ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
This self-study program for the high-school level contains lessons in the following subjects: Plants and Photosynthesis; The Human Digestive System; Functions of the Blood; Human Circulation and Respiration; Reproduction of a Single Cell; Reproduction by Male and Female Cells; The Human Reproductive System; Genetics and Heredity; The Nervous…
Budak, Erdal; Fernández Sánchez, Manuel; Bellver, José; Cerveró, Ana; Simón, Carlos; Pellicer, Antonio
2006-06-01
To summarize the effects of novel hormones (leptin, ghrelin, adiponectin, resistin, and PYY3-36) secreted from adipose tissue and the gastrointestinal tract that have been discovered to exert different effects on several reproductive functions, such as the hypothalamic-pituitary-gonadal axis, embryo development, implantation physiology, and clinically relevant conditions. A MEDLINE computer search was performed to identify relevant articles. Leptin and ghrelin exert important roles on body weight regulation, eating behavior, and reproduction, acting on the central nervous system and target reproductive organs. As a marker of adequate nutritional stores, these hormones may act on the central nervous system to initiate the complex process of puberty and maintain normal reproductive function. In addition, leptin and ghrelin and their receptors are involved in reproductive events such as gonadal function, embryo development, and embryo-endometrial interaction. Leptin and ghrelin and other adipose tissue-secreted hormones have significant effects on reproduction. Acting through the brain, these hormones may serve as links between adipose tissue and the reproductive system to supply and regulate energy needs for normal reproduction and pregnancy. Future studies are needed to further clarify the role of these hormones in reproductive events and other related gynecological conditions.
Naufahu, Jane; Cunliffe, Adam D; Murray, Joanne F
2013-01-01
Melanin-concentrating hormone (MCH) is an anabolic neuropeptide with multiple and diverse physiological functions including a key role in energy homoeostasis. Rodent studies have shown that the ablation of functional MCH results in a lean phenotype, increased energy expenditure and resistance to diet-induced obesity. These findings have generated interest among pharmaceutical companies vigilant for potential anti-obesity agents. Nutritional status affects reproductive physiology and behaviours, thereby optimising reproductive success and the ability to meet energetic demands. This complex control system entails the integration of direct or indirect peripheral stimuli with central effector systems and involves numerous mediators. A role for MCH in the reproductive axis has emerged, giving rise to the premise that MCH may serve as an integratory mediator between those discrete systems that regulate energy balance and reproductive function. Hence, this review focuses on published evidence concerning i) the role of MCH in energy homoeostasis and ii) the regulatory role of MCH in the reproductive axis. The question as to whether the MCH system mediates the integration of energy homoeostasis with the neuroendocrine reproductive axis and, if so, by what means has received limited coverage in the literature; evidence to date and current theories are summarised herein.
Fetal programming of sexual development and reproductive function.
Zambrano, Elena; Guzmán, Carolina; Rodríguez-González, Guadalupe L; Durand-Carbajal, Marta; Nathanielsz, Peter W
2014-01-25
The recent growth of interest in developmental programming of physiological systems has generally focused on the cardiovascular system (especially hypertension) and predisposition to metabolic dysfunction (mainly obesity and diabetes). However, it is now clear that the full range of altered offspring phenotypes includes impaired reproductive function. In rats, sheep and nonhuman primates, reproductive capacity is altered by challenges experienced during critical periods of development. This review will examine available experimental evidence across commonly studied experimental species for developmental programming of female and male reproductive function throughout an individual's life-course. It is necessary to consider events that occur during fetal development, early neonatal life and prior to and during puberty, during active reproductive life and aging as reproductive performance declines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Reproductive toxicity: Male and female reproductive systems as targets for chemical injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattison, D.R.; Plowchalk, D.R.; Meadows, M.J.
On the basis of current knowledge of reproductive biology and toxicology, it is apparent that chemicals affecting reproduction may elicit their effects at a number of sites in both the male and the female reproductive system. This multiplicity of targets is attributable to the dynamic nature of the reproductive system, in which the hypothalamic-pituitary-gonadal axis is controlled by precise positive and negative feedback mechanisms among its components. Interference by a xenobiotic at any level in either the male or the female reproductive system may ultimately impair hypothalamic or pituitary function. Normal gonadal processes such as spermatogenesis or oogenesis, ejaculation ormore » ovulation, hormone production by Leydig or granulosa cells, and the structure or function of the accessory reproductive structures (e.g., epididymis, fallopian tube) also appear vulnerable to xenobiotics. The reproductive system is a complex one that requires local and circulating hormones for control. This brief review illustrates a system for characterizing the mechanism of action of reproductive toxicants, as well as for defining the sites available for disruption of reproduction. Unfortunately, at present, data addressing the actual vulnerability of reproduction are sorely lacking. However, when experiments have been conducted and combined with epidemiologic data or clinical observation, it has been possible to demonstrate impairment of reproductive processes by xenobiotics. The role of environmental exposure to xenobiotics in the increase in infertility that has been observed remains to be defined. 87 references.« less
[The function of ERα in male reproductive system].
Dong, Yu-Hang; Wei, Jin-Hua; Li, Zhen
2014-12-01
Estrogen receptors (ERs), including two sub-types ERα and ERβ, belong to the steroid hormone superfamily of nuclear receptors. ERα distributes in the male reproductive system and plays a crucial role in the regulation of male reproduction through estrogen-dependent and -independent ways. In this article, we mainly reviewed the molecular structure, mode of action and location of ERα in the male reproductive system, and explored the mechanism of ERα in regulating the male reproductive system by analyzing different animal models of disrupted ERα.
Updates in Reproduction Coming from the Endocannabinoid System
Bradshaw, Heather B.
2014-01-01
The endocannabinoid system (ECS) is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators—deeply modulated by the activity of biosynthetic and hydrolyzing machineries—regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility. PMID:24550985
Heme oxygenase/carbon monoxide in the female reproductive system: an overlooked signalling pathway
Němeček, David; Dvořáková, Markéta; Sedmíková, Markéta
2017-01-01
For a long time, carbon monoxide (CO) was known for its toxic effect on organisms. But there are still many things left to discover on that molecule. CO is formed directly in the body by the enzymatic activity of heme oxygenase (HO). CO plays an important role in many physiological processes, such as cell protections (against various stress factors), and the regulation of metabolic processes. Recent research proves that CO also operates in the female reproductive system. At the centre of interest is the importance of CO for gestation. During the gestation period, CO is an important element affecting the proper function of the feto-placental unit and generally affects fetal survivability rates. Gestation is one of the most important processes of successful reproduction, although there are more relevant processes that need to be researched. While already proven that CO influences steroidogenesis and the corpus luteum survivability rate, our knowledge concerning the function and importance of CO in the reproductive system is still relatively limited. As an example, our knowledge of CO function in an oocyte, the most important cell for reproduction, is almost non-existent. The aim of this review is to summarize our current knowledge concerning the function of CO in the female reproductive system. PMID:28123837
The role of the leptin in reproduction.
Cervero, Ana; Domínguez, Francisco; Horcajadas, José A; Quiñonero, Alicia; Pellicer, Antonio; Simón, Carlos
2006-06-01
Since its discovery in 1994, leptin has appeared to be a pleiotrophic hormone, governing energy homeostasis and affecting many tissues in the body. Numerous pieces of evidence have accumulated showing that leptin potentially plays an important role in the control of the reproductive function. This review presents the major concepts for the role of leptin in the modulation of reproductive function. As a marker of the nutritional status, leptin affects the hypothalamo-pituitary-gonadal axis, regulating gonadotrophin-releasing hormone and luteinising hormone secretion, and appears to be a permissive factor in the onset of the puberty. This protein and its receptor have been found in the reproductive tissues, indicating that this system could be also implicated in several processes such as embryo development, implantation and pregnancy. Moreover, disorders of the leptin system have been related to some reproductive pathologies such as pre-eclampsia and polycystic ovary syndrome. However, controversy surrounds several aspects of the action of leptin in reproduction that require a deeper investigation of this system. Results to date suggest that this system could be implicated in important reproductive processes such as embryonic development and implantation. Moreover, understanding the role of leptin might be useful for new treatments in reproductive pathologies.
K Chandra, Amar; Sengupta, Pallav; Goswami, Haimanti; Sarkar, Mahitosh
2012-05-01
Calcium is essential for functioning of different systems including male reproduction. However, it has also been reported as chemo-castrative agent. The study has been undertaken to elucidate the effect of excessive dietary calcium on male reproductive system in animals with possible action. Adult male healthy rats fed CaCl(2) at different doses (0.5, 1.0 and 1.5 g%) in diet for 13 and 26 days to investigate reproductive parameters as well as the markers of oxidative stress. Significant alteration was found (P < 0.05) in testicular and accessory sex organs weight, epididymal sperm count, testicular steroidogenic enzyme (Δ(5) 3β-HSD and 17β-HSD) activities, serum testosterone, LH, FSH, LPO, activities of antioxidant enzymes, testicular histoarchitecture along with adrenal Δ(5) 3β-HSD activity with corticosterone level in dose- and time-dependent manner. Overall observations suggest that excessive dietary calcium enhances the generation of free-radicals resulting in structural and functional disruption of male reproduction.
[Advances in the study of neuroendocrinological regulation of kisspeptin in fish reproduction].
Zhuo, Qi
2013-10-01
Kisspeptin, a key factor in the neuroendocrinological regulation of animal reproduction, is a peptide product encoded by kiss genes, which act as the natural ligand of GPR54. Over the last decade, multiple functional molecular forms of kisspeptin have been found in vertebrate species. In fish, the major molecular structural form is kisspeptin-10. The kisspeptin/GPR54 system has multiple important functions in reproduction. This review provides an overview of our current knowledge on kisspeptin and its role in regulating fish reproductive, including the distribution and location of kisspeptin neurons in the brain, the molecular polymorphism of fish kisspeptin, functional diversity, the molecular mechanism of fish reproductive regulation, and the molecular evolution of kisspeptin as well as the co-regulation of fish reproduction by kisspeptin and other functional molecules. Perspectives on the future of kisspeptin regulation in fish reproduction are also highlighted.
Sex-specific inhibition and stimulation of worker-reproductive transition in a termite.
Sun, Qian; Haynes, Kenneth F; Hampton, Jordan D; Zhou, Xuguo
2017-09-06
In social insects, the postembryonic development of individuals exhibits strong phenotypic plasticity in response to the environment, thus generating the caste system. Different from eusocial Hymenoptera, in which queens dominate reproduction and inhibit worker fertility, the primary reproductive caste in termites (kings and queens) can be replaced by neotenic reproductives derived from functionally sterile individuals. Feedback regulation of nestmate differentiation into reproductives has been suggested, but the sex specificity remains inconclusive. In the eastern subterranean termite, Reticulitermes flavipes, we tested the hypothesis that neotenic reproductives regulate worker-reproductive transition in a sex-specific manner. With this R. flavipes system, we demonstrate a sex-specific regulatory mechanism with both inhibitory and stimulatory functions. Neotenics inhibit workers of the same sex from differentiating into additional reproductives but stimulate workers of the opposite sex to undergo this transition. Furthermore, this process is not affected by the presence of soldiers. Our results highlight the reproductive plasticity of termites in response to social cues and provide insights into the regulation of reproductive division of labor in a hemimetabolous social insect.
Sex-specific inhibition and stimulation of worker-reproductive transition in a termite
NASA Astrophysics Data System (ADS)
Sun, Qian; Haynes, Kenneth F.; Hampton, Jordan D.; Zhou, Xuguo
2017-10-01
In social insects, the postembryonic development of individuals exhibits strong phenotypic plasticity in response to the environment, thus generating the caste system. Different from eusocial Hymenoptera, in which queens dominate reproduction and inhibit worker fertility, the primary reproductive caste in termites (kings and queens) can be replaced by neotenic reproductives derived from functionally sterile individuals. Feedback regulation of nestmate differentiation into reproductives has been suggested, but the sex specificity remains inconclusive. In the eastern subterranean termite, Reticulitermes flavipes, we tested the hypothesis that neotenic reproductives regulate worker-reproductive transition in a sex-specific manner. With this R. flavipes system, we demonstrate a sex-specific regulatory mechanism with both inhibitory and stimulatory functions. Neotenics inhibit workers of the same sex from differentiating into additional reproductives but stimulate workers of the opposite sex to undergo this transition. Furthermore, this process is not affected by the presence of soldiers. Our results highlight the reproductive plasticity of termites in response to social cues and provide insights into the regulation of reproductive division of labor in a hemimetabolous social insect.
Abrams, Elizabeth T; Miller, Elizabeth M
2011-01-01
Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Copyright © 2011 Wiley Periodicals, Inc.
Cotton, Leanne M.; O’Bryan, Moira K.; Hinton, Barry T.
2008-01-01
The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system. PMID:18216218
Cotton, Leanne M; O'Bryan, Moira K; Hinton, Barry T
2008-04-01
The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system.
Prenatal programming of neuroendocrine reproductive function.
Evans, Neil P; Bellingham, Michelle; Robinson, Jane E
2016-07-01
It is now well recognized that the gestational environment can have long-lasting effects not only on the life span and health span of an individual but also, through potential epigenetic changes, on future generations. This article reviews the "prenatal programming" of the neuroendocrine systems that regulate reproduction, with a specific focus on the lessons learned using ovine models. The review examines the critical roles played by steroids in normal reproductive development before considering the effects of prenatal exposure to exogenous steroid hormones including androgens and estrogens, the effects of maternal nutrition and stress during gestation, and the effects of exogenous chemicals such as alcohol and environment chemicals. In so doing, it becomes evident that, to maximize fitness, the regulation of reproduction has evolved to be responsive to many different internal and external cues and that the GnRH neurosecretory system expresses a degree of plasticity throughout life. During fetal life, however, the system is particularly sensitive to change and at this time, the GnRH neurosecretory system can be "shaped" both to achieve normal sexually differentiated function but also in ways that may adversely affect or even prevent "normal function". The exact mechanisms through which these programmed changes are brought about remain largely uncharacterized but are likely to differ depending on the factor, the timing of exposure to that factor, and the species. It would appear, however, that some afferent systems to the GnRH neurons such as kisspeptin, may be critical in this regard as it would appear to be sensitive to a wide variety of factors that can program reproductive function. Finally, it has been noted that the prenatal programming of neuroendocrine reproductive function can be associated with epigenetic changes, which would suggest that in addition to direct effects on the exposed offspring, prenatal programming could have transgenerational effects on reproductive potential. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Relaxin family peptides in the male reproductive system--a critical appraisal.
Ivell, Richard; Kotula-Balak, Malgorzata; Glynn, Danielle; Heng, Kee; Anand-Ivell, Ravinder
2011-02-01
The human genome project has identified, besides ovarian relaxin (RLN), six other relaxin-like molecules (RLN3, H1-RLN, INSL3-6), most of which appear to be expressed in the testis and/or male reproductive system, together with four different G-protein-coupled receptors responsive to one or other of these peptides. Earlier work on relaxin in the male assumed the simplistic hypothesis of only a single relaxin-like entity. This review systematically examines the expression and physiology of relaxin-like molecules in the male reproductive system in order to reappraise the importance of this hormone system for male reproductive function. Although there are important species differences, only INSL3 and INSL6 appear to be generally expressed at a moderately high level within the testis, whereas ovarian RLN is consistently a major secretory product of the prostate epithelium. However, all members of this relaxin-like family appear to be expressed also at a low level in different organs of the male reproductive system, suggesting possible autocrine/paracrine effects. The four receptors (RXFP1-4) for these peptides are also expressed to differing levels in both somatic and seminiferous compartments of the testis and in the prostate, supporting relevant functions for most members of this interesting peptide family. Recent studies of relaxin family peptides in prostate pathology highlight their functional importance in the clinical context as potential causative, diagnostic and therapeutic agents and warrant more specific and detailed studies of their roles also in regard to male fertility and other aspects of male reproductive function.
Girão, Luciana Coe; Lopes, Ariadna Valentina; Tabarelli, Marcelo; Bruna, Emilio M.
2007-01-01
Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits) and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems) in 10 fragments and 10 tracts of forest interior (control plots). As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated). The most conspicuous differences were the lack of three pollination systems in fragments-pollination by birds, flies and non-flying mammals-and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores) for pollination systems (−30.3%), floral types (−23.6%), and floral sizes (−20.8%) in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and greatly reduces the functional diversity of tree assemblages in fragmented landscapes. PMID:17878943
The SLIT/ROBO pathway: a regulator of cell function with implications for the reproductive system
Dickinson, Rachel E; Duncan, W Colin
2010-01-01
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction. PMID:20100881
The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system.
Dickinson, Rachel E; Duncan, W Colin
2010-04-01
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction.
Functional Amyloids in Reproduction.
Hewetson, Aveline; Do, Hoa Quynh; Myers, Caitlyn; Muthusubramanian, Archana; Sutton, Roger Bryan; Wylie, Benjamin J; Cornwall, Gail A
2017-06-29
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
Evolution and functional divergence of NLRP genes in mammalian reproductive systems
2009-01-01
Background NLRPs (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing Proteins) are members of NLR (Nod-like receptors) protein family. Recent researches have shown that NLRP genes play important roles in both mammalian innate immune system and reproductive system. Several of NLRP genes were shown to be specifically expressed in the oocyte in mammals. The aim of the present work was to study how these genes evolved and diverged after their duplication, as well as whether natural selection played a role during their evolution. Results By using in silico methods, we have evaluated the evolution and functional divergence of NLRP genes, in particular of mouse reproduction-related Nlrp genes. We found that (1) major NLRP genes have been duplicated before the divergence of mammals, with certain lineage-specific duplications in primates (NLRP7 and 11) and in rodents (Nlrp1, 4 and 9 duplicates); (2) tandem duplication events gave rise to a mammalian reproduction-related NLRP cluster including NLRP2, 4, 5, 7, 8, 9, 11, 13 and 14 genes; (3) the function of mammalian oocyte-specific NLRP genes (NLRP4, 5, 9 and 14) might have diverged during gene evolution; (4) recent segmental duplications concerning Nlrp4 copies and vomeronasal 1 receptor encoding genes (V1r) have been undertaken in the mouse; and (5) duplicates of Nlrp4 and 9 in the mouse might have been subjected to adaptive evolution. Conclusion In conclusion, this study brings us novel information on the evolution of mammalian reproduction-related NLRPs. On the one hand, NLRP genes duplicated and functionally diversified in mammalian reproductive systems (such as NLRP4, 5, 9 and 14). On the other hand, during evolution, different lineages adapted to develop their own NLRP genes, particularly in reproductive function (such as the specific expansion of Nlrp4 and Nlrp9 in the mouse). PMID:19682372
GnRH and GnRH receptors in the pathophysiology of the human female reproductive system.
Maggi, Roberto; Cariboni, Anna Maria; Marelli, Marina Montagnani; Moretti, Roberta Manuela; Andrè, Valentina; Marzagalli, Monica; Limonta, Patrizia
2016-04-01
Human reproduction depends on an intact hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic gonadotrophin-releasing hormone (GnRH) has been recognized, since its identification in 1971, as the central regulator of the production and release of the pituitary gonadotrophins that, in turn, regulate the gonadal functions and the production of sex steroids. The characteristic peculiar development, distribution and episodic activity of GnRH-producing neurons have solicited an interdisciplinary interest on the etiopathogenesis of several reproductive diseases. The more recent identification of a GnRH/GnRH receptor (GnRHR) system in both the human endometrium and ovary has widened the spectrum of action of the peptide and of its analogues beyond its hypothalamic function. An analysis of research and review articles published in international journals until June 2015 has been carried out to comprehensively summarize both the well established and the most recent knowledge on the physiopathology of the GnRH system in the central and peripheral control of female reproductive functions and diseases. This review focuses on the role of GnRH neurons in the control of the reproductive axis. New knowledge is accumulating on the genetic programme that drives GnRH neuron development to ameliorate the diagnosis and treatment of GnRH deficiency and consequent delayed or absent puberty. Moreover, a better understanding of the mechanisms controlling the episodic release of GnRH during the onset of puberty and the ovulatory cycle has enabled the pharmacological use of GnRH itself or its synthetic analogues (agonists and antagonists) to either stimulate or to block the gonadotrophin secretion and modulate the functions of the reproductive axis in several reproductive diseases and in assisted reproduction technology. Several inputs from other neuronal populations, as well as metabolic, somatic and age-related signals, may greatly affect the functions of the GnRH pulse generator during the female lifespan; their modulation may offer new possible strategies for diagnostic and therapeutic interventions. A GnRH/GnRHR system is also expressed in female reproductive tissues (e.g. endometrium and ovary), both in normal and pathological conditions. The expression of this system in the human endometrium and ovary supports its physiological regulatory role in the processes of trophoblast invasion of the maternal endometrium and embryo implantation as well as of follicular development and corpus luteum functions. The GnRH/GnRHR system that is expressed in diseased tissues of the female reproductive tract (both benign and malignant) is at present considered an effective molecular target for the development of novel therapeutic approaches for these pathologies. GnRH agonists are also considered as a promising therapeutic approach to counteract ovarian failure in young female patients undergoing chemotherapy. Increasing knowledge about the regulation of GnRH pulsatile release, as well as the therapeutic use of its analogues, offers interesting new perspectives in the diagnosis, treatment and outcome of female reproductive disorders, including tumoral and iatrogenic diseases. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The role of adiponectin in reproduction: from polycystic ovary syndrome to assisted reproduction
Michalakis, Konstantinos G.; Segars, James H.
2011-01-01
Objective To summarize the effects of the adipokine adiponectin on the reproductive endocrine system, from the hypothalamic-pituitary axis to the gonads and target tissues of the reproductive system. Design A Medline computer search was performed to identify relevant articles. Setting Research institution. Intervention(s) None. Result(s) Adiponectin is a hormone secreted by adipose tissue that acts to reduce insulin resistance and atherogenic damage, but it also exerts actions in other tissues. Adiponectin mediates its actions in the periphery mainly via two receptors, AdipoR1 and AdipoR2. Adiponectin receptors are present in many reproductive tissues, including the central nervous system, ovaries, oviduct, endometrium, and testes. Adiponectin influences gonadotropin release, normal pregnancy, and assisted reproduction outcomes. Conclusion(s) Adiponectin, a beneficial adipokine, represents a major link between obesity and reproduction. Higher levels of adiponectin are associated with improved menstrual function and better outcomes in assisted reproductive cycles. PMID:20561616
Fujii, Junichi; Iuchi, Yoshihito; Okada, Futoshi
2005-09-02
Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox) systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems.
Leptin and its potential interest in assisted reproduction cycles.
Catteau, A; Caillon, H; Barrière, P; Denis, M G; Masson, D; Fréour, T
2016-04-01
Leptin, an adipose hormone, has been shown to control energy homeostasis and food intake, and exert many actions on female reproductive function. Consequently, this adipokine is a pivotal factor in studies conducted on animal models and humans to decipher the mechanisms behind the infertility often observed in obese women. A systematic PubMed search was conducted on all articles, published up to January 2015 and related to leptin and its actions on energy balance and reproduction, using the following key words: leptin, reproduction, infertility, IVF and controlled ovarian stimulation. The available literature was reviewed in order to provide an overview of the current knowledge on the physiological roles of leptin, its involvement in female reproductive function and its potential interest as a prognostic marker in IVF cycles. Animal and human studies show that leptin communicates nutritional status to the central nervous system and emerging evidence has demonstrated that leptin is involved in the control of reproductive functions by acting both directly on the ovaries and indirectly on the central nervous system. With respect to the clinical use of leptin as a biomarker in IVF cycles, a systematic review of the literature suggested its potential interest as a predictor of IVF outcome, as high serum and/or follicular fluid leptin concentrations have correlated negatively with cycle outcome. However, these preliminary results remain to be confirmed. Leptin regulates energy balance and female reproductive function, mainly through its action on hypothalamic-pituitary-ovarian function, whose molecular and cellular aspects are progressively being deciphered. Preliminary studies evaluating leptin as a biomarker in human IVF seem promising but need further confirmation. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ovarian function's role during cancer cachexia progression in the female mouse.
Hetzler, Kimbell L; Hardee, Justin P; LaVoie, Holly A; Murphy, E Angela; Carson, James A
2017-05-01
Cachexia is a debilitating condition that occurs with chronic disease, including cancer; our research has shown that some regulation of cancer cachexia progression is affected by sex differences. The Apc Min/+ mouse is genetically predisposed to develop intestinal tumors; IL-6 signaling and hypogonadism are associated with cachexia severity in the male. This relationship in the female warrants further investigation, as we have shown that the ability of IL-6 to induce cachexia differs between the sexes. Since ovarian reproductive function relies on a complex system of endocrine signaling to affect whole body homeostasis, we examined the relationship between ovarian reproductive function and progression of cancer cachexia in the female Apc Min/+ mouse. Our study of ovarian reproductive function in female Apc Min/+ mice showed disease-related cessation of estrous cycling (acyclicity) in 38% of mice. Acyclicity, including morphological and functional losses and enhanced muscle inflammatory gene expression, was associated with severe cachexia. Interestingly, ovariectomy rescued body weight and muscle mass and function but increased muscle sensitivity to systemic IL-6 overexpression. In conclusion, our results provide evidence for a relationship between ovarian reproductive function and cachexia progression in female Apc Min/+ mice. Copyright © 2017 the American Physiological Society.
77 FR 65913 - Privacy Act of 1974: Systems of Records.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... performing clerical, stenographic, or data analysis functions, or by reproduction of records by electronic or... performing clerical, stenographic, or data analysis functions, or by reproduction of records by electronic or... Services (OGIS) National Archives and Records Administration, in connection with mediation of FOIA requests...
[Astaxanthin in male reproduction: Advances in studies].
Liu, Wei; Kang, Xiao-Fang; Shang, Xue-Jun
2016-10-01
Astaxanthin (AST) is a carotenoid with a strong antioxidant activity and has many biological functions, such as anti-inflammation, immune regulation, anti-tumor, anti-oxidation, anti-aging, and anti-apoptosis. Recent studies show that AST can effectively regulate the dynamic balance between oxidation and antioxidants in the male reproductive system, protect sperm mitochondrial function, ameliorate testicular heat stress and reproductive poison damage, promote the occurrence of sperm capacitation and acrosome reaction, regulate reproductive endocrine hormone balance, and act favorably on primary infertility or metabolic syndrome-related infertility. It also helps the treatment of late-onset hypogonadism and prostate health care. This review updates the studies of AST in male reproductive health and provides some new ideas for the prevention and treatment of male reproductive problems.
Regulation and roles of the hyaluronan system in mammalian reproduction.
Fouladi-Nashta, Ali A; Raheem, Kabir A; Marei, Waleed F; Ghafari, Fataneh; Hartshorne, Geraldine M
2017-02-01
Hyaluronan (HA) is a non-sulphated glycosaminoglycan polymer naturally occurring in many tissues and fluids of mammals, including the reproductive system. Its biosynthesis by HA synthase (HAS1-3) and catabolism by hyaluronidases (HYALs) are affected by ovarian steroid hormones. Depending upon its molecular size, HA functions both as a structural component of tissues in the form of high-molecular-weight HA or as a signalling molecule in the form of small HA molecules or HA fragments with effects mediated through interaction with its specific cell-membrane receptors. HA is produced by oocytes and embryos and in various segments of the reproductive system. This review provides information about the expression and function of members of the HA system, including HAS, HYALs and HA receptors. We examine their role in various processes from folliculogenesis through oocyte maturation, fertilisation and early embryo development, to pregnancy and cervical dilation, as well as its application in assisted reproduction technologies. Particular emphasis has been placed upon the role of the HA system in pre-implantation embryo development and embryo implantation, for which we propose a hypothetical sequential model. © 2017 Society for Reproduction and Fertility.
Hormonally mediated effects on the female reproductive system may manifest in pathologic changes of endocrine-responsive organs and altered reproductive function. Identification of these effects requires proper assessment, which may include investigative studies of female reprod...
Modeling adverse environmental impacts on the reproductive system.
Sussman, N B; Mazumdar, S; Mattison, D R
1999-03-01
When priority topics are being established for the study of women's health, it is generally agreed that one important area on which to focus research is reproduction. For example, increasing attention has been directed to environmental exposures that disrupt the endocrine system and alter reproduction. These concerns also suggest the need to give greater attention to the use of animal toxicologic testing to draw inferences about human reproductive risks. Successful reproduction requires multiple simultaneous and sequential processes in both the male and female, and the effect of toxicity on reproduction-related processes is time dependent. Currently, however, the risk assessment approach does not allow for the use of multiple processes or for considering the reproductive process response as a function of time. We discuss several issues in modeling exposure effects on reproductive function for risk assessment and present an overview of approaches for reproductive risk assessment. Recommendations are provided for an effective animal study design for determining reproductive risk that addresses optimization of the duration of dosing, observation of the effects of exposure on validated biomarkers, analysis of several biomarkers for complete characterization of the exposure on the underlying biologic processes, the need for longitudinally observed exposure effects, and a procedure for estimating human reproductive risk from the animal findings. An approach to characterizing reproductive toxicity to estimate the increased fertility risks in a dibromochloropropane (DBCP)-exposed human population is illustrated, using several reproductive biomarkers simultaneously from a longitudinal rabbit inhalation study of DBCP and an interspecies extrapolation method.
Darwin's legacy: the forms, function and sexual diversity of flowers
Barrett, Spencer C. H.
2010-01-01
Charles Darwin studied floral biology for over 40 years and wrote three major books on plant reproduction. These works have provided the conceptual foundation for understanding floral adaptations that promote cross-fertilization and the mechanisms responsible for evolutionary transitions in reproductive systems. Many of Darwin's insights, gained from careful observations and experiments on diverse angiosperm species, remain remarkably durable today and have stimulated much current research on floral function and the evolution of mating systems. Here I review Darwin's seminal contributions to reproductive biology and provide an overview of the current status of research on several of the main topics to which he devoted considerable effort, including the consequences to fitness of cross- versus self-fertilization, the evolution and function of stylar polymorphisms, the adaptive significance of heteranthery, the origins of dioecy and related gender polymorphisms, and the transition from animal pollination to wind pollination. Post-Darwinian perspectives on floral function now recognize the importance of pollen dispersal and male outcrossed siring success in shaping floral adaptation. This has helped to link work on pollination biology and mating systems, two subfields of reproductive biology that remained largely isolated during much of the twentieth century despite Darwin's efforts towards integration. PMID:20047864
78 FR 41962 - Privacy Act of 1974: Systems of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-12
..., or data analysis functions, or by reproduction of records by electronic or other means. Recipients of... Information Act (FOIA), and to facilitate OGIS' offering of mediation services to resolve disputes between... performing clerical, stenographic, or data analysis functions, or by reproduction of records by electronic or...
The ecology and evolutionary endocrinology of reproduction in the human female.
Vitzthum, Virginia J
2009-01-01
Human reproductive ecology (HRE) is the study of the mechanisms that link variation in reproductive traits with variation in local habitats. Empirical and theoretical contributions from biological anthropology, physiology, and demography have established the foundation necessary for developing a comprehensive understanding, grounded in life history theory (LHT), of temporal, individual, and populational variation in women's reproductive functioning. LHT posits that natural selection leads to the evolution of mechanisms that tend to allocate resources to the competing demands of growth, reproduction, and survival such that fitness is locally maximized. (That is, among alternative allocation patterns exhibited in a population, those having the highest inclusive fitness will become more common over generational time.) Hence, strategic modulation of reproductive effort is potentially adaptive because investment in a new conception may risk one's own survival, future reproductive opportunities, and/or current offspring survival. The hypothalamic-pituitary-ovarian (HPO) axis is the principal neuroendocrine pathway by which the human female modulates reproductive functioning according to the changing conditions in her habitat. Adjustments of reproductive investment in a potential conception are manifested in temporal and individual variation in ovarian cycle length, ovulation, hormone levels, and the probability of conception. Understanding the extent and causes of adaptive and non-adaptive variation in ovarian functioning is fundamental to ascertaining the proximate and remote determinants of human reproductive patterns. In this review I consider what is known and what still needs to be learned of the ecology of women's reproductive biology, beginning with a discussion of the principal explanatory frameworks in HRE and the biometry of ovarian functioning. Turning next to empirical studies, it is evident that marked variation between cycles, women, and populations is the norm rather than an aberration. Other than woman's age, the determinants of these differences are not well characterized, although developmental conditions, dietary practices, genetic variation, and epigenetic mechanisms have all been hypothesized to play some role. It is also evident that the reproductive functioning of women born and living in arduous conditions is not analogous to that of athletes, dieters, or even the lower end of the "normal range" of HPO functioning in wealthier populations. Contrary to the presumption that humans have low fecundity and an inefficient reproductive system, both theory and present evidence suggest that we may actually have very high fecundity and a reproductive system that has evolved to be flexible, ruthlessly efficient and, most importantly, strategic. Copyright 2009 Wiley-Liss, Inc.
Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu
2014-01-01
The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268
Role of pigment epithelium-derived factor in the reproductive system.
Chuderland, Dana; Ben-Ami, Ido; Bar-Joseph, Hadas; Shalgi, Ruth
2014-10-01
The physiological function of the female reproductive organs is hormonally controlled. In each cycle, the reproductive organs undergo tissue modifications that are accompanied by formation and destruction of blood vessels. Proper angiogenesis requires an accurate balance between stimulatory and inhibitory signals, provided by pro- and anti-angiogenic factors. As with many other tissues, vascular endothelial growth factor (VEGF) appears to be one of the major pro-angiogenic factors in the female reproductive organs. Pigment epithelium-derived factor (PEDF) is a non-inhibitory member of the serine protease inhibitors (serpin) superfamily, possessing potent physiologic anti-angiogenic activity that negates VEGF activity. The role of PEDF in decreasing abnormal neovascularization by exerting its anti-angiogenic effect that inhibits pro-angiogenic factors, including VEGF, has been investigated mainly in the eye and in cancer. This review summarizes the function of PEDF in the reproductive system, showing its hormonal regulation and its anti-angiogenic activity. Furthermore, some pathologies of the female reproductive organs, including endometriosis, ovarian hyperstimulation syndrome, polycystic ovary syndrome, and others, are associated with a faulty angiogenic process. This review illuminates the role of PEDF in their pathogenesis and treatment. Collectively, we can conclude that although PEDF seems to play an essential role in the physiology and pathophysiology of the reproductive system, its full role and mechanism of action still need to be elucidated. © 2014 Society for Reproduction and Fertility.
Ovarian function’s role during cancer cachexia progression in the female mouse
Hetzler, Kimbell L.; Hardee, Justin P.; LaVoie, Holly A.; Murphy, E. Angela
2017-01-01
Cachexia is a debilitating condition that occurs with chronic disease, including cancer; our research has shown that some regulation of cancer cachexia progression is affected by sex differences. The ApcMin/+ mouse is genetically predisposed to develop intestinal tumors; IL-6 signaling and hypogonadism are associated with cachexia severity in the male. This relationship in the female warrants further investigation, as we have shown that the ability of IL-6 to induce cachexia differs between the sexes. Since ovarian reproductive function relies on a complex system of endocrine signaling to affect whole body homeostasis, we examined the relationship between ovarian reproductive function and progression of cancer cachexia in the female ApcMin/+ mouse. Our study of ovarian reproductive function in female ApcMin/+ mice showed disease-related cessation of estrous cycling (acyclicity) in 38% of mice. Acyclicity, including morphological and functional losses and enhanced muscle inflammatory gene expression, was associated with severe cachexia. Interestingly, ovariectomy rescued body weight and muscle mass and function but increased muscle sensitivity to systemic IL-6 overexpression. In conclusion, our results provide evidence for a relationship between ovarian reproductive function and cachexia progression in female ApcMin/+ mice. PMID:28292759
Species Comparison of the Role of p38 MAP Kinase in the Female Reproductive System.
Radi, Zaher A; Marusak, Rosemary A; Morris, Dale L
2009-06-01
The p38 mitogen-activated protein kinases (MAPKs) are members of discrete signal transduction pathways that have significant regulatory roles in a variety of biological processes, depending on the cell, tissue and organ type. p38 MAPKs are involved in inflammation, cell growth and differentiation and cell cycle. In the female reproductive system, p38 MAPKs are known to regulate various aspects of the reproductive process such as mammalian estrous and menstrual cycles as well as early pregnancy and parturition. p38 MAPKs have also been implicated in alterations and pathologies observed in the female reproductive system. Therefore, pharmacologic modulation of p38 MAPKs, and inter-connected signaling pathways (e.g., estrogen receptor signaling, c-fos, c-jun), may influence reproductive physiology and function. This article provides a critical, comparative review of available data on the roles of p38 MAPKs in the mammalian female reproductive system and in reproductive pathophysiology in humans and preclinical species. We first introduce fundamental differences and similarities of the mammalian female reproductive system that should be considered by toxicologists and toxicologic pathologists when assessing the effects of new pharmacologic agents on the female reproductive system. We then explore in detail the known roles for p38 MAPKs and related molecules in female reproduction. This foundation is then extended to pathological conditions in which p38 MAPKs are thought to play an integral role.
Maffucci, Jacqueline A.; Gore, Andrea C.
2009-01-01
The hypothalamic-pituitary-gonadal (HPG) axis undergoes a number of changes throughout the reproductive life cycle that are responsible for the development, puberty, adulthood, and senescence of reproductive systems. This natural progression is dictated by the neural network controlling the hypothalamus including the cells that synthesize and release gonadotropin-releasing hormone (GnRH) and their regulatory neurotransmitters. Glutamate and GABA are the primary excitatory and inhibitory neurotransmitters in the central nervous system, and as such contribute a great deal to modulating this axis throughout the lifetime via their actions on receptors in the hypothalamus, both directly on GnRH neurons as well as indirectly though other hypothalamic neural networks. Interactions among GnRH neurons, glutamate, and GABA, including the regulation of GnRH gene and protein expression, hormone release, and modulation by estrogen, are critical to age-appropriate changes in reproductive function. Here, we present evidence for the modulation of GnRH neurosecretory cells by the balance of glutamate and GABA in the hypothalamus, and the functional consequences of these interactions on reproductive physiology across the life cycle. PMID:19349036
Kisspeptin modulates sexual and emotional brain processing in humans.
Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S
2017-02-01
Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).
Antidiabetic therapies and male reproductive function: where do we stand?
Tavares, R S; Escada-Rebelo, S; Silva, A F; Sousa, M I; Ramalho-Santos, J; Amaral, S
2018-01-01
Diabetes mellitus has been increasing at alarming rates in recent years, thus jeopardizing human health worldwide. Several antidiabetic drugs have been introduced in the market to manage glycemic levels, and proven effective in avoiding, minimizing or preventing the appearance or development of diabetes mellitus-related complications. However, and despite the established association between such pathology and male reproductive dysfunction, the influence of these therapeutic interventions on such topics have been scarcely explored. Importantly, this pathology may contribute toward the global decline in male fertility, giving the increasing preponderance of diabetes mellitus in young men at their reproductive age. Therefore, it is mandatory that the reproductive health of diabetic individuals is maintained during the antidiabetic treatment. With this in mind, we have gathered the available information and made a critical analysis regarding the effects of several antidiabetic drugs on male reproductive function. Unlike insulin, which has a clear and fundamental role on male reproductive function, the other antidiabetic therapies' effects at this level seem incoherent. In fact, studies are highly controversial possibly due to the different experimental study approaches, which, in our opinion, suggests caution when it comes to prescribing such drugs to young diabetic patients. Overall, much is still to be determined and further studies are needed to clarify the safety of these antidiabetic strategies on male reproductive system. Aspects such as the effects of insulin levels variations, consequent of insulin therapy, as well as what will be the impact of the side effect hypoglycemia, common to several therapeutic strategies discussed, on the male reproductive system are still to be addressed. © 2018 Society for Reproduction and Fertility.
Beadex Function in the Motor Neurons Is Essential for Female Reproduction in Drosophila melanogaster
Kairamkonda, Subhash; Nongthomba, Upendra
2014-01-01
Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons. PMID:25396431
Caloric restriction: Impact upon pituitary function and reproduction
Martin, Bronwen; Golden, Erin; Carlson, Olga D.; Egan, Josephine M.; Mattson, Mark P.; Maudsley, Stuart
2008-01-01
Reduced energy intake, or caloric restriction (CR), is known to extend life span and to retard age-related health decline in a number of different species, including worms, flies, fish, mice and rats. CR has been shown to reduce oxidative stress, improve insulin sensitivity, and alter neuroendocrine responses and central nervous system (CNS) function in animals. CR has particularly profound and complex actions upon reproductive health. At the reductionist level the most crucial physiological function of any organism is its capacity to reproduce. For a successful species to thrive, the balance between available energy (food) and the energy expenditure required for reproduction must be tightly linked. An ability to coordinate energy balance and fecundity involves complex interactions of hormones from both the periphery and the CNS and primarily centers upon the master endocrine gland, the anterior pituitary. In this review article we review the effects of CR on pituitary gonadotrope function and on the male and female reproductive axes. A better understanding of how dietary energy intake affects reproductive axis function and endocrine pulsatility could provide novel strategies for the prevention and management of reproductive dysfunction and its associated comorbidities. PMID:18329344
Physical activity and its effects on reproduction.
Redman, Leanne M
2006-05-01
The reproductive system is tightly coupled with energy balance, and thereby changes in the status of energy balance through changes in physical activity can impact on the reproductive system. In light of the new physical activity for health recommendations, it is therefore important to understand the inherent effects, both positive and negative, of physical activity on the reproductive system. At both extremes of the energy spectrum, disorders of chronic energy excess and energy deficiency are characterized by a wide range of reproductive disorders, including menstrual irregularity, anovulation, polycystic ovarian syndrome, and infertility in women, and erectile dysfunction and altered spermatogenesis in men. Although laboratory research indicates that individuals may be able to prevent or reverse reproductive disruptions, either by increasing energy expenditure in cases of energy excess or by dietary reform in cases of energy deficits, there is an acute need for applied research to confirm this idea and to identify mechanisms by which the availability of energy per se regulates reproductive function in humans.
Circadian rhythms and reproduction.
Boden, Michael J; Kennaway, David J
2006-09-01
There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.
Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction.
Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S
2013-01-01
Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction.
Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia
2017-10-01
The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF) are expressed in several tissues of male and female reproductive tract, playing an important role in the regulation of basic biological processes. The activation of c-KIT by SCF controls, cell survival and death, cell differentiation and migration. Also, the SCF/c-KIT system has been implicated in carcinogenesis of reproductive tissues due to its altered expression pattern or overactivation in consequence of gain-of-functions mutations. Over the years, it has also been shown that hormones, the primary regulators of reproductive function and causative agents in the case of hormone-dependent cancers, are also able to control the SCF/c-KIT tissue levels. Therefore, it is liable to suppose that disturbed SCF/c-KIT expression driven by (de)regulated hormone actions can be a relevant step towards carcinogenesis. The present review describes the SCF and c-KIT expression in cancers of reproductive tissues, discussing the implications of the hormonal regulation of the SCF/c-KIT system in cancer development. Understanding the relationship between hormonal imbalance and the SCF/c-KIT expression and activity would be relevant in the context of novel therapeutic approaches in reproductive cancers. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of leptin in female reproduction.
Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Maymó, Julieta; Dueñas, José L; Varone, Cecilia; Sánchez-Margalet, Víctor
2015-01-01
Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.
Stress and the HPA Axis: Balancing Homeostasis and Fertility
Whirledge, Shannon
2017-01-01
An organism’s reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic–pituitary–adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development. PMID:29064426
Kisspeptin modulates sexual and emotional brain processing in humans
Comninos, Alexander N.; Wall, Matthew B.; Demetriou, Lysia; Shah, Amar J.; Clarke, Sophie A.; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K.; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M.; Jayasena, Channa N.; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A.; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Wilson, Steven Ray; Brown, Rachel C.; Thomas, Sarah A.; Bloom, Stephen R.; Dhillo, Waljit S.
2017-01-01
BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC). PMID:28112678
Chapter 22: Female Reproductive Toxicology
The female reproductive system provides multiple targets for environmental toxicants with the hypothalamic-pituitary-ovarian axis. Moreover, the functional impact of a chemical can differ, depending on the species involved and the parameters of exposure. While cross-species compa...
Goldsammler, Michelle; Merhi, Zaher; Buyuk, Erkan
2018-05-09
Besides being a risk factor for multiple metabolic disorders, obesity could affect female reproduction. While increased adiposity is associated with hormonal changes that could disrupt the function of the hypothalamus and the pituitary, compelling data suggest that obesity-related hormonal and inflammatory changes could directly impact ovarian function. To review the available data related to the mechanisms by which obesity, and its associated hormonal and inflammatory changes, could affect the female reproductive function with a focus on the hypothalamic-pituitary-ovarian (HPO) axis. PubMed database search for publications in English language until October 2017 pertaining to obesity and female reproductive function was performed. The obesity-related changes in hormone levels, in particular leptin, adiponectin, ghrelin, neuropeptide Y and agouti-related protein, are associated with reproductive dysfunction at both the hypothalamic-pituitary and the ovarian levels. The pro-inflammatory molecules advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are emerging as relatively new players in the pathophysiology of obesity-related ovarian dysfunction. There is an intricate crosstalk between the adipose tissue and the inflammatory system with the HPO axis function. Understanding the mechanisms behind this crosstalk could lead to potential therapies for the common obesity-related reproductive dysfunction.
To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes
Hoey, Andrew S.; Bellwood, David R.; Barnett, Adam
2012-01-01
Functionally coupled biomechanical systems are widespread in nature and are viewed as major constraints on evolutionary diversification, yet there have been few attempts to explore the implications of performing multiple functions within a single anatomical structure. Paternally mouthbrooding cardinalfishes present an ideal system to investigate the constraints of functional coupling as the oral jaws of male fishes are directly responsible for both feeding and reproductive functions. To test the effects of (i) mouthbrooding on feeding and (ii) feeding on reproductive potential we compared the feeding apparatus between sexes of nine species of cardinalfish and compared brood characteristics among species from different trophic groups, respectively. Mouthbrooding was strongly associated with the morphology of the feeding apparatus in males. Male cardinalfishes possessed longer heads, snouts and jaws than female conspecifics irrespective of body size, trophic group or evolutionary history. Conversely, reproductive potential also appeared to be related to trophic morphology. Piscivorous cardinalfishes produced larger, but fewer eggs, and had smaller brood volumes than species from the two invertebrate feeding groups. These interrelationships suggest that feeding and reproduction in the mouth of cardinalfishes may be tightly coupled. If so this may, in part, have contributed to the limited morphological diversification exhibited by cardinalfishes. PMID:22319124
To feed or to breed: morphological constraints of mouthbrooding in coral reef cardinalfishes.
Hoey, Andrew S; Bellwood, David R; Barnett, Adam
2012-06-22
Functionally coupled biomechanical systems are widespread in nature and are viewed as major constraints on evolutionary diversification, yet there have been few attempts to explore the implications of performing multiple functions within a single anatomical structure. Paternally mouthbrooding cardinalfishes present an ideal system to investigate the constraints of functional coupling as the oral jaws of male fishes are directly responsible for both feeding and reproductive functions. To test the effects of (i) mouthbrooding on feeding and (ii) feeding on reproductive potential we compared the feeding apparatus between sexes of nine species of cardinalfish and compared brood characteristics among species from different trophic groups, respectively. Mouthbrooding was strongly associated with the morphology of the feeding apparatus in males. Male cardinalfishes possessed longer heads, snouts and jaws than female conspecifics irrespective of body size, trophic group or evolutionary history. Conversely, reproductive potential also appeared to be related to trophic morphology. Piscivorous cardinalfishes produced larger, but fewer eggs, and had smaller brood volumes than species from the two invertebrate feeding groups. These interrelationships suggest that feeding and reproduction in the mouth of cardinalfishes may be tightly coupled. If so this may, in part, have contributed to the limited morphological diversification exhibited by cardinalfishes.
Vitamin D metabolism, sex hormones, and male reproductive function.
Blomberg Jensen, Martin
2012-08-01
The spectrum of vitamin D (VD)-mediated effects has expanded in recent years, and VD is now recognized as a versatile signaling molecule rather than being solely a regulator of bone health and calcium homeostasis. One of the recently identified target areas of VD is male reproductive function. The VD receptor (VDR) and the VD metabolizing enzyme expression studies documented the presence of this system in the testes, mature spermatozoa, and ejaculatory tract, suggesting that both systemic and local VD metabolism may influence male reproductive function. However, it is still debated which cell is the main VD target in the testis and to what extent VD is important for sex hormone production and function of spermatozoa. This review summarizes descriptive studies on testicular VD metabolism and spatial distribution of VDR and the VD metabolizing enzymes in the mammalian testes and discusses mechanistic and association studies conducted in animals and humans. The reviewed evidence suggests some effects of VD on estrogen and testosterone biosynthesis and implicates involvement of both systemic and local VD metabolism in the regulation of male fertility potential.
Tribbles role in reproduction.
Basatvat, Shaghayegh; Carter, Deborah Angela Louise; Kiss-Toth, Endre; Fazeli, Alireza
2015-10-01
Tribbles (TRIB) proteins, a family of evolutionary conserved psuedokinase proteins, modulate various signalling pathways within the cell. The regulatory roles of TRIB make them an important part of a number of biological processes ranging from cell proliferation to metabolism, immunity, inflammation and carcinogenesis. Innate immune system plays a pivotal role during the regulation of reproductive processes that allows successful creation of an offspring. Its involvement initiates from fertilization of the oocyte by spermatozoon and lasts throughout early embryonic development, pregnancy and labour. Therefore, there is a close cooperation between the reproductive system and the innate immune system. Evidence from our lab has demonstrated that improper activation of the innate immune system can reduce embryo implantation, thus leading to infertility. Therefore, control mechanisms regulating the innate immune system function can be critical for successful reproductive events. © 2015 Authors; published by Portland Press Limited.
Aging and male reproductive function: a mitochondrial perspective.
Amaral, Sandra; Amaral, Alexandra; Ramalho-Santos, Joao
2013-01-01
Researching the effects of aging in the male reproductive system is not trivial. Not only are multiple changes at molecular, cellular and endocrine levels involved, but any findings must be discussed with variable individual characteristics, as well as with lifestyle and environmental factors. Age-related changes in the reproductive system include any aspect of reproductive function, from deregulation of the hypothalamic-pituitary-gonadal axis and of local auto/paracrine interactions, to effects on testicular stem cells, defects in testicular architecture and spermatogenesis, or sperm with decreased functionality. Several theories place mitochondria at the hub of cellular events related to aging, namely regarding the accumulation of oxidative damage to cells and tissues, a process in which these organelles play a prominent role, although alternative theories have also emerged. However, oxidative stress is not the only process involved in mitochondrial-related aging; mitochondrial energy metabolism, changes in mitochondrial DNA or in mitochondrial-dependent testosterone production are also important. Crucially, all these issues are likely interdependent. We will review evidence that suggests that mitochondria constitute a common link between aging and fertility loss.
[Roles of G protein-coupled estrogen receptor in the male reproductive system].
Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu
2016-02-01
The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.
Ovarian Stem Cell Nests in Reproduction and Ovarian Aging.
Ye, Haifeng; Zheng, Tuochen; Li, Wei; Li, Xiaoyan; Fu, Xinxin; Huang, Yaoqi; Hu, Chuan; Li, Jia; Huang, Jian; Liu, Zhengyv; Zheng, Liping; Zheng, Yuehui
2017-01-01
The fixed primordial follicles pool theory, which monopolized reproductive medicine for more than one hundred years, has been broken by the discovery, successful isolation and establishment of ovarian stem cells. It has brought more hope than ever of increasing the size of primordial follicle pool, improving ovarian function and delaying ovarian consenescence. Traditional view holds that stem cell aging contributes to the senility of body and organs. However, in the process of ovarian aging, the main factor leading to the decline of the reproductive function is the aging and degradation of ovarian stem cell nests, rather than the senescence of ovarian germ cells themselves. Recent studies have found that the immune system and circulatory system are involved in the formation of ovarian germline stem cell niches, as well as regulating the proliferation and differentiation of ovarian germline stem cells through cellular and hormonal signals. Therefore, we can improve ovarian function and delay ovarian aging by improving the immune system and circulatory system, which will provide an updated program for the treatment of premature ovarian failure (POF) and infertility. © 2017 The Author(s). Published by S. Karger AG, Basel.
Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement
USDA-ARS?s Scientific Manuscript database
Background: Semen ejaculates contain heterogeneous sperm populations that can jeopardize male fertility. Recent development of nanotechnology in physiological systems may have applications in reproductive biology. Here, we used magnetic nanoparticles as a novel strategy for sperm purification to imp...
Functional Significance of GnRH and Kisspeptin, and Their Cognate Receptors in Teleost Reproduction
Gopurappilly, Renjitha; Ogawa, Satoshi; Parhar, Ishwar S.
2012-01-01
Guanine nucleotide binding protein (G-protein)-coupled receptors (GPCRs) are eukaryotic transmembrane proteins found in all living organisms. Their versatility and roles in several physiological processes make them the single largest family of drug targets. Comparative genomic studies using various model organisms have provided useful information about target receptors. The similarity of the genetic makeup of teleosts to that of humans and other vertebrates aligns with the study of GPCRs. Gonadotropin-releasing hormone (GnRH) represents a critical step in the reproductive process through its cognate GnRH receptors (GnRHRs). Kisspeptin (Kiss1) and its cognate GPCR, GPR54 (=kisspeptin receptor, Kiss-R), have recently been identified as a critical signaling system in the control of reproduction. The Kiss1/Kiss-R system regulates GnRH release, which is vital to pubertal development and vertebrate reproduction. This review highlights the physiological role of kisspeptin-Kiss-R signaling in the reproductive neuroendocrine axis in teleosts through the modulation of GnRH release. Moreover, we also review the recent developments in GnRHR and Kiss-R with respect to their structural variants, signaling mechanisms, ligand interactions, and functional significance. Finally, we discuss the recent progress in identifying many teleost GnRH-GnRHR and kisspeptin-Kiss-R systems and consider their physiological significance in the control of reproduction. PMID:23482509
Prenatal testosterone exposure worsen the reproductive performance of male rat at adulthood.
Ramezani Tehrani, Fahimeh; Noroozzadeh, Mahsa; Zahediasl, Saleh; Ghasemi, Asghar; Piryaei, Abbas; Azizi, Fereidoun
2013-01-01
The reproductive system is extremely susceptible to environmental insults, for example exogenous steroids during gestational development and differentiation. Experimental induction of androgen excess during prenatal life in female animal models reprograms their reproductive physiology, however the fetal programming of the male reproductive system by androgen excess has not been well studied. We aimed to determine the effect of prenatal exposure of two different doses of testosterone on different gestational days, on the male reproductive system using a rat model. Sixteen pregnant rats were randomly divided into two experimental groups and two control groups. Experimental group І were subcutaneously injected with 3 mg free testosterone on gestational days 16-19 and its controls received solvent for that time; experimental group П were subcutaneously injected with 20 mg free testosterone on day 20 of gestational period and its controls received solvent at the same time. The reproductive system morphology and function of 32 male offspring of these study groups were compared at days 6-30-60 of age and after puberty. The anogenital distance of the male offspring of both experimental groups had no significant differences on the different days of measurement, compared with controls. In the offspring of experimental group І, the testes weight, number of Sertoli, Spermatocyte and Spermatid cells, sperm count and motility and the serum concentration of testosterone after puberty were significantly decreased; except for reduction of sperm motility (p< 0.01), the other effects were not observed in the offspring of experimental group ІІ. In summary, our data show that prenatal exposure of male rat fetuses to excess testosterone disrupted reproductive function, an effect highly dependent on the time, duration and level of exposure. It seems that the reproductive system in individuals exposed to high levels of androgens during fetal life should be evaluated at puberty and likely to be treated.
Prenatal Testosterone Exposure Worsen the Reproductive Performance of Male Rat at Adulthood
Ramezani Tehrani, Fahimeh; Noroozzadeh, Mahsa; Zahediasl, Saleh; Ghasemi, Asghar; Piryaei, Abbas; Azizi, Fereidoun
2013-01-01
The reproductive system is extremely susceptible to environmental insults, for example exogenous steroids during gestational development and differentiation. Experimental induction of androgen excess during prenatal life in female animal models reprograms their reproductive physiology, however the fetal programming of the male reproductive system by androgen excess has not been well studied. We aimed to determine the effect of prenatal exposure of two different doses of testosterone on different gestational days, on the male reproductive system using a rat model. Sixteen pregnant rats were randomly divided into two experimental groups and two control groups. Experimental group І were subcutaneously injected with 3 mg free testosterone on gestational days 16-19 and its controls received solvent for that time; experimental group П were subcutaneously injected with 20 mg free testosterone on day 20 of gestational period and its controls received solvent at the same time. The reproductive system morphology and function of 32 male offspring of these study groups were compared at days 6-30-60 of age and after puberty. The anogenital distance of the male offspring of both experimental groups had no significant differences on the different days of measurement, compared with controls. In the offspring of experimental group І, the testes weight, number of Sertoli, Spermatocyte and Spermatid cells, sperm count and motility and the serum concentration of testosterone after puberty were significantly decreased; except for reduction of sperm motility (p< 0.01), the other effects were not observed in the offspring of experimental group ІІ. In summary, our data show that prenatal exposure of male rat fetuses to excess testosterone disrupted reproductive function, an effect highly dependent on the time, duration and level of exposure. It seems that the reproductive system in individuals exposed to high levels of androgens during fetal life should be evaluated at puberty and likely to be treated. PMID:23967236
Liver ERα regulates AgRP neuronal activity in the arcuate nucleus of female mice.
Benedusi, Valeria; Della Torre, Sara; Mitro, Nico; Caruso, Donatella; Oberto, Alessandra; Tronel, Claire; Meda, Clara; Maggi, Adriana
2017-04-26
Recent work revealed the major role played by liver Estrogen Receptor α (ERα) in the regulation of metabolic and reproductive functions. By using mutant mice with liver-specific ablation of Erα, we here demonstrate that the hepatic ERα is essential for the modulation of the activity of Agouti Related Protein (AgRP) neurons in relation to the reproductive cycle and diet. Our results suggest that the alterations of hepatic lipid metabolism due to the lack of liver ERα activity are responsible for a neuroinflammatory status that induces refractoriness of AgRP neurons to reproductive and dietary stimuli. The study therefore points to the liver ERα as a necessary sensor for the coordination of systemic energy metabolism and reproductive functions.
USDA-ARS?s Scientific Manuscript database
To understand how the proghrelin system functions in regulating growth hormone release and food intake as well as defining its pleiotropic roles in such diverse physiological processes as energy homeostasis, gastrointestinal tract function and reproduction requires detailed knowledge of the structur...
Gene-environment interaction and male reproductive function
Axelsson, Jonatan; Bonde, Jens Peter; Giwercman, Yvonne L.; Rylander, Lars; Giwercman, Aleksander
2010-01-01
As genetic factors can hardly explain the changes taking place during short time spans, environmental and lifestyle-related factors have been suggested as the causes of time-related deterioration of male reproductive function. However, considering the strong heterogeneity of male fecundity between and within populations, genetic variants might be important determinants of the individual susceptibility to the adverse effects of environment or lifestyle. Although the possible mechanisms of such interplay in relation to the reproductive system are largely unknown, some recent studies have indicated that specific genotypes may confer a larger risk of male reproductive disorders following certain exposures. This paper presents a critical review of animal and human evidence on how genes may modify environmental effects on male reproductive function. Some examples have been found that support this mechanism, but the number of studies is still limited. This type of interaction studies may improve our understanding of normal physiology and help us to identify the risk factors to male reproductive malfunction. We also shortly discuss other aspects of gene-environment interaction specifically associated with the issue of reproduction, namely environmental and lifestyle factors as the cause of sperm DNA damage. It remains to be investigated to what extent such genetic changes, by natural conception or through the use of assisted reproductive techniques, are transmitted to the next generation, thereby causing increased morbidity in the offspring. PMID:20348940
Neuroendocrine control of reproductive aging: roles of GnRH neurons.
Yin, Weiling; Gore, Andrea C
2006-03-01
The process of reproductive senescence in many female mammals, including humans, is characterized by a gradual transition from regular reproductive cycles to irregular cycles to eventual acyclicity, and ultimately a loss of fertility. In the present review, the role of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons is considered in this context. GnRH neurons provide the primary driving force upon the other levels of the reproductive axis. With respect to aging, GnRH cells undergo changes in biosynthesis, processing and release of the GnRH decapeptide. GnRH neurons also exhibit morphologic and ultrastructural alterations that appear to underlie these biosynthetic properties. Thus, functional and morphologic changes in the GnRH neurosecretory system may play causal roles in the transition to acyclicity. In addition, GnRH neurons are regulated by numerous inputs from neurotransmitters, neuromodulators and glia. The relationship among GnRH cells and their inputs at the cell body (thereby affecting GnRH biosynthesis) and the neuroterminal (thereby affecting GnRH neurosecretion) is crucial to the function of the GnRH system, with age-related changes in these relationships contributing to the reproductive senescent process. Therefore, the aging hypothalamus is characterized by changes intrinsic to the GnRH cell, as well as its regulatory inputs, which summate to contribute to a loss of reproductive competence in aging females.
Shimizu, Takashi; Hoshino, Yumi; Miyazaki, Hitoshi; Sato, Eimei
2012-01-01
The female reproductive organs such as ovary, uterus, and placenta are some of the few adult tissues that exhibit regular intervals of rapid growth, and are highly vascularized and have high rates of blood flow. Angiogenesis is a process of vascular growth that is mainly limited to the reproductive system in healthy adult animals. The development of new blood vessels in the ovary and uterus is essential to guarantee the necessary supply of nutrients and hormones. The genetic and molecular mechanisms that control the development of capillary blood vessels in the reproductive organs are beginning to be elucidated. Reproductive organs contain and produce angiogenic factors which may act alone or in concert to regulate the process of vasculature. Vascular endothelial growth factors (VEGFs) and fibroblast growth factor (FGFs) are key factors for vascular system in the reproductive organs. Recent numerous studies reported several roles of VEGFs and FGFs on ovarian and uterine functions. In this review, we focus on the involvement of VEGFs and FGFs as angiogenic factors on reproductive organs and vascular therapy for diseases of reproductive organs using anti-angiogenic agents.
Aagaard, Jan E; George, Renee D; Fishman, Lila; Maccoss, Michael J; Swanson, Willie J
2013-01-01
Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the goal of identifying the molecular basis of genetically complex traits.
Metabolic influences on neuroendocrine regulation of reproduction.
Navarro, Víctor M; Kaiser, Ursula B
2013-08-01
Reproduction is a tightly regulated function in which many mechanisms contribute to ensure the survival of the species. Among those, due to the elevated energy requirements of reproduction, metabolic factors exert a pivotal role in the control of hypothalamic-pituitary-gonadal axis. Although this control may occur at multiple levels of the axis, the majority of interactions between metabolic and reproductive systems take place in the hypothalamus. In this article, we present an overview of the state-of-the-art knowledge regarding the metabolic regulation of reproduction at the central level. We aim to identify the neuroanatomical location where both functions interconnect by discussing the likelihood of each component of the neuronal hierarchical network controlling gonadotropin-releasing hormone (GnRH) release to be first-order responders to metabolic cues, especially the peripheral metabolic signals leptin, insulin, and ghrelin. Latest evidence suggests that the primary action of leptin, insulin, and ghrelin to regulate reproduction is located upstream of the main central elicitors of gonadotropin release, Kiss1 and GnRH neurons, and neuroanatomically separated from their metabolic action. The study of the neuronal interactions between the mechanisms governing metabolism and reproduction offers the platform to overcome or treat a number of prevailing metabolic and/or reproductive conditions.
Thyroid hormones and female reproduction.
Silva, Juneo F; Ocarino, Natália M; Serakides, Rogéria
2018-05-14
Thyroid hormones are vital for the proper functioning of the female reproductive system, since they modulate the metabolism and development of ovarian, uterine and placental tissues. Therefore, hypo- and hyperthyroidism may result in subfertility or infertility in both women and animals. Other well-documented sequelae of maternal thyroid dysfunctions include menstrual/estral irregularity, anovulation, abortion, preterm delivery, preeclampsia, intrauterine growth restriction, postpartum thyroiditis, and mental retardation in children. Several studies have been carried out involving prospective and retrospective studies of women with thyroid dysfunction, as well as in vivo and in vitro assays of hypo- and hyperthyroidism using experimental animal models and/or ovarian, uterine and placental cell culture. These studies have sought to elucidate the mechanisms by which thyroid hormones influence reproduction to better understand the physiology of the reproductive system and to provide better therapeutic tools for reproductive dysfunctions that originate from thyroid dysfunctions. Therefore, this review aims to summarize and update the available information related to the role of thyroid hormones in the morphophysiology of the ovary, uterus and placenta in women and animals and the effects of hypo- and hyperthyroidism on the female reproductive system.
Tang, Haipei; Liu, Yun; Luo, Daji; Ogawa, Satoshi; Yin, Yike; Li, Shuisheng; Zhang, Yong; Hu, Wei; Parhar, Ishwar S.; Lin, Haoran
2015-01-01
The kiss1/gpr54 signaling system is considered to be a critical regulator of reproduction in most vertebrates. However, this presumption has not been tested vigorously in nonmammalian vertebrates. Distinct from mammals, multiple kiss1/gpr54 paralogous genes (kiss/kissr) have been identified in nonmammalian vertebrates, raising the possibility of functional redundancy among these genes. In this study, we have systematically generated the zebrafish kiss1−/−, kiss2−/−, and kiss1−/−;kiss2−/− mutant lines as well as the kissr1−/−, kissr2−/−, and kissr1−/−;kissr2−/− mutant lines using transcription activator-like effector nucleases. We have demonstrated that spermatogenesis and folliculogenesis as well as reproductive capability are not impaired in all of these 6 mutant lines. Collectively, our results indicate that kiss/kissr signaling is not absolutely required for zebrafish reproduction, suggesting that the kiss/kissr systems play nonessential roles for reproduction in certain nonmammalian vertebrates. These findings also demonstrated that fish and mammals have evolved different strategies for neuroendocrine control of reproduction. PMID:25406015
GnRH in the Human Female Reproductive Axis.
Limonta, Patrizia; Marelli, Marina Montagnani; Moretti, Roberta; Marzagalli, Monica; Fontana, Fabrizio; Maggi, Roberto
2018-01-01
Gonadotropin-releasing hormone (GnRH) is recognized as the central regulator of the functions of the pituitary-gonadal axis. The increasing knowledge on the mechanisms controlling the development and the function of GnRH-producing neurons is leading to a better diagnostic and therapeutic approach for hypogonadotropic hypogonadisms and for alterations of the puberty onset. During female life span, the function of the GnRH pulse generator may be affected by a number of inputs from other neuronal systems, offering alternative strategies for diagnostic and therapeutic interventions. Moreover, the identification of a GnRH/GnRH receptor system in both human ovary and endometrium has widened the spectrum of action of the peptide outside its hypothalamic functions. The pharmacological use of GnRH itself or its synthetic analogs (agonists and antagonists) provides a valid tool to either stimulate or block gonadotropin secretion and to modulate the female fertility in several reproductive disorders and in assisted reproduction technology. The use of GnRH agonists in young female patients undergoing chemotherapy is also considered a promising therapeutic approach to counteract iatrogenic ovarian failure. © 2018 Elsevier Inc. All rights reserved.
Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions (e.g., reproduction). This study ut...
Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions including reproduction. High conten...
Wild alligators exposed to persistent organochlorine contaminants, municipal waste compounds, and contemporary-use herbicides exhibit reproductive alterations that are thought to be caused by endocrine disruption. This study tests the hypothesis that these alterations, at least i...
Saad, Ramadan A; Mahmoud, Yomna I
2014-12-01
Ursodeoxycholic acid is the most widely used drug for treating cholestatic liver diseases. However, its effect on the male reproductive system alterations associated with cholestasis has never been studied. Thus, this study aimed to investigate the effect of ursodeoxycholic acid on cholestasis-induced alterations in the male reproductive system. Cholestasis was induced by bile duct ligation. Bile duct-ligated rats had higher cholestasis biomarkers and lower levels of testosterone, LH and FSH than did the Sham rats. They also had lower reproductive organs weights, and lower sperm motility, density and normal morphology than those of Sham rats. Histologically, these animals suffered from testicular tubular atrophy, interstitial edema, thickening of basement membranes, vacuolation, and depletion of germ cells. After ursodeoxycholic acid administration, cholestasis-induced structural and functional alterations were significantly ameliorated. In conclusion, ursodeoxycholic acid can ameliorate the reproductive complications of chronic cholestasis in male patients, which represents an additional benefit to this drug. Copyright © 2014 Elsevier Inc. All rights reserved.
[Analysis of ancient literature on baliao points for pelvic floor diseases].
Liu, Hairong; Zhang, Jianbin
2016-12-12
The relationship between baliao points and pelvis floor diseases was explored based on the ancient literature review on these acupoints' targeted diseases. It is considered that baliao points are applied to treat various pelvis floor diseases and symptoms of different systems. Each point has similar function but with unique feature. Shangliao (BL 31) is mainly used to treat gynecologic diseases;Ciliao (BL 32) and Zhongliao (BL 33),urologic system and reproductive system diseases;Zhongliao (BL 33) and Xialiao (BL 34),reproductive system and anorectal system diseases.
Prokineticins in central and peripheral control of human reproduction.
Traboulsi, Wael; Brouillet, Sophie; Sergent, Frederic; Boufettal, Houssine; Samouh, Naima; Aboussaouira, Touria; Hoffmann, Pascale; Feige, Jean Jacques; Benharouga, Mohamed; Alfaidy, Nadia
2015-11-01
Prokineticin 1 (PROK1) and (PROK2), are two closely related proteins that were identified as the mammalian homologs of their two amphibian homologs, mamba intestinal toxin (MIT-1) and Bv8. PROKs activate two G-protein linked receptors (prokineticin receptor 1 and 2, PROKR1 and PROKR2). Both PROK1 and PROK2 have been found to regulate a stunning array of biological functions. In particular, PROKs stimulate gastrointestinal motility, thus accounting for their family name "prokineticins". PROK1 acts as a potent angiogenic mitogen, thus earning its other name, endocrine gland-derived vascular endothelial factor. In contrast, PROK2 signaling pathway has been shown to be a critical regulator of olfactory bulb morphogenesis and sexual maturation. During the last decade, strong evidences established the key roles of prokineticins in the control of human central and peripheral reproductive processes. PROKs act as main regulators of the physiological functions of the ovary, uterus, placenta, and testis, with marked dysfunctions in various pathological conditions such as recurrent pregnancy loss, and preeclampsia. PROKs have also been associated to the tumor development of some of these organs. In the central system, prokineticins control the migration of GnRH neurons, a key process that controls reproductive functions. Importantly, mutations in PROK2 and PROKR2 are associated to the development of Kallmann syndrome, with direct consequences on the reproductive system. This review describes the finely tuned actions of prokineticins in the control of the central and peripheral reproductive processes. Also, it discusses future research directions for the use of these cytokines as diagnostic markers for several reproductive diseases.
Oktem, Ozgur; Guzel, Yılmaz; Aksoy, Senai; Aydin, Elvin; Urman, Bulent
2015-03-01
Systemic lupus erythematosus (SLE) is a chronic autoimmune systemic disease that mainly affects women of reproductive age. Emerging data from recent molecular studies show us that estrogen hormone plays a central role in the development of this disease. By acting via its cognate receptors ERα and ERβ expressed on immune cells, estrogen can modulate immune function in both the innate and adaptive immune responses. Interestingly, estrogen may also evoke autoimmune responses after binding to B lymphocytes leading to the generation of high-affinity autoantibodies and proinflammatory cytokines (so-called estrogen-induced autoimmunity). Unfortunately, reproductive function of young female patients with this disease is commonly compromised by different pathophysiologic processes. First, ovarian reserve is diminished even in the presence of mild disease suggesting a direct impact of the disease itself on ovarian function possibly due to ovarian involvement in the form of autoimmune oophoritis. Second, SLE patients with severe manifestations of the disease are treated with alkylating chemotherapy agent cyclophosphamide. Cyclophosphamide and other drugs of alkylating category have the highest gonadotoxicity. Therefore, SLE patients exposed to cyclophosphamide have a much higher risk of developing infertility and premature ovarian failure than do the counterparts who are treated with other less toxic treatments. Third, the functions of the hypothalamic pituitary ovarian axis are perturbed by chronic inflammatory state. And finally adverse pregnancy outcomes are more commonly observed in SLE patients such as fetal loss, preterm birth, intrauterine fetal growth restriction, preeclampsia-eclampsia, and fetal congenital heart block. We aimed in this review article to provide the readers an update on how estrogen hormone closely interacts with and induces lupus-prone changes in the immune system. We also discuss ovarian function and other reproductive outcomes in SLE patients and the current strategies to preserve their fertility in the light of the most recent evidence-based findings of the clinical trials and molecular studies.
Distribution and Biological Effects of Nanoparticles in the Reproductive System.
Liu, Ying; Li, Hongxia; Xiao, Kai
2016-01-01
Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our understanding of biological effects of nanoparticles on the reproductive system.
Brain Sex Matters: estrogen in cognition and Alzheimer’s disease
Li, Rena; Cui, Jie; Shen, Yong
2014-01-01
Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissues such as liver, heart, muscle, bone and the brain. During the past decade, increasing evidence suggests that brain estrogen can not only be synthesized by neurons, but also by astrocytes. Brain estrogen also works locally at the site of synthesis in paracrine and/or intracrine fashion to maintain important tissue-specific functions. Here, we will focus on the biology of brain estrogen and its impact on cognitive function and Alzheimer’s disease. This comprehensive review provides new insights into brain estrogens by presenting a better understanding of the tissue-specific estrogen effects and their roles in healthy ageing and cognitive function. PMID:24418360
Dickerson, Sarah M.; Walker, Deena M.; Reveron, Maria E.; Duvauchelle, Christine L.; Gore, Andrea C.
2009-01-01
Reproductive function involves an interaction of three regulatory levels: hypothalamus, pituitary, and gonad. The primary drive upon this system comes from hypothalamic gonadotropin-releasing hormone (GnRH) neurosecretory cells, which receive afferent inputs from other neurotransmitter systems in the central nervous system to result in the proper coordination of reproduction and the environment. Here, we hypothesized that the recreational drug ±-3,4-Methylenedioxymethamphetamine (MDMA; “ecstasy”), which acts through several of the neurotransmitter systems that affect GnRH neurons, suppresses the hypothalamic-pituitary-gonadal (HPG) reproductive axis of male rats. Adult male Sprague-Dawley rats self-administered saline or MDMA or saline either once (acute) or for 20 days (chronic), and were euthanized 7 days following last administration. We quantified hypothalamic GnRH mRNA, serum luteinizing hormone (LH) concentrations, and serum testosterone levels, as indices of hypothalamic, pituitary, and gonadal functions, respectively. The results indicate that the hypothalamic and gonadal levels of the HPG axis are significantly altered by MDMA, with GnRH mRNA and serum testosterone levels suppressed in rats administered MDMA compared to saline. Furthermore, our finding that hypothalamic GnRH mRNA levels are suppressed in the context of low testosterone concentrations suggests that the central GnRH neurosecretory system may be a primary target of inhibitory regulation by MDMA usage. PMID:18309234
Adipokines in human reproduction.
Dupont, Joëlle; Pollet-Villard, Xavier; Reverchon, Maxime; Mellouk, Namya; Levy, Rachel
2015-10-01
Adipose tissue communicates with other central and peripheral organs by the synthesis and release of substances called adipokines. The most studied adipokine is leptin but others have been recently identified including resistin, adiponectin, chemerin, omentin and visfatin. These adipokines have a critical role in the development of obesity-related complications and inflammatory conditions. However, they are also involved in other functions in the organism including reproductive functions. Indeed, many groups have demonstrated that adipokine receptors, such as adiponectin and chemerin, but also adipokines themselves (adiponectin, chemerin, resistin, visfatin and omentin) are expressed in human peripheral reproductive tissues and that these adipokines are likely to exert direct effects on these tissues. After a brief description of these new adipokines, an overview of their actions in different human reproductive organs (hypothalamus, pituitary, ovary, testis, uterus and placenta) will be presented. Finally, comments will be made on the eventual alterations of these adipokines in reproductive disorders, with special attention to polycystic ovary syndrome, a disease characterized by dysfunction of gonadal axis and systemic nerve endocrine metabolic network with a prevalence of up to 10% in women of reproductive age.
[Impact of end-stage renal disease and kidney transplantation on the reproductive system].
Delesalle, A-S; Robin, G; Provôt, F; Dewailly, D; Leroy-Billiard, M; Peigné, M
2015-01-01
Chronic renal failure leads to many metabolic disorders affecting reproductive function. For men, hypergonadotropic hypogonadism, hyperprolactinemia, spermatic alterations, decreased libido and erectile dysfunction are described. Kidney transplantation improves sperm parameters and hormonal function within 2 years. But sperm alterations may persist with the use of immunosuppressive drugs. In women, hypothalamic-pituitary-ovarian axis dysfunction due to chronic renal failure results in menstrual irregularities, anovulation and infertility. After kidney transplantation, regular menstruations usually start 1 to 12 months after transplantation. Fertility can be restored but luteal insufficiency can persist. Moreover, 4 to 20% of women with renal transplantation suffer from premature ovarian failure syndrome. In some cases, assisted reproductive technologies can be required and imply risks of ovarian hyperstimulation syndrome and must be performed with caution. Pregnancy risks for mother, fetus and transplant are added to assisted reproductive technologies ones. Only 7 authors have described assisted reproductive technologies for patients with kidney transplantation. No cases of haemodialysis patients have been described yet. So, assisted reproductive technologies management requires a multidisciplinary approach with obstetrics, nephrology and reproductive medicine teams' agreement. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Ghrelin, a gastric peptide, is implicated in a multiplicity of biological functions, including energy homeostasis and reproduction. Neuronal systems that are involved in energy homeostasis as well as reproduction traverse the hypothalamus, however, the mechanism by which they control energy homeosta...
Liu, Long; Fan, Yanfeng; Zhang, Zhenhe; Yang, Chan; Geng, Tuoyu; Gong, Daoqing; Hou, Zhuocheng; Ning, Zhonghua
2017-01-01
The reproductive system of a female bird is responsible for egg production. The genes highly expressed in oviduct are potentially important. From RNA-seq analysis, C2H9orf152 (an orthologous gene of human C9orf152) was identified as highly expressed in chicken uterus. To infer its function, we obtained and characterized its complete cDNA sequence, determined its spatiotemporal expression, and probed its transcription factor(s) through pharmaceutical approach. Data showed that the complete cDNA sequence was 1468bp long with a 789bp of open reading frame. Compared to other tested tissues, this gene was highly expressed in the oviduct and liver tissues, especially uterus. Its expression in uterus was gradually increased during developmental and reproductive periods, which verified its involvement in the growth and maturity of reproductive system. In contrast, its expression was not significant different between active and quiescent uterus, suggesting the role of C2H9orf152 in reproduction is likely due to its long-term effect. Moreover, based on its 5'-flanking sequence, Foxd3 and Hnf4a were predicted as transcription factors of C2H9orf152. Using berberine or retinoic acid (which can regulate the activities of Hnf4a and Foxd3, respectively), we demonstrated suppression of C2H9orf152 by the chemicals in chicken primary hepatocytes. As retinoic acid regulates calcium metabolism, and Hnf4a is a key nuclear factor to liver, these findings suggest that C2H9orf152 is involved in liver function and calcium metabolism of reproductive system. In conclusion, C2H9orf152 may have a long-term effect on chicken reproductive system by regulating calcium metabolism, suggesting this gene has an important implication in the improvement of egg production and eggshell quality. Copyright © 2016 Elsevier B.V. All rights reserved.
Major advances associated with reproduction in dairy cattle.
Moore, K; Thatcher, W W
2006-04-01
The purpose of this overview is to review some of the major advances in reproductive technologies, and how they may be applied to meet the challenge of enhancing reproductive efficiency in the high-producing dairy cow of the 21st century. The current population of high-producing dairy cows is considered to be subfertile, as characterized by low pregnancy rates and high rates of embryonic mortality. Coordinated systems of reproductive management have been developed based upon a thorough understanding of the endocrine, cellular, and molecular factors controlling ovarian and uterine function. These systems will partially restore herd reproductive performance. Advances in other reproductive technologies offer possibilities for wider use of superior germplasm. Technologies such as sexed semen, cloning, transgenesis, and preimplantation genetic diagnosis offer the potential to enhance the influence of superior animals on production of food for human consumption. However, at this time, additional research is needed to counteract the higher rates of embryonic and fetal mortality associated with some of these technologies. Furthermore, use of genomics, proteomics, and bioinformatics in the study of reproduction will undoubtedly provide investigators with a greater understanding of the limitations to efficient reproductive processes in the subfertile lactating dairy cow.
Thyroid hormone actions on male reproductive system of teleost fish.
Tovo-Neto, Aldo; da Silva Rodrigues, Maira; Habibi, Hamid R; Nóbrega, Rafael Henrique
2018-04-17
Thyroid hormones (THs) play important roles in the regulation of many biological processes of vertebrates, such as growth, metabolism, morphogenesis and reproduction. An increasing number of studies have been focused on the involvement of THs in the male reproductive system of vertebrates, in particular of fish. Therefore, this mini-review aims to summarize the main findings on THs role in male reproductive system of fish, focusing on sex differentiation, testicular development and spermatogenesis. The existing data in the literature have demonstrated that THs exert their roles at the different levels of the hypothalamic-pituitary-gonadal (HPG) axis. In general a positive correlation has been shown between THs and fish reproductive status; where THs are associated with testicular development, growth and maturation. Recently, the molecular mechanisms underlying the role of THs in spermatogenesis have been unraveled in zebrafish testis. THs promote germ cell proliferation and differentiation by increasing a stimulatory growth factor of spermatogenesis produced by Sertoli cells. In addition, THs enhanced the gonadotropin-induced androgen release in zebrafish testis. Next to their functions in the adult testis, THs are involved in the gonadal sex differentiation through modulating sex-related gene expression, and testicular development via regulation of Sertoli cell proliferation. In conclusion, this mini-review showed that THs modulate the male reproductive system during the different life stages of fish. The physiological and molecular mechanisms showed a link between the thyroid and reproduction, suggesting a possibly co-evolution and interdependence of these two systems. Copyright © 2018 Elsevier Inc. All rights reserved.
Occupational exposure associated with reproductive dysfunction.
Kumar, Sunil
2004-01-01
Evidence suggestive of harmful effects of occupational exposure on the reproductive system and related outcomes has gradually accumulated in recent decades, and is further compounded by persistent environmental endocrine disruptive chemicals. These chemicals have been found to interfere with the function of the endocrine system, which is responsible for growth, sexual development and many other essential physiological functions. A number of occupations are being reported to be associated with reproductive dysfunction in males as well as in females. Generally, occupations involving the manufacture/or application of some of the persistent chemicals that are not easily degradable as well as bio-accumulative chemicals, occupations involving intensive exposure to heat and radiation, occupations involving the use of toxic solvents as well as toxic fumes are reported to be associated with reproductive dysfunction. Occupational exposure of males to various persistent chemicals have been reported to have male mediated adverse reproductive outcomes in the form of abortion, reduction in fertility etc. with inconclusive or limited evidence. Nevertheless, there is a need for more well designed studies in order to implicate any individual chemical having such effects as in most occupations workers are exposed to raw, intermediate and finished products and there are also several confounding factors associated with lifestyles responsible for reproductive dysfunction. There is an urgent need to look at indiscriminate use of persistent chemicals especially pesticides and persistent organic pollutants (POP's) as these chemicals enter the food chain also and could be potential for exposure during the critical period of development. It is also necessary to impart information, and to educate about the safe use of these chemicals, as a very sensitive reproduction issue is involved with exposure to these chemicals. Occupational exposures often are higher than environmental exposures, so that epidemiological studies should be conducted on these chemicals, on a priority basis, which are reported to have adverse effects on reproduction in the experimental system.
Wang, Bin; Liu, Quan; Liu, Xuezhou; Xu, Yongjiang; Shi, Bao
2017-08-01
Kisspeptin (Kiss) and its receptor, KissR (previously known as GPR54), play a critical role in the control of reproduction and puberty onset in mammals. Additionally, a number of studies have provided evidence of the existence of multiple Kiss/KissR systems in teleosts, but the physiological relevance and functions of these kisspeptin forms (Kiss1 and Kiss2) still remain to be investigated. To this end, we examined the direct actions of Kiss2 on hypothalamic functions in the half-smooth tongue sole (Cynoglossus semilaevis), a representative species of the order Pleuronectiformes. As a first step, the full-length cDNA for kiss2r was identified and kiss2r transcripts were shown to be widely expressed in various tissues, notably in the brain of tongue sole. Then, the effects of Kiss2 decapeptide on reproduction-related gene expression were evaluated using a primary hypothalamus culture system. Our results showed that neither gnrh2 nor gnrh3 mRNA levels were altered by Kiss2. However, Kiss2 significantly increased the amounts of gnih and kiss2 mRNAs. In contrast, Kiss2 elicited an evident inhibitory effect on both gnihr and kiss2r mRNA levels. To the best of our knowledge, this is the first description of a direct and differential regulation of reproduction-related gene expression by Kiss2 at the hypothalamus level of a teleost fish. Overall, this study provides novel information on the role of Kiss2/Kiss2R system in the reproductive function of teleosts. Copyright © 2017 Elsevier Inc. All rights reserved.
Gao, Ming-Qing; Zhang, Ruiqi; Yang, Yange; Luo, Yuru; Jiang, Ming; Zhang, Yingli; Zhang, Yong; Qing, Suzhu
2018-05-01
Bovine mastitis is an infectious disease of the mammary gland which has been generally treated by antibiotic delivery. While the increasing drug-resistant bacteria and the high consumption of the antibiotic had become a noticeable concern. In a previous study, a mammary special vector expressing human β-defensin 3 (hBD3) was transfected into bovine fetal fibroblasts to produce mastitis-resistant bovine. This investigation focused on potential unintended effects of transgenic milk containing hBD3 produced by these mastitis-resistant bovine on the reproductive system of C57BL/6J mice. Mice were fed with diets containing transgenic milk or conventional milk, nutritionally balanced to an AIN93G diet for 90 days, and non-milk diet was selected as the negative group. The reproductive system was given special attention including reproductive organ/body ratios, necropsy and histopathology, serum sex hormone, sperm parameters, estrus cycle and the expression level of some specific genes which could indicate the development and function of reproductive system. No diet-related significant differences were observed among three groups in this 90-day feeding study. The results indicated that hBD3 milk does not appear to exert any effect on the reproductive system in C57BL/6J rats compared with conventional milk or the control diet. Copyright © 2018 Elsevier Ltd. All rights reserved.
Non-invasive reproductive and stress endocrinology in amphibian conservation physiology
Narayan, E. J.
2013-01-01
Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo–pituitary–interrenal axis) and the reproductive endocrine system (the hypothalamo–pituitary–gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology for advancing amphibian conservation physiology. It also provides key technical considerations for future research that will increase the accuracy and reliability of the data and the value of non-invasive endocrinology within the conceptual framework of conservation physiology. PMID:27293595
Heifetz, Yael; Lindner, Moshe; Garini, Yuval; Wolfner, Mariana F
2014-03-31
Upon mating, regions of the female reproductive tract mature and alter their function [1-3], for example to facilitate storage of sperm or control the release of eggs [4-6]. The female's nervous system and neuromodulators play important roles in her responses to mating [7-13]. However, it is difficult to reconcile the reproductive tract's many changing but coordinated events with the small set of neuromodulators present [14-18]. We hypothesized that each part of the reproductive tract contains a characteristic combination of neuromodulators that confer unique identities on each region and that postmating changes in these combinations coordinate subsequent actions. We examined the presence, locations, and levels of neuromodulators and related molecules ("signaling molecules") in the reproductive tract of Drosophila melanogaster females before and after mating: the biogenic amine octopamine, which regulates ovulation rate in Drosophila and locusts [7, 14-20]; serotonin, which regulates muscle contraction in locust oviducts [21]; and the FMRF amide dromyosuppressin, which regulates contraction of Drosophila heart muscle [22] and may regulate muscle contractions in the reproductive tract, if it is expressed there. We find that separate aspects of mating (sperm, seminal proteins, and physical effects) independently modulate the release of signaling molecules. Each reproductive tract subregion displays a characteristic combination of signaling molecule release, resulting in a unique functional identity. These patterns, and thus functions, change reproducibly after mating. Thus, one event (mating) promotes new combinations of signaling molecules that endow different parts of the reproductive tract with unique temporal and spatial identities that facilitate many aspects of fertilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Novel signals for the integration of energy balance and reproduction.
Fernandez-Fernandez, R; Martini, A C; Navarro, V M; Castellano, J M; Dieguez, C; Aguilar, E; Pinilla, L; Tena-Sempere, M
2006-07-25
Although the close link between body weight and fertility has been known for eons, only recently have the peripheral signals and neuroendocrine networks responsible for such a phenomenon begun to be identified. A key event in this field was the cloning of the adipocyte-derived hormone leptin, which has been demonstrated as a pivotal regulator for the integration of energy homeostasis and reproduction. In addition, other metabolic hormones, such as insulin, contribute to this physiological integration. Moreover, compelling experimental evidence implicates hormonal products of the gastrointestinal tract as adjuncts in the complex coordination and regulation of body weight and reproduction. Here, we review recent studies evaluating the reproductive effects and sites of action of ghrelin and PYY3-36, two hormonal signals of gastrointestinal origin involved in the control food intake and energy balance. In addition, we summarize the potential contribution of kisspeptin, the recently characterized gatekeeper of the GnRH system encoded by Kiss1 gene, to integrating reproductive function and energy status. Evidence suggests that besides having direct gonadal effects, ghrelin may participate in the regulation of gonadotropin secretion and it may influence the timing of puberty. Likewise, PYY3-36 modulates GnRH and gonadotropin release. In addition, the hypothalamic KiSS-1 system is sensitive to nutritional status, and its diminished expression during states of negative energy balance might contribute to the suppression of reproductive function in such conditions. We propose that the peripheral hormones, ghrelin and PYY3-36, and the central neuropeptide, kisspeptin, are 'novel' players in the neuroendocrine networks that integrate energy balance and reproduction.
1992-01-01
GROUP j SUB-GROUP Lead, Weapons Systems, Microwave Radiation, Male 16; 19 03 1 Reproductive Effects 17 10 19. ABSTRACT (Continue on reverse if... 1 INTRODUCTION ............ ................... 2 BACKGROUND ............................................... 4 EXPOSURE CHARACTERIZATION...APPENDIX C ............................................... 132 LIST OF FIGURES Figure 1 . Graphic representation for trend with respect to statistically
Effects of aging on the male reproductive system.
Gunes, Sezgin; Hekim, Gulgez Neslihan Taskurt; Arslan, Mehmet Alper; Asci, Ramazan
2016-04-01
The study aims to discuss the effects of aging on the male reproductive system. A systematic review was performed using PubMed from 1980 to 2014. Aging is a natural process comprising of irreversible changes due to a myriad of endogenous and environmental factors at the level of all organs and systems. In modern life, as more couples choose to postpone having a child due to various socioeconomic reasons, research for understanding the effects of aging on the reproductive system has gained an increased importance. Paternal aging also causes genetic and epigenetic changes in spermatozoa, which impair male reproductive functions through their adverse effects on sperm quality and count as, well as, on sexual organs and the hypothalamic-pituitary-gonadal axis. Hormone production, spermatogenesis, and testes undergo changes as a man ages. These small changes lead to decrease in both the quality and quantity of spermatozoa. The offspring of older fathers show high prevalence of genetic abnormalities, childhood cancers, and several neuropsychiatric disorders. In addition, the latest advances in assisted reproductive techniques give older men a chance to have a child even with poor semen parameters. Further studies should investigate the onset of gonadal senesce and its effects on aging men.
Viruses in the Mammalian Male Genital Tract and Their Effects on the Reproductive System
Dejucq, Nathalie; Jégou, Bernard
2001-01-01
This review describes the various viruses identified in the semen and reproductive tracts of mammals (including humans), their distribution in tissues and fluids, their possible cell targets, and the functional consequences of their infectivity on the reproductive and endocrine systems. The consequences of these viral infections on the reproductive tract and semen can be extremely serious in terms of organ integrity, development of pathological and cancerous processes, and transmission of diseases. Furthermore, of essential importance is the fact that viral infection of the testicular cells may result not only in changes in testicular function, a serious risk for the fertility and general health of the individual (such as a fall in testosteronemia leading to cachexia), but also in the possible transmission of virus-induced mutations to subsequent generations. In addition to providing an exhaustive account of the data available in these domains, this review focuses attention on the fact that the interface between endocrinology and virology has so far been poorly explored, particularly when major health, social and economical problems are posed. Our conclusions highlight the research strategies that need to be developed. Progress in all these domains is essential for the development of new treatment strategies to eradicate viruses and to correct the virus-induced dysfunction of the endocrine system. PMID:11381100
Reproduction Symposium: developmental programming of reproductive and metabolic health.
Padmanabhan, V; Veiga-Lopez, A
2014-08-01
Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the developmental origin of fertility and metabolic disorders. Studies with the environmental endocrine disruptor bisphenol A (BPA) show that reproductive disruptions found in prenatal BPA-treated sheep are similar to those seen in prenatal T-treated sheep. The ubiquitous exposure to endocrine disrupting compounds with steroidogenic potential via the environment and food sources calls for studies addressing the impact of developmental exposure to environmental steroid mimics on reproductive function.
New genes often acquire male-specific functions but rarely become essential in Drosophila.
Kondo, Shu; Vedanayagam, Jeffrey; Mohammed, Jaaved; Eizadshenass, Sogol; Kan, Lijuan; Pang, Nan; Aradhya, Rajaguru; Siepel, Adam; Steinhauer, Josefa; Lai, Eric C
2017-09-15
Relatively little is known about the in vivo functions of newly emerging genes, especially in metazoans. Although prior RNAi studies reported prevalent lethality among young gene knockdowns, our phylogenomic analyses reveal that young Drosophila genes are frequently restricted to the nonessential male reproductive system. We performed large-scale CRISPR/Cas9 mutagenesis of "conserved, essential" and "young, RNAi-lethal" genes and broadly confirmed the lethality of the former but the viability of the latter. Nevertheless, certain young gene mutants exhibit defective spermatogenesis and/or male sterility. Moreover, we detected widespread signatures of positive selection on young male-biased genes. Thus, young genes have a preferential impact on male reproductive system function. © 2017 Kondo et al.; Published by Cold Spring Harbor Laboratory Press.
Sitnik, Jessica L; Francis, Carmen; Hens, Korneel; Huybrechts, Roger; Wolfner, Mariana F; Callaerts, Patrick
2014-03-01
Members of the M13 class of metalloproteases have been implicated in diseases and in reproductive fitness. Nevertheless, their physiological role remains poorly understood. To obtain a tractable model with which to analyze this protein family's function, we characterized the gene family in Drosophila melanogaster and focused on reproductive phenotypes. The D. melanogaster genome contains 24 M13 class protease homologs, some of which are orthologs of human proteases, including neprilysin. Many are expressed in the reproductive tracts of either sex. Using RNAi we individually targeted the five Nep genes most closely related to vertebrate neprilysin, Nep1-5, to investigate their roles in reproduction. A reduction in Nep1, Nep2, or Nep4 expression in females reduced egg laying. Nep1 and Nep2 are required in the CNS and the spermathecae for wild-type fecundity. Females that are null for Nep2 also show defects as hosts of sperm competition as well as an increased rate of depletion for stored sperm. Furthermore, eggs laid by Nep2 mutant females are fertilized normally, but arrest early in embryonic development. In the male, only Nep1 was required to induce normal patterns of female egg laying. Reduction in the expression of Nep2-5 in the male did not cause any dramatic effects on reproductive fitness, which suggests that these genes are either nonessential for male fertility or perform redundant functions. Our results suggest that, consistent with the functions of neprilysins in mammals, these proteins are also required for reproduction in Drosophila, opening up this model system for further functional analysis of this protein class and their substrates.
Sitnik, Jessica L.; Francis, Carmen; Hens, Korneel; Huybrechts, Roger; Wolfner, Mariana F.; Callaerts, Patrick
2014-01-01
Members of the M13 class of metalloproteases have been implicated in diseases and in reproductive fitness. Nevertheless, their physiological role remains poorly understood. To obtain a tractable model with which to analyze this protein family’s function, we characterized the gene family in Drosophila melanogaster and focused on reproductive phenotypes. The D. melanogaster genome contains 24 M13 class protease homologs, some of which are orthologs of human proteases, including neprilysin. Many are expressed in the reproductive tracts of either sex. Using RNAi we individually targeted the five Nep genes most closely related to vertebrate neprilysin, Nep1-5, to investigate their roles in reproduction. A reduction in Nep1, Nep2, or Nep4 expression in females reduced egg laying. Nep1 and Nep2 are required in the CNS and the spermathecae for wild-type fecundity. Females that are null for Nep2 also show defects as hosts of sperm competition as well as an increased rate of depletion for stored sperm. Furthermore, eggs laid by Nep2 mutant females are fertilized normally, but arrest early in embryonic development. In the male, only Nep1 was required to induce normal patterns of female egg laying. Reduction in the expression of Nep2-5 in the male did not cause any dramatic effects on reproductive fitness, which suggests that these genes are either nonessential for male fertility or perform redundant functions. Our results suggest that, consistent with the functions of neprilysins in mammals, these proteins are also required for reproduction in Drosophila, opening up this model system for further functional analysis of this protein class and their substrates. PMID:24395329
Telocytes in female reproductive system (human and animal).
Aleksandrovych, Veronika; Walocha, Jerzy A; Gil, Krzysztof
2016-06-01
Telocytes (TCs) are a newly discovered type of cell with numerous functions. They have been found in a large variety of organs: heart (endo-, myo-, epi- and pericardium, myocardial sleeves, heart valves); digestive tract and annex glands (oesophagus, stomach, duodenum, jejunum, liver, gallbladder, salivary gland, exocrine pancreas); respiratory system (trachea and lungs); urinary system (kidney, renal pelvis, ureters, bladder, urethra); female reproductive system (uterus, Fallopian tube, placenta, mammary gland); vasculature (blood vessels, thoracic duct); serous membranes (mesentery and pleura); and other organs (skeletal muscle, meninges and choroid plexus, neuromuscular spindles, fascia lata, skin, eye, prostate, bone marrow). Likewise, TCs are widely distributed in vertebrates (fish, reptiles, birds, mammals, including human). This review summarizes particular features of TCs in the female reproductive system, emphasizing their involvement in physiological and pathophysiological processes. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Ibáñez, Carlos A.; Erthal, Rafaela P.; Ogo, Fernanda M.; Peres, Maria N. C.; Vieira, Henrique R.; Conejo, Camila; Tófolo, Laize P.; Francisco, Flávio A.; da Silva Silveira, Sandra; Malta, Ananda; Pavanello, Audrei; Martins, Isabela P.; da Silva, Paulo H. O.; Jacinto Saavedra, Lucas Paulo; Gonçalves, Gessica D.; Moreira, Veridiana M.; Alves, Vander S.; da Silva Franco, Claudinéia C.; Previate, Carina; Gomes, Rodrigo M.; de Oliveira Venci, Renan; Dias, Francielle R. S.; Armitage, James A.; Zambrano, Elena; Mathias, Paulo C. F.; Fernandes, Glaura S. A.; Palma-Rigo, Kesia
2017-01-01
An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health. PMID:29163186
Ibáñez, Carlos A; Erthal, Rafaela P; Ogo, Fernanda M; Peres, Maria N C; Vieira, Henrique R; Conejo, Camila; Tófolo, Laize P; Francisco, Flávio A; da Silva Silveira, Sandra; Malta, Ananda; Pavanello, Audrei; Martins, Isabela P; da Silva, Paulo H O; Jacinto Saavedra, Lucas Paulo; Gonçalves, Gessica D; Moreira, Veridiana M; Alves, Vander S; da Silva Franco, Claudinéia C; Previate, Carina; Gomes, Rodrigo M; de Oliveira Venci, Renan; Dias, Francielle R S; Armitage, James A; Zambrano, Elena; Mathias, Paulo C F; Fernandes, Glaura S A; Palma-Rigo, Kesia
2017-01-01
An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO 2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.
Melatonin and male reproductive health: relevance of darkness and antioxidant properties.
Rocha, C S; Rato, L; Martins, A D; Alves, M G; Oliveira, P F
2015-01-01
The pineal hormone melatonin controls several physiological functions that reach far beyond the regulation of the circadian rhythm. Moreover, it can be produced in extra-pineal organs such as reproductive organs. The role of melatonin in the mammalian seasonal and circadian rhythm is well known. Nevertheless, its overall effect in male reproductive physiology remains largely unknown. Melatonin is a very powerful endogenous antioxidant that can also be exogenously taken safely. Interestingly, its antioxidant properties have been consistently reported to improve the male reproductive dysfunctions associated with pathological conditions and also with the exposure to toxicants. Nevertheless, the exact molecular mechanisms by which melatonin exerts its action in the male reproductive system remain a matter of debate. Herein, we propose to present an up-to-date overview of the melatonin effects in the male reproductive health and debate future directions to disclose possible sites of melatonin action in male reproductive system. We will discuss not only the role of melatonin during darkness and sleep but also the importance of the antioxidant properties of this hormone to male fertility. Since melatonin readily crosses the physiological barriers, such as the blood-testis barrier, and has a very low toxicity, it appears as an excellent candidate in the prevention and/or treatment of the multiple male reproductive dysfunctions associated with various pathologies.
microRNA in Human Reproduction.
Eisenberg, Iris; Kotaja, Noora; Goldman-Wohl, Debra; Imbar, Tal
2015-01-01
microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.
Bennell, K L; Brukner, P D; Malcolm, S A
1996-09-01
It is apparent that bone density in male athletes can be reduced without a concomitant decrease in testosterone, suggesting that bone density and testosterone concentrations in the normal range are not closely related in male athletes. Further research is necessary to monitor concurrent changes in bone density and testosterone over a period of time in exercising males. In any case, the effect of exercise on the male reproductive system does not appear as extreme as that which can occur in female athletes, and any impact on bone density is not nearly as evident. These results imply that factors apart from testosterone concentrations must be responsible for the observed osteopenia in some male athletes. Many factors have the potential to adversely affect bone density, independently of alterations in reproductive function. These include low calcium intake, energy deficit, weight loss, psychological stress, and low body fat, all of which may be associated with intense endurance training. Future research investigating skeletal health in male athletes should include a thorough assessment of reproductive function in addition to these other factors.
Kisspeptin and KISS1R: a critical pathway in the reproductive system
Gianetti, Elena; Seminara, Stephanie
2010-01-01
In 2003, three groups around the world simultaneously discovered that KISS1R (GPR54) is a key gatekeeper of sexual maturation in both mice and men. Developmental changes in the expression of the ligand for KISS1R, kisspeptin, support its critical role in the pubertal transition. In addition, kisspeptin, a powerful stimulus of GNRH-induced gonadotropin secretion and may modulate both positive and negative sex steroid feedback effects at the hypothalamic level. Genetic studies in humans have revealed both loss-of-function and gain-of-function mutations in patients with idiopathic hypogonadotropic hypogonadism and precocious puberty respectively. This review examines the kisspeptin/KISS1R pathway in the reproductive system. PMID:18515314
TAM receptor signaling in development.
Burstyn-Cohen, Tal
2017-01-01
TYRO3, AXL and MERTK comprise the TAM family of receptor protein tyrosine kinases. Activated by their ligands, protein S (PROS1) and growth-arrest-specific 6 (GAS6), they mediate numerous cellular functions throughout development and adulthood. Expressed by a myriad of cell types and tissues, they have been implicated in homeostatic regulation of the immune, nervous, vascular, bone and reproductive systems. The loss-of-function of TAM signaling in adult tissues culminates in the destruction of tissue homeostasis and diseased states, while TAM gain-of-function in various tumors promotes cancer phenotypes. Combinatorial ligand-receptor interactions may elicit different molecular and cellular responses. Many of the TAM regulatory functions are essentially developmental, taking place both during embryogenesis and postnatally. This review highlights current knowledge on the role of TAM receptors and their ligands during these developmental processes in the immune, nervous, vascular and reproductive systems.
Semiosis in self-producing systems
NASA Astrophysics Data System (ADS)
Sharov, Alexei
2000-05-01
Cybernetic methodology has reached its limits in the study of life because it ignores the meaning of biological information. Thus it should be augmented by semiotics that studies the meaning and value of signs. According to the pragmatic definition, a sign is a biological adaptation, i.e. a persistent useful function. Usefulness of an action can be measured by its contribution to the reproductive value of an organism in a particular quasi-species. Reproductive values are equal to the components of the left eigenvector of the linearized model of system dynamics. Every organism is a sign, and its life cycle is a continuous process of self-interpretation. Organisms use receptors to predict changing environments. Natural selection is functionally equivalent to perception at the level of lineages. Selective survival and reproduction is analogous to selective excitation of photoreceptors in the eye. Lineages learn how to avoid harmful variation by using developmental constraints, proofreading, dominance, and other mechanisms. If intelligence is defined as the ability to learn, then lineages are intelligent systems, which we did not recognize simply because they are too slow.
Sperm proteins in teleostean and chondrostean (sturgeon) fishes.
Li, Ping; Hulak, Martin; Linhart, Otomar
2009-11-01
Sperm proteins in the seminal plasma and spermatozoa of teleostean and chondrostean have evolved adaptations due to the changes in the reproductive environment. Analysis of the composition and functions of these proteins provides new insights into sperm motility and fertilising abilities, thereby creating possibilities for improving artificial reproduction and germplasm resource conservation technologies (e.g. cryopreservation). Seminal plasma proteins are involved in the protection of spermatozoa during storage in the reproductive system, whereas all spermatozoa proteins contribute to the swimming and fertilising abilities of sperm. Compared to mammalian species, little data are available on fish sperm proteins and their functions. We review here the current state of the art in this field and focus on relevant subjects that require attention. Future research should concentrate on protein functions and their mode of action in fish species, especially on the role of spermatozoa surface proteins during fertilisation and on a description of sturgeon sperm proteins.
ERIC Educational Resources Information Center
Ochkina, A. V.
2011-01-01
Research on the reproduction of cultural capital in Russia shows that it requires not only appropriate motivation on the part of parents, close association between parents and children, but also institutional and material support. Inadequate financial resources, breakdowns in the functioning of the system of education and culture, and conflicts in…
Early-life nutritional effects on the female reproductive system.
Chan, K A; Tsoulis, M W; Sloboda, D M
2015-02-01
There is now considerable epidemiological and experimental evidence indicating that early-life environmental conditions, including nutrition, affect subsequent development in later life. These conditions induce highly integrated responses in endocrine-related homeostasis, resulting in persistent changes in the developmental trajectory producing an altered adult phenotype. Early-life events trigger processes that prepare the individual for particular circumstances that are anticipated in the postnatal environment. However, where the intrauterine and postnatal environments differ markedly, such modifications to the developmental trajectory may prove maladaptive in later life. Reproductive maturation and function are similarly influenced by early-life events. This should not be surprising, because the primordial follicle pool is established early in life and is thus vulnerable to early-life events. Results of clinical and experimental studies have indicated that early-life adversity is associated with a decline in ovarian follicular reserve, changes in ovulation rates, and altered age at onset of puberty. However, the underlying mechanisms regulating the relationship between the early-life developmental environment and postnatal reproductive development and function are unclear. This review examines the evidence linking early-life nutrition and effects on the female reproductive system, bringing together clinical observations in humans and experimental data from targeted animal models. © 2015 Society for Endocrinology.
Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility.
du Plessis, Stefan S; Agarwal, Ashok; Syriac, Arun
2015-11-01
Marijuana has the highest consumption rate among all of the illicit drugs used in the USA, and its popularity as both a recreational and medicinal drug is increasing especially among men of reproductive age. Male factor infertility is on the increase, and the exposure to the cannabinoid compounds released by marijuana could be a contributing cause. The endocannabinoid system (ECS) is deeply involved in the complex regulation of male reproduction through the endogenous release of endocannabinoids and binding to cannabinoid receptors. Disturbing the delicate balance of the ECS due to marijuana use can negatively impact reproductive potential. Various in vivo and in vitro studies have reported on the empirical role that marijuana plays in disrupting the hypothalamus-pituitary-gonadal axis, spermatogenesis, and sperm function such as motility, capacitation, and the acrosome reaction. In this review, we highlight the latest evidence regarding the effect of marijuana use on male fertility and also provide a detailed insight into the ECS and its significance in the male reproductive system.
Developmental programming of reproductive and metabolic health1,2
Padmanabhan, V.; Veiga-Lopez, A.
2014-01-01
The inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (~5 mo gestation and ~7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and (or) reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of non-invasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level all three feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles, as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive/metabolic diseases, insulin resistance, hypertension and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the developmental origin of fertility and metabolic disorders. Studies with the environmental endocrine disruptor, bisphenol-A (BPA), show that reproductive disruptions found in prenatal BPA-treated sheep are similar to those seen in prenatal T-treated sheep. The ubiquitous exposure to endocrine disrupting compounds (EDC) with steroidogenic potential via the environment and food sources, calls for studies addressing the impact of developmental exposure to environmental steroid mimics on reproductive function. PMID:25074449
Similar Gender Dimorphism in the Costs of Reproduction across the Geographic Range of Fraxinus ornus
Verdú, Miguel; Spanos, Kostas; čaňová, Ingrid; Slobodník, Branko; Paule, Ladislav
2007-01-01
Background and Aims The reproductive costs for individuals with the female function have been hypothesized to be greater than for those with the male function because the allocation unit per female flower is very high due to the necessity to nurture the embryos until seed dispersal occurs, while the male reproductive allocation per flower is lower because it finishes once pollen is shed. Consequently, males may invest more resources in growth than females. This prediction was tested across a wide geographical range in a tree with a dimorphic breeding system (Fraxinus ornus) consisting of males and hermaphrodites functioning as females. The contrasting ecological conditions found across the geographical range allowed the evaluation of the hypothesis that the reproductive costs of sexual dimorphism varies with environmental stressors. Methods By using random-effects meta-analysis, the differences in the reproductive and vegetative investment of male and hermaphrodite trees of F. ornus were analysed in 10 populations from the northern (Slovakia), south-eastern (Greece) and south-western (Spain) limits of its European distribution. The variation in gender-dimorphism with environmental stress was analysed by running a meta-regression between these effect sizes and the two environmental stress indicators: one related to temperature (the frost-free period) and another related to water availability (moisture deficit). Key Results Most of the effect sizes showed that males produced more flowers and grew more quickly than hermaphrodites. Gender differences in reproduction and growth were not minimized or maximized under adverse climatic conditions such as short frost-free periods or severe aridity. Conclusions The lower costs of reproduction for F. ornus males allow them to grow more quickly than hermaphrodites, although such differences in sex-specific reproductive costs are not magnified under stressful conditions. PMID:17098751
Environmental factors, epigenetics, and developmental origin of reproductive disorders.
Ho, Shuk-Mei; Cheong, Ana; Adgent, Margaret A; Veevers, Jennifer; Suen, Alisa A; Tam, Neville N C; Leung, Yuet-Kin; Jefferson, Wendy N; Williams, Carmen J
2017-03-01
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of "Developmental Origins of Health and Disease" (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p'-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Environmental Factors, Epigenetics, and Developmental Origin of Reproductive Disorders
Ho, Shuk-Mei; Cheong, Ana; Adgent, Margaret A.; Veevers, Jennifer; Suen, Alisa A.; Tam, Neville N.C.; Leung, Yuet-Kin; Jefferson, Wendy N.; Williams, Carmen J.
2016-01-01
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of “Developmental Origins of Health and Disease” (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p′-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects. PMID:27421580
Fanson, Kerry V; Parrott, Marissa L
2015-11-01
This article is part of a Special Issue "SBN 2014". Chronic stress is known to inhibit female reproductive function. Consequently, it is often assumed that glucocorticoid (GC) concentrations should be negatively correlated with reproductive success because of the role they play in stress physiology. In contrast, a growing body of evidence indicates that GCs play an active role in promoting reproductive function. It is precisely because GCs are so integral to the entire process that disruptions to adrenal activity have negative consequences for reproduction. The goal of this paper is to draw attention to the increasing evidence showing that increases in adrenal activity are important for healthy female reproduction. Furthermore, we outline several hypotheses about the functional role(s) that GCs may play in mediating reproduction and argue that comparative studies between eutherian and marsupial mammals, which exhibit some pronounced differences in reproductive physiology, may be particularly useful for testing different hypotheses about the functional role of GCs in reproduction. Much of our current thinking about GCs and reproduction comes from research involving stress-induced levels of GCs and has led to broad assumptions about the effects of GCs on reproduction. Unfortunately, this has left a gaping hole in our knowledge about basal GC levels and how they may influence reproductive function, thereby preventing a broader understanding of adrenal physiology and obscuring potential solutions for reproductive dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.
Fort, Douglas J; Mathis, Michael; Fort, Chelsea E; Fort, Hayley M; Bacon, Jamie P
2015-06-01
A modified tier 1 Endocrine Disruptor Screening Program (EDSP) 21-d fish short-term reproduction assay (FSTRA) was used to evaluate the effects of sediment exposure from freshwater and brackish ponds in Bermuda on reproductive fecundity and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus). Reproductively active male and female fish were exposed to control sediment and sediment from 2 freshwater ponds (fathead minnow) and 2 marine ponds (killifish) contaminated with polyaromatic hydrocarbons and metals via flow-through exposure for 21 d. Reproductive fecundity was monitored daily. At termination, the status of the reproductive endocrine system was assessed by the gonadosomatic index, gonadal histology, plasma steroids (estrogen [E2], testosterone [T], and 11-ketotestosterone [11-KT]), steroidogenic enzymes (aromatase and combined 3β/17β -hydroxysteroid dehydrogenase [3β/17β-HSD]), and plasma vitellogenin (VTG). Decreased reproductive fecundity, lower male body weight, and altered endocrinological measures of reproductive status were observed in both species. Higher plasma T levels in female minnows and 11-KT levels in both male and female minnows and female killifish exposed to freshwater and brackish sediments, respectively. Decreased female E2 and VTG levels and gonadal cytochrome P19 (aromatase) activity were also found in sediment exposed females from both species. No effect on female 3β/17β-HSD activity was found in either species. The FSTRA provided a robust model capable of modification to evaluate reproductive effects of sediment exposure in fish. © 2015 SETAC.
Endocrine-disrupting chemicals-Mechanisms of action on male reproductive system.
Sidorkiewicz, Iwona; Zaręba, Kamil; Wołczyński, Sławomir; Czerniecki, Jan
2017-07-01
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that can cause disturbances in the endocrine system and have multiple harmful effects on health by targeting different organs and systems in the human body. Mass industrial production and widespread use of EDCs have resulted in worldwide contamination. Accumulating evidence suggest that human exposure to EDCs is related to the impairment of male reproductive function and can interrupt other hormonally regulated metabolic processes, particularly if exposure occurs during early development. Investigation of studies absent in previous reviews and meta-analysis of adverse effects of EDCs on functioning of the male reproductive system is the core of this work. Four main modes of action of EDCs on male fertility have been summarized in this review. First, studies describing estrogen- pathway disturbing chemicals are investigated. Second, androgen-signaling pathway alterations and influence on androgen sensitive tissues are examined. Third, evaluation of steroidogenesis dysfunction is discussed by focusing on the steroid hormone biosynthesis pathway, which is targeted by EDCs. Last, the reportedly destructive role of reactive oxygen species (ROS) on sperm function is discussed. Spermatogenesis is a remarkably complex process, hence multiple studies point out various dysfunctions depending on the development state at which the exposure occurred. Collected data show the need to account for critical windows of exposure such as fetal, perinatal and pubertal periods as well as effects of mixtures of several compounds in future research.
Gap junction connexins in female reproductive organs: implications for women's reproductive health.
Winterhager, Elke; Kidder, Gerald M
2015-01-01
Connexins comprise a family of ~20 proteins that form intercellular membrane channels (gap junction channels) providing a direct route for metabolites and signalling molecules to pass between cells. This review provides a critical analysis of the evidence for essential roles of individual connexins in female reproductive function, highlighting implications for women's reproductive health. No systematic review has been carried out. Published literature from the past 35 years was surveyed for research related to connexin involvement in development and function of the female reproductive system. Because of the demonstrated utility of genetic manipulation for elucidating connexin functions in various organs, much of the cited information comes from research with genetically modified mice. In some cases, a distinction is drawn between connexin functions clearly related to the formation of gap junction channels and those possibly linked to non-channel roles. Based on work with mice, several connexins are known to be required for female reproductive functions. Loss of connexin43 (CX43) causes an oocyte deficiency, and follicles lacking or expressing less CX43 in granulosa cells exhibit reduced growth, impairing fertility. CX43 is also expressed in human cumulus cells and, in the context of IVF, has been correlated with pregnancy outcome, suggesting that this connexin may be a determinant of oocyte and embryo quality in women. Loss of CX37, which exclusively connects oocytes with granulosa cells in the mouse, caused oocytes to cease growing without acquiring meiotic competence. Blocking of CX26 channels in the uterine epithelium disrupted implantation whereas loss or reduction of CX43 expression in the uterine stroma impaired decidualization and vascularization in mouse and human. Several connexins are important in placentation and, in the human, CX43 is a key regulator of the fusogenic pathway from the cytotrophoblast to the syncytiotrophoblast, ensuring placental growth. CX40, which characterizes the extravillous trophoblast (EVT), supports proliferation of the proximal EVTs while preventing them from differentiating into the invasive pathway. Furthermore, women with recurrent early pregnancy loss as well as those with endometriosis exhibit reduced levels of CX43 in their decidua. The antimalaria drug mefloquine, which blocks gap junction function, is responsible for increased risk of early pregnancy loss and stillbirth, probably due to inhibition of intercellular communication in the decidua or between trophoblast layers followed by an impairment of placental growth. Gap junctions also play a critical role in regulating uterine blood flow, contributing to the adaptive response to pregnancy. Given that reproductive impairment can result from connexin mutations in mice, it is advised that women suffering from somatic disease symptoms associated with connexin gene mutations be additionally tested for impacts on reproductive function. Better knowledge of these essential connexin functions in human female reproductive organs is important for safeguarding women's reproductive health. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Human leukocyte antigen-G in the male reproductive system and in seminal plasma.
Larsen, Margit Hørup; Bzorek, Michael; Pass, Malene B; Larsen, Lise Grupe; Nielsen, Mette Weidinger; Svendsen, Signe Goul; Lindhard, Anette; Hviid, Thomas Vauvert F
2011-12-01
One of the non-classical human leukocyte antigen (HLA) class Ib proteins, HLA-G, is believed to exert important immunoregulatory functions, especially during pregnancy. The presence of HLA protein in paternal seminal fluid has been suggested to have an influence on the risk of developing pre-eclampsia. We have investigated whether HLA-G protein is present in human seminal plasma and in different tissue samples of the male reproductive system. Western blot technique and a soluble HLA-G (sHLA-G) assay were used to detect sHLA-G in human seminal plasma samples. Immunohistochemical staining was performed on paraffin-embedded tissue samples. We detected sHLA-G protein in seminal plasma, and HLA-G expression in normal testis and in epididymal tissue of the male reproductive system but not in the seminal vesicle. Furthermore, the results indicated a weak expression of HLA-G in hyperplastic prostatic tissue. In summary, several of the findings reported in this study suggest an immunoregulatory role of HLA-G in the male reproductive system and in seminal plasma.
Mowry, Annelise V; Kavazis, Andreas N; Sirman, Aubrey E; Potts, Wayne K; Hood, Wendy R
2016-01-01
Reproduction is thought to come at a cost to longevity. Based on the assumption that increased energy expenditure during reproduction is associated with increased free-radical production by mitochondria, oxidative damage has been suggested to drive this trade-off. We examined the impact of reproduction on liver mitochondrial function by utilizing post-reproductive and non-reproductive house mice (Mus musculus) living under semi-natural conditions. The age-matched post-reproductive and non-reproductive groups were compared after the reproductive females returned to a non-reproductive state, so that both groups were in the same physiological state at the time the liver was collected. Despite increased oxidative damage (p = 0.05) and elevated CuZnSOD (p = 0.002) and catalase (p = 0.04) protein levels, reproduction had no negative impacts on the respiratory function of liver mitochondria. Specifically, in a post-reproductive, maintenance state the mitochondrial coupling (i.e., respiratory control ratio) of mouse livers show no negative impacts of reproduction. In fact, there was a trend (p = 0.059) to suggest increased maximal oxygen consumption by liver mitochondria during the ADP stimulated state (i.e., state 3) in post-reproduction. These findings suggest that oxidative damage may not impair mitochondrial respiratory function and question the role of mitochondria in the trade-off between reproduction and longevity. In addition, the findings highlight the importance of quantifying the respiratory function of mitochondria in addition to measuring oxidative damage.
NASA Astrophysics Data System (ADS)
Tang, Jing-Yu; Ren, Ming-Xun
2011-09-01
Intra-inflorescence variation in floral traits is important to understand the pollination function of an inflorescence and the real reproductive outputs of a plant. Ruta graveolens (Rutaceae) produce both quaternary (four petals and eight stamens) and quinary (five petals and ten stamens) flowers on the same cymes, while their pollination roles and the effects on the reproductive success remained unexplored. We experimentally examined the biomass of female versus male organs and pollen viability and stigma receptivity to explore the sex allocation patterns between the flowers. The breeding systems and reproductive outputs through either female function (seed set) or male function (pollen dispersal) were also studied for quinary and quaternary flowers to determine whether there was functional bias. The results showed that R. graveolens was protandrous, with a mixed mating system. Its stamens could slowly move one by one and only dehisce when positioning at the flower center, which could greatly enhance pollen dispersal. The first-opened quinary flower allocated significantly higher resources (dry biomass) in female organs while quaternary flowers allocated more resource in male organs. The quaternary flowers experienced higher pollen limitation in seed production but were more successful in pollen dispersal and the quinary flowers reproduced both through female and male functions. Our data suggested that quinary and quaternary flower on same inflorescence in R. graveolens functioned mainly as the sex role that most resources were allocated, which probably reflect an adaptation for floral phenology and pollination process in this plant.
Mechanical signaling in reproductive tissues: mechanisms and importance.
Jorge, Soledad; Chang, Sydney; Barzilai, Joshua J; Leppert, Phyllis; Segars, James H
2014-09-01
The organs of the female reproductive system are among the most dynamic tissues in the human body, undergoing repeated cycles of growth and involution from puberty through menopause. To achieve such impressive plasticity, reproductive tissues must respond not only to soluble signals (hormones, growth factors, and cytokines) but also to physical cues (mechanical forces and osmotic stress) as well. Here, we review the mechanisms underlying the process of mechanotransduction-how signals are conveyed from the extracellular matrix that surrounds the cells of reproductive tissues to the downstream molecules and signaling pathways that coordinate the cellular adaptive response to external forces. Our objective was to examine how mechanical forces contribute significantly to physiological functions and pathogenesis in reproductive tissues. We highlight how widespread diseases of the reproductive tract, from preterm labor to tumors of the uterus and breast, result from an impairment in mechanical signaling. © The Author(s) 2014.
Effects of task complexity on rhythmic reproduction performance in adults.
Iannarilli, Flora; Vannozzi, Giuseppe; Iosa, Marco; Pesce, Caterina; Capranica, Laura
2013-02-01
The aim of the present study was to investigate the effect of task complexity on the capability to reproduce rhythmic patterns. Sedentary musically illiterate individuals (age: 34.8±4.2 yrs; M±SD) were administered a rhythmic test including three rhythmic patterns to be reproduced by means of finger-tapping, foot-tapping and walking. For the quantification of subjects' ability in the reproduction of rhythmic patterns, qualitative and quantitative parameters were submitted to analysis. A stereophotogrammetric system was used to reconstruct and evaluate individual performances. The findings indicated a good internal stability of the rhythmic reproduction, suggesting that the present experimental design is suitable to discriminate the participants' rhythmic ability. Qualitative aspects of rhythmic reproduction (i.e., speed of execution and temporal ratios between events) varied as a function of the perceptual-motor requirements of the rhythmic reproduction task, with larger reproduction deviations in the walking task. Copyright © 2013 Elsevier B.V. All rights reserved.
Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats.
Tyl, Rochelle W; Myers, Christina B; Marr, Melissa C; Fail, Patricia A; Seely, John C; Brine, Dolores R; Barter, Robert A; Butala, John H
2004-01-01
Butyl benzyl phthalate (BBP) was administered in the diet at 0, 750, 3750, and 11,250 ppm ad libitum to 30 rats per sex per dose for two offspring generations, one litter/breeding pair/generation, through weaning of F2 litters. Adult F0 systemic toxicity and adult F1 systemic and reproductive toxicity were present at 11,250 ppm (750 mg/kg per day). At 11,250 ppm, there were reduced F1 and F2 male anogenital distance (AGD) and body weights/litter during lactation, delayed acquisition of puberty in F1 males and females, retention of nipples and areolae in F1 and F2 males, and male reproductive system malformations. At 3750 ppm (250 mg/kg per day), only reduced F1 and F2 offspring male AGD was present. There were no effects on parents or offspring at 750 ppm (50 mg/kg per day). The F1 parental systemic and reproductive toxicity no observable adverse effect level (NOAEL) was 3750 ppm. The offspring toxicity NOAEL was 3750 ppm. The offspring toxicity no observable effect level (NOEL) was 750 ppm, based on the presence of reduced AGD in F1 and F2 males at birth at 3750 ppm, but no effects on reproductive development, structures, or functions.
Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min
2013-01-01
ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840
Estrogen receptors in neuropeptide Y neurons: at the crossroads of feeding and reproduction.
Acosta-Martinez, Maricedes; Horton, Teresa; Levine, Jon E
2007-03-01
Hypothalamic neuropeptide Y (NPY) neurons function as physiological integrators in at least two different neuroendocrine systems - one governing feeding and the other controlling reproduction. Estrogen might modulate both systems by regulating NPY gene expression; it might reduce food intake by suppressing NPY expression, and evoke reproductive hormone surges by stimulating it. How can estrogen exert opposing effects in an ostensibly homogeneous NPY neuronal population? Recent work with immortalized NPY-producing cells suggests that the ratio of estrogen receptor alpha:estrogen receptor beta can determine the direction and temporal pattern of transcriptional responses to estrogen. Because this ratio might itself be physiologically regulated, these findings provide one explanation for multiple neuropeptidergic responses to a single steroid hormone.
Kisspeptin modulates fertilization capacity of mouse spermatozoa.
Hsu, Meng-Chieh; Wang, Jyun-Yuan; Lee, Yue-Jia; Jong, De-Shien; Tsui, Kuan-Hao; Chiu, Chih-Hsien
2014-06-01
Kisspeptin acts as an upstream regulator of the hypothalamus-pituitary-gonad axis, which is one of the main regulatory systems for mammalian reproduction. Kiss1 and its receptor Kiss1r (also known as G protein-coupled receptor 54 (Gpr54)) are expressed in various organs, but their functions are not well understood. The purpose of this study was to investigate the expression profiles and functions of kisspeptin and KISS1R in the reproductive tissues of imprinting control region mice. To identify the expression pattern and location of kisspeptin and KISS1R in gonads, testes and ovarian tissues were examined by immunohistochemical or immunofluorescent staining. Kisspeptin and KISS1R were expressed primarily in Leydig cells and seminiferous tubules respectively. KISS1R was specifically localized in the acrosomal region of spermatids and mature spermatozoa. Kisspeptin, but not KISS1R, was expressed in the cumulus-oocyte complex and oviductal epithelium of ovarian and oviductal tissues. The sperm intracellular calcium concentrations significantly increased in response to treatment with kisspeptin 10 in Fluo-4-loaded sperm. The IVF rates decreased after treatment of sperm with the kisspeptin antagonist peptide 234. These results suggest that kisspeptin and KISS1R might be involved in the fertilization process in the female reproductive tract. In summary, this study indicates that kisspeptin and KISS1R are expressed in female and male gametes, respectively, and in mouse reproductive tissues. These data strongly suggest that the kisspeptin system could regulate mammalian fertilization and reproduction. © 2014 Society for Reproduction and Fertility.
Segner, Helmut; Verburg-van Kemenade, B M Lidy; Chadzinska, Magdalena
2017-01-01
The present review discusses the communication between the hypothalamic-pituitary-gonad (HPG) axis and the immune system of vertebrates, attempting to situate the HPG-immune interaction into the context of life history trade-offs between reproductive and immune functions. More specifically, (i) we review molecular and cellular interactions between hormones of the HPG axis, and, as far as known, the involved mechanisms on immune functions, (ii) we evaluate whether the HPG-immune crosstalk serves as proximate mechanism mediating reproductive-immune trade-offs, and (iii) we ask whether the nature of the HPG-immune interaction is conserved throughout vertebrate evolution, despite the changes in immune functions, reproductive modes, and life histories. In all vertebrate classes studied so far, HPG hormones have immunomodulatory functions, and indications exist that they contribute to reproduction-immunity resource trade-offs, although the very limited information available for most non-mammalian vertebrates makes it difficult to judge how comparable or different the interactions are. There is good evidence that the HPG-immune crosstalk is part of the proximate mechanisms underlying the reproductive-immune trade-offs of vertebrates, but it is only one factor in a complex network of factors and processes. The fact that the HPG-immune interaction is flexible and can adapt to the functional and physiological requirements of specific life histories. Moreover, the assumption of a relatively fixed pattern of HPG influence on immune functions, with, for example, androgens always leading to immunosuppression and estrogens always being immunoprotective, is probably oversimplified, but the HPG-immune interaction can vary depending on the physiological and envoironmental context. Finally, the HPG-immune interaction is not only driven by resource trade-offs, but additional factors such as, for instance, the evolution of viviparity shape this neuroendocrine-immune relationship. Copyright © 2016 Elsevier Ltd. All rights reserved.
Silva, Joana Vieira; Yoon, Sooyeon; Domingues, Sara; Guimarães, Sofia; Goltsev, Alexander V; da Cruz E Silva, Edgar Figueiredo; Mendes, José Fernando F; da Cruz E Silva, Odete Abreu Beirão; Fardilha, Margarida
2015-01-16
Amyloid precursor protein (APP) is widely recognized for playing a central role in Alzheimer's disease pathogenesis. Although APP is expressed in several tissues outside the human central nervous system, the functions of APP and its family members in other tissues are still poorly understood. APP is involved in several biological functions which might be potentially important for male fertility, such as cell adhesion, cell motility, signaling, and apoptosis. Furthermore, APP superfamily members are known to be associated with fertility. Knowledge on the protein networks of APP in human testis and spermatozoa will shed light on the function of APP in the male reproductive system. We performed a Yeast Two-Hybrid screen and a database search to study the interaction network of APP in human testis and sperm. To gain insights into the role of APP superfamily members in fertility, the study was extended to APP-like protein 2 (APLP2). We analyzed several topological properties of the APP interaction network and the biological and physiological properties of the proteins in the APP interaction network were also specified by gene ontologyand pathways analyses. We classified significant features related to the human male reproduction for the APP interacting proteins and identified modules of proteins with similar functional roles which may show cooperative behavior for male fertility. The present work provides the first report on the APP interactome in human testis. Our approach allowed the identification of novel interactions and recognition of key APP interacting proteins for male reproduction, particularly in sperm-oocyte interaction.
Health Effects in Fish of Long-Term Exposure to Effluents from Wastewater Treatment Works
Liney, Katherine E.; Hagger, Josephine A.; Tyler, Charles R.; Depledge, Michael H.; Galloway, Tamara S.; Jobling, Susan
2006-01-01
Concern has been raised in recent years that exposure to wastewater treatment effluents containing estrogenic chemicals can disrupt the endocrine functioning of riverine fish and cause permanent alterations in the structure and function of the reproductive system. Reproductive disorders may not necessarily arise as a result of estrogenic effects alone, and there is a need for a better understanding of the relative importance of endocrine disruption in relation to other forms of toxicity. Here, the integrated health effects of long-term effluent exposure are reported (reproductive, endocrine, immune, genotoxic, nephrotoxic). Early life-stage roach, Rutilus rutilus, were exposed for 300 days to treated wastewater effluent at concentrations of 0, 15.2, 34.8, and 78.7% (with dechlorinated tap water as diluent). Concentrations of treated effluents that induced feminization of male roach, measured as vitellogenin induction and histological alteration to gonads, also caused statistically significant alterations in kidney development (tubule diameter), modulated immune function (differential cell count, total number of thrombocytes), and caused genotoxic damage (micronucleus induction and single-strand breaks in gill and blood cells). Genotoxic and immunotoxic effects occurred at concentrations of wastewater effluent lower than those required to induce recognizable changes in the structure and function of the reproductive endocrine system. These findings emphasize the need for multiple biological end points in tests that assess the potential health effects of wastewater effluents. They also suggest that for some effluents, genotoxic and immune end points may be more sensitive than estrogenic (endocrine-mediated) end points as indicators of exposure in fish. PMID:16818251
Extending color primary set in spectral vector error diffusion by multilevel halftoning
NASA Astrophysics Data System (ADS)
Norberg, Ole; Nyström, Daniel
2013-02-01
Ever since its origin in the late 19th century, a color reproduction technology has relied on a trichromatic color reproduction approach. This has been a very successful method and also fundamental for the development of color reproduction devices. Trichromatic color reproduction is sufficient to approximate the range of colors perceived by the human visual system. However, tricromatic systems only have the ability to match colors when the viewing illumination for the reproduction matches that of the original. Furthermore, the advancement of digital printing technology has introduced printing systems with additional color channels. These additional color channels are used to extend the tonal range capabilities in light and dark regions and to increase color gamut. By an alternative approach the addition color channels can also be used to reproduce the spectral information of the original color. A reproduced spectral match will always correspond to original independent of lighting situation. On the other hand, spectral color reproductions also introduce a more complex color processing by spectral color transfer functions and spectral gamut mapping algorithms. In that perspective, spectral vector error diffusion (sVED) look like a tempting approach with a simple workflow where the inverse color transfer function and halftoning is performed simultaneously in one single operation. Essential for the sVED method are the available color primaries, created by mixing process colors. Increased numbers of as well as optimal spectral characteristics of color primaries are expected to significantly improve the color accuracy of the spectral reproduction. In this study, sVED in combination with multilevel halftoning has been applied on a ten channel inkjet system. The print resolution has been reduced and the underlying physical high resolution of the printer has been used to mix additional primaries. With ten ink channels and halfton cells built-up by 2x2 micro dots where each micro dot can be a combination of all ten inks the number of possible ink combinations gets huge. Therefore, the initial study has been focused on including lighter colors to the intrinsic primary set. Results from this study shows that by this approach the color reproduction accuracy increases significantly. The RMS spectral difference to target color for multilevel halftoning is less than 1/6 of the difference achieved by binary halftoning.
Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system.
Mordhorst, Bethany R; Wilson, Miranda L; Conant, Gavin C
2016-01-01
In this review, we discuss the way that insights from evolutionary theory and systems biology shed light on form and function in mammalian reproductive systems. In the first part of the review, we contrast the rapid evolution seen in some reproductive genes with the generally conservative nature of development. We discuss directional selection and coevolution as potential drivers of rapid evolution in sperm and egg proteins. Such rapid change is very different from the highly conservative nature of later embryo development. However, it is not unique, as some regions of the sex chromosomes also show elevated rates of evolutionary change. To explain these contradictory trends, we argue that it is not reproductive functions per se that induce rapid evolution. Rather, it is the fact that biotic interactions, such as speciation events and sexual conflict, have no evolutionary endpoint and hence can drive continuous evolutionary changes. Returning to the question of sex chromosome evolution, we discuss the way that recent advances in evolutionary genomics and systems biology and, in particular, the development of a theory of gene balance provide a better understanding of the evolutionary patterns seen on these chromosomes. We end the review with a discussion of a surprising and incompletely understood phenomenon observed in early embryos: namely the Warburg effect, whereby glucose is fermented to lactate and alanine rather than respired to carbon dioxide. We argue that evolutionary insights, from both yeasts and tumor cells, help to explain the Warburg effect, and that new metabolic modeling approaches are useful in assessing the potential sources of the effect.
Michalik, Peter; Ramírez, Martín J
2014-07-01
The male reproductive system and spermatozoa of spiders are known for their high structural diversity. Spider spermatozoa are flagellate and males transfer them to females in a coiled and encapsulated state using their modified pedipalps. Here, we provide a detailed overview of the present state of knowledge of the primary male reproductive system, sperm morphology and the structural diversity of seminal fluids with a focus on functional and evolutionary implications. Secondly, we conceptualized characters for the male genital system, spermiogenesis and spermatozoa for the first time based on published and new data. In total, we scored 40 characters for 129 species from 56 families representing all main spider clades. We obtained synapomorphies for several taxa including Opisthothelae, Araneomorphae, Dysderoidea, Scytodoidea, Telemidae, Linyphioidea, Mimetidae, Synotaxidae and the Divided Cribellum Clade. Furthermore, we recovered synspermia as a synapomorphy for ecribellate Haplogynae and thus propose Synspermiata as new name for this clade. We hope that these data will not only contribute to future phylogenetic studies but will also stimulate much needed evolutionary studies of reproductive systems in spiders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Age factors potentiating drug toxicity in the reproductive axis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, R.F.
Traditionally, the drug toxicity in the reproductive system has been a concern only as it affects fertility and fecundity in young individuals. The purpose of this report is to address the potential problem of synergy between drug actions and abnormal secretion of reproductive hormones that together produce disease in older individuals. Thus, reproductive toxicity has different, but no less serious implications in aging individuals. During aging, the coordinated function of elements within the reproductive neuroendocrine axis degrades. This change promotes atypical secretion of hormones producing abnormal responses in target organs and thus creates a condition with pathogenic potential. Certain drugsmore » may contribute to reproductive toxicity in aging individuals either by accelerating the process of dysregulation and/or by synergizing with hormones to stimulate pathologic changes in target tissues. The geriatric population or the world is increasing, and since it consumes a proportionately larger percentage of drugs than younger groups, this novel form of reproductive toxicity may represent a problem in drug safety that warrants serious consideration.« less
Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail
Ottinger, M.A.; Abdelnabi, M.A.; Henry, P.; McGary, S.; Thompson, N.; Wu, J.M.
2001-01-01
Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.
Scsukova, Sona; Rollerova, Eva; Bujnakova Mlynarcikova, Alzbeta
2016-12-01
A growing body of evidence suggests that exposure to chemical substances designated as endocrine disrupting chemicals (EDCs) due to their ability to disturb endocrine (hormonal) activity in humans and animals, may contribute to problems with fertility, pregnancy, and other aspects of reproduction. The presence of EDCs has already been associated with reproductive malfunction in wildlife species, but it remains difficult to prove causal relationships between the presence of EDCs and specific reproductive problems in vivo, especially in females. On the other hand, the increasing number of experiments with laboratory animals and in vitro research indicate the ability of different EDCs to influence the normal function of female reproductive system, and even their association with cancer development or progression. Research shows that EDCs may pose the greatest risk during prenatal and early postnatal development when organ and neural systems are forming. In this review article, we aim to point out a possible contribution of EDCs to the onset and development of female reproductive disorders and endocrine-related cancers with regard to the period of exposure to EDCs and affected endpoints (organs or processes). Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
Weil, Zachary M; Martin, Lynn B; Workman, Joanna L; Nelson, Randy J
2006-09-22
Animals must balance investments in different physiological activities to allow them to maximize fitness in the environments they inhabit. These adjustments among reproduction, growth and survival are mandated because of the competing high costs of each process. Seasonally breeding rodents generally bias their investments towards reproduction when environmental conditions are benign, but shift these investments towards processes that promote survival, including immune activity, when environmental conditions deteriorate. Because survival probability of non-tropical small mammals is generally low in winter, under certain circumstances, these animals may not allocate resources to survival mechanisms in an effort to produce as many offspring as possible in the face of increased probability of death. Such 'terminal investments' have been described in passerines, but there are few examples of such phenomena in small mammals. Here, we show that male Siberian hamsters (Phodopus sungorus) challenged with lipopolysaccharide (a component of gram-negative bacteria that activates the immune system) induced a small, but significant, retardation of seasonal regression of the reproductive system relative to saline-injected hamsters. This delayed reproductive regression likely reflects a strategy to maintain reproductive function when survival prospects are compromised by infection.
Reproductive competence: a recurrent logic module in eukaryotic development
Noble, Luke M.; Andrianopoulos, Alex
2013-01-01
Developmental competence is the ability to differentiate in response to an appropriate stimulus, as first elaborated by Waddington in relation to organs and tissues. Competence thresholds operate at all levels of biological systems from the molecular (e.g. the cell cycle) to the ontological (e.g. metamorphosis and reproduction). Reproductive competence, an organismal process, is well studied in mammals (sexual maturity) and plants (vegetative phase change), though far less than later stages of terminal differentiation. The phenomenon has also been documented in multiple species of multicellular fungi, mostly in early, disparate literature, providing a clear example of physiological differentiation in the absence of morphological change. This review brings together data on reproductive competence in Ascomycete fungi, particularly the model filamentous fungus Aspergillus nidulans, contrasting mechanisms within Unikonts and plants. We posit reproductive competence is an elementary logic module necessary for coordinated development of multicellular organisms or functional units. This includes unitary multicellular life as well as colonial species both unicellular and multicellular (e.g. social insects such as ants). We discuss adaptive hypotheses for developmental and reproductive competence systems and suggest experimental work to address the evolutionary origins, generality and genetic basis of competence in the fungal kingdom. PMID:23864594
Involvement of galectin-1 in reproduction: past, present and future.
Barrientos, Gabriela; Freitag, Nancy; Tirado-González, Irene; Unverdorben, Laura; Jeschke, Udo; Thijssen, Victor L J L; Blois, Sandra M
2014-01-01
After recognition of its pivotal contribution to fetomaternal tolerance, the study of galectin-1 (gal-1) functions in the context of pregnancy became an attractive topic in reproductive medicine. Despite considerable advances in the understanding of the immuno- and growth-regulatory properties of gal-1 at the fetal-maternal interface, many functional aspects of this lectin in reproduction are only emerging. The published literature was searched using Pubmed focusing on gal-1 signalling and functional properties at the maternal-fetal interface, including data on its implication in pregnancy disorders and malignancies of the female reproductive system. Papers discussing animal and human studies were included. This review provides an overview of gal-1 functions during pregnancy, such as modulation of maternal immune responses and roles in embryo implantation and placentation. We also emphasize the role of gal-1 in key regulatory processes, including trophoblast migration, invasion, syncytium formation and expression of non-classical MHC class I molecules (HLA-G). In addition, we argue in favour of gal-1 pro-angiogenic properties, as observed in tumourigenesis and other pathological settings, and its implication in the angiogenesis process associated with early gestation. The involvement of gal-1 in the regulation of different processes during the establishment, development and maintenance of pregnancy could be described as unique. Gal-1 has emerged as an important lectin with major functions in pregnancy.
A 25 years experience of group-housed sows–reproduction in animal welfare-friendly systems
2014-01-01
Since January 1 2013, group housing of sows has been compulsory within the European Union (EU) in all pig holdings with more than ten sows. Sows and gilts need to be kept in groups from 4 weeks after service to 1 week before the expected time of farrowing (Article 3(4) of Directive 2008/120/EC on the protection of pigs). The legislation regarding group housing was adopted already in 2001 and a long transitional period was allowed to give member states and producers enough time for adaptation. Even so, group housing of sows still seems to be uncommon in the EU, and is also uncommon in commercial pig farming systems in the rest of the world. In this review we share our experience of the Swedish 25 years of animal welfare legislation stipulating that sows must be loose-housed which de facto means group housed. The two most important concerns related to reproductive function among group-housed sows are the occurrence of lactational oestrus when sows are group-housed during lactation, and the stress that is associated with group housing during mating and gestation. Field and clinical observations in non-lactating, group-housed sows in Sweden suggest that by making basic facts known about the pig reproductive physiology related to mating, we might achieve application of efficient batch-wise breeding without pharmacological interventions. Group housing of lactating sows has some production disadvantages and somewhat lower productivity would likely have to be expected. Recordings of behavioural indicators in different housing systems suggest a lower welfare level in stalled animals compared with group-housed ones. However, there are no consistent effects on the reproductive performance associated with different housing systems. Experimental studies suggest that the most sensitive period, regarding disturbance of reproductive functions by external stressors, is the time around oestrus. We conclude that by keeping sows according to the pig welfare-friendly Directive 2008/120/EC, it is possible to combine group-housing of sows with good reproductive performance and productivity. However, substantially increased research and development is needed to optimize these systems. PMID:24910081
Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions
Huo, Xiaona; Chen, Dan; He, Yonghua; Zhu, Wenting; Zhou, Wei; Zhang, Jun
2015-01-01
Background: Bisphenol-A (BPA) is widely used and ubiquitous in the environment. Animal studies indicate that BPA affects reproduction, however, the gene-environment interaction mechanism(s) involved in this association remains unclear. We performed a literature review to summarize the evidence on this topic. Methods: A comprehensive search was conducted in PubMed using as keywords BPA, gene, infertility and female reproduction. Full-text articles in both human and animals published in English prior to December 2014 were selected. Results: Evidence shows that BPA can interfere with endocrine function of hypothalamic-pituitary axis, such as by changing gonadotropin-releasing hormones (GnRH) secretion in hypothalamus and promoting pituitary proliferation. Such actions affect puberty, ovulation and may even result in infertility. Ovary, uterus and other reproductive organs are also targets of BPA. BPA exposure impairs the structure and functions of female reproductive system in different times of life cycle and may contribute to infertility. Both epidemiological and experimental evidences demonstrate that BPA affects reproduction-related gene expression and epigenetic modification that are closely associated with infertility. The detrimental effects on reproduction may be lifelong and transgenerational. Conclusions: Evidence on gene-environment interactions, especially from human studies, is still limited. Further research on this topic is warranted. PMID:26371021
Interactions between prolactin and kisspeptin to control reproduction.
Donato, Jose; Frazão, Renata
2016-01-01
Prolactin is best known for its effects of stimulating mammary gland development and lactogenesis. However, prolactin is a pleiotropic hormone that is able to affect several physiological functions, including fertility. Prolactin receptors (PRLRs) are widely expressed in several tissues, including several brain regions and reproductive tract organs. Upon activation, PRLRs may exert prolactin's functions through several signaling pathways, although the recruitment of the signal transducer and activator of transcription 5 causes most of the known effects of prolactin. Pathological hyperprolactinemia is mainly due to the presence of a prolactinoma or pharmacological effects induced by drugs that interact with the dopamine system. Notably, hyperprolactinemia is a frequent cause of reproductive dysfunction and may lead to infertility in males and females. Recently, several studies have indicated that prolactin may modulate the reproductive axis by acting on specific populations of hypothalamic neurons that express the Kiss1 gene. The Kiss1 gene encodes neuropeptides known as kisspeptins, which are powerful activators of gonadotropin-releasing hormone neurons. In the present review, we will summarize the current knowledge about prolactin's actions on reproduction. Among other aspects, we will discuss whether the interaction between prolactin and the Kiss1-expressing neurons can affect reproduction and how kisspeptins may become a novel therapeutic approach to treat prolactin-induced infertility.
Kaneko-Ishino, Tomoko; Ishino, Fumitoshi
2015-01-01
Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.
Bellingham, M; Fowler, P A; Amezaga, M R; Whitelaw, C M; Rhind, S M; Cotinot, C; Mandon-Pepin, B; Sharpe, R M; Evans, N P
2010-06-01
Animals and humans are chronically exposed to endocrine disrupting chemicals (EDCs) that are ubiquitous in the environment. There are strong circumstantial links between environmental EDC exposure and both declining human/wildlife reproductive health and the increasing incidence of reproductive system abnormalities. The verification of such links, however, is difficult and requires animal models exposed to 'real life', environmentally relevant concentrations/mixtures of environmental contaminants (ECs), particularly in utero, when sensitivity to EC exposure is high. The present study aimed to determine whether the foetal sheep reproductive neuroendocrine axis, particularly gondotrophin-releasing hormone (GnRH) and galaninergic systems, were affected by maternal exposure to a complex mixture of chemicals, applied to pasture, in the form of sewage sludge. Sewage sludge contains high concentrations of a spectrum of EDCs and other pollutants, relative to environmental concentrations, but is frequently recycled to land as a fertiliser. We found that foetuses exposed to the EDC mixture in utero through their mothers had lower GnRH mRNA expression in the hypothalamus and lower GnRH receptor (GnRHR) and galanin receptor (GALR) mRNA expression in the hypothalamus and pituitary gland. Strikingly, this, treatment had no significant effect on maternal GnRH or GnRHR mRNA expression, although GALR mRNA expression within the maternal hypothalamus and pituitary gland was reduced. The present study clearly demonstrates that the developing foetal neuroendocrine axis is sensitive to real-world mixtures of environmental chemicals. Given the important role of GnRH and GnRHR in the regulation of reproductive function, its known role programming role in utero, and the role of galanin in the regulation of many physiological/neuroendocrine systems, in utero changes in the activity of these systems are likely to have long-term consequences in adulthood and represent a novel pathway through which EC mixtures could perturb normal reproductive function.
Neuroethology and life history adaptations of the elasmobranch electric sense.
Sisneros, Joseph A; Tricas, Timothy C
2002-01-01
The electric sense of elasmobranch fishes (sharks and rays) is an important sensory modality known to mediate the detection of bioelectric stimuli. Although the best known function for the use of the elasmobranch electric sense is prey detection, relatively few studies have investigated other possible biological functions. Here, we review recent studies that demonstrate the elasmobranch electrosensory system functions in a wide number of behavioral contexts including social, reproductive and anti-predator behaviors. Recent work on non-electrogenic stingrays demonstrates that the electric sense is used during reproduction and courtship for conspecific detection and localization. Electrogenic skates may use their electrosensory encoding capabilities and electric organ discharges for communication during social and reproductive interactions. The electric sense may also be used to detect and avoid predators during early life history stages in many elasmobranch species. Embryonic clearnose skates demonstrate a ventilatory freeze response when a weak low-frequency electric field is imposed upon the egg capsule. Peak frequency sensitivity of the peripheral electrosensory system in embryonic skates matches the low frequencies of phasic electric stimuli produced by natural fish egg-predators. Neurophysiology experiments reveal that electrosensory tuning changes across the life history of a species and also seasonally due to steroid hormone changes during the reproductive season. We argue that the ontogenetic and seasonal variation in electrosensory tuning represent an adaptive electrosensory plasticity that may be common to many elasmobranchs to enhance an individual's fitness throughout its life history.
Analgesic use in pregnancy and male reproductive development
Hurtado-Gonzalez, Pablo; Mitchell, Rod T.
2017-01-01
Purpose of review Male reproductive disorders are common and increasing in incidence in many countries. Environmental factors (including pharmaceuticals) have been implicated in the development of these disorders. This review aims to summarise the emerging epidemiological and experimental evidence for a potential role of in-utero exposure to analgesics in the development of male reproductive disorders. Recent findings A number of epidemiological studies have demonstrated an association between in-utero exposure to analgesics and the development of cryptorchidism, although these findings are not consistent across all studies. Where present, these associations primarily relate to exposure during the second trimester of pregnancy. In-vivo and in-vitro experimental studies have demonstrated variable effects of exposure to analgesics on Leydig cell function in the fetal testis of rodents, particularly in terms of testosterone production. These effects frequently involve exposures that are in excess of those to which humans are exposed. Investigation of the effects of analgesics on human fetal testis have also demonstrated effects on Leydig cell function. Variation in species, model system, dosage and timing of exposure is likely to contribute to differences in the findings between studies. Summary There is increasing evidence for analgesic effects on the developing testis that have the potential to impair reproductive function. However, the importance of these findings in relation to human-relevant exposures and the risk of male reproductive disorders remains unclear. PMID:28277341
A Physiological Signature of the Cost of Reproduction Associated with Parental Care.
Fowler, Melinda A; Williams, Tony D
2017-12-01
Costs of reproduction are an integral and long-standing component of life-history theory, but we still know relatively little about the specific physiological mechanisms underlying these trade-offs. We experimentally manipulated workload during parental care in female European starlings (Sturnus vulgaris) using attachment of radios and/or wing clipping and assessed measures of workload, current breeding productivity, future fecundity, and survival (local return rate) in relation to treatment. Females with wing clipping and radio attachment paid a clear cost of reproduction compared with all other treatment groups: they had lower future fecundity and lower return rates despite having lower current breeding productivity. We then measured 13 physiological traits, including measures of aerobic/metabolic capacity, oxidative stress and muscle damage, intermediary metabolism and energy supply, and immune function. Our results show that the cost of reproduction in females with wing clipping and radio attachment was associated with lower oxygen-carrying capacity (lower hematocrit and hemoglobin levels), lower energy reserves (plasma nonesterified fatty acid and triglyceride levels), decreased immune function (lower haptoglobin levels), and elevated levels of oxidative stress (higher levels of dROMs [reactive oxygen metabolites] and lower levels of the endogenous antioxidant uric acid). Our study provides evidence that costs of reproduction involve a widespread decline in physiological function across multiple physiological systems consistent with long-standing ideas of cumulative "wear and tear" and allostatic load.
Roles of miRNAs in microcystin-LR-induced Sertoli cell toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuan; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093; Wang, Hui
2015-08-15
Microcystin (MC)-LR, a cyclic heptapeptide, is a potent reproductive system toxin. To understand the molecular mechanisms of MC-induced reproductive system cytotoxicity, we evaluated global changes of miRNA and mRNA expression in mouse Sertoli cells following MC-LR treatment. Our results revealed that the exposure to MC-LR resulted in an altered miRNA expression profile that might be responsible for the modulation of mRNA expression. Bio-functional analysis indicated that the altered genes were involved in specific cellular processes, including cell death and proliferation. Target gene analysis suggested that junction injury in Sertoli cells exposed to MC-LR might be mediated by miRNAs through themore » regulation of the Sertoli cell-Sertoli cell pathway. Collectively, these findings may enhance our understanding on the modes of action of MC-LR on mouse Sertoli cells as well as the molecular mechanisms underlying the toxicity of MC-LR on the male reproductive system. - Highlights: • miRNAs were altered in Sertoli cells exposed to MC-LR. • Alerted genes were involved in different cell functions including the cell morphology. • MC-LR adversely affected Sertoli cell junction formation through the regulating miRNAs.« less
[Toxicological characteristics of Ochratoxin A and its impact on male reproduction].
Zhang, Tian-Yu; Zhao, Yong; Li, Lan; Shen, Wei
2017-08-01
Ochratoxin A (OTA) is found not only nephrotoxic, teratogenic, neurotoxic, and immunotoxic, but also reprotoxic for human and animals. In the recent decade, more attention has been paid to the impact of OTA on human reproduction and the studies of its underlying mechanisms. Many studies show that OTA affects the function of the reproductive system by acting as an endocrine disrupter and, as a testicular toxin, decreases sperm quality and even induces testis cancer. This review summarizes the toxicological characteristics and toxicokinetic process of OTA as well as recent progress in the studies of various toxic effects of OTA and their underlying mechanisms, hoping to call the attention from more people to the toxicity of OTA to male reproductive health.
Laghezza Masci, Valentina; Di Luca, Marco; Gambellini, Gabriella; Taddei, Anna Rita; Belardinelli, Maria Cristina; Guerra, Laura; Mazzini, Massimo; Fausto, Anna Maria
2015-07-01
The morphology and ultrastructure of female accessory reproductive glands of Anopheles maculipennis s.s., Anopheles labranchiae and Anopheles stephensi were investigated by light and electron microscopy. The reproductive system in these species is characterized by two ovaries, two lateral oviducts, a single spermatheca and a single accessory gland. The gland is globular and has a thin duct which empties into the vagina, near the opening of the spermathecal duct. Significant growth of the accessory reproductive gland is observed immediately after blood meal, but not at subsequent digestion steps. At ultrastructural level, the gland consists of functional glandular units belonging to type 3 ectodermal glands. The secretory cells are elongated and goblet shaped, with most of their cytoplasm and large nucleus in the basal part, close to the basement lamella. Finely fibrous electron-transparent material occupies the secretory cavity that is in contact with the end of a short efferent duct (ductule) emerging from the gland duct. The present study is the first detailed description of female accessory gland ultrastructure in Anophelinae and provides insights into the gland's functional role in the reproductive biology of these insects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ovarian function and reproductive senescence in the rat: role of ovarian sympathetic innervation.
Cruz, Gonzalo; Fernandois, Daniela; Paredes, Alfonso H
2017-02-01
Successful reproduction is the result of a myriad interactions in which the ovary and the ovarian follicular reserve play a fundamental role. At present, women who delay maternity until after 30 years of age have a decreased fertility rate due to various causes, including damaged follicles and a reduction in the reserve pool of follicles. Therefore, the period just prior to menopause, also known as the subfertile period, is important. The possibility of modulating the follicular pool and the health of follicles during this period to improve fertility is worth exploring. We have developed an animal model to study the ovarian ageing process during this subfertile period to understand the mechanisms responsible for reproductive senescence. In the rat model, we have shown that the sympathetic nervous system participates in regulating the follicular development during ovarian ageing. This article reviews the existing evidence on the presence and functional role of sympathetic nerve activity in regulating the follicular development during ovarian ageing, with a focus on the subfertile period.Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/153/2/R61/suppl/DC1. © 2017 Society for Reproduction and Fertility.
Obesity and reproductive function: a review of the evidence.
Klenov, Violet E; Jungheim, Emily S
2014-12-01
Over the last decade, the evidence linking obesity to impaired reproductive function has grown. In this article, we review this evidence and discuss the underlying pathophysiology. Obese women are less likely than normal-weight women to achieve pregnancy. Female obesity adversely affects reproductive function through alterations in the hypothalamic-pituitary-ovarian axis, oocyte quality, and endometrial receptivity. It is unclear which mechanism contributes the most to subfecundity, and it is likely a cumulative process. Emerging data highlight the contribution of male obesity to impaired reproductive function and that couple obesity has synergistic adverse effects. Once pregnant, obese women are at higher risk for adverse pregnancy outcomes. Weight loss improves reproductive potential in obese patients. As obese women surpass 35 years of age, age may be more important than body mass index in determining reproductive potential. Obstetrician gynecologists need to be aware of the negative impact of obesity on reproductive function so that they appropriately counsel their patients. Further work is needed to clarify the underlying pathophysiology responsible for adverse effects of obesity on reproduction so that novel treatment approaches may be developed.
Sex steroid hormone determination of the maternal brain: effects beyond reproduction.
Kinsley, C H; Meyer, E; Rafferty, K A
2012-10-01
Herein we discuss the effects of hormones on reproduction, but with a focus on the ripples that emanate from the main effects. That is, the role of hormones in reproductive events is both well-known and well accepted; less studied and understood are effects that appear to be ancillary to the primary objectives of the hormonal effects, which support, complement and extend their primary effects. We present evidence for how the hormonal stimulation of pregnancy constructs the maternal brain; makes it more efficient; enhances cognition; regulates stress responsiveness; modifies sensory systems (we discuss mainly olfaction); neurogenesis; and learning. Thus, steroid and other hormones and neuropeptides restructure the nervous system, particularly of females, to produce and regulate maternal behavior as well as behaviors and physiological systems that contribute to and support what is arguably the primary function of the hormones: survival and effective nurturance of the female's metabolic and genetic investment.
DEVELOPMENTAL EFFECTS OF DIETARY SOY PHYTOESTROGENS
The purpose of the project is to conduct a series of experiments to determine whether developmental exposure to dietary phytochemicals that have estrogenic activity will affect central nervous system and reproductive system functions later in life. The basic design is, in additio...
Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle
Bannai, Makoto; Ichimaru, Toru; Nakano, Sayako; Murata, Takuya; Higuchi, Takashi; Takahashi, Michio
2011-01-01
Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to survival until well-balanced amino acid sources are found. PMID:22132231
An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi
Wallen, R. M.; Perlin, Michael H.
2018-01-01
Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi. PMID:29619017
POMC Neurons: From Birth to Death
Toda, Chitoku; Santoro, Anna; Kim, Jung Dae
2017-01-01
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism’s basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation. PMID:28192062
Yu, Miao; Chen, Liangkai; Peng, Zhao; Nüssler, Andreas K; Wu, Qinghua; Liu, Liegang; Yang, Wei
2017-06-01
Deoxynivalenol (DON) is a toxic fungal secondary metabolite produced by molds of the Fusarium genus, and it is known to cause a spectrum of diseases both in humans and animals, such as emesis, diarrhea, anorexia, immunotoxicity, hematological disorders, impairment of maternal reproduction, and fetal development. The recently revealed teratogenic potential of DON has received much attention. In various animal models, it has been shown that DON led to skeletal deformities of the fetus. However, the underlying mechanisms are not yet fully understood, and toxicological data are also scarce. Several animal research studies highlight the potential link between morphological abnormalities and changes of autophagy in the reproductive system. Because autophagy is involved in fetal development, maintenance of placental function, and bone remodeling, this mechanism has become a high priority for future research. The general aim of the present review is to deliver a comprehensive overview of the current state of knowledge of DON-induced reproductive toxicity in different animal models and to provide some prospective ideas for further research. The focus of the current review is to summarize toxic and negative effects of DON exposure on the reproductive system and the potential underlying molecular mechanisms in various animal models. Copyright © 2017 Elsevier B.V. All rights reserved.
Leptin and reproduction: a review.
Moschos, Stergios; Chan, Jean L; Mantzoros, Christos S
2002-03-01
To review recent advances in understanding the role of leptin in the physiology and pathophysiology of reproduction, with a focus on relevant clinical situations. A MEDLINE computer search was performed to identify relevant articles. Leptin, an adipocyte hormone important in regulating energy homeostasis, interacts with the reproductive axis at multiple sites, with stimulatory effects at the hypothalamus and pituitary and inhibitory actions at the gonads. More recently, leptin has been shown to play a role in other target reproductive organs, such as the endometrium, placenta, and mammary gland, with corresponding influences on important physiologic processes such as menstruation, pregnancy, and lactation. As a marker of whether nutritional stores are adequate, leptin may act in concert with gonadotropins and the growth hormone axis to initiate the complex process of puberty. Conditions in which nutritional status is suboptimal, such as eating disorders, exercise-induced amenorrhea, and functional hypothalamic amenorrhea, are associated with low serum leptin levels; and conditions with excess energy stores or metabolic disturbances, such as obesity and polycystic ovarian syndrome, often have elevated serum or follicular fluid leptin levels, raising the possibility that relative leptin deficiency or resistance may be at least partly responsible for the reproductive abnormalities that occur with these conditions. Leptin may act as the critical link between adipose tissue and the reproductive system, indicating whether adequate energy reserves are present for normal reproductive function. Future interventional studies involving leptin administration are expected to further clarify this role of leptin and may provide new therapeutic options for the reproductive dysfunction associated with states of relative leptin deficiency or resistance.
Expression of GAT1 in male reproductive system and its effects on reproduction in mice.
Zhang, JinFu; Gui, YaPing; Yuan, Tao; Bian, CuiDong; Guo, LiHe
2009-12-01
The present study was carried out to identify GABA (gamma-aminobutyric acid) transport protein I (GAT1) in male reproductive organs and to study the effect of GAT1 overexpression on the male reproductive system in GAT1 transgenic mice (TG). Expression and location of GAT1 in testes, epididymis, and sperm of wild-type (WT) mice were identified by immunohistochemistry and western-blot. Histological changes of testes, epididymis, and sperm of transgenic mice overexpressing GAT1 were detected by immunofluorenscent staining and haematoxylin and eosin (HE) staining. GAT1 expression was detected in the testes, epididymis, and sperm of non-transgenic mice. Vacuolization and deformity of spermatogenic cells were observed in the transgenic mice, but the epididymis was unremarkable. Immunofluorenscent staining showed that the number of diastrophic and decapitated sperm increased significantly in transgenic mice to 46.9% from 7.3% in nontransgenic mice. These results suggest that abnormal expression of GAT1 could result in spermiogenesis function injury, sperm paramorphia and dysgenesis.
Wei, Dong; Tian, Chuan-Bei; Liu, Shi-Huo; Wang, Tao; Smagghe, Guy; Jia, Fu-Xian; Dou, Wei; Wang, Jin-Jun
2016-06-01
In the male reproductive system of insects, the male accessory glands and ejaculatory duct (MAG/ED) are important organs and their primary function is to enhance the fertility of spermatozoa. Proteins secreted by the MAG/ED are also known to induce post-mating changes and immunity responses in the female insect. To understand the gene expression profile in the MAG/ED of the oriental fruit fly Bactrocera dorsalis (Hendel), that is an important pest in fruits, we performed an Illumina-based deep sequencing of mRNA. This yielded 54,577,630 clean reads corresponding to 4.91Gb total nucleotides that were assembled and clustered to 30,669 unigenes (average 645bp). Among them, 20,419 unigenes were functionally annotated to known proteins/peptides in Gene Orthology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes pathway databases. Typically, many genes were involved in immunity and these included microbial recognition proteins and antimicrobial peptides. Subsequently, the inducible expression of these immunity-related genes was confirmed by qRT-PCR analysis when insects were challenged with immunity-inducible factors, suggesting their function in guaranteeing fertilization success. Besides, we identified some important reproductive genes such as juvenile hormone- and ecdysteroid-related genes in this de novo assembly. In conclusion, this transcriptomic sequencing of B. dorsalis MAG/ED provides insights to facilitate further functional research of reproduction, immunity and molecular evolution of reproductive proteins in this important agricultural pest. Copyright © 2015 Elsevier Inc. All rights reserved.
Reproductive health/family planning and the health of infants, girls and women.
Sadik, N
1997-01-01
The 1994 International Conference on Population and Development developed international consensus amongst health providers, policy makers, and group representing the whole of civil society regarding the concept of reproductive health and its definition. In line with this definition, reproductive health care is defined as the constellation of methods, techniques and services that contribute to reproductive health and well-being by preventing and solving reproductive health problems. Reproductive health care saves lives and prevents significant levels of morbidity through family planning programmes, antenatal, delivery and post-natal services, prevention and management programmes for reproductive tract infections (including sexually transmitted diseases and HIV/AIDS), prevention of abortion and management of its complications, cancers of the reproductive system, and harmful practices that impact on reproductive function. Reproductive health care needs are evident at all stages of the life cycle and account for a greater proportion of disability adjusted life years (DALYS) in girls and women than in boys and men. Reproductive health protects infant health by enabling birth spacing and birth limitation to be practiced through family planning. The prevention and early detection of reproductive tract infections, including sexually transmitted diseases and HIV, through the integration of preventive measures in family planning service delivery not only improves the quality of care provided but is also directly responsible for improvement in survival and health of infants. Addressing harmful practices such as son preference, sex selection, sexual violence and female genital mutilation complements the positive impact of planned and spaced children through family planning services on infant mortality and the reproductive health of young girls and women. They are also in addition to prenatal, delivery and postnatal services, positive determinants of low maternal mortality and morbidity and are integral to the promotion of reproductive health in women of child bearing age. Reproductive tract infections, including sexually transmitted diseases and HIV contribute to significant level of ill-health in women of reproductive age and continue to pose a threat through the menopause which in turn brings with it increasing risk of cancers of the reproductive system.
Plant reproduction in spaceflight environments
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Kuang, A.; Porterfield, D. M.
1997-01-01
Because plant reproduction is a complex developmental process there are many possible sites of perturbation by the unusual environments of orbital spacecraft. Previous long-duration experiments on Soviet platforms shared features of slowed development through the vegetative stage of plant growth and aborted reproductive function. Our goal has been to understand how special features of the spaceflight environment impact physiological function and reproductive development. In a series of short-duration experiments in the Shuttle mid-deck we studied early reproductive development in Arabidopsis thaliana. Pollen and ovule development aborted at an early stage in the first experiment on STS-54 which utilized closed plant growth chambers. Post-flight analysis suggested that the plants may have been carbon dioxide limited. Subsequent experiments utilized carbon dioxide enrichment (on STS-51) and cabin air flow-through with an air exchange system (on STS-68). Both modifications allowed pollen and ovule development to occur normally on orbit, and full reproductive development up to the stage of an immature seed occurred on STS-68. However, analysis of plant roots from these experiments demonstrated a limitation in rootzone aeration in the spaceflight material that was not mitigated by these procedures. In the future, additional resources (crew time, upgraded flight hardware, and special platforms) will invite more elaborate, long-duration experimentation. On the ISS, a variable speed centrifuge and upgraded plant habitats will permit detailed experiments on the role of gravity in shaping the plant micro-environment, and what influence this plays during reproduction.
Differences in Patterns of Reproductive Allocation between the Sexes in Nicrophorus orbicollis.
Smith, Ashlee N; Creighton, J Curtis; Belk, Mark C
2015-01-01
Organisms are selected to maximize lifetime reproductive success by balancing the costs of current reproduction with costs to future survival and fecundity. Males and females typically face different reproductive costs, which makes comparisons of their reproductive strategies difficult. Burying beetles provide a unique system that allows us to compare the costs of reproduction between the sexes because males and females are capable of raising offspring together or alone and carcass preparation and offspring care represent the majority of reproductive costs for both sexes. Because both sexes perform the same functions of carcass preparation and offspring care, we predict that they would experience similar costs and have similar life history patterns. In this study we assess the cost of reproduction in male Nicrophorus orbicollis and compare to patterns observed in females. We compare the reproductive strategies of single males and females that provided pre- and post-hatching parental care. There is a cost to reproduction for both males and females, but the sexes respond to these costs differently. Females match brood size with carcass size, and thus maximize the lifetime number of offspring on a given size carcass. Males cull proportionately more offspring on all carcass sizes, and thus have a lower lifetime number of offspring compared to females. Females exhibit an adaptive reproductive strategy based on resource availability, but male reproductive strategies are not adaptive in relation to resource availability.
Obesity and the reproductive system disorders: epigenetics as a potential bridge.
Crujeiras, Ana B; Casanueva, Felipe F
2015-01-01
Obesity and overweight are significantly involved in several reproductive pathologies contributing to infertility in men and women. In addition, several cancers of the reproductive system, such as endometrial, ovarian, breast, testicular and prostate cancers, are strongly influenced by obesity. However, the molecular mechanisms involved in the association between obesity and reproductive disorders remain unclear. Our proposal is to review the current scientific evidence regarding the effect of obesity-related factors as the core of the collective mechanisms directly and indirectly involved in the relationship between obesity and reproductive disorders, with a special and original focus on the effect of the obesity state microenvironment on the epigenetic profile as a reversible mechanistic link between obesity and the reproductive disorders. A PubMed search was performed using keywords related to obesity and adipose-related factors and epigenetics and associated with keywords related to reproduction. Full-text articles and abstracts in the English language published prior to 31 December 2013 were reviewed. The obesity state notably contributes to a reproductive dysfunction in both men and women, ranging from infertility to oncological outcomes. Several epidemiological and experimental studies demonstrate that factors secreted by the adipose tissue and gut in an obesity state can directly induce reproductive disturbances. Relevantly, these same factors are able to alter the epigenetic regulation of genes, a dynamic and reversible mechanism by which the organism responds to environmental pressures critical to the reproductive function. This review outlines the evidence showing that the association between the reproductive pathologies and obesity is not inevitable but is potentially preventable and reversible. The epigenetic marks related to obesity could constitute a therapeutic target for the reproductive disorders associated with obesity. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Protection of the female reproductive system from natural and artificial insults
Tilly, Jonathan L.; Kolesnick, Richard N.
2010-12-14
Described are methods for protecting the female reproductive system against natural and artificial insults by administering to women a composition comprising an agent that antagonizes one or more acid sphingomyelinase (ASMase) gene products. Specifically, methods disclosed herein serve to protect women's germline from damage resulting from cancer therapy regimens including chemotherapy or radiotherapy. In one aspect, the method preserves, enhances, or revives ovarian function in women, by administering to women a composition containing sphingosine-1-phosphate, or an analog thereof. Also disclosed are methods to prevent or ameliorate menopausal syndromes and to improve in vitro fertilization techniques.
Vitamins are substances that your body needs to grow and develop normally. Vitamin A plays a role in your Vision Bone growth Reproduction Cell functions Immune system Vitamin A is an antioxidant. It can come from ...
Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function
Chen, Yichang; Qiu, Zhiqun; Lee, Dong Yeon; Telesca, Donatello; Yang, Xia; Allard, Patrick
2016-01-01
Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures. PMID:27472198
Acute brief heat stress in late gestation alters neonatal calf innate immune functions
USDA-ARS?s Scientific Manuscript database
Heat stress (HS), as one of the environmental stressors affecting the dairy industry, compromises the cow's milk production, immune function, and reproductive system. However, few studies have looked at how prenatal HS affects the offspring. The objective of this study was to evaluate the effect of ...
Activins in reproductive biology and beyond.
Wijayarathna, R; de Kretser, D M
2016-04-01
Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female reproductive aging. In the male, activin A is an autocrine and paracrine modulator of germ cell development and Sertoli cell proliferation. Disruption of normal activin signalling is characteristic of many tumours affecting reproductive organs, including endometrial carcinoma, cervical cancer, testicular and ovarian cancer as well as prostate cancer. While activin A and B aid the progression of many tumours of the reproductive organs, activin C acts as a tumour suppressor. Activins are important in embryonic induction, morphogenesis of branched glandular organs, development of limbs and nervous system, craniofacial and dental development and morphogenesis of the Wolffian duct. The field of activin biology has advanced considerably since its initial discovery as an FSH stimulating agent. Now, activin is well known as a growth factor and cytokine that regulates many aspects of reproductive biology, developmental biology and also inflammation and immunological mechanisms. Current research provides evidence for novel roles of activins in maintaining the structure and function of reproductive and other organ systems. The fact that activin A is elevated both locally as well as systemically in major disorders of the reproductive system makes it an important biomarker. Given the established role of activin A as a pro-inflammatory and pro-fibrotic agent, studies of its involvement in disorders of reproduction resulting from these processes should be examined. Follistatin, as a key regulator of the biological actions of activin, should be evaluated as a therapeutic agent in conditions where activin A overexpression is established as a contributing factor. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Insulin: its Role in the Central Control of Reproduction
Sliwowska, Joanna H.; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N.
2014-01-01
Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. PMID:24874777
Insulin: its role in the central control of reproduction.
Sliwowska, Joanna H; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N
2014-06-22
Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function. Copyright © 2014 Elsevier Inc. All rights reserved.
Histological characterization of peppermint shrimp ( Lysmata wurdemanni) androgenic gland
NASA Astrophysics Data System (ADS)
Liu, Xin; Zhang, Dong; Lin, Tingting
2017-12-01
The androgenic gland (AG) is an important endocrine gland for male reproductive function in crustaceans. In the present study, we investigated the histological characteristics of the androgenic gland of peppermint shrimp, Lysmata wurdemanni. The peppermint shrimp matures as male first, then some individuals may become euhermaphrodite after several moltings (transitional phase). Euhermaphrodite-phase shrimp acts as male at intermolts. However, it can be fertilized as a female immediately after molting. Considering the male reproductive function acts in its lifespan except for at larval stages, and female reproductive system starts to develop at transitional phase, we hypothesized that AG activity might be reduced to allow and promote vitellogenesis onset in early transitional phase and the following euhermaphrodite phase. So AG cell structure might be different in three phases in L. wurdemanni. The results showed that AG exists in the male in transitional and euhermaphrodite phases. The gland cell clusters surrounding the ejaculatory ducts locate at the roots of the fifth pereopods. The nucleus diameters are similar in the three phases while the nucleus- to-cell ratio is the lowest in euhermaphrodite phase. Our results indicated that for the individuals that will become euhermaphrodite, the cellular structure of AG changes since transitional phase. Male reproductive function which is still available in euhermaphrodite-phase shrimp should be due to the existence of the gland.
Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.
1996-01-01
Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.
El-Kassaby, Yousry A; Funda, Tomas; Lai, Ben S K
2010-01-01
The impact of female reproductive success on the mating system, gene flow, and genetic diversity of the filial generation was studied using a random sample of 801 bulk seed from a 49-clone Pseudotsuga menziesii seed orchard. We used microsatellite DNA fingerprinting and pedigree reconstruction to assign each seed's maternal and paternal parents and directly estimated clonal reproductive success, selfing rate, and the proportion of seed sired by outside pollen sources. Unlike most family array mating system and gene flow studies conducted on natural and experimental populations, which used an equal number of seeds per maternal genotype and thus generating unbiased inferences only on male reproductive success, the random sample we used was a representative of the entire seed crop; therefore, provided a unique opportunity to draw unbiased inferences on both female and male reproductive success variation. Selfing rate and the number of seed sired by outside pollen sources were found to be a function of female fertility variation. This variation also substantially and negatively affected female effective population size. Additionally, the results provided convincing evidence that the use of clone size as a proxy to fertility is questionable and requires further consideration.
Effect of subacute exposure to lead and estrogen on immature pre-weaning rat leukocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villagra, R.; Tchernitchin, N.N.; Tchernitchin, A.N.
1997-02-01
Lead is an environmental pollutant known to cause damage to human health, affecting specially the central nervous system, reproductive organs, the immune system and kidney. From the perspective or reproduction, lead affects both men and women. Reported effects in women include infertility, miscarriage, pre-eclampsia, pregnancy hypertension and premature delivery. In experimental animals, lead affects female reproductive organs through different mechanisms. The heavy metal may interact at the enzyme level. It may interfere with the action of reproductive hormones at the target organ, modifying the activity of estrogen receptors in the pregnant uterus and inhibiting responses where estrogens play a role.more » Lead may induce imprinting mechanism, causing persistent changes in uterine estrogen receptors and ovary LH receptors following perinatal exposure. Finally, it may interfere at the level of hypothalamus-pituitary, decreasing pituitary response to growth hormone releasing factor, affecting levels of FSH and LH and increasing blood levels of glucocorticoids, which modify the action of estrogens in the uterus. This study examines the mechanisms of lead-induced interference with female reproductive and immune functions. 33 refs., 2 figs., 2 tabs.« less
Human reproductive issues in space
NASA Technical Reports Server (NTRS)
Santy, Patricia A.; Jennings, Richard T.
1992-01-01
A review of reproductive functioning in animal species studied during space flight demonstrated that most species were affected significantly by the absence of gravity and/or the presence of radiation. These two factors induced alterations in normal reproductive functioning independently of, as well as in combination with, each other. Based on animal models, several potential problem areas regarding human reproductive physiology and functioning in the space environment were identified. While there are no current space flight investigations, the animal studies suggest priorities for future research in human reproduction. Such studies will be critical for the successful colonization of the space frontier.
KANEKO-ISHINO, Tomoko; ISHINO, Fumitoshi
2015-01-01
Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is “mammalian-specific genomic functions”, a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of “mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons”, based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes. PMID:26666304
2013-01-01
Background Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of high (≥ 1.7; n = 288) or low (≤ −2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs using the Sequenom MassARRAY® system. Three types of SNPs were evaluated: SNPs previously reported to be associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and production traits were analyzed. Results A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22 with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele substitution effects for several SNPs associated with production traits were in the opposite direction as DPR. Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits. Conclusion SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated with DPR are likely to be important for understanding the physiology of reproduction. Given the large number of SNPs associated with DPR that were not negatively associated with production traits, it should be possible to select for DPR without compromising production. PMID:23759029
NASA Astrophysics Data System (ADS)
Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing
2016-09-01
Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.
Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing
2016-09-02
Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.
Screening of reproduction-related single-nucleotide variations from MeDIP-seq data in sheep.
Cao, Jiaxue; Wei, Caihong; Zhang, Shuzhen; Capellini, Terence D; Zhang, Li; Zhao, Fuping; Li, Li; Zhong, Tao; Wang, Linjie; Du, Lixin; Zhang, Hongping
2016-11-01
Extensive variation in reproduction has arisen in Chinese Mongolian sheep during recent domestication. Hu and Small-tailed Han sheep, for example, have become non-seasonal breeders and exhibit higher fecundity than Tan and Ujumqin breeds. We therefore scanned reproduction-related single-nucleotide variations from methylated DNA-immunoprecipitation sequencing data generated from each of those four breeds to uncover potential mechanisms underlying this breed variation. We generated a high-quality map of single nucleotide variations (SNVs) in DNA methylation enriched regions, and found that the majority of variants are located within non-coding regions. We identified 359 SNVs within the Sheep Quantitative Trait Locus (QTL) database. Nineteen of these SNVs associated with the Aseasonal Reproduction QTL, and 10 out of the 19 reside close to genes with known reproduction functions. We also identified the well-known FecB mutation in high-fecundity sheep (Hu and Small-tailed Han sheep). When we applied these FecB finding to our breeding system, we improved lambing rate by 175%. In summary, this study provided strong candidate SNVs associated with sheep fecundity that can serve as targets for functional testing and to enhance selective breeding strategies. Mol. Reprod. Dev. 83: 958-967, 2016 © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ahn, Suzie E.; Lim, Chul-Hong; Lee, Jin-Young; Bae, Seung-Min; Kim, Jinyoung; Bazer, Fuller W.; Song, Gwonhwa
2013-01-01
The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s) for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels. PMID:24098561
Jennings, Kimberly J; Chasles, Manon; Cho, Hweyryoung; Mikkelsen, Jens; Bentley, George; Keller, Matthieu; Kriegsfeld, Lance J
2017-11-01
Males of many species rely on chemosensory information for social communication. In male Syrian hamsters (Mesocricetus auratus), as in many species, female chemosignals potently stimulate sexual behavior and a concurrent, rapid increase in circulating luteinizing hormone (LH) and testosterone (T). However, under winter-like, short-day (SD) photoperiods, when Syrian hamsters are reproductively quiescent, these same female chemosignals fail to elicit behavioral or hormonal responses, even after T replacement. It is currently unknown where in the brain chemosensory processing is gated in a seasonally dependent manner such that reproductive responses are only displayed during the appropriate breeding season. The goal of the present study was to determine where this gating occurred by identifying neural loci that respond differentially to female chemosignals across photoperiods, independent of circulating T concentrations. Adult male Syrian hamsters were housed under either long-day (LD) (reproductively active) or SD (reproductively inactive) photoperiods with half of the SD animals receiving T replacement. Animals were exposed to either female hamster vaginal secretions (FHVSs) diluted in mineral oil or to vehicle, and the activational state of chemosensory processing centers and elements of the neuroendocrine reproductive axis were examined. Components of the chemosensory pathway upstream of hypothalamic centers increased expression of FOS, an indirect marker of neuronal activation, similarly across photoperiods. In contrast, the preoptic area (POA) of the hypothalamus responded to FHVS only in LD animals, consistent with its role in promoting expression of male sexual behavior. Within the neuroendocrine axis, the RF-amide related peptide (RFRP), but not the kisspeptin neuronal system responded to FHVS only in LD animals. Neither response within the POA or the RFRP neuronal system was rescued by T replacement in SD animals, mirroring photoperiodic regulation of reproductive responses. Considering the POA and the RFRP neuronal system promote reproductive behavior and function in male Syrian hamsters, differential activation of these systems represents a potential means by which photoperiod limits expression of reproduction to the appropriate environmental context. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Review: Interactions between temperament, stress, and immune function in cattle
USDA-ARS?s Scientific Manuscript database
Stressors encountered by animals can pose economic problems for the livestock industry due to increased costs to the producer as well as the consumer. Stress can also adversely affect many physiological systems, including the reproductive and immune systems. In recent years, stress has been associat...
Diabetes mellitus induced impairment of male reproductive functions: a review.
Jangir, Ram Niwas; Jain, Gyan Chand
2014-05-01
Diabetes mellitus (DM) represents one of the greatest threats to human health all over the world. The incidence of DM is rising rapidly also including children and young persons of reproductive age. Diabetes has been associated with reproductive impairment in both men and women. Diabetes may affect male reproductive functions at multiple levels as a result of its effects on the endocrine control of spermatogenesis, steroidogenesis, sperm maturation, impairment of penile erection and ejaculation. A large number of studies both on diabetic men and experimental diabetic animals have been published on the impact of DM on male reproductive functions during the past few years but many of them have conflicting results. The present review summarizes the research finding of a large number of research papers on the reproductive functions especially on hypothalmo-pituitary-gonadal axis, spermatogenesis, histopathology of testis, synthesis and secretion of testosterone, sperm quality, ejaculatory function and fertility both in diabetic men and experimental diabetic animals.
Studies of lead exposure on reproductive system: a review of work in China.
Xuezhi, J; Youxin, L; Yilan, W
1992-09-01
This paper, based on a review of a series studies conducted in China from 1978 through 1991, describes the possible links between low level lead exposure and the adverse effects on reproductive system. Effects on menstrual status and pregnancy outcome manifested mainly as higher prevalences of menstrual disturbance, spontaneous abortion and threatened abortion in exposed females. Transfer of lead via placenta and human milk was shown by higher lead levels in milk and blood of infant. Impairment of male reproductive function was observed as decreased volume of ejaculation, prolonged latency of semen melting, reduced total sperm count and alive spermatozoa, retarded sperm activity as well as lowered density of semen fluid in exposed male workers with Pb-B over 40 micrograms.dl-1. In addition, poorer performance of WISC-R test was revealed in children with Pb-B level over 30 micrograms.dl-1, and retarded physical development was observed in children with Pb-B over 20 micrograms.dl-1. Therefore, health surveillance including the assessment of adverse effects on reproductive system of both female and male lead exposed workers should not be ignored. Furthermore, safety exposure limit of work place, particularly for female workers of child-bearing age, should be developed.
Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A
2017-04-01
Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of Oxidative Stress in Male Reproductive Dysfunctions with Reference to Phthalate Compounds.
Sedha, Sapna; Kumar, Sunil; Shukla, Shruti
2015-11-14
A wide variety of environmental chemicals/xenobiotics including phthalates have been shown to cause oxidative stress targeting the endocrine system and cause reproductive anomalies. The present review describes various issues by oxidative stress causing male reproductive dysfunctions. Here in this review, the importance and role of phthalate compounds in male reproductive dysfunction has been well documented. One class of environmental endocrine disruptors is phthalates. Phthalate compounds are mostly used as plasticizers, which increase the flexibility, durability, longevity, and etc. of the plastics. Large-scale use of plastic products in our daily life as well as thousands of workers engaged in the manufacture of plastic and plastic products and recycling plastic industry are potentially exposed to these chemicals. Further, general population as well as vulnerable groups i.e. children and pregnant women are also exposed to these chemicals. Phthalates are among wide variety of environmental toxicants capable of compromising male fertility by inducing a state of oxidative stress in the testes. They may also generate reactive oxygen species (ROS) that may affect various physiological and reproductive functions. The available data points out that phthalate compounds may also induce oxidative stress in the male reproductive organs mainly testis and epididymis. They impair spermatogenic process by inducing oxidative stress and apoptosis in germ cells or target sertoli cells and thereby hamper spermatogenesis. They also impair the Leydig cell function by inducing ROS, thereby decreasing the levels of steroidogenic enzymes. Thus in utero and postnatal exposure to phthalate compounds might lead to decreased sperm count and various other reproductive anomalies in the young male.
Ernest, Sheila R.; Wade, Michael G.; Lalancette, Claudia; Ma, Yi-Qian; Berger, Robert G.; Robaire, Bernard; Hales, Barbara F.
2012-01-01
Brominated flame retardants (BFRs) are incorporated into a wide variety of consumer products, are readily released into home and work environments, and are present in house dust. Studies using animal models have revealed that exposure to polybrominated diphenyl ethers (PBDEs) may impair adult male reproductive function and thyroid hormone physiology. Such studies have generally characterized the outcome of acute or chronic exposure to a single BFR technical mixture or congener but not the impact of environmentally relevant BFR mixtures. We tested whether exposure to the BFRs found in house dust would have an adverse impact on the adult male rat reproductive system and thyroid function. Adult male Sprague Dawley rats were exposed to a complex BFR mixture composed of three commercial brominated diphenyl ethers (52.1% DE-71, 0.4% DE-79, and 44.2% decaBDE-209) and hexabromocyclododecane (3.3%), formulated to mimic the relative congener levels in house dust. BFRs were delivered in the diet at target doses of 0, 0.02, 0.2, 2, or 20 mg/kg/day for 70 days. Compared with controls, males exposed to the highest dose of BFRs displayed a significant increase in the weights of the kidneys and liver, which was accompanied by induction of CYP1A and CYP2B P450 hepatic drug–metabolizing enzymes. BFR exposure did not affect reproductive organ weights, serum testosterone levels, testicular function, or sperm DNA integrity. The highest dose caused thyroid toxicity as indicated by decreased serum thyroxine (T4) and hypertrophy of the thyroid gland epithelium. At lower doses, the thickness of the thyroid gland epithelium was reduced, but no changes in hormone levels (T4 and thyroid-stimulating hormone) were observed. Thus, exposure to BFRs affected liver and thyroid physiology but not male reproductive parameters. PMID:22387749
Progesterone Receptors: Form and Function in Brain
Brinton, Roberta Diaz; Thompson, Richard F.; Foy, Michael R.; Baudry, Michel; Wang, JunMing; Finch, Caleb E; Morgan, Todd E.; Stanczyk, Frank Z.; Pike, Christian J.; Nilsen, Jon
2008-01-01
Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRβ and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and / or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging. PMID:18374402
Wu, Chen; Crowhurst, Ross N; Dennis, Alice B; Twort, Victoria G; Liu, Shanlin; Newcomb, Richard D; Ross, Howard A; Buckley, Thomas R
2016-01-01
Phasmatodea, more commonly known as stick insects, have been poorly studied at the molecular level for several key traits, such as components of the sensory system and regulators of reproduction and development, impeding a deeper understanding of their functional biology. Here, we employ de novo transcriptome analysis to identify genes with primary functions related to female odour reception, digestion, and male sexual traits in the New Zealand common stick insect Clitarchus hookeri (White). The female olfactory gene repertoire revealed ten odorant binding proteins with three recently duplicated, 12 chemosensory proteins, 16 odorant receptors, and 17 ionotropic receptors. The majority of these olfactory genes were over-expressed in female antennae and have the inferred function of odorant reception. Others that were predominantly expressed in male terminalia (n = 3) and female midgut (n = 1) suggest they have a role in sexual reproduction and digestion, respectively. Over-represented transcripts in the midgut were enriched with digestive enzyme gene families. Clitarchus hookeri is likely to harbour nine members of an endogenous cellulase family (glycoside hydrolase family 9), two of which appear to be specific to the C. hookeri lineage. All of these cellulase sequences fall into four main phasmid clades and show gene duplication events occurred early in the diversification of Phasmatodea. In addition, C. hookeri genome is likely to express γ-proteobacteria pectinase transcripts that have recently been shown to be the result of horizontal transfer. We also predicted 711 male terminalia-enriched transcripts that are candidate accessory gland proteins, 28 of which were annotated to have molecular functions of peptidase activity and peptidase inhibitor activity, two groups being widely reported to regulate female reproduction through proteolytic cascades. Our study has yielded new insights into the genetic basis of odour detection, nutrient digestion, and male sexual traits in stick insects. The C. hookeri reference transcriptome, together with identified gene families, provides a comprehensive resource for studying the evolution of sensory perception, digestive systems, and reproductive success in phasmids.
Brys, Rein; Geens, Bram; Beeckman, Tom; Jacquemyn, Hans
2013-01-01
Background and Aims The establishment of plant populations in novel environments may generate pronounced shifts in floral traits and plant mating systems, particularly when pollinators are scarce. In this study, floral morphology and mating system functioning are compared between recently established and older populations of the annual plant Blackstonia perfoliata that occur in different pollinator environments. Methods Hand-pollination and emasculation experiments were conducted to assess the extent of pollinator-mediated pollen deposition and pollen limitation, and the contribution of autonomous selfing to total seed production. Detailed measurements of key floral traits were performed to compare the flower morphology and mating system functioning between plants from both pollination environments. Key Results Pollinator-mediated pollen deposition was about twice as low in the recently colonized and pollinator-poor environment compared with the old and pollinator-rich sites, but total seed set was little affected by any type of pollen limitation. The contribution of autonomous selfing to total seed production was higher in the pollinator-poor sites than in the pollinator-rich sites (index of reproductive assurance = 0·56 and 0·17, respectively), and seed production was only poorly affected by selfing, whereas in the pollinator-rich populations selfing reduced total reproductive output by about 40 % compared with outcross pollination. Plants originating from pollinator-poor environments produced smaller flowers that showed significantly lower levels of dichogamy (i.e. protogyny) and herkogamy. These reductions resulted in a 2-fold higher capacity for autonomous selfing under pollinator-free conditions (index of autonomous selfing = 0·81 and 0·41 in plants originating from the pollinator-poor and pollinator-rich environment, respectively). Conclusions The results illustrate that plant populations colonizing novel environments can differ markedly in floral morphology and mating system functioning. Due to a temporal shift in the male phase, the breeding system of B. perfoliata shifted from delayed selfing under pollinator-rich conditions towards competing selfing in recently established populations, providing greater reproductive assurance when pollinators and/or reproductive partners are limited. PMID:23408833
Zinc: health effects and research priorities for the 1990s.
Walsh, C T; Sandstead, H H; Prasad, A S; Newberne, P M; Fraker, P J
1994-01-01
This review critically summarizes the literature on the spectrum of health effects of zinc status, ranging from symptoms of zinc deficiency to excess exposure. Studies on zinc intake are reviewed in relation to optimum requirements as a function of age and sex. Current knowledge on the biochemical properties of zinc which are critical to the essential role of this metal in biological systems is summarized. Dietary and physiological factors influencing the bioavailability and utilization of zinc are considered with special attention to interactions with iron and copper status. The effects of zinc deficiency and toxicity are reviewed with respect to specific organs, immunological and reproductive function, and genotoxicity and carcinogenicity. Finally, key questions are identified where research is needed, such as the risks to human health of altered environmental distribution of zinc, assessment of zinc status in humans, effects of zinc status in relation to other essential metals on immune function, reproduction, neurological function, and the cardiovascular system, and mechanistic studies to further elucidate the biological effects of zinc at the molecular level. PMID:7925188
Chapter 11.18 - Neuroendocrine Control of Female Reproduction.
The hypothalamus and pituitary are known to play roles in reproductive function. A growing body of evidence indicates that environmental toxicants can alter female reproductive function by disrupting hypothalamic control of the pituitary and subsequently the endocrine control of ...
Effect of electromagnetic waves on human reproduction.
Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona
2017-03-31
Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.
Zhang, Liguo; Zhang, Xiaofei; Ju, Hanxun; ...
2016-01-23
We study the Three-Amino-acid-Loop-Extension(TALE) homeodomain transcription factor BLH3 that regulates timing of transition from vegetative to reproductive phase. Previous preliminary results obtained using large-scale yeast two-hybrids indicate that BLH3 protein possibly interact with Ovate Family Proteins(OFPs) transcription co-regulators. Nevertheless, it is uncertain whether OFP1–BLH3 complex is involved in regulation of timing of transition from vegetative to reproductive phase in Arabidopsis. The interaction between BLH3 and OFP1 was re-tested and verified by a yeast two-hybrid system. We found that the BLH3–OFP1 interaction was mainly mediated through the BLH3 homeodomain. Meanwhile, this interaction was further confirmed by bimolecular fluorescence complementation (BiFC) inmore » vivo. In addition, by establishing protoplast transient expression, we discovered that BLH3 acts as a transcriptional activator, whereas OFP1 functioned as a repressor. The interactions between OFP1 and BLH3 can reduce BLH3 transcriptional activity. The ofp1 mutant lines and blh3 mutant lines, OFP1 overexpress lines and BLH3 overexpress lines can both influence timing of transition from vegetative to reproductive phase. Furthermore, 35s:OFP1/blh3 plants exhibited flowering and leaf quantity similar to that of the wild-type controls. 35s:BLH3/ofp1 plants flowered earlier and had less leaves than wild-type controls, indicating that OFP1 protein might depend partially on BLH3 in its function to regulate the timing of transition from vegetative to reproductive phase. In conclusion, these results support our assumption that, by interacting with OFP1, BLH3 forms a functional protein complex that controls timing of progression from vegetative to reproductive phase, and OFP1 might negatively regulate BLH3 or the BLH-KNOX complex, an important interaction for sustaining the normal transition from vegetative to reproductive phase.« less
Wade, J
1999-01-01
Sexual dimorphisms in the central nervous system exist in numerous vertebrate species, and in many cases these structural differences between males and females parallel differences in the display of reproductive behaviors. Often both the behavioral and anatomical differences are controlled by exposure to gonadal steroid hormones, either during ontogeny or in adulthood. This article reviews some of the evidence supporting the hypothesis that in mammals, testosterone or its metabolites regulate the structure and function of neural and muscle systems involved in the control of masculine sexual behaviors. It then describes data suggesting that the mechanisms regulating sexually dimorphic courtship systems in zebra finches and green anole lizards are not completely parallel to the mammalian systems. Finally, some directions for future study are suggested, with the hope that they will stimulate thought about the nature of comparisons made across vertebrate models when investigators are attempting to determine both which morphological sex differences are important to the control of the reproductive behaviors, and which mechanisms regulating both structure and function are widely employed or are unique.
Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.
Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D
2013-12-01
FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.
EGFR ligands exert diverging effects on male reproductive organs.
Schneider, Marlon R; Gratao, Ana A; Dahlhoff, Maik; Boersma, Auke; Hrabé de Angelis, Martin; Hoang-Vu, Cuong; Wolf, Eckhard; Klonisch, Thomas
2010-02-01
While the EGFR and most of its ligands are expressed in the male reproductive tract, their functions in male reproduction are poorly understood. Interestingly, male transgenic mice overexpressing EGF are sterile, and transgenic mice overexpressing TGFA, another EGFR ligand, show an enlarged coagulation gland (anterior prostate) due to severe hyperplasia with focal dysplasia. We studied the male reproductive tract of transgenic mice overexpressing betacellulin (BTC-tg) under the control of a promoter conferring widespread transgene expression. Despite strong overexpression of BTC in different parts of the male reproductive tract, the gross appearance and histology of the reproductive organs of BTC-tg males were normal and the same were true for sperm parameters and the in vitro fertilization rate. Collectively, our findings demonstrate that excess of BTC exerts no deleterious effects on the structure or function of the male reproductive tract in mice and indicates unique, non-overlapping functions of specific EGFR ligands in male reproduction. Copyright 2009 Elsevier Inc. All rights reserved.
[Environmental factors and male fertility].
Köhn, F-M; Schuppe, H C
2016-07-01
The identification of potential environmental hazards may have clinical relevance for diagnosis of male infertility. Knowledge about these factors will improve prevention of fertility disorders. Apart from drugs or factors related to lifestyle such as alcohol and tobacco smoke, various environmental and occupational agents, both chemical and physical, may impair male reproductive functions. With regard to the complex regulation of the male reproductive system, the available information concerning single exogenous factors and their mechanisms of action in humans is limited. This is also due to the fact that extrapolation of results obtained from experimental animal studies remains difficult. Nevertheless, the assessment of relevant exposures to reproductive toxicants should be carefully evaluated during diagnostic procedures of andrological patients.
Haron, M N; Mohamed, M
2016-06-01
Exposure to prenatal stress is associated with impaired reproductive function in male rat offspring. Honey is traditionally used by the Malays for enhancement of fertility. The aim of this study was to determine the effect of honey on reproductive system of male rat offspring exposed to prenatal restraint stress. Dams were divided into four groups (n = 10/group): control, honey, stress and honey + stress groups. Dams from honey and honey + stress groups received oral honey (1.2 g kg(-1) body weight) daily from day 1 of pregnancy, meanwhile dams from stress and honey + stress groups were subjected to restraint stress (three times per day) from day 11 of pregnancy until delivery. At 10 weeks old, each male rat offspring was mated with a regular oestrus cycle female. Male sexual behaviour and reproductive performance were evaluated. Then, male rats were euthanised for assessment on reproductive parameters. Honey supplementation during prenatal restraint stress significantly increased testis and epididymis weights as well as improved the percentages of abnormal spermatozoa and sperm motility in male rat offspring. In conclusion, this study might suggest that supplementation of honey during pregnancy seems to reduce the adverse effects of restraint stress on reproductive organs weight and sperm parameters in male rat offspring. © 2015 Blackwell Verlag GmbH.
Smith, Steven E.; Schumaker, Karen S.
2016-01-01
The accumulation of sodium in soil (saline conditions) negatively affects plant growth and development. The Salt Overly Sensitive (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to remove sodium from the cytosol during vegetative development preventing its accumulation to toxic levels. In this pathway, the SOS3 and CALCINEURIN B-LIKE10 (CBL10) calcium sensors interact with the SOS2 protein kinase to activate sodium/proton exchange at the plasma membrane (SOS1) or vacuolar membrane. To determine if the same pathway functions during reproductive development in response to salt, fertility was analyzed in wild type and the SOS pathway mutants grown in saline conditions. In response to salt, CBL10 functions early in reproductive development before fertilization, while SOS1 functions mostly after fertilization when seed development begins. Neither SOS2 nor SOS3 function in reproductive development in response to salt. Loss of CBL10 function resulted in reduced anther dehiscence, shortened stamen filaments, and aborted pollen development. In addition, cbl10 mutant pistils could not sustain the growth of wild-type pollen tubes. These results suggest that CBL10 is critical for reproductive development in the presence of salt and that it functions in different pathways during vegetative and reproductive development. PMID:26979332
Aprison, Erin Z.; Ruvinsky, Ilya
2015-01-01
Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. PMID:26645097
Parham, Peter; Moffett, Ashley
2013-02-01
Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.
Glycobiology of Reproductive Processes in Marine Animals: The State of the Art
Gallo, Alessandra; Costantini, Maria
2012-01-01
Glycobiology is the study of complex carbohydrates in biological systems and represents a developing field of science that has made huge advances in the last half century. In fact, it combines all branches of biomedical research, revealing the vast and diverse forms of carbohydrate structures that exist in nature. Advances in structure determination have enabled scientists to study the function of complex carbohydrates in more depth and to determine the role that they play in a wide range of biological processes. Glycobiology research in marine systems has primarily focused on reproduction, in particular for what concern the chemical communication between the gametes. The current status of marine glycobiology is primarily descriptive, devoted to characterizing marine glycoconjugates with potential biomedical and biotechnological applications. In this review, we describe the current status of the glycobiology in the reproductive processes from gametogenesis to fertilization and embryo development of marine animals. PMID:23247316
NASA Astrophysics Data System (ADS)
Kalziqi, Arben; Yunker, Peter; Thomas, Jacob
Unlike equilibrium atomic solids, biofilms do not experience significant thermal fluctuations at the constituent level. However, cells inside the biofilm stochastically die and reproduce, provoking a mechanical response. We investigate the mechanical response of biofilms to the death and reproduction of cells by measuring surface-height fluctuations of biofilms with two mutual predator strains of Vibrio cholerae which kill one another on contact via the Type VI Secretion System. Biofilm surface topography is measured in the homeostatic limit, wherein cell division and death occur at roughly the same rate, via white light interferometry. Although biofilms are far from equilibrium systems, measured height correlation functions line up with expectations from a generalized fluctuation-response relation derived from replication and death events, as predicted by Risler et al. (PRL 2015). Using genetically modified strains of V. cholerae which cannot kill, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction. Thus, high-precision measurement of surface topography reveals the physical consequences of death and reproduction within a biofilm, providing a new approach to studying interactions between bacteria and cells.
Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik
2016-11-01
Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Thomson, R L; Buckley, J D; Moran, L J; Noakes, M; Clifton, P M; Norman, R J; Brinkworth, G D
2009-08-01
Anti-Müllerian hormone (AMH) has been proposed as a clinical predictor of improvements in reproductive function following weight loss in overweight and obese women with polycystic ovary syndrome (PCOS). This study aimed to assess whether baseline and/or change in AMH levels with weight loss predict improvements in reproductive function in overweight and obese women with PCOS. Fifty-two overweight and obese women with PCOS and reproductive impairment (age 29.8 +/- 0.8 years, BMI 36.5 +/- 0.7 kg/m(2)) followed a 20-week weight loss programme. AMH, weight, menstrual cyclicity and ovulatory function were assessed at baseline and post-intervention. Participants who responded with improvements in reproductive function (n = 26) had lower baseline AMH levels (23.5 +/- 3.7 versus 32.5 +/- 2.9 pmol/l; P = 0.03) and experienced greater weight loss (-11.7 +/- 1.2 versus -6.4 +/- 0.9 kg; P = 0.001) compared with those who did not respond (n = 26). Logistic regression analysis showed that weight loss and baseline AMH were independently related to improvements in reproductive function (P = 0.002 and P = 0.013, respectively). AMH levels did not change with weight loss in both responders and non-responders. In overweight and obese women with PCOS and reproductive dysfunction, a 20-week weight loss intervention resulted in improvements in reproductive function but no change in AMH levels. ACTRN12606000198527.
Lysophosphatidic Acid (LPA) Signaling in Human and Ruminant Reproductive Tract
Wocławek-Potocka, Izabela; Rawińska, Paulina; Kowalczyk-Zieba, Ilona; Boruszewska, Dorota; Sinderewicz, Emilia; Waśniewski, Tomasz; Skarzynski, Dariusz Jan
2014-01-01
Lysophosphatidic acid (LPA) through activating its G protein-coupled receptors (LPAR 1–6) exerts diverse cellular effects that in turn influence several physiological processes including reproductive function of the female. Studies in various species of animals and also in humans have identified important roles for the receptor-mediated LPA signaling in multiple aspects of human and animal reproductive tract function. These aspects range from ovarian and uterine function, estrous cycle regulation, early embryo development, embryo implantation, decidualization to pregnancy maintenance and parturition. LPA signaling can also have pathological consequences, influencing aspects of endometriosis and reproductive tissue associated tumors. The review describes recent progress in LPA signaling research relevant to human and ruminant reproduction, pointing at the cow as a relevant model to study LPA influence on the human reproductive performance. PMID:24744506
Reproduction in the space environment: Part II. Concerns for human reproduction
NASA Technical Reports Server (NTRS)
Jennings, R. T.; Santy, P. A.
1990-01-01
Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.
Saucedo, Lucia; Sobarzo, Cristian; Brukman, Nicolás; Guidobaldi, Hector Alejandro; Lustig, Livia; Giojalas, Laura Cecilia; Buffone, Mariano Gabriel; Vazquez-Levin, Monica Hebe; Marín-Briggiler, Clara
2018-06-04
Fibroblast Growth Factor 2 (FGF2) and its receptors (FGFRs) have been described in several tissues, where they regulate cellular proliferation, differentiation, motility and apoptosis. Although FGF2/FGFRs expression in the male reproductive tract has been reported, there is scarce evidence on their presence in the female reproductive tract and their involvement in the modulation of sperm function. Therefore, the objective of this study was to determine the expression of FGF2 in the female reproductive tract and to assess the role of the FGF2/FGFRs system in the regulation of sperm physiology using the murine model. FGF2 was detected in uterus and oviduct protein extracts, and it was immunolocalized in epithelial cells of the uterus, isthmus and ampulla, as well as in the cumulus oophorus-oocyte complex. The receptors FGFR1, FGFR2, FGFR3 and FGFR4 were immunodetected in the flagellum and acrosomal region of sperm recovered from the cauda epididymis. Analysis of testis sections showed the expression of FGFRs in germ cells at different stages of the spermatogenesis, suggesting the testicular origin of the sperm FGFRs. Sperm incubation with recombinant FGF2 (rFGF2) led to increased sperm motility and velocity, and to enhanced intracellular Ca2+ levels and acrosomal loss compared to the control. In conclusion, this study shows that FGF2 is expressed in tissues of the female reproductive tract. Also, the fact that functional FGFRs are present in mouse sperm and that rFGF2 affects sperm motility and acrosomal exocytosis, suggests the involvement of this system in the in vivo regulation of sperm function.
Farias, Nahuel E; Spivak, Eduardo D; Luppi, Tomas A
2017-07-01
We studied the functional morphology of the female reproductive system of the purple stone crab Danielethus crenulatus. The most remarkable feature is the relative storage capacity and extensibility of the seminal receptacles. These receptacles are a pair of simple sacs that lack internal structures dividing the internal lumen. Differences in seminal receptacle size and contents are accompanied by conspicuous changes in receptacle lining at a tissue level. Full seminal receptacles contain discrete sperm masses formed by hardened fluid and densely packed spermatophores. Different sperm masses are likely from different mates and their stratified disposition within the seminal receptacles is compatible with rival sperm displacement and last sperm precedence. Additionally, the anatomical structure of the vulva and vagina suggest active female control over copula. We discuss our results in the general context of sperm storage in brachyurans and the implications for the mating system of this species. © 2017 Wiley Periodicals, Inc.
Molnar, Laszlo; Pollak, Edit; Skopek, Zuzanna; Gutt, Ewa; Kruk, Jerzy; Morgan, A John; Plytycz, Barbara
2015-10-01
Earthworm decerebration causes temporary inhibition of reproduction which is mediated by certain brain-derived neurohormones; thus, cocoon production is an apposite supravital marker of neurosecretory center functional recovery during brain regeneration. The core aim of the present study was to investigate aspects of the interactions of nervous and immune systems during brain regeneration in adult Dendrobaena veneta (Annelida; Oligochaeta). Surgical brain extirpation was combined, either with (i) maintenance of immune-competent coelomic cells (coelomocytes) achieved by surgery on prilocaine-anesthetized worms or (ii) prior extrusion of fluid-suspended coelomocytes by electrostimulation. Both brain renewal and cocoon output recovery were significantly faster in earthworms with relatively undisturbed coelomocyte counts compared with individuals where coelomocyte counts had been experimentally depleted. These observations provide empirical evidence that coelomocytes and/or coelomocyte-derived factors (e.g. riboflavin) participate in brain regeneration and, by implication, that there is close functional synergy between earthworm neural and immune systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Function and regulation of MTA1 and MTA3 in malignancies of the female reproductive system.
Brüning, Ansgar; Blankenstein, Thomas; Jückstock, Julia; Mylonas, Ioannis
2014-12-01
The family of metastasis-associated (MTA) genes is a small group of transcriptional co-regulators which are involved in various physiological functions, ranging from lymphopoietic cell differentiation to the development and maintenance of epithelial cell adhesions. By recruiting histone-modifying enzymes to specific promoter sequences, MTA proteins can function both as transcriptional repressors and activators of a number of cancer-relevant proteins, including Snail, E-cadherin, signal transducer and activator of transcriptions (STATs), and the estrogen receptor. Their involvement in the epithelial-mesenchymal transition process and regulatory interactions with estrogen receptor activity has made MTA proteins highly interesting research candidates, especially in the field of hormone-sensitive breast cancer and malignancies of the female reproductive tract. This review focuses on the current knowledge about the function and regulation of MTA1 and MTA3 proteins in gynecological cancer, including ovarian, endometrial, and cervical tumors.
Effects of Environmental Toxicants on the Neuroendocrine Control of Female Reproduction
The hypothalamus and pituitary are known to play key roles in reproductive function. A growing body of evidence indicates that environmental toxicants can alter female reproductive function by disrupting hypothalamic control of the pituitary and subsequently, the endocrine contro...
Hormonal regulation of longevity in mammals
Brown-Borg, Holly M.
2007-01-01
Multiple biological and environmental factors impact the life span of an organism. The endocrine system is a highly integrated physiological system in mammals that regulates metabolism, growth, reproduction, and response to stress, among other functions. As such, this pervasive entity has a major influence on aging and longevity. The growth hormone, insulin-like growth factor-1 and insulin pathways have been at the forefront of hormonal control of aging research in the last few years. Other hormones, including those from the thyroid and reproductive system have also been studied in terms of life span regulation. The relevance of these hormones to human longevity remains to be established, however the evidence from other species including yeast, nematodes, and flies suggest that evolutionarily well-conserved mechanisms are at play and the endocrine system is a key determinant. PMID:17360245
Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function.
Lochab, Amaneet K; Extavour, Cassandra G
2017-07-15
In multicellular organisms, the specification, maintenance, and transmission of the germ cell lineage to subsequent generations are critical processes that ensure species survival. A number of studies suggest that the Bone Morphogenetic Protein (BMP) pathway plays multiple roles in this cell lineage. We wished to use a comparative framework to examine the role of BMP signaling in regulating these processes, to determine if patterns would emerge that might shed light on the evolution of molecular mechanisms that may play germ cell-specific or other reproductive roles across species. To this end, here we review evidence to date from the literature supporting a role for BMP signaling in reproductive processes across Metazoa. We focus on germ line-specific processes, and separately consider somatic reproductive processes. We find that from primordial germ cell (PGC) induction to maintenance of PGC identity and gametogenesis, BMP signaling regulates these processes throughout embryonic development and adult life in multiple deuterostome and protostome clades. In well-studied model organisms, functional genetic evidence suggests that BMP signaling is required in the germ line across all life stages, with the exception of PGC specification in species that do not use inductive signaling to induce germ cell formation. The current evidence is consistent with the hypothesis that BMP signaling is ancestral in bilaterian inductive PGC specification. While BMP4 appears to be the most broadly employed ligand for the reproductive processes considered herein, we also noted evidence for sex-specific usage of different BMP ligands. In gametogenesis, BMP6 and BMP15 seem to have roles restricted to oogenesis, while BMP8 is restricted to spermatogenesis. We hypothesize that a BMP-based mechanism may have been recruited early in metazoan evolution to specify the germ line, and was subsequently co-opted for use in other germ line-specific and somatic reproductive processes. We suggest that if future studies assessing the function of the BMP pathway across extant species were to include a reproductive focus, that we would be likely to find continued evidence in favor of an ancient association between BMP signaling and the reproductive cell lineage in animals. Copyright © 2017 Elsevier Inc. All rights reserved.
Melatonin and the circadian system: contributions to successful female reproduction.
Reiter, Russel J; Tamura, Hiroshi; Tan, Dun Xian; Xu, Xiao-Ying
2014-08-01
To summarize the role of melatonin and circadian rhythms in determining optimal female reproductive physiology, especially at the peripheral level. Databases were searched for the related English-language literature published up to March 1, 2014. Only papers in peer-reviewed journals are cited. Not applicable. Not applicable. Melatonin treatment, alterations of the normal light:dark cycle and light exposure at night. Melatonin levels in the blood and in the ovarian follicular fluid and melatonin synthesis, oxidative damage and circadian rhythm disturbances in peripheral reproductive organs. The central circadian regulatory system is located in the suprachiasmatic nucleus (SCN). The output of this master clock is synchronized to 24 hours by the prevailing light-dark cycle. The SCN regulates rhythms in peripheral cells via the autonomic nervous system and it sends a neural message to the pineal gland where it controls the cyclic production of melatonin; after its release, the melatonin rhythm strengthens peripheral oscillators. Melatonin is also produced in the peripheral reproductive organs, including granulosa cells, the cumulus oophorus, and the oocyte. These cells, along with the blood, may contribute melatonin to the follicular fluid, which has melatonin levels higher than those in the blood. Melatonin is a powerful free radical scavenger and protects the oocyte from oxidative stress, especially at the time of ovulation. The cyclic levels of melatonin in the blood pass through the placenta and aid in the organization of the fetal SCN. In the absence of this synchronizing effect, the offspring may exhibit neurobehavioral deficits. Also, melatonin protects the developing fetus from oxidative stress. Melatonin produced in the placenta likewise may preserve the optimal function of this organ. Both stable circadian rhythms and cyclic melatonin availability are critical for optimal ovarian physiology and placental function. Because light exposure after darkness onset at night disrupts the master circadian clock and suppresses elevated nocturnal melatonin levels, light at night should be avoided. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Does a voucher program improve reproductive health service delivery and access in Kenya?
Njuki, Rebecca; Abuya, Timothy; Kimani, James; Kanya, Lucy; Korongo, Allan; Mukanya, Collins; Bracke, Piet; Bellows, Ben; Warren, Charlotte E
2015-05-23
Current assessments on Output-Based Aid (OBA) programs have paid limited attention to the experiences and perceptions of the healthcare providers and facility managers. This study examines the knowledge, attitudes, and experiences of healthcare providers and facility managers in the Kenya reproductive health output-based approach voucher program. A total of 69 in-depth interviews with healthcare providers and facility managers in 30 voucher accredited facilities were conducted. The study hypothesized that a voucher program would be associated with improvements in reproductive health service provision. Data were transcribed and analyzed by adopting a thematic framework analysis approach. A combination of inductive and deductive analysis was conducted based on previous research and project documents. Facility managers and providers viewed the RH-OBA program as a feasible system for increasing service utilization and improving quality of care. Perceived benefits of the program included stimulation of competition between facilities and capital investment in most facilities. Awareness of family planning (FP) and gender-based violence (GBV) recovery services voucher, however, remained lower than the maternal health voucher service. Relations between the voucher management agency and accredited facilities as well as existing health systems challenges affect program functions. Public and private sector healthcare providers and facility managers perceive value in the voucher program as a healthcare financing model. They recognize that it has the potential to significantly increase demand for reproductive health services, improve quality of care and reduce inequities in the use of reproductive health services. To improve program functioning going forward, there is need to ensure the benefit package and criteria for beneficiary identification are well understood and that the public facilities are permitted greater autonomy to utilize revenue generated from the voucher program.
Similar causes of various reproductive disorders in early life.
Svechnikov, Konstantin; Stukenborg, Jan-Bernd; Savchuck, Iuliia; Söder, Olle
2014-01-01
During the past few decades, scientific evidence has been accumulated concerning the possible adverse effects of the exposure to environmental chemicals on the well-being of wildlife and human populations. One large and growing group of such compounds of anthropogenic or natural origin is referred to as endocrine-disrupting chemicals (EDCs), due to their deleterious action on the endocrine system. This concern was first focused on the control of reproductive function particularly in males, but has later been expanded to include all possible endocrine functions. The present review describes the underlying physiology behind the cascade of developmental events that occur during sexual differentiation of males and the specific role of androgen in the masculinization process and proper organogenesis of the external male genitalia. The impact of the genetic background, environmental exposures and lifestyle factors in the etiology of hypospadias, cryptorchidism and testicular cancer are reviewed and the possible role of EDCs in the development of these reproductive disorders is discussed critically. Finally, the possible direct and programming effects of exposures in utero to widely use therapeutic compounds, environmental estrogens and other chemicals on the incidence of reproductive abnormalities and poor semen quality in humans are also highlighted.
Wahab, F; Shahab, M; Behr, R
2015-05-01
Recently, kisspeptin (KP) and gonadotropin inhibitory hormone (GnIH), two counteracting neuropeptides, have been acknowledged as significant regulators of reproductive function. KP stimulates reproduction while GnIH inhibits it. These two neuropeptides seem to be pivotal for the modulation of reproductive activity in response to internal and external cues. It is well-documented that the current metabolic status of the body is closely linked to its reproductive output. However, how reproductive function is regulated by the body's energy status is less clear. Recent studies have suggested an active participation of hypothalamic KP and GnIH in the modulation of reproductive function according to available metabolic cues. Expression of KISS1, the KP encoding gene, is decreased while expression of RFRP (NPVF), the gene encoding GnIH, is increased in metabolic deficiency conditions. The lower levels of KP, as suggested by a decrease in KISS1 gene mRNA expression, during metabolic deficiency can be corrected by administration of exogenous KP, which leads to an increase in reproductive hormone levels. Likewise, administration of RF9, a GnIH receptor antagonist, can reverse the inhibitory effect of fasting on testosterone in monkeys. Together, it is likely that the integrated function of both these hypothalamic neuropeptides works as a reproductive output regulator in response to a change in metabolic status. In this review, we have summarized literature from nonprimate and primate studies that demonstrate the involvement of KP and GnIH in the metabolic regulation of reproduction. © 2015 The authors.
Karim, Roksana; Dang, Ha; Henderson, Victor W.; Hodis, Howard N.; St John, Jan; Brinton, Roberta D.; Mack, Wendy J.
2016-01-01
Background/objectives Given the potent role of sex hormones on brain chemistry and function, we investigated the association of reproductive history indicators of hormonal exposures, including reproductive period, pregnancy, and use of hormonal contraceptives, on mid- and late-life cognition in postmenopausal women. Design Analysis of baseline data from two randomized clinical trials, the Women’s Isoflavone Soy Health (WISH) and the Early vs Late Intervention Trial of Estradiol (ELITE). Setting University academic research center Participants 830 naturally menopausal women Measurements Participants were uniformly evaluated with a cognitive battery and a structured reproductive history. Outcomes were composite scores for verbal episodic memory, executive functions, and global cognition. Reproductive variables included ages at pregnancies, menarche, and menopause, reproductive period, number of pregnancies, and use of hormones for contraception and menopausal symptoms. Multivariable linear regression evaluated associations between cognitive scores (dependent variable) and reproductive factors (independent variables), adjusting for age, race/ethnicity, income and education. Results On multivariable modeling, age at menarche ≥ 13 years of age was inversely associated with global cognition (p= 0.05). Last pregnancy after age 35 was positively associated with verbal memory (p=0.03). Use of hormonal contraceptives was positively associated with global cognition (p trend=0.04), and verbal memory (p trend=0.007). The association between hormonal contraceptive use and verbal memory and executive functions was strongest for more than 10 years of use. Reproductive period was positively associated with global cognition (p=0.04) and executive functions (p=0.04). Conclusion In this sample of healthy postmenopausal women, reproductive life events related to sex hormones, including earlier age at menarche, later age at last pregnancy, length of reproductive period, and use of oral contraceptives are positively related to aspects of cognition in later life. PMID:27996108
Santos-del-Blanco, L; Climent, J; González-Martínez, S C; Pannell, J R
2012-11-01
The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers.
Santos-del-Blanco, L.; Climent, J.; González-Martínez, S. C.; Pannell, J. R.
2012-01-01
Background and Aims The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Methods Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Key Results Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. Conclusions The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers. PMID:23002272
The effects of kisspeptin in human reproductive function - therapeutic implications.
Ratnasabapathy, Risheka; Dhillo, Waljit S
2013-03-01
Kisspeptin is a 54-amino acid peptide which is encoded by the KiSS-1 gene and activates the G protein-coupled receptor GPR54. Evidence suggests that this system is a key regulator of mammalian and human reproduction. Animal studies have shown that GPR54-deficient mice have abnormal sexual development. Central and peripheral administration of kisspeptin stimulates the hypothalamic-pituitary-gonadal (HPG) axis whilst pre-administration of a gonadotrophin releasing hormone (GnRH) antagonist abolishes this effect. In humans, inactivating GPR54 mutations cause normosmic hypogonadotrophic hypogonadism whilst activation of GPR54 signalling is associated with premature puberty. In healthy human volunteers, the acute intravenous administration of kisspeptin potently increases plasma luteinising hormone (LH) levels and significantly increases plasma follicle stimulating hormone (FSH) and testosterone without side effects in both males and in females particularly in the preovulatatory phase of the menstrual cycle. In infertility due to hypothalamic amenorrhoea acute administration of kisspeptin results in stimulation of reproductive hormones. The kisspeptin/GPR54 system therefore appears to play an important role in the regulation of reproduction in humans. Hence kisspeptin has potential as a novel tool for the manipulation of the HPG axis and treatment of infertility in humans. This review discusses the evidence highlighting kisspeptin's key role in human reproduction.
Circadian regulation of reproduction: from gamete to offspring.
Boden, M J; Varcoe, T J; Kennaway, D J
2013-12-01
Few challenges are more critical to the survival of a species than reproduction. To ensure reproductive success, myriad aspects of physiology and behaviour need to be tightly orchestrated within the animal, as well as timed appropriately with the external environment. This is accomplished through an endogenous circadian timing system generated at the cellular level through a series of interlocked transcription/translation feedback loops, leading to the overt expression of circadian rhythms. These expression patterns are found throughout the body, and are intimately interwoven with both the timing and function of the reproductive process. In this review we highlight the many aspects of reproductive physiology in which circadian rhythms are known to play a role, including regulation of the estrus cycle, the LH surge and ovulation, the production and maturation of sperm and the timing of insemination and fertilisation. We will also describe roles for circadian rhythms in support of the preimplantation embryo in the oviduct, implantation/placentation, as well as the control of parturition and early postnatal life. There are several key differences in physiology between humans and the model systems used for the study of circadian disruption, and these challenges to interpretation will be discussed as part of this review. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kisspeptin and Metabolism: The Brain and Beyond.
Dudek, Monika; Ziarniak, Kamil; Sliwowska, Joanna H
2018-01-01
Apart from the well-established role of kisspeptin (Kp) in the regulation of reproductive functions, recent data described its action in the control of metabolism. Of particular interest for the review is the population of Kp neurons localized in the arcuate nucleus (ARC) of the hypothalamus, the site of the brain where reproductive and metabolic cross talk occurs. However, within the hypothalamus Kp does not work alone, but rather interacts with other neuropeptides, e.g., neurokinin B, dynorphin A, proopiomelanocortin, the cocaine- and amphetamine-regulated transcript, agouti-related peptide, and neuropeptide Y. Beyond the brain, Kp is expressed in peripheral tissues involved in metabolic functions. In this review, we will mainly focus on the local action of this peptide in peripheral organs such as the pancreas, liver, and the adipose tissue. We will concentrate on dysregulation of the Kp system in cases of metabolic imbalance, e.g., obesity and diabetes. Importantly, these patients besides metabolic health problems often suffer from disruptions of the reproductive system, manifested by abnormalities in menstrual cycles, premature child birth, miscarriages in women, decreased testosterone levels and spermatogenesis in men, hypogonadism, and infertility. We will review the evidence from animal models and clinical data indicating that Kp could serve as a promising agent with clinical applications in regulation of reproductive problems in individuals with obesity and diabetes. Finally, emerging data indicate a role of Kp in regulation of insulin secretion, potentially leading to development of further therapeutic uses of this peptide to treat metabolic problems in patients with these lifestyle diseases.
[Causes and Factors of Male Infertility].
Kolesnikova, L I; Kolesnikov, S I; Kurashova, N A; Bairova, T A
2015-01-01
The preservation of reproductive health of the population is an important factor of demographic policy of the state. According to some authors from 14 to 30% of couples of reproductive age suffer from infertility, malefactor in such marriages is detected in more than half of the cases. As you know, in recent years there has been a significant deterioration in the main indicators of reproductive function of men. Increased the number of andrological diseases, morphological disorders of the male reproductive system, almost halved the production of sperm in men of reproductive age. The reason probably lies behind a whole range ofstressfactors, such as medical ignorance, uncontrolled and inappropriate use of medication, metabolic disturbances, lack of vitamins and minerals, the impact of industrial pollutants, as well as the growth of addictive disorders (alcoholism, smoking and drug addiction). The forms of infertility differ according to its etiology and severity from minor changes to complete spermatogenesis dysfunction of the gonads, and can also occur due to genetic disorders. The lack of analysis of the relationship between clinical and genetic-biochemical components in men with infertility makes it impossible to understand the pathogenesis of infertility and to assess the risks of male infertility. High level of current medicine does not always guarantee an identification of the cause of male infertility. The article analyzes data from the review of specialized literature on the diagnosis and etiopathogenesis of male infertility. Frequency and clinical signs of pathology of the male reproductive system depend on the combinatorial effects of environmental influences, manifested most often in mutually reinforcing effect. A combination of several, seemed to be imperceptible factors makes the risk of development of male reproductive pathology very high. This situation compels specialists to conduct comprehensive studies on the men reproductive potential.
Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.
Clément, Frédérique
2016-07-01
Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of the (neuro-) hormonal signals at play within the HPG axis and detect complex, possibly hidden rhythms, in experimental time series. Copyright © 2016 Elsevier Inc. All rights reserved.
Deterministic and Stochastic Analysis of a Prey-Dependent Predator-Prey System
ERIC Educational Resources Information Center
Maiti, Alakes; Samanta, G. P.
2005-01-01
This paper reports on studies of the deterministic and stochastic behaviours of a predator-prey system with prey-dependent response function. The first part of the paper deals with the deterministic analysis of uniform boundedness, permanence, stability and bifurcation. In the second part the reproductive and mortality factors of the prey and…
Oligonucleotide microarrays and other ‘omics’ approaches are powerful tools for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-b...
Meslin, Camille; Plakke, Melissa S.; Deutsch, Aaron B.; Small, Brandon S.; Morehouse, Nathan I.; Clark, Nathan L.
2015-01-01
Persistent adaptive challenges are often met with the evolution of novel physiological traits. Although there are specific examples of single genes providing new physiological functions, studies on the origin of complex organ functions are lacking. One such derived set of complex functions is found in the Lepidopteran bursa copulatrix, an organ within the female reproductive tract that digests nutrients from the male ejaculate or spermatophore. Here, we characterized bursa physiology and the evolutionary mechanisms by which it was equipped with digestive and absorptive functionality. By studying the transcriptome of the bursa and eight other tissues, we revealed a suite of highly expressed and secreted gene products providing the bursa with a combination of stomach-like traits for mechanical and enzymatic digestion of the male spermatophore. By subsequently placing these bursa genes in an evolutionary framework, we found that the vast majority of their novel digestive functions were co-opted by borrowing genes that continue to be expressed in nonreproductive tissues. However, a number of bursa-specific genes have also arisen, some of which represent unique gene families restricted to Lepidoptera and may provide novel bursa-specific functions. This pattern of promiscuous gene borrowing and relatively infrequent evolution of tissue-specific duplicates stands in contrast to studies of the evolution of novelty via single gene co-option. Our results suggest that the evolution of complex organ-level phenotypes may often be enabled (and subsequently constrained) by changes in tissue specificity that allow expression of existing genes in novel contexts, such as reproduction. The extent to which the selective pressures encountered in these novel roles require resolution via duplication and sub/neofunctionalization is likely to be determined by the need for specialized reproductive functionality. Thus, complex physiological phenotypes such as that found in the bursa offer important opportunities for understanding the relative role of pleiotropy and specialization in adaptive evolution. PMID:25725432
[Regulatory role of the immune system in the organism].
Alekseev, L P; Khaitov, R M
2010-08-01
The paper presents modern idea of regulatory role of the human immune system in performing a number of physiological functions including intercellular interactions, reproductive process, and forming of protection against external and internal aggression. Significance of the immune system is considered and substantiated, that of genes of the human immune response in particular in provision of human survival as a biological species.
NASA Astrophysics Data System (ADS)
Miyakawa, Misato O.; Mikheyev, Alexander S.
2015-04-01
Evolution of reproduction strategies is affected by both phylogenetic and physiological constraints. Although clonality may benefit females, it may not be selected if a male contribution is necessary to start egg laying and embryo development. In little fire ant, Wasmannia auropunctata, sexual populations employ a typical Hymenopteran system of reproduction. In clonal populations, however, queens and males are produced with only maternal and paternal genomes, respectively, whereas sterile workers are produced sexually. Although this system requires both sexes for worker production, previous work has shown that workers may also be produced clonally by the queens. If so, why are males maintained in this species? Our data suggest that fertilization is necessary to increase the hatching rate of eggs. Although clonal queens can indeed produce both workers and queens without mating, the hatching rate is far below the level necessary to maintain functional colonies. On the other hand, virgin queens from populations exhibiting the original Hymenopteran reproduction system also show low hatching rates, but produce only haploid male eggs. Reasons for the existence of W. auropunctata males have been disputed. However, our data suggest that physiological constraints, such as the requirement for insemination, must be considered in regard to evolution of reproduction systems, in addition to ecological data and theoretical considerations of fitness.
Valdez, Diego J.; Vera Cortez, Marilina; Della Costa, Natalia S.; Lèche, Alvina; Hansen, Cristian; Navarro, Joaquín L.; Martella, Mónica B.
2014-01-01
Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating system. The Greater Rhea (Rhea americana), a South American ratite species, reproduces seasonally and has a complex mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemiluminescence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones, testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited during the non reproductive season (February to July), whereas their maximum values were reached in September for males and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes). Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the “Challenge Hypothesis”. In females, the high estradiol levels throughout the reproductive season would be needed to sustain their long egg-laying period. PMID:24837464
Steroid receptors and their ligands: Effects on male gamete functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it
In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors,more » may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens/AR mediate sperm death which is a novel field of investigation in sperm biology.« less
Influence of Reproductive Aging of the Cow on Luteal Function and Period 1 mRNA Expression
USDA-ARS?s Scientific Manuscript database
In rodents, disruption of the circadian clock genes results in increased incidence of anovulation, irregular estrous cycles, decreased luteal function, and accelerated reproductive ageing. In cattle, reproductive ageing is associated with decreased numbers of follicles in the ovary, decreased lutea...
Pituitary adenylate cyclase-activating polypeptide: a novel peptide with protean implications.
Pisegna, Joseph R; Oh, David S
2007-02-01
The purpose of this review is to highlight the importance of pituitary adenylate cyclase-activating polypeptide in physiological processes and to describe how this peptide is becoming increasingly recognized as having a major role in the body. Since its discovery in 1989, investigators have sought to determine the site of biological activity and the function of pituitary adenylate cyclase-activating polypeptide in maintaining homeostasis. Since its discovery, pituitary adenylate cyclase-activating polypeptide appears to play an important role in the regulation of processes within the central nervous system and gastrointestinal tract, as well in reproductive biology. Pituitary adenylate cyclase-activating polypeptide has been shown to regulate tumor cell growth and to regulate immune function through its effects on T lympocytes. These discoveries suggest the importance of pituitary adenylate cyclase-activating polypeptide in neuronal development, neuronal function, gastrointestinal tract function and reproduction. Future studies will examine more closely the role of pituitary adenylate cyclase-activating polypeptide in regulation of malignantly transformed cells, as well as in regulation of immune function.
Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw
2016-11-01
Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. Copyright © 2016 Elsevier Inc. All rights reserved.
Functional insights into the testis transcriptome of the edible sea urchin Loxechinus albus
Gaitán-Espitia, Juan Diego; Sánchez, Roland; Bruning, Paulina; Cárdenas, Leyla
2016-01-01
The edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L. albus gonad development and gametogenesis could provide valuable resources for aquaculture applications, management, conservation and studies about the evolution of functional and structural pathways that underlie the reproductive toolkit of marine invertebrates. Using a high-throughput sequencing technology, we explored the male gonad transcriptome of this highly fecund sea urchin. Through a de novo assembly approach we obtained 42,530 transcripts of which 15,544 (36.6%) had significant alignments to known proteins in public databases. From these transcripts, approximately 73% were functionally annotated allowing the identification of several candidate genes that are likely to play a central role in developmental processes, nutrient reservoir activity, sexual reproduction, gamete generation, meiosis, sex differentiation, sperm motility, male courtship behavior and fertilization. Additionally, comparisons with the male gonad transcriptomes of other echinoderms revealed several conserved orthologous genes, suggesting that similar functional and structural pathways underlie the reproductive development in this group and other marine invertebrates. PMID:27805042
A site for sori: Ecophysiology of fertile-sterile leaf dimorphy in ferns.
Watkins, James E; Churchill, Amber C; Holbrook, N Michele
2016-05-01
Reproduction often requires significant investment and can move resources away from growth and maintenance; maintaining a balance between reproduction and growth can involve trade-offs. Extreme functional specialization has separated reproduction and photosynthesis in most seed plants, yet ferns use the laminar surface of their fronds for both reproduction and photosynthesis. This dual function selects for a variety of frond morphologies that range from no specialization (monomorphy) to extreme dimorphy between fertile and sterile fronds (holodimorphy). Here we examined the ecological and physiological consequences of variation in frond dimorphy in ferns, evaluated reproductive trade-offs across a dimorphy gradient, and speculate on factors controlling the occurrence of holodimorphy. Ecophysiological measurements of photosynthetic rate, water potential, hydraulic conductivity, and gross morphological comparisons of frond area and angle were used to evaluate differences between fertile and sterile fronds. We examined three temperate and three tropical fern species that vary in degree of fertile-sterile dimorphy. Holodimorphic species produced fewer fertile fronds, which had significantly higher respiratory rates than in sterile fronds on the same plant or in any frond produced on monomorphic species; hemidimorphic species were frequently intermediate. We found no differences in vulnerability to cavitation between fertile and sterile fronds. In dimorphic species, fertile fronds had higher (less negative) water potential and lower stipe hydraulic conductivity relative than in sterile fronds. Fertile-sterile dimorphy in ferns appears to come at considerable carbon cost in holodimorohic species. It is possible that the relative costs of this reproductive system are offset by increased spore dispersal, yet such trade-offs require further exploration. © 2016 Botanical Society of America.
Godfrey, Ryan M; Johnson, Marc T J
2014-11-01
It has long been predicted that a loss of sexual reproduction leads to decreased heritable variation within populations and increased differentiation between populations. Despite an abundance of theory, there are few empirical tests of how sex affects genetic variation in phenotypic traits, especially for plants. Here we test whether repeated losses of two critical components of sex (recombination and segregation) in the evening primroses (Oenothera L., Onagraceae) affect quantitative genetic variation within and between populations. We sampled multiple genetic families from 3-5 populations from each of eight Oenothera species, which represented four independent transitions between sexual reproduction and a functionally asexual genetic system called "permanent translocation heterozygosity." We used quantitative genetics methods to partition genetic variation within and between populations for eight plant traits related to growth, leaf physiology, flowering, and resistance to herbivores. Heritability was, on average, 74% higher in sexual Oenothera populations than in functionally asexual populations, with plant growth rate, specific leaf area, and the percentage of leaf water content showing the strongest differences. By contrast, genetic differentiation among populations was 2.8× higher in functionally asexual vs. sexual Oenothera species. This difference was particularly strong for specific leaf area. Sexual populations tended to exhibit higher genetic correlations among traits, but this difference was weakly supported. These results support the prediction that sexual reproduction maintains higher genetic variation within populations, which may facilitate adaptive evolution. We also found partial support for the prediction that a loss of sex leads to greater population differentiation, which may elevate speciation rates. © 2014 Botanical Society of America, Inc.
Cell biology solves mysteries of reproduction.
Sutovsky, Peter
2012-09-01
Reproduction and fertility have been objects of keen inquiry since the dawn of humanity. Medieval anatomists provided the first accurate depictions of the female reproductive system, and early microscopists were fascinated by the magnified sight of sperm cells. Initial successes were achieved in the in vitro fertilization of frogs and the artificial insemination of dogs. Gamete and embryo research was in the cradle of modern cell biology, providing the first evidence of the multi-cellular composition of living beings and pointing out the importance of chromosomes for heredity. In the 20th century, reproductive research paved the way for the study of the cytoskeleton, cell signaling, and the cell cycle. In the last three decades, the advent of reproductive cell biology has brought us human in vitro fertilization, animal cloning, and human and animal embryonic stem cells. It has contributed to the development of transgenesis, proteomics, genomics, and epigenetics. This Special Issue represents a sample of the various areas of reproductive biology, with emphasis on molecular and cell biological aspects. Advances in spermatology, ovarian function, fertilization, and maternal-fetal interactions are discussed within the framework of fertility and diseases such as endometriosis and diabetes.
Models to study gravitational biology of Mammalian reproduction
NASA Technical Reports Server (NTRS)
Tou, Janet; Ronca, April; Grindeland, Richard; Wade, Charles
2002-01-01
Mammalian reproduction evolved within Earth's 1-g gravitational field. As we move closer to the reality of space habitation, there is growing scientific interest in how different gravitational states influence reproduction in mammals. Habitation of space and extended spaceflight missions require prolonged exposure to decreased gravity (hypogravity, i.e., weightlessness). Lift-off and re-entry of the spacecraft are associated with exposure to increased gravity (hypergravity). Existing data suggest that spaceflight is associated with a constellation of changes in reproductive physiology and function. However, limited spaceflight opportunities and confounding effects of various nongravitational factors associated with spaceflight (i.e., radiation, stress) have led to the development of ground-based models for studying the effects of altered gravity on biological systems. Human bed rest and rodent hindlimb unloading paradigms are used to study exposure to hypogravity. Centrifugation is used to study hypergravity. Here, we review the results of spaceflight and ground-based models of altered gravity on reproductive physiology. Studies utilizing ground-based models that simulate hyper- and hypogravity have produced reproductive results similar to those obtained from spaceflight and are contributing new information on biological responses across the gravity continuum, thereby confirming the appropriateness of these models for studying reproductive responses to altered gravity and the underlying mechanisms of these responses. Together, these unique tools are yielding new insights into the gravitational biology of reproduction in mammals.
Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain
Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana
2009-01-01
Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application candidates as an innovative methodology for the study and development of drugs targeting brain estrogen receptors. PMID:19123998
Molecular imaging provides novel insights on estrogen receptor activity in mouse brain.
Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana
2008-01-01
Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.
The role of early life nutrition in programming of reproductive function.
Chadio, S; Kotsampasi, B
2014-02-01
Accumulating evidence suggest that the concept of programming can also be applied to reproductive development and function, representing an ever expanding research area. Recently issues such as peri- or even preconceptional nutrition, transgenerational effects and underlying mechanisms have received considerable attention. The present chapter presents the existed evidence and reviews the available data from numerous animal and human studies on the effects of early life nutritional environment on adult reproductive function. Specific outcomes depend on the severity, duration and stage of development when nutritional perturbations are imposed, while sex-specific effects are also manifested. Apart from undernutrition, effects of relative overnutrition as well as the complex interactions between pre- and postnatal nutrition is of high importance, especially in the context of our days obesity epidemic. Mechanisms underlying reproductive programming are yet unclear, but may include a role for epigenetic modifications. Epigenetic modulation of critical genes involved in the control of reproductive function and potential intergenerational effects represent an exciting area of interdisciplinary research toward the development of new nutritional approaches during pre- and postnatal periods to ensure reproductive health in later life.
Hanson, Sara J; Stelzer, Claus-Peter; Welch, David B Mark; Logsdon, John M
2013-06-19
Sexual reproduction is a widely studied biological process because it is critically important to the genetics, evolution, and ecology of eukaryotes. Despite decades of study on this topic, no comprehensive explanation has been accepted that explains the evolutionary forces underlying its prevalence and persistence in nature. Monogonont rotifers offer a useful system for experimental studies relating to the evolution of sexual reproduction due to their rapid reproductive rate and close relationship to the putatively ancient asexual bdelloid rotifers. However, little is known about the molecular underpinnings of sex in any rotifer species. We generated mRNA-seq libraries for obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of the monogonont rotifer, Brachionus calyciflorus, to identify genes specific to both modes of reproduction. Our differential expression analysis identified receptors with putative roles in signaling pathways responsible for the transition from asexual to sexual reproduction. Differential expression of a specific copy of the duplicated cell cycle regulatory gene CDC20 and specific copies of histone H2A suggest that such duplications may underlie the phenotypic plasticity required for reproductive mode switch in monogononts. We further identified differential expression of genes involved in the formation of resting eggs, a process linked exclusively to sex in this species. Finally, we identified transcripts from the bdelloid rotifer Adineta ricciae that have significant sequence similarity to genes with higher expression in CP strains of B. calyciflorus. Our analysis of global gene expression differences between facultatively sexual and exclusively asexual populations of B. calyciflorus provides insights into the molecular nature of sexual reproduction in rotifers. Furthermore, our results offer insight into the evolution of obligate asexuality in bdelloid rotifers and provide indicators important for the use of monogononts as a model system for investigating the evolution of sexual reproduction.
Genetic and environmental origins of obesity relevant to reproduction.
Franks, Stephen
2006-05-01
Obesity has a negative impact on reproductive health, particularly in women with polycystic ovarian syndrome (PCOS). Obesity itself is the product of both genetic and environmental influences, although the current 'epidemic' of obesity is largely related to changes in diet and lifestyle. Single gene defects leading to obesity and disordered reproductive function are rare but can are informative about metabolic pathways involved in appetite regulation. There is good evidence that PCOS has an important genetic background, which probably involves the interaction of several genes. The phenotype of PCOS and its impact on reproductive function is profoundly affected by obesity, which, in turn has both genetic and environmental influences. Understanding the genetic basis of PCOS is important but improvements in diet and lifestyle are the best means of improving reproductive function.
Xue, Ling; Scoglio, Caterina
2013-05-01
A wide range of infectious diseases are both vertically and horizontally transmitted. Such diseases are spatially transmitted via multiple species in heterogeneous environments, typically described by complex meta-population models. The reproduction number, R0, is a critical metric predicting whether the disease can invade the meta-population system. This paper presents the reproduction number for a generic disease vertically and horizontally transmitted among multiple species in heterogeneous networks, where nodes are locations, and links reflect outgoing or incoming movement flows. The metapopulation model for vertically and horizontally transmitted diseases is gradually formulated from two species, two-node network models. We derived an explicit expression of R0, which is the spectral radius of a matrix reduced in size with respect to the original next generation matrix. The reproduction number is shown to be a function of vertical and horizontal transmission parameters, and the lower bound is the reproduction number for horizontal transmission. As an application, the reproduction number and its bounds for the Rift Valley fever zoonosis, where livestock, mosquitoes, and humans are the involved species are derived. By computing the reproduction number for different scenarios through numerical simulations, we found the reproduction number is affected by livestock movement rates only when parameters are heterogeneous across nodes. To summarize, our study contributes the reproduction number for vertically and horizontally transmitted diseases in heterogeneous networks. This explicit expression is easily adaptable to specific infectious diseases, affording insights into disease evolution. Copyright © 2013 Elsevier Inc. All rights reserved.
Yarbrough, Victoria L; Winkle, Sean; Herbst-Kralovetz, Melissa M
2015-01-01
At the interface of the external environment and the mucosal surface of the female reproductive tract (FRT) lies a first-line defense against pathogen invasion that includes antimicrobial peptides (AMP). Comprised of a unique class of multifunctional, amphipathic molecules, AMP employ a wide range of functions to limit microbial invasion and replication within host cells as well as independently modulate the immune system, dampen inflammation and maintain tissue homeostasis. The role of AMP in barrier defense at the level of the skin and gut has received much attention as of late. Given the far reaching implications for women's health, maternal and fetal morbidity and mortality, and sexually transmissible and polymicrobial diseases, we herein review the distribution and function of key AMP throughout the female reproductive mucosa and assess their role as an essential immunological barrier to microbial invasion throughout the reproductive cycle of a woman's lifetime. A comprehensive search in PubMed/Medline was conducted related to AMP general structure, function, signaling, expression, distribution and barrier function of AMP in the FRT, hormone regulation of AMP, the microbiome of the FRT, and AMP in relation to implantation, pregnancy, fertility, pelvic inflammatory disease, complications of pregnancy and assisted reproductive technology. AMP are amphipathic peptides that target microbes for destruction and have been conserved throughout all living organisms. In the FRT, several major classes of AMP are expressed constitutively and others are inducible at the mucosal epithelium and by immune cells. AMP expression is also under the influence of sex hormones, varying throughout the menstrual cycle, and dependent on the vaginal microbiome. AMP can prevent infection with sexually transmissible and opportunistic pathogens of the female reproductive tissues, although emerging understanding of vaginal dysbiosis suggests induction of a unique AMP profile with increased susceptibility to these pathogens. During pregnancy, AMP are key immune effectors of the fetal membranes and placenta and are dysregulated in states of intrauterine infection and other complications of pregnancy. At the level of the FRT, AMP serve to inhibit infection by sexually and vertically transmissible as well as by opportunistic bacteria, fungi, viruses, and protozoa and must do so throughout the hormone flux of menses and pregnancy. Guarding the exclusive site of reproduction, AMP modulate the vaginal microbiome of the lower FRT to aid in preventing ascending microbes into the upper FRT. Evolving in parallel with, and in response to, pathogenic insults, AMP are relatively immune to the resistance mechanisms employed by rapidly evolving pathogens and play a key role in barrier function and host defense throughout the FRT. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The relationship between gut and adipose hormones, and reproduction.
Comninos, Alexander N; Jayasena, Channa N; Dhillo, Waljit S
2014-01-01
Reproductive function is tightly regulated by nutritional status. Indeed, it has been well described that undernutrition or obesity can lead to subfertility or infertility in humans. The common regulatory pathways which control energy homeostasis and reproductive function have, to date, been poorly understood due to limited studies or inconclusive data. However, gut hormones and adipose tissue hormones have recently emerged as potential regulators of both energy homeostasis and reproductive function. A PubMed search was performed using keywords related to gut and adipose hormones and associated with keywords related to reproduction. Currently available evidence that gut (ghrelin, obestatin, insulin, peptide YY, glucagon-like peptide-1, glucose-dependent insulinotropic peptide, oxyntomodulin, cholecystokinin) and adipose hormones (leptin, adiponectin, resistin, omentin, chemerin) interact with the reproductive axis is presented. The extent, site and direction of their effects on the reproductive axis are variable and also vary depending on species, sex and pubertal stage. Gut and adipose hormones interact with the reproductive axis as well as with each other. While leptin and insulin have stimulatory effects and ghrelin has inhibitory effects on hypothalamic GnRH secretion, there is increasing evidence for their roles in other sites of the reproductive axis as well as evidence for the roles of other gut and adipose hormones in the complex interplay between nutrition and reproduction. As our understanding improves, so will our ability to identify and design novel therapeutic options for reproductive disorders and accompanying metabolic disorders.
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
21 CFR 884.6200 - Assisted reproduction laser system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...
Perspectives on improvement of reproduction in cattle during heat stress in a future Japan.
Kadokawa, Hiroya; Sakatani, Miki; Hansen, Peter J
2012-06-01
Heat stress (HS) causes hyperthermia, and at its most severe form, can lead to death. More commonly, HS reduces feed intake, milk yield, growth rate and reproductive function in many mammals and birds, including the important cattle breeds in Japan. Rectal temperatures greater than 39.0°C and respiration rates greater than 60/min indicate cows are undergoing HS sufficient to affect milk yield and fertility. HS compromises oocyte quality and embryonic development, reduces expression of estrus and changes secretion of several reproductive hormones. One of the most effective ways to reduce the magnitude of HS is embryo transfer, which bypasses the inhibitory effects of HS on the oocyte and early embryo. It may also be possible to select for genetic resistance to HS. Cooling can also improve reproductive performance in cows and heifers, and probably, the most effective cooling systems currently in use are those that couple evaporative cooling with tunnel ventilation or cross ventilation. Its effect on improving reproductive performance in Japan remains to be evaluated. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.
Fiandanese, Nadia; Borromeo, Vitaliano; Berrini, Anna; Fischer, Bernd; Schaedlich, Kristina; Schmidt, Juliane-Susanne; Secchi, Camillo; Pocar, Paola
2016-10-01
We investigated the effects of maternal exposure to the plasticizer di(2-ethylhexyl) phthalate (DEHP) and the organic industrial compounds polychlorinated biphenyls (PCBs), singly and combined, on the reproductive function of male mouse offspring. Mice dams were exposed throughout pregnancy and lactation to 1μg PCBs (101+118)/kg/day, 50μg DEHP/kg/day, or the DEHP/PCB mixture in the diet. The mixture induced permanent alterations in adult F1 males' reproductive health in a way, differently from the single compounds. Depending on the endpoint, we observed: (1) synergy in altering the gross and histological morphology of the testis; (2) antagonism on the expression levels of genes involved in pituitary-gonadal cross-talk; (3) non-interactions on sperm parameters and testosterone production. This study illustrates the complex action of a DEHP/PCB mixture, leading to a unique panel of effects on the male reproductive system, indicating the need for research on the reproductive hazards of combined endocrine disruptors. Copyright © 2016 Elsevier Inc. All rights reserved.
Melatonin and female reproduction.
Tamura, Hiroshi; Takasaki, Akihisa; Taketani, Toshiaki; Tanabe, Manabu; Lee, Lifa; Tamura, Isao; Maekawa, Ryo; Aasada, Hiromi; Yamagata, Yoshiaki; Sugino, Norihiro
2014-01-01
Melatonin (N-acetyl-5-methoxytryptamine) is secreted during the dark hours at night by the pineal gland. After entering the circulation, melatonin acts as an endocrine factor and a chemical messenger of light and darkness. It regulates a variety of important central and peripheral actions related to circadian rhythms and reproduction. It also affects the brain, immune, gastrointestinal, cardiovascular, renal, bone and endocrine functions and acts as an oncostatic and anti-aging molecule. Many of melatonin's actions are mediated through interactions with specific membrane-bound receptors expressed not only in the central nervous system, but also in peripheral tissues. Melatonin also acts through non-receptor-mediated mechanisms, for example serving as a scavenger for reactive oxygen species and reactive nitrogen species. At both physiological and pharmacological concentrations, melatonin attenuates and counteracts oxidative stress and regulates cellular metabolism. Growing scientific evidence of reproductive physiology supports the role of melatonin in human reproduction. This review was conducted to investigate the effects of melatonin on female reproduction and to summarize our findings in this field. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.
Functional diversity of resilin in Arthropoda
Appel, Esther; Gorb, Stanislav N
2016-01-01
Summary Resilin is an elastomeric protein typically occurring in exoskeletons of arthropods. It is composed of randomly orientated coiled polypeptide chains that are covalently cross-linked together at regular intervals by the two unusual amino acids dityrosine and trityrosine forming a stable network with a high degree of flexibility and mobility. As a result of its molecular prerequisites, resilin features exceptional rubber-like properties including a relatively low stiffness, a rather pronounced long-range deformability and a nearly perfect elastic recovery. Within the exoskeleton structures, resilin commonly forms composites together with other proteins and/or chitin fibres. In the last decades, numerous exoskeleton structures with large proportions of resilin and various resilin functions have been described. Today, resilin is known to be responsible for the generation of deformability and flexibility in membrane and joint systems, the storage of elastic energy in jumping and catapulting systems, the enhancement of adaptability to uneven surfaces in attachment and prey catching systems, the reduction of fatigue and damage in reproductive, folding and feeding systems and the sealing of wounds in a traumatic reproductive system. In addition, resilin is present in many compound eye lenses and is suggested to be a very suitable material for optical elements because of its transparency and amorphousness. The evolution of this remarkable functional diversity can be assumed to have only been possible because resilin exhibits a unique combination of different outstanding properties. PMID:27826498
Escobar, Sebastián; Felip, Alicia; Zanuy, Silvia; Carrillo, Manuel
2016-09-01
Previous works on European sea bass have determined that long-term exposure to restrictive feeding diets alters the rhythms of some reproductive/metabolic hormones, delaying maturation and increasing apoptosis during gametogenesis. However, exactly how these diets affect key genes and hormones on the brain-pituitary-gonad (BPG) axis to trigger puberty is still largely unknown. We may hypothesize that all these signals could be integrated, at least in part, by the kisspeptin system. In order to capture a glimpse of these regulatory mechanisms, kiss1 and kiss2 mRNA expression levels and those of their kiss receptors (kiss1r, kiss2r) were analyzed in different areas of the brain and in the pituitary of pubertal male sea bass during gametogenesis. Furthermore, other reproductive hormones and factors as well as the percentage of males showing full spermiation were also analyzed. Treated fish fed maintenance diets provided evidence of overexpression of the kisspeptin system in the main hypophysiotropic regions of the brain throughout the entire sexual cycle. Conversely, Gnrh1 and gonadotropin pituitary content and plasma sexual steroid levels were downregulated, except for Fsh levels, which were shown to increase during spermiation. Treated fish exhibited lower rates of spermiation as compared to control group and a delay in its accomplishment. These results demonstrate how the kisspeptin system and plasma Fsh levels are differentially affected by maintenance diets, causing a retardation, but not a full blockage of the reproductive process in the teleost fish European sea bass. This suggests that a hormonal adaptive strategy may be operating in order to preserve reproductive function in this species. Copyright © 2016 Elsevier Inc. All rights reserved.
ESTROGENIC ACTIVITY OF OCTYLPHENOL, NONYLPHENOL, BISPHENOL A AND METHOXYCHLOR IN RATS
Considerable attention has recently been focused on environmental chemicals that disrupt the reproductive system by altering steroid receptor function. Although numerous in vitro and in vivo methods have been shown to be useful approaches for identifying chemicals that can disrup...
Privatisation in reproductive health services in Pakistan: three case studies.
Ravindran, T K Sundari
2010-11-01
Privatisation in Pakistan's health sector was part of the Structural Adjustment Programme that started in 1998 following the country's acute foreign exchange crisis. This paper examines three examples of privatisation which have taken place in service delivery, management and capacity-building functions in the health sector: 1) large-scale contracting out of publicly-funded health services to private, not-for-profit organisations; 2) social marketing/franchising networks providing reproductive health services; and 3) a public-private partnership involving a consortium of private players and the government of Pakistan. It assesses the extent to which these initiatives have contributed to promoting equitable access to good quality, comprehensive reproductive health services. The paper concludes that these forms of privatisation in Pakistan's health sector have at best made available a limited range of fragmented reproductive health services, often of sub-optimal quality, to a fraction of the population, with poor returns in terms of health and survival, especially for women. This analysis has exposed a deep-rooted malaise within the health system as an important contributor to this situation. Sustained investment in health system strengthening is called for, where resources from both public and private sectors are channelled towards achieving health equity, under the stewardship of the state and with active participation by and accountability to members of civil society. Copyright © 2010 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.
The semenogelins: proteins with functions beyond reproduction?
Jonsson, M; Lundwall, A; Malm, J
2006-12-01
The coagulum proteins of human semen, semenogelins I and II, are secreted in abundance by the seminal vesicles. Their function in reproduction is poorly understood as they are rapidly degraded in ejaculated semen. However, more recent results indicate that it is time to put the semenogelins in a broader physiological perspective that goes beyond reproduction and fertility.
Influence of heavy metals and 4-nonylphenol on reproductive function in fish.
Popek, Włodzimierz; Dietrich, Grzegorz; Glogowski, Jan; Demska-Zakeś, Krystyna; Drag-Kozak, Ewa; Sionkowski, Jan; Łuszczek-Trojan, Ewa; Epler, Piotr; Demianowicz, Wiesław; Sarosiek, Beata; Kowalski, Radosław; Jankun, Małgorzata; Zakeś, Zdzisław; Król, Jarosław; Czerniak, Stanisław; Szczepkowski, Mirosław
2006-01-01
Many industrial and agricultural chemicals (including heavy metals and alkylphenols) present in the environment have adverse effects on the reproductive function in fish. Three studies were conducted to assess toxicity of these chemicals towards reproduction of freshwater fish. It was shown that heavy metals added to the diets accumulate in brain tissue of carp, and this accumulation results in inhibition of the secretion of noradrenaline and stimulation of the secretion of dopamine in the hypothalamus. These processes results in a disturbance of hormonal equilibrium of the hypothalamo-pituitary system, which can unfavorably influence the efficiency of artificial spawning in fish. Quality of salmonid and sturgeon sperm was impaired after in vitro exposure to heavy metals. The degree of this toxic effect was species-specific. It was demonstrated that sperm motility parameters appeared to be good indicators of adverse effects of heavy metals fish sperm. The protection role of seminal plasma against toxic effects of heavy metals was suggested for salmonid fish. Oral application of 4-nonylphenol (NP) disrupted reproduction in pikeperch. In juvenile fish a decrease in the percentage of males and an increase of intersex fish was observed in relation to dose of NP and time of exposure to this alkylphenol. Exposure of adult males to the NP led to the reduction in fecundity, milt quality and fertility.
Growth Hormone and Reproduction: A Review of Endocrine and Autocrine/Paracrine Interactions
Hull, Kerry L.; Harvey, Steve
2014-01-01
The somatotropic axis, consisting of growth hormone (GH), hepatic insulin-like growth factor I (IGF-I), and assorted releasing factors, regulates growth and body composition. Axiomatically, since optimal body composition enhances reproductive function, general somatic actions of GH modulate reproductive function. A growing body of evidence supports the hypothesis that GH also modulates reproduction directly, exerting both gonadotropin-dependent and gonadotropin-independent actions in both males and females. Moreover, recent studies indicate GH produced within reproductive tissues differs from pituitary GH in terms of secretion and action. Accordingly, GH is increasingly used as a fertility adjunct in males and females, both humans and nonhumans. This review reconsiders reproductive actions of GH in vertebrates in respect to these new conceptual developments. PMID:25580121
A link between hypothyroidism, obesity and male reproduction.
Aiceles, Veronica; da Fonte Ramos, Cristiane
2016-01-01
Hypothyroidism is a condition in which the serum levels of thyroid hormones are below that necessary to carry out physiological functions in the body. Hypothyroidism is related to obesity as an increase in body weight gain is seen in hypothyroid patients. Moreover, an inverse correlation between free thyroxine values and body mass index has been reported. Leptin, a polypeptide hormone produced by adipocytes, was originally thought to be an antiobesity hormone due its anorexic effects on hypothalamic appetite regulation. However, nowadays it is known that leptin conveys information about the nutritional status to the brain being considered a crucial endocrine factor for regulating several physiological processes including reproduction. Since the identification of thyroid hormone and leptin receptors on the testes, these hormones are being recognized as having important roles in male reproductive functions. A clear link exists among thyroid hormones, leptin and reproduction. Both hormones can negatively affect spermatogenesis and consequently may cause male infertility. The World Health Organization (WHO) estimates the overall prevalence of primary infertility ranging from 8 to 15%. The fact that 30% of couples' inability to conceive is related to a male factor and that the longer hypothyroidism persisted, the greater the damage to the testes, strongly suggest that more studies attempting to clarify both hormones actions directly in the testes need to be conducted specially in cases of congenital hypothyroidism. Therefore, the goal of this review is to highlight the relationship of such hormones in the reproductive system.
Cai, Wenyan; Ji, Ying; Song, Xianping; Guo, Haoran; Han, Lei; Zhang, Feng; Liu, Xin; Zhang, Hengdong; Zhu, Baoli; Xu, Ming
2017-10-01
Correlation between exposure to glyphosate and sperm concentrations is important in reproductive toxicity risk assessment for male reproductive functions. Many studies have focused on reproductive toxicity on glyphosate, however, results are still controversial. We conducted a systematic review of epidemiological studies on the association between glyphosate exposure and sperm concentrations of rodents. The aim of this study is to explore the potential adverse effects of glyphosate on reproductive function of male rodents. Systematic and comprehensive literature search was performed in MEDLINE, TOXLINE, Embase, WANFANG and CNKI databases with different combinations of glyphosate exposure and sperm concentration. 8 studies were eventually identified and random-effect model was conducted. Heterogeneity among study results was calculated via chi-square tests. Ten independent experimental datasets from these eight studies were acquired to synthesize the random-effect model. A decrease in sperm concentrations was found with mean difference of sperm concentrations(MDsperm)=-2.774×10 6 /sperm/g/testis(95%CI=-0.969 to -4.579) in random-effect model after glyphosate exposure. There was also a significant decrease after fitting the random-effect model: MDsperm=-1.632×10 6 /sperm/g/testis (95%CI=-0.662 to -2.601). The results of meta-analysis support the hypothesis that glyphosate exposure decreased sperm concentration in rodents. Therefore, we conclude that glyphosate is toxic to male rodent's reproductive system. Copyright © 2017. Published by Elsevier B.V.
Gupta, Sameer; Haldar, Chandana
2017-03-01
Studies demonstrate the importance of metabolic resources in the regulation of reproduction and immune functions in seasonal breeders. In this regard, the restricted energy availability can be considered as an environmental variable that may act as a seasonal stressor and can lead to compromised immune functions. The present study explored the effect of photoperiodic variation in the regulation of immune function under metabolic stress condition. The T-cell-dependent immune response in a tropical seasonal breeder Funambulus pennanti was studied following the inhibition of cellular glucose utilization with 2-deoxy-d-glucose (2-DG). 2-DG treatment resulted in the suppression of general (e.g., proliferative response of lymphocytes) and antigen-specific [anti-keyhole limpet hemocyanin IgG titer and delayed-type hypersensitivity response] T-cell responses with an activation of the hypothalamic-pituitary-adrenal axis, which was evident from the increased levels of plasma corticosterone. 2-DG administration increased the production of inflammatory cytokines [interleukin (IL)-1β and tumor necrosis factor (TNF)-α] and decreased the autocrine T-cell growth factor IL-2. The immunocompromising effect of 2-DG administration was retarded in animals exposed to short photoperiods compared with the control and long photoperiod-exposed groups. This finding suggested that short photoperiodic conditions enhanced the resilience of the immune system, possibly by diverting metabolic resources from the reproductive organs toward the immune system. In addition, melatonin may have facilitated the energy "trade-off" between reproductive and immune mechanisms, thereby providing an advantage to the seasonal breeders for their survival during stressful environmental conditions. Copyright © 2017. Published by Elsevier Inc.
Estrogen synthesis and signaling pathways during ageing: from periphery to brain
Cui, Jie; Shen, Yong; Li, Rena
2012-01-01
Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissue as liver, heart, muscle, bone and brain. The tissue-specific estrogen synthesis is consistent with a diversity of estrogen actions. Here, we will focus on tissue and cell-specific estrogen synthesis and estrogen receptor signaling. This review will include three parts: (I) tissue and cell-specific estrogen synthesis and metabolism, (II) tissue and cell-specific distribution of estrogen receptors and signaling and (III) tissue-specific estrogen function and related disorders, including cardiovascular diseases, osteoporosis, Alzheimer's disease and Parkinson disease. This comprehensive review provides new insights into estrogens by giving a better understanding of the tissue-specific estrogen effects and their roles in various diseases. PMID:23348042
Bubnov, Rostyslav V; Drahulian, Maria V; Buchek, Polina V; Gulko, Tamara P
2018-03-01
Liver fibrosis (LF) is a chronic disease, associated with many collateral diseases including reproductive dysfunction. Although the normal liver has a large regenerative capacity the complications of LF could be severe and irreversible. Hormone and sex-related issues of LF development and interactions with male reproductive have not been finally studied. The aim was to study the reproductive function of male rats in experimental CCl 4 -induced liver fibrosis rat model, and the capability for restoration of both the liver and male reproduction system. Studies were conducted on 20 3-month old Wistar male rats. The experimental animals were injected with freshly prepared 50% olive oil solution of carbohydrate tetrachloride (CCl 4 ). On the 8th week after injection we noted the manifestations of liver fibrosis. The rats were left to self-healing of the liver for 8 weeks. All male rats underwent ultrasound and biopsy of the liver and testes on the 8th and 16th weeks. The male rats were mated with healthy females before CCl 4 injection, after modeling LF on the 8th week, and after self-healing of the liver. Pregnancy was monitored on ultrasound. On the 8th week of experiment we observed ultrasound manifestation of advanced liver fibrosis, including hepatosplenomegaly, portal hypertension. Ultrasound exam of the rat testes showed testicular degeneration, hydrocele, fibrosis, scarring, petrifications, size reduction, and restriction of testicular descent; testes size decreased from 1.24 ± 0.62 ml to 0.61 ± 0.13, p < 0.01. Liver histology showed granular dystrophy of hepatocytes, necrotic areas, lipid inclusions in parenchyma. Rats with liver fibrosis demonstrated severe injury of the reproductive system and altering of fertility: the offspring of male rats with advanced LF was 4.71 ± 0.53 born alive vs 9.55 ± 0.47 born from mating with healthy males, p < 0.001. Eight weeks after last CCl 4 injection, we revealed signs of liver regeneration, significant recovery of its structure. The ALT and AST levels significantly decreased and reached background measurements. As a result of the second interbreeding after liver self-healing no significant difference was found vs previous mating. Carbohydrate tetrachloride induces injury of liver parenchyma evoking fast and severe liver fibrosis, and is associated with irreversible structural and functional changes in testes, reducing fertility, decreasing potential pregnancy rate, and affecting its development. Liver showed high potential to regenerate, however the self-restoring after liver fibrosis was not accompanied with recovery of the reproductive system.
Clarke, D O; Hilbish, K G; Waters, D G; Newcomb, D L; Chellman, G J
2015-12-01
The reproductive and developmental toxicity of ixekizumab, a selective inhibitor of interleukin-17A (IL-17A), was assessed in the following studies in cynomolgus monkeys: fertility (3-month dosing), embryo-fetal development (EFD; dosing from gestation day (GD) 20 through 139), and pre-postnatal development (PPND; dosing from GD 20 through parturition). Because IL-17A has functional roles in innate and humoral immunity, immune system modulation was evaluated in the EFD and PPND studies; immunological evaluations in infants comprised peripheral blood immunophenotyping, Natural Killer cell cytolytic activity, and T-cell-dependent antibody (IgG and IgM) primary and secondary responses to antigen challenge. Ixekizumab exposure was sustained during the dosing periods in most adult monkeys. Fetal exposure at Cesarean section (GD 140-142; EFD study) was 18-25% of maternal exposure and ixekizumab was present in infants for up to 29 weeks postpartum. There were no adverse effects attributed to ixekizumab in any study. Importantly, immune system development and maturation were unaffected. Copyright © 2015 Elsevier Inc. All rights reserved.
Grayscale standard display function on LCD color monitors
NASA Astrophysics Data System (ADS)
De Monte, Denis; Casale, Carlo; Albani, Luigi; Bonfiglio, Silvio
2007-03-01
Currently, as a rule, digital medical systems use monochromatic Liquid Crystal Display (LCD) monitors to ensure an accurate reproduction of the Grayscale Standard Display Function (GSDF) as specified in the Digital Imaging and Communications in Medicine (DICOM) Standard. As a drawback, special panels need to be utilized in digital medical systems, while it would be preferable to use regular color panels, which are manufactured on a wide scale and are thus available at by far lower prices. The method proposed introduces a temporal color dithering technique to accurately reproduce the GSDF on color monitors without losing monitor resolution. By exploiting the characteristics of the Human Visual System (HVS) the technique ensures that a satisfactory grayscale reproduction is achieved minimizing perceivable flickering and undesired color artifacts. The algorithm has been implemented in the monitor using a low-cost Field Programmable Gate Array (FPGA). Quantitative evaluations of luminance response on a 3 Mega-pixel color monitor have shown that the compliance with the GSDF can be achieved with the accuracy level required by medical applications. At the same time the measured color deviation is below the threshold perceivable by the human eye.
Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics
Zhou, Tao; Zhou, Zuo-Min; Guo, Xue-Jiang
2013-01-01
Proteomics strategies have been widely used in the field of male reproduction, both in basic and clinical research. Bioinformatics methods are indispensable in proteomics-based studies and are used for data presentation, database construction and functional annotation. In the present review, we focus on the functional annotation of gene lists obtained through qualitative or quantitative methods, summarizing the common and male reproduction specialized proteomics databases. We introduce several integrated tools used to find the hidden biological significance from the data obtained. We further describe in detail the information on male reproduction derived from Gene Ontology analyses, pathway analyses and biomedical analyses. We provide an overview of bioinformatics annotations in spermatogenesis, from gene function to biological function and from biological function to clinical application. On the basis of recently published proteomics studies and associated data, we show that bioinformatics methods help us to discover drug targets for sperm motility and to scan for cancer-testis genes. In addition, we summarize the online resources relevant to male reproduction research for the exploration of the regulation of spermatogenesis. PMID:23852026
Hormonal Control of Ovarian Function Following Chlorotriazine Exposure: Effect on Reproductive Function and Mammary Gland Tumor Development.
Ralph L. Cooper, Susan C. Laws, Michael G. Narotsky, Jerome M. Goldman, and Tammy E. Stoker
Abstract
The studies review...
Stenz, Ludwig; Escoffier, Jessica; Rahban, Rita; Nef, Serge; Paoloni-Giacobino, Ariane
2017-01-01
The endocrine disruptor bis(2-ethylhexyl) phthalate (DEHP) has been shown to exert adverse effects on the male animal reproductive system. However, its mode of action is unclear and a systematic analysis of its molecular targets is needed. In the present study, we investigated the effects of prenatal exposure to 300 mg/kg/day DEHP during a critical period for gonads differentiation to testes on male mice offspring reproductive parameters, including the genome-wide RNA expression and associated promoter methylation status in the sperm of the first filial generation. It was observed that adult male offspring displayed symptoms similar to the human testicular dysgenesis syndrome. A combination of sperm transcriptome and methylome data analysis allowed to detect a long-lasting DEHP-induced and robust promoter methylation-associated silencing of almost the entire cluster of the seminal vesicle secretory proteins and antigen genes, which are known to play a fundamental role in sperm physiology. It also resulted in the detection of a DEHP-induced promoter demethylation associated with an up-regulation of three genes apparently not relevant for sperm physiology and partially related to the immune system. As previously reported, DEHP induced an increase in mir-615 microRNA expression and a genome-wide decrease in microRNA promoter methylation. A functional analysis revealed DEHP-induced enrichments in down-regulated gene transcripts coding for peroxisome proliferator-activated receptors and tumor necrosis factor signaling pathways, and in up-regulated gene transcripts coding for calcium binding and numerous myosin proteins. All these enriched pathways and networks have been described to be associated in some way with the reproductive system. This study identifies a large new array of genes dysregulated by DEHP that may play a role in the complex system controlling the development of the male reproductive system.
Gap junctional communication in the male reproductive system.
Pointis, Georges; Fiorini, Céline; Defamie, Norah; Segretain, Dominique
2005-12-20
Male fertility is a highly controlled process that allows proliferation, meiosis and differentiation of male germ cells in the testis, final maturation in the epididymis and also requires functional male accessory glands: seminal vesicles, prostate and corpus cavernosum. In addition to classical endocrine and paracrine controls, mainly by gonadotropins LH and FSH and steroids, there is now strong evidence that all these processes are dependent upon the presence of homocellular or heterocellular junctions, including gap junctions and their specific connexins (Cxs), between the different cell types that structure the male reproductive tract. The present review is focused on the identification of Cxs, their distribution in the testis and in different structures of the male genital tract (epididymis, seminal vesicle, prostate, corpus cavernosum), their crucial role in the control of spermatogenesis and their implication in the function of the male accessory glands, including functional smooth muscle tone. Their potential dysfunctions in some testis (spermatogenic arrest, seminoma) and prostate (benign hyperplasia, adenocarcinoma) diseases and in the physiopathology of the human erectile function are also discussed.
Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.
Mahmoud, Rand; Wainwright, Steven R; Galea, Liisa A M
2016-04-01
Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Nuclear Receptor Coactivator Function in Reproductive Physiology and Behavior
Molenda, Heather A.; Kilts, Caitlin P.; Allen, Rachel L.; Tetel, Marc J.
2009-01-01
Gonadal steroid hormones act throughout the body to elicit changes in gene expression that result in profound effects on reproductive physiology and behavior. Steroid hormones exert many of these effects by binding to their respective intracellular receptors, which are members of a nuclear receptor superfamily of transcriptional activators. A variety of in vitro studies indicate that nuclear receptor coactivators are required for efficient transcriptional activity of steroid receptors. Many of these coactivators are found in a variety of steroid hormone-responsive reproductive tissues, including the reproductive tract, mammary gland, and brain. While many nuclear receptor coactivators have been investigated in vitro, we are only now beginning to understand their function in reproductive physiology and behavior. In this review, we discuss the general mechanisms of action of nuclear receptor coactivators in steroid-dependent gene transcription. We then review some recent and exciting findings on the function of nuclear receptor coactivators in steroid-dependent brain development and reproductive physiology and behavior. PMID:12855594
Stahlschmidt, Zachary R; Lourdais, Olivier; Lorioux, Sophie; Butler, Michael W; Davis, Jon R; Salin, Karine; Voituron, Yann; DeNardo, Dale F
2013-01-01
Current reproductive effort typically comes at a cost to future reproductive value by altering somatic function (e.g., growth or self-maintenance). Furthermore, effects of reproduction often depend on both fecundity and stage of reproduction, wherein allocation of resources into additional offspring and/or stages of reproduction results in increased costs. Despite these widely accepted generalities, interindividual variation in the effects of reproduction is common-yet the proximate basis that allows some individuals to mitigate these detrimental effects is unclear. We serially measured several variables of morphology (e.g., musculature) and physiology (e.g., antioxidant defenses) in female Children's pythons (Antaresia childreni) throughout reproduction to examine how these traits change over the course of reproduction and whether certain physiological traits are associated with reduced effects of reproduction in some individuals. Reproduction in this capital breeder was associated with changes in both morphology and physiology, but only morphological changes varied with fecundity and among specific reproductive stages. During reproduction, we detected negative relationships between morphology and self-maintenance (e.g., increased muscle allocation to reproduction was related to reduced immune function). Additionally, females that allocated resources more heavily into current reproduction also did so during future reproduction, and these females assimilated resources more efficiently, experienced reduced detriments to self-maintenance (e.g., lower levels of oxidative damage and glucocorticoids) during reproduction, and produced clutches with greater hatching success. Our results suggest that interindividual variation in specific aspects of physiology (assimilation efficiency and oxidative status) may drive variation in reproductive performance.
Neuroendocrine integration of nutritional signals on reproduction.
Evans, Maggie C; Anderson, Greg M
2017-02-01
Reproductive function in mammals is energetically costly and therefore tightly regulated by nutritional status. To enable this integration of metabolic and reproductive function, information regarding peripheral nutritional status must be relayed centrally to the gonadotropin-releasing hormone (GNRH) neurons that drive reproductive function. The metabolically relevant hormones leptin, insulin and ghrelin have been identified as key mediators of this 'metabolic control of fertility'. However, the neural circuitry through which they act to exert their control over GNRH drive remains incompletely understood. With the advent of Cre-LoxP technology, it has become possible to perform targeted gene-deletion and gene-rescue experiments and thus test the functional requirement and sufficiency, respectively, of discrete hormone-neuron signaling pathways in the metabolic control of reproductive function. This review discusses the findings from these investigations, and attempts to put them in context with what is known from clinical situations and wild-type animal models. What emerges from this discussion is clear evidence that the integration of nutritional signals on reproduction is complex and highly redundant, and therefore, surprisingly difficult to perturb. Consequently, the deletion of individual hormone-neuron signaling pathways often fails to cause reproductive phenotypes, despite strong evidence that the targeted pathway plays a role under normal physiological conditions. Although transgenic studies rarely reveal a critical role for discrete signaling pathways, they nevertheless prove to be a good strategy for identifying whether a targeted pathway is absolutely required, critically involved, sufficient or dispensable in the metabolic control of fertility. © 2017 Society for Endocrinology.
Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S
2015-01-01
Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.
ERIC Educational Resources Information Center
Huxley, Virginia H.
2007-01-01
The ability to recognize and appreciate from a reproductive standpoint that males and females possess different attributes has been long standing. Only more recently have we begun to look more deeply into both the similarities and differences between men and women, as well as between boys and girls, with respect to the structure and function of…
Pérez-Escobar, Oscar Alejandro; Chomicki, Guillaume; Condamine, Fabien L; de Vos, Jurriaan M; Martins, Aline C; Smidt, Eric C; Klitgård, Bente; Gerlach, Günter; Heinrichs, Jochen
2017-10-10
Environmental sex determination (ESD) - a change in sexual function during an individual life span driven by environmental cues - is an exceedingly rare sexual system among angiosperms. Because ESD can directly affect reproduction success, it could influence diversification rate as compared with lineages that have alternative reproductive systems. Here we test this hypothesis using a solid phylogenetic framework of Neotropical Catasetinae, the angiosperm lineage richest in taxa with ESD. We assess whether gains of ESD are associated with higher diversification rates compared to lineages with alternative systems while considering additional traits known to positively affect diversification rates in orchids. We found that ESD has evolved asynchronously three times during the last ~5 Myr. Lineages with ESD have consistently higher diversification rates than related lineages with other sexual systems. Habitat fragmentation due to mega-wetlands extinction, and climate instability are suggested as the driving forces for ESD evolution.
Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions (e.g., reproduction). This study ut...
Opportunities and questions for the fundamental biological sciences in space
NASA Technical Reports Server (NTRS)
Sharp, Joseph C.; Vernikos, Joan
1992-01-01
The nature of biological issues which can be addressed during long-term space missions is briefly discussed. These issues include structure, from cell to organ to organism; function, the regulation of systems such as immunology, neural sciences, and behavior; and reproduction and development.
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
21 CFR 884.6170 - Assisted reproduction water and water purification systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...
Functional study of Cordyceps sinensis and cordycepin in male reproduction: A review.
Chen, Yung-Chia; Chen, Ying-Hui; Pan, Bo-Syong; Chang, Ming-Min; Huang, Bu-Miin
2017-01-01
Cordyceps sinensis has various biological and pharmacological functions, and it has been claimed as a tonic supplement for sexual and reproductive dysfunctions for a long time in oriental society. In this article, the in vitro and in vivo effects of C. sinensis and cordycepin on mouse Leydig cell steroidogenesis are briefly described, the stimulatory mechanisms are summarized, and the recent findings related to the alternative substances regulating male reproductive functions are also discussed. Copyright © 2016. Published by Elsevier B.V.
Minelli, Alessandro
2016-09-01
Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.
The effects of radiofrequency electromagnetic radiation on sperm function.
Houston, B J; Nixon, B; King, B V; De Iuliis, G N; Aitken, R J
2016-12-01
Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species (ROS) documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced the antioxidant levels in 6 of 6 studies that discussed this phenomenon, whereas consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. A continued focus on research, which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types. © 2016 Society for Reproduction and Fertility.
Kavitha, P; Subramanian, P
2011-12-01
The influence of Tribulus terrestris on the activities of testicular enzyme in Poecilia latipinna was assessed in lieu of reproductive manipulation. Different concentrations of (100, 150, 200, 250, and 300 mg) Tribulus terrestris extract and of a control were tested for testicular activity of enzymes in Poecilia latipinna for 2 months. The testis and liver were homogenized separately in 0.1 mol/l potassium phosphate buffer (0.1 mol/l, pH 7.2). The crude homogenate was centrifuged, and supernatant obtained was used as an enzyme extract for determination of activities. The activities of testicular functional enzyme ALP, ACP, SDH, LDH, and G6PDH levels were changed to different extent in treated groups compared with that of the control. The total body weight and testis weight were increased with the Tribulus terrestris-treated fish (Poecilia latipinna). These results suggest that Tribulus terrestris induced the testicular enzyme activity that may aid in the male reproductive functions. It is discernible from the present study that Tribulus terrestris has the inducing effect on reproductive system of Poecilia latipinna.
Gandhi, Jason; Hernandez, Rafael J; Chen, Andrew; Smith, Noel L; Sheynkin, Yefim R; Joshi, Gargi; Khan, Sardar Ali
2017-04-01
Lead poisoning is a stealthy threat to human physiological systems as chronic exposure can remain asymptomatic for long periods of time before symptoms manifest. We presently review the biophysical mechanisms of lead poisoning that contribute to male infertility. Environmental and occupational exposure of lead may adversely affect the hypothalamic-pituitary-testicular axis, impairing the induction of spermatogenesis. Dysfunction at the reproductive axis, namely testosterone suppression, is most susceptible and irreversible during pubertal development. Lead poisoning also appears to directly impair the process of spermatogenesis itself as well as sperm function. Spermatogenesis issues may manifest as low sperm count and stem from reproductive axis dysfunction or testicular degeneration. Generation of excessive reactive oxygen species due to lead-associated oxidative stress can potentially affect sperm viability, motility, DNA fragmentation, membrane lipid peroxidation, capacitation, hyperactivation, acrosome reaction, and chemotaxis for sperm-oocyte fusion, all of which can contribute to deter fertilization. Reproductive toxicity has been tested through cross-sectional analysis studies in humans as well as in vivo and in vitro studies in animals.
Li, Shu; Lu, DanDan; Zhang, Yaling; Zhang, Yi
2014-01-01
The present study was designed to test the hypothesis that long-term treatment with hydrogen-rich saline abated testicular oxidative stress induced by nicotine in mice. The effects of hydrogen-rich saline (6 ml/kg, i.p.), vitamin C (60 mg/kg, i.p.) and vitamin E (100 mg/kg, i.p.) on reproductive system and testicular oxidative levels in nicotine-treated (4.5 mg/kg, s.b.) mice were investigated. It was found that vitamin C and vitamin E attenuated serum oxidative level, but did not lower testicular oxidative levels in mice subjected to chronic nicotine treatment, and did not improve the male reproductive damage and apoptosis induced by nicotine. Different from normal antioxidants, vitamin C and vitamin E, hydrogen-rich saline abated oxidative stress in testis, and protected against nicotine-induced male reproductive damages. Our results first demonstrated that long-term treatment with hydrogen-rich saline attenuated testicular oxidative level and improved male reproductive function in nicotine-treated mice.
Novel function of LHFPL2 in female and male distal reproductive tract development.
Zhao, Fei; Zhou, Jun; Li, Rong; Dudley, Elizabeth A; Ye, Xiaoqin
2016-03-11
Congenital reproductive tract anomalies could impair fertility. Female and male reproductive tracts are developed from Müllerian ducts and Wolffian ducts, respectively, involving initiation, elongation and differentiation. Genetic basis solely for distal reproductive tract development is largely unknown. Lhfpl2 (lipoma HMGIC fusion partner-like 2) encodes a tetra-transmembrane protein with unknown functions. It is expressed in follicle cells of ovary and epithelial cells of reproductive tracts. A spontaneous point mutation of Lhfpl2 (LHFPL2(G102E)) leads to infertility in 100% female mice, which have normal ovarian development, ovulation, uterine development, and uterine response to exogenous estrogen stimulation, but abnormal upper longitudinal vaginal septum and lower vaginal agenesis. Infertility is also observed in ~70% mutant males, which have normal mating behavior and sperm counts, but abnormal distal vas deferens convolution resulting in complete and incomplete blockage of reproductive tract in infertile and fertile males, respectively. On embryonic day 15.5, mutant Müllerian ducts and Wolffian ducts have elongated but their duct tips are enlarged and fail to merge with the urogenital sinus. These findings provide a novel function of LHFPL2 and a novel genetic basis for distal reproductive tract development; they also emphasize the importance of an additional merging phase for proper reproductive tract development.
Electromagnetic field and brain development.
Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra
2016-09-01
Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system. Copyright © 2015 Elsevier B.V. All rights reserved.
Environmental exposure and altered menstrual function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keye, W.R. Jr.
The impact of environmental agents and occupational factors on hypothalamic and pituitary function and menstruation are poorly understood. To date, most research related to environment, occupation, and reproduction has focused on pregnancy outcome, not menstrual function. It is imperative, however, that menstrual function be considered as an outcome variable in the study of reproduction and occupation.
Lafon, D
2006-10-01
European regulations (transcribed into French law) aimed at protecting employees from chemicals toxic to reproduction enable classification and labelling of such substances, if they are liable to cause an alteration of male or female reproductive functions or capacity, or to induce non-hereditary harmful effects on their offspring. Three categories can be used to classify these substances in two areas, namely their impairment of fertility and their effects on development. This classification is rarely based on epidemiological study results, but most often on those of experimental toxicological studies conducted by substance manufacturers. These reproduction toxicological studies are only compulsory above a certain tonnage placed on the market. The high level of this tonnage means that these tests are effectively only conducted on rare occasions. It is reckoned that there is no reproduction experimental data for over 95% of substances newly placed on the market. These products therefore appear to be reproduction non-toxic only because they have not been tested. This is a major fault in the current labelling system, which does not allow non-toxic products to be differentiated from non-tested products. The future EU regulatory framework for Registration, Evaluation and Authorisation of CHemicals (REACH) will only slightly enhance information in this area. It can be estimated that over 80% of chemical products will not be exhaustively tested for reproduction and nearly 75% will not be tested to any degree.
Sadeu, J C; Hughes, Claude L; Agarwal, Sanjay; Foster, Warren G
2010-08-01
Reproductive function and fertility are thought to be compromised by behaviors such as cigarette smoking, substance abuse, and alcohol consumption; however, the strength of these associations are uncertain. Furthermore, the reproductive system is thought to be under attack from exposure to environmental contaminants, particularly those chemicals shown to affect endocrine homeostasis. The relationship between exposure to environmental contaminants and adverse effects on human reproductive health are frequently debated in the scientific literature and these controversies have spread into the lay press drawing increased public and regulatory attention. Therefore, the objective of the present review was to critically evaluate the literature concerning the relationship between lifestyle exposures and adverse effects on fertility as well as examining the evidence for a role of environmental contaminants in the purported decline of semen quality and the pathophysiology of subfertility, polycystic ovarian syndrome, and endometriosis. The authors conclude that whereas cigarette smoking is strongly associated with adverse reproductive outcomes, high-level exposures to other lifestyle factors are only weakly linked with negative fertility impacts. Finally, there is no compelling evidence that environmental contaminants, at concentrations representative of the levels measured in contemporary biomonitoring studies, have any effect, positive or negative, on reproductive health in the general population. Further research using prospective study designs with robust sample sizes are needed to evaluate testable hypotheses that address the relationship between exposure and adverse reproductive health effects.
Impact of the environment on reproductive health.
1991-01-01
The WHO workshop on the impact of the environment on reproductive health is summarized. Topics include the nature of environmental factors affecting reproductive health, environmental factors blamed for declining sperm quantity and quality, the effects of natural and man-made disasters on reproductive health, chemical pollutants, how the environment damages reproductive health, and research needs for better research methodologies and surveillance data. Recommendations are made to: 1) promote international research collaboration with an emphasis on consistency of methodological approaches for assessing developmental and reproductive toxicity, on development of improved surveillance systems and data bases, an strengthening international disaster alert and evaluation systems; 2) promote research capabilities for multidisciplinary studies, for interactive studies of the environment and cellular processes, and for expansion of training and education; and 3) take action on priority problems of exposure to chemical, physical, and biological agents, of exposure to pesticides among specific populations, and of inadequate screening methods for identification of environmental chemicals. The costs of environmental injury to reproduction include subfertility, intrauterine growth retardation, spontaneous abortion, and various birth defects. Developed country's primary threats are from chemical pollution, radiation, and stress. There is a large gap in knowledge. Caution is urged in understanding the direct relationship between environmental causes and infertility. Sexual health is difficult to assess and research is suggested. Exposure to excessive vitamin A and toxic chemicals are cited as agents probably having serious effects on malformations. Sperm quality has declined over the decades; there is speculation about the potential causes. The effects of radiation such as at Chernobyl are described. Toxic chemical exposure such as in Bhopal, India killed thousands. Neurological damage is reported for fetuses and infants exposed to methyl mercury. There is the beginning of evidence that complications of pregnancy may be related to pollution levels surrounding industrial plants. Reproductive health is affected through chromosome damage and cell destruction, prenatal death, altered growth, fetal abnormalities, postnatal death, functional learning deficits, and premature aging.
Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system.
Gribble, Kristin E; Mark Welch, David B
2017-03-01
Understanding gene expression changes over lifespan in diverse animal species will lead to insights to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life stages: eggs, neonates, and early-, late-, and post-reproductive adults. There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism, maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative phosphorylation. This study provides the first examination of changes in gene expression over lifespan in rotifers. We detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans, highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The observation of simultaneous declines in expression of genes in multiple pathways may have consequences for health and longevity not detected by single- or multi-gene knockdown in otherwise healthy animals. Investigation of subtle but genome-wide change in these pathways during aging is an important area for future study.
PHOTOPERIODISM, REPRODUCTION(PHYSIOLOGY)), (*ENDOCRINE GLANDS , REPRODUCTION(PHYSIOLOGY)), RODENTS, REPRODUCTIVE SYSTEM, EYE, EXCISION, TESTES, OVARIES, ADRENAL GLANDS , THYROID GLAND , IODINE, THIOUREA, RATS, HAMSTERS
Hanus, Robert; Vrkoslav, Vladimír; Hrdý, Ivan; Cvačka, Josef; Šobotník, Jan
2010-01-01
In 1959, P. Karlson and M. Lüscher introduced the term ‘pheromone’, broadly used nowadays for various chemicals involved in intraspecific communication. To demonstrate the term, they depicted the situation in termite societies, where king and queen inhibit the reproduction of nest-mates by an unknown chemical substance. Paradoxically, half a century later, neither the source nor the chemical identity of this ‘royal’ pheromone is known. In this study, we report for the first time the secretion of polar compounds of proteinaceous origin by functional reproductives in three termite species, Prorhinotermes simplex, Reticulitermes santonensis and Kalotermes flavicollis. Aqueous washes of functional reproductives contained sex-specific proteinaceous compounds, virtually absent in non-reproducing stages. Moreover, the presence of these compounds was clearly correlated with the age of reproductives and their reproductive status. We discuss the putative function of these substances in termite caste recognition and regulation. PMID:19939837
Koppik, Mareike; Fricke, Claudia
2017-12-01
Senescence is accompanied by loss of reproductive functions. Here, we studied reproductive ageing in Drosophila melanogaster males and asked whether the expected decline in male reproductive success is due to diminished functionality of the male accessory gland (AG). The male AG produces the majority of seminal fluid proteins (SFPs) transferred to the female at mating. SFPs induce female postmating changes and are key to male reproductive success. We measured age-dependent gene expression changes for five representative SFP genes in males from four different age groups ranging from 1 to 6 weeks after eclosion. Simultaneously, we also measured male reproductive success in postmating traits mediated by transfer of these five SFPs. We found a decreased in male SFP gene expression with advancing age and an accompanying decline in male postmating success. Hence, male reproductive senescence is associated with a decline in functionality of the male AG. While overall individual SFP genes decreased in expression, our results point towards the idea that the composition of an ejaculate might change with male age as the rate of change was variable for those five genes. © 2017 John Wiley & Sons Ltd.
Sperm protection in the male reproductive tract by Toll-like receptors.
Saeidi, S; Shapouri, F; Amirchaghmaghi, E; Hoseinifar, H; Sabbaghian, M; Sadighi Gilani, M A; Pacey, A A; Aflatoonian, R
2014-09-01
Sperm function can be affected by infection. Our understanding of innate immune system molecular mechanisms has been expanded, by the discovery of 'Toll-like receptors' (TLRs). It seems that these receptors could play a critical role in the protection of spermatozoa. This study seeks to examine the presence and distribution of TLRs in different parts of the human male reproductive tract and spermatozoa. So, TLR gene expression was examined by RT-PCR. Quantitative real-time PCR (Q-PCR) analysis used to compare the expression of TLRs in all sections of the male reproductive tract and TLRs 2, 3 and 4 in testicular sperm extraction (TESE) samples, which contained spermatozoa (TESE+) and those that did not (TESE-). Results showed that all TLR genes were expressed in different parts of the human male reproductive tract and spermatozoa. Moreover, Q-PCR indicated that the relative expression of TLRs did not significantly change in different parts of the male reproductive tract but this technique has shown only relative TLR2 expression in TESE- is lower than TESE+ samples. It could be concluded that TLRs may provide a broad spectrum of protection from infection in the male reproductive tract. Furthermore, TLRs may influence on the developmental process during spermatogenesis. © 2013 Blackwell Verlag GmbH.
Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide.
Tian, Xiuyun; He, Guang-Jun; Hu, Pengjie; Chen, Lei; Tao, Changyu; Cui, Ying-Lu; Shen, Lan; Ke, Weixin; Xu, Haijiao; Zhao, Youbao; Xu, Qijiang; Bai, Fengyan; Wu, Bian; Yang, Ence; Lin, Xiaorong; Wang, Linqi
2018-06-01
Bacterial quorum sensing is a well-characterized communication system that governs a large variety of collective behaviours. By comparison, quorum sensing regulation in eukaryotic microbes remains poorly understood, especially its functional role in eukaryote-specific behaviours, such as sexual reproduction. Cryptococcus neoformans is a prevalent fungal pathogen that has two defined sexual cycles (bisexual and unisexual) and is a model organism for studying sexual reproduction in fungi. Here, we show that the quorum sensing peptide Qsp1 serves as an important signalling molecule for both forms of sexual reproduction. Qsp1 orchestrates various differentiation and molecular processes, including meiosis, the hallmark of sexual reproduction. It activates bisexual mating, at least in part through the control of pheromone, a signal necessary for bisexual activation. Notably, Qsp1 also plays a major role in the intercellular regulation of unisexual initiation and coordination, in which pheromone is not strictly required. Through a multi-layered genetic screening approach, we identified the atypical zinc finger regulator Cqs2 as an important component of the Qsp1 signalling cascade during both bisexual and unisexual reproduction. The absence of Cqs2 eliminates the Qsp1-stimulated mating response. Together, these findings extend the range of behaviours governed by quorum sensing to sexual development and meiosis.
Chemosignals, hormones, and amphibian reproduction.
Woodley, Sarah
2015-02-01
This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Building Critical Community in Middle School Learning Environments
ERIC Educational Resources Information Center
Dowdy, Josh; Dore, Elizabeth
2017-01-01
Research pertaining to institutions of public education reveals that curricular structures often function to produce and reproduce systemic inequalities. The following personal statement outlines a middle school teacher's attempt to address social reproduction in public education. By situating issues of inequity within a local context of…
Evolution of reproductive proteins from animals and plants.
Clark, Nathaniel L; Aagaard, Jan E; Swanson, Willie J
2006-01-01
Sexual reproduction is a fundamental biological process common among eukaryotes. Because of the significance of reproductive proteins to fitness, the diversity and rapid divergence of proteins acting at many stages of reproduction is surprising and suggests a role of adaptive diversification in reproductive protein evolution. Here we review the evolution of reproductive proteins acting at different stages of reproduction among animals and plants, emphasizing common patterns. Although we are just beginning to understand these patterns, by making comparisons among stages of reproduction for diverse organisms we can begin to understand the selective forces driving reproductive protein diversity and the functional consequences of reproductive protein evolution.
Mason, Chase M; Goolsby, Eric W; Davis, Kaleigh E; Bullock, Devon V; Donovan, Lisa A
2017-05-01
Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant fitness and environmental adaptation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Goolsby, Eric W.; Davis, Kaleigh E.; Bullock, Devon V.; Donovan, Lisa A.
2017-01-01
Abstract Background and Aims Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. Methods A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Key Results Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Conclusions Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant fitness and environmental adaptation. PMID:28203721
Normal Female Reproductive Anatomy
... hyphen, e.g. -historical Searches are case-insensitive Reproductive System, Female, Anatomy Add to My Pictures View /Download : ... 1500x1575 View Download Large: 3000x3150 View Download Title: Reproductive System, Female, Anatomy Description: Anatomy of the female reproductive ...
Experimental reduction of intromittent organ length reduces male reproductive success in a bug
Dougherty, Liam R.; Rahman, Imran A.; Burdfield-Steel, Emily R.; Greenway, E. V. (Ginny); Shuker, David M.
2015-01-01
It is now clear in many species that male and female genital evolution has been shaped by sexual selection. However, it has historically been difficult to confirm correlations between morphology and fitness, as genital traits are complex and manipulation tends to impair function significantly. In this study, we investigate the functional morphology of the elongate male intromittent organ (or processus) of the seed bug Lygaeus simulans, in two ways. We first use micro-computed tomography (micro-CT) and flash-freezing to reconstruct in high resolution the interaction between the male intromittent organ and the female internal reproductive anatomy during mating. We successfully trace the path of the male processus inside the female reproductive tract. We then confirm that male processus length influences sperm transfer by experimental ablation and show that males with shortened processi have significantly reduced post-copulatory reproductive success. Importantly, male insemination function is not affected by this manipulation per se. We thus present rare, direct experimental evidence that an internal genital trait functions to increase reproductive success and show that, with appropriate staining, micro-CT is an excellent tool for investigating the functional morphology of insect genitalia during copulation. PMID:25972470
Effects of Emotional Valence and Arousal on Time Perception
Van Volkinburg, Heather; Balsam, Peter
2016-01-01
We examined the influence of emotional arousal and valence on estimating time intervals. A reproduction task was used in which images from the International Affective Picture System served as the stimuli to be timed. Experiment 1 assessed the effects of positive and negative valence at a moderate arousal level and Experiment 2 replicated Experiment 1 with the addition of a high arousal condition. Overestimation increased as a function of arousal during encoding of times regardless of valence. For images presented during reproduction, overestimation occurred at the moderate arousal level for positive and negative valence but underestimation occurred in the negative valence high arousal condition. The overestimation of time intervals produced by emotional arousal during encoding and during reproduction suggests that emotional stimuli affect temporal information processing in a qualitatively different way during different phases of temporal information processing. PMID:27110491
The influence of smoking and cessation on the human reproductive hormonal balance.
Jandíková, H; Dušková, M; Stárka, L
2017-09-26
Smoking is the most widespread substance dependence in the world. Nicotine and some other components of the cigarette smoke cause various endocrine imbalances, and have negative effects on pituitary, thyroid, adrenal, testicular and ovarian functions. Here, we examined studies that describe the influence of smoking and smoking cessation on the male and female reproductive systems. We also focused on studies providing an account of differences in cessation success rates between men and women. In men, the most common effects associated with smoking are erectile dysfunction and decreasing spermiogram quality. Several groups have studied the effects of cigarette smoking on testosterone levels in men. However, the results have been conflicting. In women, nicotine has an anti-estrogen effect and increases the ratio of androgens to estrogens throughout life. Beside nicotine, other cigarette toxins also cause dysregulation of reproductive and hormonal system, and essentially influence the probability of a successful pregnancy not only in cases of assisted reproduction but also in healthy women. Tobacco addiction is one of the forms of addiction that are generally thought to be different for men and for women. Women are less successful than men in quitting smoking, and nicotine replacement therapy is less effective in female smokers. We also summarize recent studies that have indicated possible reasons.
Mammalian target of rapamycin (mTOR): a central regulator of male fertility?
Jesus, Tito T; Oliveira, Pedro F; Sousa, Mário; Cheng, C Yan; Alves, Marco G
2017-06-01
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.
Conserved Insulin Signaling in the Regulation of Oocyte Growth, Development, and Maturation
DAS, DEBABRATA; ARUR, SWATHI
2017-01-01
Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin-mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin-signaling pathway. The molecular determinants of the insulin-signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals – yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin-mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin’s unique role in specific reproductive processes. PMID:28379636
Quercetin attenuates lambda cyhalothrin-induced reproductive toxicity in male rats.
Ben Abdallah, Fatma; Fetoui, Hamadi; Zribi, Nassira; Fakhfakh, Feiza; Keskes, Leila
2013-12-01
The aim of this study was to evaluate the possible protective effects of Quercetin (Qe) against oxidative stress induced by λ cyhalothrin (LTC) in reproductive system. Thirty-two male rats were divided into four groups. First group was allocated as the control group. Second group was given a Qe alone while the third group received a LTC alone. Animals in the fourth group were given a Qe with LTC. Caudae epididymis was removed for sperm analysis. Lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and reduced glutathione (GSH) were determined in the testis. Additionally, the different histopathologic changes were observed in the testis of animals. LTC exposure significantly increased the abnormal morphology and LPO. On the contrary, sperm motility, viability and count, levels of GSH, and activities of SOD, CAT, GPx, and GST were significantly decreased compared to controls. Qe with LTC offset the decrease in functional sperm parameters, antioxidants enzymatic activities, and nonenzymatic antioxidant levels when compared with LTC-treated rats. Furthermore, LTC showed irregular seminiferous tubules containing only Sertoli cells and Qe with LTC caused regular seminiferous tubules showing spermatogenesis at level of spermatocytes. We conclude that LTC-induced oxidative stress and functional sperm parameters in male rats, and dietary of Qe attenuates the reproductive toxicity of LTC to restore the antioxidant system and sperm parameters in male rats. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Guest, J. R.; Baird, A. H.; Goh, B. P. L.; Chou, L. M.
2012-09-01
The sexual system in corals refers to the spatial and temporal pattern of sexual function within an individual coral polyp, colony or population. Although information on sexual systems now exists for over 400 scleractinian species, data are still lacking for some important reef-building taxa. The vast majority of scleractinians are either simultaneous hermaphrodites or gonochoric with other sexual systems rarely occurring. Diploastrea heliopora is one of the most ubiquitous and easily recognised reef-building species in the Indo-West Pacific; however, surprisingly little is known about its reproductive biology. The aim of the present study was to examine the reproductive biology of D. heliopora colonies on chronically impacted, equatorial reefs south of Singapore. Here we show that in Singapore, D. heliopora is a broadcast spawner with predominantly gonochoric polyps. Colonies, however, contained male, female and a low proportion of cosexual polyps during the 14-month sampling period. The most plausible explanation for this is that polyps switch sexes with oogenic and spermatogenic cycles occasionally overlapping. This leads to colony level alternation of sex function within and between breeding seasons. While this sexual system is atypical for scleractinians, it supports molecular evidence that D. heliopora is phylogenetically distinct from species formerly in the family Faviidae.
Yoshida-Noro, Chikako; Tochinai, Shin
2010-01-01
Enchytraeus japonensis is a small oligochaete species that proliferates asexually via fragmentation and regeneration. As sexual reproduction can also be induced, it is a good model system for the study of both regenerative and germline stem cells. It has been shown by histological study that putative mesodermal stem cells called neoblasts, and dedifferentiated epidermal and endodermal cells are involved in blastema formation. Recently, we isolated three region-specific marker genes expressed in the digestive tract and showed by in situ hybridization that morphallactic as well as epimorphic regulation of the body patterning occurs during regeneration. We also cloned two vasa-related genes and analyzed their expression during development and in mature worms that undergo sexual reproduction. The results arising form these studies suggest that the origin and development of germline stem cells and neoblasts may be independent. Furthermore, we carried out functional analysis using RNA interference (RNAi) and showed that a novel gene termed grimp is required for mesodermal cell proliferation at the initial stages of regeneration. These findings indicate that the stem cell system in E. japonensis is regulated by both internal and external environmental factors.
Windisch, Ricarda; de Savigny, Don; Onadja, Geneviève; Somda, Antoine; Wyss, Kaspar; Sié, Ali; Kouyaté, Bocar
2011-11-01
Organizational changes, increased funding and the demands of HIV antiretroviral (ARV) treatment create particular challenges for governance in the health sector. We assess resource allocation, policy making and integration of the national responses to ARV provision and reproductive health in Burkina Faso, using national and district budgets related to disease burden, policy documents, organizational structures, and coordination and implementation processes. ARV provision represents the concept of a "crisis scenario", in which reforms are pushed due to a perception of urgent need, whereas the national reproductive health programme, which is older and more integrated, represents a "politics-as-usual scenario". Findings show that the early years of the national response to HIV and AIDS were characterized by new institutions with overlapping functions, and failure to integrate with and strengthen existing structures. National and district budget allocations for HIV compared to other interventions were disproportionately high when assessed against burden of disease. Strategic documents for ARV provision were relatively less developed and referred to, compared to those of the Ministry of Health Directorates for HIV and for Family Health and district health planning teams for reproductive health services. Imbalances and new structures potentially trigger important adverse effects which are difficult to remedy and likely to increase due to the dynamics they create. It therefore becomes crucial, from the outset, to integrate HIV/AIDS funding and responses into health systems. Copyright © 2011 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.
Artz, Derek R; Villagra, Cristian A; Raguso, Robert A
2010-09-01
• Flowering plants that rely on pollinators for most of their reproduction may experience unpredictable and inconsistent availability of effective pollinators throughout their reproductive lifetime. We investigated the reproductive ecology of two subspecies of the tufted evening primrose, Oenothera cespitosa, which occupy geographically and edaphically distinct habitats in western North America: O. cespitosa subsp. navajoensis inhabits sandstone soils on open sites or rocky slopes in the Colorado Plateau and O. cespitosa subsp. cespitosa grows in clay soils on talus slopes and exposed rocky ridges in the western Great Plains and northern Rocky Mountains of the United States. • Pollen augmentation and selfing experiments, floral visitor observations, and single-visit effectiveness experiments were conducted over 4 years to examine the breeding system and spatiotemporal variation in pollinator behavior, assemblage, and abundance at different populations for each subspecies. • Both subspecies of O. cespitosa were self-incompatible and pollen-limited, suggesting that the relative abundance, effectiveness, and movement patterns of different insects as pollinators influenced the quality and quantity of seed production in these plants. Medium-sized vespertine hawkmoths (Hyles lineata, Sphinx vashti) were effective pollinators when present, as were large matinal bees (Anthophora affabilis, A. dammersi, Xylocopa tabaniformis androleuca), whereas small oligolectic Lasioglossum bees primarily functioned as pollen thieves in the evening and morning. • These findings highlight the importance of variability of pollinator composition and abundance in the evolution of plant breeding systems and reproductive success at varying spatial and temporal scales.
Dental senescence in a long-lived primate links infant survival to rainfall
King, Stephen J.; Arrigo-Nelson, Summer J.; Pochron, Sharon T.; Semprebon, Gina M.; Godfrey, Laurie R.; Wright, Patricia C.; Jernvall, Jukka
2005-01-01
Primates tend to be long-lived, and, except for humans, most primate females are able to reproduce into old age. Although aging in most mammals is accompanied by dental senescence due to advanced wear, primates have low-crowned teeth that wear down before old age. Because tooth wear alters crown features gradually, testing whether early dental senescence causes reproductive senescence has been difficult. To identify whether and when low-crowned teeth compromise reproductive success, we used a 20-year field study of Propithecus edwardsi, a rainforest lemur from Madagascar with a maximum lifespan of >27 years. We analyzed tooth wear in three dimensions with dental topographic analysis by using Geographical Information Systems (GIS) technology. We report that tooth wear exposes compensatory shearing blades that maintain dental function for 18 years. Beyond this age, female fertility remains high; however infants survive only if lactation seasons have elevated rainfall. Therefore, low-crowned teeth accommodate wear to a point, after which reproductive success closely tracks environmental fluctuations. These results suggest a tooth wear-determined, but rainfall-mediated, onset of reproductive senescence. Additionally, our study indicates that even subtle changes in climate may affect reproductive success of rainforest species. PMID:16260727
Dominoni, Davide M; Quetting, Michael; Partecke, Jesko
2013-01-01
Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems.
PACE 2: Pricing and Cost Estimating Handbook
NASA Technical Reports Server (NTRS)
Stewart, R. D.; Shepherd, T.
1977-01-01
An automatic data processing system to be used for the preparation of industrial engineering type manhour and material cost estimates has been established. This computer system has evolved into a highly versatile and highly flexible tool which significantly reduces computation time, eliminates computational errors, and reduces typing and reproduction time for estimators and pricers since all mathematical and clerical functions are automatic once basic inputs are derived.
Metamorphosis of the amphibian tadpole is a thyroid hormone (TH)-dependent developmental process. For this reason, the tadpole is considered to be an ideal bioassay system to identify disruption of thyroid function by environmental contaminants. Here we provide an in-depth review...
Oligonucleotide microarrays are a powerful tool for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-based analyses to detect diffe...
Wildlife and human populations are affected by contaminants in natural settings. This problem has been a growing concern over the last decade with the realization that various environmental chemicals can alter the development and functioning of endocrine organs, cells and target ...
Effects of Withania somnifera on Reproductive System: A Systematic Review of the Available Evidence
Nazemyieh, Hossein; Fazljou, Seyed Mohammad Bagher; Nejatbakhsh, Fatemeh; Moini Jazani, Arezoo; Ahmadi AsrBadr, Yadollah
2018-01-01
Introduction Withania somnifera (WS) also known as ashwagandha is a well-known medicinal plant used in traditional medicine in many countries for infertility treatment. The present study was aimed at systemically reviewing therapeutic effects of WS on the reproductive system. Methods This systematic review study was designed in 2016. Required data were obtained from PubMed, Scopus, Google Scholar, Cochrane Library, Science Direct, Web of Knowledge, Web of Science, and manual search of articles, grey literature, reference checking, and expert contact. Results WS was found to improve reproductive system function by many ways. WS extract decreased infertility among male subjects, due to the enhancement in semen quality which is proposed due to the enhanced enzymatic activity in seminal plasma and decreasing oxidative stress. Also, WS extract improved luteinizing hormone and follicular stimulating hormone balance leading to folliculogenesis and increased gonadal weight, although some animal studies had concluded that WS had reversible spermicidal and infertilizing effects in male subjects. Conclusion WS was found to enhance spermatogenesis and sperm related indices in male and sexual behaviors in female. But, according to some available evidences for spermicidal features, further studies should focus on the extract preparation method and also dosage used in their study protocols. PMID:29670898
Microcystin-LR impairs zebrafish reproduction by affecting oogenesis and endocrine system.
Zhao, Yanyan; Xie, Liqiang; Yan, Yunjun
2015-02-01
Previous studies have shown that microcystins (MCs) are able to exert negative effects on the reproductive system of fish. However, few data are actually available on the effects of MC-LR on the reproductive system of female fish. In the present study, female zebrafish were exposed to 2, 10, and 50 μg L(-1) of MC-LR for 21 d, and its effects on oogenesis, sex hormones, transcription of genes on the hypothalamic-pituitary-gonad (HPG) axis, and reproduction were investigated for the first time. It was observed that egg production significantly declined at ⩾ 10 μg L(-1) MC-LR. MC-LR exposure to zebrafish increased the concentrations of 17β-estradiol (E2) and vitellogenin (VTG) at 10 μg L(-1) level, whereas concentrations of E2, VTG and testosterone declined at 50 μg L(-1) MC-LR. The transcriptions of steroidogenic pathway gene (cyp19a, cyp19b, 17βhsd, cyp17 and hmgra) changed as well after the exposure and corresponded well with the alterations of hormone levels. A number of intra- and extra-ovarian factors, such as gnrh3, gnrhr1, fshβ, fshr, lhr, bmp15, mrpβ, ptgs2 and vtg1 which regulate oogenesis, were significantly changed with a different dose-related effect. Moreover, MC-LR exposure to female zebrafish resulted in decreased fertilization and hatching rates, and may suggest the possibility of trans-generational effects of MC-LR exposure. The results demonstrate that MC-LR could modulate endocrine function and oogenesis, eventually leading to disruption of reproductive performance in female zebrafish. These data suggest there is a risk for aquatic population living in MC polluted areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Actions of Steroids: New Neurotransmitters
Cornil, Charlotte A.; Mittelman-Smith, Melinda A.; Rainville, Jennifer R.; Remage-Healey, Luke; Sinchak, Kevin; Micevych, Paul E.
2016-01-01
Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain. PMID:27911748
Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziendzikowska, K., E-mail: k.dziendzikowska@gmail
The growing use of silver nanoparticles (AgNPs) in various applications, including consumer, agriculture and medicine products, has raised many concerns about the potential risks of nanoparticles (NPs) to human health and the environment. An increasing body of evidence suggests that AgNPs may have adverse effects of humans, thus the aim of this study was to investigate the effects of AgNPs on the male reproductive system. Silver particles (20 nm AgNPs (groups Ag I and Ag II) and 200 nm Ag sub-micron particles (SPs) (group Ag III)) were administered intravenously to male Wistar rats at a dose of 5 (groups Agmore » I and Ag III) or 10 (group Ag II) mg/kg of body weight. The biological material was sampled 24 h, 7 days and 28 days after injection. The obtained results revealed that the AgNPs had altered the luteinising hormone concentration in the plasma and the sex hormone concentration in the plasma and testes. Plasma and intratesticular levels of testosterone and dihydrotestosterone were significantly decreased both 7 and 28 days after treatment. No change in the prolactin and sex hormone-binding globulin concentration was observed. Exposure of the animals to AgNPs resulted in a considerable decrease in 5α-reductase type 1 and the aromatase protein level in the testis. Additionally, expression analysis of genes involved in steroidogenesis and the steroids metabolism revealed significant down-regulation of Star, Cyp11a1, Hsd3b1, Hsd17b3 and Srd5a1 mRNAs in AgNPs/AgSPs-exposed animals. The present study demonstrates the potential adverse effect on the hormonal regulation of the male reproductive function following AgNP/AgSP administration, in particular alterations of the sex steroid balance and expression of genes involved in steroidogenesis and the steroids metabolism. - Highlights: • Assessment of the toxic effects of AgNPs/AgSPs on the regulation of male reproductive function • AgNP −/AgSP-induced alterations of sex steroid status in male Wistar rats. • Regulation of male reproductive function is differently modulated by AgNPs and AgSPs. • Endocrine-mediated toxicity of AgNPs/AgSPs increased over time. • AgNPs/AgSPs alter male reproductive function regulation at the transcriptional level.« less
Wang, Bin; Liu, Quan; Liu, Xuezhou; Xu, Yongjiang; Song, Xuesong; Shi, Bao
2017-11-01
Kisspeptin (Kiss) plays a critical role in mediating gonadal steroid feedback to the gonadotropin-releasing hormone (GnRH) neurons in mammals. However, little information regarding the regulation of kisspeptin gene by sex steroids is available in teleosts. In this study, we examined the direct actions of estradiol (E2) and testosterone (T) on hypothalamic expression of kisspeptin and other key factors involved in reproductive function of half-smooth tongue sole. As a first step, a partial-length cDNA of kiss2 was identified from the brain of tongue sole and kiss2 transcript levels were shown to be widely expressed in various tissues, notably in the ovary. Then, the actions of sex steroids on kiss2 and other reproduction-related genes were evaluated using a primary hypothalamus culture system. Our results showed that neither kiss2 nor its receptor kiss2r mRNA levels were significantly altered by sex steroids. Moreover, sex steroids did not modify hypothalamic expression of gonadotropin-inhibitory hormone (gnih) and its receptor gnihr mRNAs, either. However, E2 markedly stimulated both gnrh2 and gnrh3 mRNAs levels. Overall, this study provides insights into the role of sex steroids in the reproductive function of Pleuronectiform teleosts. Copyright © 2017 Elsevier Inc. All rights reserved.
Nazıroğlu, Mustafa; Yüksel, Murat; Köse, Seyit Ali; Özkaya, Mehmet Okan
2013-12-01
Environmental exposure to electromagnetic radiation (EMR) has been increasing with the increasing demand for communication devices. The aim of the study was to discuss the mechanisms and risk factors of EMR changes on reproductive functions and membrane oxidative biology in females and males. It was reported that even chronic exposure to EMR did not increase the risk of reproductive functions such as increased levels of neoantigens abort. However, the results of some studies indicate that EMR induced endometriosis and inflammation and decreased the number of follicles in the ovarium or uterus of rats. In studies with male rats, exposure caused degeneration in the seminiferous tubules, reduction in the number of Leydig cells and testosterone production as well as increases in luteinizing hormone levels and apoptotic cells. In some cases of male and female infertility, increased levels of oxidative stress and lipid peroxidation and decreased values of antioxidants such as melatonin, vitamin E and glutathione peroxidase were reported in animals exposed to EMR. In conclusion, the results of current studies indicate that oxidative stress from exposure to Wi-Fi and mobile phone-induced EMR is a significant mechanism affecting female and male reproductive systems. However, there is no evidence to this date to support an increased risk of female and male infertility related to EMR exposure.
Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S.
2015-01-01
Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP–GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure. PMID:26617573
Gurven, Michael; Costa, Megan; Ben Trumble; Stieglitz, Jonathan; Beheim, Bret; Eid Rodriguez, Daniel; Hooper, Paul L; Kaplan, Hillard
2016-07-20
Women exhibit greater morbidity than men despite higher life expectancy. An evolutionary life history framework predicts that energy invested in reproduction trades-off against investments in maintenance and survival. Direct costs of reproduction may therefore contribute to higher morbidity, especially for women given their greater direct energetic contributions to reproduction. We explore multiple indicators of somatic condition among Tsimane forager-horticulturalist women (Total Fertility Rate = 9.1; n = 592 aged 15-44 years, n = 277 aged 45+). We test whether cumulative live births and the pace of reproduction are associated with nutritional status and immune function using longitudinal data spanning 10 years. Higher parity and faster reproductive pace are associated with lower nutritional status (indicated by weight, body mass index, body fat) in a cross-section, but longitudinal analyses show improvements in women's nutritional status with age. Biomarkers of immune function and anemia vary little with parity or pace of reproduction. Our findings demonstrate that even under energy-limited and infectious conditions, women are buffered from the potential depleting effects of rapid reproduction and compound offspring dependency characteristic of human life histories.
Knight, Jessica H; Howards, Penelope P; Spencer, Jessica B; Tsagaris, Katina C; Lim, Sam S
2016-01-01
Systemic lupus erythematosus (SLE) disproportionately affects women and often develops during their reproductive years. Research suggests that some women who receive cyclophosphamide as treatment for SLE experience earlier decline in menstrual function, but reproductive health among women with SLE who have not taken this drug is less well understood. This study aims to better understand the relation between SLE and reproduction by assessing early secondary amenorrhoea and pregnancy in women treated with and without cyclophosphamide from a population-based cohort with large numbers of African-Americans. Female patients with SLE, ages 20-40 at time of diagnosis, who were 40 years or older at the time of the survey were included in this analysis (N=147). Participants in the Georgians Organized Against Lupus (GOAL) study were asked about their reproductive histories including early secondary amenorrhoea, defined as loss of menstruation before age 40. Women who were cyclophosphamide naïve had an increased prevalence of early secondary amenorrhoea compared with population estimates, 13-17% compared with 1-5%. Factors associated with early secondary amenorrhoea in women not treated with cyclophosphamide were marital status and receipt of a kidney transplant. Treatment with cyclophosphamide doubled the prevalence after adjustment for patient characteristics. Over 88% of women reported being pregnant at least once, and about 83% of these had a child, but the majority of pregnancies occurred before diagnosis. SLE diagnosed in early adulthood may affect women's reproductive health even if they are not treated with cyclophosphamide. Better understanding of other factors related to reproductive health in this population will improve clinicians' and patients' abilities to make treatment and family planning decisions.
Knight, Jessica H; Howards, Penelope P; Spencer, Jessica B; Tsagaris, Katina C; Lim, Sam S
2016-01-01
Objective Systemic lupus erythematosus (SLE) disproportionately affects women and often develops during their reproductive years. Research suggests that some women who receive cyclophosphamide as treatment for SLE experience earlier decline in menstrual function, but reproductive health among women with SLE who have not taken this drug is less well understood. This study aims to better understand the relation between SLE and reproduction by assessing early secondary amenorrhoea and pregnancy in women treated with and without cyclophosphamide from a population-based cohort with large numbers of African-Americans. Methods Female patients with SLE, ages 20–40 at time of diagnosis, who were 40 years or older at the time of the survey were included in this analysis (N=147). Participants in the Georgians Organized Against Lupus (GOAL) study were asked about their reproductive histories including early secondary amenorrhoea, defined as loss of menstruation before age 40. Results Women who were cyclophosphamide naïve had an increased prevalence of early secondary amenorrhoea compared with population estimates, 13–17% compared with 1–5%. Factors associated with early secondary amenorrhoea in women not treated with cyclophosphamide were marital status and receipt of a kidney transplant. Treatment with cyclophosphamide doubled the prevalence after adjustment for patient characteristics. Over 88% of women reported being pregnant at least once, and about 83% of these had a child, but the majority of pregnancies occurred before diagnosis. Conclusions SLE diagnosed in early adulthood may affect women's reproductive health even if they are not treated with cyclophosphamide. Better understanding of other factors related to reproductive health in this population will improve clinicians' and patients' abilities to make treatment and family planning decisions. PMID:27752335
Male Reproductive System (For Teens)
... genes come from the father's sperm and the mother's egg, which are produced by the male and female reproductive systems. What Is the Male Reproductive System? Most species have two sexes: male and female. Each sex has its own ...
Rouhana, Labib; Tasaki, Junichi; Saberi, Amir; Newmark, Phillip A.
2017-01-01
Cytoplasmic polyadenylation is a mechanism of mRNA regulation prevalent in metazoan germ cells; it is largely dependent on Cytoplasmic Polyadenylation Element Binding proteins (CPEBs). Two CPEB homologs were identified in the planarian Schmidtea mediterranea. Smed-CPEB1 is expressed in ovaries and yolk glands of sexually mature planarians, and required for oocyte and yolk gland development. In contrast, Smed-CPEB2 is expressed in the testes and the central nervous system; its function is required for spermatogenesis as well as non-autonomously for development of ovaries and accessory reproductive organs. Transcriptome analysis of CPEB knockdown animals uncovered a comprehensive collection of molecular markers for reproductive structures in S. mediterranea, including ovaries, testes, yolk glands, and the copulatory apparatus. Analysis by RNA interference revealed contributions for a dozen of these genes during oogenesis, spermatogenesis, or capsule formation. We also present evidence suggesting that Smed-CPEB2 promotes translation of Neuropeptide Y-8, a prohormone required for planarian sexual maturation. These findings provide mechanistic insight into potentially conserved processes of germ cell development, as well as events involved in capsule deposition by flatworms. PMID:28434803
Neuman-Lee, Lorin; Greives, Timothy; Hopkins, Gareth R; French, Susannah S
2017-03-01
The neuropeptide kisspeptin and its receptor are essential for activation of the hypothalamic-pituitary-gonadal (HPG) axis and regulating reproduction. While the role of kisspeptin in regulating the HPG axis in mammals has been well established, little is known about the functional ability of kisspeptins to activate the HPG axis and associated behavior in non-mammalian species. Here we experimentally examined the effects of kisspeptin on downstream release of testosterone and associated aggression and display behaviors in the side-blotched lizard (Uta stansburiana). We found that exogenous treatment with kisspeptin resulted in an increase in circulating testosterone levels, castration blocked the kisspeptin-induced increase in testosterone, and testosterone levels in kisspeptin-treated animals were positively related to frequency of aggressive behaviors. This evidence provides a clear link between kisspeptin, testosterone, and aggressive behavior in lizards. Thus, it is likely that kisspeptin plays an important role more broadly in non-mammalian systems in the regulation of reproductive physiology and related behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.
Volterra-type Lyapunov functions for fractional-order epidemic systems
NASA Astrophysics Data System (ADS)
Vargas-De-León, Cruz
2015-07-01
In this paper we prove an elementary lemma which estimates fractional derivatives of Volterra-type Lyapunov functions in the sense Caputo when α ∈ (0, 1) . Moreover, by using this result, we study the uniform asymptotic stability of some Caputo-type epidemic systems with a pair of fractional-order differential equations. These epidemic systems are the Susceptible-Infected-Susceptible (SIS), Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Recovered-Susceptible (SIRS) models and Ross-Macdonald model for vector-borne diseases. We show that the unique endemic equilibrium is uniformly asymptotically stable if the basic reproductive number is greater than one. We illustrate our theoretical results with numerical simulations using the Adams-Bashforth-Moulton scheme implemented in the fde12 Matlab function.
The reproductive strategy of a pollinator-limited Himalayan plant, Incarvillea mairei (Bignoniaceae)
2013-01-01
Background Plants may adapt to alpine habitats by specialization in the reproductive strategy and functional aspects of their flowers and pollination systems. Alpine habitats reduce the opportunities for cross-pollination in a relatively high proportion of alpine plant species, and self-pollination may be favored in these adverse conditions. Here, we investigated the mating system and pollination of Incarvillea mairei, a perennial Himalayan herb typically found at altitudes between 3000 and 4500 m. Results Analyses of floral morphology, observation of plant-pollinator interactions, and hand pollination experiments were conducted in three natural populations. Outcrossing rates and effective numbers of pollen donors were assessed in 45 open-pollinated families by using progeny analysis based on seven microsatellite markers. Incarvillea mairei displayed a set of apparently specialized floral traits, the stigma is sensitive to touch and close immediately and its reopening allows a second opportunity for the receipt of pollen. The species is fully self-compatible but employs a predominantly outcrossing mating system according to parentage analysis (tm > 0.9). Fruit set was low (26.3%), whereas seed set was high (67.2%), indicating that this species suffers pollinator limitation. Its main effective pollinator was Halictus sp., and visitation frequency was low. Conclusions Floral features such as having a sensitive stigma and anther-prongs, in conjunction with pollinator behavior, function together contributing to a set of unique reproductive adaptations that enhance outcrossing success. The increased floral longevity and high pollination efficiency operated as compensatory mechanisms to counteract low pollinator visitation frequency. PMID:24289097
A critical number of workers in a honeybee colony triggers investment in reproduction
NASA Astrophysics Data System (ADS)
Smith, Michael L.; Ostwald, Madeleine M.; Loftus, J. Carter; Seeley, Thomas D.
2014-10-01
Social insect colonies, like individual organisms, must decide as they develop how to allocate optimally their resources among survival, growth, and reproduction. Only when colonies reach a certain state do they switch from investing purely in survival and growth to investing also in reproduction. But how do worker bees within a colony detect that their colony has reached the state where it is adaptive to begin investing in reproduction? Previous work has shown that larger honeybee colonies invest more in reproduction (i.e., the production of drones and queens), however, the term `larger' encompasses multiple colony parameters including number of adult workers, size of the nest, amount of brood, and size of the honey stores. These colony parameters were independently increased in this study to test which one(s) would increase a colony's investment in reproduction via males. This was assayed by measuring the construction of drone comb, the special type of comb in which drones are reared. Only an increase in the number of workers stimulated construction of drone comb. Colonies with over 4,000 workers began building drone comb, independent of the other colony parameters. These results show that attaining a critical number of workers is the key parameter for honeybee colonies to start to shift resources towards reproduction. These findings are relevant to other social systems in which a group's members must adjust their behavior as a function of the group's size.
Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line.
Cinquin, Amanda; Chiang, Michael; Paz, Adrian; Hallman, Sam; Yuan, Oliver; Vysniauskaite, Indre; Fowlkes, Charless C; Cinquin, Olivier
2016-04-01
Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.
Choudhury, Baharul Islam; Khan, Mohammed Latif; Dayanandan, Selvadurai
2014-01-01
Gymnocladus assamicus is a critically endangered tree species endemic to Northeast India, and shows sexual dimorphism with male and hermaphrodite flowers on separate trees. We studied phenology, reproductive biology and mating system of the species. The flowers are small, tubular, odorless and last for about 96 hours. Pollen grains in both morphs were viable and capable of fertilization leading to fruit and seed set. Scanning electron micrographs revealed morphologically similar pollen in both male and hermaphrodite flowers. The fruit set in open pollinated flowers was 43.61 percent, while controlled autogamous and geitonogamous pollinations yielded 76.81 and 65.58 percent fruit set respectively. Xenogamous pollinations between male and hermaphrodite flowers resulted in 56.85 percent fruit set and pollinations between hermaphrodite flowers yielded 67.90 percent fruit set. This indicates a functionally androdioecious mating system and pollination limited fruit set in G. assamicus. Phylogenetic analyses of Gymnocladus and the sister genus Gleditsia are needed to assess if the androdioecious mating system in G. assamicus evolved from dioecy as a result of selection for hermaphrodites for reproductive assurance during colonization of pollination limited high altitude ecosystems.
TOISHI, Yuko; TSUNODA, Nobuo; NAGATA, Shun-ichi; KIRISAWA, Rikio; NAGAOKA, Kentaro; WATANABE, Gen; YANAGAWA, Yojiro; KATAGIRI, Seiji; TAYA, Kazuyoshi
2017-01-01
Testosterone (T) concentration is a useful indicator of reproductive function in male animals. However, T concentration is not usually measured in veterinary clinics, partly due to the unavailability of reliable and rapid assays for animal samples. In this study, a rapid chemiluminescent enzyme immunoassay system (CLEIA system) that was developed for the measurement of T concentration in humans use was validated for stallion blood samples. First, serum T concentrations were measured using the CLEIA system and compared with those measured by a fluoroimmunoassay that has been validated for use in stallions. The serum T concentrations measured by the two methods were highly correlated (r = 0.9865, n = 56). Second, to validate the use of whole blood as assay samples, T concentrations in whole blood and in the serum were measured by the CLEIA system. T concentrations in both samples were highly correlated (r = 0.9665, n = 64). Finally, to evaluate the practical value of the CLEIA system in clinical settings, T concentrations were measured in three stallions with reproductive abnormalities after the administration of human chorionic gonadotropin (hCG). Two stallions with small or absent testes in the scrotum showed an increase in T production in response to hCG administration and one stallion with seminoma did not. In conclusion, the CLEIA system was found to be a rapid and reliable tool for measuring T concentrations in stallions and may improve reproductive management in clinical settings and in breeding studs. PMID:29129877
Sensory response system of social behavior tied to female reproductive traits.
Tsuruda, Jennifer M; Amdam, Gro V; Page, Robert E
2008-01-01
Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The 'pollen-hoarding syndrome' of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees. Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6-7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization. Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects.
ATP-binding cassette transporters in reproduction: a new frontier
Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.
2016-01-01
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as ‘gatekeepers’ at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus. PMID:26545808
Obesity-Induced Dysfunctions in Female Reproduction: Lessons from Birds and Mammals123
Walzem, Rosemary L.; Chen, Shuen-ei
2014-01-01
Follicle wall rupture and ovum release, i.e., ovulation, has been described as a controlled inflammatory event. The process involves tissue remodeling achieved through leukocyte-mediated proteolysis. In birds, ovulation is the first step in the energy-intensive process of egg formation, yet hens that consume energy in excess of productive requirements experience impaired egg-laying ability. Broiler chickens, selected for rapid lean muscle gain, and coincidentally hyperphagia, develop adult obesity when given free access to feed. Obese broiler hens experience elevated circulating concentrations of insulin and leptin, changes in lipid and lipoprotein metabolism similar to those of human metabolic syndrome, as well as increased systemic inflammation. Overall, the manifestations in poultry are similar to those of women with polycystic ovary syndrome. It was shown recently that, in hens, as in mammals, changes in lipid synthesis and metabolism cause granulosa cell apoptosis and altered immune function and hormone production, further compromising ovarian function. To date, there is insufficient information on the means used by the ovary to direct leukocyte function toward successful ovulation. More information is needed regarding the control of proteolytic actions by leukocytes with regards to the roles of specific enzymes in both ovulation and atresia. The broiler hen has provided unique insight into the interrelations of energy intake, obesity, leukocyte function, and reproduction. Additional work with this model can serve the dual purposes of improving avian reproduction and providing novel insights into polycystic ovary syndrome in women. PMID:24618762
Women and Power: Problems of Feminine Pollution.
ERIC Educational Resources Information Center
Michaelson, Evalyn J.
The author reviews cross-cultural studies correlating women's reproductive functions with states of ritual defilement, pollution, and cultural restrictions on social behavior. Women's reproductive functions--childbirth, menstruation, and sexual intercourse--are frequently viewed as contaminating. Thus, during her menstrual period or period…
Prostaglandins and reproduction in female farm animals.
Weems, C W; Weems, Y S; Randel, R D
2006-03-01
Prostaglandins impact on ovarian, uterine, placental, and pituitary function to regulate reproduction in female livestock. They play important roles in ovulation, luteal function, maternal recognition of pregnancy, implantation, maintenance of gestation, microbial-induced abortion, parturition, postpartum uterine and ovarian infections, and resumption of postpartum ovarian cyclicity. Prostaglandins have both positive and negative effects on reproduction; they are used to synchronize oestrus, terminate pseudopregnancy in mares, induce parturition, and treat retained placenta, luteinized cysts, pyometra, and chronic endometritis. Improved therapeutic uses for prostaglandins will be developed when we understand better their involvement in implantation, maintenance of luteal function, and establishment and maintenance of pregnancy.
Ramalho-Santos, João; Varum, Sandra; Amaral, Sandra; Mota, Paula C; Sousa, Ana Paula; Amaral, Alexandra
2009-01-01
Mitochondria are multitasking organelles involved in ATP synthesis, reactive oxygen species (ROS) production, calcium signalling and apoptosis; and mitochondrial defects are known to cause physiological dysfunction, including infertility. The goal of this review was to identify and discuss common themes in mitochondrial function related to mammalian reproduction. The scientific literature was searched for studies reporting on the several aspects of mitochondrial activity in mammalian testis, sperm, oocytes, early embryos and embryonic stem cells. ATP synthesis and ROS production are the most discussed aspects of mitochondrial function. Metabolic shifts from mitochondria-produced ATP to glycolysis occur at several stages, notably during gametogenesis and early embryo development, either reflecting developmental switches or substrate availability. The exact role of sperm mitochondria is especially controversial. Mitochondria-generated ROS function in signalling but are mostly described when produced under pathological conditions. Mitochondria-based calcium signalling is primarily important in embryo activation and embryonic stem cell differentiation. Besides pathologically triggered apoptosis, mitochondria participate in apoptotic events related to the regulation of spermatogonial cell number, as well as gamete, embryo and embryonic stem cell quality. Interestingly, data from knock-out (KO) mice is not always straightforward in terms of expected phenotypes. Finally, recent data suggests that mitochondrial activity can modulate embryonic stem cell pluripotency as well as differentiation into distinct cellular fates. Mitochondria-based events regulate different aspects of reproductive function, but these are not uniform throughout the several systems reviewed. Low mitochondrial activity seems a feature of 'stemness', being described in spermatogonia, early embryo, inner cell mass cells and embryonic stem cells.
Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing
2011-10-12
Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by Darwinian positive selection acting on the male reproductive system and possibly also on the central nervous system, which sheds light on understanding the role of homeobox genes in adaptive evolution.
Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System
NASA Technical Reports Server (NTRS)
Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.
2013-01-01
The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers
Tamura, Kei; Kobayashi, Yasuhisa; Hirooka, Asuka; Takanami, Keiko; Oti, Takumi; Jogahara, Takamichi; Oda, Sen-Ichi; Sakamoto, Tatsuya; Sakamoto, Hirotaka
2017-05-01
Several regions of the brain and spinal cord control male reproductive function. We previously demonstrated that the gastrin-releasing peptide (GRP) system, located in the lumbosacral spinal cord of rats, controls spinal centers to promote penile reflexes during male copulatory behavior. However, little information exists on the male-specific spinal GRP system in animals other than rats. The objective of this study was to examine the functional generality of the spinal GRP system in mammals using the Asian house musk shrew (Suncus murinus; suncus named as the laboratory strain), a specialized placental mammal model. Mice are also used for a representative model of small laboratory animals. We first isolated complementary DNA encoding GRP in suncus. Phylogenetic analysis revealed that suncus preproGRP was clustered to an independent branch. Reverse transcription-PCR showed that GRP and its receptor mRNAs were both expressed in the lumbar spinal cord of suncus and mice. Immunohistochemistry for GRP demonstrated that the sexually dimorphic GRP system and male-specific expression/distribution patterns of GRP in the lumbosacral spinal cord in suncus are similar to those of mice. In suncus, we further found that most GRP-expressing neurons in males also express androgen receptors, suggesting that this male-dominant system in suncus is also androgen-dependent. Taken together, these results indicate that the sexually dimorphic spinal GRP system exists not only in mice but also in suncus, suggesting that this system is a conserved property in mammals. J. Comp. Neurol. 525:1586-1598, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
No Evidence for a Trade-Off between Reproductive Investment and Immunity in a Rodent
Xu, Yan-Chao; Yang, Deng-Bao; Wang, De-Hua
2012-01-01
Life history theory assumes there are trade-offs between competing functions such as reproduction and immunity. Although well studied in birds, studies of the trade-offs between reproduction and immunity in small mammals are scarce. Here we examined whether reduced immunity is a consequence of reproductive effort in lactating Brandt's voles (Lasiopodomys brandtii). Specifically, we tested the effects of lactation on immune function (Experiment I). The results showed that food intake and resting metabolic rate (RMR) were higher in lactating voles (6≤ litter size ≤8) than that in non-reproductive voles. Contrary to our expectation, lactating voles also had higher levels of serum total Immunoglobulin G (IgG) and anti-keyhole limpet hemocyanin (KLH) IgG and no change in phytohemagglutinin (PHA) response and anti-KLH Immunoglobulin M (IgM) compared with non-reproductive voles, suggesting improved rather than reduced immune function. To further test the effect of differences in reproductive investment on immunity, we compared the responses between natural large (n≥8) and small litter size (n≤6) (Experiment II) and manipulated large (11–13) and small litter size (2–3) (Experiment III). During peak lactation, acquired immunity (PHA response, anti-KLH IgG and anti-KLH IgM) was not significantly different between voles raising large or small litters in both experiments, despite the measured difference in reproductive investment (greater litter size, litter mass, RMR and food intake in the voles raising larger litters). Total IgG was higher in voles with natural large litter size than those with natural small litter size, but decreased in the enlarged litter size group compared with control and reduced group. Our results showed that immune function is not suppressed to compensate the high energy demands during lactation in Brandt's voles and contrasting the situation in birds, is unlikely to be an important aspect mediating the trade-off between reproduction and survival. PMID:22649512
Harlow, Siobán D.; Gass, Margery; Hall, Janet E.; Lobo, Roger; Maki, Pauline; Rebar, Robert W.; Sherman, Sherry; Sluss, Patrick M.; de Villiers, Tobie J.
2012-01-01
Objective The aim of this article is to summarize the recommended updates to the 2001 Stages of Reproductive Aging Workshop (STRAW) criteria. The 2011 STRAW + 10 reviewed advances in understanding of the critical changes in hypothalamic-pituitary-ovarian function that occur before and after the final menstrual period. Methods Scientists from five countries and multiple disciplines evaluated data from cohort studies of midlife women and in the context of chronic illness and endocrine disorders on change in menstrual, endocrine, and ovarian markers of reproductive aging including antimüllerian hormone, inhibin-B, follicle-stimulating hormone, and antral follicle count. Modifications were adopted by consensus. Results STRAW + 10 simplified bleeding criteria for the early and late menopausal transition, recommended modifications to criteria for the late reproductive stage (Stage –3) and the early postmenopause stage (Stage +1), provided information on the duration of the late transition (Stage–1) and early postmenopause (Stage +1), and recommended application regardless of women's age, ethnicity, body size, or lifestyle characteristics. Conclusions STRAW + 10 provides a more comprehensive basis for assessing reproductive aging in research and clinical contexts. Application of the STRAW + 10 staging system should improve comparability of studies of midlife women and facilitate clinical decision making. Nonetheless, important knowledge gaps persist, and seven research priorities are identified. PMID:22343510
Identification of a pheromone regulating caste differentiation in termites.
Matsuura, Kenji; Himuro, Chihiro; Yokoi, Tomoyuki; Yamamoto, Yuuka; Vargo, Edward L; Keller, Laurent
2010-07-20
The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reigning queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes.
Identification of a pheromone regulating caste differentiation in termites
Matsuura, Kenji; Himuro, Chihiro; Yokoi, Tomoyuki; Yamamoto, Yuuka; Vargo, Edward L.; Keller, Laurent
2010-01-01
The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reining queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes. PMID:20615972
Sterols in spermatogenesis and sperm maturation
Keber, Rok; Rozman, Damjana; Horvat, Simon
2013-01-01
Mammalian spermatogenesis is a complex developmental program in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. One intriguing aspect of sperm production is the dynamic change in membrane lipid composition that occurs throughout spermatogenesis. Cholesterol content, as well as its intermediates, differs vastly between the male reproductive system and nongonadal tissues. Accumulation of cholesterol precursors such as testis meiosis-activating sterol and desmosterol is observed in testes and spermatozoa from several mammalian species. Moreover, cholesterogenic genes, especially meiosis-activating sterol-producing enzyme cytochrome P450 lanosterol 14α-demethylase, display stage-specific expression patterns during spermatogenesis. Discrepancies in gene expression patterns suggest a complex temporal and cell-type specific regulation of sterol compounds during spermatogenesis, which also involves dynamic interactions between germ and Sertoli cells. The functional importance of sterol compounds in sperm production is further supported by the modulation of sterol composition in spermatozoal membranes during epididymal transit and in the female reproductive tract, which is a prerequisite for successful fertilization. However, the exact role of sterols in male reproduction is unknown. This review discusses sterol dynamics in sperm maturation and describes recent methodological advances that will help to illuminate the complexity of sperm formation and function. PMID:23093550
Characterization of gonadal transcriptomes from the turbot (Scophthalmus maximus).
Hu, Yulong; Huang, Meng; Wang, Weiji; Guan, Jiantao; Kong, Jie
2016-01-01
The mechanisms underlying sexual reproduction and sex ratio determination remains unclear in turbot, a flatfish of great commercial value. And there is limited information in the turbot database regarding genes related to the reproductive system. Here, we conducted high-throughput transcriptome profiling of turbot gonad tissues to better understand their reproductive functions and to supply essential gene sequence information for marker-assisted selection programs in the turbot industry. In this study, two gonad libraries representing sex differences in Scophthalmus maximus yielded 453 818 high-quality reads that were assembled into 24 611 contigs and 33 713 singletons by using 454 pyrosequencing, 13 936 contigs and singletons (CS) of which were annotated using BLASTx. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that various biological functions and processes were associated with many of the annotated CS. Expression analyses showed that 510 genes were differentially expressed in males versus females; 80% of these genes were annotated. In addition, 6484 and 6036 single nucleotide polymorphisms (SNPs) were identified in male and female libraries, respectively. This transcriptome resource will serve as the foundation for cDNA or SNP microarray construction, gene expression characterization, and sex-specific linkage mapping in turbot.
Brain Endothelial Cells Control Fertility through Ovarian-Steroid–Dependent Release of Semaphorin 3A
Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G.; Tamagnone, Luca; Prevot, Vincent
2014-01-01
Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3a loxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction. PMID:24618750
Giacobini, Paolo; Parkash, Jyoti; Campagne, Céline; Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G; Tamagnone, Luca; Prevot, Vincent
2014-03-01
Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.
Iwanowicz, L.R.; Blazer, V.S.
2011-01-01
Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.
Human sexual conflict from molecules to culture.
Gorelik, Gregory; Shackelford, Todd K
2011-12-15
Coevolutionary arms races between males and females have equipped both sexes with mutually manipulative and defensive adaptations. These adaptations function to benefit individual reproductive interests at the cost of the reproductive interests of opposite-sex mates, and arise from evolutionary dynamics such as parental investment (unequal reproductive costs between the sexes) and sexual selection (unequal access to opposite-sex mates). Individuals use these adaptations to hijack others' reproductive systems, psychological states, and behaviors--essentially using other individuals as extended phenotypes of themselves. Such extended phenotypic manipulation of sexual rivals and opposite-sex mates is enacted by humans with the aid of hormones, pheromones, neurotransmitters, emotions, language, mind-altering substances, social institutions, technologies, and ideologies. Furthermore, sexual conflict may be experienced at an individual level when maternal genes and paternal genes are in conflict within an organism. Sexual conflict may be physically and emotionally destructive, but may also be exciting and constructive for relationships. By extending the biological concept of sexual conflict into social and cultural domains, scholars may successfully bridge many of the interdisciplinary gaps that separate the sciences from the humanities.
Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L.; Deviche, Pierre
2015-01-01
ABSTRACT Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary–gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. PMID:26333925
Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre
2015-07-10
Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none has investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's Towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone (T) responsiveness of the HPG axis. Wild-caught birds were either ad libitum-fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma T response to GnRH challenge. Energy deficiency did, however, decrease the plasma T responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting in decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.
Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre
2015-09-01
Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.
USDA-ARS?s Scientific Manuscript database
The objectives of this study were (1) to evaluate the ability of trenbolone acetate (TBA) administered in tandem with LHRH immunization to suppress reproductive function in beef bulls and (2) to examine the effects of LHRH and androgen (TBA) signaling on pituitary function. In order to address thes...
The testicular-hypothalamic-pituitary axis regulates male reproductive system functions. A model describing the kinetics and dynamics of testosterone (T), dihydrotestosterone (DHT) and luteinizing hormone (LH) was developed based on a model by Barton and Anderson (1997). The mode...
EFFECTS OF SELENIUM ON MALLARD DUCK REPRODUCTION AND IMMUNE FUNCTION
Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. Our objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of a...
Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei
2017-07-01
Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.
Analysis of SI models with multiple interacting populations using subpopulations.
Thomas, Evelyn K; Gurski, Katharine F; Hoffman, Kathleen A
2015-02-01
Computing endemic equilibria and basic reproductive numbers for systems of differential equations describing epidemiological systems with multiple connections between subpopulations is often algebraically intractable. We present an alternative method which deconstructs the larger system into smaller subsystems and captures the interactions between the smaller systems as external forces using an approximate model. We bound the basic reproductive numbers of the full system in terms of the basic reproductive numbers of the smaller systems and use the alternate model to provide approximations for the endemic equilibrium. In addition to creating algebraically tractable reproductive numbers and endemic equilibria, we can demonstrate the influence of the interactions between subpopulations on the basic reproductive number of the full system. The focus of this paper is to provide analytical tools to help guide public health decisions with limited intervention resources.
Emery Thompson, Melissa; Wilson, Michael L; Gobbo, Grace; Muller, Martin N; Pusey, Anne E
2008-11-01
Chimpanzees in Gombe National Park consume fruits of Vitex fischeri during a short annual fruiting season. This fruit species is a member of a genus widely studied for phytoestrogen composition and varied physiological effects. One particularly well-studied species, V. agnus-castus, is noted for its documented effects on female reproductive function, evidenced in increased progesterone levels and consequent regulation of luteal function. We examined reproductive hormone levels in both male and female chimpanzees during a 6-week period of intense V. fischeri consumption. V. fischeri consumption was associated with an abrupt and dramatic increase in urinary progesterone levels of female chimpanzees to levels far exceeding the normal range of variation. Female estrogen levels were not significantly impacted, nor were male testosterone levels. These are some of the first data indicating that phytochemicals in the natural diet of a primate can have significant impacts on the endocrine system, though the fluctuating nature of chimpanzee diet and reproductive function does not allow us to determine whether the effects observed during this short period had a broader positive or negative impact on female fertility. Given the widespread use of various Vitex species by African primates and the as-yet-undescribed phytochemical properties of these species, we predict that our observations may be indicative of a broader phenomenon. Copyright 2008 Wiley-Liss, Inc.
Reproductive choice in Islam: gender and state in Iran and Tunisia.
Obermeyer, C M
1994-01-01
This report examines the extent to which reproductive choice is compatible with Islamic principles. It presents the argument that the impact of Islam on reproductive choice is largely a function of the political context in which gender issues are defined. Indicators of reproductive health in countries of the Middle East are reviewed and the way these relate to constraints on reproductive choice is assessed. The examples of Tunisia and Iran are used to illustrate the way in which Islam is invoked to legitimate conflicting positions concerning women and their reproductive options.
Quillet, Raphaëlle; Ayachi, Safia; Bihel, Frédéric; Elhabazi, Khadija; Ilien, Brigitte; Simonin, Frédéric
2016-04-01
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed. Copyright © 2016 Elsevier Inc. All rights reserved.
Jung, Seok-Won; Kim, Hyeon-Joong; Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyun-Sook; Choi, Yang-Kyu; Kim, Joon Yong; Kim, Eun-Soo; Hwang, Sung-Hee; Lim, Kwang Yong; Kim, Hyoung-Chun; Jang, Minhee; Park, Seong Kyu; Cho, Ik-Hyun; Nah, Seung-Yeol
2015-07-01
Anticancer agents induce a variety of adverse effects when administered to cancer patients. Busulfan is a known antileukemia agent. When administered for treatment of leukemia in young patients, busulfan could cause damage to the male reproductive system as one of its adverse effects, resulting in sterility. We investigated the effects of Korean Red Ginseng extract (KRGE) on busulfan-induced damage and/or dysfunction of the male reproductive system. We found that administration of busulfan to mice: decreased testis weight; caused testicular histological damage; reduced the total number of sperm, sperm motility, serum testosterone concentration; and eventually, litter size. Preadministration of KRGE partially attenuated various busulfan-induced damages to the male reproductive system. These results indicate that KRGE has a protective effect against busulfan-induced damage to the male reproduction system. The present study shows a possibility that KRGE could be applied as a useful agent to prevent or protect the male reproductive system from the adverse side effects induced by administration of anticancer agents such as busulfan.
Mageroy, Jon H; Grepperud, Eldfrid J; Jensen, Knut Helge
2011-12-01
We investigated whether parasites or hosts benefit from reduced reproduction in infected hosts. When parasites castrate their hosts, the regain of host reproduction is necessary for castration to be a host adaptation. When infecting Daphnia magna with Pasteuria ramosa, in a lake water based medium, 49 2% of the castrated females regained reproduction. We investigated the relationship between castration level, and parasite and host fitness proxies to determine the adaptive value of host castration. Hosts which regained reproduction contained less spores and had a higher lifetime reproduction than permanently castrated hosts. We also found a negative correlation between parasite and host lifetime reproduction. For hosts which regained reproduction we found no optimal level of castration associated with lifetime reproduction. These results support the view that host castration only is adaptive to the parasite in this system. In addition, we suggest that permanent castration might not be the norm under natural conditions in this system. Finally, we argue that a reduction in host reproduction is more likely to evolve as a property favouring parasites rather than hosts. To our knowledge this is the only experimental study to investigate the adaptive value of reduced host reproduction when castrated hosts can regain reproduction.
Health costs of reproduction are minimal despite high fertility, mortality and subsistence lifestyle
Gurven, Michael; Costa, Megan; Ben Trumble; Stieglitz, Jonathan; Beheim, Bret; Eid Rodriguez, Daniel; Hooper, Paul L.; Kaplan, Hillard
2016-01-01
Women exhibit greater morbidity than men despite higher life expectancy. An evolutionary life history framework predicts that energy invested in reproduction trades-off against investments in maintenance and survival. Direct costs of reproduction may therefore contribute to higher morbidity, especially for women given their greater direct energetic contributions to reproduction. We explore multiple indicators of somatic condition among Tsimane forager-horticulturalist women (Total Fertility Rate = 9.1; n = 592 aged 15–44 years, n = 277 aged 45+). We test whether cumulative live births and the pace of reproduction are associated with nutritional status and immune function using longitudinal data spanning 10 years. Higher parity and faster reproductive pace are associated with lower nutritional status (indicated by weight, body mass index, body fat) in a cross-section, but longitudinal analyses show improvements in women’s nutritional status with age. Biomarkers of immune function and anemia vary little with parity or pace of reproduction. Our findings demonstrate that even under energy-limited and infectious conditions, women are buffered from the potential depleting effects of rapid reproduction and compound offspring dependency characteristic of human life histories. PMID:27436412
Thomas, Peter
2012-01-01
Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its “pregenomic” signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology. PMID:22495674
York, Raymond G; Kennedy, Gerald L; Olsen, Geary W; Butenhoff, John L
2010-04-30
Ammonium perfluorooctanoate (ammonium PFOA) is an industrial surfactant that has been used primarily as a processing aid in the manufacture of fluoropolymers. The environmental and metabolic stability of PFOA together with its presence in human blood and long elimination half-life have led to extensive toxicological studies in laboratory animals. Two recent publications based on observations from the Danish general population have reported: (1) a negative association between serum concentrations of PFOA in young adult males and their sperm counts and (2) a positive association among women with time to pregnancy. A two-generation reproduction study in rats was previously published (2004) in which no effects on functional reproduction were observed at doses up to 30mg ammonium PFOA/kg body weight. The article contained the simple statement: "In males, fertility was normal as were all sperm parameters". In order to place the recent human epidemiological data in perspective, herein we provide the detailed male reproductive parameters from that study, including sperm quality and testicular histopathology. Sperm parameters in rats from the two-generation study in all ammonium PFOA treatment groups were unaffected by treatment with ammonium PFOA. These observations reflected the normal fertility observations in these males. No evidence of altered testicular and sperm structure and function was observed in ammonium PFOA-treated rats whose mean group serum PFOA concentrations ranged up to approximately 50,000ng/mL. Given that median serum PFOA in the Danish cohorts was approximately 5ng/mL, it seems unlikely that concentrations observed in the general population, including those recently reported in Danish general population, could be associated causally with a real decrement in sperm number and quality.
Filardo, Edward J; Thomas, Peter
2012-07-01
Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its "pregenomic" signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology.
Krajnak, K; Sriram, K; Johnson, C; Roberts, J R; Mercer, R; Miller, G R; Wirth, O; Antonini, J M
2017-01-01
Exposure to welding fumes may result in disorders of the pulmonary, cardiovascular, and reproductive systems. Welders are also at a greater risk of developing symptoms similar to those seen in individuals with idiopathic Parkinson's disease. In welders, there are studies that suggest that alterations in circulating prolactin concentrations may be indicative of injury to the dopamine (DA) neurons in the substantia nigra. The goal of these studies was to use an established model of welding particulate exposure to mimic the effects of welding fume inhalation on reproductive functions. Since previous investigators suggested that changes in circulating prolactin may be an early marker of DA neuron injury, movement disorders, and reproductive dysfunction, prolactin, hypothalamic tyrosine hydroxylase (TH) levels (a marker of DA synthesis), and other measures of hypothalamic-pituitary-gonadal (HPG) function were measured after repetitive instillation of welding fume particulates generated by flux core arc-hard surfacing (FCA-HS), manual metal arc-hard surfacing (MMA-HS) or gas metal arc-mild steel (GMA-MS) welding, or manganese chloride (MnCl 2 ). Exposure to welding fume particulate resulted in the accumulation of various metals in the pituitary and testes of rats, along with changes in hypothalamic TH and serum prolactin levels. Exposure to particulates with high concentrations of soluble manganese (Mn) appeared to exert the greatest influence on TH activity levels and serum prolactin concentrations. Thus, circulating prolactin levels may serve as a biomarker for welding fume/Mn-induced neurotoxicity. Other reproductive measures were collected, and these data were consistent with epidemiological findings that prolactin and testosterone may serve as biomarkers of welding particulate induced DA neuron and reproductive dysfunction.
Reproduction of Epstein-Barr Virus Infection and Pathogenesis in Humanized Mice
2014-01-01
Epstein-Barr virus (EBV) is etiologically associated with a variety of diseases including lymphoproliferative diseases, lymphomas, carcinomas, and autoimmune diseases. Humans are the only natural host of EBV and limited species of new-world monkeys can be infected with the virus in experimental conditions. Small animal models of EBV infection, required for evaluation of novel therapies and vaccines for EBV-associated diseases, have not been available. Recently the development of severely immunodeficient mouse strains enabled production of humanized mice in which human immune system components are reconstituted and express their normal functions. Humanized mice can serve as infection models for human-specific viruses such as EBV that target cells of the immune system. This review summarizes recent studies by the author's group addressing reproduction of EBV infection and pathogenesis in humanized mice. PMID:24605074
Cooperation, conflict, and the evolution of queen pheromones.
Kocher, Sarah D; Grozinger, Christina M
2011-11-01
While chemical communication regulates individual behavior in a wide variety of species, these communication systems are most elaborated in insect societies. In these complex systems, pheromones produced by the reproductive individuals (queens) are critical in establishing and maintaining dominant reproductive status over hundreds to thousands of workers. The proximate and ultimate mechanisms by which these intricate pheromone communication systems evolved are largely unknown, though there has been much debate over whether queen pheromones function as a control mechanism or as an honest signal facilitating cooperation. Here, we summarize results from recent studies in honey bees, bumble bees, wasps, ants and termites. We further discuss evolutionary mechanisms by which queen pheromone communication systems may have evolved. Overall, these studies suggest that queen-worker pheromone communication is a multi-component, labile dialog between the castes, rather than a simple, fixed signal-response system. We also discuss future approaches that can shed light on the proximate and ultimate mechanisms that underlie these complex systems by focusing on the development of increasingly sophisticated genomic tools and their potential applications to examine the molecular mechanisms that regulate pheromone production and perception.
Design: Reviewed articles indexed in PubMed from 1999-2007 addressing environment and puberty, menstrual and ovarian function, fertility, and menopause. Results: The strongest evidence of environmental contaminant exposures interfering with healthy reproductive function in adu...
Ruiz, Mayté; French, Susannah S; Demas, Gregory E; Martins, Emília P
2010-02-01
The energetic resources in an organism's environment are essential for executing a wide range of life-history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases, and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to Escherichia coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. Copyright 2009 Elsevier Inc. All rights reserved.
Ruiz, Mayté; French, Susannah S.; Demas, Gregory E.; Martins, Emília P.
2009-01-01
The energetic resources in an organism’s environment are essential for executing a wide range of life history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases; and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to E. coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species. PMID:19800885
MECHANISMS OF MALE REPRODUCTIVE TOXICITY: BED, BATH AND BEYOND
Male reproductive function depends upon the integration of a great number of highly complex biological processes and their endocrine support. Therefore it is not surprising that male reproductive health can be impaired by exposures to drugs and environmental toxicants that impact...
Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines.
Hussain, Ashiq; Zhang, Mo; Üçpunar, Habibe K; Svensson, Thomas; Quillery, Elsa; Gompel, Nicolas; Ignell, Rickard; Grunwald Kadow, Ilona C
2016-05-01
The ability to find and consume nutrient-rich diets for successful reproduction and survival is fundamental to animal life. Among the nutrients important for all animals are polyamines, a class of pungent smelling compounds required in numerous cellular and organismic processes. Polyamine deficiency or excess has detrimental effects on health, cognitive function, reproduction, and lifespan. Here, we show that a diet high in polyamine is beneficial and increases reproductive success of flies, and we unravel the sensory mechanisms that attract Drosophila to polyamine-rich food and egg-laying substrates. Using a combination of behavioral genetics and in vivo calcium imaging, we demonstrate that Drosophila uses multisensory detection to find and evaluate polyamines present in overripe and fermenting fruit, their favored feeding and egg-laying substrate. In the olfactory system, two coexpressed ionotropic receptors (IRs), IR76b and IR41a, mediate the long-range attraction to the odor. In the gustatory system, multimodal taste sensation by IR76b receptor and GR66a bitter receptor neurons is used to evaluate quality and valence of the polyamine providing a mechanism for the fly's high attraction to polyamine-rich and sweet decaying fruit. Given their universal and highly conserved biological roles, we propose that the ability to evaluate food for polyamine content may impact health and reproductive success also of other animals including humans.
Mammalian target of rapamycin (mTOR): a central regulator of male fertility?
Jesus, Tito T.; Oliveira, Pedro F.; Sousa, M ario; Cheng, C. Yan; Alves, Marco G.
2017-01-01
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermato-genesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system. PMID:28124577
Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines
Üçpunar, Habibe K.; Svensson, Thomas; Quillery, Elsa; Gompel, Nicolas; Ignell, Rickard; Grunwald Kadow, Ilona C.
2016-01-01
The ability to find and consume nutrient-rich diets for successful reproduction and survival is fundamental to animal life. Among the nutrients important for all animals are polyamines, a class of pungent smelling compounds required in numerous cellular and organismic processes. Polyamine deficiency or excess has detrimental effects on health, cognitive function, reproduction, and lifespan. Here, we show that a diet high in polyamine is beneficial and increases reproductive success of flies, and we unravel the sensory mechanisms that attract Drosophila to polyamine-rich food and egg-laying substrates. Using a combination of behavioral genetics and in vivo calcium imaging, we demonstrate that Drosophila uses multisensory detection to find and evaluate polyamines present in overripe and fermenting fruit, their favored feeding and egg-laying substrate. In the olfactory system, two coexpressed ionotropic receptors (IRs), IR76b and IR41a, mediate the long-range attraction to the odor. In the gustatory system, multimodal taste sensation by IR76b receptor and GR66a bitter receptor neurons is used to evaluate quality and valence of the polyamine providing a mechanism for the fly’s high attraction to polyamine-rich and sweet decaying fruit. Given their universal and highly conserved biological roles, we propose that the ability to evaluate food for polyamine content may impact health and reproductive success also of other animals including humans. PMID:27145030
Gao, Shanshan; Xiong, Wenfeng; Wei, Luting; Liu, Juanjuan; Liu, Xing; Xie, Jia; Song, Xiaowen; Bi, Jingxiu; Li, Bin
2018-06-01
Latrophilin of Tribolium castaneum (Tclph) has been reported to play crucial roles in growth, development and reproduction. However, the regulatory mechanism of Tclph associated with these physiology processes is unknown. Thus, the global transcriptome profiles between RNAi treated (ds-Tclph) and control larvae of T. castaneum were analyzed by RNA-sequencing. Totally, 274 differentially expressed genes (DEGs) were identified between the ds-Tclph and control samples. These DEGs were classified into 42 GO functional groups, including developmental process, reproduction and stress response. The results indicated that knockdown of Tclph disturbed the antioxidant activity process, and partially inhibited the serine protease (SP) and lipase signaling pathways to regulate the development and reproduction as well as the decreasing of the stress response in T. castaneum. Additionally, knockdown of Tclph suppressed IMD immunity pathways which likely modulated the effects of Tclph on stress response. Interestingly, CSPs, ESTs, CYPs, AOXs and BGs were significantly down-regulated in ds-Tclph larvae, implying that they cooperated with Tclph to reduce the activity of cellular metabolism system. FMOs was up-regulated in ds-Tclph insects suggested it may be involved in detoxifying alkaloid of insect metabolism system. These results implied that Tclph participated in phase 0, I and II cellular detoxification. Furthermore, RNAi against Tclph increased larval susceptibility to carbamates and organophosphates insecticides, supporting that Tclph was indeed involved into the insecticide susceptibility in T. castaneum.
Condition-dependent chemosignals in reproductive behavior of lizards.
Martín, José; López, Pilar
2015-02-01
This article is part of a Special Issue "Chemosignals and Reproduction". Many lizards have diverse glands that produce chemosignals used in intraspecific communication and that can have reproductive consequences. For example, information in chemosignals of male lizards can be used in intrasexual competition to identify and assess the fighting potential or dominance status of rival males either indirectly through territorial scent-marks or during agonistic encounters. Moreover, females of several lizard species "prefer" to establish or spend more time on areas scent-marked by males with compounds signaling a better health or body condition or a higher genetic compatibility, which can have consequences for their mating success and inter-sexual selection processes. We review here recent studies that suggest that the information content of chemosignals of lizards may be reliable because several physiological and endocrine processes would regulate the proportions of chemical compounds available for gland secretions. Because chemosignals are produced by the organism or come from the diet, they should reflect physiological changes, such as different hormonal levels (e.g. testosterone or corticosterone) or different health states (e.g. parasitic infections, immune response), and reflect the quality of the diet of an individual. More importantly, some compounds that may function as chemosignals also have other important functions in the organism (e.g. as antioxidants or regulating the immune system), so there could be trade-offs between allocating these compounds to attending physiological needs or to produce costly sexual "chemical ornaments". All these factors may contribute to maintain chemosignals as condition-dependent sexual signals, which can inform conspecifics on the characteristics and state of the sender and allow making behavioral decisions with reproductive consequences. To understand the evolution of chemical secretions of lizards as sexual signals and their relevance in reproduction, future studies should examine what information the signals are carrying, the physiological processes that can maintain the reliability of the message and how diverse behavioral responses to chemosignals may influence reproductive success. Copyright © 2014 Elsevier Inc. All rights reserved.
Neethling, Lourelle Alicia Martins; Avenant-Oldewage, Annemariè
2015-02-01
The morphology of the male reproductive system as well as sperm transfer in Branchiura has been described for Dolops ranarum and Argulus japonicus. In this study, the reproductive system and accessory structures are described for male Chonopeltis australis using histology, light microscopy, and scanning electron microscopy. For the first time, we describe sperm transfer by means of a spermatophore in this genus. The internal and external morphology and mechanism of sperm transfer is compared with other Branchiura, where it has been described. The morphology of the reproductive system of C. australis is similar to that of D. ranarum while the accessory structures and the spermatophore produced are similar to that of A. japonicus. A revision of the definition of Branchiura with respect to reproduction is provided. © 2014 Wiley Periodicals, Inc.
Prendergast, Brian J; Pyter, Leah M; Galang, Jerome; Kay, Leslie M
2009-03-02
In reproductively photoperiodic Syrian hamsters, removal of the olfactory bulbs (OBx) leads to a marked and sustained increase in gonadotrophin secretion which prevents normal testicular regression in short photoperiods. In contrast, among reproductively nonphotoperiodic laboratory strains of rats and mice, bulbectomy unmasks reproductive responses to photoperiod. The role of the olfactory bulbs has been proposed to have opposite effects on responsiveness to photoperiod, depending on the photoperiodicity of the reproductive system; however, Syrian hamsters are the only reproductively photoperiodic rodent species for which the role of the olfactory bulb in reproductive endocrinology has been assessed. This experiment evaluated the role of the olfactory bulbs in the photoperiodic control of reproduction in Siberian hamsters (Phodopus sungorus), an established model species for the study of neural substrates mediating seasonality. Relative to control hamsters housed in long days (15 h light/day), exposure of adult male hamsters to short days (9h light/day) for 8 weeks led to a temporal expansion of the pattern of nocturnal locomotor activity, testicular regression, decreases in testosterone (T) production, and undetectable levels of plasma follicle-stimulating hormone (FSH). Bilateral olfactory bulbectomy failed to affect any of these responses to short days. The patterns of entrainment to long and short days suggests that pre-pineal mechanisms involved in photoperiodic timekeeping are functioning normally in OBx hamsters. The absence of increases in FSH following bulbectomy in long days is incompatible with the hypothesis that the olfactory bulbs provide tonic inhibition of the HPG axis in this species. In marked contrast to Syrian hamsters, the olfactory bulbs of Siberian hamsters play essentially no role in the modulation of tonic gonadotrophin production or gonadotrophin responses to photoperiod.
Lyons, Kady; Chabot, Chris L; Mull, Christopher G; Paterson Holder, Corinne N; Lowe, Christopher G
2017-08-01
Polyandry resulting in multiply-sired litters has been documented in the majority of elasmobranch species examined to date. Although commonly observed, reasons for this mating system remain relatively obscure, especially in batoids. The round stingray ( Urobatis halleri ) is an abundant, well-studied elasmobranch distributed throughout the northeastern Pacific that we used to explore hypotheses regarding multiple paternity in elasmobranchs. Twenty mid- to late-term pregnant females were sampled off the coast of southern California and their litters analyzed for the occurrence of multiple paternity using five nuclear microsatellite loci. In addition, embryo sizes and their position within the female reproductive system (i.e., right or left uterus) were recorded and used to make inferences for patterns of ovulation. Multiple paternity was observed in 90% of litters and male reproductive success within litters was relatively even among sires. High variability in testes mass was observed suggesting that sperm competition is high in this species, although male reproductive success per litter appeared to be relatively even. Using embryo size as a proxy for fertilization, females were found to exhibit a variety of ovulation patterns that could function to limit a male's access to eggs and possibly promote high rates of multiple paternity. Our study highlights that elasmobranch mating systems may be more varied and complex than presumed and further investigation is warranted.
Who or What? Self-Replication and Function-Reproduction in the Origin of Life
NASA Technical Reports Server (NTRS)
New, Michael H.; Stassinopoulos, Dimitris; Monaco, Regina; Pohorille, Andrew; DeVincenzi, Donald (Technical Monitor)
2002-01-01
In this presentation, we will present results on the fundamental properties of two classes of replicating systems: autocatalytic replicators that reproduce exact copies of a template molecule, and function reproducers that maintain a set of essential functions without replicating the identities of the functional moieties. We will describe the stability and behavior in-the-large of autocatalytic replicators. Most importantly, we have found no sharp distinction between an autocatalytic and a non-autocatalytic domain. We will also present a new derivation of von Kiedrowski's square-root rate law. Function - reproducers are proposed as an important component of protocells and we will present theoretical results on a simple model system that incorporates known peptide biophysics. For a wide range of parameters, we have shown that this type of system can improve its overall performance, even in the absence of any method for information storage. This type of system improvement is defined to be non-genomic evolution.
Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology.
Guzel, Elif; Arlier, Sefa; Guzeloglu-Kayisli, Ozlem; Tabak, Mehmet Selcuk; Ekiz, Tugba; Semerci, Nihan; Larsen, Kellie; Schatz, Frederick; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-04-08
The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition. Conversely, the contribution of impaired ER homeostasis by severe/prolong ER stress-mediated UPR signaling pathways to several reproductive tissue pathologies including endometriosis, cancers, recurrent pregnancy loss and pregnancy complications associated with pre-term birth have been reported. This review focuses on ER stress and UPR signaling mechanisms, and their potential roles in female and male reproductive physiopathology involving in menstrual cycle changes, gametogenesis, preimplantation embryo development, implantation and placentation, labor, endometriosis, pregnancy complications and preterm birth as well as reproductive system tumorigenesis.
Wahab, Fazal; Shahab, Muhammad; Behr, Rüdiger
2016-10-01
A large body of data suggests that body weight influences puberty onset and adult reproduction. However, the underlying mechanism of how body weight influences puberty onset and fertility is not completely understood. The hypothalamic neuronal circuit regulating reproduction is restrained by inhibitory signals during childhood. At the time of puberty, these inhibitory signals are weakened and supplanted by stimulatory signals that, in turn, stimulate the release of gonadotropin-releasing hormone (GnRH) - a hypothalamic neuropeptide governing reproduction. A number of studies, however, suggest that puberty commencement occurs when body (fat) weight reaches a certain threshold, which is critical for the initiation of puberty and for support of the adult reproductive function. Previously, various signals have been studied which might link body (fat) weight-related information to the hypothalamic neuronal network regulating reproduction. However, the nature of the signal(s) that may link body fat and/or muscle mass with the hypothalamic neuronal network governing reproduction is still unclear. It has been intuitively speculated that augmentation of such signal(s) will cause a restriction of inhibitory input and activation of stimulatory input to GnRH secreting neurons at the time of puberty onset. Therefore, the unveiling of such signal(s) will greatly help in understanding the mechanism of puberty onset. Recently, it has been shown that expression of fibronectin type III domain containing-5 (FNDC5) mRNA in central and peripheral tissues upsurges during postnatal development, especially around the time of puberty onset. Moreover, the systemic level of irisin - one of the protein products of the FNDC5 gene that is secreted as myokine and adipokine - also rises during postnatal development and correlates with the timing of puberty onset. Therefore, we propose here that irisin might serve as a possible signal for linking body fat/muscle mass with the hypothalamic center governing reproductive function. We hypothesize that irisin acts as a trigger for the activation of the hypothalamic neuronal network monitoring the onset of puberty. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology
Guzel, Elif; Arlier, Sefa; Guzeloglu-Kayisli, Ozlem; Tabak, Mehmet Selcuk; Ekiz, Tugba; Semerci, Nihan; Larsen, Kellie; Schatz, Frederick; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-01-01
The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition. Conversely, the contribution of impaired ER homeostasis by severe/prolong ER stress-mediated UPR signaling pathways to several reproductive tissue pathologies including endometriosis, cancers, recurrent pregnancy loss and pregnancy complications associated with pre-term birth have been reported. This review focuses on ER stress and UPR signaling mechanisms, and their potential roles in female and male reproductive physiopathology involving in menstrual cycle changes, gametogenesis, preimplantation embryo development, implantation and placentation, labor, endometriosis, pregnancy complications and preterm birth as well as reproductive system tumorigenesis. PMID:28397763
Ovarian and Uterine Functions in Female Survivors of Childhood Cancers.
Oktem, Ozgur; Kim, Samuel S; Selek, Ugur; Schatmann, Glenn; Urman, Bulent
2018-02-01
Adult survivors of childhood cancers are more prone to developing poor reproductive and obstetrical outcomes than their siblings and the general population as a result of previous exposure to chemotherapy and radiation during childhood. Chemotherapy drugs exert cytotoxic effects systemically and therefore can damage the ovaries, leading to infertility, premature ovarian failure, and, to a lesser extent, spontaneous abortions. They have very limited or no deleterious effects on the uterus that can be recognized clinically. By contrast, radiation is detrimental to both the ovaries and the uterus, thereby causing a greater magnitude of adverse effects on the female reproductive function. These include infertility, premature ovarian failure, miscarriage, fetal growth restrictions, perinatal deaths, preterm births, delivery of small-for-gestational-age infants, preeclampsia, and abnormal placentation. Regrettably, the majority of these adverse outcomes arise from radiation-induced uterine injury and are reported at higher incidence in the adult survivors of childhood cancers who were exposed to uterine radiation during childhood in the form of pelvic, spinal, or total-body irradiation. Recent findings of long-term follow-up studies evaluating reproductive performance of female survivors provided some reassurance to female cancer survivors by documenting that pregnancy and live birth rates were not significantly compromised in survivors, including those who had been treated with alkylating agents and had not received pelvic, cranial, and total-body irradiation. We aimed in this narrative review article to provide an update on the impact of chemotherapy and radiation on the ovarian and uterine function in female survivors of childhood cancer. Adult survivors of childhood cancers are more prone to developing a number of poor reproductive and obstetrical outcomes than their siblings and the general population as a result of previous exposure to chemotherapy and radiation during childhood. The impact of radiation therapy on the female genital system is greater than chemotherapy regimens because radiation is detrimental to both the uterus and the ovaries, whereas toxic effects of chemotherapy drugs are confined to the ovaries. Therefore, radiation-induced uterine damage accounts for most poor obstetrical outcomes in the survivors. These include infertility, miscarriages, stillbirths, fetal growth restrictions, preeclampsia, and preterm deliveries. © AlphaMed Press 2017.
Le Moal, Joëlle; Sharpe, Richard M; Jϕrgensen, Niels; Levine, Hagai; Jurewicz, Joanna; Mendiola, Jaime; Swan, Shanna H; Virtanen, Helena; Christin-Maître, Sophie; Cordier, Sylvaine; Toppari, Jorma; Hanke, Wojciech
2016-02-01
Worrying trends regarding human reproductive endpoints (e.g. semen quality, reproductive cancers) have been reported and there is growing circumstantial evidence for a possible causal link between these trends and exposure to endocrine disrupting chemicals (EDCs). However, there is a striking lack of human data to fill the current knowledge gaps. To answer the crucial questions raised on human reproductive health, there is an urgent need for a reproductive surveillance system to be shared across countries. A multidisciplinary network named HUman Reproductive health and Global ENvironment Network (HURGENT) was created aiming at designing a European monitoring system for reproductive health indicators. Collaborative work allowed setting up the available knowledge to design such a system. Furthermore we conducted an overview of 23 potential indicators, based upon a weight of evidence (WoE) approach according to their potential relation with EDC exposure. The framework and purposes of the surveillance system are settled as well as the approach to select suitable reproductive indicators. The indicators found with the highest scores according to the WoE approach are prostate and breast cancer incidence, sex ratio, endometriosis and uterine fibroid incidence, indicators related to the testicular dysgenesis syndrome, precocious puberty incidence and reproductive hormone levels. Not only sentinel health endpoints, but also diseases with high burdens in public health are highlighted as prior indicators in the context of EDC exposure. Our work can serve as a basis to construct, as soon as possible, the first multi-country reproductive monitoring system. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Discrete two-sex models of population dynamics: On modelling the mating function
NASA Astrophysics Data System (ADS)
Bessa-Gomes, Carmen; Legendre, Stéphane; Clobert, Jean
2010-09-01
Although sexual reproduction has long been a central subject of theoretical ecology, until recently its consequences for population dynamics were largely overlooked. This is now changing, and many studies have addressed this issue, showing that when the mating system is taken into account, the population dynamics depends on the relative abundance of males and females, and is non-linear. Moreover, sexual reproduction increases the extinction risk, namely due to the Allee effect. Nevertheless, different studies have identified diverse potential consequences, depending on the choice of mating function. In this study, we investigate the consequences of three alternative mating functions that are frequently used in discrete population models: the minimum; the harmonic mean; and the modified harmonic mean. We consider their consequences at three levels: on the probability that females will breed; on the presence and intensity of the Allee effect; and on the extinction risk. When we consider the harmonic mean, the number of times the individuals of the least abundant sex mate exceeds their mating potential, which implies that with variable sex-ratios the potential reproductive rate is no longer under the modeller's control. Consequently, the female breeding probability exceeds 1 whenever the sex-ratio is male-biased, which constitutes an obvious problem. The use of the harmonic mean is thus only justified if we think that this parameter should be re-defined in order to represent the females' breeding rate and the fact that females may reproduce more than once per breeding season. This phenomenon buffers the Allee effect, and reduces the extinction risk. However, when we consider birth-pulse populations, such a phenomenon is implausible because the number of times females can reproduce per birth season is limited. In general, the minimum or modified harmonic mean mating functions seem to be more suitable for assessing the impact of mating systems on population dynamics.
Evolutionary fitness as a function of pubertal age in 22 subsistence-based traditional societies
2011-01-01
Context The age of puberty has fallen over the past 130 years in industrialized, western countries, and this fall is widely referred to as the secular trend for earlier puberty. The current study was undertaken to test two evolutionary theories: (a) the reproductive system maximizes the number of offspring in response to positive environmental cues in terms of energy balance, and (b) early puberty is a trade-off response for high mortality rate and reduced resource availability. Methods Using a sample of 22 natural-fertility societies of mostly tropical foragers, horticulturalists, and pastoralists from Africa, South America, Australia, and Southeastern Asia, this study compares indices of adolescence growth and menarche with those of fertility fitness in these non-industrial, traditional societies. Results The average age at menarche correlated with the first reproduction, but did not correlate with the total fertility rate TFR or reproductive fitness. The age at menarche correlated negatively with their average adult body mass, and the average adult body weight positively correlated with reproductive fitness. Survivorship did not correlate with the age at menarche or age indices of the adolescent growth spurt. The population density correlated positively with the age at first reproduction, but not with menarche age, TFR, or reproductive fitness. Conclusions Based on our analyses, we reject the working hypotheses that reproductive fitness is enhanced in societies with early puberty or that early menarche is an adaptive response to greater mortality risk. Whereas body mass is a measure of resources is tightly associated with fitness, the age of menarche is not. PMID:21860629
Pinzón-Flórez, Carlos Eduardo; Fernandez-Niño, Julian Alfredo; Cardenas-Cardenas, Luz Mery; Díaz-Quijano, Diana Marcela; Ruiz-Rodriguez, Myriam; Reveiz, Ludovic; Arredondo-López, Armando
2017-01-01
To generate and evaluate an indicator of the health system's performance in the area of maternal and reproductive health in Colombia. An indicator was constructed based on variables related to the coverage and utilization of healthcare services for pregnant and reproductive-age women. A factor analysis was performed using a polychoric correlation matrix and the states were classified according to the indicator's score. A path analysis was used to evaluate the relationship between the indicator and social determinants, with the maternal mortality ratio as the response variable. The factor analysis indicates that only one principal factor exists, namely "coverage and utilization of maternal healthcare services" (eigenvalue 4.35). The indicator performed best in the states of Atlantic, Bogota, Boyaca, Cundinamarca, Huila, Risaralda and Santander (Q4). The poorest performance (Q1) occurred in Caqueta, Choco, La Guajira, Vichada, Guainia, Amazonas and Vaupes. The indicator's behavior was found to have an association with the unsatisfied basic needs index and women's education (β = -0.021; 95%CI -0031 to -0.01 and β 0.554; 95%CI 0.39 to 0.72, respectively). According to the path analysis, an inverse relationship exists between the proposed indicator and the behavior of the maternal mortality ratio (β = -49.34; 95%CI -77.7 to -20.9); performance was a mediating variable. The performance of the health system with respect to its management of access and coverage for maternal and reproductive health appears to function as a mediating variable between social determinants and maternal mortality in Colombia.
Functional Multijoint Position Reproduction Acuity in Overhead-Throwing Athletes
Tripp, Brady L; Uhl, Timothy L; Mattacola, Carl G; Srinivasan, Cidambi; Shapiro, Robert
2006-01-01
Context: Baseball players rely on the sensorimotor system to uphold the balance between upper extremity stability and mobility while maintaining athletic performance. However, few researchers have studied functional multijoint measures of sensorimotor acuity in overhead-throwing athletes. Objective: To compare sensorimotor acuity between 2 high-demand functional positions and among planes of motion within individual joints and to describe a novel method of measuring sensorimotor function. Design: Single-session, repeated-measures design. Setting: University musculoskeletal research laboratory. Patients or Other Participants: Twenty-one National Collegiate Athletic Association Division I baseball players (age = 20.8 ± 1.5 years, height = 181.3 ± 5.1 cm, mass = 87.8 ± 9.1 kg) with no history of upper extremity injury or central nervous system disorder. Main Outcome Measure(s): We measured active multijoint position reproduction acuity in multiple planes using an electromagnetic tracking device. Subjects reproduced 2 positions: arm cock and ball release. We calculated absolute and variable error for individual motions at the scapulothoracic, glenohumeral, elbow, and wrist joints and calculated overall joint acuity with 3-dimensional variable error. Results: Acuity was significantly better in the arm-cock position compared with ball release at the scapulothoracic and glenohumeral joints. We observed significant differences among planes of motion within the scapulothoracic and glenohumeral joints at ball release. Scapulothoracic internal rotation and glenohumeral horizontal abduction and rotation displayed less acuity than other motions. Conclusions: We established the reliability of a functional measure of upper extremity sensorimotor system acuity in baseball players. Using this technique, we observed differences in acuity between 2 test positions and among planes of motion within the glenohumeral and scapulothoracic joints. Clinicians may consider these differences when designing and implementing sensorimotor system training. Our error scores are similar in magnitude to those reported using single-joint and single-plane measures. However, 3-dimensional, multijoint measures allow practical, unconstrained test positions and offer additional insight into the upper extremity as a functional unit. PMID:16791298
Effect of dystocia on subsequent reproductive performance and functional longevity in Holstein cows.
Ghavi Hossein-Zadeh, N
2016-10-01
The objective of this study was to evaluate the effect of dystocia on the reproductive performance and functional longevity in Iranian Holsteins. Data consisted of 1 467 064 lactation records of 581 421 Holstein cows from 3083 herds which were collected by the Animal Breeding Center of Iran from April 1987 to February 2014. Reproduction traits in this study included interval from first to second calving, days open and days from first calving to first service. The generalized linear model was used for the statistical analysis of reproductive traits. Survival analysis was performed using the Weibull proportional hazards models to analyse the impact of dystocia on functional longevity. The incidence of dystocia had an adverse effect on the reproductive performance of dairy cows. Therefore, reproductive traits deteriorated along with increase in dystocia score (p < 0.05). The culling risk was increased along with increase in the score of dystocia (p < 0.0001). The greatest culling risk was observed in primiparous cows, small herds and low-yielding cows (p < 0.0001). Also, the lowest culling risk was found for cows calving at the youngest age (<27 months), and cows with age at first calving >33 months had the greatest risk (p < 0.0001). The results of current study indicated that dystocia had important negative effects on the reproductive performance and functional longevity in dairy cows, and it should be avoided as much as possible to provide a good perspective in the scope of economic and animal welfare issues in dairy herds. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Zhou, Dongsheng; Zhuo, Yong; Che, Lianqiang; Lin, Yan; Fang, Zhengfeng; Wu, De
2014-07-01
People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days' interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus-pituitary-gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.
Full-scale system impact analysis: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.
Many biochemical endpoints currently are used to describe endocrine function in fish; however, the sensitivity of these parameters as biomarkers of impaired reproduction or sexual development is not well understood. In the present study, adult Japanese medaka (Oryzias latipes) we...
EFFECTS OF METAM SODIUM ON REPRODUCTIVE FUNCTION IN THE FEMALE RAT
Metam sodium (MS) is a soil fumigant and Category III pesticide with a relatively low toxicity in mammals. But, there is some indication that it can impair rodent reproductive function. In ovariectomized, estradiol-primed rats, a single ip injection was reported to block the lute...
Mastitis effects on reproductive performance in dairy cattle: a review.
Kumar, Narender; Manimaran, A; Kumaresan, A; Jeyakumar, S; Sreela, L; Mooventhan, P; Sivaram, M
2017-04-01
The reproductive performance of dairy animals is influenced by several factors, and accumulating lines of evidence indicate that mastitis is one of the determinants. Most of the published information relating mastitis with reproduction has evolved based on retrospective approach rather than controlled clinical studies. The complex nature of both mastitis and reproduction could be a limiting factor for understanding their relationship in detail. In this review, we analyzed the available retrospective studies on the effects of clinical mastitis on reproductive function and explained the possible mechanisms by which mastitis affects reproduction in dairy animals.
Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction.
Micevych, Paul E; Mermelstein, Paul G; Sinchak, Kevin
2017-11-01
Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chafetz, Janet Saltzman
1988-01-01
Presents a theory of mechanisms sustaining and reproducing systems of gender stratification, central amongst which is gender division of labor, within both the family and the wider society. Asserts men create dominant social functions which contribute further to gender stratification. Maintains women then choose that which they would otherwise be…
Color reproduction for advanced manufacture of soft tissue prostheses.
Xiao, Kaida; Zardawi, Faraedon; van Noort, Richard; Yates, Julian M
2013-11-01
The objectives of this study were to develop a color reproduction system in advanced manufacture technology for accurate and automatic processing of soft tissue prostheses. The manufacturing protocol was defined to effectively and consistently produce soft tissue prostheses using a 3D printing system. Within this protocol printer color profiles were developed using a number of mathematical models for the proposed 3D color printing system based on 240 training colors. On this basis, the color reproduction system was established and their system errors including accuracy of color reproduction, performance of color repeatability and color gamut were evaluated using 14 known human skin shades. The printer color profile developed using the third-order polynomial regression based on least-square fitting provided the best model performance. The results demonstrated that by using the proposed color reproduction system, 14 different skin colors could be reproduced and excellent color reproduction performance achieved. Evaluation of the system's color repeatability revealed a demonstrable system error and this highlighted the need for regular evaluation. The color gamut for the proposed 3D printing system was simulated and it was demonstrated that the vast majority of skin colors can be reproduced with the exception of extreme dark or light skin color shades. This study demonstrated that the proposed color reproduction system can be effectively used to reproduce a range of human skin colors for application in advanced manufacture of soft tissue prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Humans are not cooperative breeders but practice biocultural reproduction.
Bogin, Barry; Bragg, Jared; Kuzawa, Christopher
2014-01-01
Alloparental care and feeding of young is often called "cooperative breeding" and humans are increasingly described as being a cooperative breeding species. To critically evaluate whether the human offspring care system is best grouped with that of other cooperative breeders. (1) Review of the human system of offspring care in the light of definitions of cooperative, communal and social breeding; (2) re-analysis of human lifetime reproductive effort. Human reproduction and offspring care are distinct from other species because alloparental behaviour is defined culturally rather than by genetic kinship alone. This system allows local flexibility in provisioning strategies and ensures that care and resources often flow between unrelated individuals. This review proposes the term "biocultural reproduction" to describe this unique human reproductive system. In a re-analysis of human life history data, it is estimated that the intense alloparenting typical of human societies lowers the lifetime reproductive effort of individual women by 14-29% compared to expectations based upon other mammals. Humans are not cooperative breeders as classically defined; one effect of the unique strategy of human biocultural reproduction is a lowering of human lifetime reproductive effort, which could help explain lifespan extension.
Apomixis in hawkweed: Mendel's experimental nemesis.
Koltunow, Anna M G; Johnson, Susan D; Okada, Takashi
2011-03-01
Mendel used hawkweeds and other plants to verify the laws of inheritance he discovered using Pisum. Trait segregation was not evident in hawkweeds because many form seeds asexually by apomixis. Meiosis does not occur during female gametophyte formation and the mitotically formed embryo sacs do not require fertilization for seed development. The resulting progeny retain a maternal genotype. Hawkweeds in Hieracium subgenus Pilosella form mitotic embryo sacs by apospory. The initiation of sexual reproduction is required to stimulate apospory in ovules and to promote the function of the dominant locus, LOSS OF APOMEIOSIS, which stimulates the differentiation of somatic aposporous initial (AI) cells near sexually programmed cells. As AI cells undergo nuclear mitosis the sexual pathway terminates. The function of the dominant locus LOSS OF PARTHENOGENESIS in aposporous embryo sacs enables fertilization-independent embryo and endosperm development. Deletion of either locus results in partial reversion to sexual reproduction, and loss of function in both loci results in reversion to sexual development. In these apomicts, sexual reproduction is therefore the default reproductive mode upon which apomixis is superimposed. These loci are unlikely to encode factors critical for sexual reproduction but might recruit the sexual pathway to enable apomixis. Incomplete functional penetrance of these dominant loci is likely to lead to the generation of rare sexual progeny also derived from these facultative apomicts.
Age-dependent trade-offs between immunity and male, but not female, reproduction.
McNamara, Kathryn B; van Lieshout, Emile; Jones, Therésa M; Simmons, Leigh W
2013-01-01
Immune function is costly and must be traded off against other life-history traits, such as gamete production. Studies of immune trade-offs typically focus on adult individuals, yet the juvenile stage can be a highly protracted period when reproductive resources are acquired and immune challenges are ubiquitous. Trade-offs during development are likely to be important, yet no studies have considered changes in adult responses to immune challenges imposed at different stages of juvenile development. By manipulating the timing of a bacterial immune challenge to the larvae of the cotton bollworm moth, we examined potential trade-offs between investment into immunity at different stages of juvenile development (early or late) and subsequent adult reproductive investment into sperm or egg production. Our data reveal an age-dependent trade-off between juvenile immune function and adult male reproductive investment. Activation of the immune response during late development resulted in a reduced allocation of resources to eupyrene (fertilizing) sperm production. Immune activation from the injection procedure itself (irrespective of whether individuals were injected with an immune elicitor or a control solution) also caused reproductive trade-offs; males injected early in development produced fewer apyrene (nonfertilizing) sperm. Contrary to many other studies, our study demonstrates these immune trade-offs under ad libitum nutritional conditions. No trade-offs were observed between female immune activation and adult reproductive investment. We suggest the differences in trade-offs observed between male sperm types and the absence of reproductive trade-offs in females may be the result of ontogenetic differences in gamete production in this species. Our data reveal developmental windows when trade-offs between immune function and gametic investment are made, and highlight the importance of considering multiple developmental periods when making inferences regarding the fundamental trade-offs expected between immune function and reproduction. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Urra, Javier A; Villaroel-Espíndola, Franz; Covarrubias, Alejandra A; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I
2014-01-01
Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP(+)), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.
Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.
2014-01-01
Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186
Septin functions in organ system physiology and pathology
Dolat, Lee; Hu, Qicong
2015-01-01
Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression. PMID:24114910
Thiol-Ene functionalized siloxanes for use as elastomeric dental impression materials
Cole, Megan A.; Jankousky, Katherine C.; Bowman, Christopher N.
2014-01-01
Objectives Thiol- and allyl-functionalized siloxane oligomers are synthesized and evaluated for use as a radical-mediated, rapid set elastomeric dental impression material. Thiol-ene siloxane formulations are crosslinked using a redox-initiated polymerization scheme, and the mechanical properties of the thiol-ene network are manipulated through the incorporation of varying degrees of plasticizer and kaolin filler. Formulations with medium and light body consistencies are further evaluated for their ability to accurately replicate features on both the gross and microscopic levels. We hypothesize that thiol-ene functionalized siloxane systems will exhibit faster setting times and greater detail reproduction than commercially available polyvinylsiloxane (PVS) materials of comparable consistencies. Methods Thiol-ene functionalized siloxane mixtures formulated with varying levels of redox initiators, plasticizer, and kaolin filler are made and evaluated for their polymerization speed (FTIR), consistency (ISO4823.9.2), and surface energy (goniometer). Feature replication is evaluated quantitatively by SEM. The Tg, storage modulus, and creep behavior are determined by DMA. Results Increasing redox initiation rate increases the polymerization rate but at high levels also limits working time. Combining 0.86 wt% oxidizing agent with up to 5 wt% plasticizer gave a working time of 3 min and a setting time of 2 min. The selected medium and light body thiol-ene formulations also achieved greater qualitative detail reproduction than the commercial material and reproduced micrometer patterns with 98% accuracy. Significance Improving detail reproduction and setting speed is a primary focus of dental impression material design and synthesis. Radical-mediated polymerizations, particularly thiol-ene reactions, are recognized for their speed, reduced shrinkage, and ‘click’ nature. PMID:24553250
Rouhana, Labib; Tasaki, Junichi; Saberi, Amir; Newmark, Phillip A
2017-06-01
Cytoplasmic polyadenylation is a mechanism of mRNA regulation prevalent in metazoan germ cells; it is largely dependent on Cytoplasmic Polyadenylation Element Binding proteins (CPEBs). Two CPEB homologs were identified in the planarian Schmidtea mediterranea. Smed-CPEB1 is expressed in ovaries and yolk glands of sexually mature planarians, and required for oocyte and yolk gland development. In contrast, Smed-CPEB2 is expressed in the testes and the central nervous system; its function is required for spermatogenesis as well as non-autonomously for development of ovaries and accessory reproductive organs. Transcriptome analysis of CPEB knockdown animals uncovered a comprehensive collection of molecular markers for reproductive structures in S. mediterranea, including ovaries, testes, yolk glands, and the copulatory apparatus. Analysis by RNA interference revealed contributions for a dozen of these genes during oogenesis, spermatogenesis, or capsule formation. We also present evidence suggesting that Smed-CPEB2 promotes translation of Neuropeptide Y-8, a prohormone required for planarian sexual maturation. These findings provide mechanistic insight into potentially conserved processes of germ cell development, as well as events involved in capsule deposition by flatworms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Wolfe, Andrew; Divall, Sara; Wu, Sheng
2014-01-01
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. PMID:24929098
Diamanti-Kandarakis, Evanthia; Papalou, Olga; Kandaraki, Eleni A; Kassi, Georgia
2017-02-01
Nutrition can generate oxidative stress and trigger a cascade of molecular events that can disrupt oxidative and hormonal balance. Nutrient ingestion promotes a major inflammatory and oxidative response at the cellular level in the postprandial state, altering the metabolic state of tissues. A domino of unfavorable metabolic changes is orchestrated in the main metabolic organs, including adipose tissue, skeletal muscle, liver and pancreas, where subclinical inflammation, endothelial dysfunction, mitochondrial deregulation and impaired insulin response and secretion take place. Simultaneously, in reproductive tissues, nutrition-induced oxidative stress can potentially violate delicate oxidative balance that is mandatory to secure normal reproductive function. Taken all the above into account, nutrition and its accompanying postprandial oxidative stress, in the unique context of female hormonal background, can potentially compromise normal metabolic and reproductive functions in women and may act as an active mediator of various metabolic and reproductive disorders. © 2017 European Society of Endocrinology.
USDA-ARS?s Scientific Manuscript database
In lower termites, functionally sterile larval helpers are totipotent, capable of becoming reproductively active with the loss of their colony’s king or queen. Full reproductive development may take several weeks, but initiation of this response most likely occurs shortly after colony members detect...
The JH1 Haplotype-a newly discovered marker for infertility in the jersy breed
USDA-ARS?s Scientific Manuscript database
The focus on production traits in genetic selection programs with little consideration for traits associated with reproduction has contributed to the decline in reproductive function. Moreover, there is a negative genetic correlation between milk yield and reproduction so that selection for yield ca...
A short-term reproduction assay with the fathead minnow has been developed to detect chemicals with the potential to disrupt reproductive endocrine functions controlled by estrogen- and androgen-mediated pathways. The objective of this study was to characterize the responses of t...
Measuring reproductive tourism through an analysis of Indian ART clinic Websites.
Deonandan, Raywat; Loncar, Mirhad; Rahman, Prinon; Omar, Sabrina
2012-01-01
India is fast becoming the most prominent player in the global industry of reproductive tourism, in which infertile people cross international borders to seek assisted reproduction technologies. This study was conducted to better understand the extent and manner in which Indian clinics seek foreign clients. A systematic search of official Indian assisted reproduction technologies clinic Websites was undertaken, and instances noted where foreign clients were overtly targeted, and where maternal surrogacy was overtly offered. A total of 159 clinics with Web addresses were identified, though only 78 had functioning Websites. All were published in English, with the majority clustered in the states of Maharashtra (14) and Gujarat (9). Of the 78 functioning Websites, 53 (68%) featured some mention of maternal surrogacy services, and 42 (54%) made overt overtures to foreign clients. Qualitative appeals to foreigners included instructions for international adoption, visa application, and the legal parental disposition of the surrogate. All Maharashtran clinic Websites that mentioned surrogacy also overtly featured reproductive tourism. Preimplantation diagnosis services were not offered disproportionately by clinics mentioning reproductive tourism. Based upon clinic online profiles, reproductive tourism comprises a substantial fraction of India's assisted reproduction technologies clinics' business focus, clustering around its most tourist-friendly locales, and surrogacy may be a strong motivator for international clientele.
Environment, human reproduction, menopause, and andropause.
Vermeulen, A
1993-07-01
As the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator is an integrator of hormonal, metabolic, and neural signals, it is not surprising that the function of the hypothalamogonadal axis is subject to the influence of a large array of environmental factors. Before puberty, the central nervous system (CNS) restrains the GnRH pulse generator. Undernutrition, low socioeconomic status, stress, and emotional deprivation, all delay puberty. During reproductive life, among peripheral factors that effect the reproductive system, stress plays an important role. Stress, via the release of corticotropin-releasing factor (CRF), eventually triggered by interleukin 1, inhibits GnRH release, resulting in hypogonadism. Effects of CRF are probably mediated by the opioid system. Food restriction and underweight (anorexia nervosa), obesity, smoking, and alcohol all have negative effects on the GnRH pulse generator and gonadal function. Age and diet are important determinants of fertility in both men and women. The age-associated decrease in fertility in women has as a major determinant chromosomal abnormalities of the oocyte, with uterine factors playing a subsidiary role. Age at menopause, determined by ovarian oocyte depletion, is influenced by occupation, age at menarche, parity, age at last pregnancy, altitude, smoking, and use of oral contraceptives. Smoking, however, appears to be the major determinant. Premature menopause is most frequently attributable to mosaicism for Turner Syndrome, mumps ovaritis, and, above all, total hysterectomy, which has a prevalence of about 12-15% in women 50 years old. Premature ovarian failure with presence of immature follicles is most frequently caused by autoimmune diseases or is the consequence of irradiation or chemotherapy with alkylating cytostatics. Plasma estrogens have a physiological role in the prevention of osteoporosis. Obese women have osteoporosis less frequently than women who are not overweight. Early menopause, suppression of adrenal function (corticoids), and thyroid hormone treatment all increase the frequency of osteoporosis. Aging in men is accompanied by decreased Leydig cell and Sertoli cell function, which has a predominantly primary testicular origin, although changes also occur at the hypothalamopituitary level. Plasma testosterone levels, sperm production, and sperm quality decrease, but fertility, although declining, is preserved until senescence. Stress and disease states accelerate the decline on Leydig cell function. Many occupational noxious agents have a negative effect on fertility.(ABSTRACT TRUNCATED AT 400 WORDS)
Predicting IVF Outcome: A Proposed Web-based System Using Artificial Intelligence.
Siristatidis, Charalampos; Vogiatzi, Paraskevi; Pouliakis, Abraham; Trivella, Marialenna; Papantoniou, Nikolaos; Bettocchi, Stefano
2016-01-01
To propose a functional in vitro fertilization (IVF) prediction model to assist clinicians in tailoring personalized treatment of subfertile couples and improve assisted reproduction outcome. Construction and evaluation of an enhanced web-based system with a novel Artificial Neural Network (ANN) architecture and conformed input and output parameters according to the clinical and bibliographical standards, driven by a complete data set and "trained" by a network expert in an IVF setting. The system is capable to act as a routine information technology platform for the IVF unit and is capable of recalling and evaluating a vast amount of information in a rapid and automated manner to provide an objective indication on the outcome of an artificial reproductive cycle. ANNs are an exceptional candidate in providing the fertility specialist with numerical estimates to promote personalization of healthcare and adaptation of the course of treatment according to the indications. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Mastronardi, Claudio; Smiley, Gregory G; Raber, Jacob; Kusakabe, Takashi; Kawaguchi, Akio; Matagne, Valerie; Dietzel, Anja; Heger, Sabine; Mungenast, Alison E; Cabrera, Ricardo; Kimura, Shioko; Ojeda, Sergio R
2006-12-20
Thyroid transcription factor 1 (TTF1) [also known as Nkx2.1 (related to the NK-2 class of homeobox genes) and T/ebp (thyroid-specific enhancer-binding protein)], a homeodomain gene required for basal forebrain morphogenesis, remains expressed in the hypothalamus after birth, suggesting a role in neuroendocrine function. Here, we show an involvement of TTF1 in the control of mammalian puberty and adult reproductive function. Gene expression profiling of the nonhuman primate hypothalamus revealed that TTF1 expression increases at puberty. Mice in which the Ttf1 gene was ablated from differentiated neurons grew normally and had normal basal ganglia/hypothalamic morphology but exhibited delayed puberty, reduced reproductive capacity, and a short reproductive span. These defects were associated with reduced hypothalamic expression of genes required for sexual development and deregulation of a gene involved in restraining puberty. No extrapyramidal impairments associated with basal ganglia dysfunction were apparent. Thus, although TTF1 appears to fulfill only a morphogenic function in the ventral telencephalon, once this function is satisfied in the hypothalamus, TTF1 remains active as part of the transcriptional machinery controlling female sexual development.
Sex steroids effects in normal endocrine pancreatic function and diabetes.
Morimoto, Sumiko; Jiménez-Trejo, Francisco; Cerbón, Marco
2011-01-01
Traditionally the role of sexual steroid hormones was focused primarily on reproductive organs: the breast, female reproductive tract (uterus, mammary gland, and ovary), and male reproductive tract (testes, epididymis and prostate), however our current understanding of tissue-specific effects of sex steroids has elucidated new aspects in its functionality. Recent data have shown that many other tissues are targets of those hormones in addition to classical reproductive organs. The pancreas (which performs both endocrine and exocrine functions), has proven to be an extragonadal target of sexual steroid hormone action. The endocrine pancreas has a pivotal role on carbohydrate homeostasis and deterioration in function produces diabetes. Diabetes is a metabolic disorder that has high prevalence worldwide, particularly in developing countries. It has been shown that steroid hormones have an important role in susceptibility and development of diabetes in animal models, in humans its role is less clear, however the most evident effect is on the perimenopausal women, in this stage the decrease in gonadal steroids produces an increase on susceptibility to develop diabetes mellitus; in men, hypoandrogenism is associated with an increased prevalence of insulin resistance. This review focused on the effects of sexual steroids on pancreatic function and diabetes.
Physiological basis of climate change impacts on North American inland fishes
Whitney, James E.; Al-Chokhachy, Robert K.; Bunnell, David B.; Caldwell, Colleen A.; Cooke, Steven J.; Eliason, Erika J.; Rogers, Mark W.; Lynch, Abigail J.; Paukert, Craig P.
2016-01-01
Global climate change is altering freshwater ecosystems and affecting fish populations and communities. Underpinning changes in fish distribution and assemblage-level responses to climate change are individual-level physiological constraints. In this review, we synthesize the mechanistic effects of climate change on neuroendocrine, cardiorespiratory, immune, osmoregulatory, and reproductive systems of freshwater and diadromous fishes. Observed climate change effects on physiological systems are varied and numerous, including exceedance of critical thermal tolerances, decreased cardiorespiratory performance, compromised immune function, and altered patterns of individual reproductive investment. However, effects vary widely among and within species because of species, population, and even sex-specific differences in sensitivity and resilience and because of habitat-specific variation in the magnitude of climate-related environmental change. Research on the interactive effects of climate change with other environmental stressors across a broader range of fish diversity is needed to further our understanding of climate change effects on fish physiology.
NASA Astrophysics Data System (ADS)
Carette, Noëlle; Engelkamp, Hans; Akpa, Eric; Pierre, Sebastien J.; Cameron, Neil R.; Christianen, Peter C. M.; Maan, Jan C.; Thies, Jens C.; Weberskirch, Ralf; Rowan, Alan E.; Nolte, Roeland J. M.; Michon, Thierry; van Hest, Jan C. M.
2007-04-01
Virus particles are probably the most precisely defined nanometre-sized objects that can be formed by protein self-assembly. Although their natural function is the storage and transport of genetic material, they have more recently been applied as scaffolds for mineralization and as containers for the encapsulation of inorganic compounds. The reproductive power of viruses has been used to develop versatile analytical methods, such as phage display, for the selection and identification of (bio)active compounds. To date, the combined use of self-assembly and reproduction has not been used for the construction of catalytic systems. Here we describe a self-assembled system based on a plant virus that has its coat protein genetically modified to provide it with a lipase enzyme. Using single-object and bulk catalytic studies, we prove that the virus-anchored lipase molecules are catalytically active. This anchored biocatalyst, unlike man-made supported catalysts, has the capability to reproduce itself in vivo, generating many independent catalytically active copies.
Sperm transfer in monogenean (platyhelminth) parasites.
Kearn, Graham; Whittington, Ian
2015-12-01
There are three major groups of parasitic platyhelminths (flatworms). The digeneans and cestodes are endoparasites, while the monogeneans are ectoparasites mostly on the gills or skin of fishes. Monogeneans are hermaphrodite and, with the exception of the gyrodactylids, mostly protandrous, the male reproductive system maturing before the female system. Their ectoparasitic life-style provides unique opportunities to observe the reproductive biology of living platyhelminths, opportunities restricted in digeneans and cestodes by their endoparasitic habits. Moreover, the male copulatory organs (MCOs) of monogeneans are of special interest because of their perplexing diversity, ranging from sclerotised penis tubes, many with accessory sclerites, to cirruses and genital atrium armature (hooks and spines). The relatively few accounts in the literature of mating in monogeneans are reproduced in this review, together with consideration of the following aspects of sperm transfer: structure and function of MCOs; self-insemination; spermatophores and pseudospermatophores; "hypodermic" and transtegumental insemination; tissue fusion; glands associated with MCOs and vaginae; finding a mating partner.
Morini, Marina; Pasquier, Jérémy; Dirks, Ron; van den Thillart, Guido; Tomkiewicz, Jonna; Rousseau, Karine; Dufour, Sylvie; Lafont, Anne-Gaëlle
2015-01-01
Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R. PMID:25946034
On the thermodynamics of multilevel evolution.
Tessera, Marc; Hoelzer, Guy A
2013-09-01
Biodiversity is hierarchically structured both phylogenetically and functionally. Phylogenetic hierarchy is understood as a product of branching organic evolution as described by Darwin. Ecosystem biologists understand some aspects of functional hierarchy, such as food web architecture, as a product of evolutionary ecology; but functional hierarchy extends to much lower scales of organization than those studied by ecologists. We argue that the more general use of the term "evolution" employed by physicists and applied to non-living systems connects directly to the narrow biological meaning. Physical evolution is best understood as a thermodynamic phenomenon, and this perspective comfortably includes all of biological evolution. We suggest four dynamical factors that build on each other in a hierarchical fashion and set the stage for the Darwinian evolution of biological systems: (1) the entropic erosion of structure; (2) the construction of dissipative systems; (3) the reproduction of growing systems and (4) the historical memory accrued to populations of reproductive agents by the acquisition of hereditary mechanisms. A particular level of evolution can underpin the emergence of higher levels, but evolutionary processes persist at each level in the hierarchy. We also argue that particular evolutionary processes can occur at any level of the hierarchy where they are not obstructed by material constraints. This theoretical framework provides an extensive basis for understanding natural selection as a multilevel process. The extensive literature on thermodynamics in turn provides an important advantage to this perspective on the evolution of higher levels of organization, such as the evolution of altruism that can accompany the emergence of social organization. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Lathe, R
2001-05-01
Hippocampal lesions produce memory deficits, but the exact function of the hippocampus remains obscure. Evidence is presented that its role in memory may be ancillary to physiological regulation. Molecular studies demonstrate that the hippocampus is a primary target for ligands that reflect body physiology, including ion balance and blood pressure, immunity, pain, reproductive status, satiety and stress. Hippocampal receptors are functional, probably accessible to their ligands, and mediate physiological and cognitive changes. This argues that an early role of the hippocampus may have been in sensing soluble molecules (termed here 'enteroception') in blood and cerebrospinal fluid, perhaps reflecting a common evolutionary origin with the olfactory system ('exteroception'). Functionally, hippocampal enteroception may reflect feedback control; evidence is reviewed that the hippocampus modulates body physiology, including the activity of the hypothalamus-pituitary-adrenal axis, blood pressure, immunity, and reproductive function. It is suggested that the hippocampus operates, in parallel with the amygdala, to modulate body physiology in response to cognitive stimuli. Hippocampal outputs are predominantly inhibitory on downstream neuroendocrine activity; increased synaptic efficacy in the hippocampus (e.g. long-term potentiation) could facilitate throughput inhibition. This may have implications for the role of the hippocampus and long-term potentiation in memory.
Functional and Anatomic Correlates of Neural Aging in Birds.
Ottinger, Mary Ann
2018-01-01
Avian species show variation in longevity, habitat, physiologic characteristics, and lifetime endocrine patterns. Lifetime reproductive and metabolic function vary. Much is known about the neurobiology of the song system in many altricial birds. Little is known about aging in neural systems in birds. Captive birds often survive beyond the age they would in the wild, providing an opportunity to gain an understanding of the physiologic and neural changes. This paper reviews the available information with the goal of capturing areas of potential investigation into gaps in our understanding of neural aging as reflected in physiologic, endocrine, and cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.
EFFECTS OF 3 WEEK EXPOSURES TO METAM SODIUM ON REPRODUCTIVE FUNCTION IN THE FEMALE RAT
Metam sodium (MS) is a soil fumigant and Category III pesticide with a relatively low toxicity in mammals. But, there is some indication that it can impair rodent reproductive function. In ovariectomized, estradiol-primed rats, a single ip injection was reported to block the lute...
EFFECTS OF 3 WEEK EXPOSURES ON REPRODUCTIVE FUNCTION IN THE FEMALE RAT TO METAM SODIUM
Metam sodium (MS) is a soil fumigant and Category III pesticide with a relatively low toxicity in mammals. But, there is some indication that it can impair rodent reproductive function. In ovariectomized, estradiol-primed rats, a single ip injection was reported to block the lute...
ERIC Educational Resources Information Center
Azaola, Marta Cristina
2012-01-01
The paper reflects upon the principles and practice of an alternative educational system operating in rural Mexico in the light of Bourdieu's theory of cultural and social reproduction. Bourdieu's theory seeks to explain processes of reproduction of power relations within schools and society; whereas alternative educational systems seek to expand…
BRCA Mutations, DNA Repair Deficiency, and Ovarian Aging1
Oktay, Kutluk; Turan, Volkan; Titus, Shiny; Stobezki, Robert; Liu, Lin
2015-01-01
Oocyte aging has a significant impact on reproductive outcomes both quantitatively and qualitatively. However, the molecular mechanisms underlying the age-related decline in reproductive success have not been fully addressed. BRCA is known to be involved in homologous DNA recombination and plays an essential role in double-strand DNA break repair. Given the growing body of laboratory and clinical evidence, we performed a systematic review on the current understanding of the role of DNA repair in human reproduction. We find that BRCA mutations negatively affect ovarian reserve based on convincing evidence from in vitro and in vivo results and prospective studies. Because decline in the function of the intact gene occurs at an earlier age, women with BRCA1 mutations exhibit accelerated ovarian aging, unlike those with BRCA2 mutations. However, because of the still robust function of the intact allele in younger women and because of the masking of most severe cases by prophylactic oophorectomy or cancer, it is less likely one would see an effect of BRCA mutations on fertility until later in reproductive age. The impact of BRCA2 mutations on reproductive function may be less visible because of the delayed decline in the function of normal BRCA2 allele. BRCA1 function and ataxia-telangiectasia-mutated (ATM)-mediated DNA repair may also be important in the pathogenesis of age-induced increase in aneuploidy. BRCA1 is required for meiotic spindle assembly, and cohesion function between sister chromatids is also regulated by ATM family member proteins. Taken together, these findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian aging. PMID:26224004
Wang, Hai-peng; Bi, Zheng-yang; Zhou, Yang; Zhou, Yu-xuan; Wang, Zhi-gong; Lv, Xiao-ying
2017-01-01
Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training. PMID:28250759
KiSS-1 and reproduction: focus on its role in the metabolic regulation of fertility.
Tena-Sempere, Manuel
2006-01-01
Unraveling of the master role of kisspeptins, the products of the KiSS-1 gene, and their receptor, GPR54, in the control of reproduction has been a major breakthrough in contemporary neuroendocrinology. Indeed, since the disclosure of their reproductive dimension in late 2003, an ever-growing number of genetic, molecular, physiologic and pharmacological studies have defined the crucial role of KiSS-1 neurons as central processors for the dynamic regulation of the gonadotropic axis and its full activation at puberty. Yet, the potential role of the hypothalamic KiSS-1 system as an intermediary factor for the well-known interplay between energy status and reproduction initially received little attention. Recent data, however, strongly suggest a prominent role of KiSS-1 in the metabolic control of fertility, as expression of KiSS-1 gene at the hypothalamus is down-regulated in conditions of negative energy balance and kisspeptin administration is capable of overcoming the hypogonadotropic state observed in undernutrition and disturbed metabolic conditions. Leptin, the adipocyte hormone signaling the size of body energy stores, is likely to play a pivotal role in the metabolic control of the KiSS-1 system, since kisspeptin neurons express leptin receptors and leptin is able to normalize defective KiSS-1 gene expression in models of impaired gonadotropin secretion linked to hypoleptinemia, such as the ob/ob mouse and streptozotocin-induced diabetic rat. In sum, these data provide strong evidence for a central role of kisspeptins and GPR54 as molecular conduits for the metabolic regulation of reproductive function - a phenomenon with potential physiopathologic and therapeutic implications.
Zhang, Dapeng; Xiong, Huiling; Mennigen, Jan A; Popesku, Jason T; Marlatt, Vicki L; Martyniuk, Christopher J; Crump, Kate; Cossins, Andrew R; Xia, Xuhua; Trudeau, Vance L
2009-06-05
Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABA(A) gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development.
Mennigen, Jan A.; Popesku, Jason T.; Marlatt, Vicki L.; Martyniuk, Christopher J.; Crump, Kate; Cossins, Andrew R.; Xia, Xuhua; Trudeau, Vance L.
2009-01-01
Background Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. Methodology/Principal Findings In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABAA gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Conclusions/Significance Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development. PMID:19503831
Khendek, A; Chakraborty, A; Roche, J; Ledoré, Y; Personne, A; Policar, T; Żarski, D; Mandiki, R; Kestemont, P; Milla, S; Fontaine, P
2018-02-08
Pikeperch (Sander lucioperca) is a highly valuable fish in Europe. However, development of aquaculture of pikeperch is highly limited due to seasonality of production. This can be overcome by the controlled reproduction of domesticated fish. The first steps of domestication process may induce changes at anatomical, physiological and molecular levels, thereby affecting a variety of biological functions. While there is abundant literature on their effects on stress and growth for example, these effects on reproduction received limited attention notably in pikeperch, a promising candidate for the development of aquaculture. To answer the question of this life-history effect on pikeperch's reproduction, we compared two groups (weight: 1 kg) originated from Czech Republic and with the same domestication level (F0). The first group was a recirculating aquatic system cultured one (2 years, previously fed with artificial diet, never exposed to natural changes in temperature/photoperiod conditions) and the second one was a pond cultured group (3 to 4 years, bred under natural feeding and temperature/photoperiod). The wild group successfully spawned, while the farmed one did not spawn at all. During the program, gonadosomatic indexes of both males and females were significantly higher for the wild fish, as well as the sexual steroids. Gene expression analysis revealed significantly lower LH transcript levels at the pituitary level for the farmed females and lower FSH transcript levels at the pituitary level for the males. In conclusion this study showed that the previous rearing conditions (e.g. culture system, age, diet, etc.) alter the further progress of gametogenesis and the reproductive performances in response to controlled photothermal program for both sexes in pikeperch.
Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review
Kawwass, Jennifer F.; Summer, Ross; Kallen, Caleb B.
2015-01-01
Obesity is a risk factor for infertility and adverse reproductive outcomes. Adipose tissue is an important endocrine gland that secretes a host of endocrine factors, called adipokines, which modulate diverse physiologic processes including appetite, metabolism, cardiovascular function, immunity and reproduction. Altered adipokine expression in obese individuals has been implicated in the pathogenesis of a host of health disorders including diabetes and cardiovascular disease. It remains unclear whether adipokines play a significant role in the pathogenesis of adverse reproductive outcomes in obese individuals and, if so, whether the adipokines are acting directly or indirectly on the peripheral reproductive tissues. Many groups have demonstrated that receptors for the adipokines leptin and adiponectin are expressed in peripheral reproductive tissues and that these adipokines are likely, therefore, to exert direct effects on these tissues. Many groups have tested for direct effects of leptin and adiponectin on reproductive tissues including the testis, ovary, uterus, placenta and egg/embryo. The hypothesis that decreased fertility potential or adverse reproductive outcomes may result, at least in part, from defects in adipokine signaling within reproductive tissues has also been tested. Here, we present a critical analysis of published studies with respect to two adipokines, leptin and adiponectin, for which significant data have been generated. Our evaluation reveals significant inconsistencies and methodological limitations regarding the direct effects of these adipokines on peripheral reproductive tissues. We also observe a pervasive failure to account for in vivo data that challenge observations made in vitro. Overall, while leptin and adiponectin may directly modulate peripheral reproductive tissues, existing data suggest that these effects are minor and non-essential to human or mouse reproductive function. Current evidence suggests that direct effects of leptin or adiponectin on peripheral reproductive tissues are unlikely to factor significantly in the adverse reproductive outcomes observed in obese individuals. PMID:25964237
Prendergast, Brian J; Pyter, Leah M
2009-12-01
Seasonal changes in numerous aspects of mammalian immune function arise as a result of the annual variation in environmental day length (photoperiod), but it is not known if absolute photoperiod or relative change in photoperiod drives these changes. This experiment tested the hypothesis that an individual's history of exposure to day length determines immune responses to ambiguous, intermediate-duration day lengths. Immunological (blood leukocytes, delayed-type hypersensitivity reactions [DTH]), reproductive, and adrenocortical responses were assessed in adult Siberian hamsters (Phodopus sungorus) that had been raised initially in categorically long (15-h light/day; 15L) or short (9L) photoperiods and were subsequently transferred to 1 of 7 cardinal experimental photoperiods between 9L and 15L, inclusive. Initial photoperiod history interacted with contemporary experimental photoperiods to determine reproductive responses: 11L, 12L, and 13L caused gonadal regression in hamsters previously exposed to 15L, but elicited growth in hamsters previously in 9L. In hamsters with a 15L photoperiod history, photoperiods < or = 11L elicited sustained enhancement of DTH responses, whereas in hamsters with a 9L photoperiod history, DTH responses were largely unaffected by increases in day length. Enhancement and suppression of blood leukocyte concentrations occurred at 13L in hamsters with photoperiod histories of 15L and 9L, respectively; however, prior exposure to 9L imparted marked hysteresis effects, which suppressed baseline leukocyte concentrations. Cortisol concentrations were only enhanced in 15L hamsters transferred to 9L and, in common with DTH, were unaffected by photoperiod treatments in hamsters with a 9L photoperiod history. Photoperiod history acquired in adulthood impacts immune responses to photoperiod, but manifests in a markedly dissimilar fashion as compared to the reproductive system. Prior photoperiod exposure has an enduring impact on the ability of the immune system to respond to subsequent changes in day length.
NASA Astrophysics Data System (ADS)
Silva, T. S. F.; Torres, R. S.; Morellato, P.
2017-12-01
Vegetation phenology is a key component of ecosystem function and biogeochemical cycling, and highly susceptible to climatic change. Phenological knowledge in the tropics is limited by lack of monitoring, traditionally done by laborious direct observation. Ground-based digital cameras can automate daily observations, but also offer limited spatial coverage. Imaging by low-cost Unmanned Aerial Systems (UAS) combines the fine resolution of ground-based methods with and unprecedented capability for spatial coverage, but challenges remain in producing color-consistent multitemporal images. We evaluated the applicability of multitemporal UAS imaging to monitor phenology in tropical altitudinal grasslands and forests, answering: 1) Can very-high resolution aerial photography from conventional digital cameras be used to reliably monitor vegetative and reproductive phenology? 2) How is UAS monitoring affected by changes in illumination and by sensor physical limitations? We flew imaging missions monthly from Feb-16 to Feb-17, using a UAS equipped with an RGB Canon SX260 camera. Flights were carried between 10am and 4pm, at 120-150m a.g.l., yielding 5-10cm spatial resolution. To compensate illumination changes caused by time of day, season and cloud cover, calibration was attempted using reference targets and empirical models, as well as color space transformations. For vegetative phenological monitoring, multitemporal response was severely affected by changes in illumination conditions, strongly confounding the phenological signal. These variations could not be adequately corrected through calibration due to sensor limitations. For reproductive phenology, the very-high resolution of the acquired imagery allowed discrimination of individual reproductive structures for some species, and its stark colorimetric differences to vegetative structures allowed detection of the reproductive timing on the HSV color space, despite illumination effects. We conclude that reliable vegetative phenology monitoring may exceed the capabilities of consumer cameras, but reproductive phenology can be successfully monitored for species with conspicuous reproductive structures. Further research is being conducted to improve calibration methods and information extraction through machine learning.
Role of olfaction in Octopus vulgaris reproduction.
Polese, Gianluca; Bertapelle, Carla; Di Cosmo, Anna
2015-01-01
The olfactory system in any animal is the primary sensory system that responds to chemical stimuli emanating from a distant source. In aquatic animals "Odours" are molecules in solution that guide them to locate food, partners, nesting sites, and dangers to avoid. Fish, crustaceans and aquatic molluscs possess sensory systems that have anatomical similarities to the olfactory systems of land-based animals. Molluscs are a large group of aquatic and terrestrial animals that rely heavily on chemical communication with a generally dispersed sense of touch and chemical sensitivity. Cephalopods, the smallest class among extant marine molluscs, are predators with high visual capability and well developed vestibular, auditory, and tactile systems. Nevertheless they possess a well developed olfactory organ, but to date almost nothing is known about the mechanisms, functions and modulation of this chemosensory structure in octopods. Cephalopod brains are the largest of all invertebrate brains and across molluscs show the highest degree of centralization. The reproductive behaviour of Octopus vulgaris is under the control of a complex set of signal molecules such as neuropeptides, neurotransmitters and sex steroids that guide the behaviour from the level of individuals in evaluating mates, to stimulating or deterring copulation, to sperm-egg chemical signalling that promotes fertilization. These signals are intercepted by the olfactory organs and integrated in the olfactory lobes in the central nervous system. In this context we propose a model in which the olfactory organ and the olfactory lobe of O. vulgaris could represent the on-off switch between food intake and reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Immune defense and host life history.
Zuk, Marlene; Stoehr, Andrew M
2002-10-01
Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.
Molecular regulation and role of angiogenesis in reproduction.
Rizov, Momchil; Andreeva, Petya; Dimova, Ivanka
2017-04-01
Angiogenesis is an essential process for proper functioning of the female reproductive system and for successful pregnancy realization. The multitude of factors required for physiological angiogenesis and the complexity of regulation of their temporal-spatial activities contribute to aberrations in human fertilization and pregnancy outcomes. In this study, we reviewed the current knowledge of the temporal expression patterns, functions, and regulatory mechanisms of angiogenic factors during foliculogenesis, early implantation/placentation and embryo development, as well as recurrent spontaneous abortions. Angiogenic factors including vascular endothelial growth factors and angiopoietins have documented roles in the development of primordial follicles into mature antral follicles. They also participate in decidualization, which is accompanied by the creation of an extensive network of vessels in the stromal bed that support the growth of the embryo and the placenta, and maintain early pregnancy. During placentation angiogenic and angiomodulatory cytokines, T and B lymphocytes and macrophages affect angiogenesis in a context-dependent manner. Defects in angiogenesis at the maternal-fetal interface contribute to miscarriage in humans. The establishment of more polymorphisms in the genes involved in angiogenesis/vasculogenesis, and their pathological phenotype and expression could give opportunities for prediction, creating a therapeutic strategy, and treatment of diseases related to female reproductive health and problematic conception. Copyright © 2017. Published by Elsevier B.V.
He, Lin; Li, Qing; Liu, Lihua; Wang, Yuanli; Xie, Jing; Yang, Hongdan; Wang, Qun
2015-01-01
The accessory gland (AG) is an important component of the male reproductive system of arthropods, its secretions enhance fertility, some AG proteins bind to the spermatozoa and affect its function and properties. Here we report the first comprehensive catalog of the AG secreted fluid during the mature phase of the Chinese mitten crab (Eriocheir sinensis). AG proteins were separated by one-dimensional gel electrophoresis and analyzed by reverse phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Altogether, the mass spectra of 1173 peptides were detected (1067 without decoy and contaminants) which allowed for the identification of 486 different proteins annotated upon the NCBI database (http://www.ncbi.nlm.nih.gov/) and our transcritptome dataset. The mass spectrometry proteomics data have been deposited at the ProteomeXchange with identifier PXD000700. An extensive description of the AG proteome will help provide the basis for a better understanding of a number of reproductive mechanisms, including potentially spermatophore breakdown, dynamic functional and morphological changes in sperm cells and sperm acrosin enzyme vitality. Thus, the comprehensive catalog of proteins presented here can serve as a valuable reference for future studies of sperm maturation and regulatory mechanisms involved in crustacean reproduction. PMID:26305468
Roy, Subhrajyoti; Chaudhuri, Tapas Kumar
2017-04-01
Diplazium esculentum, a commonly consumed seasonal vegetable, has been reported to have some pathological effects in some animals. But, its effect on the male reproductive function has not yet been studied. To investigate the effects of boiled D. esculentum (BDE), the form which human consumes, on male reproductive functions of Swiss albino mice. Male (120 in no.) and female (80 in no.) Swiss albino mice (6-8 weeks of age) were fed orally with 80, 160 and 320 mg/kg bw of BDE within a span of 180 d. After the treatment, body weight, absolute- and relative-testis weight, relative-weight of other organs, their biochemical parameters, hypo-osmotic swelling test (HOST) of spermatozoa, testis histology and fertility and fecundity tests were performed to justify the toxic effects of D. esculentum on male reproductive functions. Significant dose- and time-dependent decreases were observed in body weight, absolute- and relative-testis weight, relative-weights of other organs and their biochemical parameters, percentage of live spermatozoa and percentage of fertility and fecundity in BDE fed mice. Significant decreases were observed in diameter, perimeter and area of the seminiferous tubules of mice treated for 180 d. The percentage of empty seminiferous tubules was increased significantly in BDE treated mice when compared to the controls. These results suggest that the intake of D. esculentum, even after cooking, may induce infertility by altering the male reproductive function, and therefore, should be evaluated further as a potential antifertility agent.
GPR54 and KiSS-1: role in the regulation of puberty and reproduction.
Kuohung, Wendy; Kaiser, Ursula B
2006-12-01
The finding of inactivating mutations in GPR54 in IHH patients and the lack of reproductive maturation of the GPR54 null mouse have uncovered a previously unrecognized role for GPR54 and KiSS-1 in the physiologic regulation of puberty and reproduction. This newly identified function for GPR54 and its cognate ligand, kisspeptin, has led to additional studies that have localized GPR54 and KiSS-1 mRNA in the hypothalamus, colocalized GPR54 in GnRH neurons, demonstrated GnRH-dependent activation of LH and FSH release by kisspeptin, and shown increased hypothalamic KiSS-1 and GPR54 mRNA levels at the time of puberty. Taken together, these findings establish the role of the kisspeptin-GPR54 system in the stimulation of GnRH neurons during puberty. The mechanisms by which kisspeptin activates GnRH release, as well as the trigger for this pathway at the onset of puberty, are yet to be elucidated. In the future, modulators of GPR54 activity, including kisspeptin, may prove valuable in clinical applications in the fields of both cancer therapy and reproductive medicine.
New Promising Strategies in Oncofertility
Hudson, Janella N.; Stanley, Nathanael B.; Nahata, Leena; Bowman-Curci, Meghan; Quinn, Gwendolyn P.
2017-01-01
Introduction Approximately 70,000 adolescent and young adults (AYA) are diagnosed with cancer each year. While advancements in treatment have led to improved prognosis and survival for patients, these same treatments can adversely affect AYA reproductive capacity. Localized treatments such as surgery and radiation therapy may affect fertility by removing or damaging reproductive organs, and systemic therapies such as chemotherapy can be toxic to gonads, (ovaries and testicles), thus affecting fertility and/or endocrine function. This can be traumatic for AYA with cancer as survivors often express desire to have genetic children and report feelings of regret or depression as a result of infertility caused by cancer treatments. Areas Covered Emerging technologies in the field of assisted reproductive technology offer new promise for preserving the reproductive capacity of AYA cancer patients prior to treatment as well as providing alternatives for survivors. The following review revisits contemporary approaches to fertility preservation as well newly developing technologies. Expert Commentary There are several advances in ART that hold promise for patients and survivors. However there are challenges that inhibit uptake including poor communication between providers and patients about risks and fertility preservation options; high costs; and lack of insurance coverage for fertility preservation services. PMID:28959743
Ottinger, M.A.; Reed, E.; Wu, J.; Thompson, N.; French, J.B.
2003-01-01
In order to reveal patterns of reproductive aging in birds we focus on a short lived species, the Japanese quail and the American kestrel, which has a life span of medium length. Quail have been studied extensively in the laboratory as models for understanding avian endocrinology and behavior, and as a subject for toxicological research and testing. In the lab, Japanese quail show age-related deterioration in endocrine, behavioral, and sensory system responses; the American kestrel is relatively long lived and shows moderate evidence of senescence in the oldest birds. Using data collected from captive kestrels at the Patuxent Wildlife Research Center, a database was designed to document selected parameters over the life cycle of the kestrels. Life table data collated from many species indicate that longer lived species of birds show senescence in survival ability but this pattern has not been established for reproductive function. We suggest that useful comparisons among species can be made by identifying stages in reproductive life history, organized on a relative time scale. Preliminary data from quail and kestrels, admittedly only two species, do not yet indicate a pattern of greater reproductive senescence in longer-lived birds.
Transgenerational neuroendocrine disruption of reproduction
Walker, Deena M.; Gore, Andrea C.
2014-01-01
Exposure to endocrine disrupting chemicals (EDCs) is associated with dysfunctions of metabolism, energy balance, thyroid function and reproduction, and an increased risk of endocrine cancers. These multifactorial disorders can be ‘programmed’ through molecular epigenetic changes induced by exposure to EDCs early in life, the expression of which may not manifest until adulthood. In some cases, EDCs have detrimental effects on subsequent generations, which indicates that traits for disease predisposition may be passed to future generations by nongenomic inheritance. This Review discusses current understanding of the epigenetic mechanisms that underlie sexual differentiation of reproductive neuroendocrine systems in mammals and summarizes the literature on transgenerational epigenetic effects of representative EDCs: vinclozolin, diethylstilbesterol, bisphenol A and polychlorinated biphenyls. The article differentiates between context-dependent epigenetic transgenerational changes—namely, those that require environmental exposure, either via the EDC itself or through behavioral or physiological differences in parents—and germline-dependent epigenetic mechanisms. These processes, albeit discrete, are not mutually exclusive and can involve similar molecular mechanisms including DNA methylation and histone modifications and may predispose exposed individuals to transgenerational disruption of reproductive processes. New insights stress the crucial need to develop a clear understanding of how EDCs may program the epigenome of exposed individuals and their descendants. PMID:21263448
Activity Diagrams for DEVS Models: A Case Study Modeling Health Care Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozmen, Ozgur; Nutaro, James J
Discrete Event Systems Specification (DEVS) is a widely used formalism for modeling and simulation of discrete and continuous systems. While DEVS provides a sound mathematical representation of discrete systems, its practical use can suffer when models become complex. Five main functions, which construct the core of atomic modules in DEVS, can realize the behaviors that modelers want to represent. The integration of these functions is handled by the simulation routine, however modelers can implement each function in various ways. Therefore, there is a need for graphical representations of complex models to simplify their implementation and facilitate their reproduction. In thismore » work, we illustrate the use of activity diagrams for this purpose in the context of a health care behavior model, which is developed with an agent-based modeling paradigm.« less
Tainaka, Hitoshi; Takahashi, Hikari; Umezawa, Masakazu; Tanaka, Hiromitsu; Nishimune, Yoshitake; Oshio, Shigeru; Takeda, Ken
2012-01-01
Bisphenol A (BPA) is known to be an endocrine disruptor that affects the development of reproductive system. The aim of the present study was to investigate a group of testicular genes dysregulated by prenatal exposure to BPA. Pregnant ICR mice were treated with BPA by subcutaneous administration on days 7 and 14 of pregnancy. Tissue and blood samples were collected from 6-week-old male offspring. Testes were subjected to gene expression analysis using a testis-specific microarray (Testis2), consisting of 2,482 mouse cDNA clones annotated with Medical Subject Headings (MeSH) terms indicative of testicular components and functions. To interpret the microarray data, we used the MeSH terms significantly associated with the altered genes. As a result, MeSH terms related to androgens and Sertoli cells were extracted in BPA-treated groups. Among the genes related to Sertoli cells, downregulation of Msi1h, Ncoa1, Nid1, Hspb2, and Gata6 were detected in the testis of mice treated with BPA (twice administered 50 mg/kg). The MeSH terms associated with this group of genes may provide useful means to interpret the testicular toxicity of BPA. This article concludes that prenatal BPA exposure downregulates expression of genes associated with Sertoli cell function and affects the reproductive function of male offspring. Additionally, a method using MeSH to extract a group of genes was useful for predicting the testicular and reproductive toxicity of prenatal BPA exposure.
Emerging roles for neurosteroids in sexual behavior and function.
King, Steven R
2008-01-01
Although gonadal and adrenal steroids heavily impact sexual function at the level of the brain, the nervous system also produces its own steroids de novo that may regulate sexual behavior and reproduction. Current evidence points to important roles for neurosteroids in sexual and gender-typical behaviors, control of ovulation, and behaviors that strongly influence sexual interest and motivation like aggression, anxiety and depression. At the cellular level, neurosteroids act through stimulating rapid changes in excitability and direct activation of membrane receptors in neurons. Thus, unlike peripheral steroids, neurosteroids can have immediate and specific effects on select neuronal pathways to regulate sexual function.
Suppression of OsRAD51D results in defects in reproductive development in rice (Oryza sativa L.).
Byun, Mi Young; Kim, Woo Taek
2014-07-01
The cellular roles of RAD51 paralogs in somatic and reproductive growth have been extensively described in a wide range of animal systems and, to a lesser extent, in Arabidopsis, a dicot model plant. Here, the OsRAD51D gene was identified and characterized in rice (Oryza sativa L.), a monocot model crop. In the rice genome, three alternative OsRAD51D mRNA splicing variants, OsRAD51D.1, OsRAD51D.2, and OsRAD51D.3, were predicted. Yeast two-hybrid studies, however, showed that only OsRAD51D.1 interacted with OsRAD51B and OsRAD51C paralogs, suggesting that OsRAD51D.1 is a functional OsRAD51D protein in rice. Loss-of-function osrad51d mutant rice plants displayed normal vegetative growth. However, the mutant plants were defective in reproductive growth, resulting in sterile flowers. Homozygous osrad51d mutant flowers exhibited impaired development of lemma and palea and contained unusual numbers of stamens and stigmas. During early meiosis, osrad51d pollen mother cells (PMCs) failed to form normal homologous chromosome pairings. In subsequent meiotic progression, mutant PMCs represented fragmented chromosomes. The osrad51d pollen cells contained numerous abnormal micro-nuclei that resulted in malfunctioning pollen. The abnormalities of heterozygous mutant and T2 Ubi:RNAi-OsRAD51D RNAi-knock-down transgenic plants were intermediate between those of wild type and homozygous mutant plants. The osrad51d and Ubi:RNAi-OsRAD51D plants contained longer telomeres compared with wild type plants, indicating that OsRAD51D is a negative factor for telomere lengthening. Overall, these results suggest that OsRAD51D plays a critical role in reproductive growth in rice. This essential function of OsRAD51D is distinct from Arabidopsis, in which AtRAD51D is not an essential factor for meiosis or reproductive development. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Arista, M; Berjano, R; Viruel, J; Ortiz, M Á; Talavera, M; Ortiz, P L
2017-09-01
The transition from outcrossing to selfing is a repeated pattern in angiosperm diversification and according to general theory this transition should occur quickly and mixed reproductive systems should be infrequent. However, a large proportion of flowering plants have mixed reproductive systems, even showing inbreeding depression. Recently, several theoretical studies have shown that mixed mating systems can be stable, but empirical studies supporting these assumptions are still scarce. Hypochaeris salzmanniana, an annual species with populations differing in their self-incompatibility expression, was used as a study case to assess the stability of its mixed reproductive system. Here a descriptive study of the pollination environment was combined with measurements of the stability of the self-incompatibility system, outcrossing rate, reproductive assurance and inbreeding depression in four populations for two consecutive years. The reproductive system of populations exhibited a geographical pattern: the proportion of plants decreased from west to east. Pollinator environment also varied geographically, being less favourable from west to east. The self-incompatibility expression of some populations changed markedly in only one year. After selfing, progeny was mainly self-compatible, while after outcrossing both self-incompatible and self-compatible plants were produced. In general, both reproductive assurance and high inbreeding depression were found in all populations and years. The lowest values of inbreeding depression were found in 2014 in the easternmost populations, which experienced a marked increase in self-compatibility in 2015. The mixed reproductive system of H. salzmanniana seems to be an evolutionarily stable strategy, with selfing conferring reproductive assurance when pollinator attendance is low, but strongly limited by inbreeding depression. The fact that the highest frequencies of self-compatible plants appeared in the environments most unfavourable to pollination suggests that these plants are selected in these sites, although high rates of inbreeding depression should impede the complete loss of self-incompatibility. In H. salzmanniana, year-to-year changes in the frequency of self-incompatible individuals are directly derived from the balance between reproductive assurance and inbreeding depression. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please email: journals.permissions@oup.com
Triclocarban (TCC) is a widely used antimicrobial agent that is routinely detected in surface waters. The present study was designed to examine TCC’s efficacy and mode of action as a reproductive toxicant in fish. Reproductively mature Pimephales promelas were continuously ...
USDA-ARS?s Scientific Manuscript database
Age at puberty is a moderately heritable trait and an early indicator of sow reproductive longevity. Gilts that express first estrus early in life are characterized by improved reproductive longevity and lifetime productivity. These traits are dependent on the function of the hypothalamic-pituitary-...
USDA-ARS?s Scientific Manuscript database
Dominance rank in animal societies is correlated with changes in both reproductive physiology and behavior. In some social insects, dominance status is used to determine a reproductive division of labor, where a few colony members reproduce while most remain functionally sterile. Changes in reproduc...
Abedi, Parvin; Jorfi, Maryam; Afshari, Poorandokht; Fakhri, Ahmad
2017-08-01
This study aimed to evaluate the relation between health-promoting lifestyle and sexual function among women of reproductive age. In this cross-sectional study, 1200 women were recruited randomly from 10 public health centers in Ahvaz, Iran. A demographic questionnaire, Health Promoting Lifestyle Profile 2 (HPLP2), and Female Sexual Function Index (FSFI) were used for data collection. The inclusion criteria were as follows: women aged 15-45 years, married, monogamous, and having basic literacy. Data were analyzed using Kruskal-Wallis test, chi-square test, Spearman correlation coefficient, and logistic regression. All aspects of sexual function showed a significant relationship with different dimensions of HPLP2, except for pain and physical activity ( p < 0.001). Women who had better self-actualization were more likely to have better sexual function than other women (OR = 1.10, 95% CI: 1.06-1.14, p < 0.001). Other variables like responsibility, interpersonal relations and stress management also showed a significant correlation with sexual function. Results of this study showed that health-promoting lifestyle dimensions are significantly related to all aspects of sexual function in women of reproductive age. Health policy makers should take lifestyle-related factors of reproductive-aged women into account when seeking to improve the sexual wellbeing of this population. Further attention should also be given to assessing the direction of causality.
New Approaches to Boar Semen Evaluation, Processing and Improvement.
Sutovsky, P
2015-07-01
The improvement of boar reproductive performance may be the next frontier in reproductive management of swine herd in Unites States, facilitated by better understanding of boar sperm function and by the introduction of new advanced instrumentation in the andrology field. Objective single ejaculate evaluation and individual boar fertility prediction may be possible by introducing automated flow cytometric semen analysis with vital stains (e.g. acrosomal integrity and mito-potential), DNA fragmentation analysis and biomarkers (ubiquitin, PAWP, ALOX15, aggresome) associated with normal or defective sperm phenotypes. Measurement of sperm-produced reactive oxygen species (ROS) is a helpful indicator of normal semen sample. Semen ROS levels could be managed by the addition of ROS-scavenging antioxidants. Alternative energy regeneration substrates and sperm stimulants such as inorganic pyrophosphate and caffeine could increase sperm lifespan in extended semen and within the female reproductive system. Such technology could be combined with timed sperm release in the female reproductive system after artificial insemination. Sperm phenotype analysis by the image-based flow cytometry will go hand in hand with the advancement of swine genomics, linking aberrant sperm phenotype to the fertility influencing gene polymorphisms. Finally, poor-quality ejaculates could be rescued and acceptable ejaculates improved by semen purification methods such as the nanoparticle-based semen purification and magnetic-activated sperm sorting. Altogether, these scientific and technological advances could benefit swine industry, provided that the challenges of new technology adoption, dissemination and cost reduction are met. © 2015 Blackwell Verlag GmbH.
[The influence of melatonin on human reproduction].
Boczek-Leszczyk, Emilia; Juszczak, Marlena
2007-08-01
This paper reviews the possible participation of melatonin in the process of human reproduction. The results of several studies have shown the clear correlation between melatonin and gonadotropins and/or sexual steroids, which suggest that melatonin may be involved in the sexual maturation, ovulation or menopause. Decreased secretion of melatonin which coexists with increased fertility in the summer is specific for women living on the north hemisphere. Moreover, abnormal levels of melatonin in the blood are associated with several disorders of the hypothalamus-pituitary-gonads axis activity, i.e., precocious or delayed pubertas, hypogonadotrophic or hypergonadotrophic hypogonadism or amenorrhoea. Melatonin binding sites have been demonstrated in the central nervous system (mainly in the pars dystalis of the pituitary and hypothalamic suprachiasmatic nucleus) as well as in the reproductive organs, e.g., human granulosa cells, prostate and spermatozoa. Melatonin can, therefore, influence the gonadal function indirectly--via its effect on gonadotropin-releasing hormone and/or gonadotropins secretion. It may also act directly; several data show that melatonin can be synthesized in gonads.
Many chemicals released into the environment display estrogenic activity including the oral contraceptive ethinyl estradiol (EE2) and the plastic monomer bisphenol A (BPA). EE2 is present in some aquatic systems at concentrations sufficient to alter reproductive function of fishe...
Han, Xue; Cui, Zhihong; Zhou, Niya; Ma, Mingfu; Li, Lianbing; Li, Yafei; Lin, Hui; Ao, Lin; Shu, Weiqun; Liu, Jinyi; Cao, Jia
2014-03-01
This study was designed to investigate the phthalates exposure levels in general population in Chongqing City of China, and to determine the possible associations between phthalate exposure and male reproductive function parameters. We recruited 232 general men through Chongqing Family Planning Research Institute and Reproductive Center of Chongqing. In a single spot urine sample from each man, phthalate metabolites, including mono-butyl phthalate (MBP), mono-ethyl phthalate (MEP), mono-(2-ethylhexyl) phthalate (MEHP), mono-benzyl phthalate (MBzP), phthalic acid (PA), and total PA were analyzed using solid phase extraction and coupled with high-performance liquid chromatography and detection by tandem mass spectrometry. Semen parameters were dichotomized based on World Health Organization reference values. Sperm DNA damage were analyzed using the alkaline single-cell gel electrophoresis assay. Reproductive hormones were determined in serum by the radioimmunoassay kit. We observed a weak association between urinary MBP concentration and sperm concentration in Chongqing general population. MBP levels above the median were 1.97 times (95% confidence interval [CI] 0.97-4.04) more likely to have sperm concentration below the reference value. There were no other associations between phthalate metabolites and reproductive function parameters after adjusted for potential risk factors. Our study suggested that general population in Chongqing area of China exposure to the environmental level of phthalate have weak or without adverse effects on the reproduction. Copyright © 2013 Elsevier GmbH. All rights reserved.
What have we learned about GPER function in physiology and disease from knockout mice?
Prossnitz, Eric R.; Hathaway, Helen J.
2015-01-01
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and patho-physiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also revealed roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. PMID:26189910
Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel
2016-01-01
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.
Reproductive physiology of the male camelid.
Bravo, P W; Johnson, L W
1994-07-01
The physiology of reproduction with emphasis on endocrinology of llamas and alpacas is addressed. Information regarding male anatomy, puberty, testicular function, semen description, and sexual behavior is also included.
Freneau, G E; Sá, V A; Franci, C R; Vieira, D; Freneau, B N
2017-01-01
In order to achieve successful captive breeding the Podocnemis expansa, it is necessary to study their reproductive endocrinology. The purpose of this research was to evaluate and characterize plasma concentrations in gonadotrophic, gonadic, corticosterone and prolactin hormones from Giant Amazon Turtles under captive conditions. Blood samples were collected over a 15 month period. The samples were assayed by the use of radioimmunoassay, prolactin, corticosterone, LH, FSH, testosterone, 17β-estradiol and progesterone. We verified significant seasonal pattern increase in 17β-estradiol levels and decrease in progesterone levels in the course of a year, which indicates vitellogenesis. This is related to normal ovarian cycles and possibly to the functional integrity of the hypothalamus-pituitary-gonad axis of captive females. There were negative correlations between testosterone and corticosterone in the male samples, suggestive of stress (management stress) on the reproductive system. The plasma concentrations of gonadotrophic, gonadic, prolactin and corticosterone hormones may be used as a reference for further research and possible therapeutic approaches. The data collected during this research are unprecedented for this species and may serve as a reference for future research regarding the reproductive cycle of this turtle, also allowing reproductive management while in captivity. Information about these hormones must be gathered from wild populations during different periods of the year for better clarification of the reproductive physiology of this species.
Bai, Jun; Wu, Ke-Ming; Gao, Ran-Ran
2018-03-01
In the theory of traditional Chinese medicine(TCM) that "kidney storing essence and governing reproduction", reproductive essence is an important part of the kidney essence and acts as the original material of offspring embryos. Sperm, oocyte and zygote should be all included in the range of reproductive essence. Ovum is the essence of reproduction from inborn. The follicles maturation depends on the quality of oocyte and the vigor of kidney essence. Meanwhile, discharge of mature ovum relies on the stimulation and promotion by kidney Qi. Autophagy almost exists in different cells stages and all various of mammalian cells. Many studies have found that autophagy not only participates in the formation of follicles, but also in every phase of the follicles development, and is involved in the occurrence and development of ovarian diseases. Recently, more and more scholars believe that autophagy is a new field to explore the microcosmic relationship between autophagy and TCM. Kidney-nourishing TCM could promote follicular growth and improve variety clinical symptoms by inhibiting the apoptosis of ovarian granulosa cells and reducing follicular atresia. Meanwhile, apoptosis of ovarian granulosa cells is closely related to autophagy of ovarian granulosa cells. In order to provide some theoretical foundation for kidney-nourishing therapy's promoting effect on follicular growth and improving effect on ovarian function, also to further explore the molecular mechanism of kidney-nourishing medicine in promoting follicular development, this paper would explain the microcosmic relationship between autophagy and follicular development based on the theory of "kidney governing reproduction". All of these would be of great significance to prevent and intervene the diseases of reproductive system timely and effectively. Copyright© by the Chinese Pharmaceutical Association.
Reproductive and Developmental Toxicity of Formaldehyde: A Systematic Review
Duong, Anh; Steinmaus, Craig; McHale, Cliona M.; Vaughan, Charles P.; Zhang, Luoping
2011-01-01
Formaldehyde, the recently classified carcinogen and ubiquitous environmental contaminant, has long been suspected of causing adverse reproductive and developmental effects, but previous reviews were inconclusive, due in part, to limitations in the design of many of the human population studies. In the current review, we systematically evaluated evidence of an association between formaldehyde exposure and adverse reproductive and developmental effects, in human populations and in vivo animal studies, in the peer-reviewed literature. The mostly retrospective human studies provided evidence of an association of maternal exposure with adverse reproductive and developmental effects. Further assessment of this association by meta-analysis revealed an increased risk of spontaneous abortion (1.76, 95% CI 1.20–2.59, p=0.002) and of all adverse pregnancy outcomes combined (1.54, 95% CI 1.27–1.88, p<0.001), in formaldehyde-exposed women, although differential recall, selection bias, or confounding cannot be ruled out. Evaluation of the animal studies including all routes of exposure, doses and dosing regimens studied, suggested positive associations between formaldehyde exposure and reproductive toxicity, mostly in males. Potential mechanisms underlying formaldehyde-induced reproductive and developmental toxicities, including chromosome and DNA damage (genotoxicity), oxidative stress, altered level and/or function of enzymes, hormones and proteins, apoptosis, toxicogenomic and epigenomic effects (such as DNA methylation), were identified. To clarify these associations, well-designed molecular epidemiologic studies, that include quantitative exposure assessment and diminish confounding factors, should examine both reproductive and developmental outcomes associated with exposure in males and females. Together with mechanistic and animal studies, this will allow us to better understand the systemic effect of formaldehyde exposure. PMID:21787879
Walker, Deena M.; Zama, Aparna M.; Armenti, AnnMarie E.; Uzumcu, Mehmet
2011-01-01
Gestational exposure to the estrogenic endocrine disruptor methoxychlor (MXC) disrupts the female reproductive system at the molecular, physiological, and behavioral levels in adulthood. The current study addressed whether perinatal exposure to endocrine disruptors reprograms expression of a suite of genes expressed in the hypothalamus that control reproductive function and related these molecular changes to premature reproductive aging. Fischer rats were exposed daily for 12 consecutive days to vehicle (dimethylsulfoxide), estradiol benzoate (EB) (1 mg/kg), and MXC (low dose, 20 μg/kg or high dose, 100 mg/kg), beginning on embryonic d 19 through postnatal d 7. The perinatally exposed females were aged to 16–17 months and monitored for reproductive senescence. After euthanasia, hypothalamic regions [preoptic area (POA) and medial basal hypothalamus] were dissected for real-time PCR of gene expression or pyrosequencing to assess DNA methylation of the Esr1 gene. Using a 48-gene PCR platform, two genes (Kiss1 and Esr1) were significantly different in the POA of endocrine-disrupting chemical-exposed rats compared with vehicle-exposed rats after Bonferroni correction. Fifteen POA genes were up-regulated by at least 50% in EB or high-dose MXC compared with vehicle. To understand the epigenetic basis of the increased Esr1 gene expression, we performed bisulfite conversion and pyrosequencing of the Esr1 promoter. EB-treated rats had significantly higher percentage of methylation at three CpG sites in the Esr1 promoter compared with control rats. Together with these molecular effects, perinatal MXC and EB altered estrous cyclicity and advanced reproductive senescence. Thus, early life exposure to endocrine disruptors has lifelong effects on neuroendocrine gene expression and DNA methylation, together with causing the advancement of reproductive senescence. PMID:22016562
Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms.
Zhang, Yufeng; Hood, Wendy R
2016-10-15
Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. © 2016. Published by The Company of Biologists Ltd.
Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms
Zhang, Yufeng
2016-01-01
ABSTRACT Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. PMID:27802148
[Cytokines and their role in reproductive system].
Ianchiĭ, R I; Voznesens'ka, T Iu; Shepel', O A
2007-01-01
In this review we analyze the involvement of cytokines in regulation of ovarian function. A growing body of evidence suggests that the ovary is a site of inflammatory reactions. Immune-competent cells present within the ovary may constitute potential in-situ modulators of ovarian function that act through local secretion of regulatory soluble factors cytokines. In addition many over cell in the ovary also produce cytokines independently of the presence of leukocytes, thus ovaries are sites of cytokine action and production. There are many evidences that cytokines are involved in the ovarian control of follicular development and are surveyed as the important regulators of steroidogenesis and gamete production. It is established that cytokines generally inhibit gonadotropin-stimulated production of steroids. However ovarian steroids, in turn, reduce the cytokine production by immunecompetent cells. There are some data about participation of cytokines in regulating the proliferation and differentiation of granulose cells. Most cytokines appear in mammalian follicles only a short time before ovulation and play the important role in process of ovulation and luteinization. Thus a variety of clinical situations may be due to cytokine action in the gonads, and therapeutic manipulation of the immune system may affect reproductive function. Moreover the findings about the expression of some cytokines by oocytes and their presence in follicular fluid provide further evidence and substantiate the physiologic role for their in ovarian function, and may lead to clinical applications in programs of in vitro fertilization and in diagnosis and treatment of infertility in women, especially in cases attributed to ovarian dysfunction.
Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review.
Maresch, Constanze C; Stute, Dina C; Alves, Marco G; Oliveira, Pedro F; de Kretser, David M; Linn, Thomas
2018-01-01
Hyperglycemia can result from a loss of pancreatic beta-cells or a decline in their function leading to decreased insulin secretion or may arise from insulin resistance and variable degrees of inadequate insulin secretion resulting in diabetes and related comorbidities. To date several reviews have addressed the issue of diabetes-related male infertility but most have focused on how metabolic syndrome causes the decline in male fertility. However, a comprehensive overview as to how diabetes-induced hyperglycemia impairs male fertility is missing. Impaired regulation of glucose and the resultant hyperglycemia are major threats to the health of individuals in modern societies especially given the rapidly rising prevalence affecting an increasing number of men in their reproductive years. Consequently, diabetes-induced hyperglycemia is likely to contribute to a decline in global birth rates especially in those societies with a high diabetic prevalence. This systematic review addresses and summarizes the impact of hyperglycemia on male reproductive health with a particular emphasis on the molecular mechanisms that influence the testis and other parts of the male reproductive tract. A systematic search of the literature published in the MEDLINE-Pubmed database (http://www.ncbi.nlm.nih.gov/pubmed) and Cochrane Library (http://www.cochranelibrary.com) was performed, as well as hand searching reference lists, from the earliest available online indexing year until May 2017, using diabetes- and male fertility-related keywords in combination with other search phrases relevant to the topic of hyperglycemia. Inclusion criteria were: clinical studies on type 1 diabetic (T1D) men and studies on T1D animal models with a focus on reproductive parameters. Case reports/series, observational studies and clinical trials were included. Studies on patients with type 2 diabetes (T2D) or animal models of T2D were excluded to distinguish hyperglycemia from other metabolic effects. A total of 890 articles were identified of which 197 (32 clinical, 165 animal studies) were selected for qualitative analysis. While the clinical data from men with hyperglycemia-induced reproductive dysfunction were reported in most studies on T1D, the study designs were variable and lacked complete information on patients. Moreover, only a few studies (and mostly animal studies) addressed the underlying mechanisms of how hyperglycemia induces infertility. Potential causes included impaired function of the hypothalamic-pituitary-gonadal axis, increased DNA damage, perturbations in the system of advanced glycation endproducts and their receptor, oxidative stress, increased endoplasmatic reticulum stress, modulation of cellular pathways, impaired mitochondrial function and disrupted sympathetic innervation. However, intervention studies to identify and confirm the pathological mechanisms were missing: data that are essential in understanding these interactions. While the effects of regulating the hyperglycemia by the use of insulin and other modulators of glucose metabolism have been reported, more clinical trials providing high quality evidence and specifically addressing the beneficial effects on male reproduction are required. We conclude that interventions using insulin to restore normoglycemia should be a feasible approach to assess the proposed underlying mechanisms of infertility. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Jozifkova, Eva; Konvicka, Martin; Flegr, Jaroslav
2014-01-01
Equality between partners is considering a feature of the functional partnerships in westernized societies. However, the evolutionary consequences of how in-pair hierarchy influences reproduction are less known. Attraction of some high-ranking women towards low-ranking men represents a puzzle. Young urban adults (120 men, 171 women) filled out a questionnaire focused on their sexual preference for higher or lower ranking partners, their future in-pair hierarchy, and hierarchy between their parents. Human pairs with a hierarchic disparity between partners conceive more offspring than pairs of equally-ranking individuals, who, in turn, conceive more offspring than pairs of two dominating partners. Importantly, the higher reproductive success of hierarchically disparate pairs holds, regardless of which sex, male or female, is the dominant one. In addition, the subjects preferring hierarchy disparity in partnerships were with greater probability sexually aroused by such disparity, suggesting that both the partnership preference and the triggers of sexual arousal may reflect a mating strategy. These results challenge the frequently held belief in within-pair equality as a trademark of functional partnerships. It rather appears that existence of some disparity improves within-pair cohesion, facilitating both cooperation between partners and improving the pairs' ability to face societal challenges. The parallel existence of submissivity-dominance hierarchies within human sexes allows for the parallel existence of alternative reproductive strategies, and may form a background for the diversity of mating systems observed in human societies. Arousal of overemphasized dominance/submissiveness may explain sadomasochistic sex, still little understood from the evolutionary psychology point of view.