reproductive potential. It is recommended that the sexual behavior of ganders be evaluated before the 1200h of the day. The SCop with an average frequency of 0.4-0.8 times during the day light hours appears to be associated with fertility results that are satisfactory for geese husbandry. Additionally, the SPA may be considered for identification of ganders with poor reproductive potential to facilitate the decision of changes in harem social structure during the first half of the breeding season. PMID:26381080

  3. The development of neural synchrony reflects late maturation and restructuring of functional networks in humans

    PubMed Central

    Uhlhaas, Peter J.; Roux, Frederic; Singer, Wolf; Haenschel, Corinna; Sireteanu, Ruxandra; Rodriguez, Eugenio

    2009-01-01

    Brain development is characterized by maturational processes that span the period from childhood through adolescence to adulthood, but little is known whether and how developmental processes differ during these phases. We analyzed the development of functional networks by measuring neural synchrony in EEG recordings during a Gestalt perception task in 68 participants ranging in age from 6 to 21 years. Until early adolescence, developmental improvements in cognitive performance were accompanied by increases in neural synchrony. This developmental phase was followed by an unexpected decrease in neural synchrony that occurred during late adolescence and was associated with reduced performance. After this period of destabilization, we observed a reorganization of synchronization patterns that was accompanied by pronounced increases in gamma-band power and in theta and beta phase synchrony. These findings provide evidence for the relationship between neural synchrony and late brain development that has important implications for the understanding of adolescence as a critical period of brain maturation. PMID:19478071

  4. Patterns of Behaviour, Group Structure and Reproductive Status Predict Levels of Glucocorticoid Metabolites in Zoo-Housed Ring-Tailed Lemurs, Lemur catta.

    PubMed

    Smith, Tessa E; McCusker, Cara M; Stevens, Jeroen M G; Elwood, Robert W

    2015-01-01

    In ring-tailed lemurs, Lemur catta, the factors modulating hypothalamic-pituitary-adrenal (HPA) activity differ between wild and semi-free-ranging populations. Here we assess factors modulating HPA activity in ring-tailed lemurs housed in a third environment: the zoo. First we validate an enzyme immunoassay to quantify levels of glucocorticoid (GC) metabolites in the faeces of L. catta. We determine the nature of the female-female dominance hierarchies within each group by computing David's scores and examining these in relation to faecal GC (fGC). Relationships between female age and fGC are assessed to evaluate potential age-related confounds. The associations between fGC, numbers of males in a group and reproductive status are explored. Finally, we investigate the value of 7 behaviours in predicting levels of fGC. The study revealed stable linear dominance hierarchies in females within each group. The number of males in a social group together with reproductive status, but not age, influenced fGC. The 7 behavioural variables accounted for 68% of the variance in fGC. The amounts of time an animal spent locomoting and in the inside enclosure were both negative predictors of fGC. The study highlights the flexibility and adaptability of the HPA system in ring-tailed lemurs.

  5. Patterns of Behaviour, Group Structure and Reproductive Status Predict Levels of Glucocorticoid Metabolites in Zoo-Housed Ring-Tailed Lemurs, Lemur catta.

    PubMed

    Smith, Tessa E; McCusker, Cara M; Stevens, Jeroen M G; Elwood, Robert W

    2015-01-01

    In ring-tailed lemurs, Lemur catta, the factors modulating hypothalamic-pituitary-adrenal (HPA) activity differ between wild and semi-free-ranging populations. Here we assess factors modulating HPA activity in ring-tailed lemurs housed in a third environment: the zoo. First we validate an enzyme immunoassay to quantify levels of glucocorticoid (GC) metabolites in the faeces of L. catta. We determine the nature of the female-female dominance hierarchies within each group by computing David's scores and examining these in relation to faecal GC (fGC). Relationships between female age and fGC are assessed to evaluate potential age-related confounds. The associations between fGC, numbers of males in a group and reproductive status are explored. Finally, we investigate the value of 7 behaviours in predicting levels of fGC. The study revealed stable linear dominance hierarchies in females within each group. The number of males in a social group together with reproductive status, but not age, influenced fGC. The 7 behavioural variables accounted for 68% of the variance in fGC. The amounts of time an animal spent locomoting and in the inside enclosure were both negative predictors of fGC. The study highlights the flexibility and adaptability of the HPA system in ring-tailed lemurs. PMID:26824528

  6. The spacing principle for unlearning abnormal neuronal synchrony.

    PubMed

    Popovych, Oleksandr V; Xenakis, Markos N; Tass, Peter A

    2015-01-01

    Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, learning effects can be enhanced by means of the spacing principle, i.e. by delivering repeated stimuli spaced by pauses as opposed to delivering a massed stimulus (in a single long stimulation session). To illustrate that the spacing principle may boost the anti-kindling effect of CR neuromodulation, in this computational study we carry this approach to extremes. To this end, we deliver spaced CR neuromodulation at particularly weak intensities which render permanently delivered CR neuromodulation ineffective. Intriguingly, spaced CR neuromodulation at these particularly weak intensities effectively induces an anti-kindling. In fact, the spacing principle enables the neuronal population to successively hop from one attractor to another one, finally approaching attractors characterized by down-regulated synaptic connectivity and synchrony. Our computational results might open up novel opportunities to effectively induce sustained desynchronization at particularly weak stimulation intensities, thereby avoiding side effects, e.g., in the case of deep brain stimulation.

  7. Peripheral sensory coding through oscillatory synchrony in weakly electric fish

    PubMed Central

    Baker, Christa A; Huck, Kevin R; Carlson, Bruce A

    2015-01-01

    Adaptations to an organism's environment often involve sensory system modifications. In this study, we address how evolutionary divergence in sensory perception relates to the physiological coding of stimuli. Mormyrid fishes that can detect subtle variations in electric communication signals encode signal waveform into spike-timing differences between sensory receptors. In contrast, the receptors of species insensitive to waveform variation produce spontaneously oscillating potentials. We found that oscillating receptors respond to electric pulses by resetting their phase, resulting in transient synchrony among receptors that encodes signal timing and location, but not waveform. These receptors were most sensitive to frequencies found only in the collective signals of groups of conspecifics, and this was correlated with increased behavioral responses to these frequencies. Thus, different perceptual capabilities correspond to different receptor physiologies. We hypothesize that these divergent mechanisms represent adaptations for different social environments. Our findings provide the first evidence for sensory coding through oscillatory synchrony. DOI: http://dx.doi.org/10.7554/eLife.08163.001 PMID:26238277

  8. SPIKY: a graphical user interface for monitoring spike train synchrony

    PubMed Central

    Mulansky, Mario; Bozanic, Nebojsa

    2015-01-01

    Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. PMID:25744888

  9. Developmental synchrony of thalamocortical circuits in the neonatal brain.

    PubMed

    Poh, Joann S; Li, Yue; Ratnarajah, Nagulan; Fortier, Marielle V; Chong, Yap-Seng; Kwek, Kenneth; Saw, Seang-Mei; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2015-08-01

    The thalamus is a deep gray matter structure and consists of axonal fibers projecting to the entire cortex, which provide the anatomical support for its sensorimotor and higher-level cognitive functions. There is limited in vivo evidence on the normal thalamocortical development, especially in early life. In this study, we aimed to investigate the developmental patterns of the cerebral cortex, the thalamic substructures, and their connectivity with the cortex in the first few weeks of the postnatal brain. We hypothesized that there is developmental synchrony of the thalamus, its cortical projections, and corresponding target cortical structures. We employed diffusion tensor imaging (DTI) and divided the thalamus into five substructures respectively connecting to the frontal, precentral, postcentral, temporal, and parietal and occipital cortex. T2-weighted magnetic resonance imaging (MRI) was used to measure cortical thickness. We found age-related increases in cortical thickness of bilateral frontal cortex and left temporal cortex in the early postnatal brain. We also found that the development of the thalamic substructures was synchronized with that of their respective thalamocortical connectivity in the first few weeks of the postnatal life. In particular, the right thalamo-frontal substructure had the fastest growth in the early postnatal brain. Our study suggests that the distinct growth patterns of the thalamic substructures are in synchrony with those of the cortex in early life, which may be critical for the development of the cortical and subcortical functional specialization.

  10. SPIKY: a graphical user interface for monitoring spike train synchrony.

    PubMed

    Kreuz, Thomas; Mulansky, Mario; Bozanic, Nebojsa

    2015-05-01

    Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels.

  11. Symmetry types and phase-shift synchrony in networks

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin; Matamba Messi, Leopold; Spardy, Lucy E.

    2016-04-01

    In this paper we discuss what is known about the classification of symmetry groups and patterns of phase-shift synchrony for periodic solutions of coupled cell networks. Specifically, we compare the lists of spatial and spatiotemporal symmetries of periodic solutions of admissible vector fields to those of equivariant vector fields in the three cases of Rn (coupled equations), Tn (coupled oscillators), and (Rk)n where k ≥ 2 (coupled systems). To do this we use the H / K Theorem of Buono and Golubitsky (2001) applied to coupled equations and coupled systems and prove the H / K theorem in the case of coupled oscillators. Josić and Török (2006) prove that the H / K lists for equivariant vector fields and admissible vector fields are the same for transitive coupled systems. We show that the corresponding theorem is false for coupled equations. We also prove that the pairs of subgroups H ⊃ K for coupled equations are contained in the pairs for coupled oscillators which are contained in the pairs for coupled systems. Finally, we prove that patterns of rigid phase-shift synchrony for coupled equations are contained in those of coupled oscillators and those of coupled systems.

  12. Reproductive Hazards

    MedlinePlus

    ... and female reproductive systems play a role in pregnancy. Problems with these systems can affect fertility and ... a reproductive hazard can cause different effects during pregnancy, depending on when she is exposed. During the ...

  13. A MIXTURE OF SEVEN ANTIANDROGENIC COMPOUNDS ELICITS ADDITIVE EFFECTS ON THE MALE RAT REPRODUCTIVE TRACT THAT CORRESPOND TO MODELED PREDICTIONS

    EPA Science Inventory

    The main objectives of this study were to: (1) determine whether dissimilar antiandrogenic compounds display additive effects when present in combination and (2) to assess the ability of modelling approaches to accurately predict these mixture effects based on data from single ch...

  14. Resource seasonality and reproduction predict fission-fusion dynamics in black-and-white ruffed lemurs (Varecia variegata).

    PubMed

    Baden, Andrea L; Webster, Timothy H; Kamilar, Jason M

    2016-02-01

    Ruffed lemurs (genus Varecia) are often described as having a flexible social organization, such that both cohesive (low fission-fusion dynamics) and fluid (high fission-fusion dynamics) grouping patterns have been observed. In ruffed lemur communities with high fission-fusion dynamics, group members vary in their temporal and spatial dispersion throughout a communally defended territory. These patterns have been likened to those observed in several haplorrhine species that exhibit the most fluid types of fission-fusion social organization (e.g., Pan and Ateles). To substantiate and further refine these claims, we describe the fission-fusion dynamics of a black-and-white ruffed lemur (Varecia variegata) community at Mangevo, an undisturbed primary rainforest site in Ranomafana National Park, Madagascar. We collected instantaneous group scan samples from August 2007-December 2008 (4,044 observation hours) to study and characterize patterns of subgroup size, composition, cohesion, and social association. In 16 consecutive months, we never found all members of the community together. In fact, individuals spent nearly half of their time alone. Subgroups were small, cohesive, and typically of mixed-sex composition. Mixed-sex subgroups were significantly larger, less cohesive, and more common than either male-only or female-only subgroups. Subgroup dynamics were related to shifts in climate, phenology of preferred fruit species, and female reproductive state. On average, association indices were low. Males and females were equally gregarious; however, adult male-male associations were significantly weaker than any other association type. Results presented herein document striking differences in fission-fusion dynamics between black-and-white ruffed lemurs and haplorrhines, while also demonstrating many broad-scale similarities to haplorrhine taxa that possess the most fluid fission-fusion societies. PMID:26606154

  15. Job stress and dyadic synchrony in police marriages: a preliminary investigation.

    PubMed

    Roberts, Nicole A; Leonard, Rachel C; Butler, Emily A; Levenson, Robert W; Kanter, Jonathan W

    2013-06-01

    Despite reports documenting adverse effects of stress on police marriages, few empirical studies focus on actual emotional behaviors of officers and spouses. In this preliminary investigation, 17 male police officers and their nonpolice wives completed daily stress diaries for 1 week and then participated in a laboratory-based discussion about their respective days. Conversations were video-recorded and coded for specific emotional behaviors reflecting hostility and affection, which are strong predictors of marital outcomes. We examined associations between officers' job stress (per diaries and the Police Stress Survey) and couples' emotional behavior (mean levels and behavioral synchrony) using a dyadic repeated measures design capitalizing on the large number of observations available for each couple (1020 observations). When officers reported more job stress, they showed less hostility, less synchrony with their wives' hostility, and more synchrony with their wives' affection; their wives showed greater synchrony with officers' hostility and less synchrony with officers' affection. Therefore, for officers, greater job stress was associated with less behavioral negativity, potentially less attunement to wives' negativity, but potentially greater attunement to wives' affection-perhaps a compensatory strategy or attempt to buffer their marriage from stress. These attempts may be less effective, however, if, as our synchrony findings may suggest, wives are focusing on officers' hostility rather than affection. Although it will be important to replicate these results given the small sample, our findings reveal that patterns of behavioral synchrony may be a key means to better understand how job stress exacts a toll on police marriages.

  16. Rate-synchrony relationship between input and output of spike trains in neuronal networks

    NASA Astrophysics Data System (ADS)

    Wang, Sentao; Zhou, Changsong

    2010-01-01

    Neuronal networks interact via spike trains. How the spike trains are transformed by neuronal networks is critical for understanding the underlying mechanism of information processing in the nervous system. Both the rate and synchrony of the spikes can affect the transmission, while the relationship between them has not been fully understood. Here we investigate the mapping between input and output spike trains of a neuronal network in terms of firing rate and synchrony. With large enough input rate, the working mode of the neurons is gradually changed from temporal integrators into coincidence detectors when the synchrony degree of input spike trains increases. Since the membrane potentials of the neurons can be depolarized to near the firing threshold by uncorrelated input spikes, small input synchrony can cause great output synchrony. On the other hand, the synchrony in the output may be reduced when the input rate is too small. The case of the feedforward network can be regarded as iterative process of such an input-output relationship. The activity in deep layers of the feedforward network is in an all-or-none manner depending on the input rate and synchrony.

  17. Climate change increases reproductive failure in Magellanic penguins.

    PubMed

    Boersma, P Dee; Rebstock, Ginger A

    2014-01-01

    Climate change is causing more frequent and intense storms, and climate models predict this trend will continue, potentially affecting wildlife populations. Since 1960 the number of days with >20 mm of rain increased near Punta Tombo, Argentina. Between 1983 and 2010 we followed 3496 known-age Magellanic penguin (Spheniscus magellanicus) chicks at Punta Tombo to determine how weather impacted their survival. In two years, rain was the most common cause of death killing 50% and 43% of chicks. In 26 years starvation killed the most chicks. Starvation and predation were present in all years. Chicks died in storms in 13 of 28 years and in 16 of 233 storms. Storm mortality was additive; there was no relationship between the number of chicks killed in storms and the numbers that starved (P = 0.75) or that were eaten (P = 0.39). However, when more chicks died in storms, fewer chicks fledged (P = 0.05, R(2) = 0.14). More chicks died when rainfall was higher and air temperature lower. Most chicks died from storms when they were 9-23 days old; the oldest chick killed in a storm was 41 days old. Storms with heavier rainfall killed older chicks as well as more chicks. Chicks up to 70 days old were killed by heat. Burrow nests mitigated storm mortality (N = 1063). The age span of chicks in the colony at any given time increased because the synchrony of egg laying decreased since 1983, lengthening the time when chicks are vulnerable to storms. Climate change that increases the frequency and intensity of storms results in more reproductive failure of Magellanic penguins, a pattern likely to apply to many species breeding in the region. Climate variability has already lowered reproductive success of Magellanic penguins and is likely undermining the resilience of many other species.

  18. Climate Change Increases Reproductive Failure in Magellanic Penguins

    PubMed Central

    Boersma, P. Dee; Rebstock, Ginger A.

    2014-01-01

    Climate change is causing more frequent and intense storms, and climate models predict this trend will continue, potentially affecting wildlife populations. Since 1960 the number of days with >20 mm of rain increased near Punta Tombo, Argentina. Between 1983 and 2010 we followed 3496 known-age Magellanic penguin (Spheniscus magellanicus) chicks at Punta Tombo to determine how weather impacted their survival. In two years, rain was the most common cause of death killing 50% and 43% of chicks. In 26 years starvation killed the most chicks. Starvation and predation were present in all years. Chicks died in storms in 13 of 28 years and in 16 of 233 storms. Storm mortality was additive; there was no relationship between the number of chicks killed in storms and the numbers that starved (P = 0.75) or that were eaten (P = 0.39). However, when more chicks died in storms, fewer chicks fledged (P = 0.05, R2 = 0.14). More chicks died when rainfall was higher and air temperature lower. Most chicks died from storms when they were 9–23 days old; the oldest chick killed in a storm was 41 days old. Storms with heavier rainfall killed older chicks as well as more chicks. Chicks up to 70 days old were killed by heat. Burrow nests mitigated storm mortality (N = 1063). The age span of chicks in the colony at any given time increased because the synchrony of egg laying decreased since 1983, lengthening the time when chicks are vulnerable to storms. Climate change that increases the frequency and intensity of storms results in more reproductive failure of Magellanic penguins, a pattern likely to apply to many species breeding in the region. Climate variability has already lowered reproductive success of Magellanic penguins and is likely undermining the resilience of many other species. PMID:24489663

  19. Increased Synchrony and Bursting of Dorsal Cochlear Nucleus Fusiform Cells Correlate with Tinnitus

    PubMed Central

    Wu, Calvin; Martel, David T.

    2016-01-01

    Tinnitus, the perception of phantom sounds, is thought to arise from increased neural synchrony, which facilitates perceptual binding and creates salient sensory features in the absence of physical stimuli. In the auditory cortex, increased spontaneous cross-unit synchrony and single-unit bursting are de facto physiological correlates of tinnitus. However, it is unknown whether neurons in the dorsal cochlear nucleus (DCN), the putative tinnitus-induction site, exhibit increased synchrony. Using a temporary-threshold shift model and gap-prepulse inhibition of the acoustic startle to assess tinnitus, we recorded spontaneous activity from fusiform cells, the principle neurons of the DCN, in normal hearing, tinnitus, and non-tinnitus guinea pigs. Synchrony and bursting, as well as spontaneous firing rate (SFR), correlated with behavioral evidence of tinnitus, and increased synchrony and bursting were associated with SFR elevation. The presence of increased synchrony and bursting in DCN fusiform cells suggests that a neural code for phantom sounds emerges in this brainstem location and likely contributes to the formation of the tinnitus percept. SIGNIFICANCE STATEMENT Tinnitus, a phantom auditory percept, is encoded by pathological changes in the neural synchrony code of perceptual processing. Increased cross-unit synchrony and bursting have been linked to tinnitus in several higher auditory stations but not in fusiform cells of the dorsal cochlear nucleus (DCN), key brainstem neurons in tinnitus generation. Here, we demonstrate increased synchrony and bursting of fusiform cell spontaneous firing, which correlate with frequency-specific behavioral measures of tinnitus. Thus, the neural representation of tinnitus emerges early in auditory processing and likely drives its pathophysiology in higher structures. PMID:26865628

  20. Cell Autonomy and Synchrony of Suprachiasmatic Nucleus Circadian Oscillators

    PubMed Central

    Mohawk, Jennifer A.; Takahashi, Joseph S.

    2013-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the master circadian pacemaker in mammals. The individual cells of the SCN are capable of functioning independently from one another and therefore must form a cohesive circadian network through intercellular coupling. The network properties of the SCN lead to coordination of circadian rhythms among its neurons and neuronal subpopulations. There is increasing evidence for multiple interconnected oscillators within the SCN, and in this Review, we will highlight recent advances in our understanding of the complex organization and function of the cellular and network-level SCN clock. Understanding the way in which synchrony is achieved between cells in the SCN will provide insight into the means by which this important nucleus orchestrates circadian rhythms throughout the organism. PMID:21665298

  1. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  2. Heartbeat, embryo communication and hatching synchrony in snake eggs.

    PubMed

    Aubret, Fabien; Blanvillain, Gaëlle; Bignon, Florent; Kok, Philippe J R

    2016-01-01

    Communication is central to life at all levels of complexity, from cells to organs, through to organisms and communities. Turtle eggs were recently shown to communicate with each other in order to synchronise their development and generate beneficial hatching synchrony. Yet the mechanism underlying embryo to embryo communication remains unknown. Here we show that within a clutch, developing snake embryos use heart beats emanating from neighbouring eggs as a clue for their metabolic level, in order to synchronise development and ultimately hatching. Eggs of the water snake Natrix maura increased heart rates and hatched earlier than control eggs in response to being incubated in physical contact with more advanced eggs. The former produced shorter and slower swimming young than their control siblings. Our results suggest potential fitness consequences of embryo to embryo communication and describe a novel driver for the evolution of egg-clustering behaviour in animals. PMID:26988725

  3. Heartbeat, embryo communication and hatching synchrony in snake eggs

    PubMed Central

    Aubret, Fabien; Blanvillain, Gaëlle; Bignon, Florent; Kok, Philippe J. R.

    2016-01-01

    Communication is central to life at all levels of complexity, from cells to organs, through to organisms and communities. Turtle eggs were recently shown to communicate with each other in order to synchronise their development and generate beneficial hatching synchrony. Yet the mechanism underlying embryo to embryo communication remains unknown. Here we show that within a clutch, developing snake embryos use heart beats emanating from neighbouring eggs as a clue for their metabolic level, in order to synchronise development and ultimately hatching. Eggs of the water snake Natrix maura increased heart rates and hatched earlier than control eggs in response to being incubated in physical contact with more advanced eggs. The former produced shorter and slower swimming young than their control siblings. Our results suggest potential fitness consequences of embryo to embryo communication and describe a novel driver for the evolution of egg-clustering behaviour in animals. PMID:26988725

  4. Synchrony in schizophrenia: a window into circuit-level pathophysiology.

    PubMed

    Spellman, Timothy J; Gordon, Joshua A

    2015-02-01

    As a complex neuropsychiatric disease with both hereditary and environmental components, schizophrenia must be understood across multiple biological scales, from genes through cells and circuits to behaviors. The key to evaluating candidate explanatory models, therefore, is to establish causal links between disease-related phenomena observed across these scales. To this end, there has been a resurgence of interest in the circuit-level pathophysiology of schizophrenia, which has the potential to link molecular and cellular data from risk factor and post-mortem studies with the behavioral phenomena that plague patients. The demonstration that patients with schizophrenia frequently have deficits in neuronal synchrony, including deficits in local oscillations and long-range functional connectivity, offers a promising opportunity to forge such links across scales.

  5. Bistability of patterns of synchrony in Kuramoto oscillators with inertia

    NASA Astrophysics Data System (ADS)

    Belykh, Igor V.; Brister, Barrett N.; Belykh, Vladimir N.

    2016-09-01

    We study the co-existence of stable patterns of synchrony in two coupled populations of identical Kuramoto oscillators with inertia. The two populations have different sizes and can split into two clusters where the oscillators synchronize within a cluster while there is a phase shift between the dynamics of the two clusters. Due to the presence of inertia, which increases the dimensionality of the oscillator dynamics, this phase shift can oscillate, inducing a breathing cluster pattern. We derive analytical conditions for the co-existence of stable two-cluster patterns with constant and oscillating phase shifts. We demonstrate that the dynamics, that governs the bistability of the phase shifts, is described by a driven pendulum equation. We also discuss the implications of our stability results to the stability of chimeras.

  6. Crowd Synchrony and Quorum Sensing in Delay-Coupled Lasers

    NASA Astrophysics Data System (ADS)

    Zamora-Munt, Jordi; Masoller, C.; Garcia-Ojalvo, Jordi; Roy, Rajarshi

    2010-12-01

    Crowd synchrony and quorum sensing arise when a large number of dynamical elements communicate with each other via a common information pool. Previous evidence has shown that this type of coupling leads to synchronization, when coupling is instantaneous and the number of coupled elements is large enough. Here we consider a situation in which the transmission of information between the system components and the coupling pool is not instantaneous. To that end, we model a system of semiconductor lasers optically coupled to a central laser with a delay. Our results show that, even though the lasers are nonidentical due to their distinct optical frequencies, zero-lag synchronization arises. By changing a system parameter, we can switch between two different types of synchronization transition. The dependence of the transition with respect to the delay-coupling parameters is studied.

  7. High lifetime and reproductive performance of sows on southern European Union commercial farms can be predicted by high numbers of pigs born alive in parity one.

    PubMed

    Iida, R; Piñeiro, C; Koketsu, Y

    2015-05-01

    Our objectives were 1) to compare reproductive performance across parity and lifetime performance in sow groups categorized by the number of pigs born alive (PBA) in parity 1 and 2) to examine the factors associated with more PBA in parity 1. We analyzed 476,816 parity records and 109,373 lifetime records of sows entered into 125 herds from 2008 to 2010. Sows were categorized into 4 groups based on the 10th, 50th, and 90th percentiles of PBA in parity 1 as follows: 7 pigs or fewer, 8 to 11 pigs, 12 to 14 pigs, and 15 pigs or more. Generalized linear models were applied to the data. For reproductive performance across parity, sows that had 15 or more PBA in parity 1 had 0.5 to 1.8 more PBA in any subsequent parity than the other 3 PBA groups ( P< 0.05). In addition, they had 2.8 to 5.4% higher farrowing rates in parities 1 through 3 than sows that had 7 or fewer PBA (P < 0.05). However, there were no differences between the sow PBA groups for weaning-to-first-mating interval in any parity (P ≥ 0.37). For lifetime performance, sows that had 15 or more PBA in parity 1 had 4.4 to 26.1 more lifetime PBA than sows that had 14 or fewer PBA (P < 0.05). Also, for sows that had 14 or fewer PBA in parity 1, those that were first mated at 229 d old (25th percentile) or earlier had 2.9 to 3.3 more lifetime PBA than those first mated at 278 d old (75th percentile) or later (P < 0.05). Factors associated with fewer PBA in parity 1 were summer mating and lower age of gilts at first mating (AFM; P < 0.05) but not reservice occurrences (P = 0.34). Additionally, there was a 2-way interaction between mated month groups and AFM for PBA in parity 1 (P < 0.05); PBA in parity 1 sows mated from July to December increased nonlinearly by 0.3 to 0.4 pigs when AFM increased from 200 to 310 d old (P < 0.05). However, the same rise in AFM had no significant effect on the PBA of sows mated between January and June (P ≥ 0.17). In conclusion, high PBA in parity 1 can be used to predict that a

  8. Impaired limbic gamma oscillatory synchrony during anxiety-related behavior in a genetic mouse model of bipolar mania.

    PubMed

    Dzirasa, Kafui; McGarity, DeAnna L; Bhattacharya, Anirban; Kumar, Sunil; Takahashi, Joseph S; Dunson, David; McClung, Colleen A; Nicolelis, Miguel A L

    2011-04-27

    Alterations in anxiety-related processing are observed across many neuropsychiatric disorders, including bipolar disorder. Though polymorphisms in a number of circadian genes confer risk for this disorder, little is known about how changes in circadian gene function disrupt brain circuits critical for anxiety-related processing. Here we characterize neurophysiological activity simultaneously across five limbic brain areas (nucleus accumbens, amygdala, prelimbic cortex, ventral hippocampus, and ventral tegmental area) as wild-type (WT) mice and mice with a mutation in the circadian gene, CLOCK (Clock-Δ19 mice) perform an elevated zero maze task. In WT mice, basal limbic gamma oscillatory synchrony observed before task performance predicted future anxiety-related behaviors. Additionally, dynamic changes in limbic gamma oscillatory synchrony were observed based on the position of WT mice in the zero maze. Clock-Δ19 mice, which displayed an increased propensity to enter the open section of the elevated maze, showed profound deficits in these anxiety-related circuit processes. Thus, our findings link the anxiety-related behavioral deficits observed in Clock-Δ19 mice with dysfunctional gamma oscillatory tuning across limbic circuits and suggest that alterations in limbic oscillatory circuit function induced by circadian gene polymorphisms may contribute to the behavioral manifestations seen in bipolar mania.

  9. Effects of synaptic synchrony on the neuronal input-output relationship.

    PubMed

    Li, Xiaoshen; Ascoli, Giorgio A

    2008-07-01

    The firing rate of individual neurons depends on the firing frequency of their distributed synaptic inputs, with linear and nonlinear relations subserving different computational functions. This letter explores the relationship between the degree of synchrony among excitatory synapses and the linearity of the response using detailed compartmental models of cortical pyramidal cells. Synchronous input resulted in a linear input-output relationship, while asynchronous stimulation yielded sub- and supraproportional outputs at low and high frequencies, respectively. The dependence of input-output linearity on synchrony was sigmoidal and considerably robust with respect to dendritic location, stimulus irregularity, and alteration of active and synaptic properties. Moreover, synchrony affected firing rate differently at lower and higher input frequencies. A reduced integrate-and-fire model suggested a mechanism explaining these results based on spatiotemporal integration, with fundamental implications relating synchrony to memory encoding. PMID:18254692

  10. Silent disco: dancing in synchrony leads to elevated pain thresholds and social closeness

    PubMed Central

    Tarr, Bronwyn; Launay, Jacques; Dunbar, Robin I.M.

    2016-01-01

    Moving in synchrony leads to cooperative behaviour and feelings of social closeness, and dance (involving synchronisation to others and music) may cause social bonding, possibly as a consequence of released endorphins. This study uses an experimental paradigm to determine which aspects of synchrony in dance are associated with changes in pain threshold (a proxy for endorphin release) and social bonding between strangers. Those who danced in synchrony experienced elevated pain thresholds, whereas those in the partial and asynchrony conditions experienced no analgesic effects. Similarly, those in the synchrony condition reported being more socially bonded, although they did not perform more cooperatively in an economic game. This experiment suggests that dance encourages social bonding amongst co-actors by stimulating the production of endorphins, but may not make people more altruistic. We conclude that dance may have been an important human behaviour evolved to encourage social closeness between strangers. PMID:27540276

  11. Geometric properties-dependent neural synchrony modulated by extracellular subthreshold electric field

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Si, Kaili; Yi, Guosheng; Wang, Jiang; Lu, Meili

    2016-07-01

    In this paper, we use a reduced two-compartment neuron model to investigate the interaction between extracellular subthreshold electric field and synchrony in small world networks. It is observed that network synchronization is closely related to the strength of electric field and geometric properties of the two-compartment model. Specifically, increasing the electric field induces a gradual improvement in network synchrony, while increasing the geometric factor results in an abrupt decrease in synchronization of network. In addition, increasing electric field can make the network become synchronous from asynchronous when the geometric parameter is set to a given value. Furthermore, it is demonstrated that network synchrony can also be affected by the firing frequency and dynamical bifurcation feature of single neuron. These results highlight the effect of weak field on network synchrony from the view of biophysical model, which may contribute to further understanding the effect of electric field on network activity.

  12. Reproductive conflict and the separation of reproductive generations in humans

    PubMed Central

    Cant, Michael A.; Johnstone, Rufus A.

    2008-01-01

    An enduring puzzle of human life history is why women cease reproduction midway through life. Selection can favor postreproductive survival because older females can help their offspring to reproduce. But the kin-selected fitness gains of helping appear insufficient to outweigh the potential benefits of continued reproduction. Why then do women cease reproduction in the first place? Here, we suggest that early reproductive cessation in humans is the outcome of reproductive competition between generations, and we present a simple candidate model of how this competition will be resolved. We show that among primates exhibiting a postreproductive life span, humans exhibit an extraordinarily low degree of reproductive overlap between generations. The rapid senescence of the human female reproductive system coincides with the age at which, in natural fertility populations, women are expected to encounter reproductive competition from breeding females of the next generation. Several lines of evidence suggest that in ancestral hominids, this younger generation typically comprised immigrant females. In these circumstances, relatedness asymmetries within families are predicted to give younger females a decisive advantage in reproductive conflict with older females. A model incorporating both the costs of reproductive competition and the benefits of grandmothering can account for the timing of reproductive cessation in humans and so offers an improved understanding of the evolution of menopause. PMID:18378891

  13. Audiovisual Temporal Recalibration for Speech in Synchrony Perception and Speech Identification

    NASA Astrophysics Data System (ADS)

    Asakawa, Kaori; Tanaka, Akihiro; Imai, Hisato

    We investigated whether audiovisual synchrony perception for speech could change after observation of the audiovisual temporal mismatch. Previous studies have revealed that audiovisual synchrony perception is re-calibrated after exposure to a constant timing difference between auditory and visual signals in non-speech. In the present study, we examined whether this audiovisual temporal recalibration occurs at the perceptual level even for speech (monosyllables). In Experiment 1, participants performed an audiovisual simultaneity judgment task (i.e., a direct measurement of the audiovisual synchrony perception) in terms of the speech signal after observation of the speech stimuli which had a constant audiovisual lag. The results showed that the “simultaneous” responses (i.e., proportion of responses for which participants judged the auditory and visual stimuli to be synchronous) at least partly depended on exposure lag. In Experiment 2, we adopted the McGurk identification task (i.e., an indirect measurement of the audiovisual synchrony perception) to exclude the possibility that this modulation of synchrony perception was solely attributable to the response strategy using stimuli identical to those of Experiment 1. The characteristics of the McGurk effect reported by participants depended on exposure lag. Thus, it was shown that audiovisual synchrony perception for speech could be modulated following exposure to constant lag both in direct and indirect measurement. Our results suggest that temporal recalibration occurs not only in non-speech signals but also in monosyllabic speech at the perceptual level.

  14. Temporally increasing spatial synchrony of North American temperature and bird populations

    NASA Astrophysics Data System (ADS)

    Koenig, Walter D.; Liebhold, Andrew M.

    2016-06-01

    The ecological impacts of modern global climate change are detectable in a wide variety of phenomena, ranging from shifts in species ranges to changes in community composition and human disease dynamics. So far, however, little attention has been given to temporal changes in spatial synchrony--the coincident change in abundance or value across the landscape--despite the importance of environmental synchrony as a driver of population trends and the central role of environmental variability in population rescue and extinction. Here we demonstrate that across North America, spatial synchrony of a significant proportion of 49 widespread North American wintering bird species has increased over the past 50 years--the period encompassing particularly intense anthropogenic effects in climate--paralleling significant increases in spatial synchrony of mean maximum air temperature. These results suggest the potential for increased spatial synchrony in environmental factors to be affecting a wide range of ecological phenomena. These effects are likely to vary, but for North American wildlife species, increased spatial synchrony driven by environmental factors may be the basis for a previously unrecognized threat to their long-term persistence in the form of more synchronized population dynamics reducing the potential for demographic rescue among interacting subpopulations.

  15. Predicted Peptides from Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus Are Able to Induce IFN-γ and IL-10

    PubMed Central

    Burgara-Estrella, Alexel; Díaz, Ivan; Rodríguez-Gómez, Irene M.; Essler, Sabine E.; Hernández, Jesús; Mateu, Enric

    2013-01-01

    This work describes peptides from non-structural proteins (nsp) of porcine reproductive and respiratory syndrome virus (PRRSV) predicted as potential T cell epitopes by bioinfornatics and tested for their ability to induce IFN-γ and IL-10 responses. Pigs immunized with either genotype 1 or genotype 2 PRRSV attenuated vaccines (n=5/group) and unvaccinated pigs (n = 4) were used to test the peptides. Swine leukocyte antigen haplotype of each pig was also determined. Pigs were initially screened for IFN-γ responses (ELISPOT) and three peptides were identified; two of them in non-conserved segments of nsp2 and nsp5 and the other in a conserved region of nsp5 peptide. Then, peptides were screened for IL-10 inducing properties. Six peptides were found to induce IL-10 release in PBMC and some of them were also able to inhibit IFN-γ responses on PHA-stimulated cells. Interestingly, the IFN-γ low responder pigs against PRRSV were mostly homozygous for their SLA haplotypes. In conclusion, these results indicate that nsp of PRRSV contain T-cell epitopes inducing IFN-γ responses as well as IL-10 inducing segments with inhibitory capabilities. PMID:23435238

  16. Prevalence of reproductive tract infections and the predictive value of girls’ symptom-based reporting: findings from a cross-sectional survey in rural western Kenya

    PubMed Central

    Kerubo, Emily; Laserson, Kayla F; Otecko, Newton; Odhiambo, Collins; Mason, Linda; Nyothach, Elizabeth; Oruko, Kelvin O; Bauman, Ashley; Vulule, John; Zeh, Clement

    2016-01-01

    Objectives Reproductive tract infections (RTIs), including sexually acquired, among adolescent girls is a public health concern, but few studies have measured prevalence in low-middle-income countries. The objective of this study was to examine prevalence in rural schoolgirls in Kenya against their reported symptoms. Methods In 2013, a survey was conducted in 542 adolescent schoolgirls aged 14–17 years who were enrolled in a menstrual feasibility study. Vaginal self-swabbing was conducted after girls were interviewed face-to-face by trained nurses on symptoms. The prevalence of girls with symptoms and laboratory-confirmed infections, and the sensitivity, specificity, positive and negative predictive values of symptoms compared with laboratory results, were calculated. Results Of 515 girls agreeing to self-swab, 510 answered symptom questions. A quarter (24%) reported one or more symptoms; most commonly vaginal discharge (11%), pain (9%) or itching (4%). Laboratory tests confirmed 28% of girls had one or more RTI. Prevalence rose with age; among girls aged 16–17 years, 33% had infections. Bacterial vaginosis was the most common (18%), followed by Candida albicans (9%), Chlamydia trachomatis (3%), Trichomonas vaginalis (3%) and Neisseria gonorrhoeae (1%). Reported symptoms had a low sensitivity and positive predictive value. Three-quarters of girls with bacterial vaginosis and C. albicans, and 50% with T. vaginalis were asymptomatic. Conclusions There is a high prevalence of adolescent schoolgirls with RTI in rural Kenya. Public efforts are required to identify and treat infections among girls to reduce longer-term sequelae but poor reliability of symptom reporting minimises utility of symptom-based diagnosis in this population. Trial registration number ISRCTN17486946. PMID:26819339

  17. Influence of weather on the synchrony of gypsy moth (Lepidoptera: Lymantriidae) outbreaks in New England

    SciTech Connect

    Williams, D.W.; Liebhold, A.M.

    1995-10-01

    Outbreaks of the gypsy moth, Lymantria dispar (L.), were partially synchronous across New England states (Massachusetts, Maine, New Hampshire, and Vermont) from 1938 to 1992. To explain this synchrony, we investigated the Moran effect, a hypothesis that local population oscillations, which result form similar density-dependent mechanisms operating at time lags, may be synchronized over wide areas by exposure to common weather patterns. We also investigated the theory of climatic release, which ostulates that outbreaks are triggered by climatic factors favorable for population growth. Time series analysis revealed defoliation series in 2 states as 1st-order autoregressive processes and the other 2 as periodic 2nd-order autoregressive processes. Defoliation residuals series computed using the autoregressive models for each state were cross correlated with series of weather variables recorded in the respective states. The weather variables significantly correlated with defoliation residuals in all 4 states were minimum temperature and precipitation in mid-December in the same gypsy moth generation and minimum temperature in mid- to late July of the previous generation. These weather variables also were correlated strongly among the 4 states. The analyses supported the predictions of the Moran effect and suggest the common weather may synchronize local populations so as to produce pest outbreaks over wide areas. We did not find convincing evidence to support the theory of climatic release. 41 refs., 7 figs., 4 tabs.

  18. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre.

    PubMed

    Ribalet, Francois; Swalwell, Jarred; Clayton, Sophie; Jiménez, Valeria; Sudek, Sebastian; Lin, Yajuan; Johnson, Zackary I; Worden, Alexandra Z; Armbrust, E Virginia

    2015-06-30

    Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-capita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean. PMID:26080407

  19. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre.

    PubMed

    Ribalet, Francois; Swalwell, Jarred; Clayton, Sophie; Jiménez, Valeria; Sudek, Sebastian; Lin, Yajuan; Johnson, Zackary I; Worden, Alexandra Z; Armbrust, E Virginia

    2015-06-30

    Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-capita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean.

  20. Interspecific synchrony of seabird population growth rate and breeding success

    PubMed Central

    Robinson, James P W; Dornelas, Maria; Ojanguren, Alfredo F

    2013-01-01

    Environmental variability can destabilize communities by causing correlated interspecific fluctuations that weaken the portfolio effect, yet evidence of such a mechanism is rare in natural systems. Here, we ask whether the population dynamics of similar sympatric species of a seabird breeding community are synchronized, and if these species have similar exceptional responses to environmental variation. We used a 24-year time series of the breeding success and population growth rate of a marine top predator species group to assess the degree of synchrony between species demography. We then developed a novel method to examine the species group – all species combined – response to environmental variability, in particular, whether multiple species experience similar, pronounced fluctuations in their demography. Multiple species were positively correlated in breeding success and growth rate. Evidence of “exceptional” years was found, where the species group experienced pronounced fluctuations in their demography. The synchronous response of the species group was negatively correlated with winter sea surface temperature of the preceding year for both growth rate and breeding success. We present evidence for synchronous, exceptional responses of a species group that are driven by environmental variation. Such species covariation destabilizes communities by reducing the portfolio effect, and such exceptional responses may increase the risk of a state change in this community. Our understanding of the future responses to environmental change requires an increased focus on the short-term fluctuations in demography that are driven by extreme environmental variability. PMID:23919147

  1. Rhythm and interpersonal synchrony in early social development.

    PubMed

    Trainor, Laurel J; Cirelli, Laura

    2015-03-01

    Adults who engage in synchronous movement to music later report liking each other better, remembering more about each other, trusting each other more, and are more likely to cooperate with each other compared to adults who engage in asynchronous movements. Although poor motor coordination limits infants' ability to entrain to a musical beat, they perceive metrical structure in auditory rhythm patterns, their movements are affected by the tempo of music they hear, and if they are bounced by an adult to a rhythm pattern, the manner of this bouncing can affect their auditory interpretation of the meter of that pattern. In this paper, we review studies showing that by 14 months of age, infants who are bounced in synchrony with an adult subsequently show more altruistic behavior toward that adult in the form of handing back objects "accidentally" dropped by the adult compared to infants who are bounced asynchronously with the adult. Furthermore, increased helpfulness is directed at the synchronized bounce partner, but not at a neutral stranger. Interestingly, however, helpfulness does generalize to a "friend" of the synchronized bounce partner. In sum, synchronous movement between infants and adults has a powerful effect on infants' expression of directed prosocial behavior. PMID:25773616

  2. Movement Synchrony Forges Social Bonds across Group Divides

    PubMed Central

    Tunçgenç, Bahar; Cohen, Emma

    2016-01-01

    Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one's in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs. PMID:27303341

  3. Synchrony, connectivity, and functional similarity in auditory midbrain local circuits.

    PubMed

    Atencio, Craig A; Shen, Victor; Schreiner, Christoph E

    2016-10-29

    The central nucleus of the inferior colliculus (ICC) contains a laminar structure that functions as an organizing substrate of ascending inputs and local processing. While topographic distributions of ICC response parameters within and across laminae have been reported, the functional micro-organization of the ICC is less well understood. For pairs of neighboring ICC neurons, we examined the nature of functional connectivity and receptive field preferences to gain a better understanding of the structure and function of local circuits. By recording from pairs of adjacent neurons and presenting pure-tone and dynamic broad-band stimulation, we estimated functional connectivity and local differences in frequency response areas (FRAs), spectrotemporal receptive fields (STRFs), nonlinear input/output functions, and single-spike information. From the cross-covariance functions we identified putative unidirectional as well as bidirectional excitatory/inhibitory interactions. STRFs of neighboring neurons strongly conserve best frequency, and moderately agree in STRF similarity, bandwidth, temporal response type, best modulation frequency, nonlinearity structure, and degree of information processing. Excitatory connectivity was stronger and temporally more precise than for inhibitory connections. Neither connection strength nor degree of synchrony correlated with receptive field parameters. The functional similarity of local pairs of ICC neurons was substantially less than for local pairs in the granular layers of primary auditory cortex (AI). These results imply that while the ICC is an obligatory nexus of ascending information, local neurons are comparatively weakly connected and exhibit considerable receptive field variability, potentially reflecting the heterogeneity of converging inputs to ICC functional zones.

  4. Visual Orientation and Directional Selectivity through Thalamic Synchrony

    PubMed Central

    Stanley, Garrett B.; Jin, Jianzhong; Wang, Yushi; Desbordes, Gaëlle; Wang, Qi; Black, Michael J.; Alonso, Jose-Manuel

    2012-01-01

    Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10 – 20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene. PMID:22745507

  5. Synchrony and motor mimicking in chimpanzee observational learning.

    PubMed

    Fuhrmann, Delia; Ravignani, Andrea; Marshall-Pescini, Sarah; Whiten, Andrew

    2014-06-13

    Cumulative tool-based culture underwrote our species' evolutionary success, and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

  6. Geographical variation in the spatial synchrony of a forest-defoliating insect: isolation of environmental and spatial drivers

    PubMed Central

    Haynes, Kyle J.; Bjørnstad, Ottar N.; Allstadt, Andrew J.; Liebhold, Andrew M.

    2013-01-01

    Despite the pervasiveness of spatial synchrony of population fluctuations in virtually every taxon, it remains difficult to disentangle its underlying mechanisms, such as environmental perturbations and dispersal. We used multiple regression of distance matrices (MRMs) to statistically partition the importance of several factors potentially synchronizing the dynamics of the gypsy moth, an invasive species in North America, exhibiting outbreaks that are partially synchronized over long distances (approx. 900 km). The factors considered in the MRM were synchrony in weather conditions, spatial proximity and forest-type similarity. We found that the most likely driver of outbreak synchrony is synchronous precipitation. Proximity played no apparent role in influencing outbreak synchrony after accounting for precipitation, suggesting dispersal does not drive outbreak synchrony. Because a previous modelling study indicated weather might indirectly synchronize outbreaks through synchronization of oak masting and generalist predators that feed upon acorns, we also examined the influence of weather and proximity on synchrony of acorn production. As we found for outbreak synchrony, synchrony in oak masting increased with synchrony in precipitation, though it also increased with proximity. We conclude that precipitation could synchronize gypsy moth populations directly, as in a Moran effect, or indirectly, through effects on oak masting, generalist predators or diseases. PMID:23282993

  7. Geographical variation in the spatial synchrony of a forest-defoliating insect: isolation of environmental and spatial drivers.

    PubMed

    Haynes, Kyle J; Bjørnstad, Ottar N; Allstadt, Andrew J; Liebhold, Andrew M

    2013-02-22

    Despite the pervasiveness of spatial synchrony of population fluctuations in virtually every taxon, it remains difficult to disentangle its underlying mechanisms, such as environmental perturbations and dispersal. We used multiple regression of distance matrices (MRMs) to statistically partition the importance of several factors potentially synchronizing the dynamics of the gypsy moth, an invasive species in North America, exhibiting outbreaks that are partially synchronized over long distances (approx. 900 km). The factors considered in the MRM were synchrony in weather conditions, spatial proximity and forest-type similarity. We found that the most likely driver of outbreak synchrony is synchronous precipitation. Proximity played no apparent role in influencing outbreak synchrony after accounting for precipitation, suggesting dispersal does not drive outbreak synchrony. Because a previous modelling study indicated weather might indirectly synchronize outbreaks through synchronization of oak masting and generalist predators that feed upon acorns, we also examined the influence of weather and proximity on synchrony of acorn production. As we found for outbreak synchrony, synchrony in oak masting increased with synchrony in precipitation, though it also increased with proximity. We conclude that precipitation could synchronize gypsy moth populations directly, as in a Moran effect, or indirectly, through effects on oak masting, generalist predators or diseases. PMID:23282993

  8. Prezygotic barriers to hybridization in marine broadcast spawners: reproductive timing and mating system variation.

    PubMed

    Monteiro, Carla A; Serrão, Ester A; Pearson, Gareth A

    2012-01-01

    Sympatric assemblages of congeners with incomplete reproductive barriers offer the opportunity to study the roles that ecological and non-ecological factors play in reproductive isolation. While interspecific asynchrony in gamete release and gametic incompatibility are known prezygotic barriers to hybridization, the role of mating system variation has been emphasized in plants. Reproductive isolation between the sibling brown algal species Fucus spiralis, Fucus guiryi (selfing hermaphrodite) and Fucus vesiculosus (dioecious) was studied because they form hybrids in parapatry in the rocky intertidal zone, maintain species integrity over a broad geographic range, and have contrasting mating systems. We compared reproductive synchrony (spawning overlap) between the three species at several temporal scales (yearly/seasonal, semilunar/tidal, and hourly during single tides). Interspecific patterns of egg release were coincident at seasonal (single peak in spring to early summer) to semilunar timescales. Synthesis of available data indicated that spawning is controlled by semidiurnal tidal and daily light-dark cues, and not directly by semilunar cycles. Importantly, interspecific shifts in timing detected at the hourly scale during single tides were consistent with a partial ecological prezygotic hybridization barrier. The species displayed patterns of gamete release consistent with a power law distribution, indicating a high degree of reproductive synchrony, while the hypothesis of weaker selective constraints for synchrony in selfing versus outcrossing species was supported by observed spawning in hermaphrodites over a broader range of tidal phase than in outcrossers. Synchronous gamete release is critical to the success of external fertilization, while high-energy intertidal environments may offer only limited windows of reproductive opportunity. Within these windows, however, subtle variations in reproductive timing have evolved with the potential to form ecological

  9. Prezygotic Barriers to Hybridization in Marine Broadcast Spawners: Reproductive Timing and Mating System Variation

    PubMed Central

    Monteiro, Carla A.; Serrão, Ester A.; Pearson, Gareth A.

    2012-01-01

    Sympatric assemblages of congeners with incomplete reproductive barriers offer the opportunity to study the roles that ecological and non-ecological factors play in reproductive isolation. While interspecific asynchrony in gamete release and gametic incompatibility are known prezygotic barriers to hybridization, the role of mating system variation has been emphasized in plants. Reproductive isolation between the sibling brown algal species Fucus spiralis, Fucus guiryi (selfing hermaphrodite) and Fucus vesiculosus (dioecious) was studied because they form hybrids in parapatry in the rocky intertidal zone, maintain species integrity over a broad geographic range, and have contrasting mating systems. We compared reproductive synchrony (spawning overlap) between the three species at several temporal scales (yearly/seasonal, semilunar/tidal, and hourly during single tides). Interspecific patterns of egg release were coincident at seasonal (single peak in spring to early summer) to semilunar timescales. Synthesis of available data indicated that spawning is controlled by semidiurnal tidal and daily light-dark cues, and not directly by semilunar cycles. Importantly, interspecific shifts in timing detected at the hourly scale during single tides were consistent with a partial ecological prezygotic hybridization barrier. The species displayed patterns of gamete release consistent with a power law distribution, indicating a high degree of reproductive synchrony, while the hypothesis of weaker selective constraints for synchrony in selfing versus outcrossing species was supported by observed spawning in hermaphrodites over a broader range of tidal phase than in outcrossers. Synchronous gamete release is critical to the success of external fertilization, while high-energy intertidal environments may offer only limited windows of reproductive opportunity. Within these windows, however, subtle variations in reproductive timing have evolved with the potential to form ecological

  10. A mixture of five phthalate esters inhibits fetal testicular testosterone production in a cummulative manner consistent with their predicted reproductive toxicity in the Sprague Dawley rat

    EPA Science Inventory

    Phthalate diesters are plasticizers to which humans are ubiquitously exposed. Exposure to certain phthalates during sexual differentiation causes reproductive tract malformations in male rats. In the fetal rat, exposure to the phthalates benzylbutyl (BBP), di(n)butyl (DBP), and...

  11. A PHYSIOLOGICALLY BASED COMPUTATIONAL MODEL OF THE BPG AXIS IN FATHEAD MINNOWS: PREDICTING EFFECTS OF ENDOCRINE DISRUPTING CHEMICAL EXPOSURE ON REPRODUCTIVE ENDPOINTS

    EPA Science Inventory

    This presentation describes development and application of a physiologically-based computational model that simulates the brain-pituitary-gonadal (BPG) axis and other endpoints important in reproduction such as concentrations of sex steroid hormones, 17-estradiol, testosterone, a...

  12. Reproductive health.

    PubMed

    1999-04-01

    This article explores the reproductive health status of China. Since 1990, China has stepped up its efforts in promoting reproductive health and maternal and child health. Several studies demonstrated a remarkable progress made in this area. By 1997, maternal and infant mortality rates have declined, while the penetration rate for the immunization program and inpatient delivery rate increased. Despite these achievements, however, much remains to be done such as the lack of client-centered approaches to meet the increasingly diverse needs of the population for family planning services. A survey conducted in 1995 showed that the country's family planning program was focused primarily on demographic issues while little attention was given to reproductive health objectives. The situation improved when the State Planning Commission implemented its pilot program called the Quality of Care in Family Planning in China. The program yielded encouraging results including a reoriented philosophy towards reproductive health services, enhanced service facilities, informed choices for family planning methods, and the development of an operational information system. Another strategy adopted to address fertility and reproductive health issues was the implementation of adolescent reproductive health education as a required course for senior middle schools. Lastly, this article provided a brief overview of China's HIV/AIDS situation.

  13. Synchrony in Psychotherapy: A Review and an Integrative Framework for the Therapeutic Alliance

    PubMed Central

    Koole, Sander L.; Tschacher, Wolfgang

    2016-01-01

    During psychotherapy, patient and therapist tend to spontaneously synchronize their vocal pitch, bodily movements, and even their physiological processes. In the present article, we consider how this pervasive phenomenon may shed new light on the therapeutic relationship– or alliance– and its role within psychotherapy. We first review clinical research on the alliance and the multidisciplinary area of interpersonal synchrony. We then integrate both literatures in the Interpersonal Synchrony (In-Sync) model of psychotherapy. According to the model, the alliance is grounded in the coupling of patient and therapist’s brains. Because brains do not interact directly, movement synchrony may help to establish inter-brain coupling. Inter-brain coupling may provide patient and therapist with access to another’s internal states, which facilitates common understanding and emotional sharing. Over time, these interpersonal exchanges may improve patients’ emotion-regulatory capacities and related therapeutic outcomes. We discuss the empirical assessment of interpersonal synchrony and review preliminary research on synchrony in psychotherapy. Finally, we summarize our main conclusions and consider the broader implications of viewing psychotherapy as the product of two interacting brains. PMID:27378968

  14. A dispersal-induced paradox: synchrony and stability in stochastic metapopulations.

    PubMed

    Abbott, Karen C

    2011-11-01

    Understanding how dispersal influences the dynamics of spatially distributed populations is a major priority of both basic and applied ecologists. Two well-known effects of dispersal are spatial synchrony (positively correlated population dynamics at different points in space) and dispersal-induced stability (the phenomenon whereby populations have simpler or less extinction-prone dynamics when they are linked by dispersal than when they are isolated). Although both these effects of dispersal should occur simultaneously, they have primarily been studied separately. Herein, I summarise evidence from the literature that these effects are expected to interact, and I use a series of models to characterise that interaction. In particular, I explore the observation that although dispersal can promote both synchrony and stability singly, it is widely held that synchrony paradoxically prevents dispersal-induced stability. I show here that in many realistic scenarios, dispersal is expected to promote both synchrony and stability at once despite this apparent destabilising influence of synchrony. This work demonstrates that studying the spatial and temporal impacts of dispersal together will be vital for the conservation and management of the many communities for which human activities are altering natural dispersal rates.

  15. Temporal Synchrony Detection and Associations with Language in Young Children with ASD

    PubMed Central

    Baranek, Grace T.

    2014-01-01

    Temporally synchronous audio-visual stimuli serve to recruit attention and enhance learning, including language learning in infants. Although few studies have examined this effect on children with autism, it appears that the ability to detect temporal synchrony between auditory and visual stimuli may be impaired, particularly given social-linguistic stimuli delivered via oral movement and spoken language pairings. However, children with autism can detect audio-visual synchrony given nonsocial stimuli (objects dropping and their corresponding sounds). We tested whether preschool children with autism could detect audio-visual synchrony given video recordings of linguistic stimuli paired with movement of related toys in the absence of faces. As a group, children with autism demonstrated the ability to detect audio-visual synchrony. Further, the amount of time they attended to the synchronous condition was positively correlated with receptive language. Findings suggest that object manipulations may enhance multisensory processing in linguistic contexts. Moreover, associations between synchrony detection and language development suggest that better processing of multisensory stimuli may guide and direct attention to communicative events thus enhancing linguistic development. PMID:25614835

  16. Making children laugh: parent-child dyadic synchrony and preschool attachment.

    PubMed

    Bureau, Jean-FrançOis; Yurkowski, Kim; Schmiedel, Sabrina; Martin, Jodi; Moss, Ellen; Pallanca, Dominique

    2014-01-01

    The current study examined whether dyadic synchrony of father-child and mother-child interactions in a playful context were associated with attachment organization in preschool children. One hundred seven children (48 boys, Mage = 46.67 months, SD = 8.57) and their mothers and fathers (counterbalanced order of lab visits) participated in a playful interaction without toys (Laughing Task procedure). Playful interactions were coded based on the degree to which the dyads demonstrated a variety of behavior representing dyadic synchrony and task management. Children's attachment behavior toward fathers and mothers was observed in a modified separation-reunion procedure adapted for the preschool period. Results demonstrate that mothers and fathers are similar in their effort to arouse and engage their child in a playful context, but mothers achieved a greater synchrony with their child. Disorganized attachment to either mother or father is linked with a lack of synchrony in dyadic interaction. Findings are in contrast with prevailing theory, suggesting that despite gender-related differences in parental playful behaviors, dyadic synchrony is equally important in both mother- and father-child relationships for the development of organized social and affectional bonds.

  17. Making children laugh: parent-child dyadic synchrony and preschool attachment.

    PubMed

    Bureau, Jean-FrançOis; Yurkowski, Kim; Schmiedel, Sabrina; Martin, Jodi; Moss, Ellen; Pallanca, Dominique

    2014-01-01

    The current study examined whether dyadic synchrony of father-child and mother-child interactions in a playful context were associated with attachment organization in preschool children. One hundred seven children (48 boys, Mage = 46.67 months, SD = 8.57) and their mothers and fathers (counterbalanced order of lab visits) participated in a playful interaction without toys (Laughing Task procedure). Playful interactions were coded based on the degree to which the dyads demonstrated a variety of behavior representing dyadic synchrony and task management. Children's attachment behavior toward fathers and mothers was observed in a modified separation-reunion procedure adapted for the preschool period. Results demonstrate that mothers and fathers are similar in their effort to arouse and engage their child in a playful context, but mothers achieved a greater synchrony with their child. Disorganized attachment to either mother or father is linked with a lack of synchrony in dyadic interaction. Findings are in contrast with prevailing theory, suggesting that despite gender-related differences in parental playful behaviors, dyadic synchrony is equally important in both mother- and father-child relationships for the development of organized social and affectional bonds. PMID:25798498

  18. Nonverbal Synchrony in Social Interactions of Patients with Schizophrenia Indicates Socio-Communicative Deficits

    PubMed Central

    Kupper, Zeno; Ramseyer, Fabian; Hoffmann, Holger; Tschacher, Wolfgang

    2015-01-01

    Background Disordered interpersonal communication can be a serious problem in schizophrenia. Recent advances in computer-based measures allow reliable and objective quantification of nonverbal behavior. Research using these novel measures has shown that objective amounts of body and head movement in patients with schizophrenia during social interactions are closely related to the symptom profiles of these patients. In addition to and above mere amounts of movement, the degree of synchrony, or imitation, between patients and normal interactants may be indicative of core deficits underlying various problems in domains related to interpersonal communication, such as symptoms, social competence, and social functioning. Methods Nonverbal synchrony was assessed objectively using Motion Energy Analysis (MEA) in 378 brief, videotaped role-play scenes involving 27 stabilized outpatients diagnosed with paranoid-type schizophrenia. Results Low nonverbal synchrony was indicative of symptoms, low social competence, impaired social functioning, and low self-evaluation of competence. These relationships remained largely significant when correcting for the amounts of patients‘ movement. When patients showed reduced imitation of their interactants’ movements, negative symptoms were likely to be prominent. Conversely, positive symptoms were more prominent in patients when their interaction partners’ imitation of their movements was reduced. Conclusions Nonverbal synchrony can be an objective and sensitive indicator of the severity of patients’ problems. Furthermore, quantitative analysis of nonverbal synchrony may provide novel insights into specific relationships between symptoms, cognition, and core communicative problems in schizophrenia. PMID:26716444

  19. Audio-visual synchrony and feature-selective attention co-amplify early visual processing.

    PubMed

    Keitel, Christian; Müller, Matthias M

    2016-05-01

    Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space. PMID:26226930

  20. Population synchrony of a native fish across three Laurentian Great Lakes: Evaluating the effects of dispersal and climate

    USGS Publications Warehouse

    Bunnell, D.B.; Adams, J.V.; Gorman, O.T.; Madenjian, C.P.; Riley, S.C.; Roseman, E.F.; Schaeffer, J.S.

    2010-01-01

    Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978-2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance. ?? Springer-Verlag 2009.

  1. Climate change-related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea.

    PubMed

    Defriez, Emma J; Sheppard, Lawrence W; Reid, Philip C; Reuman, Daniel C

    2016-06-01

    During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959-1980 and 1989-2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized. PMID:26810148

  2. Climate change-related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea.

    PubMed

    Defriez, Emma J; Sheppard, Lawrence W; Reid, Philip C; Reuman, Daniel C

    2016-06-01

    During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959-1980 and 1989-2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.

  3. Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional environmental controls.

    PubMed

    Cavanaugh, Kyle C; Kendall, Bruce E; Siegel, David A; Reed, Daniel C; Alberto, Filipe; Assis, Jorge

    2013-02-01

    Populations of many species display spatially synchronous fluctuations in abundance. Synchrony is most commonly attributed to three processes: factors that influence recruitment (e.g., dispersal, early survival), large-scale environmental variability, and spatially autocorrelated trophic interactions. However it is often difficult to link population synchrony to a specific dominant process, particularly when multiple synchronizing forces are operating. We utilized a new satellite-based data set of giant kelp (Macrocystis pyrifera) canopy biomass to examine population synchrony in southern California kelp forests on spatial scales ranging from 50 m to 300 km and temporal scales ranging from 1 to 11 years. We examined the relationship between synchrony and distance for adult kelp populations, kelp recruits, sea urchin abundance (a major grazer of kelp), and environmental variables known to influence kelp population dynamics. Population synchrony in giant kelp decreased with distance between populations: an initial rapid exponential decrease between 50 m and 1.3 km was followed by a second, large-scale decrease between distances of 1.3 km and 172 km. The 50-m to 1.3-km spatial scale corresponded to the scales of synchrony in the abundance of sea urchins and young kelp recruits, suggesting that local drivers of predation and recruitment influence small-scale synchrony in kelp populations. The spatial correlation patterns of environmental variables, particularly wave height, were similar to the synchrony-distance relationship of kelp populations from 1.3 km to 172 km, suggesting that regional environmental variability, i.e., the Moran effect, was the dominant process affecting synchrony at larger spatial scales. This two-step pattern in the relationship between kelp biomass synchrony and distance was apparent in each of the 11 years of our study. Our results highlight the potential for synthesizing approaches from both landscape and population ecology in order to

  4. Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds.

    PubMed

    Weatherhead, Patrick J

    2005-06-01

    Predicting ecological consequences of climate change will be improved by understanding how species are affected by contemporary climate variation, particularly if analyses involve more than single ecological variables and focus on large-scale climate phenomena. I used 18 years of data from red-winged blackbirds (Agelaius phoeniceus) studied over a 25-year period in eastern Ontario to explore chronological and climate-related patterns of reproduction. Although blackbirds started nesting earlier in years with warmer springs, associated with low winter values of the North Atlantic Oscillation Index (NAOI), there was no advance in laying dates over the study. Nesting ended progressively later and the breeding season lasted longer over the study, however, associated with higher spring values of NAOI. As the length of the nesting season increased, offspring sex ratios became more female biased, apparently as a result of females adjusting the sex of the eggs they laid, rather than from sex-biased nestling mortality. Clutch size did not vary systematically over the study or with climate. Opposing trends of declining nest success and increasing productivity of successful nests over the study resulted in no chronological change in productivity per female. Higher productivity of successful nests was associated with higher winter NAOI values, possibly because synchrony between nesting and food availability was higher in years with high NAOI values. Other than the association between the start of nesting and spring temperatures, local weather (e.g., temperature, rainfall) patterns that linked NAOI with reproduction were not identified, suggesting that weather patterns may be complex. Because climate affected most aspects of red-winged blackbird reproduction examined, focusing on associations between climate and single variables (e.g., first-egg dates) will have limited value in predicting how future climates will affect populations.

  5. Synchrony, connectivity, and functional similarity in auditory midbrain local circuits.

    PubMed

    Atencio, Craig A; Shen, Victor; Schreiner, Christoph E

    2016-10-29

    The central nucleus of the inferior colliculus (ICC) contains a laminar structure that functions as an organizing substrate of ascending inputs and local processing. While topographic distributions of ICC response parameters within and across laminae have been reported, the functional micro-organization of the ICC is less well understood. For pairs of neighboring ICC neurons, we examined the nature of functional connectivity and receptive field preferences to gain a better understanding of the structure and function of local circuits. By recording from pairs of adjacent neurons and presenting pure-tone and dynamic broad-band stimulation, we estimated functional connectivity and local differences in frequency response areas (FRAs), spectrotemporal receptive fields (STRFs), nonlinear input/output functions, and single-spike information. From the cross-covariance functions we identified putative unidirectional as well as bidirectional excitatory/inhibitory interactions. STRFs of neighboring neurons strongly conserve best frequency, and moderately agree in STRF similarity, bandwidth, temporal response type, best modulation frequency, nonlinearity structure, and degree of information processing. Excitatory connectivity was stronger and temporally more precise than for inhibitory connections. Neither connection strength nor degree of synchrony correlated with receptive field parameters. The functional similarity of local pairs of ICC neurons was substantially less than for local pairs in the granular layers of primary auditory cortex (AI). These results imply that while the ICC is an obligatory nexus of ascending information, local neurons are comparatively weakly connected and exhibit considerable receptive field variability, potentially reflecting the heterogeneity of converging inputs to ICC functional zones. PMID:27544405

  6. Out-of-synchrony speech entrainment in developmental dyslexia.

    PubMed

    Molinaro, Nicola; Lizarazu, Mikel; Lallier, Marie; Bourguignon, Mathieu; Carreiras, Manuel

    2016-08-01

    Developmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher-order phonological regions (i.e., left inferior frontal regions) and the auditory cortex is still under dispute. Here we recorded magnetoencephalographic (MEG) signals from 20 dyslexic readers and 20 age-matched controls while they were listening to ∼10-s-long spoken sentences. Compared to controls, dyslexic readers had (1) an impaired neural entrainment to speech in the delta band (0.5-1 Hz); (2) a reduced delta synchronization in both the right auditory cortex and the left inferior frontal gyrus; and (3) an impaired feedforward functional coupling between neural oscillations in the right auditory cortex and the left inferior frontal regions. This shows that during speech listening, individuals with developmental dyslexia present reduced neural synchrony to low-frequency speech oscillations in primary auditory regions that hinders higher-order speech processing steps. The present findings, thus, strengthen proposals assuming that improper low-frequency acoustic entrainment affects speech sampling. This low speech-brain synchronization has the strong potential to cause severe consequences for both phonological and reading skills. Interestingly, the reduced speech-brain synchronization in dyslexic readers compared to normal readers (and its higher-order consequences across the speech processing network) appears preserved through the development from childhood to adulthood. Thus, the evaluation of speech-brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia. Hum Brain Mapp 37:2767-2783, 2016. © 2016 Wiley Periodicals, Inc.

  7. Out-of-synchrony speech entrainment in developmental dyslexia.

    PubMed

    Molinaro, Nicola; Lizarazu, Mikel; Lallier, Marie; Bourguignon, Mathieu; Carreiras, Manuel

    2016-08-01

    Developmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher-order phonological regions (i.e., left inferior frontal regions) and the auditory cortex is still under dispute. Here we recorded magnetoencephalographic (MEG) signals from 20 dyslexic readers and 20 age-matched controls while they were listening to ∼10-s-long spoken sentences. Compared to controls, dyslexic readers had (1) an impaired neural entrainment to speech in the delta band (0.5-1 Hz); (2) a reduced delta synchronization in both the right auditory cortex and the left inferior frontal gyrus; and (3) an impaired feedforward functional coupling between neural oscillations in the right auditory cortex and the left inferior frontal regions. This shows that during speech listening, individuals with developmental dyslexia present reduced neural synchrony to low-frequency speech oscillations in primary auditory regions that hinders higher-order speech processing steps. The present findings, thus, strengthen proposals assuming that improper low-frequency acoustic entrainment affects speech sampling. This low speech-brain synchronization has the strong potential to cause severe consequences for both phonological and reading skills. Interestingly, the reduced speech-brain synchronization in dyslexic readers compared to normal readers (and its higher-order consequences across the speech processing network) appears preserved through the development from childhood to adulthood. Thus, the evaluation of speech-brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia. Hum Brain Mapp 37:2767-2783, 2016. © 2016 Wiley Periodicals, Inc. PMID:27061643

  8. Perceived synchrony for realistic and dynamic audiovisual events.

    PubMed

    Eg, Ragnhild; Behne, Dawn M

    2015-01-01

    In well-controlled laboratory experiments, researchers have found that humans can perceive delays between auditory and visual signals as short as 20 ms. Conversely, other experiments have shown that humans can tolerate audiovisual asynchrony that exceeds 200 ms. This seeming contradiction in human temporal sensitivity can be attributed to a number of factors such as experimental approaches and precedence of the asynchronous signals, along with the nature, duration, location, complexity and repetitiveness of the audiovisual stimuli, and even individual differences. In order to better understand how temporal integration of audiovisual events occurs in the real world, we need to close the gap between the experimental setting and the complex setting of everyday life. With this work, we aimed to contribute one brick to the bridge that will close this gap. We compared perceived synchrony for long-running and eventful audiovisual sequences to shorter sequences that contain a single audiovisual event, for three types of content: action, music, and speech. The resulting windows of temporal integration showed that participants were better at detecting asynchrony for the longer stimuli, possibly because the long-running sequences contain multiple corresponding events that offer audiovisual timing cues. Moreover, the points of subjective simultaneity differ between content types, suggesting that the nature of a visual scene could influence the temporal perception of events. An expected outcome from this type of experiment was the rich variation among participants' distributions and the derived points of subjective simultaneity. Hence, the designs of similar experiments call for more participants than traditional psychophysical studies. Heeding this caution, we conclude that existing theories on multisensory perception are ready to be tested on more natural and representative stimuli.

  9. Perceived synchrony for realistic and dynamic audiovisual events

    PubMed Central

    Eg, Ragnhild; Behne, Dawn M.

    2015-01-01

    In well-controlled laboratory experiments, researchers have found that humans can perceive delays between auditory and visual signals as short as 20 ms. Conversely, other experiments have shown that humans can tolerate audiovisual asynchrony that exceeds 200 ms. This seeming contradiction in human temporal sensitivity can be attributed to a number of factors such as experimental approaches and precedence of the asynchronous signals, along with the nature, duration, location, complexity and repetitiveness of the audiovisual stimuli, and even individual differences. In order to better understand how temporal integration of audiovisual events occurs in the real world, we need to close the gap between the experimental setting and the complex setting of everyday life. With this work, we aimed to contribute one brick to the bridge that will close this gap. We compared perceived synchrony for long-running and eventful audiovisual sequences to shorter sequences that contain a single audiovisual event, for three types of content: action, music, and speech. The resulting windows of temporal integration showed that participants were better at detecting asynchrony for the longer stimuli, possibly because the long-running sequences contain multiple corresponding events that offer audiovisual timing cues. Moreover, the points of subjective simultaneity differ between content types, suggesting that the nature of a visual scene could influence the temporal perception of events. An expected outcome from this type of experiment was the rich variation among participants' distributions and the derived points of subjective simultaneity. Hence, the designs of similar experiments call for more participants than traditional psychophysical studies. Heeding this caution, we conclude that existing theories on multisensory perception are ready to be tested on more natural and representative stimuli. PMID:26082738

  10. Perceived synchrony for realistic and dynamic audiovisual events.

    PubMed

    Eg, Ragnhild; Behne, Dawn M

    2015-01-01

    In well-controlled laboratory experiments, researchers have found that humans can perceive delays between auditory and visual signals as short as 20 ms. Conversely, other experiments have shown that humans can tolerate audiovisual asynchrony that exceeds 200 ms. This seeming contradiction in human temporal sensitivity can be attributed to a number of factors such as experimental approaches and precedence of the asynchronous signals, along with the nature, duration, location, complexity and repetitiveness of the audiovisual stimuli, and even individual differences. In order to better understand how temporal integration of audiovisual events occurs in the real world, we need to close the gap between the experimental setting and the complex setting of everyday life. With this work, we aimed to contribute one brick to the bridge that will close this gap. We compared perceived synchrony for long-running and eventful audiovisual sequences to shorter sequences that contain a single audiovisual event, for three types of content: action, music, and speech. The resulting windows of temporal integration showed that participants were better at detecting asynchrony for the longer stimuli, possibly because the long-running sequences contain multiple corresponding events that offer audiovisual timing cues. Moreover, the points of subjective simultaneity differ between content types, suggesting that the nature of a visual scene could influence the temporal perception of events. An expected outcome from this type of experiment was the rich variation among participants' distributions and the derived points of subjective simultaneity. Hence, the designs of similar experiments call for more participants than traditional psychophysical studies. Heeding this caution, we conclude that existing theories on multisensory perception are ready to be tested on more natural and representative stimuli. PMID:26082738

  11. Reproductive science as an essential component of conservation biology.

    PubMed

    Holt, William V; Brown, Janine L; Comizzoli, Pierre

    2014-01-01

    In this chapter we argue that reproductive science in its broadest sense has never been more important in terms of its value to conservation biology, which itself is a synthetic and multidisciplinary topic. Over recent years the place of reproductive science in wildlife conservation has developed massively across a wide and integrated range of cutting edge topics. We now have unprecedented insight into the way that environmental change affects basic reproductive functions such as ovulation, sperm production, pregnancy and embryo development through previously unsuspected influences such as epigenetic modulation of the genome. Environmental change in its broadest sense alters the quality of foodstuffs that all animals need for reproductive success, changes the synchrony between breeding seasons and reproductive events, perturbs gonadal and embryo development through the presence of pollutants in the environment and drives species to adapt their behaviour and phenotype. In this book we explore many aspects of reproductive science and present wide ranging and up to date accounts of the scientific and technological advances that are currently enabling reproductive science to support conservation biology.

  12. Detection of transient synchrony across oscillating receptors by the central electrosensory system of mormyrid fish

    PubMed Central

    Vélez, Alejandro; Carlson, Bruce A

    2016-01-01

    Recently, we reported evidence for a novel mechanism of peripheral sensory coding based on oscillatory synchrony. Spontaneously oscillating electroreceptors in weakly electric fish (Mormyridae) respond to electrosensory stimuli with a phase reset that results in transient synchrony across the receptor population (Baker et al., 2015). Here, we asked whether the central electrosensory system actually detects the occurrence of synchronous oscillations among receptors. We found that electrosensory stimulation elicited evoked potentials in the midbrain exterolateral nucleus at a short latency following receptor synchronization. Frequency tuning in the midbrain resembled peripheral frequency tuning, which matches the intrinsic oscillation frequencies of the receptors. These frequencies are lower than those in individual conspecific signals, and instead match those found in collective signals produced by groups of conspecifics. Our results provide further support for a novel mechanism for sensory coding based on the detection of oscillatory synchrony among peripheral receptors. DOI: http://dx.doi.org/10.7554/eLife.16851.001 PMID:27328322

  13. Phase synchrony facilitates binding and segmentation of natural images in a coupled neural oscillator network

    PubMed Central

    Finger, Holger; König, Peter

    2014-01-01

    Synchronization has been suggested as a mechanism of binding distributed feature representations facilitating segmentation of visual stimuli. Here we investigate this concept based on unsupervised learning using natural visual stimuli. We simulate dual-variable neural oscillators with separate activation and phase variables. The binding of a set of neurons is coded by synchronized phase variables. The network of tangential synchronizing connections learned from the induced activations exhibits small-world properties and allows binding even over larger distances. We evaluate the resulting dynamic phase maps using segmentation masks labeled by human experts. Our simulation results show a continuously increasing phase synchrony between neurons within the labeled segmentation masks. The evaluation of the network dynamics shows that the synchrony between network nodes establishes a relational coding of the natural image inputs. This demonstrates that the concept of binding by synchrony is applicable in the context of unsupervised learning using natural visual stimuli. PMID:24478685

  14. Active Drumming Experience Increases Infants’ Sensitivity to Audiovisual Synchrony during Observed Drumming Actions

    PubMed Central

    Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition. PMID:26111226

  15. Active Drumming Experience Increases Infants' Sensitivity to Audiovisual Synchrony during Observed Drumming Actions.

    PubMed

    Gerson, Sarah A; Schiavio, Andrea; Timmers, Renee; Hunnius, Sabine

    2015-01-01

    In the current study, we examined the role of active experience on sensitivity to multisensory synchrony in six-month-old infants in a musical context. In the first of two experiments, we trained infants to produce a novel multimodal effect (i.e., a drum beat) and assessed the effects of this training, relative to no training, on their later perception of the synchrony between audio and visual presentation of the drumming action. In a second experiment, we then contrasted this active experience with the observation of drumming in order to test whether observation of the audiovisual effect was as effective for sensitivity to multimodal synchrony as active experience. Our results indicated that active experience provided a unique benefit above and beyond observational experience, providing insights on the embodied roots of (early) music perception and cognition. PMID:26111226

  16. Impaired prefrontal gamma band synchrony in autism spectrum disorders during gaze cueing.

    PubMed

    Richard, Annette E; Lajiness-O'Neill, Renee R; Bowyer, Susan M

    2013-11-13

    Orienting to eye gaze is a vital social skill that is absent or developmentally delayed in autism spectrum disorders (ASD). Neural synchrony in the gamma frequency band is believed to be involved in perceptual and cognitive functions such as eye-gaze processing, and has been found to be abnormal in ASD. The current study used magnetoencephalography to measure neural synchrony in the gamma frequency band in neurotypicals (n=8) and individuals with ASD (n=10) while performing a directional eye-gaze processing task. Results support impaired generation of neural synchrony in the gamma frequency band during eye-gaze processing in ASD. Impaired gamma oscillatory activity in the prefrontal cortex may be associated with impairments in social cognitive functions such as eye-gaze processing in ASD.

  17. Sensory connection, interest/attention and gamma synchrony in autism or autism, brain connections and preoccupation.

    PubMed

    Lawson, Wendy

    2013-03-01

    Does motivational interest increase gamma synchrony across neuronal networking to enable computation of related sensory inputs that might lead to greater social understanding in autism spectrum conditions (ASC)? Meaning, is it possible/likely that in autism because individuals process one aspect of sensory input at any one time (therefore missing the wider picture in general) when they are motivated/interested or attending to particular stimuli their attention window is widened due to increased gamma synchrony and they might be enabled to connect in ways that do not occur when they are not motivated? This is my current research question. If gamma synchrony is helping with the binding of information from collective sensory inputs, in ASC, when and only if the individual is motivated, then this has huge potential for how learning might be encouraged for individuals with an ASC.

  18. Phenological synchrony of bird migration with tree flowering at desert riparian stopover sites

    USGS Publications Warehouse

    Kellermann, Jherime L.; Van Riper, Charles

    2015-01-01

    Small-bodied songbirds replenish fat reserves during migration at stopover sites where they continually encounter novel and often unpredictable environmental conditions. The ability to select and utilize high quality habitats is critical to survival and fitness. Vegetation phenology is closely linked with emergence of insect prey and may provide valid cues of food availability for stopover habitat selection. Climate change is disrupting phenological synchrony across trophic levels with negative impacts on bird populations. However, whether synchrony or mismatch indicates historic or disrupted systems remains unclear. Many Neotropical migratory songbirds of western North America must cross arid regions where drought conditions related to climate change and human water use are expected to increase. We studied migrant abundance and the diversity (niche breadth) and proportional use of vegetation species as foraging substrates and their synchrony with vegetation flowering during spring migration along the lower Colorado River in the Sonoran Desert of the U.S. and Mexico.

  19. INTERSPECIFIC SYNCHRONY AMONG FOLIAGE-FEEDING FOREST LAPIDOPTERA SPECIES AND THE ROLE OF GENERALIST PREDATORS AS POSSIBLE SYNCHRONIZING AGENTS

    EPA Science Inventory

    While synchrony among geographically disjunct populations of the same species has received considerable recent attention, much less is known about synchrony between sympatric populations of two or more species. We analyzed time series of the abundance of ten species of spring fol...

  20. What Iconic Gesture Fragments Reveal about Gesture-Speech Integration: When Synchrony Is Lost, Memory Can Help

    ERIC Educational Resources Information Center

    Obermeier, Christian; Holle, Henning; Gunter, Thomas C.

    2011-01-01

    The present series of experiments explores several issues related to gesture-speech integration and synchrony during sentence processing. To be able to more precisely manipulate gesture-speech synchrony, we used gesture fragments instead of complete gestures, thereby avoiding the usual long temporal overlap of gestures with their coexpressive…

  1. The Structure of Parent-Child Dyadic Synchrony in Toddlerhood and Children's Communication Competence and Self-Control

    ERIC Educational Resources Information Center

    Lindsey, Eric W.; Cremeens, Penny R.; Colwell, Malinda J.; Caldera, Yvonne M.

    2009-01-01

    The aim of the present investigation was to examine parent-child synchrony and its link to children's communicative competence and self-control. Data were collected from 80 families with toddler age children (41 girls, 39 boys) during a laboratory assessment. Five components of parent-child dyadic synchrony were assessed during a semi-structured…

  2. Not That Heart-Stopping After All: Visuo-Cardiac Synchrony Does Not Boost Self-Face Attribution

    PubMed Central

    Porciello, Giuseppina; Daum, Moritz M.; Menghini, Cristina; Brugger, Peter; Lenggenhager, Bigna

    2016-01-01

    Recent experimental evidence and theoretical models suggest that an integration of exteroceptive and interoceptive signals underlies several key aspects of the bodily self. While it has been shown that self-attribution of both the hand and the full-body are altered by conflicting extero-exteroceptive (e.g. visuo-tactile) and extero-interoceptive (e.g. visuo-cardiac) information, no study has thus far investigated whether self-attribution of the face might be altered by visuo-cardiac stimulation similarly to visuo-tactile stimulation. In three independent groups of participants we presented ambiguous (i.e. morphed with a stranger's face) self-faces flashing synchronously or asynchronously with the participants’ heartbeat. We then measured the subjective percentages of self-face attribution of morphed stimuli. To control for a potential effect of visuo-cardiac synchrony on familiarity, a task assessing the attribution of a familiar face was introduced. Moreover, different durations of visuo-cardiac flashing and different degrees of asynchronicity were used. Based on previous studies showing that synchronous visuo-cardiac stimulation generally increases self-attribution of the full-body and the hand, and that synchronous visuo-tactile stimulation increases self-face attribution, we predicted higher self-face attribution during the synchronous visuo-cardiac flashing of the morphed stimuli. In contrast to this hypothesis, the results showed no difference between synchronous and asynchronous stimulation on self-face attribution in any of the three studies. We thus conclude that visuo-cardiac synchrony does not boost self-attribution of the face as it does that of hand and full-body. PMID:27541587

  3. Long-range synchrony in the gamma band: role in music perception.

    PubMed

    Bhattacharya, J; Petsche, H; Pereda, E

    2001-08-15

    Synchronization seems to be a central mechanism for neuronal information processing within and between multiple brain areas. Furthermore, synchronization in the gamma band has been shown to play an important role in higher cognitive functions, especially by binding the necessary spatial and temporal information in different cortical areas to build a coherent perception. Specific task-induced (evoked) gamma oscillations have often been taken as an indication of synchrony, but the presence of long-range synchrony cannot be inferred from spectral power in the gamma range. We studied the usefulness of a relatively new measure, called similarity index to detect asymmetric interdependency between two brain regions. Spontaneous EEG from two groups-musicians and non-musicians-were recorded during several states: listening to music, listening to text, and at rest (eyes closed and eyes open). While listening to music, degrees of the gamma band synchrony over distributed cortical areas were found to be significantly higher in musicians than non-musicians. Yet no differences between these two groups were found at resting conditions and while listening to a neutral text. In contrast to the degree of long-range synchrony, spectral power in the gamma band was higher in non-musicians. The degree of spatial synchrony, a measure of signal complexity based on eigen-decomposition method, was also significantly increased in musicians while listening to music. As compared with non-musicians, the finding of increased long-range synchrony in musicians independent of spectral power is interpreted as a manifestation of a more advanced musical memory of musicians in binding together several features of the intrinsic complexity of music in a dynamical way. PMID:11487656

  4. Self-recognition in the perception of actions performed in synchrony with music.

    PubMed

    Sevdalis, Vassilis; Keller, Peter E

    2009-07-01

    This study investigated self-recognition in point-light displays depicting actions performed in synchrony with music. Participants were recorded executing three different actions (dancing, walking, and clapping) and were subsequently required to identify the agent (self versus other) from point-light displays with or without the accompanying music. Results indicate that while recognition accuracy was better than chance for all actions, it was best for the relatively complex dance actions. The presence of music did not affect accuracy, suggesting that self-recognition was based on information about personal movement kinematics rather than individual differences in synchrony between movements and music. PMID:19673830

  5. Synchrony in human, mouse and bacterial cell cultures--a comparison

    NASA Technical Reports Server (NTRS)

    Helmstetter, Charles E.; Thornton, Maureen; Romero, Ana; Eward, K. Leigh

    2003-01-01

    Growth characteristics of synchronous human MOLT-4, human U-937 and mouse L1210 cultures produced with a new minimally-disturbing technology were compared to each other and to synchronous Escherichia coli B/r. Based on measurements of cell concentrations during synchronous growth, synchrony persisted in similar fashion for all cells. Cell size and DNA distributions in the mammalian cultures also progressed synchronously and reproducibly for multiple cell cycles. The results demonstrate that unambiguous multi-cycle synchrony, critical for verifying the absence of significant growth imbalances induced by the synchronization procedure, is feasible with these cell lines, and possibly others.

  6. Time-delay-induced phase-transition to synchrony in coupled bursting neurons

    NASA Astrophysics Data System (ADS)

    Adhikari, Bhim Mani; Prasad, Awadhesh; Dhamala, Mukeshwar

    2011-06-01

    Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.

  7. Persistence of cell division synchrony in Spirogyra insignis (Gamophyceae): membrane proteoglycans transmitting synchronizing information throughout generations.

    PubMed

    Costas, E; Lopez Rodas, V

    1991-01-01

    Spirogyra insignis shows a long-term persistence of cell division synchrony in the absence of the synchronizing Zeitgeber, so that at least six generations are involved in the process. This tentatively suggests that a mechanism of transmission throughout generations of synchronizing information could maintain this synchrony. Apparently, a vital part of the molecular basis of this mechanism is a membrane proteoglycan complex. This complex could obtain temporal information from a synchronizing Zeitgeber and be transmitted to the progeny by distribution of plasma membrane between daughter cells.

  8. Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling

    NASA Astrophysics Data System (ADS)

    Komarov, Maxim; Pikovsky, Arkady

    2015-08-01

    We report on finite-sized-induced transitions to synchrony in a population of phase oscillators coupled via a nonlinear mean field, which microscopically is equivalent to a hypernetwork organization of interactions. Using a self-consistent approach and direct numerical simulations, we argue that a transition to synchrony occurs only for finite-size ensembles and disappears in the thermodynamic limit. For all considered setups, which include purely deterministic oscillators with or without heterogeneity in natural oscillatory frequencies, and an ensemble of noise-driven identical oscillators, we establish scaling relations describing the order parameter as a function of the coupling constant and the system size.

  9. Reproductive physiology

    USGS Publications Warehouse

    Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.

    1996-01-01

    Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.

  10. Reproductive hacking

    PubMed Central

    Dustin Rubinstein, C; Wolfner, Mariana F

    2014-01-01

    Seminal proteins are critical for reproductive success in all animals that have been studied. Although seminal proteins have been identified in many taxa, and female reproductive responses to receipt of these proteins have been documented in several, little is understood about the mechanisms by which seminal proteins affect female reproductive physiology. To explore this topic, we investigated how a Drosophila seminal protein, ovulin, increases ovulation rate in mated females. Ovulation is a relatively simple physiological process, with known female regulators: previous studies have shown that ovulation rate is promoted by the neuromodulator octopamine (OA) in D. melanogaster and other insects. We found that ovulin stimulates ovulation by increasing OA signaling in the female. This finding supports a model in which a male seminal protein acts through “hacking” a well-conserved, regulatory system females use to adjust reproductive output, rather than acting downstream of female mechanisms of control or in parallel pathways altogether. We also discuss similarities between 2 forms of intersexual control of behavior through chemical communication: seminal proteins and pheromones. PMID:25483253

  11. Predictive value of serum and follicular fluid leptin concentrations during assisted reproductive cycles in normal women and in women with the polycystic ovarian syndrome.

    PubMed

    Mantzoros, C S; Cramer, D W; Liberman, R F; Barbieri, R L

    2000-03-01

    Leptin is an adipocyte-derived hormone which plays a central role in the regulation of body weight and energy homeostasis and in signalling to the brain that adequate energy stores are available for reproduction. Although leptin may affect reproduction by regulating the hypothalamic-pituitary-gonadal axis, recent in-vitro observations indicate that leptin may also have direct intra-ovarian actions. Leptin concentrations were measured in women who succeeded in becoming pregnant within three cycles of in-vitro fertilization (IVF) or gamete intra-fallopian transfer (n = 53), in women who failed to become pregnant within three cycles (n = 50), and in women with polycystic ovarian syndrome (PCOS) (n = 22). It was found that lower follicular fluid leptin concentrations were a marker of assisted reproduction treatment success in normal women. Women with PCOS had higher leptin concentrations than women without such a diagnosis, but this was due to their higher body mass index (BMI). After adjustment for age and BMI, women with PCOS who became pregnant tended to have lower mean follicular fluid leptin concentrations than women with PCOS who did not succeed at becoming pregnant. Further studies exploiting the strengths of the IVF model are needed to assess whether the prognostic role for follicular fluid leptin in human reproduction is independent of other factors, and to elucidate the underlying mechanisms.

  12. Female Reproductive System

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Female Reproductive System KidsHealth > For Teens > Female Reproductive System Print A ... and female reproductive systems. continue What Is the Female Reproductive System? Most species have two sexes: male and female. ...

  13. Coral reproduction in the world's warmest reefs: southern Persian Gulf (Dubai, United Arab Emirates)

    NASA Astrophysics Data System (ADS)

    Bauman, A. G.; Baird, A. H.; Cavalcante, G. H.

    2011-06-01

    Despite extensive research on coral reproduction from numerous geographic locations, there remains limited knowledge within the Persian Gulf. Given that corals in the Persian Gulf exist in one of the most stressful environments for reef corals, with annual variations in sea surface temperature (SST) of 12°C and maximum summer mean SSTs of 36°C, understanding coral reproductive biology in the Gulf may provide clues as to how corals may cope with global warming. In this study, we examined six locally common coral species on two shallow reef sites in Dubai, United Arab Emirates (UAE), in 2008 and 2009 to investigate the patterns of reproduction, in particular the timing and synchrony of spawning. In total, 71% colonies in April 2008 and 63% colonies in April 2009 contained mature oocytes. However, the presence of mature gametes in May indicated that spawning was potentially split between April and May in all species. These results demonstrate that coral reproduction patterns within this region are highly seasonal and that multi-species spawning synchrony is highly probable. Acropora downingi, Cyphastrea microphthalma and Platygyra daedalea were all hermaphroditic broadcast spawners with a single annual gametogenic cycle. Furthermore, fecundity and mature oocyte sizes were comparable to those in other regions. We conclude that the reproductive biology of corals in the southern Persian Gulf is similar to other regions, indicating that these species have adapted to the extreme environmental conditions in the southern Persian Gulf.

  14. Synchrony and Specificity in the Maternal and the Paternal Brain: Relations to Oxytocin and Vasopressin

    ERIC Educational Resources Information Center

    Atzil, Shir; Hendler, Talma; Zagoory-Sharon, Orna; Winetraub, Yonatan; Feldman, Ruth

    2012-01-01

    Objective: Research on the neurobiology of parenting has defined "biobehavioral synchrony," the coordination of biological and behavioral responses between parent and child, as a central process underpinning mammalian bond formation. Bi-parental rearing, typically observed in monogamous species, is similarly thought to draw on mechanisms of…

  15. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts.

    PubMed

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-19

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276-induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  16. Auditory Stream Segregation and the Perception of Across-Frequency Synchrony

    ERIC Educational Resources Information Center

    Micheyl, Christophe; Hunter, Cynthia; Oxenham, Andrew J.

    2010-01-01

    This study explored the extent to which sequential auditory grouping affects the perception of temporal synchrony. In Experiment 1, listeners discriminated between 2 pairs of asynchronous "target" tones at different frequencies, A and B, in which the B tone either led or lagged. Thresholds were markedly higher when the target tones were temporally…

  17. REGIONAL DYNAMICS OF WETLAND-BREEDING FROGS AND TOADS: TURNOVER AND SYNCHRONY

    EPA Science Inventory

    We used data from a statewide frog monitoring network to investigate population turnover and synchrony in eight wetland-breeding species. We found that subpopulations at many sites turn over frequently, with breeding choruses absent or undetectable in most years. Frequencies of d...

  18. Breeding synchrony and extrapair fertilizations in two populations of red-winged blackbirds

    USGS Publications Warehouse

    Westaeat, D.F.; Gray, E.M.

    1998-01-01

    We tested the relationship between synchrony of breeding and the frequency of extrapair fertilizations (EPFs) in two populations of red-winged blackbirds known to differ in female extrapair behavior. We found no association between the number of simultaneously fertilizable females (temporal neighbors) and EPF rate in either population, although a significant difference between populations in the direction of this relationship (positive where females initiated extrapair copulations and negative where males initiated them) suggested a modest difference in the influence of synchrony. Males losing offspring to EPFs tended to have more fertilizable females at that time than the actual sires in some analyses but not in others. We also tested several assumptions underlying two competing hypotheses for the effects of synchrony. We found no evidence that females pursued extrapair copulations more often when other females were synchronous. Rather, females were more likely to gain EPFs with extrapair males whose social mates were not yet building their nests. Synchrony also did not consistently affect male pursuit of extrapair copulations or achievement of EPFs. These results suggest that timing of breeding has some effects on extrapair activity, but that those effects are both relatively weak and influenced by other factors that vary between years or populations.

  19. Mechanisms for synchrony and alternation in song interactions of the bushcricket Mecopoda elongata (Tettigoniidae: Orthoptera)

    PubMed Central

    Hartbauer, Manfred; Kratzer, Silvia; Steiner, Klaus; Römer, Heiner

    2014-01-01

    Males of the bushcricket Mecopoda elongata synchronise or alternate their chirps with their neighbours in an aggregation. Since synchrony is imperfect, leader and follower chirps are established in song interactions; females prefer leader chirps in phonotactic trials. Using playback experiments and simulations of song oscillator interactions, we investigate the mechanisms that result in synchrony and alternation, and the probability for the leader role in synchrony. A major predictor for the leader role of a male is its intrinsic chirp period, which varies in a population from 1.6 to 2.3 s. Faster singing males establish the leader role more often than males with longer chirp periods. The phase-response curve (PRC) of the song oscillators differs to other rhythmically calling or flashing insects, in that only the disturbed cycle is influenced in duration by a stimulus. This results in sustained leader or follower chirps of one male, when the intrinsic chirp periods of two males differ by 150 ms or more. By contrast, the individual shape of the male’s PRC has only little influence on the outcome of chirp interactions. The consequences of these findings for the evolution of synchrony in this species are discussed. PMID:15614532

  20. Physical and Relational Aggression in Young Children: The Role of Mother-Child Interactional Synchrony

    ERIC Educational Resources Information Center

    Ambrose, Holly N.; Menna, Rosanne

    2013-01-01

    This study examined the relationships between the quality of parent-child interactions, specifically interactional synchrony (IS), and physical and relational aggression in young children. Seventy-three children (3-6 years; 44 males, 29 females) and their mothers participated in this study. The children's level of aggression was assessed through…

  1. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts

    PubMed Central

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-01

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276–induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  2. The Critical Role of Temporal Synchrony in the Salience of Intersensory Redundancy during Prenatal Development

    ERIC Educational Resources Information Center

    Jaime, Mark; Bahrick, Lorraine; Lickliter, Robert

    2010-01-01

    We explored the amount and timing of temporal synchrony necessary to facilitate prenatal perceptual learning using an animal model, the bobwhite quail. Quail embryos were exposed to various audiovisual combinations of a bobwhite maternal call paired with patterned light during the late stages of prenatal development and were tested postnatally for…

  3. Isolating the perceptual from the social: tapping in shared space results in improved synchrony.

    PubMed

    Wu, David W-L; Chapman, Craig S; Walker, Esther; Bischof, Walter F; Kingstone, Alan

    2013-10-01

    Current theory suggests that interpersonal synchrony is an important social behavior in that it not only serves as a form of "social glue," but it also arises automatically in a social context. Theorists suggest potential mechanisms for interpersonal synchrony, ranging from a "low-level" social-perceptual system account to a "high-level" social-motivational explanation. Past studies that suggest synchrony can be influenced by social factors do not discriminate between these accounts. The current investigation seeks to isolate the effect of the high-level social system on interpersonal synchrony by investigating the effects of spatial proximity on unintentional coordinated tapping between two naïve participants. Dyads performed a synchronization-continuation task either in the same room, in different rooms, or in different rooms but with the ability to hear each other tap. Participant taps were represented by a box that flashed on the monitor to control visual information across all three conditions. Same-room dyads had increased coordination over different-room dyads, whereas dyads that shared audio but were in different rooms showed an intermediate level of coordination. The present study demonstrates that shared space, independent of perceptual differences in stimuli, can increase unintentional coordinated tapping. PMID:23750971

  4. High frequency synchrony in the cerebellar cortex during goal directed movements

    PubMed Central

    Groth, Jonathan D.; Sahin, Mesut

    2015-01-01

    The cerebellum is involved in sensory-motor integration and cognitive functions. The origin and function of the field potential oscillations in the cerebellum, especially in the high frequencies, have not been explored sufficiently. The primary objective of this study was to investigate the spatio-temporal characteristics of high frequency field potentials (150–350 Hz) in the cerebellar cortex in a behavioral context. To this end, we recorded from the paramedian lobule in rats using micro electro-corticogram (μ-ECoG) electrode arrays while the animal performed a lever press task using the forelimb. The phase synchrony analysis shows that the high frequency oscillations recorded at multiple points across the paramedian cortex episodically synchronize immediately before and desynchronize during the lever press. The electrode contacts were grouped according to their temporal course of phase synchrony around the time of lever press. Contact groups presented patches with slightly stronger synchrony values in the medio-lateral direction, and did not appear to form parasagittal zones. The size and location of these patches on the cortical surface are in agreement with the sensory evoked granular layer patches originally reported by Welker's lab (Shambes et al., 1978). Spatiotemporal synchrony of high frequency field potentials has not been reported at such large-scales previously in the cerebellar cortex. PMID:26257613

  5. Population Fluctuations and Synchrony of Grassland Butterflies in Relation to Species Traits

    PubMed Central

    Franzén, Markus; Nilsson, Sven G.; Johansson, Victor; Ranius, Thomas

    2013-01-01

    Population fluctuations and synchrony influence population persistence; species with larger fluctuations and more synchronised population fluctuations face higher extinction risks. Here, we analyse the effect of diet specialisation, mobility, length of the flight period, and distance to the northern edge of the species’ distribution in relation to between-year population fluctuations and synchrony of butterfly species. All butterfly species associated with grasslands were surveyed over five successive years at 19 grassland sites in a forest-dominated landscape (50 km2) in southern Sweden. At both the local and regional level, we found larger population fluctuations in species with longer flight periods. Population fluctuations were more synchronous among localities in diet specialists. Species with a long flight period might move more to track nectar resources compared to species with shorter flight period, and if nectar sources vary widely between years and localities it may explain that population fluctuations increase with increasing flight length. Diet generalists can use different resources (in this case host plants) at different localities and this can explain the lower synchrony in population fluctuations among generalist species. Higher degree of synchrony is one possible explanation for the higher extinction risks that have been observed for more specialised species. Therefore, diet specialists are more often threatened and require more conservation efforts than generalists. PMID:24205169

  6. Simulating the Effect of Reinforcement Learning on Neuronal Synchrony and Periodicity in the Striatum

    PubMed Central

    Hélie, Sébastien; Fleischer, Pierson J.

    2016-01-01

    The study of rhythms and oscillations in the brain is gaining attention. While it is unclear exactly what the role of oscillation, synchrony, and rhythm is, it appears increasingly likely that synchrony is related to normal and abnormal brain states and possibly cognition. In this article, we explore the relationship between basal ganglia (BG) synchrony and reinforcement learning. We simulate a biologically-realistic model of the striatum initially proposed by Ponzi and Wickens (2010) and enhance the model by adding plastic cortico-BG synapses that can be modified using reinforcement learning. The effect of reinforcement learning on striatal rhythmic activity is then explored, and disrupted using simulated deep brain stimulation (DBS). The stimulator injects current in the brain structure to which it is attached, which affects neuronal synchrony. The results show that training the model without DBS yields a high accuracy in the learning task and reduced the number of active neurons in the striatum, along with an increased firing periodicity and a decreased firing synchrony between neurons in the same assembly. In addition, a spectral decomposition shows a stronger signal for correct trials than incorrect trials in high frequency bands. If the DBS is ON during the training phase, but not the test phase, the amount of learning in the model is reduced, along with firing periodicity. Similar to when the DBS is OFF, spectral decomposition shows a stronger signal for correct trials than for incorrect trials in high frequency domains, but this phenoemenon happens in higher frequency bands than when the DBS is OFF. Synchrony between the neurons is not affected. Finally, the results show that turning the DBS ON at test increases both firing periodicity and striatal synchrony, and spectral decomposition of the signal show that neural activity synchronizes with the DBS fundamental frequency (and its harmonics). Turning the DBS ON during the test phase results in chance

  7. Simulating the Effect of Reinforcement Learning on Neuronal Synchrony and Periodicity in the Striatum.

    PubMed

    Hélie, Sébastien; Fleischer, Pierson J

    2016-01-01

    The study of rhythms and oscillations in the brain is gaining attention. While it is unclear exactly what the role of oscillation, synchrony, and rhythm is, it appears increasingly likely that synchrony is related to normal and abnormal brain states and possibly cognition. In this article, we explore the relationship between basal ganglia (BG) synchrony and reinforcement learning. We simulate a biologically-realistic model of the striatum initially proposed by Ponzi and Wickens (2010) and enhance the model by adding plastic cortico-BG synapses that can be modified using reinforcement learning. The effect of reinforcement learning on striatal rhythmic activity is then explored, and disrupted using simulated deep brain stimulation (DBS). The stimulator injects current in the brain structure to which it is attached, which affects neuronal synchrony. The results show that training the model without DBS yields a high accuracy in the learning task and reduced the number of active neurons in the striatum, along with an increased firing periodicity and a decreased firing synchrony between neurons in the same assembly. In addition, a spectral decomposition shows a stronger signal for correct trials than incorrect trials in high frequency bands. If the DBS is ON during the training phase, but not the test phase, the amount of learning in the model is reduced, along with firing periodicity. Similar to when the DBS is OFF, spectral decomposition shows a stronger signal for correct trials than for incorrect trials in high frequency domains, but this phenoemenon happens in higher frequency bands than when the DBS is OFF. Synchrony between the neurons is not affected. Finally, the results show that turning the DBS ON at test increases both firing periodicity and striatal synchrony, and spectral decomposition of the signal show that neural activity synchronizes with the DBS fundamental frequency (and its harmonics). Turning the DBS ON during the test phase results in chance

  8. Dissecting geographic variation in population synchrony using the common vole in central Europe as a test bed.

    PubMed

    Gouveia, Ana R; Bjørnstad, Ottar N; Tkadlec, Emil

    2016-01-01

    Spatial synchrony of population fluctuations is ubiquitous in nature. Theoretical models suggest that correlated environmental stochasticity, dispersal, and trophic interactions are important promoters of synchrony in nature to leave characteristic signatures of distance-dependent decays in synchrony. Recent refinements of this theory have clarified how distance-decay curves may steepen if local dynamics are governed by different density-dependent feedbacks and how synchrony should vary regionally if the importance and correlation of environmental stochasticity is location-specific. We analysed spatiotemporal data for the common vole, Microtus arvalis from 49 districts in the Czech Republic to examine the pattern of population synchrony between 2000 and 2014. By extending the nonparametric covariation function, we develop a quantitative method that allows a dissection of the effects of distance and additional variables such as altitude on synchrony. To examine the pattern of local synchrony, we apply the noncentered local-indicators of spatial association (ncLISA) which highlights areas with different degrees of synchrony than expected by the region-wide average. Additionally, in order to understand the obtained pattern of local spatial correlations, we have regressed LISA results against the proportion of forest in each district. The common vole abundances fluctuated strongly and exhibited synchronous dynamics with the typical tendency for a decline of synchrony with increasing distance but, not with altitude. The correlation between the neighbor districts decreases as the proportion of forest increases. Forested areas are suboptimum habitats and are strongly avoided by common voles. The investigation of spatiotemporal dynamics in animal populations is a key issue in ecology. Although the majority of studies are focused on testing hypotheses about which mechanisms are involved in shaping this dynamics it is crucial to understand the sources of variation involved

  9. Sixty Hertz Neurostimulation Amplifies Subthalamic Neural Synchrony in Parkinson’s Disease

    PubMed Central

    Blumenfeld, Zack; Velisar, Anca; Miller Koop, Mandy; Hill, Bruce C.; Shreve, Lauren A.; Quinn, Emma J.; Kilbane, Camilla; Yu, Hong; Henderson, Jaimie M.; Brontë-Stewart, Helen

    2015-01-01

    High frequency subthalamic nucleus (STN) deep brain stimulation (DBS) improves the cardinal motor signs of Parkinson’s disease (PD) and attenuates STN alpha/beta band neural synchrony in a voltage-dependent manner. While there is a growing interest in the behavioral effects of lower frequency (60 Hz) DBS, little is known about its effect on STN neural synchrony. Here we demonstrate for the first time that during intra-operative 60 Hz STN DBS, one or more bands of resting state neural synchrony were amplified in the STN in PD. We recorded intra-operative STN resting state local field potentials (LFPs) from twenty-eight STNs in seventeen PD subjects after placement of the DBS lead (model 3389, Medtronic, Inc.) before and during three randomized neurostimulation sets (130 Hz/1.35V, 130 Hz/2V, 60 Hz/2V). During 130 Hz/2V DBS, baseline (no DBS) STN alpha (8 – 12 Hz) and beta (13 – 35 Hz) band power decreased (N=14, P < 0.001 for both), whereas during 60 Hz/2V DBS, alpha band and peak frequency power increased (P = 0.012, P = 0.007, respectively). The effect of 60 Hz/2V DBS opposed that of power-equivalent (130 Hz/1.35V) DBS (alpha: P < 0.001, beta: P = 0.006). These results show that intra-operative 60 Hz STN DBS amplified whereas 130 Hz STN DBS attenuated resting state neural synchrony in PD; the effects were frequency-specific. We demonstrate that neurostimulation may be useful as a tool to selectively modulate resting state resonant bands of neural synchrony and to investigate its influence on motor and non-motor behaviors in PD and other neuropsychiatric diseases. PMID:25807463

  10. Rethinking reproductive "tourism" as reproductive "exile".

    PubMed

    Inhorn, Marcia C; Patrizio, Pasquale

    2009-09-01

    Whereas reproductive "tourism" implies leisure travel, reproductive "exile" bespeaks the numerous difficulties and constraints faced by infertile patients who are "forced" to travel globally for assisted reproduction. Given this reality, it is time to rethink the language of "reproductive tourism," replacing it with more accurate and patient-centered terms. PMID:19249025

  11. Scale-dependent phenological synchrony between songbirds and their caterpillar food source.

    PubMed

    Hinks, Amy E; Cole, Ella F; Daniels, Katherine J; Wilkin, Teddy A; Nakagawa, Shinichi; Sheldon, Ben C

    2015-07-01

    In seasonal environments, the timing of reproduction has important fitness consequences. Our current understanding of the determinants of reproductive phenology in natural systems is limited because studies often ignore the spatial scale on which animals interact with their environment. When animals use a restricted amount of space and the phenology of resources is spatially variable, selection may favor sensitivity to small-scale environmental variation. Population-level studies of how songbirds track the changing phenology of their food source have been influential in explaining how populations adjust to changing climates but have largely ignored the spatial scale at which phenology varies. We explored whether individual great tits (Parus major) synchronize their breeding with phenological events in their local environment and investigated the spatial scale at which this occurs. We demonstrate marked variation in the timing of food availability, at a spatial scale relevant to individual birds, and that such local variation predicts the breeding phenology of individuals. Using a 45-year data set, we show that measures of vegetation phenology at very local scales are the most important predictors of timing of breeding within years, suggesting that birds can fine-tune their phenology to that of other trophic levels. Knowledge of the determinants of variation in reproductive behavior at different spatial scales is likely to be critical in understanding how selection operates on breeding phenology in natural populations. PMID:26098341

  12. An evaluation of fish early life stage tests for predicting reproductive and longer-term toxicity from plant protection product active substances.

    PubMed

    Wheeler, James R; Maynard, Samuel K; Crane, Mark

    2014-08-01

    The chronic toxicity of chemicals to fish is routinely assessed by using fish early life stage (ELS) test results. Fish full life cycle (FLC) tests are generally required only when toxicity, bioaccumulation, and persistence triggers are met or when there is a suspicion of potential endocrine-disrupting properties. This regulatory approach is based on a relationship between the results of fish ELS and FLC studies first established more than 35 yrs ago. Recently, this relationship has been challenged by some regulatory authorities, and it has been recommended that more substances should undergo FLC testing. In addition, a project proposal has been submitted to the Organisation for Economic Cooperation and Development (OECD) to develop a fish partial life cycle (PLC) test including a reproductive assessment. Both FLC and PLC tests are animal- and resource-intensive and technically challenging and should therefore be undertaken only if there is clear evidence that they are necessary for coming to a regulatory decision. The present study reports on an analysis of a database of paired fish ELS and FLC endpoints for plant protection product active substances from European Union draft assessment reports and the US Environmental Protection Agency Office of Pesticide Programs Pesticide Ecotoxicity Database. Analysis of this database shows a clear relationship between ELS and FLC responses, with similar median sensitivity across substances when no-observed-effect concentrations (NOECs) are compared. There was also no indication that classification of a substance as a mammalian reproductive toxicant leads to more sensitive effects in fish FLC tests than in ELS tests. Indeed, the response of the ELS tests was generally more sensitive than the most sensitive reproduction NOEC from a FLC test. This analysis indicates that current testing strategies and guidelines are fit for purpose and that there is no need for fish full or partial life cycle tests for most plant protection

  13. An evaluation of fish early life stage tests for predicting reproductive and longer-term toxicity from plant protection product active substances.

    PubMed

    Wheeler, James R; Maynard, Samuel K; Crane, Mark

    2014-08-01

    The chronic toxicity of chemicals to fish is routinely assessed by using fish early life stage (ELS) test results. Fish full life cycle (FLC) tests are generally required only when toxicity, bioaccumulation, and persistence triggers are met or when there is a suspicion of potential endocrine-disrupting properties. This regulatory approach is based on a relationship between the results of fish ELS and FLC studies first established more than 35 yrs ago. Recently, this relationship has been challenged by some regulatory authorities, and it has been recommended that more substances should undergo FLC testing. In addition, a project proposal has been submitted to the Organisation for Economic Cooperation and Development (OECD) to develop a fish partial life cycle (PLC) test including a reproductive assessment. Both FLC and PLC tests are animal- and resource-intensive and technically challenging and should therefore be undertaken only if there is clear evidence that they are necessary for coming to a regulatory decision. The present study reports on an analysis of a database of paired fish ELS and FLC endpoints for plant protection product active substances from European Union draft assessment reports and the US Environmental Protection Agency Office of Pesticide Programs Pesticide Ecotoxicity Database. Analysis of this database shows a clear relationship between ELS and FLC responses, with similar median sensitivity across substances when no-observed-effect concentrations (NOECs) are compared. There was also no indication that classification of a substance as a mammalian reproductive toxicant leads to more sensitive effects in fish FLC tests than in ELS tests. Indeed, the response of the ELS tests was generally more sensitive than the most sensitive reproduction NOEC from a FLC test. This analysis indicates that current testing strategies and guidelines are fit for purpose and that there is no need for fish full or partial life cycle tests for most plant protection

  14. Trophic matches in Northern Alaska: Existing synchrony among climate, vegetation, arthropods and migratory songbirds

    NASA Astrophysics Data System (ADS)

    Boelman, N.; Gough, L.; Wingfield, J. C.; Team Bird

    2011-12-01

    Climate change in the Arctic is altering patterns of seasonality while also altering the composition and structure of vegetation. In contrast to plants, energy balance, and carbon and nitrogen cycling, the responses of animal populations to these changes have been drastically understudied in the Alaskan interior and much of the Arctic. Investigations are therefore needed to better understand trophic dynamics involving vertebrates under current conditions, and to predict how this group may be impacted by both the direct and indirect effects of changing seasonality and vegetation cover. This is particularly important for migratory animals that breed annually on the arctic tundra because they provide a direct connection between the rapidly changing arctic environment and their more southern staging and over-wintering habitats. In a five year observational study, we are exploring how both shifts towards earlier spring snow melt and the ongoing increase in regional deciduous shrub dominance may affect migratory songbird communities that depend on the tundra for food and shelter during their breeding season. Here we present early results from sites in northern Alaska that differ in shrub height and abundance that reveal: (1) strong existing synchrony among the timing of spring snow melt, spring air temperatures, vegetation phenology, arthropod phenology and the timing of breeding stages of migratory songbirds, and; (2) significant differences in the types and abundance of vegetative and arthropod food sources, as well as environmental and biophysical micro-habitat conditions, between non-shrub dominated tundra plots and deciduous shrub dominated tundra. The arrival time of migratory songbirds on the tundra, and thus the onset of their breeding cycle, is cued by day length, while snow melt, plant growth and arthropod emergence are temperature sensitive. We therefore hypothesize that warmer spring time temperatures could cause a mismatch between the arrival time and onset

  15. Characterising intra- and inter-intrinsic network synchrony in combat-related post-traumatic stress disorder.

    PubMed

    Dunkley, Benjamin T; Doesburg, Sam M; Jetly, Rakesh; Sedge, Paul A; Pang, Elizabeth W; Taylor, Margot J

    2015-11-30

    Soldiers with post-traumatic stress disorder (PTSD) exhibit elevated gamma-band synchrony in left fronto-temporal cortex, and connectivity measures in these regions correlate with comorbidities and PTSD severity, which suggests increased gamma synchrony is related to symptomology. However, little is known about the role of intrinsic, phase-synchronised networks in the disorder. Using magnetoencephalography (MEG), we characterised spectral connectivity in the default-mode, salience, visual, and attention networks during resting-state in a PTSD population and a trauma-exposed control group. Intrinsic network connectivity was examined in canonical frequency bands. We observed increased inter-network synchronisation in the PTSD group compared with controls in the gamma (30-80 Hz) and high-gamma range (80-150 Hz). Analyses of connectivity and symptomology revealed that PTSD severity was positively associated with beta synchrony in the ventral-attention-to-salience networks, and gamma synchrony within the salience network, but also negatively correlated with beta synchrony within the visual network. These novel results show that frequency-specific, network-level atypicalities may reflect trauma-related alterations of ongoing functional connectivity, and correlations of beta synchrony in attentional-to-salience and visual networks with PTSD severity suggest complicated network interactions mediate symptoms. These results contribute to accumulating evidence that PTSD is a complicated network-based disorder expressed as altered neural interactions.

  16. Incorporating oximeter analyses to investigate synchronies in heart rate while teaching and learning about race

    NASA Astrophysics Data System (ADS)

    Amat, Arnau; Zapata, Corinna; Alexakos, Konstantinos; Pride, Leah D.; Paylor-Smith, Christian; Hernandez, Matthew

    2016-07-01

    In this paper, we look closely at two events selected through event-oriented inquiry that were part of a classroom presentation on race. The first event was a provocative discussion about Mark Twain's (Pudd'nhead Wilson, Harper, New York, 1899) and passing for being White. The other was a discussion on the use of the N-word. Grounded in authentic inquiry, we use ethnographic narrative, cogenerative dialogues, and video and oximeter data analyses as part of a multi-ontological approach for studying emotions. Statistical analysis of oximeter data shows statistically significant heart rate synchrony among two of the coteachers during their presentations, providing evidence of emotional synchrony, resonance, and social and emotional contagion.

  17. The "conscious pilot"-dendritic synchrony moves through the brain to mediate consciousness.

    PubMed

    Hameroff, Stuart

    2010-01-01

    Cognitive brain functions including sensory processing and control of behavior are understood as "neurocomputation" in axonal-dendritic synaptic networks of "integrate-and-fire" neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic-dendritic gap junctions, forming transient syncytia ("dendritic webs") in input/integration layers oriented sideways to axonal-dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The "conscious pilot" is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation. PMID:19669425

  18. Periodically forced ensemble of nonlinearly coupled oscillators: from partial to full synchrony.

    PubMed

    Baibolatov, Yernur; Rosenblum, Michael; Zhanabaev, Zeinulla Zh; Kyzgarina, Meyramgul; Pikovsky, Arkady

    2009-10-01

    We analyze the dynamics of a periodically forced oscillator ensemble with global nonlinear coupling. Without forcing, the system exhibits complicated collective dynamics, even for the simplest case of identical phase oscillators: due to nonlinearity, the synchronous state becomes unstable for certain values of the coupling parameter, and the system settles at the border between synchrony and asynchrony, what can be denoted as partial synchrony. We find that an external common forcing can result in two synchronous states: (i) a weak forcing entrains only the mean field, whereas the individual oscillators remain unlocked to the force and, correspondingly, to the mean field; (ii) a strong forcing fully synchronizes the system, making the phases of all oscillators identical. Analytical results are confirmed by numerics.

  19. Incorporating oximeter analyses to investigate synchronies in heart rate while teaching and learning about race

    NASA Astrophysics Data System (ADS)

    Amat, Arnau; Zapata, Corinna; Alexakos, Konstantinos; Pride, Leah D.; Paylor-Smith, Christian; Hernandez, Matthew

    2016-09-01

    In this paper, we look closely at two events selected through event-oriented inquiry that were part of a classroom presentation on race. The first event was a provocative discussion about Mark Twain's ( Pudd'nhead Wilson, Harper, New York, 1899) and passing for being White. The other was a discussion on the use of the N-word. Grounded in authentic inquiry, we use ethnographic narrative, cogenerative dialogues, and video and oximeter data analyses as part of a multi-ontological approach for studying emotions. Statistical analysis of oximeter data shows statistically significant heart rate synchrony among two of the coteachers during their presentations, providing evidence of emotional synchrony, resonance, and social and emotional contagion.

  20. An Eight Month Randomized Controlled Exercise Intervention Alters Resting State Synchrony in Overweight Children

    PubMed Central

    Krafft, Cynthia E.; Pierce, Jordan E.; Schwarz, Nicolette F.; Chi, Lingxi; Weinberger, Abby L.; Schaeffer, David J.; Rodrigue, Amanda L.; Camchong, Jazmin; Allison, Jerry D.; Yanasak, Nathan E.; Liu, Tianming; Davis, Catherine L.; McDowell, Jennifer E.

    2014-01-01

    Children with low aerobic fitness have altered brain function compared to higher-fit children. This study examined the effect of an 8-month exercise intervention on resting state synchrony. Twenty-two sedentary, overweight (body mass index ≥ 85th percentile) children 8–11 years old were randomly assigned to one of two after-school programs: aerobic exercise (n=13) or sedentary attention control (n=9). Before and after the 8-month programs, all subjects participated in resting state functional magnetic resonance imaging scans. Independent components analysis identified several networks, with four chosen for between-group analysis: salience, default mode, cognitive control, and motor networks. The default mode, cognitive control, and motor networks showed more spatial refinement over time in the exercise group compared to controls. The motor network showed increased synchrony in the exercise group with the right medial frontal gyrus compared to controls. Exercise behavior may enhance brain development in children. PMID:24096138

  1. Auditory Stream Segregation and the Perception of Across-Frequency Synchrony

    PubMed Central

    Micheyl, Christophe; Hunter, Cynthia; Oxenham, Andrew J.

    2015-01-01

    This study explored the extent to which sequential auditory grouping affects the perception of temporal synchrony. In Experiment 1, listeners discriminated between 2 pairs of asynchronous “target” tones at different frequencies, A and B, in which the B tone either led or lagged. Thresholds were markedly higher when the target tones were temporally surrounded by “captor tones” at the A frequency than when the captor tones were absent or at a remote frequency. Experiment 2 extended these findings to asynchrony detection, revealing that the perception of synchrony, one of the most potent cues for simultaneous auditory grouping, is not immune to competing effects of sequential grouping. Experiment 3 examined the influence of ear separation on the interactions between sequential and simultaneous grouping cues. The results showed that, although ear separation could facilitate perceptual segregation and impair asynchrony detection, it did not prevent the perceptual integration of simultaneous sounds. PMID:20695716

  2. Approximate emergent synchrony in spatially coupled spiking neurons with discrete interaction.

    PubMed

    Supèr, Hans; Romeo, August

    2014-11-01

    Models for perceptual grouping and contour integration are presented. Connection weights depend on distances and angle differences, while neurons evolve following a spiking dynamics (Izhikevich's model in most of the considered cases). Although the studied synapses depend on discrete three-valued functions, simulations display the emergence of approximate synchrony, making these cognitive tasks possible. Noise effects are examined, and the possibility of achieving similar results with a different neuron model is discussed.

  3. Endocardial versus epicardial electrical synchrony during LV free-wall pacing

    PubMed Central

    Faris, Owen P.; Evans, Frank J.; Dick, Alexander J.; Raman, Venkatesh K.; Ennis, Daniel B.; Kass, David A.; McVeigh, Elliot R.

    2007-01-01

    Cardiac resynchronization therapy has been most typically achieved by biventricular stimulation. However, left ventricular (LV) free-wall pacing appears equally effective in acute and chronic clinical studies. Recent data suggest electrical synchrony measured epicardially is not required to yield effective mechanical synchronization, whereas endocardial mapping data suggest synchrony (fusion with intrinsic conduction) is important. To better understand this disparity, we simultaneously mapped both endocardial and epicardial electrical activation during LV free-wall pacing at varying atrioventricular delays (AV delay 0–150 ms) in six normal dogs with the use of a 64-electrode LV endocardial basket and a 128-electrode epicardial sock. The transition from dyssynchronous LV-paced activation to synchronous RA-paced activation was studied by constructing activation time maps for both endo- and epicardial surfaces as a function of increasing AV delay. The AV delay at the transition from dyssynchronous to synchronous activation was defined as the transition delay (AVt). AVt was variable among experiments, in the range of 44–93 ms on the epicardium and 47–105 ms on the endocardium. Differences in endo- and epicardial AVt were smaller (−17 to +12 ms) and not significant on average (−5.0 ± 5.2 ms). In no instance was the transition to synchrony complete on one surface without substantial concurrent transition on the other surface. We conclude that both epicardial and endocardial synchrony due to fusion of native with ventricular stimulation occur nearly concurrently. Assessment of electrical epicardial delay, as often used clinically during cardiac resynchronization therapy lead placement, should provide adequate assessment of stimulation delay for inner wall layers as well. PMID:12855422

  4. Whole body and muscle energy metabolism in preruminant calves: effects of nutrient synchrony and physical activity.

    PubMed

    van den Borne, Joost J G C; Hocquette, Jean-François; Verstegen, Martin W A; Gerrits, Walter J J

    2007-04-01

    The effects of asynchronous availability of amino acids and glucose on muscle composition and enzyme activities in skeletal muscle were studied in preruminant calves. It was hypothesized that decreased oxidative enzyme activities in muscle would explain a decreased whole body heat production with decreasing nutrient synchrony. Preruminant calves were assigned to one of six degrees of nutrient synchrony, step-wise separating the intake of protein and lactose over the two daily meals. Calves at the most synchronous treatment received two identical meals daily. At the most asynchronous treatment, 85% of the daily protein and 20% of the daily lactose supply were fed in one meal and the remainder in the other meal. Daily intakes of all dietary ingredients were identical for all treatments. Oxidative enzyme activities and fat content increased with decreasing nutrient synchrony in M. Rectus Abdominis (RA), but not in M. Semitendinosus. Cytochrome-c-oxidase activity was positively correlated with fat content in RA (r 0.49; P < 0.01). Oxidative enzyme activities in both muscles were not correlated with average daily heat production, but citrate synthase activity in RA was positively correlated (P < 0.01) with the circadian amplitude (r 0.53) and maximum (r 0.61) of heat production associated with physical activity. In conclusion, this study indicates that muscle energy stores are regulated by nutrient synchrony. The lack of correlation between muscle oxidative enzyme activities and average daily heat production was in contrast with findings in human subjects. Therefore, oxidative enzyme activity in muscle should not be used as an indicator for whole body heat production in growing calves.

  5. Aberrant synchrony in the somatosensory cortices predicts motor performance errors in children with cerebral palsy.

    PubMed

    Kurz, Max J; Heinrichs-Graham, Elizabeth; Arpin, David J; Becker, Katherine M; Wilson, Tony W

    2014-02-01

    Cerebral palsy (CP) results from a perinatal brain injury that often results in sensory impairments and greater errors in motor performance. Although these impairments have been well catalogued, the relationship between sensory processing networks and errors in motor performance has not been well explored. Children with CP and typically developing age-matched controls participated in this investigation. We used high-density magnetoencephalography to measure event-related oscillatory changes in the somatosensory cortices following tactile stimulation to the bottom of the foot. In addition, we quantified the amount of variability or errors in the isometric ankle joint torques as these children attempted to match a target. Our results showed that neural populations in the somatosensory cortices of children with CP were desynchronized by the tactile stimulus, whereas those of typically developing children were clearly synchronized. Such desynchronization suggests that children with CP were unable to fully integrate the external stimulus into ongoing sensorimotor computations. Our results also indicated that children with CP had a greater amount of errors in their motor output when they attempted to match the target force, and this amount of error was negatively correlated with the degree of synchronization present in the somatosensory cortices. These results are the first to show that the motor performance errors of children with CP are linked with neural synchronization within the somatosensory cortices.

  6. Predicting Sibling Relations over Time: Synchrony between Maternal Management Styles and Sibling Relationship Quality.

    ERIC Educational Resources Information Center

    Howe, Nina; Aquan-Assee, Jasmin; Bukowski, William M.

    2001-01-01

    Examined whether maternal behavior at Time 1 would be associated with sibling interaction at Time 2, and whether the quality of sibling interactions would be associated. Found that both mothers and children influenced the quality of sibling relationships over time. (SD)

  7. Role of Myelin Plasticity in Oscillations and Synchrony of Neuronal Activity

    PubMed Central

    Pajevic, S.; Basser, P. J.; Fields, R. D.

    2014-01-01

    Conduction time is typically ignored in computational models of neural network function. Here we consider the effects of conduction delays on the synchrony of neuronal activity and neural oscillators, and evaluate the consequences of allowing conduction velocity (CV) to be regulated adaptively. We propose that CV variation, mediated by myelin, could provide an important mechanism of activity-dependent nervous system plasticity. Even small changes in CV, resulting from small changes in myelin thickness or nodal structure, could have profound effects on neuronal network function in terms of spike-time arrival, oscillation frequency, oscillator coupling, and propagation of brain waves. For example, a conduction delay of 5 ms could change interactions of two coupled oscillators at the upper end of the gamma frequency range (∼100 Hz) from constructive to destructive interference; delays smaller than 1 ms could change the phase by 30°, significantly affecting signal amplitude. Myelin plasticity, as another form of activity-dependent plasticity, is relevant not only to nervous system development but also to complex information processing tasks that involve coupling and synchrony among different brain rhythms. We use coupled oscillator models with time delays to explore the importance of adaptive time delays and adaptive synaptic strengths. The impairment of activity-dependent myelination and the loss of adaptive time delays may contribute to disorders where hyper- and hypo-synchrony of neuronal firing leads to dysfunction (e.g., dyslexia, schizophrenia, epilepsy). PMID:24291730

  8. Environmental forcing shapes regional house mosquito synchrony in a warming temperate island.

    PubMed

    Chaves, Luis Fernando; Higa, Yukiko; Lee, Su Hyun; Jeong, Ji Yeon; Heo, Sang Taek; Kim, Miok; Minakawa, Noboru; Lee, Keun Hwa

    2013-08-01

    Seasonal changes in the abundance of exothermic organisms can be expected with climate change if warmer temperatures can induce changes in their phenology. Given the increased time for ectothermic organism development at lower temperatures, we asked whether population dynamics of the house mosquito, Culex pipiens s.l. (L.) (Diptera: Culicidae), in Jeju-do (South Korea), an island with a gradient of warming temperatures from north to south, showed differences in sensitivity to changes in temperature along the warming gradient. In addition, we asked whether synchrony, that is, the degree of concerted fluctuations in mosquito abundance across locations, was affected by the temperature gradient. We found the association of mosquito abundance with temperature to be delayed by 2 wk in the north when compared with the south. The abundance across all our sampling locations had a flat synchrony profile that could reflect impacts of rainfall and average temperature on the average of all our samples. Finally, our results showed that population synchrony across space can emerge even when abundance is differentially impacted by an exogenous factor across an environmental gradient.

  9. Collective Efficacy in Sports and Physical Activities: Perceived Emotional Synchrony and Shared Flow.

    PubMed

    Zumeta, Larraitz N; Oriol, Xavier; Telletxea, Saioa; Amutio, Alberto; Basabe, Nekane

    2015-01-01

    This cross-sectional study analyzes the relationship between collective efficacy and two psychosocial processes involved in collective sport-physical activities. It argues that in-group identification and fusion with the group will affect collective efficacy (CE). A sample of 276 university students answered different scales regarding their participation in collective physical and sport activities. Multiple-mediation analyses showed that shared flow and perceived emotional synchrony mediate the relationship between in-group identification and CE, whereas the relationship between identity fusion and CE was only mediated by perceived emotional synchrony. Results suggest that both psychosocial processes explain the positive effects of in-group identification and identity fusion with the group in collective efficacy. Specifically, the role of perceived emotional synchrony in explaining the positive effects of participation in collective sport-physical activities is underlined. In sum, this study highlights the utility of collective actions and social identities to explain the psychosocial processes related to collective efficacy in physical and sports activities. Finally, practical implications are discussed.

  10. Rigid patterns of synchrony for equilibria and periodic cycles in network dynamics

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin; Stewart, Ian

    2016-09-01

    We survey general results relating patterns of synchrony to network topology, applying the formalism of coupled cell systems. We also discuss patterns of phase-locking for periodic states, where cells have identical waveforms but regularly spaced phases. We focus on rigid patterns, which are not changed by small perturbations of the differential equation. Symmetry is one mechanism that creates patterns of synchrony and phase-locking. In general networks, there is another: balanced colorings of the cells. A symmetric network may have anomalous patterns of synchrony and phase-locking that are not consequences of symmetry. We introduce basic notions on coupled cell networks and their associated systems of admissible differential equations. Periodic states also possess spatio-temporal symmetries, leading to phase relations; these are classified by the H/K theorem and its analog for general networks. Systematic general methods for computing the stability of synchronous states exist for symmetric networks, but stability in general networks requires methods adapted to special classes of model equations.

  11. Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity.

    PubMed

    Trost, Wiebke; Frühholz, Sascha; Cochrane, Tom; Cojan, Yann; Vuilleumier, Patrik

    2015-12-01

    To study emotional reactions to music, it is important to consider the temporal dynamics of both affective responses and underlying brain activity. Here, we investigated emotions induced by music using functional magnetic resonance imaging (fMRI) with a data-driven approach based on intersubject correlations (ISC). This method allowed us to identify moments in the music that produced similar brain activity (i.e. synchrony) among listeners under relatively natural listening conditions. Continuous ratings of subjective pleasantness and arousal elicited by the music were also obtained for the music outside of the scanner. Our results reveal synchronous activations in left amygdala, left insula and right caudate nucleus that were associated with higher arousal, whereas positive valence ratings correlated with decreases in amygdala and caudate activity. Additional analyses showed that synchronous amygdala responses were driven by energy-related features in the music such as root mean square and dissonance, while synchrony in insula was additionally sensitive to acoustic event density. Intersubject synchrony also occurred in the left nucleus accumbens, a region critically implicated in reward processing. Our study demonstrates the feasibility and usefulness of an approach based on ISC to explore the temporal dynamics of music perception and emotion in naturalistic conditions.

  12. Collective Efficacy in Sports and Physical Activities: Perceived Emotional Synchrony and Shared Flow

    PubMed Central

    Zumeta, Larraitz N.; Oriol, Xavier; Telletxea, Saioa; Amutio, Alberto; Basabe, Nekane

    2016-01-01

    This cross-sectional study analyzes the relationship between collective efficacy and two psychosocial processes involved in collective sport-physical activities. It argues that in-group identification and fusion with the group will affect collective efficacy (CE). A sample of 276 university students answered different scales regarding their participation in collective physical and sport activities. Multiple-mediation analyses showed that shared flow and perceived emotional synchrony mediate the relationship between in-group identification and CE, whereas the relationship between identity fusion and CE was only mediated by perceived emotional synchrony. Results suggest that both psychosocial processes explain the positive effects of in-group identification and identity fusion with the group in collective efficacy. Specifically, the role of perceived emotional synchrony in explaining the positive effects of participation in collective sport-physical activities is underlined. In sum, this study highlights the utility of collective actions and social identities to explain the psychosocial processes related to collective efficacy in physical and sports activities. Finally, practical implications are discussed. PMID:26779077

  13. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments

    PubMed Central

    Leuchter, Andrew F.; Hunter, Aimee M.; Krantz, David E.; Cook, Ian A.

    2015-01-01

    Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD. PMID:25809789

  14. Finding synchrony in the desynchronized EEG: the history and interpretation of gamma rhythms

    PubMed Central

    Ahmed, Omar J.; Cash, Sydney S.

    2013-01-01

    Neocortical gamma (30–80 Hz) rhythms correlate with attention, movement and perception and are often disrupted in neurological and psychiatric disorders. Gamma primarily occurs during alert brain states characterized by the so-called “desynchronized” EEG. Is this because gamma rhythms are devoid of synchrony? In this review we take a historical approach to answering this question. Richard Caton and Adolf Beck were the first to report the rhythmic voltage fluctuations in the animal brain. They were limited by the poor amplification of their early galvanometers. Thus when they presented light or other stimuli, they observed a disappearance of the large resting oscillations. Several groups have since shown that visual stimuli lead to low amplitude gamma rhythms and that groups of neurons in the visual cortices fire together during individual gamma cycles. This synchronous firing can more strongly drive downstream neurons. We discuss how gamma-band synchrony can support ongoing communication between brain regions, and highlight an important fact: there is at least local neuronal synchrony during gamma rhythms. Thus, it is best to refer to the low amplitude, high frequency EEG as an “activated”, not “desynchronized”, EEG. PMID:23964210

  15. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments.

    PubMed

    Leuchter, Andrew F; Hunter, Aimee M; Krantz, David E; Cook, Ian A

    2015-05-01

    Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD.

  16. Body Movement Synchrony in Psychotherapeutic Counseling: A Study Using the Video-Based Quantification Method

    NASA Astrophysics Data System (ADS)

    Nagaoka, Chika; Komori, Masashi

    Body movement synchrony (i. e. rhythmic synchronization between the body movements of interacting partners) has been described by subjective impressions of skilled counselors and has been considered to reflect the depth of the client-counselor relationship. This study analyzed temporal changes in body movement synchrony through a video analysis of client-counselor dialogues in counseling sessions. Four 50-minute psychotherapeutic counseling sessions were analyzed, including two negatively evaluated sessions (low evaluation groups) and two positively evaluated sessions (high evaluation groups). In addition, two 50-minute ordinary advice sessions between two high school teachers and the clients in the high rating group were analyzed. All sessions represent role-playing. The intensity of the participants' body movement was measured using a video-based system. Temporal change of body movement synchrony was analyzed using moving correlations of the intensity between the two time series. The results revealed (1) A consistent temporal pattern among the four counseling cases, though the moving correlation coefficients were higher for the high evaluation group than the low evaluation group and (2) Different temporal patterns for the counseling and advice sessions even when the clients were the same. These results were discussed from the perspective of the quality of client-counselor relationship.

  17. Regional-scale climate-variability synchrony of cholera epidemics in West Africa

    PubMed Central

    Constantin de Magny, Guillaume; Guégan, Jean-François; Petit, Michel; Cazelles, Bernard

    2007-01-01

    Background The relationship between cholera and climate was explored in Africa, the continent with the most reported cases, by analyzing monthly 20-year cholera time series for five coastal adjoining West African countries: Côte d'Ivoire, Ghana, Togo, Benin and Nigeria. Methods We used wavelet analyses and derived methods because these are useful mathematical tools to provide information on the evolution of the periodic component over time and allow quantification of non-stationary associations between time series. Results The temporal variability of cholera incidence exhibits an interannual component, and a significant synchrony in cholera epidemics is highlighted at the end of the 1980's. This observed synchrony across countries, even if transient through time, is also coherent with both the local variability of rainfall and the global climate variability quantified by the Indian Oscillation Index. Conclusion Results of this study suggest that large and regional scale climate variability influence both the temporal dynamics and the spatial synchrony of cholera epidemics in human populations in the Gulf of Guinea, as has been described for two other tropical regions of the world, western South America and Bangladesh. PMID:17371602

  18. Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity.

    PubMed

    Trost, Wiebke; Frühholz, Sascha; Cochrane, Tom; Cojan, Yann; Vuilleumier, Patrik

    2015-12-01

    To study emotional reactions to music, it is important to consider the temporal dynamics of both affective responses and underlying brain activity. Here, we investigated emotions induced by music using functional magnetic resonance imaging (fMRI) with a data-driven approach based on intersubject correlations (ISC). This method allowed us to identify moments in the music that produced similar brain activity (i.e. synchrony) among listeners under relatively natural listening conditions. Continuous ratings of subjective pleasantness and arousal elicited by the music were also obtained for the music outside of the scanner. Our results reveal synchronous activations in left amygdala, left insula and right caudate nucleus that were associated with higher arousal, whereas positive valence ratings correlated with decreases in amygdala and caudate activity. Additional analyses showed that synchronous amygdala responses were driven by energy-related features in the music such as root mean square and dissonance, while synchrony in insula was additionally sensitive to acoustic event density. Intersubject synchrony also occurred in the left nucleus accumbens, a region critically implicated in reward processing. Our study demonstrates the feasibility and usefulness of an approach based on ISC to explore the temporal dynamics of music perception and emotion in naturalistic conditions. PMID:25994970

  19. Neural synchrony indexes impaired motor slowing after errors and novelty following white matter damage.

    PubMed

    Wessel, Jan R; Ullsperger, Markus; Obrig, Hellmuth; Villringer, Arno; Quinque, Eva; Schroeter, Matthias L; Bretschneider, Katharina J; Arelin, Katrin; Roggenhofer, Elisabeth; Frisch, Stefan; Klein, Tilmann A

    2016-02-01

    In humans, action errors and perceptual novelty elicit activity in a shared frontostriatal brain network, allowing them to adapt their ongoing behavior to such unexpected action outcomes. Healthy and pathologic aging reduces the integrity of white matter pathways that connect individual hubs of such networks and can impair the associated cognitive functions. Here, we investigated whether structural disconnection within this network because of small-vessel disease impairs the neural processes that subserve motor slowing after errors and novelty (post-error slowing, PES; post-novel slowing, PNS). Participants with intact frontostriatal circuitry showed increased right-lateralized beta-band (12-24 Hz) synchrony between frontocentral and frontolateral electrode sites in the electroencephalogram after errors and novelty, indexing increased neural communication. Importantly, this synchrony correlated with PES and PNS across participants. Furthermore, such synchrony was reduced in participants with frontostriatal white matter damage, in line with reduced PES and PNS. The results demonstrate that behavioral change after errors and novelty result from coordinated neural activity across a frontostriatal brain network and that such cognitive control is impaired by reduced white matter integrity.

  20. Computational study of synchrony in fields and microclusters of ephaptically coupled neurons

    PubMed Central

    Hilbert, Lennart; Quail, Thomas

    2015-01-01

    Neuronal hypersynchrony is implicated in epilepsy and other diseases. The low-frequency, spatially averaged electric fields from many thousands of neurons have been shown to promote synchrony. It remains unclear whether highly transient, spatially localized electric fields from single action potentials (ephaptic coupling) significantly affect spike timing of neighboring cells and in consequence, population synchrony. In this study, we simulated the extracellular potentials and the resulting coupling between neurons in the NEURON environment and generalized their connection rules to create an oscillator network model of a sheet of ephaptically coupled neurons. With the use of both models, we explained several aspects of epileptiform behavior not previously modeled by synaptically coupled networks. Importantly, reduction of neuron spacing induced synchronization via single-spike ephaptic coupling, agreeing with seizure suppression seen clinically and in vitro via extracellular volume adjustment. Further reduction of neuron spacing yielded locally synchronized clusters, providing a mechanism for recent in vitro observations of localized neuronal synchrony in the absence of synaptic and gap-junction coupling. PMID:25673735

  1. Male Reproductive System

    MedlinePlus

    ... gamete, the egg or ovum , meet in the female's reproductive system to create a new individual. Both the male and female reproductive systems are essential for reproduction. Humans, like other organisms, ...

  2. Male Reproductive System

    MedlinePlus

    ... gamete, the egg or ovum, meet in the female's reproductive system to create a baby. Both the male and female reproductive systems are essential for reproduction. Humans pass certain characteristics ...

  3. Normal Female Reproductive Anatomy

    MedlinePlus

    ... hyphen, e.g. -historical Searches are case-insensitive Reproductive System, Female, Anatomy Add to My Pictures View /Download : Small: ... Reproductive System, Female, Anatomy Description: Anatomy of the female reproductive system; drawing shows the uterus, myometrium (muscular outer layer ...

  4. Female Reproductive System

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Female Reproductive System KidsHealth > For Parents > Female Reproductive System Print A ... the egg or sperm. continue Components of the Female Reproductive System Unlike the male, the human female has a ...

  5. Reproduction, physiology and biochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  6. No Evidence for Threat-Induced Spatial Prioritization of Somatosensory Stimulation during Pain Control Using a Synchrony Judgment Paradigm

    PubMed Central

    Van Damme, Stefaan

    2016-01-01

    Topical research efforts on attention to pain often take a critical look at the modulatory role of top-down factors. For instance, it has been shown that the fearful expectation of pain at a location of the body directs attention towards that body part. In addition, motivated attempts to control this pain were found to modulate this prioritization effect. Such studies have often used a temporal order judgment task, requiring participants to judge the order in which two stimuli are presented by indicating which one they perceived first. As this constitutes a forced-choice response format, such studies may be subject to response bias. The aim of the current study was to address this concern. We used a ternary synchrony judgment paradigm, in which participants judged the order in which two somatosensory stimuli occurred. Critically, participants now also had the option to give a ‘simultaneous’ response when they did not perceive a difference. This way we eliminated the need for guessing, and thus reduced the risk of response bias. One location was threatened with the possibility of pain in half of the trials, as predicted by an auditory cue. Additionally, half of the participants (pain control group) were encouraged to avoid pain stimuli by executing a quick button press. The other half (comparison group) performed a similar action, albeit unrelated to the occurrence of pain. Our data did not support threat-induced spatial prioritization, nor did we find evidence that pain control attempts influenced attention in any way. PMID:27270456

  7. Reproductive toxicity of binary and ternary mixture combinations of nickel, zinc, and lead to Ceriodaphnia dubia is best predicted with the independent action model.

    PubMed

    Nys, Charlotte; Janssen, Colin R; Blust, Ronny; Smolders, Erik; De Schamphelaere, Karel A C

    2016-07-01

    Metals occur as mixtures in the environment. Risk assessment procedures for metals currently lack a framework to incorporate chronic metal mixture toxicity. In the present study, the toxicity of binary and ternary mixture combinations of Ni, Zn, and Pb was investigated in 3 large-scale experiments using the standard chronic (7-d) Ceriodaphnia dubia reproductive toxicity test. These metals were selected because of anticipated differences in mode of action. The toxicity of the metals in most mixtures, expressed as either free metal ion activities or as dissolved metal concentrations, were antagonistic relative to the concentration addition model, whereas no significant (p < 0.05) interactive effects were observed relative to the independent action model. The only exception was the binary Pb-Zn mixture, for which mixture effects were noninteractive based on the dissolved concentrations, but antagonistic based on free ion activities all relative to the independent action model. Overall, the independent action model fitted the observed toxicity better than the concentration addition model, which is consistent with the different modes of action of these metals. The concentration addition model mostly overestimated toxicity. Finally, the present study warns against extrapolation of the type of interactive effects between species, even when they are closely related. Environ Toxicol Chem 2016;35:1796-1805. © 2015 SETAC. PMID:26648335

  8. Use of single nucleotide polymorphisms in candidate genes associated with daughter pregnancy rate for prediction of genetic merit for reproduction in Holstein cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated 69 SNPs in genes previously related to fertility and production traits for relationship to daughter pregnancy rate (DPR), cow conception rate (CCR) and heifer conception rate (HCR) in a separate population of Holstein cows grouped according to their predicted transmitting ability for DP...

  9. Spatial and temporal variation of seasonal synchrony in the deep-sea shrimp Aristeus antennatus in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Hidalgo, Manuel; Rueda, Lucía; Molinero, Juan Carlos; Guijarro, Beatriz; Massutí, Enric

    2015-08-01

    Resolving drivers of spatial synchrony in marine species is fundamental for the management and conservation of deep-sea ecosystems. Here we examine an 11-year data set of monthly catches per unit of effort (CPUE) of the red-shrimp Aristeus antennatus. These data comprise 16 locations of two population subunits in the Western Mediterranean, the Catalan coast and the Balearic archipelago. The analysis of their seasonal covariation and its space-time structure showed small-scale geographical segregation of locations linked with the seasonal fluctuations of CPUE. Results further revealed that seasonal synchrony dominates at short spatial scales (ca. 50 km), while asynchrony prevails are broader spatial scales (ca. 200-300 km). This spatial pattern, however, varied over the period examined, although it was specific for each population subunit suggesting contrasting drivers of seasonal synchrony. The Balearic Islands, a patchier population subunit, displayed a seasonal synchrony pattern mainly dependent on biological and oceanographic processes at local scales. By contrast, in the Catalan coast, the pattern appeared related with regional-scale climate, which triggers spatial differences in the phenology of primary producers and the timing of food advection to the seabed. These cascading processes depicted by our investigation shed light on underlying mechanisms shaping the temporal synchrony of broadly distributed deep-sea populations.

  10. Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task.

    PubMed

    Tallon-Baudry, Catherine; Mandon, Sunita; Freiwald, Winrich A; Kreiter, Andreas K

    2004-07-01

    Oscillatory synchrony has been proposed to dynamically coordinate distributed neural ensembles, but whether this mechanism is effectively used in neural processing remains controversial. We trained two monkeys to perform a delayed matching-to-sample task using new visual shapes at each trial. Measures of population-activity patterns (cortical field potentials) were obtained from a chronically implanted array of electrodes placed over area V4 and posterior infero-temporal cortex. In correct trials, oscillatory phase synchrony in the beta range (15-20 Hz) was observed between two focal sites in the inferior temporal cortex while holding the sample in short-term memory. Error trials were characterized by an absence of oscillatory synchrony during memory maintenance. Errors did not seem to be due to an impaired stimulus encoding, since various parameters of neural activity in sensory area V4 did not differ in correct and incorrect trials during sample presentation. Our findings suggest that the successful performance of a visual short-term memory task depends on the strength of oscillatory synchrony during the maintenance of the object in short-term memory. The strength of oscillatory synchrony thus seems to be a relevant parameter of the neural population dynamics that matches behavioral performance.

  11. Advantages of using aquatic animals for biomedical research on reproductive toxicology.

    PubMed Central

    Mottet, N K; Landolt, M L

    1987-01-01

    Major advantages of the use of aquatic animals, such as trout, English sole, or sea urchins, for studying the mechanisms of reproductive toxicology are discussed. The remarkable synchrony of differentiation of gametes in large quantities for detailed morphologic and biochemical measurements enables research not readily done on mammalian nonseasonal breeders. Structural differences such as the absence of a fibrous sheath in the more simple structure of fish and sea urchin sperm flagella facilitates comparative study of the mechanism of action of microtubules in flagella movement and the coupling of mitochondrial energy production to microtubules movement. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 6. FIGURE 7. PMID:3297666

  12. Advantages of using aquatic animals for biomedical research on reproductive toxicology

    SciTech Connect

    Mottet, N.K.; Landolt, M.L.

    1987-04-01

    Major advantages of the use of aquatic animals, such as trout, English sole, or sea urchins, for studying the mechanisms of reproductive toxicology are discussed. The remarkable synchrony of differentiation of gametes in large quantities for detailed morphologic and biochemical measurements enables research not readily done on mammalian nonseasonal breeders. Structural differences such as the absence of a fibrous sheath in the more simple structure of fish and sea urchin sperm flagella facilitates comparative study of the mechanism of action of microtubules in flagella movement and the coupling of mitochondrial energy production to microtubules movement.

  13. Gamma synchrony: towards a translational biomarker for the treatment resistant symptoms of schizophrenia

    PubMed Central

    Gandal, Michael J.; Edgar, J. Christopher; Klook, Kerstin; Siegel, Steven J.

    2011-01-01

    The lack of efficacy for antipsychotics with respect to negative symptoms and cognitive deficits is a significant obstacle for the treatment of schizophrenia. Developing new drugs to target these symptoms requires appropriate neural biomarkers that can be investigated in model organisms, be used to track treatment response, and provide insight into pathophysiological disease mechanisms. A growing body of evidence indicates that neural oscillations in the gamma frequency range (30–80 Hz) are disturbed in schizophrenia. Gamma synchrony has been shown to mediate a host of sensory and cognitive functions, including perceptual encoding, selective attention, salience, and working memory – neurocognitive processes that are dysfunctional in schizophrenia and largely refractory to treatment. This review summarizes the current state of clinical literature with respect to gamma band responses (GBRs) in schizophrenia, focusing on resting and auditory paradigms. Next, preclinical studies of schizophrenia that have investigated gamma band activity are reviewed to gain insight into neural mechanisms associated with these deficits. We conclude that abnormalities in gamma synchrony are ubiquitous in schizophrenia and likely reflect an elevation in baseline cortical gamma synchrony (‘noise’) coupled with reduced stimulus-evoked GBRs (‘signal’). Such a model likely reflects hippocampal and cortical dysfunction, as well as reduced glutamatergic signaling with downstream GABAergic deficits, but is probably less influenced by dopaminergic abnormalities implicated in schizophrenia. Finally, we propose that analogous signal-to-noise deficits in the flow of cortical information in preclinical models are useful targets for the development of new drugs that target the treatment-resistant symptoms of schizophrenia. PMID:21349276

  14. Timing of Neuropeptide Coupling Determines Synchrony and Entrainment in the Mammalian Circadian Clock

    PubMed Central

    Ananthasubramaniam, Bharath; Herzog, Erik D.; Herzel, Hanspeter

    2014-01-01

    Robust synchronization is a critical feature of several systems including the mammalian circadian clock. The master circadian clock in mammals consists of about 20000 ‘sloppy’ neuronal oscillators within the hypothalamus that keep robust time by synchronization driven by inter-neuronal coupling. The complete understanding of this synchronization in the mammalian circadian clock and the mechanisms underlying it remain an open question. Experiments and computational studies have shown that coupling individual oscillators can achieve robust synchrony, despite heterogeneity and different network topologies. But, much less is known regarding the mechanisms and circuits involved in achieving this coupling, due to both system complexity and experimental limitations. Here, we computationally study the coupling mediated by the primary coupling neuropeptide, vasoactive intestinal peptide (VIP) and its canonical receptor, VPAC2R, using the transcriptional elements and generic mode of VIP-VPAC2R signaling. We find that synchrony is only possible if VIP (an inducer of Per expression) is released in-phase with activators of Per expression. Moreover, anti-phasic VIP release suppresses coherent rhythms by moving the network into a desynchronous state. Importantly, experimentally observed rhythms in VPAC2R have little effect on network synchronization, but can improve the amplitude of the SCN network rhythms while narrowing the network entrainment range. We further show that these findings are valid across several computational network models. Thus, we identified a general design principle to achieve robust synchronization: An activating coupling agent, such as VIP, must act in-phase with the activity of core-clock promoters. More generally, the phase of coupling is as critical as the strength of coupling from the viewpoint of synchrony and entrainment. PMID:24743470

  15. Left Ventricular Synchrony and Function in Pediatric Patients with Definitive Pacemakers

    PubMed Central

    Ortega, Michel Cabrera; Morejón, Adel Eladio Gonzales; Ricardo, Giselle Serrano

    2013-01-01

    Background Chronic right ventricular pacing (RVP) induces a dyssynchronous contraction pattern, producing interventricular and intraventricular asynchrony. Many studies have shown the relationship of RVP with impaired left ventricular (LV) form and function. Objective The aim of this study was to evaluate LV synchrony and function in pediatric patients receiving RVP in comparison with those receiving LV pacing (LVP). Methods LV systolic and diastolic function and synchrony were evaluated in 80 pediatric patients with either nonsurgical or postsurgical complete atrioventricular block, with pacing from either the RV endocardium (n = 40) or the LV epicardium (n = 40). Echocardiographic data obtained before pacemaker implantation, immediately after it, and at the end of a mean follow-up of 6.8 years were analyzed. Results LV diastolic function did not change in any patient during follow-up. LV systolic function was preserved in patients with LVP. However, in children with RVP the shortening fraction and ejection fraction decreased from medians of 41% ± 2.6% and 70% ± 6.9% before implantation to 32% ± 4.2% and 64% ± 2.5% (p < 0.0001 and p < 0.0001), respectively, at final follow-up. Interventricular mechanical delay was significantly larger with RVP (66 ± 13 ms) than with LVP (20 ± 8 ms). Similarly, the following parameters were significantly different in the two groups: LV mechanical delay (RVP: 69 ± 6 ms, LVP: 30 ± 11 ms, p < 0.0001); septal to lateral wall motion delay (RVP: 75 ± 19 ms, LVP: 42 ± 10 ms, p < 0.0001); and, septal to posterior wall motion delay (RVP: 127 ± 33 ms, LVP: 58 ± 17 ms, p < 0.0001). Conclusion Compared with RV endocardium, LV epicardium is an optimal site for pacing to preserve cardiac synchrony and function. PMID:24061683

  16. The Association of Therapist Empathy and Synchrony in Vocally Encoded Arousal

    PubMed Central

    Imel, Zac E.; Barco, Jacqueline S.; Brown, Halley J.; Baucom, Brian R.; Kircher, John C.; Baer, John S.; Atkins, David C.

    2014-01-01

    Empathy is a critical ingredient in motivational interviewing (MI) and in psychotherapy generally. It is typically defined as the ability to experience and understand the feelings of another. Basic science indicates that empathy is related to the development of synchrony in dyads. However, in clinical research, empathy has proved difficult to operationalize and measure, and has mostly relied on the felt sense of observers, clients, or therapists. We extracted estimates of therapist and standardized patient (SP) vocally encoded arousal (mean fundamental frequency; mean f0) in 89 MI sessions with high and low empathy ratings from independent observers. We hypothesized (a) therapist and SP mean f0 would be correlated and (b) the correlation of therapist and SP mean f0 would be greater in sessions with high empathy as compared with low. On the basis of a multivariate mixed model, the correlation between therapist and SP mean f0 was large (r = .71) and close to 0 in randomly assigned therapist–SP dyads (r = −.08). The association was higher in sessions with high empathy ratings (r = .80) than in sessions with low ratings (r = .36). There was strong evidence for vocal synchrony in clinical dyads as well as for the association of synchrony with empathy ratings, illustrating the relevance of basic psychological processes to clinical interactions. These findings provide initial evidence for an objective and nonobtrusive method for assessing therapist performance. Novel indicators of therapist empathy may have implications for the study of MI process as well as the training of therapists generally. PMID:24274679

  17. Modulation of Purkinje cell complex spike waveform by synchrony levels in the olivocerebellar system

    PubMed Central

    Lang, Eric J.; Tang, Tianyu; Suh, Colleen Y.; Xiao, Jianqiang; Kotsurovskyy, Yuriy; Blenkinsop, Timothy A.; Marshall, Sarah P.; Sugihara, Izumi

    2014-01-01

    Purkinje cells (PCs) generate complex spikes (CSs) when activated by the olivocerebellar system. Unlike most spikes, the CS waveform is highly variable, with the number, amplitude, and timing of the spikelets that comprise it varying with each occurrence. This variability suggests that CS waveform could be an important control parameter of olivocerebellar activity. The origin of this variation is not well known. Thus, we obtained extracellular recordings of CSs to investigate the possibility that the electrical coupling state of the inferior olive (IO) affects the CS waveform. Using multielectrode recordings from arrays of PCs we showed that the variance in the recording signal during the period when the spikelets occur is correlated with CS synchrony levels in local groups of PCs. The correlation was demonstrated under both ketamine and urethane, indicating that it is robust. Moreover, climbing fiber reflex evoked CSs showed an analogous positive correlation between spikelet-related variance and the number of cells that responded to a stimulus. Intra-IO injections of GABA-A receptor antagonists or the gap junction blocker carbenoxolone produced correlated changes in the variance and synchrony levels, indicating the presence of a causal relationship. Control experiments showed that changes in variance with synchrony were primarily due to changes in the CS waveform, as opposed to changes in the strength of field potentials from surrounding cells. Direct counts of spikelets showed that their number increased with synchronization of CS activity. In sum, these results provide evidence of a causal link between two of the distinguishing characteristics of the olivocerebellar system, its ability to generate synchronous activity and the waveform of the CS. PMID:25400556

  18. Functional Contributions of Strong and Weak Cellular Oscillators to Synchrony and Light-shifted Phase Dynamics.

    PubMed

    Roberts, Logan; Leise, Tanya L; Welsh, David K; Holmes, Todd C

    2016-08-01

    Light is the primary signal that calibrates circadian neural circuits and thus coordinates daily physiological and behavioral rhythms with solar entrainment cues. Drosophila and mammalian circadian circuits consist of diverse populations of cellular oscillators that exhibit a wide range of dynamic light responses, periods, phases, and degrees of synchrony. How heterogeneous circadian circuits can generate robust physiological rhythms while remaining flexible enough to respond to synchronizing stimuli has long remained enigmatic. Cryptochrome is a short-wavelength photoreceptor that is endogenously expressed in approximately half of Drosophila circadian neurons. In a previous study, physiological light response was measured using real-time bioluminescence recordings in Drosophila whole-brain explants, which remain intrinsically light-sensitive. Here we apply analysis of real-time bioluminescence experimental data to show detailed dynamic ensemble representations of whole circadian circuit light entrainment at single neuron resolution. Organotypic whole-brain explants were either maintained in constant darkness (DD) for 6 days or exposed to a phase-advancing light pulse on the second day. We find that stronger circadian oscillators support robust overall circuit rhythmicity in DD, whereas weaker oscillators can be pushed toward transient desynchrony and damped amplitude to facilitate a new state of phase-shifted network synchrony. Additionally, we use mathematical modeling to examine how a network composed of distinct oscillator types can give rise to complex dynamic signatures in DD conditions and in response to simulated light pulses. Simulations suggest that complementary coupling mechanisms and a combination of strong and weak oscillators may enable a robust yet flexible circadian network that promotes both synchrony and entrainment. A more complete understanding of how the properties of oscillators and their signaling mechanisms facilitate their distinct roles

  19. Synchrony due to parametric averaging in neurons coupled by a shared signal

    NASA Astrophysics Data System (ADS)

    Khadra, Anmar

    2009-04-01

    Gonadotropin-releasing hormone (GnRH) is a decapeptide secreted by GnRH neurons located in the hypothalamus. It is responsible for the onset of puberty and the regulation of hormone release from the pituitary. There is a strong evidence suggesting that GnRH exerts an autocrine regulation on its own release via three types of G-proteins [L.Z. Krsmanovic, N. Mores, C.E. Navarro, K.K. Arora, K.J. Catt, An agonist-induced switch in G protein coupling of the gonadotropin-releasing hormone receptor regulates pulsatile neuropeptide secretion, Proc. Natl. Acad. Sci. 100 (2003) 2969-2974]. A mathematical model based on this proposed mechanism has been developed and extended to explain the synchrony observed in GnRH neurons by incorporating the idea of a common pool of GnRH [A. Khadra, Y.X. Li, A model for the pulsatile secretion of gonadotropin-releasing hormone from synchronized hypothalamic neurons, Biophys. J. 91 (2006) 74-83]. This type of coupling led to a very robust synchrony between these neurons. We aim in this paper to reduce the one cell model to a two-variable model using quasi-steady state (QSS) analysis, to further examine its dynamics analytically and geometrically. The concept of synchrony of a heterogeneous population will be clearly defined and established for certain cases, while, for the general case, two different types of phases are introduced to gain more insight on how the model behaves. Bifurcation diagrams for certain parameters in the one cell model are also shown to explain some of the phenomena observed in a coupled population. A comparison between the population model and an averaged two-variable model is also conducted.

  20. Altered Gene Synchrony Suggests a Combined Hormone-Mediated Dysregulated State in Major Depression

    PubMed Central

    Gaiteri, Chris; Guilloux, Jean-Philippe; Lewis, David A.; Sibille, Etienne

    2010-01-01

    Coordinated gene transcript levels across tissues (denoted “gene synchrony”) reflect converging influences of genetic, biochemical and environmental factors; hence they are informative of the biological state of an individual. So could brain gene synchrony also integrate the multiple factors engaged in neuropsychiatric disorders and reveal underlying pathologies? Using bootstrapped Pearson correlation for transcript levels for the same genes across distinct brain areas, we report robust gene transcript synchrony between the amygdala and cingulate cortex in the human postmortem brain of normal control subjects (n = 14; Control/Permutated data, p<0.000001). Coordinated expression was confirmed across distinct prefrontal cortex areas in a separate cohort (n = 19 subjects) and affected different gene sets, potentially reflecting regional network- and function-dependent transcriptional programs. Genewise regional transcript coordination was independent of age-related changes and array technical parameters. Robust shifts in amygdala-cingulate gene synchrony were observed in subjects with major depressive disorder (MDD, denoted here “depression”) (n = 14; MDD/Permutated data, p<0.000001), significantly affecting between 100 and 250 individual genes (10–30% false discovery rate). Biological networks and signal transduction pathways corresponding to the identified gene set suggested putative dysregulated functions for several hormone-type factors previously implicated in depression (insulin, interleukin-1, thyroid hormone, estradiol and glucocorticoids; p<0.01 for association with depression-related networks). In summary, we showed that coordinated gene expression across brain areas may represent a novel molecular probe for brain structure/function that is sensitive to disease condition, suggesting the presence of a distinct and integrated hormone-mediated corticolimbic homeostatic, although maladaptive and pathological, state in major depression. PMID

  1. Reproductive skew in the polygynandrous acorn woodpecker.

    PubMed

    Haydock, Joseph; Koenig, Walter D

    2002-05-14

    Reproductive skew models, which focus on the degree to which reproduction is shared equally (low skew) or monopolized by a single individual (high skew) within groups, have been heralded as providing a general unifying framework for understanding the factors determining social evolution. Here, we test the ability of optimal skew, or "transactional," models, which predict the level of skew necessary to promote stable associations of dominants and subordinates, rather than independent breeding, to predict reproductive partitioning in the acorn woodpecker (Melanerpes formicivorus). This species provides a key test case because only a few vertebrates exhibit polygynandry (multiple breeders of both sexes within a group). Contrary to the predictions of the models, joint-nesting females share reproduction more equitably than expected, apparently because egg destruction and the inability of females to defend their eggs from cobreeders eliminate any possibility for one female to control reproduction. For males, however, reproductive skew is high, with the most successful male siring over three times as many young as the next most successful male. Although this result is consistent with optimal skew models, other aspects of male behavior are not; in particular, the reproductively most successful male frequently switches between nests produced by the same set of cobreeders, and we were unable to detect any phenotypic correlate of success. These results are consistent with an alternative null model in which cobreeder males have equal chance of paternity, but paternity of offspring within broods is nonindependent as a consequence of female, rather than male, control.

  2. Synchrony and exertion during dance independently raise pain threshold and encourage social bonding.

    PubMed

    Tarr, Bronwyn; Launay, Jacques; Cohen, Emma; Dunbar, Robin

    2015-10-01

    Group dancing is a ubiquitous human activity that involves exertive synchronized movement to music. It is hypothesized to play a role in social bonding, potentially via the release of endorphins, which are analgesic and reward-inducing, and have been implicated in primate social bonding. We used a 2 × 2 experimental design to examine effects of exertion and synchrony on bonding. Both demonstrated significant independent positive effects on pain threshold (a proxy for endorphin activation) and in-group bonding. This suggests that dance which involves both exertive and synchronized movement may be an effective group bonding activity. PMID:26510676

  3. Isochronal synchrony and bidirectional communication with delay-coupled nonlinear oscillators.

    PubMed

    Zhou, Brian B; Roy, Rajarshi

    2007-02-01

    We propose a basic mechanism for isochronal synchrony and communication with mutually delay-coupled chaotic systems. We show that two Ikeda ring oscillators, mutually coupled with a propagation delay, synchronize isochronally when both are symmetrically driven by a third Ikeda oscillator. This synchronous operation, unstable in the two delay-coupled oscillators alone, facilitates simultaneous, bidirectional communication of messages with chaotic carrier wave forms. This approach to combine both bidirectional and unidirectional coupling represents an application of generalized synchronization using a mediating drive signal for a spatially distributed and internally synchronized multicomponent system.

  4. Synchrony and exertion during dance independently raise pain threshold and encourage social bonding

    PubMed Central

    Tarr, Bronwyn; Launay, Jacques; Cohen, Emma; Dunbar, Robin

    2015-01-01

    Group dancing is a ubiquitous human activity that involves exertive synchronized movement to music. It is hypothesized to play a role in social bonding, potentially via the release of endorphins, which are analgesic and reward-inducing, and have been implicated in primate social bonding. We used a 2 × 2 experimental design to examine effects of exertion and synchrony on bonding. Both demonstrated significant independent positive effects on pain threshold (a proxy for endorphin activation) and in-group bonding. This suggests that dance which involves both exertive and synchronized movement may be an effective group bonding activity. PMID:26510676

  5. Judged and Remembered Trustworthiness of Faces Is Enhanced by Experiencing Multisensory Synchrony and Asynchrony in the Right Order.

    PubMed

    Toscano, Hugo; Schubert, Thomas W

    2015-01-01

    This work builds on the enfacement effect. This effect occurs when experiencing a rhythmic stimulation on one's cheek while seeing someone else's face being touched in a synchronous way. This typically leads to cognitive and social-cognitive effects similar to self-other merging. In two studies, we demonstrate that this multisensory stimulation can change the evaluation of the other's face. In the first study, participants judged the stranger's face and similar faces as being more trustworthy after synchrony, but not after asynchrony. Synchrony interacted with the order of the stroking; hence trustworthiness only changed when the synchronous stimulation occurred before the asynchronous one. In the second study, a synchronous stimulation caused participants to remember the stranger's face as more trustworthy, but again only when the synchronous stimulation came before the asynchronous one. The results of both studies show that order of stroking creates a context in which multisensory synchrony can affect the trustworthiness of faces.

  6. Synchrony of Cardiomyocyte Ca2+ Release is Controlled by t-tubule Organization, SR Ca2+ Content, and Ryanodine Receptor Ca2+ Sensitivity

    PubMed Central

    Øyehaug, Leiv; Loose, Kristian Ø.; Jølle, Guro F.; Røe, Åsmund T.; Sjaastad, Ivar; Christensen, Geir; Sejersted, Ole M.; Louch, William E.

    2013-01-01

    Recent work has demonstrated that cardiomyocyte Ca2+release is desynchronized in several pathological conditions. Loss of Ca2+ release synchrony has been attributed to t-tubule disruption, but it is unknown if other factors also contribute. We investigated this issue in normal and failing myocytes by integrating experimental data with a mathematical model describing spatiotemporal dynamics of Ca2+ in the cytosol and sarcoplasmic reticulum (SR). Heart failure development in postinfarction mice was associated with progressive t-tubule disorganization, as quantified by fast-Fourier transforms. Data from fast-Fourier transforms were then incorporated in the model as a dyadic organization index, reflecting the proportion of ryanodine receptors located in dyads. With decreasing dyadic-organization index, the model predicted greater dyssynchrony of Ca2+ release, which exceeded that observed in experimental line-scan images. Model and experiment were reconciled by reducing the threshold for Ca2+ release in the model, suggesting that increased RyR sensitivity partially offsets the desynchronizing effects of t-tubule disruption in heart failure. Reducing the magnitude of SR Ca2+ content and release, whether experimentally by thapsigargin treatment, or in the model, desynchronized the Ca2+ transient. However, in cardiomyocytes isolated from SERCA2 knockout mice, RyR sensitization offset such effects. A similar interplay between RyR sensitivity and SR content was observed during treatment of myocytes with low-dose caffeine. Initial synchronization of Ca2+ release during caffeine was reversed as SR content declined due to enhanced RyR leak. Thus, synchrony of cardiomyocyte Ca2+ release is not only determined by t-tubule organization but also by the interplay between RyR sensitivity and SR Ca2+ content. PMID:23601316

  7. Use of a statistical model to predict the potential for repeated dose and developmental toxicity of dermally administered crude oil and relation to reproductive toxicity.

    PubMed

    McKee, Richard H; Nicolich, Mark; Roy, Timothy; White, Russell; Daughtrey, Wayne C

    2014-01-01

    Petroleum (commonly called crude oil) is a complex substance primarily composed of hydrocarbon constituents. Based on the results of previous toxicological studies as well as occupational experience, the principal acute toxicological hazards are those associated with exposure by inhalation to volatile hydrocarbon constituents and hydrogen sulfide, and chronic hazards are associated with inhalation exposure to benzene and dermal exposure to polycyclic aromatic compounds. The current assessment was an attempt to characterize the potential for repeated dose and/or developmental effects of crude oils following dermal exposures and to generalize the conclusions across a broad range of crude oils from different sources. Statistical models were used to predict the potential for repeated dose and developmental toxicity from compositional information. The model predictions indicated that the empirical data from previously tested crude oils approximated a "worst case" situation, and that the data from previously tested crude oils could be used as a reasonable basis for characterizing the repeated dose and developmental toxicological hazards of crude oils in general.

  8. [Sexual reproduction in animals].

    PubMed

    Jordana, R; Herrea, L

    1974-01-01

    Both asexual and sexual reproduction are described, with most attention given the latter, and all basic aspects of reproduction are discussed including gender, gametogenesis, genes and chromosomes, fecundation, and hormonal control. Female and male reproductive hormones and their modes of operation are given special attention. Innate reproductive and sexual behavior in various species is detailed and a discussion of the role of sexual attraction in human and animal reproduction is included. Contraception and abortion are described as human efforts to separate sexuality and reproduction unique in the biological world.

  9. What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration.

    PubMed

    Hopfield, J J; Brody, C D

    2001-01-30

    A previous paper described a network of simple integrate-and-fire neurons that contained output neurons selective for specific spatiotemporal patterns of inputs; only experimental results were described. We now present the principles behind the operation of this network and discuss how these principles point to a general class of computational operations that can be carried out easily and naturally by networks of spiking neurons. Transient synchrony of the action potentials of a group of neurons is used to signal "recognition" of a space-time pattern across the inputs of those neurons. Appropriate synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, leaving the neurons unsynchronized or only weakly synchronized for other input circumstances. When the input to this system comes from timed past events represented by decaying delay activity, the pattern of synaptic connections can be set such that synchronization occurs only for selected spatiotemporal patterns. We show how the recognition is invariant to uniform time warp and uniform intensity change of the input events. The fundamental recognition event is a transient collective synchronization, representing "many neurons now agree," an event that is then detected easily by a cell with a small time constant. If such synchronization is used in neurobiological computation, its hallmark will be a brief burst of gamma-band electroencephalogram noise when and where such a recognition event or decision occurs. PMID:11158631

  10. Egg-hatching synchrony and larval cannibalism in the dock leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae).

    PubMed

    Kutcherov, Dmitry

    2015-12-01

    Females of leaf beetles and many other herbivorous insects lay eggs in coherent batches. Hatchlings emerge more or less simultaneously and often prey on their late-hatching clutchmates. It is not certain, however, whether this synchrony of hatching is a mere by-product of cannibalism or whether an additional synchronizing factor exists. The following simple experiment was aimed at determining the causal relationship between cannibalism and simultaneous larval emergence. Egg clutches of the dock leaf beetle Gastrophysa viridula were split into two halves. These halves were either kept as coherent groups in two separate dishes or, alternatively, only one half remained whole, whereas the other one was divided into single eggs, each of which was incubated in a separate dish. Halving of a clutch into coherent groups only slightly disrupted the synchrony of emergence. The consequence of individual isolation was more dramatic. Half-clutches consisting of disconnected solitary eggs required almost twice as much time for complete emergence of all larvae, which was significantly more than cannibalism as a sole synchronizing factor might explain. Moreover, survival rates were the same in coherent half-clutches (in the presence of cannibalism) and among isolated individuals. This group effect and the small contribution of cannibalism suggest the existence of an additional synchronizing factor. Possible mechanisms underpinning this phenomenon are discussed. PMID:26482400

  11. Regional synchrony of temperature variation and internal wave forcing along the Florida Keys reef tract

    NASA Astrophysics Data System (ADS)

    Leichter, James J.; Stokes, M. Dale; Vilchis, L. Ignacio; Fiechter, Jerome

    2014-01-01

    Analysis of 10 year temperature records collected along the Florida Keys reef tract (FLKRT) reveals strong, regional-scale synchrony in high-frequency temperature variation suggestive of internal wave forcing at predominately semidiurnal frequencies. In each year and at all sites, the amplitude of semidiurnal temperature variation was greatest from March to September, and markedly lower from October to February. Comparisons of the semidiurnal component of the temperature variation among sites suggest complex patterns in the arrival of internal waves, with highest cross correlation among closely spaced sites and synchrony in periods of enhanced internal wave activity across the length of the FLKRT, particularly in summer. The periods of enhanced semidiurnal temperature variation at the 20 and 30 m isobaths on the reef slopes appear to be associated with the dynamics of the Florida Current and the onshore movement of warm fronts preceding the passage of Florida Current frontal eddies. Regional-scale satellite altimetry observations suggest temporal linkages to sea surface height anomalies in the Loop Current (upstream of the Florida Current) and setup of the Tortugas Gyre. The synchronized forcing of cool water onto the reef slope sites across the FLKRT is likely to affect physiological responses to temperature variation in corals and other ectothermic organisms, as well as larval transport and nutrient dynamics with the potential for regionally coherent pulses of larvae and nutrients arriving on reef slopes across the FLKRT.

  12. Cross-synaptic synchrony and transmission of signal and noise across the mouse retina

    PubMed Central

    Grimes, William N; Hoon, Mrinalini; Briggman, Kevin L; Wong, Rachel O; Rieke, Fred

    2014-01-01

    Cross-synaptic synchrony—correlations in transmitter release across output synapses of a single neuron—is a key determinant of how signal and noise traverse neural circuits. The anatomical connectivity between rod bipolar and A17 amacrine cells in the mammalian retina, specifically that neighboring A17s often receive input from many of the same rod bipolar cells, provides a rare technical opportunity to measure cross-synaptic synchrony under physiological conditions. This approach reveals that synchronization of rod bipolar cell synapses is near perfect in the dark and decreases with increasing light level. Strong synaptic synchronization in the dark minimizes intrinsic synaptic noise and allows rod bipolar cells to faithfully transmit upstream signal and noise to downstream neurons. Desynchronization in steady light lowers the sensitivity of the rod bipolar output to upstream voltage fluctuations. This work reveals how cross-synaptic synchrony shapes retinal responses to physiological light inputs and, more generally, signaling in complex neural networks. DOI: http://dx.doi.org/10.7554/eLife.03892.001 PMID:25180102

  13. Fourteen-month-old infants use interpersonal synchrony as a cue to direct helpfulness.

    PubMed

    Cirelli, Laura K; Wan, Stephanie J; Trainor, Laurel J

    2014-12-19

    Musical behaviours such as dancing, singing and music production, which require the ability to entrain to a rhythmic beat, encourage high levels of interpersonal coordination. Such coordination has been associated with increased group cohesion and social bonding between group members. Previously, we demonstrated that this association influences even the social behaviour of 14-month-old infants. Infants were significantly more likely to display helpfulness towards an adult experimenter following synchronous bouncing compared with asynchronous bouncing to music. The present experiment was designed to determine whether interpersonal synchrony acts as a cue for 14-month-olds to direct their prosocial behaviours to specific individuals with whom they have experienced synchronous movement, or whether it acts as a social prime, increasing prosocial behaviour in general. Consistent with the previous results, infants were significantly more likely to help an experimenter following synchronous versus asynchronous movement with this person. Furthermore, this manipulation did not affect infant's behaviour towards a neutral stranger, who was not involved in any movement experience. This indicates that synchronous bouncing acts as a social cue for directing prosociality. These results have implications for how musical engagement and rhythmic synchrony affect social behaviour very early in development. PMID:25385778

  14. Synchrony, Complexity and Directiveness in Mothers’ Interactions with Infants Pre- and Post-Cochlear Implantation

    PubMed Central

    Fagan, Mary K.; Bergeson, Tonya R.; Morris, Kourtney J.

    2014-01-01

    This study investigated effects of profound hearing loss on mother-infant interactions before and after cochlear implantation with a focus on maternal synchrony, complexity, and directiveness. Participants included two groups of mother-infant dyads: 9 dyads of mothers and infants with normal hearing; and 9 dyads of hearing mothers and infants with profound hearing loss. Dyads were observed at two time points: Time 1, scheduled to occur before cochlear implantation for infants with profound hearing loss (mean age = 13.6 months); and Time 2 (mean age = 23.3 months), scheduled to occur approximately six months after cochlear implantation. Hearing infants were age-matched to infants with hearing loss at both time points. Dependent variables included the proportion of maternal utterances that overlapped infant vocalizations, maternal mean length of utterance, infant word use, and combined maternal directives and prohibitions. Results showed mothers’ utterances overlapped the vocalizations of infants with hearing loss more often before cochlear implantation than after, mothers used less complex utterances with infants with cochlear implants compared to hearing peers (Time 2), and mothers of infants with profound hearing loss used frequent directives and prohibitions both before and after cochlear implantation. Together, mothers and infants adapted relatively quickly to infants’ access to cochlear implants, showing improved interactional synchrony, increased infant word use, and levels of maternal language complexity compatible with infants’ word use, all within seven months of cochlear implant activation. PMID:24793733

  15. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    PubMed Central

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  16. Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony.

    PubMed

    Sales-Carbonell, Carola; Rueda-Orozco, Pavel E; Soria-Gómez, Edgar; Buzsáki, György; Marsicano, Giovanni; Robbe, David

    2013-01-01

    Activation of type 1 cannabinoid receptors (CB1R) decreases GABA and glutamate release in cortical and subcortical regions, with complex outcomes on cortical network activity. To date there have been few attempts to disentangle the region- and cell-specific mechanisms underlying the effects of cannabinoids on cortical network activity in vivo. Here we addressed this issue by combining in vivo electrophysiological recordings with local and systemic pharmacological manipulations in conditional mutant mice lacking CB1R expression in different neuronal populations. First we report that cannabinoids induce hypersynchronous thalamocortical oscillations while decreasing the amplitude of faster cortical oscillations. Then we demonstrate that CB1R at striatonigral synapses (basal ganglia direct pathway) mediate the thalamocortical hypersynchrony, whereas activation of CB1R expressed in cortical glutamatergic neurons decreases cortical synchrony. Finally we show that activation of CB1 expressed in cortical glutamatergic neurons limits the cannabinoid-induced thalamocortical hypersynchrony. By reporting that CB1R activations in cortical and subcortical regions have contrasting effects on cortical synchrony, our study bridges the gap between cellular and in vivo network effects of cannabinoids. Incidentally, the thalamocortical hypersynchrony we report suggests a potential mechanism to explain the sensory "high" experienced during recreational consumption of marijuana.

  17. Depression, anxiety, and social disability show synchrony of change in primary care patients.

    PubMed Central

    Ormel, J; Von Korff, M; Van den Brink, W; Katon, W; Brilman, E; Oldehinkel, T

    1993-01-01

    OBJECTIVES. The purposes of this study were to (1) characterize the social disability associated with the common psychiatric illnesses of primary care patients in terms of role dysfunction (self-care, family role, social role, occupational role) and (2) establish whether severity of psychiatric illness and disability level show synchrony of change. METHODS. A two-stage sample design was employed. In the first stage, 1994 consecutive attenders of 25 general practitioners were screened on psychiatric illness by their physicians and with the General Health Questionnaire. A stratified random sample (n = 285) with differing probabilities was selected for a second-stage interview. Patients with psychiatric symptoms were reinterviewed 1 and 3.5 years later (n = 143). RESULTS. (1) Disability level among patients was increased (moderately for depression, mildly for anxiety) and was associated with severity of psychiatric illness. (2) Most disability was found in occupational and social roles. (3) Change in severity of psychiatric illness was concordant with change in level of disability and was largely invariant across diagnosis (depression, anxiety, mixed anxiety/depression). At follow-up, disability among improved patients had returned to normal levels. CONCLUSIONS. Psychiatric illness in primary care patients is associated with mild to moderate disability, and severity of psychiatric illness and disability show synchrony of change. PMID:8438977

  18. Infant perception of audio-visual speech synchrony in familiar and unfamiliar fluent speech.

    PubMed

    Pons, Ferran; Lewkowicz, David J

    2014-06-01

    We investigated the effects of linguistic experience and language familiarity on the perception of audio-visual (A-V) synchrony in fluent speech. In Experiment 1, we tested a group of monolingual Spanish- and Catalan-learning 8-month-old infants to a video clip of a person speaking Spanish. Following habituation to the audiovisually synchronous video, infants saw and heard desynchronized clips of the same video where the audio stream now preceded the video stream by 366, 500, or 666 ms. In Experiment 2, monolingual Catalan and Spanish infants were tested with a video clip of a person speaking English. Results indicated that in both experiments, infants detected a 666 and a 500 ms asynchrony. That is, their responsiveness to A-V synchrony was the same regardless of their specific linguistic experience or familiarity with the tested language. Compared to previous results from infant studies with isolated audiovisual syllables, these results show that infants are more sensitive to A-V temporal relations inherent in fluent speech. Furthermore, the absence of a language familiarity effect on the detection of A-V speech asynchrony at eight months of age is consistent with the broad perceptual tuning usually observed in infant response to linguistic input at this age.

  19. Light-induced division and genomic synchrony in phototrophically growing cultures of Rhodopseudomonas sphaeroides.

    PubMed

    Lueking, D R; Campbell, T B; Burghardt, R C

    1981-05-01

    An experimental procedure for rapidly obtaining cell populations of phototrophically growing Rhodopseudomonas sphaeroides which display division and genomic synchrony has been developed. The basis of the procedure resides with the normal physiological response displayed by cells of R. sphaeroides that have been subjected to an immediate decrease in incident light intensity. After an abrupt high- to low-light transition of an asynchronously dividing cell population, an immediate cessation of increases in culture turbidity, total cell number, and net accumulations of culture deoxyribonucleic acid and phospholipid occurs. Total cell number remains constant for 2.5 h after the transition to low light, after which time, it undergoes a sharp increase. Reinitiation of high-light conditions of growth 1 h subsequent to this increase in total cell number results in a cell population possessing a high degree of division and genomic synchrony. A characterization of this procedure, together with a demonstration of its utility for studies on intracytoplasmic membrane assembly, is presented. PMID:7012139

  20. Synchrony, complexity and directiveness in mothers' interactions with infants pre- and post-cochlear implantation.

    PubMed

    Fagan, Mary K; Bergeson, Tonya R; Morris, Kourtney J

    2014-08-01

    This study investigated effects of profound hearing loss on mother-infant interactions before and after cochlear implantation with a focus on maternal synchrony, complexity, and directiveness. Participants included two groups of mother-infant dyads: 9 dyads of mothers and infants with normal hearing; and 9 dyads of hearing mothers and infants with profound hearing loss. Dyads were observed at two time points: Time 1, scheduled to occur before cochlear implantation for infants with profound hearing loss (mean age=13.6 months); and Time 2 (mean age=23.3 months), scheduled to occur approximately six months after cochlear implantation. Hearing infants were age-matched to infants with hearing loss at both time points. Dependent variables included the proportion of maternal utterances that overlapped infant vocalizations, maternal mean length of utterance, infant word use, and combined maternal directives and prohibitions. Results showed mothers' utterances overlapped the vocalizations of infants with hearing loss more often before cochlear implantation than after, mothers used less complex utterances with infants with cochlear implants compared to hearing peers (Time 2), and mothers of infants with profound hearing loss used frequent directives and prohibitions both before and after cochlear implantation. Together, mothers and infants adapted relatively quickly to infants' access to cochlear implants, showing improved interactional synchrony, increased infant word use, and levels of maternal language complexity compatible with infants' word use, all within seven months of cochlear implant activation.

  1. Egg-hatching synchrony and larval cannibalism in the dock leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae).

    PubMed

    Kutcherov, Dmitry

    2015-12-01

    Females of leaf beetles and many other herbivorous insects lay eggs in coherent batches. Hatchlings emerge more or less simultaneously and often prey on their late-hatching clutchmates. It is not certain, however, whether this synchrony of hatching is a mere by-product of cannibalism or whether an additional synchronizing factor exists. The following simple experiment was aimed at determining the causal relationship between cannibalism and simultaneous larval emergence. Egg clutches of the dock leaf beetle Gastrophysa viridula were split into two halves. These halves were either kept as coherent groups in two separate dishes or, alternatively, only one half remained whole, whereas the other one was divided into single eggs, each of which was incubated in a separate dish. Halving of a clutch into coherent groups only slightly disrupted the synchrony of emergence. The consequence of individual isolation was more dramatic. Half-clutches consisting of disconnected solitary eggs required almost twice as much time for complete emergence of all larvae, which was significantly more than cannibalism as a sole synchronizing factor might explain. Moreover, survival rates were the same in coherent half-clutches (in the presence of cannibalism) and among isolated individuals. This group effect and the small contribution of cannibalism suggest the existence of an additional synchronizing factor. Possible mechanisms underpinning this phenomenon are discussed.

  2. Short- and long-range neural synchrony in grapheme-color synesthesia.

    PubMed

    Volberg, Gregor; Karmann, Anna; Birkner, Stefanie; Greenlee, Mark W

    2013-07-01

    Grapheme-color synesthesia is a perceptual phenomenon where single graphemes (e.g., the letter "E") induce simultaneous sensations of colors (e.g., the color green) that were not objectively shown. Current models disagree as to whether the color sensations arise from increased short-range connectivity between anatomically adjacent grapheme- and color-processing brain structures or from decreased effectiveness of inhibitory long-range connections feeding back into visual cortex. We addressed this issue by examining neural synchrony obtained from EEG activity, in a sample of grapheme-color synesthetes that were presented with color-inducing versus non-color-inducing graphemes. For color-inducing graphemes, the results showed a decrease in the number of long-range couplings in the theta frequency band (4-7 Hz, 280-540 msec) and a concurrent increase of short-range phase-locking within lower beta band (13-20 Hz, 380-420 msec at occipital electrodes). Because the effects were both found in long-range synchrony and later within the visual processing stream, the results support the idea that reduced inhibition is an important factor for the emergence of synesthetic colors.

  3. Testing for synchrony in recruitment among four Lake Michigan fish species

    USGS Publications Warehouse

    Bunnell, David; Höök, Tomas O.; Troy, Cary D.; Liu, Wentao; Madenjian, Charles P.; Adams, Jean V.

    2016-01-01

    In the Great Lakes region, multiple fish species display intra-specific spatial synchrony in 28 recruitment success, with inter-annual climate variation hypothesized as the most likely driver. 29 In Lake Michigan, we evaluated whether climatic or other physical variables could also induce 30 spatial synchrony across multiple species, including bloater (Coregonus hoyi), rainbow smelt 31 (Osmerus mordax), yellow perch (Perca flavescens), and alewife (Alosa pseudoharengus). The 32 residuals from stock-recruitment relationships revealed yellow perch recruitment to be correlated 33 with recruitment of both rainbow smelt (r = 0.37) and alewife (r = 0.36). Across all four species, 34 higher than expected recruitment occurred in 5 years between 1978 and 1987 and then switched 35 to lower than expected recruitment in 5 years between 1996 and 2004. Generalized additive 36 models revealed warmer spring and summer water temperatures and lower wind speeds 37 corresponded to higher than expected recruitment for the nearshore-spawning species, and 38 overall variance explained ranged from 14% (yellow perch) to 61% (alewife). For all species 39 but rainbow smelt, higher recruitment also occurred in extremely high or low years of the North 40 Atlantic Oscillation index. Future development of indices that describe the physical Great Lakes 41 environment could improve understanding of how climate can synchronize fish populations 42 within and across species.

  4. Using Self-Organising Maps (SOMs) to assess synchronies: an application to historical eucalypt flowering records.

    PubMed

    Hudson, Irene L; Keatley, Marie R; Lee, Shalem Y

    2011-11-01

    Self-Organising Map (SOM) clustering methods applied to the monthly and seasonal averaged flowering intensity records of eight Eucalypt species are shown to successfully quantify, visualise and model synchronisation of multivariate time series. The SOM algorithm converts complex, nonlinear relationships between high-dimensional data into simple networks and a map based on the most likely patterns in the multiplicity of time series that it trains. Monthly- and seasonal-based SOMs identified three synchronous species groups (clusters): E. camaldulensis, E. melliodora, E. polyanthemos; E. goniocalyx, E. microcarpa, E. macrorhyncha; and E. leucoxylon, E. tricarpa. The main factor in synchronisation (clustering) appears to be the season in which flowering commences. SOMs also identified the asynchronous relationship among the eight species. Hence, the likelihood of the production, or not, of hybrids between sympatric species is also identified. The SOM pattern-based correlation values mirror earlier synchrony statistics gleaned from Moran correlations obtained from the raw flowering records. Synchronisation of flowering is shown to be a complex mechanism that incorporates all the flowering characteristics: flowering duration, timing of peak flowering, of start and finishing of flowering, as well as possibly specific climate drivers for flowering. SOMs can accommodate for all this complexity and we advocate their use by phenologists and ecologists as a powerful, accessible and interpretable tool for visualisation and clustering of multivariate time series and for synchrony studies.

  5. Children's synchrony and rhythmicity in imitation of peers: toward a developmental model of empathy.

    PubMed

    Xavier, Jean; Tilmont, Elodie; Bonnot, Olivier

    2013-09-01

    The main mechanisms of children's imitative exchanges with peers are highlighted here through a developmental approach taking into account the importance of rhythmicity and synchrony. We focused on spontaneous motor imitation to describe a playful dynamic that is paradoxical: in the experience of play in which roles are not clearly distributed, mutual discovery of the self and others gradually arises. From an integrative perspective, this form of interaction, produced by positional reversal and turn taking, is apprehended through two axis. On the temporal plan, it can be considered as a rhythmic pattern with repetition and synchrony. Moreover, these mutual exchanges between the self and others challenge visuo-spatial abilities in children who must be able to change their reference point through an operation of mental rotation. Based on this description of the intersubjective experience produced through a succession of spatial and symbolic viewpoint changes, a developmental model of empathy is offered and discussed. According to this model, the capacity of empathy has two dimensions, emotional and cognitive, and is understood as a process involved in child development. In this article, we propose that empathy is more than the "mere" capacity of decentration corresponding to the acquisition of a theory of mind. It involves an individual in relationship with others and who has the ability to integrate perspectives.

  6. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  7. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations.

    PubMed

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J; Robles, Montserrat; Biswal, Bharat B; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital-cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  8. Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony

    PubMed Central

    Sales-Carbonell, Carola; Rueda-Orozco, Pavel E.; Soria-Gómez, Edgar; Buzsáki, György; Marsicano, Giovanni; Robbe, David

    2013-01-01

    Activation of type 1 cannabinoid receptors (CB1R) decreases GABA and glutamate release in cortical and subcortical regions, with complex outcomes on cortical network activity. To date there have been few attempts to disentangle the region- and cell-specific mechanisms underlying the effects of cannabinoids on cortical network activity in vivo. Here we addressed this issue by combining in vivo electrophysiological recordings with local and systemic pharmacological manipulations in conditional mutant mice lacking CB1R expression in different neuronal populations. First we report that cannabinoids induce hypersynchronous thalamocortical oscillations while decreasing the amplitude of faster cortical oscillations. Then we demonstrate that CB1R at striatonigral synapses (basal ganglia direct pathway) mediate the thalamocortical hypersynchrony, whereas activation of CB1R expressed in cortical glutamatergic neurons decreases cortical synchrony. Finally we show that activation of CB1 expressed in cortical glutamatergic neurons limits the cannabinoid-induced thalamocortical hypersynchrony. By reporting that CB1R activations in cortical and subcortical regions have contrasting effects on cortical synchrony, our study bridges the gap between cellular and in vivo network effects of cannabinoids. Incidentally, the thalamocortical hypersynchrony we report suggests a potential mechanism to explain the sensory “high” experienced during recreational consumption of marijuana. PMID:23269835

  9. Fourteen-month-old infants use interpersonal synchrony as a cue to direct helpfulness

    PubMed Central

    Cirelli, Laura K.; Wan, Stephanie J.; Trainor, Laurel J.

    2014-01-01

    Musical behaviours such as dancing, singing and music production, which require the ability to entrain to a rhythmic beat, encourage high levels of interpersonal coordination. Such coordination has been associated with increased group cohesion and social bonding between group members. Previously, we demonstrated that this association influences even the social behaviour of 14-month-old infants. Infants were significantly more likely to display helpfulness towards an adult experimenter following synchronous bouncing compared with asynchronous bouncing to music. The present experiment was designed to determine whether interpersonal synchrony acts as a cue for 14-month-olds to direct their prosocial behaviours to specific individuals with whom they have experienced synchronous movement, or whether it acts as a social prime, increasing prosocial behaviour in general. Consistent with the previous results, infants were significantly more likely to help an experimenter following synchronous versus asynchronous movement with this person. Furthermore, this manipulation did not affect infant's behaviour towards a neutral stranger, who was not involved in any movement experience. This indicates that synchronous bouncing acts as a social cue for directing prosociality. These results have implications for how musical engagement and rhythmic synchrony affect social behaviour very early in development. PMID:25385778

  10. Tinnitus dyssynchrony-synchrony theory: a translational concept for diagnosis and treatment.

    PubMed

    Shulman, Abraham; Goldstein, Barbara

    2006-01-01

    The tinnitus dyssynchrony-synchrony theory (TDST) is a hypothesis that considers tinnitus to be an abnormal, conscious, auditory percept. It is believed to originate as an initial dyssynchrony in pre- or postsynaptic neuronal transmission within the peripheral or central nervous system (cortical or subcortical). It interferes in the excitatory and inhibitory process or processes involved in maintaining homeostasis for brain neurofunction, in multiple neural substrates, and acts as an aberrant auditory stimulus to express this dysfunction via the auditory system. The conscious auditory percept for tinnitus is hypothesized to reflect clinically a summation of synchronous activities of neuronal activity recordable from multiple neural substrates at the brain cortex. The transformation from the dyssynchrony of the aberrant auditory stimulus to one of synchrony and individual brain function of affect, somatosensory response, and consciousness is clinically considered to be a final common pathway for tinnitus. The clinical application of the TDST has increased the accuracy of tinnitus diagnosis and improved the efficacy of treatment modalities attempting tinnitus relief.

  11. Predator-induced synchrony in population oscillations of coexisting small mammal species

    PubMed Central

    Korpimäki, Erkki; Norrdahl, Kai; Huitu, Otso; Klemola, Tero

    2005-01-01

    Comprehensive analyses of long-term (1977–2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5–3 km2) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase. PMID:15695211

  12. The effect of low light intensity on the maintenance of circadian synchrony in human subjects

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Lyman, J.; Beljan, J. R.

    1976-01-01

    Experiments were conducted on six healthy male subjects aged 20-23 yr and exposed for 21 days in a confined regulated environment to 16L:8D light:dark cycle with a view toward determining whether the light environment of 16L:8D at the relatively low light intensity of 15 ft.c. is adequate for the maintenance of circadian synchrony in man. The light intensity was 100 ft.c. during the first seven days, reduced to 15 ft.c. during the next seven days, and increased again to 100 ft.c. during the last seven days. Rectal temperature (RT) and heart rate (HR) were recorded throughout the three phases. In the 100 ft.c. regime, the RT and HR rhythms remained stable and circadian throughout. It is shown that 15 ft.c. light intensity is at or below threshold for maintaining circadian synchrony of human physiologic rhythms marked by instability and internal desynchronization with degradation of performance and well-being.

  13. On a Possible Relationship between Linguistic Expertise and EEG Gamma Band Phase Synchrony

    PubMed Central

    Reiterer, Susanne; Pereda, Ernesto; Bhattacharya, Joydeep

    2011-01-01

    Recent research has shown that extensive training in and exposure to a second language can modify the language organization in the brain by causing both structural and functional changes. However it is not yet known how these changes are manifested by the dynamic brain oscillations and synchronization patterns subserving the language networks. In search for synchronization correlates of proficiency and expertise in second language acquisition, multivariate EEG signals were recorded from 44 high and low proficiency bilinguals during processing of natural language in their first and second languages. Gamma band (30–45 Hz) phase synchronization (PS) was calculated mainly by two recently developed methods: coarse-graining of Markov chains (estimating global phase synchrony, measuring the degree of PS between one electrode and all other electrodes), and phase lag index (PLI; estimating bivariate phase synchrony, measuring the degree of PS between a pair of electrodes). On comparing second versus first language processing, global PS by coarse-graining Markov chains indicated that processing of the second language needs significantly higher synchronization strength than first language. On comparing the proficiency groups, bivariate PS measure (i.e., PLI) revealed that during second language processing the low proficiency group showed stronger and broader network patterns than the high proficiency group, with interconnectivities between a left fronto-parietal network. Mean phase coherence analysis also indicated that the network activity was globally stronger in the low proficiency group during second language processing. PMID:22125542

  14. Reproductive Information and Reproductive Decision-Making.

    PubMed

    Mehlman, Maxwell J

    2015-01-01

    Opponents of reproductive choice are attempting to limit reproductive decisions based on certain underlying reasons. This commentary explores the rationales for these limitations and the objections to them. It concludes that reasoned-based limitations are unsupportable and unenforceable. PMID:26242944

  15. Reproductive tract microbiome in assisted reproductive technologies.

    PubMed

    Franasiak, Jason M; Scott, Richard T

    2015-12-01

    The human microbiome has gained much attention recently for its role in health and disease. This interest has come as we have begun to scratch the surface of the complexity of what has been deemed to be our "second genome" through initiatives such as the Human Microbiome Project. Microbes have been hypothesized to be involved in the physiology and pathophysiology of assisted reproduction since before the first success in IVF. Although the data supporting or refuting this hypothesis remain somewhat sparse, thanks to sequencing data from the 16S rRNA subunit, we have begun to characterize the microbiome in the male and female reproductive tracts and understand how this may play a role in reproductive competence. In this review, we discuss what is known about the microbiome of the reproductive tract as it pertains to assisted reproductive technologies.

  16. Male Reproductive System

    MedlinePlus

    ... Surveillance Modules » Anatomy & Physiology » Reproductive System » Male Reproductive System Cancer Registration & Surveillance Modules Anatomy & Physiology Intro to the Human Body Body Functions & Life Process Anatomical Terminology Review Quiz ...

  17. Men's Reproductive Health

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Men's Reproductive Health: Overview Skip sharing on social media ... Content Reproductive health is an important component of men's overall health and well-being. Too often, males ...

  18. Reproductive Cytotoxicity Is Predicted by Magnetic Resonance Microscopy and Confirmed by Ubiquitin Proteasome Immunohistochemistry in a Theophylline-Induced Model of Rat Testicular and Epididymal Toxicity

    NASA Astrophysics Data System (ADS)

    Tengowski, M. W.; Sutovsky, P.; Hedlund, L. W.; Guyot, D. J.; Burkhardt, J. E.; Thompson, W. E.; Sutovsky, M.; Johnson, G. A.

    2005-08-01

    This study investigated the testicular changes in the rat induced by the nonspecific phosphodiesterase inhibitor, theophylline using magnetic resonance microscopy (MRM) and ubiquitin immunostaining techniques. In vivo T1- and T2-weighted images were acquired at 2 T under anesthesia. Increased signal observed in the theophylline-treated rats suggests that leakage of MRM contrast was occurring. In vivo MRM results indicate that day 16 testis displayed an increased T1-weighted water signal in the area of the seminiferous tubule that decreased by day 32. These findings were validated by histopathology, suggesting that in vivo MRM has the sensitivity to predict changes in testis and epididymal tissues. The participation of the ubiquitin system was investigated, using probes for various markers of the ubiquitin-proteasome pathway. MRM can be used to detect subtle changes in the vascular perfusion of organ systems, and the up-regulation/mobilization of ubiquitin-proteasome pathway may be one of the mechanisms used in theophylline-treated epididymis to remove damaged cells before storage in the cauda epididymis. The combined use of in vivo MRM and subsequent tissue or seminal analysis for the presence of ubiquitin in longitudinal studies may become an important biomarker for assessing testis toxicities drug studies.

  19. Acupuncture for reproductive disorders.

    PubMed

    Lin, J H; Panzer, R

    1992-03-01

    The use of acupuncture to treat reproductive disorders can produce excellent results. Two proposed physiologic mechanisms for its effects on the reproductive system include an endorphin-mediated mechanism affecting the hypothalamic-pituitary-gonadal endocrine axis and a direct effect on gonadal paracrine and autocrine control of steroidogenesis. This chapter discusses reproductive disorders from both western and traditional Chinese perspectives, and details the use of acupuncture for the treatment of eight specific categories of reproductive dysfunction.

  20. Use of single nucleotide polymorphisms in candidate genes associated with daughter pregnancy rate for prediction of genetic merit for reproduction in Holstein cows.

    PubMed

    Ortega, M S; Denicol, A C; Cole, J B; Null, D J; Hansen, P J

    2016-06-01

    We evaluated 69 SNPs in genes previously related to fertility and production traits for their relationship to daughter pregnancy rate (DPR), cow conception rate (CCR) and heifer conception rate (HCR) in a separate population of Holstein cows grouped according to their predicted transmitting ability (PTA) [≤-1 (n = 1287) and ≥1.5 (n = 1036)] for DPR. Genotyping was performed using Sequenom MassARRAY(®) . There were a total of 39 SNPs associated with the three fertility traits. The SNPs that explained the greater proportion of the genetic variation for DPR were COQ9 (3.2%), EPAS1 (1.0%), CAST (1.0%), C7H19orf60 (1.0%) and MRPL48 (1.0%); for CCR were GOLGA4 (2.4%), COQ9 (1.8%), EPAS1 (1.1%) and MRPL48 (0.8%); and for HCR were HSD17B7 (1.0%), AP3B1 (0.8%), HSD17B12 (0.7%) and CACNA1D (0.6%). Inclusion of 39 SNPs previously associated with DPR in the genetic evaluation system increased the reliability of PTA for DPR by 0.20%. Many of the genes represented by SNPs associated with fertility are involved in steroidogenesis or are regulated by steroids. A large proportion of SNPs previously associated with genetic merit for fertility in Holstein bulls maintained their association in a separate population of cows. The inclusion of these genes in genetic evaluation can improve reliabilities of genomic estimates for fertility. PMID:26923315

  1. Learning and Discrimination of Audiovisual Events in Human Infants: The Hierarchical Relation between Intersensory Temporal Synchrony and Rhythmic Pattern Cues.

    ERIC Educational Resources Information Center

    Lewkowicz, David J.

    2003-01-01

    Three experiments examined 4- to 10-month-olds' perception of audio-visual (A-V) temporal synchrony cues in the presence or absence of rhythmic pattern cues. Results established that infants of all ages could discriminate between two different audio-visual rhythmic events. Only 10-month-olds detected a desynchronization of the auditory and visual…

  2. Parent-Infant Synchrony and the Construction of Shared Timing; Physiological Precursors, Developmental Outcomes, and Risk Conditions

    ERIC Educational Resources Information Center

    Feldman, Ruth

    2007-01-01

    Synchrony, a construct used across multiple fields to denote the temporal relationship between events, is applied to the study of parent-infant interactions and suggested as a model for intersubjectivity. Three types of timed relationships between the parent and child's affective behavior are assessed: concurrent, sequential, and organized in an…

  3. Nonlinear measure of synchrony between blood oxygen saturation and heart rate from nocturnal pulse oximetry in obstructive sleep apnoea syndrome.

    PubMed

    Alvarez, D; Hornero, R; Abásolo, D; del Campo, F; Zamarrón, C; López, M

    2009-09-01

    This study focuses on analysis of the relationship between changes in blood oxygen saturation (SaO(2)) and heart rate (HR) recordings from nocturnal pulse oximetry (NPO) in patients suspected of suffering from obstructive sleep apnoea (OSA) syndrome. Two different analyses were developed: a classical frequency analysis based on the magnitude squared coherence (MSC) and a nonlinear analysis by means of a recently developed measure of synchrony, the cross-approximate entropy (cross-ApEn). A data set of 187 subjects was studied. We found significantly higher correlation and synchrony between oximetry signals from OSA positive patients compared with OSA negative subjects. We assessed the diagnostic ability to detect OSA syndrome of both the classical and nonlinear approaches by means of receiver operating characteristic (ROC) analyses with tenfold cross-validation. The nonlinear measure of synchrony significantly improved the results obtained with classical MSC: 69.2% sensitivity, 90.9% specificity and 78.1% accuracy were reached with MSC, whereas 83.7% sensitivity, 84.3% specificity and 84.0% accuracy were obtained with cross-ApEn. Our results suggest that the use of nonlinear measures of synchrony could provide essential information from oximetry signals, which cannot be obtained with classical spectral analysis.

  4. Perception of Audio-Visual Speech Synchrony in Spanish-Speaking Children with and without Specific Language Impairment

    ERIC Educational Resources Information Center

    Pons, Ferran; Andreu, Llorenc; Sanz-Torrent, Monica; Buil-Legaz, Lucia; Lewkowicz, David J.

    2013-01-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the…

  5. Stressed but Stable: Canopy Loss Decreased Species Synchrony and Metabolic Variability in an Intertidal Hard-Bottom Community

    PubMed Central

    Valdivia, Nelson; Golléty, Claire; Migné, Aline; Davoult, Dominique; Molis, Markus

    2012-01-01

    The temporal stability of aggregate community properties depends on the dynamics of the component species. Since species growth can compensate for the decline of other species, synchronous species dynamics can maintain stability (i.e. invariability) in aggregate properties such as community abundance and metabolism. In field experiments we tested the separate and interactive effects of two stressors associated with storminess–loss of a canopy-forming species and mechanical disturbances–on species synchrony and community respiration of intertidal hard-bottom communities on Helgoland Island, NE Atlantic. Treatments consisted of regular removal of the canopy-forming seaweed Fucus serratus and a mechanical disturbance applied once at the onset of the experiment in March 2006. The level of synchrony in species abundances was assessed from estimates of species percentage cover every three months until September 2007. Experiments at two sites consistently showed that canopy loss significantly reduced species synchrony. Mechanical disturbance had neither separate nor interactive effects on species synchrony. Accordingly, in situ measurements of CO2-fluxes showed that canopy loss, but not mechanical disturbances, significantly reduced net primary productivity and temporal variation in community respiration during emersion periods. Our results support the idea that compensatory dynamics may stabilise aggregate properties. They further suggest that the ecological consequences of the loss of a single structurally important species may be stronger than those derived from smaller-scale mechanical disturbances in natural ecosystems. PMID:22574181

  6. Individual variation in reproductive costs of reproduction: high-quality females always do better.

    PubMed

    Hamel, Sandra; Côté, Steeve D; Gaillard, Jean-Michel; Festa-Bianchet, Marco

    2009-01-01

    1. Although life-history theory predicts substantial costs of reproduction, individuals often show positive correlations among life-history traits, rather than trade-offs. The apparent absence of reproductive costs may result from heterogeneity in individual quality. 2. Using detailed longitudinal data from three contrasted ungulate populations (mountain goats, Oreamnos americanus; bighorn sheep, Ovis canadensis; and roe deer, Capreolus capreolus), we assessed how individual quality affects the probability of detecting a cost of current reproduction on future reproduction for females. We used a composite measure of individual quality based on variations in longevity (all species), success in the last breeding opportunity before death (goats and sheep), adult mass (all species), and social rank (goats only). 3. In all species, high-quality females consistently had a higher probability of reproduction, irrespective of previous reproductive status. In mountain goats, we detected a cost of reproduction only after accounting for differences in individual quality. Only low-quality female goats were less likely to reproduce following years of breeding than of nonbreeding. Offspring survival was lower in bighorn ewes following years of successful breeding than after years when no lamb was produced, but only for low-quality females, suggesting that a cost of reproduction only occurred for low-quality females. 4. Because costs of reproduction differ among females, studies of life-history evolution must account for heterogeneity in individual quality.

  7. Individual variation in reproductive costs of reproduction: high-quality females always do better.

    PubMed

    Hamel, Sandra; Côté, Steeve D; Gaillard, Jean-Michel; Festa-Bianchet, Marco

    2009-01-01

    1. Although life-history theory predicts substantial costs of reproduction, individuals often show positive correlations among life-history traits, rather than trade-offs. The apparent absence of reproductive costs may result from heterogeneity in individual quality. 2. Using detailed longitudinal data from three contrasted ungulate populations (mountain goats, Oreamnos americanus; bighorn sheep, Ovis canadensis; and roe deer, Capreolus capreolus), we assessed how individual quality affects the probability of detecting a cost of current reproduction on future reproduction for females. We used a composite measure of individual quality based on variations in longevity (all species), success in the last breeding opportunity before death (goats and sheep), adult mass (all species), and social rank (goats only). 3. In all species, high-quality females consistently had a higher probability of reproduction, irrespective of previous reproductive status. In mountain goats, we detected a cost of reproduction only after accounting for differences in individual quality. Only low-quality female goats were less likely to reproduce following years of breeding than of nonbreeding. Offspring survival was lower in bighorn ewes following years of successful breeding than after years when no lamb was produced, but only for low-quality females, suggesting that a cost of reproduction only occurred for low-quality females. 4. Because costs of reproduction differ among females, studies of life-history evolution must account for heterogeneity in individual quality. PMID:18700872

  8. Accounting for Sampling Error When Inferring Population Synchrony from Time-Series Data: A Bayesian State-Space Modelling Approach with Applications

    PubMed Central

    Santin-Janin, Hugues; Hugueny, Bernard; Aubry, Philippe; Fouchet, David; Gimenez, Olivier; Pontier, Dominique

    2014-01-01

    Background Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. Methodology/Principal findings The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. Conclusion/Significance The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in

  9. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface.

    PubMed

    Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu

    2014-01-01

    In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.

  10. Mean-field dispersion-induced spatial synchrony, oscillation and amplitude death, and temporal stability in an ecological model

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Dutta, Partha Sharathi; Gupta, Anubhav

    2015-05-01

    One of the most important issues in spatial ecology is to understand how spatial synchrony and dispersal-induced stability interact. In the existing studies it is shown that dispersion among identical patches results in spatial synchrony; on the other hand, the combination of spatial heterogeneity and dispersion is necessary for dispersal-induced stability (or temporal stability). Population synchrony and temporal stability are thus often thought of as conflicting outcomes of dispersion. In contrast to the general belief, in this present study we show that mean-field dispersion is conducive to both spatial synchrony and dispersal-induced stability even in identical patches. This simultaneous occurrence of rather conflicting phenomena is governed by the suppression of oscillation states, namely amplitude death (AD) and oscillation death (OD). These states emerge through spatial synchrony of the oscillating patches in the strong-coupling strength. We present an interpretation of the mean-field diffusive coupling in the context of ecology and identify that, with increasing mean-field density, an open ecosystem transforms into a closed ecosystem. We report on the occurrence of OD in an ecological model and explain its significance. Using a detailed bifurcation analysis we show that, depending on the mortality rate and carrying capacity, the system shows either AD or both AD and OD. We also show that the results remain qualitatively the same for a network of oscillators. We identify a new transition scenario between the same type of oscillation suppression states whose geneses differ. In the parameter-mismatched case, we further report on the direct transition from OD to AD through a transcritical bifurcation. We believe that this study will lead to a proper interpretation of AD and OD in ecology, which may be important for the conservation and management of several communities in ecosystems.

  11. Mean-field dispersion-induced spatial synchrony, oscillation and amplitude death, and temporal stability in an ecological model.

    PubMed

    Banerjee, Tanmoy; Dutta, Partha Sharathi; Gupta, Anubhav

    2015-05-01

    One of the most important issues in spatial ecology is to understand how spatial synchrony and dispersal-induced stability interact. In the existing studies it is shown that dispersion among identical patches results in spatial synchrony; on the other hand, the combination of spatial heterogeneity and dispersion is necessary for dispersal-induced stability (or temporal stability). Population synchrony and temporal stability are thus often thought of as conflicting outcomes of dispersion. In contrast to the general belief, in this present study we show that mean-field dispersion is conducive to both spatial synchrony and dispersal-induced stability even in identical patches. This simultaneous occurrence of rather conflicting phenomena is governed by the suppression of oscillation states, namely amplitude death (AD) and oscillation death (OD). These states emerge through spatial synchrony of the oscillating patches in the strong-coupling strength. We present an interpretation of the mean-field diffusive coupling in the context of ecology and identify that, with increasing mean-field density, an open ecosystem transforms into a closed ecosystem. We report on the occurrence of OD in an ecological model and explain its significance. Using a detailed bifurcation analysis we show that, depending on the mortality rate and carrying capacity, the system shows either AD or both AD and OD. We also show that the results remain qualitatively the same for a network of oscillators. We identify a new transition scenario between the same type of oscillation suppression states whose geneses differ. In the parameter-mismatched case, we further report on the direct transition from OD to AD through a transcritical bifurcation. We believe that this study will lead to a proper interpretation of AD and OD in ecology, which may be important for the conservation and management of several communities in ecosystems. PMID:26066241

  12. Difficulty-related changes in inter-regional neural synchrony are dissociated between target and non-target processing.

    PubMed

    Choi, Jeong Woo; Cha, Kwang Su; Choi, Jong Doo; Jung, Ki-Young; Kim, Kyung Hwan

    2015-04-01

    The major purpose of this study was to explore the changes in the local/global gamma-band neural synchronies during target/non-target processing due to task difficulty under an auditory three-stimulus oddball paradigm. Multichannel event-related potentials (ERPs) were recorded from fifteen healthy participants during the oddball task. In addition to the conventional ERP analysis, we investigated the modulations in gamma-band activity (GBA) and inter-regional gamma-band phase synchrony (GBPS) for infrequent target and non-target processing due to task difficulty. The most notable finding was that the difficulty-related changes in inter-regional GBPS (33-35 Hz) at P300 epoch (350-600 ms) completely differed for target and non-target processing. As task difficulty increased, the GBPS significantly reduced for target processing but increased for non-target processing. This result contrasts with the local neural synchrony in gamma-bands, which was not affected by task difficulty. Another major finding was that the spatial patterns of functional connectivity were dissociated for target and non-target processing with regard to the difficult task. The spatial pattern for target processing was compatible with the top-down attention network, whereas that for the non-target corresponded to the bottom-up attention network. Overall, we found that the inter-regional gamma-band neural synchronies during target/non-target processing change significantly with task difficulty and that this change is dissociated between target and non-target processing. Our results indicate that large-scale neural synchrony is more relevant for the difference in information processing between target and non-target stimuli.

  13. DMN Operational Synchrony Relates to Self-Consciousness: Evidence from Patients in Vegetative and Minimally Conscious States

    PubMed Central

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe

    2012-01-01

    The default mode network (DMN) has been consistently activated across a wide variety of self-related tasks, leading to a proposal of the DMN’s role in self-related processing. Indeed, there is limited fMRI evidence that the functional connectivity within the DMN may underlie a phenomenon referred to as self-awareness. At the same time, none of the known studies have explicitly investigated neuronal functional interactions among brain areas that comprise the DMN as a function of self-consciousness loss. To fill this gap, EEG operational synchrony analysis [1, 2] was performed in patients with severe brain injuries in vegetative and minimally conscious states to study the strength of DMN operational synchrony as a function of self-consciousness expression. We demonstrated that the strength of DMN EEG operational synchrony was smallest or even absent in patients in vegetative state, intermediate in patients in minimally conscious state and highest in healthy fully self-conscious subjects. At the same time the process of ecoupling of operations performed by neuronal assemblies that comprise the DMN was highest in patients in vegetative state, intermediate in patients in minimally conscious state and minimal in healthy fully self-conscious subjects. The DMN’s frontal EEG operational module had the strongest decrease in operational synchrony strength as a function of selfconsciousness loss, when compared with the DMN’s posterior modules. Based on these results it is suggested that the strength of DMN functional connectivity could mediate the strength of self-consciousness expression. The observed alterations similarly occurred across EEG alpha, beta1 and beta2 frequency oscillations. Presented results suggest that the EEG operational synchrony within DMN may provide an objective and accurate measure for the assessment of signs of self-(un)consciousness in these challenging patient populations. This method therefore, may complement the current diagnostic procedures

  14. Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network

    NASA Astrophysics Data System (ADS)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2010-12-01

    For understanding the origin of life, it is essential to explain the development of a compartmentalized structure, which undergoes growth and division, from a set of chemical reactions. In this study, a hypercycle with two chemicals that mutually catalyze each other is considered in order to show that the reproduction of a protocell with a growth-division process naturally occurs when the replication speed of one chemical is considerably slower than that of the other chemical, and molecules are crowded as a result of replication. It is observed that the protocell divides after a minority molecule is replicated at a slow synthesis rate, and thus, a synchrony between the reproduction of a cell and molecule replication is achieved. The robustness of such protocells against the invasion of parasitic molecules is also demonstrated.

  15. Reproduction (II): Human Control of Reproductive Processes

    ERIC Educational Resources Information Center

    Jost, Alfred

    1970-01-01

    Describes methods of intervening in reproduction of animals and humans (artificial insemination, contraception, ovular and blastodisc transplants, pre selection of sex, cloning) and discusses the social implications of their use with humans. (AL)

  16. Controlling synchrony in oscillatory networks via an act-and-wait algorithm.

    PubMed

    Ratas, Irmantas; Pyragas, Kestutis

    2014-09-01

    The act-and-wait control algorithm is proposed to suppress synchrony in globally coupled oscillatory networks in the situation when the simultaneous registration and stimulation of the system is not possible. The algorithm involves the periodic repetition of the registration (wait) and stimulation (act) stages, such that in the first stage the mean field of the free system is recorded in a memory and in the second stage the system is stimulated with the recorded signal. A modified version of the algorithm that takes into account the charge-balanced requirement is considered as well. The efficiency of our algorithm is demonstrated analytically and numerically for globally coupled Landau-Stuart oscillators and synaptically all-to-all coupled FitzHugh-Nagumo as well as Hodgkin-Huxley neurons.

  17. Controlling synchrony in oscillatory networks via an act-and-wait algorithm

    NASA Astrophysics Data System (ADS)

    Ratas, Irmantas; Pyragas, Kestutis

    2014-09-01

    The act-and-wait control algorithm is proposed to suppress synchrony in globally coupled oscillatory networks in the situation when the simultaneous registration and stimulation of the system is not possible. The algorithm involves the periodic repetition of the registration (wait) and stimulation (act) stages, such that in the first stage the mean field of the free system is recorded in a memory and in the second stage the system is stimulated with the recorded signal. A modified version of the algorithm that takes into account the charge-balanced requirement is considered as well. The efficiency of our algorithm is demonstrated analytically and numerically for globally coupled Landau-Stuart oscillators and synaptically all-to-all coupled FitzHugh-Nagumo as well as Hodgkin-Huxley neurons.

  18. Coupling cellular oscillators: a mechanism that maintains synchrony against developmental noise in the segmentation clock.

    PubMed

    Ishimatsu, Kana; Horikawa, Kazuki; Takeda, Hiroyuki

    2007-06-01

    A unique feature of vertebrate segmentation is its strict periodicity, which is governed by the segmentation clock consisting of numerous cellular oscillators. These cellular oscillators, driven by a negative-feedback loop of Hairy transcription factor, are linked through Notch-dependent intercellular coupling and display the synchronous expression of clock genes. Combining our transplantation experiments in zebrafish with mathematical simulations, we review how the cellular oscillators maintain synchrony and form a robust system that is resistant to the effects of developmental noise such as stochastic gene expression and active cell proliferation. The accumulated evidence indicates that the segmentation clock behaves as a "coupled oscillators," a mechanism that also underlies the synchronous flashing seen in fireflies.

  19. Incorporating Temperature-driven Seasonal Variation in Survival, Growth, and Reproduction Models for Small Fish

    EPA Science Inventory

    Seasonal variation in survival and reproduction can be a large source of prediction uncertainty in models used for conservation and management. A seasonally varying matrix population model is developed that incorporates temperature-driven differences in mortality and reproduction...

  20. Motor unit firing pattern, synchrony and coherence in a deafferented patient

    PubMed Central

    Schmied, Annie; Forget, Robert; Vedel, Jean-Pierre

    2014-01-01

    The firing of spinal motoneurons (MNs) is controlled continuously by inputs from muscle, joint and skin receptors. Besides altering MN synaptic drive, the removal of these inputs is liable to alter the synaptic noise and, thus, the variability of their tonic activity. Sensory afferents, which are a major source of common and/or synchronized inputs shared by several MNs, may also contribute to the coupling in the time and frequency domains (synchrony and coherence, respectively) observed when cross-correlation and coherence analyses are applied to the discharges of MN pairs. Surprisingly, no consistent changes in firing frequency, nor in synchrony and coherence were reported to affect the activity of 3 pairs of motor units (MUs) tested in a case of sensory polyradiculoneuropathy (SPRNP), leading to an irreversible loss of large diameter sensory afferents (Farmer et al., 1993). Such a limited sample, however, precludes a definite conclusion about the actual impact that a chronic loss of muscle and cutaneous afferents may have on the firing properties of human MUs. To address this issue, the firing pattern of 92 MU pairs was analyzed at low contraction force in a case of SPRNP leading similarly to a permanent loss of proprioceptive inputs. Compared with 8 control subjects, MNs in this patient tended to discharge with slightly shorter inter-spike intervals but with greater variability. Synchronous firing tended to occur more frequently with a tighter coupling in the patient. There was no consistent change in coherence in the 15–30 Hz frequency range attributed to the MN corticospinal drive, but a greater coherence was observed below 5 Hz and between 30 and 60 Hz in the patient. The possible origins of the greater irregularity in MN tonic discharges, the tighter coupling of the synchronous firing and the changes in coherence observed in the absence of proprioceptive inputs are discussed. PMID:25346671

  1. Intermittent spatio-temporal desynchronization and sequenced synchrony in ECoG signals

    NASA Astrophysics Data System (ADS)

    Kozma, Robert; Freeman, Walter J.

    2008-09-01

    Electrocorticographic (ECoG) signals from the brain surface typically exhibit high synchrony across large cortical areas, interrupted by brief periods of desynchronization exhibiting propagating phase discontinuities, across which spatial patterns of phase emerge in selected frequency bands. Experiments with rabbits trained using classical conditioning paradigms indicated that such desynchronization periods demarcate cognitive processing in the subjects; the ECoG in the frames between such periods revealed spatial patterns of amplitude modulation that were classified with respect to sensory stimuli that the rabbits had been trained to recognize. The present work describes intermittent synchrony and desynchronization of ECoG signals measured over the visual cortex. We analyze the analytic amplitude (AA) and analytic phase (AP) of the signals bandpassed over the beta band (12.5-25Hz) and theta band (3-7Hz) using the Hilbert transform. The AP of analytic signals evaluated using a Shannon-based synchronization index in theta band exhibits phase synchronization for varying time periods averaging about 1s, interrupted by desynchronization periods of duration about 0.1s. Synchronization periods in the beta-band last <100ms, with interruptions by desynchronization lasting one-tenth that, in which the analytic amplitude drops drastically. During these "null spikes," the analytic phase is undefined, and the spatial and temporal phase differences show high dispersion. Detailed examination of the bandpass filtered ECoG confirms the presence of a shared mean frequency in a frame of synchronized oscillation, at which frequency the spatial pattern of the AP has the form of a cone. Between frames the AA approaches zero. The form of the null spike resembles a tornado (a vortex), as shown in sequential frames by a rotating spatial pattern of amplitude in the filtered ECoG.

  2. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams

    PubMed Central

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli. PMID:25538576

  3. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees.

    PubMed

    Schwartzberg, Ezra G; Jamieson, Mary A; Raffa, Kenneth F; Reich, Peter B; Montgomery, Rebecca A; Lindroth, Richard L

    2014-07-01

    As the world's climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant-herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions.

  4. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees.

    PubMed

    Schwartzberg, Ezra G; Jamieson, Mary A; Raffa, Kenneth F; Reich, Peter B; Montgomery, Rebecca A; Lindroth, Richard L

    2014-07-01

    As the world's climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant-herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions. PMID:24889969

  5. Proteomics enhances evolutionary and functional analysis of reproductive proteins.

    PubMed

    Findlay, Geoffrey D; Swanson, Willie J

    2010-01-01

    Reproductive proteins maintain species-specific barriers to fertilization, affect the outcome of sperm competition, mediate reproductive conflicts between the sexes, and potentially contribute to the formation of new species. However, the specific proteins and molecular mechanisms that underlie these processes are understood in only a handful of cases. Advances in genomic and proteomic technologies enable the identification of large suites of reproductive proteins, making it possible to dissect reproductive phenotypes at the molecular level. We first review these technological advances and describe how reproductive proteins are identified in diverse animal taxa. We then discuss the dynamic evolution of reproductive proteins and the potential selective forces that act on them. Finally, we describe molecular and genomic tools for functional analysis and detail how evolutionary data may be used to make predictions about interactions among reproductive proteins.

  6. Reproductive cessation and post-reproductive lifespan in Asian elephants and pre-industrial humans

    PubMed Central

    2014-01-01

    Introduction Short post-reproductive lifespan is widespread across species, but prolonged post-reproductive life-stages of potential adaptive significance have been reported only in few mammals with extreme longevity. Long post-reproductive lifespan contradicts classical evolutionary predictions of simultaneous senescence in survival and reproduction, and raises the question of whether extreme longevity in mammals promotes such a life-history. Among terrestrial mammals, elephants share the features with great apes and humans, of having long lifespan and offspring with long dependency. However, little data exists on the frequency of post-reproductive lifespan in elephants. Here we use extensive demographic records on semi-captive Asian elephants (n = 1040) and genealogical data on pre-industrial women (n = 5336) to provide the first comparisons of age-specific reproduction, survival and post-reproductive lifespan in both of these long-lived species. Results We found that fertility decreased after age 50 in elephants, but the pattern differed from a total loss of fertility in menopausal women with many elephants continuing to reproduce at least until the age of 65 years. The probability of entering a non-reproductive state increased steadily in elephants from the earliest age of reproduction until age 65, with the longer living elephants continuing to reproduce until older ages, in contrast to humans whose termination probability increased rapidly after age 35 and reached 1 at 56 years, but did not depend on longevity. Post-reproductive lifespan reached 11–17 years in elephants and 26–27 years in humans living until old age (depending on method), but whereas half of human adult lifespan (of those reproductive females surviving to the age of 5% fecundity) was spent as post-reproductive, only one eighth was in elephants. Consequently, although some elephants have long post-reproductive lifespans, relatively few individuals reach such a phase and the

  7. Reproductive success of individuals with different fruit production patterns. What does it mean for the predator satiation hypothesis?

    PubMed

    Zywiec, Magdalena; Holeksa, Jan; Ledwoń, Mateusz; Seget, Piotr

    2013-06-01

    The predator satiation hypothesis states that synchronous periodic production of seeds is an adaptive strategy evolved to reduce the pressure of seed predators. The seed production pattern is crucial to the predator satiation hypothesis, but there are few studies documenting the success of individuals that are in synchrony and out of synchrony with the whole population. This study is based on long-term data on seed production of Sorbus aucuparia and specialised pre-dispersal seed predation by Argyresthia conjugella, in a subalpine spruce forest in the Western Carpathians (Poland). At the population level, we tested whether functional and numerical responses of predators to the variation of fruit production operate. At the individual level, we tested whether individuals with higher interannual variability in their own seed crops and higher synchrony with the population have higher percentages of uninfested fruits. The intensity of pre-dispersal seed predation was high (average 70 %; range 19-100 %). There were both functional and numerical responses of predators to the variation of fruit production at the population level. We found that individuals that were expected to be preferred under seed predator pressure had higher reproductive success. With increasing synchrony of fruit production between individual trees and the population, the percentage of infested fruits decreased. There was also a negative relationship between the interannual variation in individual fruit production and the percentage of infested fruits. These results confirm selection for individuals with a masting strategy. However, the population does not seem well adapted to strong seed predation pressure and we suggest that this may be a result of prolonged diapause of A. conjugella.

  8. Bubaline versus bovine reproduction.

    PubMed

    Drost, M

    2007-08-01

    Fertility in water buffalo (Bubalus bubalis) is considerably lower than that in cattle (Bos taurus and Bos indicus). Poor breeding efficiency is attributed to late onset of puberty, seasonality, poor estrus expression, and long calving intervals. Accurate estrus detection is a prerequisite for efficient reproductive management. Established reproductive management techniques in cattle can be successfully applied to water buffalo because of the similarities in the anatomy, physiology, and endocrinology of reproduction between the two genera.

  9. Temporal Characteristics of the Predictive Synchronous Firing Modeled by Spike-Timing-Dependent Plasticity

    ERIC Educational Resources Information Center

    Kitano, Katsunori; Fukai, Tomoki

    2004-01-01

    When a sensory cue was repeatedly followed by a behavioral event with fixed delays, pairs of premotor and primary motor neurons showed significant increases of coincident spikes at times a monkey was expecting the event. These results provided evidence that neuronal firing synchrony has predictive power. To elucidate the underlying mechanism, here…

  10. Advances in reproductive biotechnologies.

    PubMed

    Choudhary, K K; Kavya, K M; Jerome, A; Sharma, R K

    2016-04-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species. PMID:27182135

  11. Advances in reproductive biotechnologies.

    PubMed

    Choudhary, K K; Kavya, K M; Jerome, A; Sharma, R K

    2016-04-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species.

  12. Advances in reproductive biotechnologies

    PubMed Central

    Choudhary, K. K.; Kavya, K. M.; Jerome, A.; Sharma, R. K.

    2016-01-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species. PMID:27182135

  13. Reproductive efficiency and shade avoidance plasticity under simulated competition.

    PubMed

    Fazlioglu, Fatih; Al-Namazi, Ali; Bonser, Stephen P

    2016-07-01

    Plant strategy and life-history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life-history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life-history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants.

  14. Reproductive efficiency and shade avoidance plasticity under simulated competition.

    PubMed

    Fazlioglu, Fatih; Al-Namazi, Ali; Bonser, Stephen P

    2016-07-01

    Plant strategy and life-history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life-history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life-history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants. PMID:27547325

  15. Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing.

    PubMed

    Lumer, E D; Edelman, G M; Tononi, G

    1997-01-01

    Activity in the mammalian thalamocortical system is often accompanied by a synchronous discharge of cortical and thalamic neurons. Although many functions have been attributed to such synchronous firing, it is not known whether or how synchrony of firing per se affects thalamocortical operations. Direct experimental tests of the consequences of neuronal synchronization in vivo are hard to carry out, whereas theoretical studies based on single-neuron models cannot reveal the effects of synchrony at the system level. To overcome these limitations, we have used a perturbational approach to test the causal efficacy of synchrony per se in large-scale simulations of the thalamocortical system. The test consists of selectively disrupting firing synchrony by 'jittering' the timing of action potentials in the simulations and determining whether firing rates are modified by this perturbation. The simulations are based in detail on the known anatomy and physiology of the thalamocortical-visual system of the cat, and have been shown in a companion paper to produce episodes of fast synchronous activity at multiple levels. By carrying out the perturbation analysis, we established that neurons can have long membrane time constants (8-16 ms) and balanced synaptic activations, and yet function collectively in such a way that synchrony within a time window of 4 ms significantly affects the rates and selectivity of the responses to visual stimuli. The simulations also revealed a complex interplay, at the network level, between synchrony of firing and rate of firing. The dynamic consequences of firing synchrony were most evident when spike jittering was applied to specific polysynaptic loops involving corticocortical and corticothalamic connections. These results support the view that firing synchrony within thalamocortical and corticocortical loops plays a causal role in the cooperative and competitive neural interactions that produce pattern-selective responses in the cortex.

  16. Efficient reproduction of cynomolgus monkey using pronuclear embryo transfer technique.

    PubMed

    Sun, Qiang; Dong, Juan; Yang, Wenting; Jin, Yujuan; Yang, Mingying; Wang, Yan; Wang, Philip L; Hu, Yinghe; Tsien, Joe Z

    2008-09-01

    One of the technical bottlenecks in producing nonhuman primate models is that current assisted reproductive techniques, such as in vitro culture and frozen conservation of multicell-stage embryos, often result in poor embryo quality and subsequently lead to low birth rates. We investigated whether pronuclear embryo transfer can be used as an effective means for improving pregnancy and live birth rates of nonhuman primates. We collected 174 metaphase II oocytes by laparoscopy from 22 superovulated mature females and then fertilized these eggs using either in vitro fertilization or intracytoplasmic sperm injection, resulting in a 33.3% and a 50% fertilization rate, respectively. These 66 fertilized pronuclear-stage embryos were then tubally transferred to 30 recipients and led to 7 births and 1 abortion. Importantly, we observed that the highest live birth rate of approximately 64% was obtained when the transfer of pronuclear embryos was performed in the presence of new corpus luteum in the ovary of recipients between 24 h and 36 h after estradiol peak. Therefore, our experiments demonstrate that by matching the critical time window in the recipient's reproductive cycle for achieving optimal embryo-uterine synchrony, pronuclear embryo transfer technology can significantly improve the pregnancy rate and live birth of healthy baby monkeys. This efficient method should be valuable to the systematic efforts in construction of various transgenic primate disease models. PMID:18725640

  17. Efficient reproduction of cynomolgus monkey using pronuclear embryo transfer technique

    PubMed Central

    Sun, Qiang; Dong, Juan; Yang, Wenting; Jin, Yujuan; Yang, Mingying; Wang, Yan; Wang, Philip L.; Hu, Yinghe; Tsien, Joe Z.

    2008-01-01

    One of the technical bottlenecks in producing nonhuman primate models is that current assisted reproductive techniques, such as in vitro culture and frozen conservation of multicell-stage embryos, often result in poor embryo quality and subsequently lead to low birth rates. We investigated whether pronuclear embryo transfer can be used as an effective means for improving pregnancy and live birth rates of nonhuman primates. We collected 174 metaphase II oocytes by laparoscopy from 22 superovulated mature females and then fertilized these eggs using either in vitro fertilization or intracytoplasmic sperm injection, resulting in a 33.3% and a 50% fertilization rate, respectively. These 66 fertilized pronuclear-stage embryos were then tubally transferred to 30 recipients and led to 7 births and 1 abortion. Importantly, we observed that the highest live birth rate of ≈64% was obtained when the transfer of pronuclear embryos was performed in the presence of new corpus luteum in the ovary of recipients between 24 h and 36 h after estradiol peak. Therefore, our experiments demonstrate that by matching the critical time window in the recipient's reproductive cycle for achieving optimal embryo-uterine synchrony, pronuclear embryo transfer technology can significantly improve the pregnancy rate and live birth of healthy baby monkeys. This efficient method should be valuable to the systematic efforts in construction of various transgenic primate disease models. PMID:18725640

  18. A new approach for the quantification of synchrony of multivariate non-stationary psychophysiological variables during emotion eliciting stimuli

    PubMed Central

    Kelava, Augustin; Muma, Michael; Deja, Marlene; Dagdagan, Jack Y.; Zoubir, Abdelhak M.

    2015-01-01

    Emotion eliciting situations are accompanied by changes of multiple variables associated with subjective, physiological and behavioral responses. The quantification of the overall simultaneous synchrony of psychophysiological reactions plays a major role in emotion theories and has received increased attention in recent years. From a psychometric perspective, the reactions represent multivariate non-stationary intra-individual time series. In this paper, a new time-frequency based latent variable approach for the quantification of the synchrony of the responses is presented. The approach is applied to empirical data, collected during an emotion eliciting situation. The results are compared with a complementary inter-individual approach of Hsieh et al. (2011). Finally, the proposed approach is discussed in the context of emotion theories, and possible future applications and limitations are provided. PMID:25653624

  19. Vitamin D and male reproduction.

    PubMed

    Blomberg Jensen, Martin

    2014-03-01

    Vitamin D is a versatile signalling molecule with a well-established role in the regulation of calcium homeostasis and bone health. The spectrum of vitamin D target organs has expanded and the reproductive role of vitamin D is highlighted by expression of the vitamin D receptor (VDR) and enzymes that metabolize vitamin D in testis, male reproductive tract and human spermatozoa. The expression levels of VDR and CYP24A1 in human spermatozoa serve as positive predictive markers of semen quality, and VDR mediates a nongenomic increase in intracellular calcium concentration that induces sperm motility. Interestingly, functional animal models show that vitamin D is important for estrogen signalling and sperm motility, while cross-sectional studies support the positive association between serum 25-hydroxyvitamin D level and sperm motility in both fertile and infertile men. Expression of VDR and enzymes that metabolize vitamin D in fetal testis indicates a yet unknown role during development, which may be extrapolated from invasive testicular germ cell tumours where 1α,25-dihydroxyvitamin D induces a mesodermal differentiation of the pluripotent testicular cancer cells. Taken together, vitamin D signalling has a positive effect on semen quality, increases estrogen responsiveness and differentiates germ cell tumours. Future studies are needed to determine when 1α,25-dihydroxyvitamin D acts in a paracrine manner and whether systemic changes, which are subject to pharmacological modulation, could influence male reproductive function.

  20. Sexual Reproduction and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the second edition of Plant Propagation Concepts and Laboratory Exercises, we have combined the first edition chapters 36: Sexual Reproduction in Angiosperms and 37: Breeding Horticultural Plants into the present single chapter Sexual Reproduction and Breeding. These topics are so closely relate...

  1. Reproductive Physiology of Marsupials

    ERIC Educational Resources Information Center

    Sharman, G. B.

    1970-01-01

    Describes some unique features of marsupial reproduction which include (1) chromosomal sex determination, (2) reproductive system, (3) birth, (4) location, and (5) embryonic diapause. These features suggest that viviparity evolved separately in eutherian and marsupial stocks after their derivation from a common oviparous ancestor. Bibliography.…

  2. Aerial photographic reproductions

    USGS Publications Warehouse

    U.S. Geological Survey

    1971-01-01

    Geological Survey vertical aerial photography is obtained primarily for topographic and geologic mapping. Reproductions from this photography are usually satisfactory for general use. Because reproductions are not stocked, but are custom processed for each order, they cannot be returned for credit or refund.

  3. The Reproduction of Intelligence

    ERIC Educational Resources Information Center

    Meisenberg, Gerhard

    2010-01-01

    Although a negative relationship between fertility and education has been described consistently in most countries of the world, less is known about the relationship between intelligence and reproductive outcomes. Also the paths through which intelligence influences reproductive outcomes are uncertain. The present study uses the NLSY79 to analyze…

  4. Work and Reproduction

    PubMed Central

    Prossin, Albert

    1986-01-01

    This article presents a short overview of the area of work effects on reproduction. Much speculation and confusion exist in this area of the relationship between the physical and social effects of work and the health of the elements of reproduction. Fulfilling the need for increased resources for research in this challenging and interesting area is most desirable. PMID:21267324

  5. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance.

    PubMed

    Robertson, Gail S; Bolton, Mark; Morrison, Paul; Monaghan, Pat

    2015-01-01

    Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance) influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii) were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis). With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes in the

  6. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance

    PubMed Central

    Robertson, Gail S.; Bolton, Mark; Morrison, Paul; Monaghan, Pat

    2015-01-01

    Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance) influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii) were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis). With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes in the

  7. Assessment of Male Reproductive Toxicity##

    EPA Science Inventory

    This review covers all aspects of male reproductive toxicology. It begins with an overview of male reproductive biology and then transitions to the considerations of conducting male reproductive toxicology studies. We discuss multigenerational study as proposed in EPAs harmoniz...

  8. Judged and Remembered Trustworthiness of Faces Is Enhanced by Experiencing Multisensory Synchrony and Asynchrony in the Right Order

    PubMed Central

    Toscano, Hugo; Schubert, Thomas W.

    2015-01-01

    This work builds on the enfacement effect. This effect occurs when experiencing a rhythmic stimulation on one’s cheek while seeing someone else’s face being touched in a synchronous way. This typically leads to cognitive and social-cognitive effects similar to self-other merging. In two studies, we demonstrate that this multisensory stimulation can change the evaluation of the other’s face. In the first study, participants judged the stranger’s face and similar faces as being more trustworthy after synchrony, but not after asynchrony. Synchrony interacted with the order of the stroking; hence trustworthiness only changed when the synchronous stimulation occurred before the asynchronous one. In the second study, a synchronous stimulation caused participants to remember the stranger’s face as more trustworthy, but again only when the synchronous stimulation came before the asynchronous one. The results of both studies show that order of stroking creates a context in which multisensory synchrony can affect the trustworthiness of faces. PMID:26716682

  9. Influenza epidemics in Iceland over 9 decades: changes in timing and synchrony with the United States and Europe.

    PubMed

    Weinberger, Daniel M; Krause, Tyra Grove; Mølbak, Kåre; Cliff, Andrew; Briem, Haraldur; Viboud, Cécile; Gottfredsson, Magnus

    2012-10-01

    Influenza epidemics exhibit a strongly seasonal pattern, with winter peaks that occur with similar timing across temperate areas of the Northern Hemisphere. This synchrony could be influenced by population movements, environmental factors, host immunity, and viral characteristics. The historical isolation of Iceland and subsequent increase in international contacts make it an ideal setting to study epidemic timing. The authors evaluated changes in the timing and regional synchrony of influenza epidemics using mortality and morbidity data from Iceland, North America, and Europe during the period from 1915 to 2007. Cross-correlations and wavelet analyses highlighted 2 major changes in influenza epidemic patterns in Iceland: first was a shift from nonseasonal epidemics prior to the 1930s to a regular winter-seasonal pattern, and second was a change in the early 1990s when a 1-month lag between Iceland and the United States and Europe was no longer detectable with monthly data. There was a moderate association between increased synchrony and the number of foreign visitors to Iceland, providing a plausible explanation for the second shift in epidemic timing. This suggests that transportation might have a minor effect on epidemic timing, but efforts to restrict air travel during influenza epidemics would likely have a limited impact, even for island populations.

  10. How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory oscillators.

    PubMed

    Kriener, Birgit

    2012-09-01

    Under which conditions can a network of pulse-coupled oscillators sustain stable collective activity states? Previously, it was shown that stability of the simplest pattern conceivable, i.e., global synchrony, in networks of symmetrically pulse-coupled oscillators can be decided in a rigorous mathematical fashion, if interactions either all advance or all retard oscillation phases ("mono-interaction network"). Yet, many real-world networks-for example neuronal circuits-are asymmetric and moreover crucially feature both types of interactions. Here, we study complex networks of excitatory (phase-advancing) and inhibitory (phase-retarding) leaky integrate-and-fire (LIF) oscillators. We show that for small coupling strength, previous results for mono-interaction networks also apply here: pulse time perturbations eventually decay if they are smaller than a transmission delay and if all eigenvalues of the linear stability operator have absolute value smaller or equal to one. In this case, the level of inhibition must typically be significantly stronger than that of excitation to ensure local stability of synchrony. For stronger coupling, however, network synchrony eventually becomes unstable to any finite perturbation, even if inhibition is strong and all eigenvalues of the stability operator are at most unity. This new type of instability occurs when any oscillator, inspite of receiving inhibitory input from the network on average, can by chance receive sufficient excitatory input to fire a pulse before all other pulses in the system are delivered, thus breaking the near-synchronous perturbation pattern.

  11. How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory oscillators

    NASA Astrophysics Data System (ADS)

    Kriener, Birgit

    2012-09-01

    Under which conditions can a network of pulse-coupled oscillators sustain stable collective activity states? Previously, it was shown that stability of the simplest pattern conceivable, i.e., global synchrony, in networks of symmetrically pulse-coupled oscillators can be decided in a rigorous mathematical fashion, if interactions either all advance or all retard oscillation phases ("mono-interaction network"). Yet, many real-world networks—for example neuronal circuits—are asymmetric and moreover crucially feature both types of interactions. Here, we study complex networks of excitatory (phase-advancing) and inhibitory (phase-retarding) leaky integrate-and-fire (LIF) oscillators. We show that for small coupling strength, previous results for mono-interaction networks also apply here: pulse time perturbations eventually decay if they are smaller than a transmission delay and if all eigenvalues of the linear stability operator have absolute value smaller or equal to one. In this case, the level of inhibition must typically be significantly stronger than that of excitation to ensure local stability of synchrony. For stronger coupling, however, network synchrony eventually becomes unstable to any finite perturbation, even if inhibition is strong and all eigenvalues of the stability operator are at most unity. This new type of instability occurs when any oscillator, inspite of receiving inhibitory input from the network on average, can by chance receive sufficient excitatory input to fire a pulse before all other pulses in the system are delivered, thus breaking the near-synchronous perturbation pattern.

  12. Growth Models of Dyadic Synchrony and Mother-Child Vagal Tone in the Context of Parenting At-Risk

    PubMed Central

    Giuliano, Ryan J.; Skowron, Elizabeth A.; Berkman, Elliot T.

    2015-01-01

    We used multilevel modeling to examine dynamic changes in respiratory sinus arrhythmia (RSA) and observer-coded interactive synchrony for mother-child dyads engaged in a laboratory interaction, to characterize parenting-at-risk. Seventy-nine preschooler-mother dyads including a subset with documented child maltreatment (CM; n=43) were observed completing a joint puzzle task while physiological measures were recorded. Dyads led by CM mothers showed decreases in positive synchrony over time, whereas no variation was observed in non-CM dyads. Growth models of maternal RSA indicated that mothers who maintained high levels of positive interactive synchrony with their child evidenced greater RSA reactivity, characterized by an initial withdrawal followed by augmentation as the task progressed, after accounting for CM group status. These results help to clarify patterns of RSA responding in the context of caregiver-child interactions, and demonstrate the importance of modeling dynamic changes in physiology over time in order to better understanding biological correlates of parenting-at-risk. PMID:25542759

  13. Movement Coordination in Psychotherapy: Synchrony of Hand Movements is Associated with Session Outcome. A Single-Case Study.

    PubMed

    Ramseyer, Fabian; Tschacher, Wolfgang

    2016-04-01

    Previous work has shown that nonverbal behavior was associated with both session-level outcome and global outcome in psychotherapy. Nonverbal synchrony--here the coordination between patient's and psychotherapist's movement behavior--is a facet of nonverbal behavior that has recently been studied with video-based motion energy analysis (MEA). The present study aimed to replicate and extend these findings by using direct acquisition of movement data. In a single-case analysis, we monitored patient's and therapist's hand movements with a high-resolution accelerometric measurement system (Vitaport (r)). In addition to these behavioral data, both patient and therapist provided session-level ratings of various factors relevant to the psychotherapy process, which were assessed with post-session questionnaires. The patient-therapist coordination of hand movements, i.e. nonverbal synchrony, in (N = 27) sessions of this dyadic psychotherapy was positively associated with progress reported in post-session questionnaires. Sessions with good evaluations concerning the quality of therapeutic alliance were characterized by high movement coordination. Thus, accelerometric data of this therapy dyad confirmed previous findings gained through video analyses: The coordination of nonverbal behavior shown by patient and therapist was an indicator of beneficial processes occurring within sessions. This replication study showed that nonverbal synchrony embodies important aspects of the alliance. Its assessment and quantification may provide therapists important additional information on processes that usually occur outside conscious awareness, but that nevertheless influence core aspects of the therapy.

  14. Movement Coordination in Psychotherapy: Synchrony of Hand Movements is Associated with Session Outcome. A Single-Case Study.

    PubMed

    Ramseyer, Fabian; Tschacher, Wolfgang

    2016-04-01

    Previous work has shown that nonverbal behavior was associated with both session-level outcome and global outcome in psychotherapy. Nonverbal synchrony--here the coordination between patient's and psychotherapist's movement behavior--is a facet of nonverbal behavior that has recently been studied with video-based motion energy analysis (MEA). The present study aimed to replicate and extend these findings by using direct acquisition of movement data. In a single-case analysis, we monitored patient's and therapist's hand movements with a high-resolution accelerometric measurement system (Vitaport (r)). In addition to these behavioral data, both patient and therapist provided session-level ratings of various factors relevant to the psychotherapy process, which were assessed with post-session questionnaires. The patient-therapist coordination of hand movements, i.e. nonverbal synchrony, in (N = 27) sessions of this dyadic psychotherapy was positively associated with progress reported in post-session questionnaires. Sessions with good evaluations concerning the quality of therapeutic alliance were characterized by high movement coordination. Thus, accelerometric data of this therapy dyad confirmed previous findings gained through video analyses: The coordination of nonverbal behavior shown by patient and therapist was an indicator of beneficial processes occurring within sessions. This replication study showed that nonverbal synchrony embodies important aspects of the alliance. Its assessment and quantification may provide therapists important additional information on processes that usually occur outside conscious awareness, but that nevertheless influence core aspects of the therapy. PMID:27033131

  15. Passive Synaptic Normalization and Input Synchrony-Dependent Amplification of Cortical Feedback in Thalamocortical Neuron Dendrites

    PubMed Central

    Connelly, William M.; Crunelli, Vincenzo

    2016-01-01

    Thalamocortical neurons have thousands of synaptic connections from layer VI corticothalamic neurons distributed across their dendritic trees. Although corticothalamic synapses provide significant excitatory input, it remains unknown how different spatial and temporal input patterns are integrated by thalamocortical neurons. Using dendritic recording, 2-photon glutamate uncaging, and computational modeling, we investigated how rat dorsal lateral geniculate nucleus thalamocortical neurons integrate excitatory corticothalamic feedback. We find that unitary corticothalamic inputs produce small somatic EPSPs whose amplitudes are passively normalized and virtually independent of the site of origin within the dendritic tree. Furthermore, uncaging of MNI glutamate reveals that thalamocortical neurons have postsynaptic voltage-dependent mechanisms that can amplify integrated corticothalamic input. These mechanisms, involving NMDA receptors and T-type Ca2+ channels, require temporally synchronous synaptic activation but not spatially coincident input patterns. In hyperpolarized thalamocortical neurons, T-type Ca2+ channels produce nonlinear amplification of temporally synchronous inputs, whereas asynchronous inputs are not amplified. At depolarized potentials, the input–output function for synchronous synaptic input is linear but shows enhanced gain due to activity-dependent recruitment of NMDA receptors. Computer simulations reveal that EPSP amplification by T-type Ca2+ channels and NMDA receptors occurs when synaptic inputs are either clustered onto individual dendrites or when they are distributed throughout the dendritic tree. Consequently, postsynaptic EPSP amplification mechanisms limit the “modulatory” effects of corticothalamic synaptic inputs on thalamocortical neuron membrane potential and allow these synapses to act as synchrony-dependent “drivers” of thalamocortical neuron firing. These complex thalamocortical input–output transformations

  16. Climate change and seasonal reproduction in mammals.

    PubMed

    Bronson, F H

    2009-11-27

    Seasonal reproduction is common among mammals at all latitudes, even in the deep tropics. This paper (i) discusses the neuroendocrine pathways via which foraging conditions and predictive cues such as photoperiod enforce seasonality, (ii) considers the kinds of seasonal challenges mammals actually face in natural habitats, and (iii) uses the information thus generated to suggest how seasonal reproduction might be influenced by global climate change. Food availability and ambient temperature determine energy balance, and variation in energy balance is the ultimate cause of seasonal breeding in all mammals and the proximate cause in many. Photoperiodic cueing is common among long-lived mammals from the highest latitudes down to the mid-tropics. It is much less common in shorter lived mammals at all latitudes. An unknown predictive cue triggers reproduction in some desert and dry grassland species when it rains. The available information suggests that as our climate changes the small rodents of the world may adapt rather easily but the longer lived mammals whose reproduction is regulated by photoperiod may not do so well. A major gap in our knowledge concerns the tropics; that is where most species live and where we have the least understanding of how reproduction is regulated by environmental factors.

  17. Leptin in reproduction.

    PubMed

    Caprio, M; Fabbrini, E; Isidori, A M; Aversa, A; Fabbri, A

    2001-03-01

    In mammals, the function of the reproductive system is dependent on the availability of energy in the environment. It is well established that acute modifications of energy balance modulate the hypothalamic-pituitary-gonadal axis. In several species, fasting and caloric restriction have been shown to cause the suppression of pulsatile luteinizing hormone secretion, via an inhibition of the gonadotropin-releasing hormone pulse generator. Such a mechanism probably prevents energy being wasted for reproduction. By contrast, excessive energy storage and obesity interfere with the correct regulation of the reproductive axis. The identification of leptin and leptin receptors, along with studies performed in animal models of leptin deficiency and resistance, has focused attention on the role of this molecule in reproduction, and disclosed new aspects of the relationship between energy stores, adipose tissue and reproductive function. Here, we discuss the central and peripheral effects of leptin on reproductive tissues, and try to fit a complex reality into a simplified model. In particular, the roles of leptin in reproduction at different anatomical levels and in various clinical and experimental settings are discussed.

  18. Reproductive strategies in snakes.

    PubMed Central

    Shine, Richard

    2003-01-01

    Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies. PMID:12803888

  19. Cross-frequency phase synchrony around the saccade period as a correlate of perceiver's internal state

    PubMed Central

    Nakatani, Chie; Chehelcheraghi, Mojtaba; Jarrahi, Behnaz; Nakatani, Hironori; van Leeuwen, Cees

    2013-01-01

    In active vision, eye-movements depend on perceivers' internal state. We investigated peri-fixation brain activity for internal state-specific tagging. Human participants performed a task, in which a visual object was presented for identification in lateral visual field, to which they moved their eyes as soon as possible from a central fixation point. Next, a phrase appeared in the same location; the phrase could either be an easy or hard question about the object, answered by pressing one of two alternative response buttons, or it could be an instruction to simply press one of these two buttons. Depending on whether these messages were blocked or randomly mixed, one of two different internal states was induced: either the task was known in advance or it wasn't. Eye movements and electroencephalogram (EEG) were recorded simultaneously during task performance. Using eye-event-time-locked averaging and independent component analysis, saccade- and fixation-related components were identified. Coss-frequency phase-synchrony was observed between the alpha/beta1 ranges of fixation-related and beta2/gamma1 ranges of saccade-related activity 50 ms prior to fixation onset in the mixed-phrase condition only. We interpreted this result as evidence for internal state-specific tagging. PMID:23754990

  20. Probing the causal role of prestimulus interregional synchrony for perceptual integration via tACS

    PubMed Central

    Stonkus, Rolandas; Braun, Verena; Kerlin, Jess R.; Volberg, Gregor; Hanslmayr, Simon

    2016-01-01

    The phase of prestimulus oscillations at 7–10 Hz has been shown to modulate perception of briefly presented visual stimuli. Specifically, a recent combined EEG-fMRI study suggested that a prestimulus oscillation at around 7 Hz represents open and closed windows for perceptual integration by modulating connectivity between lower order occipital and higher order parietal brain regions. We here utilized brief event-related transcranial alternating current stimulation (tACS) to specifically modulate this prestimulus 7 Hz oscillation, and the synchrony between parietal and occipital brain regions. To this end we tested for a causal role of this particular prestimulus oscillation for perceptual integration. The EEG was acquired at the same time allowing us to investigate frequency specific after effects phase-locked to stimulation offset. On a behavioural level our results suggest that tACS did modulate perceptual integration, however, in an unexpected manner. On an electrophysiological level our results suggest that brief tACS does induce oscillatory entrainment, as visible in frequency specific activity phase-locked to stimulation offset. Together, our results do not strongly support a causal role of prestimulus 7 Hz oscillations for perceptual integration. However, our results suggest that brief tACS is capable of modulating oscillatory activity in a temporally sensitive manner. PMID:27616188

  1. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice

    PubMed Central

    Lutz, Antoine; Greischar, Lawrence L.; Rawlings, Nancy B.; Ricard, Matthieu; Davidson, Richard J.

    2004-01-01

    Practitioners understand “meditation,” or mental training, to be a process of familiarization with one's own mental life leading to long-lasting changes in cognition and emotion. Little is known about this process and its impact on the brain. Here we find that long-term Buddhist practitioners self-induce sustained electroencephalographic high-amplitude gamma-band oscillations and phase-synchrony during meditation. These electroencephalogram patterns differ from those of controls, in particular over lateral frontoparietal electrodes. In addition, the ratio of gamma-band activity (25-42 Hz) to slow oscillatory activity (4-13 Hz) is initially higher in the resting baseline before meditation for the practitioners than the controls over medial frontoparietal electrodes. This difference increases sharply during meditation over most of the scalp electrodes and remains higher than the initial baseline in the postmeditation baseline. These data suggest that mental training involves temporal integrative mechanisms and may induce short-term and long-term neural changes. PMID:15534199

  2. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice.

    PubMed

    Lutz, Antoine; Greischar, Lawrence L; Rawlings, Nancy B; Ricard, Matthieu; Davidson, Richard J

    2004-11-16

    Practitioners understand "meditation," or mental training, to be a process of familiarization with one's own mental life leading to long-lasting changes in cognition and emotion. Little is known about this process and its impact on the brain. Here we find that long-term Buddhist practitioners self-induce sustained electroencephalographic high-amplitude gamma-band oscillations and phase-synchrony during meditation. These electroencephalogram patterns differ from those of controls, in particular over lateral frontoparietal electrodes. In addition, the ratio of gamma-band activity (25-42 Hz) to slow oscillatory activity (4-13 Hz) is initially higher in the resting baseline before meditation for the practitioners than the controls over medial frontoparietal electrodes. This difference increases sharply during meditation over most of the scalp electrodes and remains higher than the initial baseline in the postmeditation baseline. These data suggest that mental training involves temporal integrative mechanisms and may induce short-term and long-term neural changes.

  3. Synchrony and Divergence in Stream Metabolism across the Continental United States

    NASA Astrophysics Data System (ADS)

    Appling, A.; Read, J. S.; Hall, R. O., Jr.; Stets, E.; Stanley, E. H.; Bernhardt, E. S.; Heffernan, J. B.; Arroita, M.; Griffiths, N.; Harvey, J. W.; Lorenz, D. L.; Winslow, L.; Yackulic, C. B.

    2015-12-01

    River and stream ecosystems experience highly variable inputs of water, nutrients, organic matter, heat, and light over the scales of hours to storms to seasons. Despite the unstable physical and chemical environments of such ecosystems, benthic and pelagic communities persist and even thrive. Whole-stream metabolism estimates allow us to quantify the overall activity of these diverse and responsive communities. They also provide a holistic way to assess how the temporal patterns of that activity are structured by streams' dynamic hydrology and resource availability. We synthesized continental-scale datasets of high-frequency dissolved oxygen, discharge, water temperature, and light to estimate metabolism in over 200 streams to answer the question, "What are the drivers of synchrony and divergence in the temporal patterns of metabolism among streams of North America?" We find that short-term disturbances in the form of storms and cloudy days have strong proximate, dampening effects on whole-ecosystem metabolism; however, despite these strong proximate effects, streams with similar resource and discharge regimes are largely synchronous in their overall seasonal patterns. The median date of peak gross primary productivity is close to the summer solstice in June, while ecosystem respiration has two most-common annual peaks, one in early spring and another in mid fall. These differences in peak timing point to systematic differences at the continental scale in the timing of light versus organic matter availability, with consequent seasonality in net ecosystem productivity.

  4. Synchrony between fruit maturation and effective dispersers' foraging activity increases seed protection against seed predators

    PubMed Central

    Boulay, Raphaël; Carro, Francisco; Soriguer, Ramón C; Cerdá, Xim

    2007-01-01

    The evolution of pollination and seed dispersal mutualisms is conditioned by the spatial and temporal co-occurrence of animals and plants. In the present study we explore the timing of seed release of a myrmecochorous plant (Helleborus foetidus) and ant activity in two populations in southern Spain during 2 consecutive years. The results indicate that fruit dehiscence and seed shedding occur mostly in the morning and correspond to the period of maximum foraging activity of the most effective ant dispersers. By contrast, ant species that do not transport seeds and/or that do not abound near the plants are active either before or after H. foetidus diaspores are released. Experimental analysis of diet preference for three kinds of food shows that effective ant dispersers are mostly scavengers that readily feed on insect corpses and sugars. Artificial seed depots suggest that seeds deposited on the ground out of the natural daily time window of diaspore releasing are not removed by ants and suffer strong predation by nocturnal rodents Apodemus sylvaticus. Nevertheless, important inter-annual variations in rodent populations cast doubts on their real importance as selection agents. We argue that traits allowing synchrony between seed presentation and effective partners may constitute a crucial pre-adaptation for the evolution of plant–animal mutualisms involving numerous animal partners. PMID:17698486

  5. Microsaccades enable efficient synchrony-based coding in the retina: a simulation study

    PubMed Central

    Masquelier, Timothée; Portelli, Geoffrey; Kornprobst, Pierre

    2016-01-01

    It is now reasonably well established that microsaccades (MS) enhance visual perception, although the underlying neuronal mechanisms are unclear. Here, using numerical simulations, we show that MSs enable efficient synchrony-based coding among the primate retinal ganglion cells (RGC). First, using a jerking contrast edge as stimulus, we demonstrate a qualitative change in the RGC responses: synchronous firing, with a precision in the 10 ms range, only occurs at high speed and high contrast. MSs appear to be sufficiently fast to be able reach the synchronous regime. Conversely, the other kinds of fixational eye movements known as tremor and drift both hardly synchronize RGCs because of a too weak amplitude and a too slow speed respectively. Then, under natural image stimulation, we find that each MS causes certain RGCs to fire synchronously, namely those whose receptive fields contain contrast edges after the MS. The emitted synchronous spike volley thus rapidly transmits the most salient edges of the stimulus, which often constitute the most crucial information. We demonstrate that the readout could be done rapidly by simple coincidence-detector neurons without knowledge of the MS landing time, and that the required connectivity could emerge spontaneously with spike timing-dependent plasticity. PMID:27063867

  6. Probing the causal role of prestimulus interregional synchrony for perceptual integration via tACS.

    PubMed

    Stonkus, Rolandas; Braun, Verena; Kerlin, Jess R; Volberg, Gregor; Hanslmayr, Simon

    2016-01-01

    The phase of prestimulus oscillations at 7-10 Hz has been shown to modulate perception of briefly presented visual stimuli. Specifically, a recent combined EEG-fMRI study suggested that a prestimulus oscillation at around 7 Hz represents open and closed windows for perceptual integration by modulating connectivity between lower order occipital and higher order parietal brain regions. We here utilized brief event-related transcranial alternating current stimulation (tACS) to specifically modulate this prestimulus 7 Hz oscillation, and the synchrony between parietal and occipital brain regions. To this end we tested for a causal role of this particular prestimulus oscillation for perceptual integration. The EEG was acquired at the same time allowing us to investigate frequency specific after effects phase-locked to stimulation offset. On a behavioural level our results suggest that tACS did modulate perceptual integration, however, in an unexpected manner. On an electrophysiological level our results suggest that brief tACS does induce oscillatory entrainment, as visible in frequency specific activity phase-locked to stimulation offset. Together, our results do not strongly support a causal role of prestimulus 7 Hz oscillations for perceptual integration. However, our results suggest that brief tACS is capable of modulating oscillatory activity in a temporally sensitive manner. PMID:27616188

  7. Spatial synchrony of malaria outbreaks in a highland region of Ethiopia.

    PubMed

    Wimberly, Michael C; Midekisa, Alemayehu; Semuniguse, Paulos; Teka, Hiwot; Henebry, Geoffrey M; Chuang, Ting-Wu; Senay, Gabriel B

    2012-10-01

    To understand the drivers and consequences of malaria in epidemic-prone regions, it is important to know whether epidemics emerge independently in different areas as a consequence of local contingencies, or whether they are synchronised across larger regions as a result of climatic fluctuations and other broad-scale drivers. To address this question, we collected historical malaria surveillance data for the Amhara region of Ethiopia and analysed them to assess the consistency of various indicators of malaria risk and determine the dominant spatial and temporal patterns of malaria within the region. We collected data from a total of 49 districts from 1999-2010. Data availability was better for more recent years and more data were available for clinically diagnosed outpatient malaria cases than confirmed malaria cases. Temporal patterns of outpatient malaria case counts were correlated with the proportion of outpatients diagnosed with malaria and confirmed malaria case counts. The proportion of outpatients diagnosed with malaria was spatially clustered, and these cluster locations were generally consistent from year to year. Outpatient malaria cases exhibited spatial synchrony at distances up to 300 km, supporting the hypothesis that regional climatic variability is an important driver of epidemics. Our results suggest that decomposing malaria risk into separate spatial and temporal components may be an effective strategy for modelling and forecasting malaria risk across large areas. They also emphasise both the value and limitations of working with historical surveillance datasets and highlight the importance of enhancing existing surveillance efforts.

  8. Super El Nino - a synchrony of Indian Ocean Dipole and ENSO dynamics?

    NASA Astrophysics Data System (ADS)

    Hameed, Saji; Dachao, Jin; Thilakan, Vishnu; An, KyongHee

    2016-04-01

    El Ninos significantly affect societies, economies and ecosystems on a global scale. The strongest of these events, hereafter super El Ninos, have disproportionately larger impacts. It is unclear whether a particular combination of climate states, either internal or external to the equatorial Pacific, is associated with the unique spatial and temporal characteristics of these events. This became clear in the case of the much anticipated 2014 super El Nino - although several hypothesized precursor climate states were present, the Pacific warming of 2014 did not develop into a super El Nino. Past studies using statistical analysis and coupled model experiments have pointed to the possible role of the Indian Ocean Dipole (IOD) in affecting El Nino. However, no direct observational evidence for the role of IOD has yet been found. Here we present for the first time strong and direct observational evidence for the distinct role of IOD dynamics in modulating El Nino evolution during co-occurring events. Further, we identify the key process in this interaction as an atmospheric Kelvin wave dominated downstream circulation forced by equatorial Indian Ocean convection. We propose that the synchrony of this IOD forced process with the inherent coupled dynamics in the Pacific associated with El Nino explains the strong intensity as well as the rapid evolution and termination of super El Ninos, along with their disproportionate global impacts. We discuss the implication of our findings for the ongoing El Nino event which has been projected to rival the 1997 super El Nino in strength and impacts.

  9. Top-down-directed synchrony from medial frontal cortex to nucleus accumbens during reward anticipation.

    PubMed

    Cohen, Michael X; Bour, Lo; Mantione, Mariska; Figee, Martijn; Vink, Matthijs; Tijssen, Marina A J; van Rootselaar, Anne-Fleur; van den Munckhof, Pepijn; Schuurman, P Richard; Denys, Damiaan

    2012-01-01

    The nucleus accumbens and medial frontal cortex (MFC) are part of a loop involved in modulating behavior according to anticipated rewards. However, the precise temporal landscape of their electrophysiological interactions in humans remains unknown because it is not possible to record neural activity from the nucleus accumbens using noninvasive techniques. We recorded electrophysiological activity simultaneously from the nucleus accumbens and cortex (via surface EEG) in humans who had electrodes implanted as part of deep-brain-stimulation treatment for obsessive-compulsive disorder. Patients performed a simple reward motivation task previously shown to activate the ventral striatum. Spectral Granger causality analyses were applied to dissociate "top-down" (cortex → nucleus accumbens)- from "bottom-up" (nucleus accumbens → cortex)-directed synchronization (functional connectivity). "Top-down"-directed synchrony from cortex to nucleus accumbens was maximal over medial frontal sites and was significantly stronger when rewards were anticipated. These findings provide direct electrophysiological evidence for a role of the MFC in modulating nucleus accumbens reward-related processing and may be relevant to understanding the mechanisms of deep-brain stimulation and its beneficial effects on psychiatric conditions. PMID:21547982

  10. The anti-predator role of within-nest emergence synchrony in sea turtle hatchlings

    PubMed Central

    Pinheiro, Hudson Tercio; Martins, Agnaldo Silva; Riul, Pablo; Bruno, Soraya Christina; Janzen, Fredric J.

    2016-01-01

    Group formation is a common behaviour among prey species. In egg-laying animals, despite the various factors that promote intra-clutch variation leading to asynchronous hatching and emergence from nests, synchronous hatching and emergence occurs in many taxa. This synchrony may be adaptive by reducing predation risk, but few data are available in any natural system, even for iconic examples of the anti-predator function of group formation. Here, we show for the first time that increased group size (number of hatchlings emerging together from a nest) reduces green turtle (Chelonia mydas) hatchling predation. This effect was only observed earlier in the night when predation pressure was greatest, indicated by the greatest predator abundance and a small proportion of predators preoccupied with consuming captured prey. Further analysis revealed that the effect of time of day was due to the number of hatchlings already killed in an evening; this, along with the apparent lack of other anti-predatory mechanisms for grouping, suggests that synchronous emergence from a nest appears to swamp predators, resulting in an attack abatement effect. Using a system with relatively pristine conditions for turtle hatchlings and their predators provides a more realistic environmental context within which intra-nest synchronous emergence has evolved. PMID:27383817

  11. Can hyper-synchrony in meditation lead to seizures? Similarities in meditative and epileptic brain states.

    PubMed

    Lindsay, Shane

    2014-10-01

    Meditation is used worldwide by millions of people for relaxation and stress relief. Given sufficient practice, meditators may also experience a variety of altered states of consciousness. These states can lead to a variety of unusual experiences, including physical, emotional and psychic disturbances. This paper highlights the correspondences between brain states associated with these experiences and the symptoms and neurophysiology of epileptic simple partial seizures. Seizures, like meditation practice, can result in both positive and negative experiences. The neurophysiology and chemistry underlying simple partial seizures are characterised by a high degree of excitability and high levels of neuronal synchrony in gamma-band brain activity. Following a survey of the literature that shows that meditation practice is also linked to high power gamma activity, an account of how meditation could cause such activity is provided. This paper discusses the diagnostic challenges for the claim that meditation practices lead to brain states similar to those found in epileptic seizures, and seeks to develop our understanding of the range of pathological and non-pathological states that result from a hyper-excited and hyper-synchronous brain.

  12. Did Terrestrial Diversification of Amoebas (Amoebozoa) Occur in Synchrony with Land Plants?

    PubMed Central

    Fiz-Palacios, Omar; Romeralo, Maria; Ahmadzadeh, Afsaneh; Weststrand, Stina; Ahlberg, Per Erik; Baldauf, Sandra

    2013-01-01

    Evolution of lineage diversification through time is an active area of research where much progress has been made in the last decade. Contrary to the situation in animals and plants little is known about how diversification rates have evolved in most major groups of protist. This is mainly due to uncertainty about phylogenetic relationships, scarcity of the protist fossil record and the unknown diversity within these lineages. We have analyzed the evolutionary history of the supergroup Amoebozoa over the last 1000 million years using molecular dating and species number estimates. After an origin in the marine environment we have dated the colonization of terrestrial habitats by three distinct lineages of Amoebozoa: Dictyostelia, Myxogastria and Arcellinida. The common ancestor of the two sister taxa, Dictyostelia and Myxogastria, appears to have existed before the colonization of land by plants. In contrast Arcellinida seems to have diversify in synchrony with land plant radiation, and more specifically with that of mosses. Detection of acceleration of diversification rates in Myxogastria and Arcellinida points to a co-evolution within the terrestrial habitats, where land plants and the amoebozoans may have interacted during the evolution of these new ecosystems. PMID:24040233

  13. Poorer resolution for audiotactile than for audiovisual synchrony detection in cluttered displays.

    PubMed

    Orchard-Mills, Emily; Van der Burg, Erik; Alais, David

    2016-07-01

    The brain integrates signals from multiple modalities to provide a reliable estimate of environmental events. A temporally cluttered environment presents a challenge for sensory integration because of the risk of misbinding, yet it also provides scope for cross-modal binding to greatly enhance performance by highlighting multimodal events. We present a tactile search task in which fingertips received pulsed vibrations and participants identified which finger was stimulated in synchrony with an auditory signal. Results showed that performance for identifying the target finger was impaired when other fingers were stimulated, even though all fingers were stimulated sequentially. When the number of fingers vibrated was fixed, we found that both spatial and temporal factors constrained performance, because events occurring close to the target vibration in either space or time reduced accuracy. When tactile search was compared with visual search, we found overall performance was lower in touch than in vision, although the cost of reducing temporal separation between stimuli or increasing the presentation rate was similar for both target modalities. Audiotactile performance benefitted from increasing spatial separation between target and distractors, with a particularly strong benefit for locating the target on a different hand to the distractors, whereas the spatial manipulations did not affect audiovisual performance. The similar trends in performance for temporal manipulations across vision and touch suggest a common supramodal binding mechanism that, when combining audition and touch, is limited by the poor resolution of the underlying unisensory representation of touch in cluttered settings. (PsycINFO Database Record PMID:26766511

  14. General Anesthetic Conditions Induce Network Synchrony and Disrupt Sensory Processing in the Cortex

    PubMed Central

    Lissek, Thomas; Obenhaus, Horst A.; Ditzel, Désirée A. W.; Nagai, Takeharu; Miyawaki, Atsushi; Sprengel, Rolf; Hasan, Mazahir T.

    2016-01-01

    General anesthetics are commonly used in animal models to study how sensory signals are represented in the brain. Here, we used two-photon (2P) calcium activity imaging with cellular resolution to investigate how neuronal activity in layer 2/3 of the mouse barrel cortex is modified under the influence of different concentrations of chemically distinct general anesthetics. Our results show that a high isoflurane dose induces synchrony in local neuronal networks and these cortical activity patterns closely resemble those observed in EEG recordings under deep anesthesia. Moreover, ketamine and urethane also induced similar activity patterns. While investigating the effects of deep isoflurane anesthesia on whisker and auditory evoked responses in the barrel cortex, we found that dedicated spatial regions for sensory signal processing become disrupted. We propose that our isoflurane-2P imaging paradigm can serve as an attractive model system to dissect cellular and molecular mechanisms that induce the anesthetic state, and it might also provide important insight into sleep-like brain states and consciousness. PMID:27147963

  15. The anti-predator role of within-nest emergence synchrony in sea turtle hatchlings.

    PubMed

    Santos, Robson G; Pinheiro, Hudson Tercio; Martins, Agnaldo Silva; Riul, Pablo; Bruno, Soraya Christina; Janzen, Fredric J; Ioannou, Christos C

    2016-07-13

    Group formation is a common behaviour among prey species. In egg-laying animals, despite the various factors that promote intra-clutch variation leading to asynchronous hatching and emergence from nests, synchronous hatching and emergence occurs in many taxa. This synchrony may be adaptive by reducing predation risk, but few data are available in any natural system, even for iconic examples of the anti-predator function of group formation. Here, we show for the first time that increased group size (number of hatchlings emerging together from a nest) reduces green turtle (Chelonia mydas) hatchling predation. This effect was only observed earlier in the night when predation pressure was greatest, indicated by the greatest predator abundance and a small proportion of predators preoccupied with consuming captured prey. Further analysis revealed that the effect of time of day was due to the number of hatchlings already killed in an evening; this, along with the apparent lack of other anti-predatory mechanisms for grouping, suggests that synchronous emergence from a nest appears to swamp predators, resulting in an attack abatement effect. Using a system with relatively pristine conditions for turtle hatchlings and their predators provides a more realistic environmental context within which intra-nest synchronous emergence has evolved. PMID:27383817

  16. Traces across the body: influence of music-dance synchrony on the observation of dance.

    PubMed

    Woolhouse, Matthew Harold; Lai, Rosemary

    2014-01-01

    In previous studies investigating entrainment and person perception, synchronized movements were found to enhance memory for incidental person attributes. Although this effect is robust, including in dance, the process by which it is actuated are less well understood. In this study, two hypotheses are investigated: that enhanced memory for person attributes is the result of (1) increased gaze time between in-tempo dancers; and/or (2) greater attentional focus between in-tempo dancers. To explore these possible mechanisms in the context of observing dance, an eye-tracking study was conducted in which subjects watched videos of pairs of laterally positioned dancers; only one of the dancers was synchronized with the music, the other being asynchronous. The results were consistent with the first hypothesis-music-dance synchrony gives rise to increased visual inspection times. In addition, there was a preference for upper-body fixations over lower-body fixations across both synchronous and asynchronous conditions. A subsequent, single-dancer eye-tracking study investigated fixations across different body regions, including head, torso, legs and feet. Significantly greater dwell times were recorded for head than torso and legs; feet attracted significantly less dwell time than any other body region. Lastly, the study sought to identify dance gestures responsible for torso- and head-directed fixations. Specifically we asked whether there are features in dance that are specially designed to direct an observer's gaze towards the face-the main "communicative portal" with respect to the transmission of intent, affect and empathy.

  17. Does Spike-Timing-Dependent Synaptic Plasticity Couple or Decouple Neurons Firing in Synchrony?

    PubMed Central

    Knoblauch, Andreas; Hauser, Florian; Gewaltig, Marc-Oliver; Körner, Edgar; Palm, Günther

    2012-01-01

    Spike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report an inherently decoupling influence of spike synchronization on synaptic connections of coactivated neurons. For example, bidirectional synaptic connections as found in cortical areas could be reproduced only by assuming realistic models of STDP and rate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realistic STDP models that provide a more complete characterization of conditions when STDP leads to either coupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistently couples synchronized neurons if key model parameters are matched to physiological data: First, synaptic potentiation must be significantly stronger than synaptic depression for small (positive or negative) time lags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficiently imprecise, for example, within a time window of 5–10 ms instead of 1 ms. Third, axonal propagation delays should not be much larger than dendritic delays. Under these assumptions synchronized neurons will be strongly coupled leading to a dominance of bidirectional synaptic connections even for simple STDP models and low mean firing rates at the level of spontaneous activity. PMID:22936909

  18. Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition

    PubMed Central

    Saalmann, Yuri B.

    2014-01-01

    The intralaminar and medial thalamic nuclei are part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The large mediodorsal thalamic nucleus predominantly connects with the prefrontal cortex, the adjacent intralaminar nuclei connect with fronto-parietal cortex, and the midline thalamic nuclei connect with medial prefrontal cortex and medial temporal lobe. Taking into account this connectivity pattern, it is not surprising that the intralaminar and medial thalamus has been implicated in a variety of cognitive functions, including memory processing, attention and orienting, as well as reward-based behavior. This review addresses how the intralaminar and medial thalamus may regulate information transmission in cortical circuits. A key neural mechanism may involve intralaminar and medial thalamic neurons modulating the degree of synchrony between different groups of cortical neurons according to behavioral demands. Such a thalamic-mediated synchronization mechanism may give rise to large-scale integration of information across multiple cortical circuits, consequently influencing the level of arousal and consciousness. Overall, the growing evidence supports a general role for the higher-order thalamus in the control of cortical information transmission and cognitive processing. PMID:24847225

  19. Human reproduction: Jewish perspectives.

    PubMed

    Schenker, Joseph G

    2013-11-01

    Developments in science and technology and corresponding clinical applications raise new religious questions, often without clear answers. The role of theology in bioethics is integral to clarify perceived attitudes toward these developments for different religious communities. The Jewish attitude towards procreation is derived from the first commandment of God to Adam to 'Be fruitful and multiply'. Judaism allows the practice of all techniques of assisted reproduction when the oocyte and spermatozoon originate from the wife and husband respectively. This paper presents the attitude of Jewish Law -- Halacha to therapeutic procedures, such as IVF-embryo transfer, spermatozoa, oocytes, embryo donation, cryopreservation of genetic material, surrogacy, posthumous reproduction, gender preselection, reproductive and therapeutic cloning.

  20. Temporal windows of reproductive opportunity reinforce species barriers in a marine broadcast spawning assemblage

    PubMed Central

    Monteiro, Carla A.; Paulino, Cristina; Jacinto, Rita; Serrão, Ester A.; Pearson, Gareth A.

    2016-01-01

    Prezygotic isolating mechanisms act to limit hybridization and maintain the genetic identity of closely-related species. While synchronous intraspecific spawning is a common phenomenon amongst marine organisms and plays an important role in reproductive success, asynchronous spawning between potentially hybridizing lineages may also be important in maintaining species boundaries. We tested this hypothesis by comparing reproductive synchrony over daily to hourly timescales in a sympatric assemblage of intertidal fucoid algae containing selfing hermaphroditic (Fucus spiralis and Fucus guiryi) and dioecious (Fucus vesiculosus and Fucus serratus) species. Our results confirm that gametes are released on semi-lunar cycles in all species. However, sister species with different mating systems showed asynchronous spawning at finer circadian timescales, thus providing evidence for a partial reproductive barrier between hermaphroditic and dioecious species. Finally, our data also emphasize the ecological, developmental, and/or physiological constraints that operate to restrict reproduction to narrow temporal windows of opportunity in the intertidal zone and more generally the role of ecological factors in marine speciation. PMID:27373816

  1. Experimental food supplementation reveals habitat-dependent male reproductive investment in a migratory bird.

    PubMed

    Kaiser, Sara A; Sillett, T Scott; Risk, Benjamin B; Webster, Michael S

    2015-03-22

    Environmental factors can shape reproductive investment strategies and influence the variance in male mating success. Environmental effects on extrapair paternity have traditionally been ascribed to aspects of the social environment, such as breeding density and synchrony. However, social factors are often confounded with habitat quality and are challenging to disentangle. We used both natural variation in habitat quality and a food supplementation exper