Science.gov

Sample records for reprogrammed fibroblasts intact

  1. Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors

    PubMed Central

    Ieda, Masaki; Fu, Ji-Dong; Delgado-Olguin, Paul; Vedantham, Vasanth; Hayashi, Yohei; Bruneau, Benoit G.; Srivastava, Deepak

    2010-01-01

    SUMMARY The reprogramming of fibroblasts to induced pluripotent stem (iPS) cells raises the possibility that a somatic cell could be reprogrammed to an alternative differentiated fate without first becoming a stem/progenitor cell. A large pool of fibroblasts exists in the post-natal heart, yet no single “master regulator” of direct cardiac reprogramming has been identified. Here, we report that a combination of three developmental transcription factors (i.e., Gata4, Mef2c and Tbx5) rapidly and efficiently reprogrammed post-natal cardiac or dermal fibroblasts directly into differentiated cardiomyocyte-like cells. Induced cardiomyocytes expressed cardiac-specific markers, had a global gene expression profile similar to cardiomyocytes, and contracted spontaneously. Fibroblasts transplanted into mouse hearts one day after transduction of the three factors also differentiated into cardiomyocyte-like cells. These findings demonstrate that functional cardiomyocytes can be directly reprogrammed from differentiated somatic cells by defined factors. Reprogramming of endogenous or explanted fibroblasts might provide a source of cardiomyocytes for regenerative approaches. PMID:20691899

  2. Reprogramming of human fibroblasts toward a cardiac fate

    PubMed Central

    Nam, Young-Jae; Song, Kunhua; Luo, Xiang; Daniel, Edward; Lambeth, Kaleb; West, Katherine; Hill, Joseph A.; DiMaio, J. Michael; Baker, Linda A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2013-01-01

    Reprogramming of mouse fibroblasts toward a myocardial cell fate by forced expression of cardiac transcription factors or microRNAs has recently been demonstrated. The potential clinical applicability of these findings is based on the minimal regenerative potential of the adult human heart and the limited availability of human heart tissue. An initial but mandatory step toward clinical application of this approach is to establish conditions for conversion of adult human fibroblasts to a cardiac phenotype. Toward this goal, we sought to determine the optimal combination of factors necessary and sufficient for direct myocardial reprogramming of human fibroblasts. Here we show that four human cardiac transcription factors, including GATA binding protein 4, Hand2, T-box5, and myocardin, and two microRNAs, miR-1 and miR-133, activated cardiac marker expression in neonatal and adult human fibroblasts. After maintenance in culture for 4–11 wk, human fibroblasts reprogrammed with these proteins and microRNAs displayed sarcomere-like structures and calcium transients, and a small subset of such cells exhibited spontaneous contractility. These phenotypic changes were accompanied by expression of a broad range of cardiac genes and suppression of nonmyocyte genes. These findings indicate that human fibroblasts can be reprogrammed to cardiac-like myocytes by forced expression of cardiac transcription factors with muscle-specific microRNAs and represent a step toward possible therapeutic application of this reprogramming approach. PMID:23487791

  3. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts

    PubMed Central

    Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.

    2015-01-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715

  4. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors

    PubMed Central

    Cheng, Hui; Ang, Heather Yin-Kuan; A. EL Farran, Chadi; Li, Pin; Fang, Hai Tong; Liu, Tong Ming; Kong, Say Li; Chin, Michael Lingzi; Ling, Wei Yin; Lim, Edwin Kok Hao; Li, Hu; Huber, Tara; Loh, Kyle M.; Loh, Yuin-Han; Lim, Bing

    2016-01-01

    Recent efforts have attempted to convert non-blood cells into hematopoietic stem cells (HSCs) with the goal of generating blood lineages de novo. Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally distant lineage (fibroblasts) into ‘induced hematopoietic progenitors' (iHPs). Functionally, iHPs generate acetylcholinesterase+ megakaryocytes and phagocytic myeloid cells in vitro and can also engraft immunodeficient mice, generating myeloerythoid and B-lymphoid cells for up to 4 months in vivo. Molecularly, iHPs transcriptionally resemble native Kit+ hematopoietic progenitors. Mechanistically, reprogramming factor Lmo2 implements a hematopoietic programme in fibroblasts by rapidly binding to and upregulating the Hhex and Gfi1 genes within days. Moreover the reprogramming transcription factors also require extracellular BMP and MEK signalling to cooperatively effectuate reprogramming. Thus, the transcription factors that orchestrate embryonic hematopoiesis can artificially reconstitute this programme in developmentally distant fibroblasts, converting them into engraftable blood progenitors. PMID:27869129

  5. Gaining myocytes or losing fibroblasts: Challenges in cardiac fibroblast reprogramming for infarct repair.

    PubMed

    Nagalingam, Raghu S; Safi, Hamza A; Czubryt, Michael P

    2016-04-01

    Unlike most somatic tissues, the heart possesses a very limited inherent ability to repair itself following damage. Attempts to therapeutically salvage the myocardium after infarction, either by sparing surviving myocytes or by injection of exogenous cells of varied provenance, have met with limited success. Cardiac fibroblasts are numerous, resistant to hypoxia, and amenable to phenotype reprogramming to cardiomyocytes - a potential panacea to an intractable problem. However, the long-term effects of mass conversion of fibroblasts are as-yet unknown. Since fibroblasts play key roles in normal cardiac function, treating these cells as a ready source of replacements for myocytes may have the effect of swapping one problem for another. This review briefly examines the roles of cardiac fibroblasts, recaps the strides made so far in their reprogramming to cardiomyocytes both in vitro and in vivo, and discusses the potential ramifications of large-scale cellular identity swapping. While such therapy offers great promise, the potential repercussions require consideration and careful study.

  6. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes.

    PubMed

    Huang, Pengyu; Zhang, Ludi; Gao, Yimeng; He, Zhiying; Yao, Dan; Wu, Zhitao; Cen, Jin; Chen, Xiaotao; Liu, Changcheng; Hu, Yiping; Lai, Dongmei; Hu, Zhenlei; Chen, Li; Zhang, Ying; Cheng, Xin; Ma, Xiaojun; Pan, Guoyu; Wang, Xin; Hui, Lijian

    2014-03-06

    The generation of large numbers of functional human hepatocytes for cell-based approaches to liver disease is an important and unmet goal. Direct reprogramming of fibroblasts to hepatic lineages could offer a solution to this problem but so far has only been achieved with mouse cells. Here, we generated human induced hepatocytes (hiHeps) from fibroblasts by lentiviral expression of FOXA3, HNF1A, and HNF4A. hiHeps express hepatic gene programs, can be expanded in vitro, and display functions characteristic of mature hepatocytes, including cytochrome P450 enzyme activity and biliary drug clearance. Upon transplantation into mice with concanavalin-A-induced acute liver failure and fatal metabolic liver disease due to fumarylacetoacetate dehydrolase (Fah) deficiency, hiHeps restore the liver function and prolong survival. Collectively, our results demonstrate successful lineage conversion of nonhepatic human cells into mature hepatocytes with potential for biomedical and pharmaceutical applications.

  7. Hypoxia Enhances Direct Reprogramming of Mouse Fibroblasts to Cardiomyocyte-Like Cells.

    PubMed

    Wang, Yanyan; Shi, Shujun; Liu, Huiwen; Meng, Li

    2016-02-01

    Recent work has shown that mouse and human fibroblasts can be reprogrammed to cardiomyocyte-like cells with a combination of transcription factors. Current research has focused on improving the efficiency and mechanisms for fibroblast reprogramming. Previously, it has been reported that hypoxia enhances fibroblast cell reprogramming to pluripotent stem cells. In this study, we observed that 6 h of hypoxic conditions (2% oxygen) on newborn mouse dermal fibroblasts can improve the efficiency of reprogramming to cardiomyocyte-like cells. Expression of cardiac-related genes and proteins increased at 4 weeks after transfer of three transcription factors (Gata4/Mef2c/Tbx5 [GMT]). However, beating cardiomyocyte cells were not detected. The epigenetic mechanism of hypoxia-induced fibroblast reprogramming to cardiomyocyte cells requires further study.

  8. BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone

    PubMed Central

    Chen, Jiekai; Liu, Jing; Yang, Jiaqi; Chen, You; Chen, Jing; Ni, Su; Song, Hong; Zeng, Lingwen; Ding, Ke; Pei, Duanqing

    2011-01-01

    Generation of induced pluripotent stem cells by defined factors has become a useful model to investigate the mechanism of reprogramming and cell fate determination. However, the precise mechanism of factor-based reprogramming remains unclear. Here, we show that Klf4 mainly acts at the initial phase of reprogramming to initiate mesenchymal-to-epithelial transition and can be functionally replaced by bone morphogenetic proteins (BMPs). BMPs boosted the efficiency of Oct4/Sox2-mediated reprogramming of mouse embryonic fibroblasts (MEFs) to ∼1%. BMPs also promoted single-factor Oct4-based reprogramming of MEFs and tail tibial fibroblasts. Our studies clarify the contribution of Klf4 in reprogramming and establish Oct4 as a singular setter of pluripotency in differentiated cells. PMID:21135873

  9. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

    PubMed

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-07-17

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming.

  10. Reprogramming of COPD lung fibroblasts through formation of induced pluripotent stem cells

    PubMed Central

    Gunji, Yoko; Iwasawa, Shunichiro; Nelson, Amy; Farid, Maha; Ikari, Jun; Liu, Xiangde; Wang, Xingqi; Michalski, Joel; Smith, Lynette; Iqbal, Javeed; Behery, Radwa El; West, William; Yelamanchili, Sowmya; Rennard, Deborah; Holz, Olaf; Mueller, Kai-Christian; Magnussen, Helgo; Rabe, Klaus; Castaldi, Peter J; Rennard, Stephen I.

    2014-01-01

    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) eliminates many epigenetic modifications that characterize differentiated cells. In this study, we tested whether functional differences between chronic obstructive pulmonary disease (COPD) and non-COPD fibroblasts could be reduced utilizing this approach. Primary fibroblasts from non-COPD and COPD patients were reprogrammed to iPSCs. Reprogrammed iPSCs were positive for oct3/4, nanog, and sox2, formed embryoid bodies in vitro, and induced teratomas in nonobese diabetic/severe combined immunodeficient mice. Reprogrammed iPSCs were then differentiated into fibroblasts (non-COPD-i and COPD-i) and were assessed either functionally by chemotaxis and gel contraction or for gene expression by microarrays and compared with their corresponding primary fibroblasts. Primary COPD fibroblasts contracted three-dimensional collagen gels and migrated toward fibronectin less robustly than non-COPD fibroblasts. In contrast, redifferentiated fibroblasts from iPSCs derived from the non-COPD and COPD fibroblasts were similar in response in both functional assays. Microarray analysis identified 1,881 genes that were differentially expressed between primary COPD and non-COPD fibroblasts, with 605 genes differing by more than twofold. After redifferentiation, 112 genes were differentially expressed between COPD-i and non-COPD-i with only three genes by more than twofold. Similar findings were observed with microRNA (miRNA) expression: 56 miRNAs were differentially expressed between non-COPD and COPD primary cells; after redifferentiation, only 3 miRNAs were differentially expressed between non-COPD-i and COPD-i fibroblasts. Interestingly, of the 605 genes that were differentially expressed between COPD and non-COPD fibroblasts, 293 genes were changed toward control after redifferentiation. In conclusion, functional and epigenetic alterations of COPD fibroblasts can be reprogrammed through formation of iPSCs. PMID

  11. Bovine trophectoderm cell lines induced from bovine fibroblasts with reprogramming factors

    USDA-ARS?s Scientific Manuscript database

    Bovine trophectoderm (TE) cells were induced [induced bovine trophectoderm-like (iBT)] from bovine fetal liver-derived fibroblasts, and other bovine fetal fibroblasts, after viral-vector transduction with either four or six reprogramming factors (RF), including POU5F1, KLF4, SOX2, C-MYC, SV40 large ...

  12. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes.

    PubMed

    Zhou, Huanyu; Dickson, Matthew E; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N

    2015-09-22

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique.

  13. Aging adult porcine fibroblasts can support nuclear transfer and transcription factor-mediated reprogramming.

    PubMed

    Li, Xia; Zhang, Pengfei; Jiang, Shaoshuai; Ding, Biao; Zuo, Xiaoyuan; Li, Yunsheng; Cao, Zubing; Zhang, Yunhai

    2017-10-03

    Somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs) technology are two classical reprogramming methods. Donor cell types can affect the reprogramming results in the above two methods. We here used porcine embryonic fibroblasts (PEFs) and adult porcine ear skin fibroblasts (APEFs) and adipose-derived stem cells (ADSCs) as donor cells for SCNT and source cells for iPSCs to study their in vitro developmental capability and colony-formation efficiency, respectively. For SCNT, fusion and cleavage rate has no significant difference among PEFs, ADSCs and APEFs. The rate and total cell number of blastocysts in the APEF group were significant lower than that in PEFs and ADSCs. For transcription factor-mediated reprogramming, the reprogramming efficiency of ADSCs were significantly higher than PEFs and APEFs and there is no significant difference between PEFs and APEFs. Furthermore, PEFs, APEFs and ADSCs can be used to generate iPSCs. Fianlly, somatic cloned pigs could still be successfully generated from APEFs, suggesting terminally differentiated aging adult somatic cells could be reprogrammed into a totipotent state. Considering the easy availability of animal tissue and the costs of establishing cell lines, aging porcine ear fibroblasts can support nuclear transfer-mediated and transcription factor-based reprogramming. © 2017 Japanese Society of Animal Science.

  14. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.

    PubMed

    Treutlein, Barbara; Lee, Qian Yi; Camp, J Gray; Mall, Moritz; Koh, Winston; Shariati, Seyed Ali Mohammad; Sim, Sopheak; Neff, Norma F; Skotheim, Jan M; Wernig, Marius; Quake, Stephen R

    2016-06-16

    Direct lineage reprogramming represents a remarkable conversion of cellular and transcriptome states. However, the intermediate stages through which individual cells progress during reprogramming are largely undefined. Here we use single-cell RNA sequencing at multiple time points to dissect direct reprogramming from mouse embryonic fibroblasts to induced neuronal cells. By deconstructing heterogeneity at each time point and ordering cells by transcriptome similarity, we find that the molecular reprogramming path is remarkably continuous. Overexpression of the proneural pioneer factor Ascl1 results in a well-defined initialization, causing cells to exit the cell cycle and re-focus gene expression through distinct neural transcription factors. The initial transcriptional response is relatively homogeneous among fibroblasts, suggesting that the early steps are not limiting for productive reprogramming. Instead, the later emergence of a competing myogenic program and variable transgene dynamics over time appear to be the major efficiency limits of direct reprogramming. Moreover, a transcriptional state, distinct from donor and target cell programs, is transiently induced in cells undergoing productive reprogramming. Our data provide a high-resolution approach for understanding transcriptome states during lineage differentiation.

  15. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors

    PubMed Central

    Nam, Young-Jae; Lubczyk, Christina; Bhakta, Minoti; Zang, Tong; Fernandez-Perez, Antonio; McAnally, John; Bassel-Duby, Rhonda; Olson, Eric N.; Munshi, Nikhil V.

    2014-01-01

    Various combinations of cardiogenic transcription factors, including Gata4 (G), Hand2 (H), Mef2c (M) and Tbx5 (T), can reprogram fibroblasts into induced cardiac-like myocytes (iCLMs) in vitro and in vivo. Given that optimal cardiac function relies on distinct yet functionally interconnected atrial, ventricular and pacemaker (PM) cardiomyocytes (CMs), it remains to be seen which subtypes are generated by direct reprogramming and whether this process can be harnessed to produce a specific CM of interest. Here, we employ a PM-specific Hcn4-GFP reporter mouse and a spectrum of CM subtype-specific markers to investigate the range of cellular phenotypes generated by reprogramming of primary fibroblasts. Unexpectedly, we find that a combination of four transcription factors (4F) optimized for Hcn4-GFP expression does not generate beating PM cells due to inadequate sarcomeric protein expression and organization. However, applying strict single-cell criteria to GHMT-reprogrammed cells, we observe induction of diverse cellular phenotypes, including those resembling immature forms of all three major cardiac subtypes (i.e. atrial, ventricular and pacemaker). In addition, we demonstrate that cells induced by GHMT are directly reprogrammed and do not arise from an Nxk2.5+ progenitor cell intermediate. Taken together, our results suggest a remarkable degree of plasticity inherent to GHMT reprogramming and provide a starting point for optimization of CM subtype-specific reprogramming protocols. PMID:25344074

  16. Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts

    PubMed Central

    Tanabe, Koji; Nakamura, Michiko; Narita, Megumi; Takahashi, Kazutoshi; Yamanaka, Shinya

    2013-01-01

    Pluripotency can be induced in somatic cells by forced expression of POU domain, class 5, transcription factor 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Kruppel-like factor 4 (KLF4), myelocytomatosis oncogene (c-MYC) (OSKM). However, factor-mediated direct reprogramming is generally regarded as an inefficient and stochastic event. Contrary to this notion, we herein demonstrate that most human adult dermal fibroblasts initiated the reprogramming process on receiving the OSKM transgenes. Within 7 d, ∼20% of these transduced cells became positive for the TRA-1-60 antigen, one of the most specific markers of human pluripotent stem cells. However, only a small portion (∼1%) of these nascent reprogrammed cells resulted in colonies of induced pluripotent stem cells after replating. We found that many of the TRA-1-60–positive cells turned back to be negative again during the subsequent culture. Among the factors that have previously been reported to enhance direct reprogramming, LIN28, but not Nanog homeobox (NANOG), Cyclin D1, or p53 shRNA, significantly inhibited the reversion of reprogramming. These data demonstrate that maturation, and not initiation, is the limiting step during the direct reprogramming of human fibroblasts toward pluripotency and that each proreprogramming factor has a different mode of action. PMID:23812749

  17. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq

    PubMed Central

    Treutlein, Barbara; Lee, Qian Yi; Camp, J. Gray; Mall, Moritz; Koh, Winston; Shariati, Seyed Ali Mohammad; Sim, Sopheak; Neff, Norma F.; Skotheim, Jan M.; Wernig, Marius; Quake, Stephen R.

    2016-01-01

    Direct lineage reprogramming represents a remarkable conversion of cellular and transcriptome states1–3. However, the intermediates through which individual cells progress are largely undefined. Here we used single-cell RNA-seq4–7 at multiple time points to dissect direct reprogramming from mouse embryonic fibroblasts (MEFs) to induced neuronal (iN) cells. By deconstructing heterogeneity at each time point and ordering cells by transcriptome similarity, we find that the molecular reprogramming path is remarkably continuous. Overexpression of the proneural pioneer factor Ascl1 results in a well-defined initialization, causing cells to exit the cell cycle and re-focus gene expression through distinct neural transcription factors. The initial transcriptional response is relatively homogeneous among fibroblasts suggesting the early steps are not limiting for productive reprogramming. Instead, the later emergence of a competing myogenic program and variable transgene dynamics over time appear to be the major efficiency limits of direct reprogramming. Moreover, a transcriptional state, distinct from donor and target cell programs, is transiently induced in cells undergoing productive reprogramming. Our data provide a high-resolution approach for understanding transcriptome states during lineage differentiation. PMID:27281220

  18. Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming.

    PubMed

    Smith, Derek K; Yang, Jianjing; Liu, Meng-Lu; Zhang, Chun-Li

    2016-11-08

    Pro-neural transcription factors and small molecules can induce the reprogramming of fibroblasts into functional neurons; however, the immediate-early molecular events that catalyze this conversion have not been well defined. We previously demonstrated that neurogenin 2 (NEUROG2), forskolin (F), and dorsomorphin (D) can reprogram fibroblasts into functional neurons with high efficiency. Here, we used this model to define the genetic and epigenetic events that initiate an acquisition of neuronal identity. We demonstrate that NEUROG2 is a pioneer factor, FD enhances chromatin accessibility and H3K27 acetylation, and synergistic transcription activated by these factors is essential to successful reprogramming. CREB1 promotes neuron survival and acts with NEUROG2 to upregulate SOX4, which co-activates NEUROD1 and NEUROD4. In addition, SOX4 targets SWI/SNF subunits and SOX4 knockdown results in extensive loss of open chromatin and abolishes reprogramming. Applying these insights, adult human glioblastoma cell and skin fibroblast reprogramming can be improved using SOX4 or chromatin-modifying chemicals.

  19. The Effect of Substrate Topography on Direct Reprogramming of Fibroblasts to Induced Neurons

    PubMed Central

    Kulangara, Karina; Adler, Andrew F.; Wang, Hong; Chellappan, Malathi; Hammett, Ellen; Yasuda, Ryohei; Leong, Kam W.

    2014-01-01

    Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2+ neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming. PMID:24709523

  20. MYC mediates large oncosome-induced fibroblast reprogramming in prostate cancer.

    PubMed

    Minciacchi, Valentina R; Spinelli, Cristiana; Reis-Sobreiro, Mariana; Cavallini, Lorenzo; You, Sungyong; Zandian, Mandana; Li, Xiaohong; Chiarugi, Paola; Adam, Rosalyn M; Posadas, Edwin M; Viglietto, Giuseppe; Freeman, Michael R; Cocucci, Emanuele; Bhowmick, Neil A; Di Vizio, Dolores

    2017-02-15

    Communication between cancer cells and the tumor microenvironment results in the modulation of complex signaling networks that facilitate tumor progression. Here we describe a new mechanism of intercellular communication originating from large oncosomes (LO), which are cancer cell-derived, atypically large (1-10 μm) extracellular vesicles (EV). We demonstrate that, in the context of prostate cancer, LO harbor sustained AKT1 kinase activity, nominating them as active signaling platforms. Active AKT1 was detected in circulating EV from the plasma of metastatic prostate cancer patients and was LO specific. LO internalization induced reprogramming of human normal prostate fibroblasts as reflected by high levels of α-SMA, IL-6, and MMP9. In turn, LO-reprogrammed normal prostate fibroblasts stimulated endothelial tube formation in vitro and promoted tumor growth in mice. Activation of stromal MYC was critical for this reprogramming and for the sustained cellular responses elicited by LO both in vitro and in vivo in an AKT1-dependent manner. Inhibition of LO internalization prevented activation of MYC and impaired the tumor supporting properties of fibroblasts. Overall, our data show that prostate cancer-derived LO powerfully promote establishment of a tumor supportive environment by inducing a novel reprogramming of the stroma. This mechanism offers potential alternative options for patient treatment.

  1. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    PubMed

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated.

  2. Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells.

    PubMed

    Jin, Yoonhee; Seo, Jungmok; Lee, Jung Seung; Shin, Sera; Park, Hyun-Ji; Min, Sungjin; Cheong, Eunji; Lee, Taeyoon; Cho, Seung-Woo

    2016-09-01

    Triboelectric nanogenerators (TENGs) can be an effective cell reprogramming platform for producing functional neuronal cells for therapeutic applications. Triboelectric stimulation accelerates nonviral direct conversion of functional induced neuronal cells from fibroblasts, increases the conversion efficiency, and induces highly matured neuronal phenotypes with improved electrophysiological functionalities. TENG devices may also be used for biomedical in vivo reprogramming.

  3. Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts.

    PubMed

    Chen, Mengfei; Sun, Xuerong; Jiang, Ruzhang; Shen, Wenjuan; Zhong, Xiufeng; Liu, Bingqian; Qi, Ying; Huang, Bing; Xiang, Andy Peng; Ge, Jian

    2009-12-01

    Pluripotent stem cells can be induced from somatic cells by the transcription factors Oct3/4, Sox2, c-Myc and Klf4 when co-cultured with mouse embryonic fibroblast (MEF) feeder cells. To date, the role of the feeder cells in the reprogramming process remains unclear. In this study, using a comparative analysis, we demonstrated that MEF feeder cells did not accelerate reprogramming or increase the frequency of induced pluripotent stem (iPS) cell colonies. However, feeder conditions did improve the growth of primary iPS colonies and were necessary for passaging the primary colonies after reprogramming was achieved. We further developed a feeder-free culture system for supporting iPS growth and sustaining pluripotency by adding bFGF and activin A (bFA) to the medium. These data will facilitate the generation of human iPS cells without animal feeders for regenerative medicine.

  4. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth

    PubMed Central

    Guido, Carmela; Whitaker-Menezes, Diana; Capparelli, Claudia; Balliet, Renee; Lin, Zhao; Pestell, Richard G.; Howell, Anthony; Aquila, Saveria; Andò, Sebastiano; Martinez-Outschoorn, Ubaldo; Sotgia, Federica; Lisanti, Michael P.

    2012-01-01

    We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic

  5. PIWI Proteins Are Dispensable for Mouse Somatic Development and Reprogramming of Fibroblasts into Pluripotent Stem Cells

    PubMed Central

    Cheng, Ee-Chun; Kang, Dongwan; Wang, Zhong; Lin, Haifan

    2014-01-01

    PIWI proteins play essential and conserved roles in germline development, including germline stem cell maintenance and meiosis. Because germline regulators such as OCT4, NANOG, and SOX2 are known to be potent factors that reprogram differentiated somatic cells into induced pluripotent stem cells (iPSCs), we investigated whether the PIWI protein family is involved in iPSC production. We find that all three mouse Piwi genes, Miwi, Mili, and Miwi2, are expressed in embryonic stem cells (ESCs) at higher levels than in fibroblasts, with Mili being the highest. However, mice lacking all three Piwi genes are viable and female fertile, and are only male sterile. Furthermore, embryonic fibroblasts derived from Miwi/Mili/Miwi2 triple knockout embryos can be efficiently reprogrammed into iPS cells. These iPS cells expressed pluripotency markers and were capable of differentiating into all three germ layers in teratoma assays. Genome-wide expression profiling reveals that the triple knockout iPS cells are very similar to littermate control iPS cells. These results indicate that PIWI proteins are dispensable for direct reprogramming of mouse fibroblasts. PMID:25238487

  6. Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs

    PubMed Central

    Li, Yanzhen; Dal-Pra, Sophie; Mirotsou, Maria; Jayawardena, Tilanthi M.; Hodgkinson, Conrad P.; Bursac, Nenad; Dzau, Victor J.

    2016-01-01

    We have recently shown that a combination of microRNAs, miR combo, can directly reprogram cardiac fibroblasts into functional cardiomyocytes in vitro and in vivo. Reprogramming of cardiac fibroblasts by miR combo in vivo is associated with improved cardiac function following myocardial infarction. However, the efficiency of direct reprogramming in vitro is relatively modest and new strategies beyond the traditional two-dimensional (2D) culture should be identified to improve reprogramming process. Here, we report that a tissue-engineered three-dimensional (3D) hydrogel environment enhanced miR combo reprogramming of neonatal cardiac and tail-tip fibroblasts. This was associated with significantly increased MMPs expression in 3D vs. 2D cultured cells, while pharmacological inhibition of MMPs blocked the effect of the 3D culture on enhanced miR combo mediated reprogramming. We conclude that 3D tissue-engineered environment can enhance the direct reprogramming of fibroblasts to cardiomyocytes via a MMP-dependent mechanism. PMID:27941896

  7. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails.

    PubMed

    Fu, Yanbin; Huang, Chenwen; Xu, Xinxiu; Gu, Haifeng; Ye, Youqiong; Jiang, Cizhong; Qiu, Zilong; Xie, Xin

    2015-09-01

    The direct conversion, or transdifferentiation, of non-cardiac cells into cardiomyocytes by forced expression of transcription factors and microRNAs provides promising approaches for cardiac regeneration. However, genetic manipulations raise safety concerns and are thus not desirable in most clinical applications. The discovery of full chemically induced pluripotent stem cells suggest the possibility of replacing transcription factors with chemical cocktails. Here, we report the generation of automatically beating cardiomyocyte-like cells from mouse fibroblasts using only chemical cocktails. These chemical-induced cardiomyocyte-like cells (CiCMs) express cardiomyocyte-specific markers, exhibit sarcomeric organization, and possess typical cardiac calcium flux and electrophysiological features. Genetic lineage tracing confirms the fibroblast origin of these CiCMs. Further studies show the generation of CiCMs passes through a cardiac progenitor stage instead of a pluripotent stage. Bypassing the use of viral-derived factors, this proof of concept study lays a foundation for in vivo cardiac transdifferentiation with pharmacological agents and possibly safer treatment of heart failure.

  8. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors.

    PubMed

    Talbot, Neil C; Sparks, Wendy O; Phillips, Caitlin E; Ealy, Alan D; Powell, Anne M; Caperna, Thomas J; Garrett, Wesley M; Donovan, David M; Blomberg, Le Ann

    2017-06-01

    Thirteen independent induced bovine trophectroderm (iBT) cell lines were established by reprogramming bovine fetal liver-derived fibroblasts after viral-vector transduction with either six or eight factors, including POU5F1 (OCT4), KLF4, SOX2, MYC, NANOG, LIN28, SV40 large T antigen, and hTERT. Light- and electron-microscopy analysis showed that the iBT cells had epithelial cell morphology typical of bovine trophectoderm cells. Reverse-transcription-PCR assays indicated that all of the cell lines expressed interferon-tau (IFNT) at passages 1 or 2. At later passages (≥ passage 8), however, immunoblot and antiviral activity assays revealed that more than half of the iBT cell lines had stopped expressing IFNT. Messenger RNAs specific to trophectoderm differentiation and function were found in the iBT cell lines, and 2-dimensional-gel analysis for cellular proteins showed an expression pattern similar to that of trophectoderm cell lines derived from bovine blastocysts. Integration of some of the human reprogramming factors, including POU5F1, KLF4, SOX2, MYC, NANOG, and LIN28, were detected by PCR, but their transcription was mostly absent in the iBT cell lines. Gene expression assessment of endogenous bovine reprogramming factor orthologs revealed endogenous bLIN28 and bMYC transcripts in all; bSOX2 and bNANOG in none; and bKLF4 and bPOU5F1 in less than half of the iBT cell lines. These results demonstrate that bovine trophectoderm can be induced via reprogramming factor expression from bovine liver-derived fibroblasts, although other fibroblast populations-e.g., derived from fetal thigh tissue-may produce similar results, albeit at lower frequencies. © 2017 Wiley Periodicals, Inc.

  9. Direct reprogramming of human fibroblasts into sweat gland-like cells.

    PubMed

    Zhao, Zhiliang; Xu, Mengyao; Wu, Meng; Ma, Kui; Sun, Mengli; Tian, Xiaocheng; Zhang, Cuiping; Fu, Xiaobing

    2015-01-01

    The skin of patients with an extensive deep burn injury is repaired by a process that leaves a hypertrophic scar without sweat glands and therefore loses the function of perspiration. The aim of this study was to identify whether the key factors related to sweat gland development could directly reprogram fibroblasts into sweat gland-like cells. After introducing the NF-κB and Lef-1 genes into fibroblasts, we found that stably transfected fibroblasts expressed specific markers of sweat glands, including CEA, CK7, CK14 and CK19, both at the protein and mRNA levels. The immunofluorescence staining also showed positive expression of CEA, CK7, CK14 and CK19 in induced fibroblasts, but there were no positive cells in the control groups. The expression of Shh and Cyclin D1, downstream genes of NF-κB and Lef-1, were also significantly increased during regeneration. The induced fibroblasts were implanted into an animal model. Twenty days later, iodine-starch perspiration tests showed that 7 out of the 10 cell-treated paws were positive for perspiration, with a distinctive black point-like area appearing in the center of the paw. Contralateral paws tested negative. Histological examination of skin biopsies from experimental and control paws revealed that sweat glands were fully reconstructed in the test paws, with integral, secretory and ductal portions, but were not present in the control paws. This is the first report of successful reprogramming of fibroblasts into sweat gland-like cells, which will provide a new cell source for sweat gland regeneration in patients with extensive deep burns.

  10. Human fibroblast reprogramming to pluripotent stem cells regulated by the miR19a/b-PTEN axis.

    PubMed

    He, Xiaoping; Cao, Yang; Wang, Lihua; Han, Yingli; Zhong, Xiuying; Zhou, Guixiang; Cai, Yongping; Zhang, Huafeng; Gao, Ping

    2014-01-01

    Induction of pluripotent stem cells (iPSC) by defined transcription factors is the recognized canonical means for somatic reprogramming, however, it remains incompletely understood how individual transcription factors affect cell fate decisions during the reprogramming process. Here, we report induction of fibroblast reprogramming by various transcriptional factors is mediated by a miR19a/b-PTEN axis. cMyc, one of the four Yamanaka factors known to stimulate both somatic cell reprogramming and tumorigenesis, induced the expression of multiple mircoRNAs, miR-17 ∼ 92 cluster in particular, in the early stage of reprogramming of human fibroblasts. Importantly, miR-17 ∼ 92 cluster could greatly enhance human fibroblast reprogramming induced by either the four Yamanaka factors (Oct4, Sox2, Klf4, and cMyc, or 4F) or the first three transcriptional factors (Oct4, Sox2, and Klf4, or 3F). Among members of this microRNA cluster, miR-19a/b exhibited the most potent effect on stimulating fibroblst reprogramming to iPSCs. Additional studies revealed that miR-19a/b enhanced iPSC induction efficiency by targeted inhibition of phosphatase and tensin homolog (PTEN), a renowned tumor suppressor whose loss-of-function mutations were found in multiple human malignancies. Our results thus demonstrate an important role of miR-19a/b-PTEN axis in the reprogramming of human fibroblasts, illustrating that the somatic reprogramming process and its underlying regulation pathways are intertwined with oncogenic signaling in human malignancies.

  11. CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming

    PubMed Central

    Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407

  12. Second generation codon optimized minicircle (CoMiC) for nonviral reprogramming of human adult fibroblasts.

    PubMed

    Diecke, Sebastian; Lisowski, Leszek; Kooreman, Nigel G; Wu, Joseph C

    2014-01-01

    The ability to induce pluripotency in somatic cells is one of the most important scientific achievements in the fields of stem cell research and regenerative medicine. This technique allows researchers to obtain pluripotent stem cells without the controversial use of embryos, providing a novel and powerful tool for disease modeling and drug screening approaches. However, using viruses for the delivery of reprogramming genes and transcription factors may result in integration into the host genome and cause random mutations within the target cell, thus limiting the use of these cells for downstream applications. To overcome this limitation, various non-integrating techniques, including Sendai virus, mRNA, minicircle, and plasmid-based methods, have recently been developed. Utilizing a newly developed codon optimized 4-in-1 minicircle (CoMiC), we were able to reprogram human adult fibroblasts using chemically defined media and without the need for feeder cells.

  13. Heart Development, Diseases, and Regeneration - New Approaches From Innervation, Fibroblasts, and Reprogramming.

    PubMed

    Ieda, Masaki

    2016-09-23

    It is well known that cardiac function is tightly controlled by neural activity; however, the molecular mechanism of cardiac innervation during development and the relationship with heart disease remain undetermined. My work has revealed the molecular networks that govern cardiac innervation and its critical roles in heart diseases such as silent myocardial ischemia and arrhythmias. Cardiomyocytes proliferate during embryonic development, but lose their proliferative capacity after birth. Cardiac fibroblasts are a major source of cells during fibrosis and induce cardiac hypertrophy after myocardial injury in the adult heart. Despite the importance of fibroblasts in the adult heart, the role of fibroblasts in embryonic heart development was previously not determined. I demonstrated that cardiac fibroblasts play important roles in myocardial growth and cardiomyocyte proliferation during embryonic development, and I identified key paracrine factors and signaling pathways. In contrast to embryonic cardiomyocytes, adult cardiomyocytes have little regenerative capacity, leading to heart failure and high mortality rates after myocardial infarction. Leveraging the knowledge of developmental biology, I identified cardiac reprogramming factors that can directly convert resident cardiac fibroblasts into cardiomyocytes for heart regeneration. These findings greatly improved our understanding of heart development and diseases, and provide a new strategy for heart regenerative therapy. (Circ J 2016; 80: 2081-2088).

  14. Direct reprogramming of fibroblasts into skeletal muscle progenitor cells by transcription factors enriched in undifferentiated subpopulation of satellite cells.

    PubMed

    Ito, Naoki; Kii, Isao; Shimizu, Noriaki; Tanaka, Hirotoshi; Shin'ichi, Takeda

    2017-08-14

    Satellite cells comprise a functionally heterogeneous population of stem cells in skeletal muscle. Separation of an undifferentiated subpopulation and elucidation of its molecular background are necessary to identify the reprogramming factors to induce skeletal muscle progenitor cells. In this study, we found that intracellular esterase activity distinguishes a subpopulation of cultured satellite cells with high stemness using esterase-sensitive cell staining reagent, calcein-AM. Gene expression analysis of this subpopulation revealed that defined combinations of transcription factors (Pax3, Mef2b, and Pitx1 or Pax7, Mef2b, and Pitx1 in embryonic fibroblasts, and Pax7, Mef2b and MyoD in adult fibroblasts) reprogrammed fibroblasts into skeletal muscle progenitor cells. These reprogrammed cells formed Dystrophin-positive mature muscle fibers when transplanted into a mouse model of Duchenne muscular dystrophy. These results highlight the new marker for heterogenous population of cultured satellite cells, potential therapeutic approaches and cell sources for degenerative muscle diseases.

  15. RNA-Mediated Reprogramming of Primary Adult Human Dermal Fibroblasts into c-kit(+) Cardiac Progenitor Cells.

    PubMed

    Pratico, Elizabeth D; Feger, Bryan J; Watson, Michael J; Sullenger, Bruce A; Bowles, Dawn E; Milano, Carmelo A; Nair, Smita K

    2015-11-15

    Cardiovascular disease is the leading cause of death in the United States. Heart failure is a common, costly, and potentially fatal condition that is inadequately managed by pharmaceuticals. Cardiac repair therapies are promising alternative options. A potential cardiac repair therapy involves reprogramming human fibroblasts toward an induced cardiac progenitor-like state. We developed a clinically useful and safer reprogramming method by nonintegrative delivery of a cocktail of cardiac transcription factor-encoding mRNAs into autologous human dermal fibroblasts obtained from skin biopsies. Using this method, adult and neonatal dermal fibroblasts were reprogrammed into cardiac progenitor cells (CPCs) that expressed c-kit, Isl-1, and Nkx2.5. Furthermore, these reprogrammed CPCs differentiated into cardiomyocytes (CMs) in vitro as judged by increased expression of cardiac troponin T, α-sarcomeric actinin, RyR2, and SERCA2 and displayed enhanced caffeine-sensitive calcium release. The ability to reprogram patient-derived dermal fibroblasts into c-kit(+) CPCs and differentiate them into functional CMs provides clinicians with a potential new source of CPCs for cardiac repair from a renewable source and an alternative therapy in the treatment of heart failure.

  16. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors

    SciTech Connect

    Yakubov, Eduard; Rechavi, Gidi; Rozenblatt, Shmuel; Givol, David

    2010-03-26

    Reprogramming of differentiated cells into induced pluripotent cells (iPS) was accomplished in 2006 by expressing four, or less, embryonic stem cell (ESC)-specific transcription factors. Due to the possible danger of DNA damage and the potential tumorigenicity associated with such DNA damage, attempts were made to minimize DNA integration by the vectors involved in this process without complete success. Here we present a method of using RNA transfection as a tool for reprogramming human fibroblasts to iPS. We used RNA synthesized in vitro from cDNA of the same reprogramming four transcription factors. After transfection of the RNA, we show intracellular expression and nuclear localization of the respective proteins in at least 70% of the cells. We used five consecutive transfections to support continuous protein expression resulting in the formation of iPS colonies that express alkaline phosphatase and several ESC markers and that can be expanded. This method completely avoids DNA integration and may be developed to replace the use of DNA vectors in the formation of iPS.

  17. Zebularine and scriptaid significantly improve epigenetic reprogramming of yak fibroblasts and cloning efficiency.

    PubMed

    Xiong, Xianrong; Lan, Daoliang; Li, Jian; Zhong, Jincheng; Zi, Xiangdong; Ma, Li; Wang, Yong

    2013-08-01

    Abnormal epigenetic reprogramming of the donor nucleus after somatic cell nuclear transfer (SCNT) is thought to be the main cause of low cloning efficiency. Following SCNT, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modification. Therefore, in this study, we have attempted to improve epigenetic reprogramming of the donor nucleus and cloned embryos with Zebularine and Scriptaid. Yak fibroblasts were treated with 20 μM Zebularine alone or 20 μM Zebularine plus 0.5 μM Scriptaid for 24 h, whereas yak cloned embryos were treated exclusively with 0.5 μM Scriptaid for 12 h. There was no effect on cellular viability and proliferation after drug treatment. The treatment of fibroblasts with Zebularine or Zebularine plus Scriptaid increased histone acetylation of histone 3 lysine 9 (H3K9), but decreased the level of DNA methylation of Oct-4 and Sox-2 promoter regions. When donor cells were used after Zebularine plus Scriptaid treatment to reconstruct cloned embryos and then treated with Scriptaid, the developmental competence and cryosurvival of embryos were improved significantly. In addition, the relative expression of Oct-4 and Sox-2 were increased significantly. The expression levels of Dnmt-1 and Hdac-1 were significantly decreased when fibroblasts and cloned embryos were treated with Zebularine or Scriptaid. This work provides functional evidence that treatment with Zebularine and Scriptaid modifies the epigenetic status of yak fibroblasts, subsequently enhancing in vitro developmental potential and the quality of yak cloned embryos.

  18. Direct Reprogramming of Mouse and Human Fibroblasts into Multipotent Neural Stem Cells with a Single Factor

    PubMed Central

    Ring, Karen L.; Tong, Leslie M.; Balestra, Maureen E.; Javier, Robyn; Andrews-Zwilling, Yaisa; Li, Gang; Walker, David; Zhang, William R.; Kreitzer, Anatol C.; Huang, Yadong

    2012-01-01

    SUMMARY The generation of induced pluripotent stem (iPS) cells and induced neuronal (iN) cells from somatic cells provides new avenues for basic research and potential transplantation therapies for neurological diseases. However, clinical applications must consider the risk of tumor formation by iPS cells and the inability of iN cells to self-renew in culture. Here we report the generation of induced neural stem cells (iNSCs) from mouse and human fibroblasts by direct reprogramming with a single factor, Sox2. iNSCs express NSC markers and resemble wild-type NSCs in their morphology, self-renewal, ability to form neurospheres, and gene expression profiles. Cloned iNSCs differentiate into several types of mature neurons, as well as astrocytes and oligodendrocytes, indicating multipotency. Implanted iNSCs can survive and integrate in mouse brains and, unlike iPS cell-derived NSCs, do not generate tumors. Thus, self-renewable and multipotent iNSCs without tumorigenic potential can be generated directly from fibroblasts by reprogramming. PMID:22683203

  19. Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts.

    PubMed

    Liu, Liu; Lei, Ienglam; Karatas, Hacer; Li, Yangbing; Wang, Li; Gnatovskiy, Leonid; Dou, Yali; Wang, Shaomeng; Qian, Li; Wang, Zhong

    2016-01-01

    Generation of induced cardiomyocytes (iCMs) directly from fibroblasts offers a great opportunity for cardiac disease modeling and cardiac regeneration. A major challenge of iCM generation is the low conversion rate. To address this issue, we attempted to identify small molecules that could potentiate the reprogramming ability towards cardiac fate by removing inhibitory roadblocks. Using mouse embryonic fibroblasts as the starting cell source, we first screened 47 cardiac development related epigenetic and transcription factors, and identified an unexpected role of H3K4 methyltransferase Mll1 and related factor Men1 in inhibiting iCM reprogramming. We then applied small molecules (MM408 and MI503) of Mll1 pathway inhibitors and observed an improved efficiency in converting embryonic fibroblasts and cardiac fibroblasts into functional cardiomyocyte-like cells. We further observed that these inhibitors directly suppressed the expression of Mll1 target gene Ebf1 involved in adipocyte differentiation. Consequently, Mll1 inhibition significantly decreased the formation of adipocytes during iCM induction. Therefore, Mll1 inhibitors likely increased iCM efficiency by suppressing alternative lineage gene expression. Our studies show that targeting Mll1 dependent H3K4 methyltransferase activity provides specificity in the process of cardiac reprogramming. These findings shed new light on the molecular mechanisms underlying cardiac conversion of fibroblasts and provide novel targets and small molecules to improve iCM reprogramming for clinical applications.

  20. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    SciTech Connect

    Zhai, Yingying; Chen, Xi; Yu, Dehai; Li, Tao; Cui, Jiuwei; Wang, Guanjun; Hu, Ji-Fan; Li, Wei

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  1. Multilayered Nanoparticles for Gene Delivery Used to Reprogram Human Foreskin Fibroblasts to Neurospheres

    PubMed Central

    Watson, Andre; Ren, Liyun; Mixon, Amanda; Kotha, Shiva P.

    2015-01-01

    Polycationic nanocomplexes are a robust means for achieving nucleic acid condensation and efficient intracellular gene deliveries. To enhance delivery, a multilayered nanoparticle consisting of a core of electrostatically bound elements was used. These included a histone-mimetic peptides, poly-l-arginine and poly-d-glutamic acid was coated with silicate before surface functionalization with poly-l-arginine. Transfection efficiencies and duration of expression were similar when using green fluorescent protein (GFP) plasmid DNA (pDNA) or GFP mRNA. These nanoparticles demonstrated significantly higher (>100%) and significantly longer (15 vs. 4 days) transfection efficiencies in comparison to a commercial transfection agent (Lipofectamine 2000). Reprogramming of human foreskin fibroblasts using mRNA to the Sox2 transcription factor resulted in three-fold higher neurosphere formation in comparison to the commercial reagent. These results demonstrate the potential of these nanoparticles as ideal vectors for gene delivery. PMID:25687130

  2. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions.

    PubMed

    Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François

    2017-09-01

    Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Non-viral reprogramming of fibroblasts into induced pluripotent stem cells by Sleeping Beauty and piggyBac transposons.

    PubMed

    Talluri, Thirumala R; Kumar, Dharmendra; Glage, Silke; Garrels, Wiebke; Ivics, Zoltan; Debowski, Katharina; Behr, Rüdiger; Kues, Wilfried A

    2014-07-18

    The generation of induced pluripotent stem (iPS) cells represents a promising approach for innovative cell therapies. The original method requires viral transduction of several reprogramming factors, which may be associated with an increased risk of tumorigenicity. Transposition of reprogramming cassettes represents a recent alternative to viral approaches. Since binary transposons can be produced as common plasmids they provide a safe and cost-efficient alternative to viral delivery methods. Here, we compared the efficiency of two different transposon systems, Sleeping Beauty (SB) and piggyBac (PB), for the generation of murine iPS. Murine fibroblasts derived from an inbred BL/6 mouse line carrying a pluripotency reporter, Oct4-EGFP, and fibroblasts derived from outbred NMRI mice were employed for reprogramming. Both transposon systems resulted in the successful isolation of murine iPS cell lines. The reduction of the core reprogramming factors to omit the proto-oncogene c-Myc was compatible with iPS cell line derivation, albeit with reduced reprogramming efficiencies. The transposon-derived iPS cells featured typical hallmarks of pluripotency, including teratoma growth in immunodeficient mice. Thus SB and PB transposons represent a promising non-viral approach for iPS cell derivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    PubMed Central

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. PMID:25834424

  5. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.

    PubMed

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation.

  6. 199 EFFECTS OF REPROGRAMMING-CONDITIONED MEDIUM ON ULTRAVIOLET RAY A-DAMAGED HUMAN DERMAL FIBROBLASTS.

    PubMed

    Kang, J; Lee, S G; Kang, J H; Park, S-M; Heo, S Y; Lee, S Y; Kim, S; Lo, E; Ahn, K S; Shim, H

    2016-01-01

    Ultraviolet ray A (UVA) is an electromagnetic light with a long wavelength from the sun. The penetration of UVA deep into the human dermis causes changes in cells, such as DNA fragmentation, apoptosis, and senescence, eventually leading a decline of proliferation and wound-healing ability. These changes induced by UVA exposure are similar to those seen in the process of stem cell differentiation. We postulated that the condition that reverses cellular differentiation may alleviate the UVA-induced damage in skin cells. Human dermal fibroblasts (HDF) could be reprogrammed to induced pluripotent stem cells (iPSC). Conditioned medium (CM) was prepared during the process of iPSC reprogramming (referred to as Repro-CM). The UVA-irradiated HDF were cultured in Repro-CM for 24h. In comparison with CM prepared from the culture of normal HDF and iPSC (referred to as HDF-CM and iPSC-CM, respectively), effects of Repro-CM on UVA-irradiated cells were investigated. Viability, wound-healing ability, apoptosis, and senescence of HDF were analysed by WST-1 assay, scratch assay, Annexin V assay, and senescence-associated β-galactosidase assay, respectively. Upon recovering from the UVA-induced damage, viability and wound-healing ability of HDF were significantly different (P<0.05) among the treatments in the order of Repro-, HDF-, and iPSC-CM. In the same context, apoptosis and senescence were significantly different (P<0.05) in the order of iPSC-, HDF-, and Repro-CM. Interestingly, iPSC-CM did not substantially ameliorate UVA-induced damage, suggesting that the conditions optimized to pluripotent stem cells may not be suitable for the recovery from damage in terminally differentiated cells, such as fibroblasts. The RNA-seq analysis was performed to assess the genome-wide transcriptional profile in the process of recovery. Repro- and HDF-CM were categorized more closely than iPSC-CM in hierarchical cluster analysis. In comparison with iPSC-CM, the up-regulated genes by Repro

  7. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells.

    PubMed

    Barta, Tomas; Peskova, Lucie; Collin, Joseph; Montaner, David; Neganova, Irina; Armstrong, Lyle; Lako, Majlinda

    2016-01-01

    MicroRNA (miRNAs) are short noncoding RNA molecules involved in many cellular processes and shown to play a key role in somatic cell induced reprogramming. We performed an array based screening to identify candidates that are differentially expressed between dermal skin fibroblasts (DFs) and induced pluripotent stem cells (iPSCs). We focused our investigations on miR-145 and showed that this candidate is highly expressed in DFs relative to iPSCs and significantly downregulated during reprogramming process. Inhibition of miR-145 in DFs led to the induction of "cellular plasticity" demonstrated by: (a) alteration of cell morphology associated with downregulation of mesenchymal and upregulation of epithelial markers; (b) upregulation of pluripotency-associated genes including SOX2, KLF4, C-MYC; (c) downregulation of miRNA let-7b known to inhibit reprogramming; and (iv) increased efficiency of reprogramming to iPSCs in the presence of reprogramming factors. Together, our results indicate a direct functional link between miR-145 and molecular pathways underlying reprogramming of somatic cells to iPSCs. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  8. Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by miRNAs-Mediated CCL2/VEGFA Signaling

    PubMed Central

    Shen, Hua; Yu, Xiaobo; Yang, Fengming; Zhang, Zhihua; Shen, Jianxin; Sun, Jin; Choksi, Swati; Jitkaew, Siriporn; Shu, Yongqian

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the most common constituent of the tumor stoma, are known to promote tumor initiation, progression and metastasis. However, the mechanism of how cancer cells transform normal fibroblasts (NFs) into CAFs is largely unknown. In this study, we determined the contribution of miRNAs in the transformation of NFs into CAFs. We found that miR-1 and miR-206 were down-regulated, whereas miR-31 was up-regulated in lung CAFs when compared with matched NFs. Importantly, modifying the expression of these three deregulated miRNAs induced a functional conversion of NFs into CAFs and vice versa. When the miRNA-reprogrammed NFs and CAFs were co-cultured with lung cancer cells (LCCs), a similar pattern of cytokine expression profiling were observed between two groups. Using a combination of cytokine expression profiling and miRNAs algorithms, we identified VEGFA/CCL2 and FOXO3a as direct targets of miR-1, miR-206 and miR-31, respectively. Importantly, systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 significantly inhibited tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. Our results show that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in LCCs-mediated NFs into CAFs, which may have clinical implications for providing novel biomarker(s) and potential therapeutic target(s) of lung cancer in the future. PMID:27541266

  9. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    PubMed

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future.

  10. Interaction between nonviral reprogrammed fibroblast stem cells and trophic factors for brain repair.

    PubMed

    Liu, G; Anisman, H; Bobyn, J; Hayley, S

    2014-10-01

    There are currently no known treatment options that actually halt or permanently reverse the pathology evident in any neurodegenerative condition. Arguably, one of the most promising avenues for creating viable neuronal treatments could involve the combined use of cell replacement and gene therapy. Given the complexity of the neurodegenerative process, it stands to reason that adequate therapy should involve not only the replacement of loss neurons/synapses but also the interruption of multiple pro-death pathways. Thus, we propose the use of stem cells that are tailored to express specific trophic factors, thereby potentially encouraging synergistic effects between the stem cell properties and those of the trophic factors. The trophic factors, brain-derived neurotropic factor (BDNF), glial cell-derived neurotropic factor (GDNF), fibroblast growth factor (FGF) 2, and insulin-like growth factor (IGF) 1, in particular, have demonstrated neuroprotective actions in a number of animal models. Importantly, we use a nonviral approach, thereby minimizing the potential risk for DNA integration and tumor formation. The present study involved the development of a nonviral reprogramming system to transform adult mature mouse fibroblasts into progressive stages of cell development. We also tailored these stem cells to individually express each of the trophic factors, including BDNF, GDNF, FGF2, and IGF1. Significantly, central infusion of BDNF-expressing stem cells prevented the in vivo loss of neurons associated with infusion of the endotoxin, lipopolysaccharide (LPS). This is particularly important in light of the role of inflammatory processes that are posited to play in virtually all neurodegenerative states. Hence, the present results support the utility of using combined gene and cell-targeting approaches for neuronal pathology.

  11. Reprogramming of Mouse, Rat, Pig, and Human Fibroblasts into iPS Cells

    PubMed Central

    Wu, Sean M.

    2012-01-01

    The induction of pluripotency in somatic cells by transcription factor overexpression has been widely regarded as one of the major breakthroughs in stem cell biology within this decade. The generation of these induced pluripotent stem cells (iPSCs) has enabled investigators to develop in vitro disease models for biological discovery and drug screening, and in the future, patient-specific therapy for tissue or organ regeneration. While new technologies for reprogramming are continually being discovered, the availability of iPSCs from different species is also increasing rapidly. Comparison of iPSCs across species may provide new insights into key aspects of pluripotency and early embryonic development. iPSCs from large animals may enable the generation of genetically-modified large animal models or potentially transplantable donor tissues or organs. In this unit, we describe the procedure for the generation of iPSCs from mouse, rat, pig and human fibroblasts. We focus on lenti- and retroviral infection as the main platform for pluripotent transcription factor overexpression since these reagents are widely-available and remain the most efficient way to generate iPSC colonies. We hope to illustrate the basic process for iPSC generation in these four species in such a way that would enable the lowering of the entry barrier into iPSC biology by new investigators. PMID:22237859

  12. An atomic-force-microscopy study of the structure of surface layers of intact fibroblasts

    NASA Astrophysics Data System (ADS)

    Khalisov, M. M.; Ankudinov, A. V.; Penniyaynen, V. A.; Nyapshaev, I. A.; Kipenko, A. V.; Timoshchuk, K. I.; Podzorova, S. A.; Krylov, B. V.

    2017-02-01

    Intact embryonic fibroblasts on a collagen-treated substrate have been studied by atomic-force microscopy (AFM) using probes of two types: (i) standard probes with tip curvature radii of 2-10 nm and (ii) special probes with a calibrated 325-nm SiO2 ball radius at the tip apex. It is established that, irrespective of probe type, the average maximum fibroblast height is on a level of 1.7 μm and the average stiffness of the probe-cell contact amounts to 16.5 mN/m. The obtained AFM data reveal a peculiarity of the fibroblast structure, whereby its external layers move as a rigid shell relative to the interior and can be pressed inside to a depth dependent on the load only.

  13. A rare human syndrome provides genetic evidence that WNT signaling is required for reprogramming of fibroblasts to induced pluripotent stem cells.

    PubMed

    Ross, Jason; Busch, Julia; Mintz, Ellen; Ng, Damian; Stanley, Alexandra; Brafman, David; Sutton, V Reid; Van den Veyver, Ignatia; Willert, Karl

    2014-12-11

    WNT signaling promotes the reprogramming of somatic cells to an induced pluripotent state. We provide genetic evidence that WNT signaling is a requisite step during the induction of pluripotency. Fibroblasts from individuals with focal dermal hypoplasia (FDH), a rare genetic syndrome caused by mutations in the essential WNT processing enzyme PORCN, fail to reprogram with standard methods. This blockade in reprogramming is overcome by ectopic WNT signaling and PORCN overexpression, thus demonstrating that WNT signaling is essential for reprogramming. The rescue of reprogramming is critically dependent on the level of WNT signaling: steady baseline activation of the WNT pathway yields karyotypically normal iPSCs, whereas daily stimulation with Wnt3a produces FDH-iPSCs with severely abnormal karyotypes. Therefore, although WNT signaling is required for cellular reprogramming, inappropriate activation of WNT signaling induces chromosomal instability, highlighting the precarious nature of ectopic WNT activation and its tight relationship with oncogenic transformation.

  14. [Histological features of tumor-bearing tissues formed by human fibroblasts after reprograming by Piwil2].

    PubMed

    Zeng, Guangping; Wu, Xin; He, Dawei; Fu, Yiyao; Liu, Xing; Zhang, Deying; Lin, Tao; Wei, Guanghui

    2015-08-01

    To observe the histological features of tumor-bearing tissues formed by human fibroblasts after reprograming by spermatogonial stem cell self-renewal key regulating gene Piwil2 (Piwil2-iCSC). Piwil2-iCSC tumor spheroids-like colonies were selected for tumor formation assay in four nude mice. Pathological features of Piwil2-iCSC tumors were observed by histology. Stem cell markers and common triploblastic markers were detected by reverse transcriptase-polymerase chain reaction (RT-PCR) assay and immunohistochemistry. Germ cell tumor markers were detected by immunohistochemical examination. Two weeks after inoculation, subcutaneous tumors were formed in all the four nude mice with a tumor formation rate of 100%. In the Piwil2-iCSC tumor tissues, Piwil2-GFP(+) cells showed high-density nuclear expression and were widely observed in DAPI-stained sections. Numerous mitotic figure of the neoplastic cells were seen (>10 cells/field of vision under high magnification) in HE-stained sections. Enlarged abnormal cell nuclei were observed. RT-PCR assay showed that Piwil2-iCSC tumors still expressed Piwil2 and some self-renewal and pluripotent markers of stem cells and some markers of triploblastic differentiation. Immunohistochemical staining showed that the tumors expressed stem cell markers, triploblastic markers and germ cell tumor markers AFP and HCG. Piwil2-iCSC tumors are probably undifferentiated embryonic small cell carcinoma, most likely to be immature teratoma, mixed with yolk sac tumor and choriocarcinoma components. It can be used as a useful model for the research of origin or genesis mechanism of cancer stem cells and the treatment of relevant tumors.

  15. Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells.

    PubMed

    Yang, Jian; Wang, Wei; Ooi, Jolene; Campos, Lia S; Lu, Liming; Liu, Pentao

    2015-05-01

    We previously demonstrated that coexpressing retinoic acid (RA) receptor gamma and liver receptor homolog-1 (LRH1 or NR5A2) with OCT4, MYC, KLF4, and SOX2 (4F) rapidly reprograms mouse embryonic fibroblast cells (MEFs) into induced pluripotent stem cells (iPSCs). Here, we further explore the role of RA in reprogramming and report that the six factors (6F) efficiently and directly reprogram MEFs into integration-free iPSCs in defined medium (N2B27) in the absence of feeder cells. Through genetic and chemical approaches, we find that RA signalling is essential, in a highly dose-sensitive manner, for MEF reprogramming. The removal of exogenous RA from N2B27, the inhibition of endogenous RA synthesis or the expression of a dominant-negative form of RARA severely impedes reprogramming. By contrast, supplementing N2B27 with various retinoids substantially boosts reprogramming. In addition, when coexpressed with LRH1, RA receptors (RARs) can promote reprogramming in the absence of both exogenous and endogenously synthesized RA. Remarkably, the reprogramming of epiblast stem cells into embryonic stem cell-like cells also requires low levels of RA, which can modulate Wnt signalling through physical interactions of RARs with β-catenin. These results highlight the important functions of RA signalling in reprogramming somatic cells and primed stem cells to naïve pluripotency. Stem Cells 2015;33:1390-1404. © 2014 AlphaMed Press.

  16. Expression of basic fibroblast growth factor in intact and ulcerated human gastric mucosa

    PubMed Central

    Hull, M; Brough, J; Powe, D; Carter, G; Jenkins, D; Hawkey, C

    1998-01-01

    Background—Basic fibroblast growth factor (bFGF) promotes angiogenesis and healing of gastric ulcers in rats, and bFGF expression is up regulated in such ulcers. However, little is known about expression of bFGF in human gastric mucosa. 
Aims—To investigate bFGF expression in intact human gastric mucosa and gastric ulcers and to determine whether low bFGF content or altered binding by mucosa is associated with ulceration. 
Subjects—Endoscopy outpatients, gastrectomy patients, and organ donors. 
Methods—bFGF was isolated by heparin affinity chromatography and characterised by western blotting and endothelial cell bioassay. bFGF was measured by immunoassay and its distribution defined by immunohistochemistry and in situ hybridisation. Binding of bFGF by heparan sulphate proteoglycans was investigated by sodium chloride and heparin extraction. 
Results—Bioactive bFGF (19 kDa) was detected in normal mucosa but bFGF mRNA was not found. bFGF expression was up regulated in granulation tissue endothelial cells, mononuclear cells, and epithelial cells at the ulcer rim. Gastric ulcer patients had constitutively low bFGF concentrations in intact antral mucosa which were not explained by changes in binding to heparan sulphate proteoglycans. 
Conclusions—bFGF expression is up regulated in human gastric ulcers. Low intact mucosal bFGF content is associated with gastric ulceration. 

 Keywords: basic fibroblast growth factor; gastric mucosa; heparan sulphate proteoglycan; peptic ulceration PMID:9824581

  17. Repression of Zeb1 and Hypoxia Cause Sequential MET and Induction of Aid, Oct4, and Dnmt1, Leading to Immortalization and Multipotential Reprogramming of Fibroblasts in Spheres

    PubMed Central

    Liu, Yongqing; Mukhopadhyay, Partha; Pisano, M. Michele; Lu, Xiaoqin; Huang, Li; Lu, Qingxian; Dean, Douglas C.

    2014-01-01

    Here, we demonstrate that sphere formation triggers immortalization and stable reprogramming of mouse fibroblasts. Cell contact signaling in spheres causes downregulation of the EMT transcription factor Zeb1 leading to rapid mesenchymal-to-epithelial transition. And, hypoxia within spheres together with loss of Zeb1 repression synergize to cause superinduction of Hif1a, which in turn leads to induction of the DNA demethylase Aid/Aicda, demethylation of the Oct4 promoter/enhancer and multipotency. Oct4 and Nanog expression diminish when cells are removed from the hypoxic environment of spheres and placed in monolayer culture, but the cells retain multipotential capacity, demonstrating stable reprogramming and a gene expression pattern resembling adult stem cells. Oct4 has been shown to induce Dnmt1 in mesenchymal stem cells, and we link Oct4 and Dnmt1 to silencing of cell cycle inhibitory cyclin dependent kinase inhibitors and Arf, and immortalization of the reprogrammed fibroblasts. Sphere formation then represents a novel and rapid protocol for immortalization and stable reprogramming of fibroblasts to multipotency that does not require exogenous expression of a stem cell factor or a lineage-specifying transcription factor. PMID:23554223

  18. Generation of Colonies of Induced Trophoblast Cells During Standard Reprogramming of Porcine Fibroblasts to Induced Pluripotent Stem Cells1

    PubMed Central

    Ezashi, Toshihiko; Matsuyama, Haruyo; Telugu, Bhanu Prakash V.L.; Roberts, R. Michael

    2011-01-01

    During reprogramming of porcine mesenchymal cells with a four-factor (POU5F1/SOX2/KLF4/MYC) mixture of vectors, a fraction of the colonies had an atypical phenotype and arose earlier than the recognizable porcine induced pluripotent stem (iPS) cell colonies. Within days after each passage, patches of cells with an epithelial phenotype formed raised domes, particularly under 20% O2 conditions. Relative to gene expression of the iPS cells, there was up-regulation of genes for transcription factors associated with trophoblast (TR) lineage emergence, e.g., GATA2, PPARG, MSX2, DLX3, HAND1, GCM1, CDX2, ID2, ELF5, TCFAP2C, and TEAD4 and for genes required for synthesis of products more typical of differentiated TR, such as steroids (HSD17B1, CYP11A1, and STAR), pregnancy-associated glycoproteins (PAG6), and select cytokines (IFND, IFNG, and IL1B). Although POU5F1 was down-regulated relative to that in iPS cells, it was not silenced in the induced TR (iTR) cells over continued passage. Like iPS cells, iTR cells did not senesce on extended passage and displayed high telomerase activity. Upon xenografting into immunodeficient mice, iTR cells formed nonhemorrhagic teratomas composed largely of layers of epithelium expressing TR markers. When cultured under conditions that promoted embryoid body formation, iTR cells formed floating spheres consisting of a single epithelial sheet whose cells were tethered laterally by desmosome-like structures. In conclusion, reprogramming of porcine fibroblasts to iPS cells generates, as a by-product, colonies composed of self-renewing populations of TR cells, possibly containing TR stem cells. PMID:21734265

  19. Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells.

    PubMed

    Ezashi, Toshihiko; Matsuyama, Haruyo; Telugu, Bhanu Prakash V L; Roberts, R Michael

    2011-10-01

    During reprogramming of porcine mesenchymal cells with a four-factor (POU5F1/SOX2/KLF4/MYC) mixture of vectors, a fraction of the colonies had an atypical phenotype and arose earlier than the recognizable porcine induced pluripotent stem (iPS) cell colonies. Within days after each passage, patches of cells with an epithelial phenotype formed raised domes, particularly under 20% O(2) conditions. Relative to gene expression of the iPS cells, there was up-regulation of genes for transcription factors associated with trophoblast (TR) lineage emergence, e.g., GATA2, PPARG, MSX2, DLX3, HAND1, GCM1, CDX2, ID2, ELF5, TCFAP2C, and TEAD4 and for genes required for synthesis of products more typical of differentiated TR, such as steroids (HSD17B1, CYP11A1, and STAR), pregnancy-associated glycoproteins (PAG6), and select cytokines (IFND, IFNG, and IL1B). Although POU5F1 was down-regulated relative to that in iPS cells, it was not silenced in the induced TR (iTR) cells over continued passage. Like iPS cells, iTR cells did not senesce on extended passage and displayed high telomerase activity. Upon xenografting into immunodeficient mice, iTR cells formed nonhemorrhagic teratomas composed largely of layers of epithelium expressing TR markers. When cultured under conditions that promoted embryoid body formation, iTR cells formed floating spheres consisting of a single epithelial sheet whose cells were tethered laterally by desmosome-like structures. In conclusion, reprogramming of porcine fibroblasts to iPS cells generates, as a by-product, colonies composed of self-renewing populations of TR cells, possibly containing TR stem cells.

  20. Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells

    PubMed Central

    Mazzara, Pietro Giuseppe; Massimino, Luca; Pellegatta, Marta; Ronchi, Giulia; Ricca, Alessandra; Iannielli, Angelo; Giannelli, Serena Gea; Cursi, Marco; Cancellieri, Cinzia; Sessa, Alessandro; Del Carro, Ubaldo; Quattrini, Angelo; Geuna, Stefano; Gritti, Angela; Taveggia, Carla; Broccoli, Vania

    2017-01-01

    Schwann cells (SCs) generate the myelin wrapping of peripheral nerve axons and are promising candidates for cell therapy. However, to date a renewable source of SCs is lacking. In this study, we show the conversion of skin fibroblasts into induced Schwann cells (iSCs) by driving the expression of two transcription factors, Sox10 and Egr2. iSCs resembled primary SCs in global gene expression profiling and PNS identity. In vitro, iSCs wrapped axons generating compact myelin sheaths with regular nodal structures. Conversely, iSCs from Twitcher mice showed a severe loss in their myelinogenic potential, demonstrating that iSCs can be an attractive system for in vitro modelling of PNS diseases. The same two factors were sufficient to convert human fibroblasts into iSCs as defined by distinctive molecular and functional traits. Generating iSCs through direct conversion of somatic cells offers opportunities for in vitro disease modelling and regenerative therapies. PMID:28169300

  1. Alkaline Phosphatase-Positive Immortal Mouse Embryo Fibroblasts Are Cells in a Transitional Reprogramming State Induced to Face Environmental Stresses

    PubMed Central

    Evangelista, Monica; Baroudi, Mariama El; Rizzo, Milena; Tuccoli, Andrea; Poliseno, Laura; Pellegrini, Marco; Rainaldi, Giuseppe

    2015-01-01

    In this study, we report that immortal mouse embryonic fibroblasts (I-MEFs) have a baseline level of cells positive for alkaline phosphatase (AP+) staining. Environmental stresses, including long-lasting growth in the absence of expansion and treatment with drugs, enhance the frequency of AP+ I-MEFs. By adapting fast red AP staining to the sorting procedure, we separated AP+ and AP− I-MEFs and demonstrated that the differentially expressed genes are consistent with a reprogrammed phenotype. In particular, we found that sestrin 1 is upregulated in AP+ I-MEFs. We focused on this gene and demonstrated that increased sestrin 1 expression is accompanied by the growth of I-MEFs in the absence of expansion and occurs before the formation of AP+ I-MEFs. Together with sestrin 1 upregulation, we found that AP+ I-MEFs accumulated in the G1 phase of the cell cycle, suggesting that the two events are causally related. Accordingly, we found that silencing sestrin 1 expression reduced the frequency and G1 accumulation of AP+ I-MEFs. Taken together, our data suggested that I-MEFs stressed by environmental changes acquire the AP+ phenotype and achieve a quiescent state characterized by a new transcriptional network. PMID:26740745

  2. Transcription factor–mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells

    PubMed Central

    Najm, Fadi J.; Lager, Angela M.; Zaremba, Anita; Wyatt, Krysta; Caprariello, Andrew V.; Factor, Daniel C.; Karl, Robert T.; Maeda, Tadao; Miller, Robert H.; Tesar, Paul J.

    2013-01-01

    Cell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to “induced” oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphology and global gene expression profile consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelin. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies. PMID:23584611

  3. Predictors of intact and C-terminal fibroblast growth factor 23 in Gambian children

    PubMed Central

    Braithwaite, Vickie; Jones, Kerry S; Assar, Shima; Schoenmakers, Inez; Prentice, Ann

    2013-01-01

    Elevated C-terminal fibroblast growth factor 23 (C-FGF23) concentrations have been reported in Gambian children with and without putative Ca-deficiency rickets. The aims of this study were to investigate whether i) elevated C-FGF23 concentrations in Gambian children persist long term; ii) they are associated with higher intact FGF23 concentrations (I-FGF23), poor iron status and shorter 25-hydroxyvitamin D half-life (25OHD-t1/2); and iii) the persistence and predictors of elevated FGF23 concentrations differ between children with and without a history of rickets. Children (8–16 years, n=64) with a history of rickets and a C-FGF23 concentration >125 RU/ml (bone deformity (BD), n=20) and local community children with a previously measured elevated C-FGF23 concentration (LC+, n=20) or a previously measured C-FGF23 concentration within the normal range (LC−, n=24) participated. BD children had no remaining signs of bone deformities. C-FGF23 concentration had normalised in BD children, but remained elevated in LC+ children. All the children had I-FGF23 concentration within the normal range, but I-FGF23 concentration was higher and iron status poorer in LC+ children. 1,25-dihydroxyvitamin D was the strongest negative predictor of I-FGF23 concentration (R2=18%; P=0.0006) and soluble transferrin receptor was the strongest positive predictor of C-FGF23 concentration (R2=33%; P≤0.0001). C-FGF23 and I-FGF23 concentrations were poorly correlated with each other (R2=5.3%; P=0.07). 25OHD-t1/2 was shorter in BD children than in LC− children (mean (s.d.): 24.5 (6.1) and 31.5 (11.5) days respectively; P=0.05). This study demonstrated that elevated C-FGF23 concentrations normalised over time in Gambian children with a history of rickets but not in local children, suggesting a different aetiology; that children with resolved rickets had a shorter 25OHD-t1/2, suggesting a long-standing increased expenditure of 25OHD, and that iron deficiency is a predictor of elevated C

  4. Nuclear transfer with apoptotic bovine fibroblasts: can programmed cell death be reprogrammed?

    PubMed

    Miranda, Moyses dos Santos; Bressan, Fabiana Fernandes; De Bem, Tiago Henrique Camara; Merighe, Giovana Krempel Fonseca; Ohashi, Otávio Mitio; King, William Alan; Meirelles, Flavio Viera

    2012-06-01

    Cell death by apoptosis is considered to be irreversible. However, reports have indicated that its reversibility is possible if the cells have not yet reached the "point of no return." In order to add new information about this topic, we used cells at different moments of apoptotic process as nuclear donors in somatic cell nuclear transfer (SCNT) in order to test if programmed cell death can be reversed. Adult bovine fibroblasts were treated with 10 μM of staurosporine (STP) for 3 h and analyzed for phosphatidylserine externalization (Annexin assay) and presence of active caspase-9. Annexin-positive (Anx+) and Caspase-9-positive (Casp-9+) cells were isolated by FACS and immediately transferred into enucleated in vitro matured bovine oocytes. After STP treatment, 89.9% of cells were Anx+ (4.6% in control cells; p<0.01) and 24.9% were Casp-9+ (2.4% in control cells; p<0.01). Fusion and cleavage were not affected by the use apoptotic cells (p>0.05). Also, the use of Anx+ cells did not affect blastocyst production compared to control (26.4% vs. 22.9%, respectively; p>0.05). However, blastocyst formation was affected by the use of Casp-9+ cells (12.3%; p<0.05). These findings contribute to the idea of that apoptosis is reversible only at early stages. Additionally, we hypothesize that the "point of no return" for apoptosis may be located around activation of Caspase-9.

  5. Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors.

    PubMed

    Wu, Duojiao; Zhuo, Leying; Wang, Xiangdong

    2017-04-01

    Tumor metabolism is characterized with up-regulated glucose uptake and glycolytic rate of tumor cells as the source of ATP and tumors growth, and regulated by a poorly defined combination of cell-intrinsic and extrinsic factors. Metabolic heterogeneity of human tumors is dependent upon the mutational status of specific oncogenes and influenced by tumor microenvironment. Carcinoma-associated fibroblasts (CAFs) adapt in a dynamic manner to the metabolic needs of cancer cells, associated with tumorigenesis and resistance to treatments. Importantly, CAFs could directly "feed" cancer cells essential nutrients and energy-rich metabolites, including lactate, ketone bodies, fatty acids, glutamine, and other amino acids through the induction of autophagy in a host-parasite pattern, to contribute to tumor growth and metastasis. To define the reciprocal metabolic interplay between CAFs and cancer cells will provide a better understanding of molecular mechanisms by which the treatment resistance occurs,and aid in the rational design of metabolism-based approaches to enhance the efficacy of immunotherapy.

  6. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs

    PubMed Central

    Neganova, Irina; Chichagova, Valeria; Armstrong, Lyle; Lako, Majlinda

    2017-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine. Reprogramming is a stepwise process with well-defined stages of initiation, maturation and stabilisation which are critically dependent on interactions between key pluripotency transcription factors, epigenetic regulators and signalling pathways. In this manuscript we have investigated the role of p38 MAPK signalling pathway and have shown a subpopulation- and phase-specific pattern of activation occurring during the initiation and maturation stage of reprogramming in partially and fully reprogrammed cells respectively. Downregulation of p38 MAPK activity via RNA interference or small molecule inhibitor led to cell accumulation in G1 phase of the cell cycle and reduced expression of cell cycle regulators during the initiation stage of reprogramming. This was associated with a significant downregulation of key pluripotency marker expression, disruption of mesenchymal to epithelial transition (MET), increased expression of differentiation markers and presence of partially reprogrammed cells which retained a typical gene expression profile of mesendodermal cells and were unable to progress to fully reprogrammed phenotype. Together our data indicate an important role for p38 MAPK activity in proliferation, MET progression and establishment of pluripotent phenotype, which are necessary steps for the development of human iPSCs. PMID:28155868

  7. MiR-25 Regulates Wwp2 and Fbxw7 and Promotes Reprogramming of Mouse Fibroblast Cells to iPSCs

    PubMed Central

    Lu, Dong; Davis, Matthew P. A.; Abreu-Goodger, Cei; Wang, Wei; Campos, Lia S.; Siede, Julia; Vigorito, Elena; Skarnes, William C.; Dunham, Ian; Enright, Anton J.; Liu, Pentao

    2012-01-01

    Background miRNAs are a class of small non-coding RNAs that regulate gene expression and have critical functions in various biological processes. Hundreds of miRNAs have been identified in mammalian genomes but only a small number of them have been functionally characterized. Recent studies also demonstrate that some miRNAs have important roles in reprogramming somatic cells to induced pluripotent stem cells (iPSCs). Methods We screened 52 miRNAs cloned in a piggybac (PB) vector for their roles in reprogramming of mouse embryonic fibroblast cells to iPSCs. To identify targets of miRNAs, we made Dgcr8-deficient embryonic stem (ES) cells and introduced miRNA mimics to these cells, which lack miRNA biogenesis. The direct target genes of miRNA were identified through global gene expression analysis and target validation. Results and conclusion We found that over-expressing miR-25 or introducing miR-25 mimics enhanced production of iPSCs. We identified a number of miR-25 candidate gene targets. Of particular interest were two ubiquitin ligases, Wwp2 and Fbxw7, which have been proposed to regulate Oct4, c-Myc and Klf5, respectively. Our findings thus highlight the complex interplay between miRNAs and transcription factors involved in reprogramming, stem cell self-renewal and maintenance of pluripotency. PMID:22912667

  8. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells

    PubMed Central

    Subramanyam, Deepa; Lamouille, Samy; Judson, Robert L; Liu, Jason Y; Bucay, Nathan; Derynck, Rik; Blelloch, Robert

    2013-01-01

    The embryonic stem cell–specific cell cycle–regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells1. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore, these miRNAs repress multiple target genes, with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes, including cell cycle, epithelial-mesenchymal transition (EMT), epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle2,3. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGFβ-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions. PMID:21490602

  9. Reprogramming Roadblocks Are System Dependent

    PubMed Central

    Chantzoura, Eleni; Skylaki, Stavroula; Menendez, Sergio; Kim, Shin-Il; Johnsson, Anna; Linnarsson, Sten; Woltjen, Knut; Chambers, Ian; Kaji, Keisuke

    2015-01-01

    Summary Since the first generation of induced pluripotent stem cells (iPSCs), several reprogramming systems have been used to study its molecular mechanisms. However, the system of choice largely affects the reprogramming efficiency, influencing our view on the mechanisms. Here, we demonstrate that reprogramming triggered by less efficient polycistronic reprogramming cassettes not only highlights mesenchymal-to-epithelial transition (MET) as a roadblock but also faces more severe difficulties to attain a pluripotent state even post-MET. In contrast, more efficient cassettes can reprogram both wild-type and Nanog−/− fibroblasts with comparable efficiencies, routes, and kinetics, unlike the less efficient reprogramming systems. Moreover, we attribute a previously reported variation in the N terminus of KLF4 as a dominant factor underlying these critical differences. Our data establish that some reprogramming roadblocks are system dependent, highlighting the need to pursue mechanistic studies with close attention to the systems to better understand reprogramming. PMID:26278041

  10. Activation of Ras in vitro and in intact fibroblasts by the Vav guanine nucleotide exchange protein.

    PubMed Central

    Gulbins, E; Coggeshall, K M; Langlet, C; Baier, G; Bonnefoy-Berard, N; Burn, P; Wittinghofer, A; Katzav, S; Altman, A

    1994-01-01

    We recently identified Vav, the product of the vav proto-oncogene, as a guanine nucleotide exchange factor (GEF) for Ras. Vav is enzymatically activated by lymphocyte antigen receptor-coupled protein tyrosine kinases or independently by diglycerides. To further evaluate the physiological role of Vav, we assessed its GDP-GTP exchange activity against several Ras-related proteins in vitro and determined whether Vav activation in transfected NIH 3T3 fibroblasts correlates with the activity status of Ras and mitogen-activated protein (MAP) kinases. In vitro translated purified Vav activated by phorbol myristate acetate (PMA) or phosphorylation with recombinant p56lck displayed GEF activity against Ras but not against recombinant RacI, RacII, Ral, or RhoA proteins. Expression of vav or proto-vav in stably transfected NIH 3T3 cells led to a approximately 10-fold increase in basal or PMA-stimulated Ras exchange activity, respectively, in total-cell lysates and Vav immunoprecipitates. Elevated GEF activity was paralleled in each case by a significant increase in the proportion of active, GTP-bound Ras. PMA had a minimal effect on the low Ras. GTP level in untransfected control fibroblasts but increased it from 20 to 37% in proto-vav-transfected cells. vav-transfected cells displayed a constitutively elevated Ras. GTP level (35%), which was not increased further by PMA treatment. MAP kinases, known downstream intermediates in Ras-dependent signaling pathways, similarly exhibited increased basal or PMA-stimulated activity in Vav-expressing cells by comparison with normal NIH 3T3 cells. These results demonstrate a physiologic interaction between Vav and its target, Ras, leading to MAP kinase activation. Images PMID:8289830

  11. Basic fibroblast growth factor is critical to reprogramming buffalo (Bubalus bubalis) primordial germ cells into embryonic germ stem cell-like cells.

    PubMed

    Wang, Caizhu; Deng, Yanfei; Chen, Feng; Zhu, Peng; Wei, Jingwei; Luo, Chan; Lu, Fenghua; Yang, Sufang; Shi, Deshun

    2017-03-15

    Primordial germ cells (PGCs) are destined to form gametes in vivo, and they can be reprogrammed into pluripotent embryonic germ (EG) cells in vitro. Buffalo PGC have been reported to be reprogrammed into EG-like cells, but the identities of the major signaling pathways and culture media involved in this derivation remain unclear. Here, the effects of basic fibroblast growth factor (bFGF) and downstream signaling pathways on the reprogramming of buffalo PGCs into EG-like cells were investigated. Results showed bFGF to be critical to buffalo PGCs to dedifferentiate into EG-like cells (20 ng/mL is optimal) with many characteristics of pluripotent stem cells, including alkaline phosphatase (AP) activity, expression of pluripotency marker genes such as OCT4, NANOG, SOX2, SSEA-1, CDH1, and TRA-1-81, and the capacity to differentiate into all three embryonic germ layers. After chemically inhibiting pathways or components downstream of bFGF, data showed that inhibition of the PI3K/AKT pathway led to significantly lower EG cell derivation, while inhibition of P53 activity resulted in an efficiency of EG cell derivation comparable to that in the presence of bFGF. These results suggest that the role of bFGF in PGC-derived EG-like cell generation is mainly due to the activation of the PI3K/AKT/P53 pathway, in particular, the inhibition of P53 function. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Expression of Six Proteins Causes Reprogramming of Porcine Fibroblasts Into Induced Pluripotent Stem Cells With Both Active X Chromosomes.

    PubMed

    Fukuda, Tomokazu; Tani, Tetsuya; Haraguchi, Seiki; Donai, Kenichiro; Nakajima, Nobuyoshi; Uenishi, Hirohide; Eitsuka, Takahiro; Miyagawa, Makoto; Song, Sanghoun; Onuma, Manabu; Hoshino, Yumi; Sato, Eimei; Honda, Arata

    2017-03-01

    In this study, we created porcine-induced pluripotent stem (iPS) cells with the expression of six reprogramming factors (Oct3/4, Klf4, Sox2, c-Myc, Lin28, and Nanog). The resulting cells showed growth dependent on LIF (leukemia inhibitory factor) and expression of multiple stem cell markers. Furthermore, the iPS cells caused teratoma formation with three layers of differentiation and had both active X chromosomes (XaXa). Our iPS cells satisfied the both of important characteristics of stem cells: teratoma formation and activation of both X chromosomes. Injection of these iPS cells into morula stage embryos showed that these cells participate in the early stage of porcine embryogenesis. Furthermore, the RNA-Seq analysis detected that expression levels of endogenous pluripotent related genes, NANOG, SOX2, ZFP42, OCT3/4, ESRRB, and ERAS were much higher in iPS with six factors than that with four reprogramming factors. We can conclude that the expression of six reprogramming factors enables the creation of porcine iPS cells, which is partially close to naive iPS state. J. Cell. Biochem. 118: 537-553, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos.

    PubMed

    Popken, Jens; Brero, Alessandro; Koehler, Daniela; Schmid, Volker J; Strauss, Axel; Wuensch, Annegret; Guengoer, Tuna; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2014-01-01

    Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.

  14. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos

    PubMed Central

    Popken, Jens; Brero, Alessandro; Koehler, Daniela; Schmid, Volker J; Strauss, Axel; Wuensch, Annegret; Guengoer, Tuna; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2014-01-01

    Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape. PMID:25482066

  15. Optimized Hepatocyte-Like Cells with Functional Drug Transporters Directly-Reprogrammed from Mouse Fibroblasts and their Potential in Drug Disposition and Toxicology.

    PubMed

    Wu, Zhi-Tao; Yao, Dan; Ji, Shu-Yi; Ni, Xuan; Gao, Yi-Meng; Hui, Li-Jian; Pan, Guo-Yu

    2016-01-01

    To develop a suitable hepatocyte-like cell model that could be a substitute for primary hepatocytes with essential transporter expression and functions. Induced hepatocyte-like (iHep) cells directly reprogrammed from mice fibroblast cells were fully characterized. Naïve iHep cells were transfected with nuclear hepatocyte factor 4 alpha (Hnf4α) and treated with selected small molecules. Sandwich cultured configuration was applied. The mRNA and protein expression of transporters were determined by Real Time PCR and confocal. The functional transporters were estimated by drug biliary excretion measurement. The inhibition of bile acid efflux transporters by cholestatic drugs were assessed. The expression and function of p-glycoprotein (P-gp), bile salt efflux pump (Bsep), multidrug resistance-associated protein 2 (Mrp2), Na+-dependent taurocholate cotransporting polypeptide (Ntcp), and organic anion transporter polypedtides (Oatps) in iHep cells were significantly improved after transfection of hepatocyte nuclear factor 4 alpha (Hnf4α) and treatment with selected inducers. In vitro intrinsic biliary clearances (CLb,int) of optimized iHep cells for rosuvastatin, methotrexate, d8-TCA (deuterium-labeled sodium taurocholate acid) and DPDPE ([D-Pen2,5] enkephalin hydrate) correlated well with that of sandwich-cultured primary mouse hepatocytes (SCMHs) (r2 = 0.984). Cholestatic drugs were evaluated and the results were compared well with primary mice hepatocytes. The optimized iHep cells expressed functional drug transporters and were comparable to primary mice hepatocytes. This study suggested direct reprogramming could provide a potential alternative to primary hepatocytes for drug candidate hepatobiliary disposition and hepatotoxicity screening. © 2016 S. Karger AG, Basel.

  16. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.

    PubMed

    Guido, Carmela; Whitaker-Menezes, Diana; Capparelli, Claudia; Balliet, Renee; Lin, Zhao; Pestell, Richard G; Howell, Anthony; Aquila, Saveria; Andò, Sebastiano; Martinez-Outschoorn, Ubaldo; Sotgia, Federica; Lisanti, Michael P

    2012-08-15

    We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic

  17. Reprogramming fibroblasts to pluripotency using arginine-terminated polyamidoamine nanoparticles based non-viral gene delivery system

    PubMed Central

    Zhu, Kai; Li, Jun; Lai, Hao; Yang, Cheng; Guo, Changfa; Wang, Chunsheng

    2014-01-01

    Induced pluripotent stem cells (iPSCs) have attracted keen interest in regenerative medicine. The generation of iPSCs from somatic cells can be achieved by the delivery of defined transcription factor (Oct4, Sox2, Klf4, and c-Myc[OSKM]). However, most instances of iPSC-generation have been achieved by potentially harmful genome-integrating viral vectors. Here we report the generation of iPSCs from mouse embryonic fibroblasts (MEFs) using arginine-terminated generation 4 polyamidoamine (G4Arg) nanoparticles as a nonviral transfection vector for the delivery of a single plasmid construct carrying OSKM (pOSKM). Our results showed that G4Arg nanoparticles delivered pOSKM into MEFs at a significantly higher transfection efficiency than did conventional transfection reagents. After serial transfections of pOSKM-encapsulated G4Arg nanoparticles, we successfully generated iPSCs from MEFs. Our study demonstrates that G4Arg nanoparticles may be a promising candidate for generating of virus-free iPSCs that have great potential for clinical application. PMID:25540584

  18. Nuclear reprogramming.

    PubMed

    Halley-Stott, Richard P; Pasque, Vincent; Gurdon, J B

    2013-06-01

    There is currently particular interest in the field of nuclear reprogramming, a process by which the identity of specialised cells may be changed, typically to an embryonic-like state. Reprogramming procedures provide insight into many mechanisms of fundamental cell biology and have several promising applications, most notably in healthcare through the development of human disease models and patient-specific tissue-replacement therapies. Here, we introduce the field of nuclear reprogramming and briefly discuss six of the procedures by which reprogramming may be experimentally performed: nuclear transfer to eggs or oocytes, cell fusion, extract treatment, direct reprogramming to pluripotency and transdifferentiation.

  19. Discovery and progress of direct cardiac reprogramming.

    PubMed

    Kojima, Hidenori; Ieda, Masaki

    2017-02-14

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  20. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  1. Association of serum intact fibroblast growth factor 23 with left ventricular mass and different echocardiographic findings in patients on hemodialysis

    PubMed Central

    Nassiri, Amir Ahmad; Safar-Pour, Reza; Ahmadi, Ali; Tohidi, Maryam; Kashani, Babak Sharif; Esfehani, Fatemeh; Alatab, Soudabeh

    2016-01-01

    Abstract Objectives To determine the association of fibroblast growth factor 23 (FGF23) with left ventricular hypertrophy (LVH) through the assessment of left ventricular (LV) mass and left ventricular mass index (LVMI) in patients on hemodialysis, this study was done. Methods All patients on hemodialysis who are older than 18 years and in whom hemodialysis vintage was at least 6 months were enrolled. All patients were on hemodialysis thrice a week for 4 h using low-flux dialysis filters, polysulfone membranes, reverse osmosis purified water, and bicarbonate-base hemodialysis solution. The exclusion criteria were any respiratory illness or pulmonary infection, cigarette smoking, and the presence of pericarditis or pericardial effusion. Additionally, patients with a known coronary artery disease, any form of cardiac arrhythmias, any cardiomyopathy or severe valvular heart disease diagnosed by echocardiography, acute congestive heart failure (CHF), and acute myocardial infarction were not included. Echocardiography was conducted by an experienced operator for all the enrolled patients using the ACUSON SC2000™ ultrasound system transducer (Siemens), with a frequency bandwidth of: 1.5–3.5 MHz. Patients were considered to have LVH if the LVMI was greater than 134 g/m2 for men and greater than 110 g/m2 for women. Results A total of 61 patients (19 female and 42 male) were enrolled to the study. Mean (± SD) age of the patients was 59.6 ± 13.1 years. The median duration of hemodialysis was 23 (range: 6–120) months. The median predialysis level of FGF23 was 1,977 pg/mL (range: 155–8,870). LVH was seen in 73.8% of the patients (n = 45) and of them 66.7% were male. There was a statistically significant direct correlation between FGF23 and left ventricle diameter in end systole (LVDs) (r = 0.29, P = 0.027). However, the association of FGF23 with LV mass, LVMI, and left ventricular ejection fraction (LVEF) was not significant. Conclusion This study does not show the

  2. Boosters and barriers for direct cardiac reprogramming.

    PubMed

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Evaluation of human fibroblast growth factor 23 (FGF-23) C-terminal and intact enzyme-linked immunosorbent-assays in end-stage renal disease patients.

    PubMed

    Fassbender, W J; Brandenburg, V; Schmitz, S; Sandig, D; Simon, S A; Windolf, J; Stumpf, U C

    2009-01-01

    Hyperphosphataemia, calcitriol deficency and secondary hyperparathyroidism (sHPT) are common complications in end-stage chronic kidney diseases (CKD). Fibroblast Growth Factor 23 (FGF-23) is a phosphaturic peptide, secreted by the osteoblast precursors, that also inhibits renal 1-alpha-hydroxylase activitiy and tubular phosphate reabsorption by the inhibition of sodium-dependant renal phosphate transport (Na-Pi-IIa). Consequences are a decreaese of serum 1,25 dihydroxyvitamin D3 and phosphaturia. Therefore, FGF-23 plays a role in hyperphosphataemia in association with CKD and may be involved in the pathogenesis of sHPT. Increased FGF-23 may contribute to maintaining a normal serum phoshpate level in face of a processing CKD, but if the creatinine clearance is reduced to lower than 30 ml/min the capacity of this regulative mechanism ends and hyperphosphataemia results. In our investigation of end-stage renal diseases markedly increased serum FGF-23, associated with hyperphosphataemia, phosphaturia and decreased serum calcitriol and sHPT, were found. Furthermore preanalytical testing for the stability of FGF-23 was performed by comparing samples which were stored at -20 degrees C with samples that have been stored for 6 days at +4 degrees C. The simultaneous investigation of serum and EDTA plasma FGF-23 certifies the advantage of EDTA plasma in subjects with an intact renal function.

  4. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.

    PubMed

    Kang, Eunju; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P; Schöler, Hans R; Mitalipov, Shoukhrat

    2014-05-01

    Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative

  5. Metabolic reprogramming of the tumour microenvironment.

    PubMed

    Xing, Yazhi; Zhao, Shimin; Zhou, Binhua P; Mi, Jun

    2015-10-01

    Tumour cells, stromal cells and the stroma comprise the tumour microenvironment. The metabolism of both tumour cells and several types of tumour stromal cells, such as cancer-associated fibroblasts and tumour-associated macrophages, is reprogrammed. Current studies have found that stromal cells promote tumour progression and metastasis, through not only the paracrine secretion of cytokines or chemokines, but also intermediate metabolites. Here, we summarize the latest insights into the mechanism of metabolic reprogramming in cancer cells, cancer-associated fibroblasts and tumour-associated macrophages, and their potential roles in tumour progression and metastasis. © 2015 FEBS.

  6. Dynamic culture improves cell reprogramming efficiency.

    PubMed

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  7. Dissecting direct reprogramming through integrative genomic analysis

    PubMed Central

    Mikkelsen, Tarjei S.; Hanna, Jacob; Zhang, Xiaolan; Ku, Manching; Wernig, Marius; Schorderet, Patrick; Bernstein, Bradley E.; Jaenisch, Rudolf; Lander, Eric S.; Meissner, Alexander

    2009-01-01

    Somatic cells can be reprogrammed to a pluripotent state through the ectopic expression of defined transcription factors. Understanding the mechanism and kinetics of this transformation may shed light on the nature of developmental potency and suggest strategies with improved efficiency or safety. Here we report an integrative genomic analysis of reprogramming of mouse fibroblasts and B lymphocytes. Lineage-committed cells show a complex response to the ectopic expression involving induction of genes downstream of individual reprogramming factors. Fully reprogrammed cells show gene expression and epigenetic states that are highly similar to embryonic stem cells. In contrast, stable partially reprogrammed cell lines show reactivation of a distinctive subset of stem-cell-related genes, incomplete repression of lineage-specifying transcription factors, and DNA hypermethylation at pluripotency-related loci. These observations suggest that some cells may become trapped in partially reprogrammed states owing to incomplete repression of transcription factors, and that DNA de-methylation is an inefficient step in the transition to pluripotency. We demonstrate that RNA inhibition of transcription factors can facilitate reprogramming, and that treatment with DNA methyltransferase inhibitors can improve the overall efficiency of the reprogramming process. PMID:18509334

  8. Dynamic Culture Improves Cell Reprogramming Efficiency

    PubMed Central

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-01-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling. PMID:27031931

  9. Loss of miR-140 is a key risk factor for radiation-induced lung fibrosis through reprogramming fibroblasts and macrophages

    PubMed Central

    Duru, Nadire; Zhang, Yongshu; Gernapudi, Ramkishore; Wolfson, Benjamin; Lo, Pang-Kuo; Yao, Yuan; Zhou, Qun

    2016-01-01

    Radiation-induced lung fibrosis (RILF) is a common side effect for patients with thoracic cancer receiving radiation therapy. RILF is characterized by excessive collagen deposition mediated by TGF-β1 and its downstream factor SMAD3, but the exact molecular mechanism leading to fibrosis is yet to be determined. The present study investigated the impact of miR-140 on RILF development. Herein, we first found that loss of miR-140 is a marker of fibrotic lung tissue in vivo one-year post-radiation treatment. We showed that miR-140 knockout primary lung fibroblasts have a higher percentage of myofibroblasts compared to wild type primary lung fibroblasts, and that loss of miR-140 expression leads to increased activation of TGF-β1 signaling as well as increased myofibroblast differentiation. We also identified fibronectin as a novel miR-140 target gene in lung fibroblasts. Finally, we have shown that miR-140 deficiency promotes accumulation of M2 macrophages in irradiated lung tissues. These data suggest that miR-140 is a key protective molecule against RILF through inhibiting myofibroblast differentiation and inflammation. PMID:27996039

  10. Phosphoprotein Enriched in Astrocytes 15 kDa (PEA-15) Reprograms Growth Factor Signaling by Inhibiting Threonine Phosphorylation of Fibroblast Receptor Substrate 2α

    PubMed Central

    Haling, Jacob R.; Wang, Fen

    2010-01-01

    Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway. Here, we define the mechanism whereby increased PEA-15 expression promotes and sustains ERK1/2 activation. PEA-15 binding prevented ERK1/2 membrane recruitment and threonine phosphorylation of fibroblast receptor substrate 2α (FRS2α), a key link in fibroblast growth factor (FGF) receptor activation of ERK1/2. This reduced threonine phosphorylation led to increased FGF-induced tyrosine phosphorylation of FRS2α, thereby enhancing downstream signaling. Conversely, short hairpin RNA-mediated depletion of endogenous PEA-15 led to reduced FRS2α tyrosine phosphorylation. Thus, PEA-15 interrupts a negative feedback loop that terminates growth factor receptor signaling downstream of FRS2α. This is the dominant mechanism by which PEA-15 activates ERK1/2 because genetic deletion of FRS2α blocked the capacity of PEA-15 to activate the MAP kinase pathway. Thus, PEA-15 prevents ERK1/2 localization to the plasma membrane, thereby inhibiting ERK1/2-dependent threonine phosphorylation of FRS2α to promote activation of the ERK1/2 MAP kinase pathway. PMID:20032303

  11. DNA methylation programming and reprogramming in primate embryonic stem cells.

    PubMed

    Cohen, Netta Mendelson; Dighe, Vikas; Landan, Gilad; Reynisdóttir, Sigrún; Palsson, Arnar; Mitalipov, Shoukhrat; Tanay, Amos

    2009-12-01

    DNA methylation is an important epigenetic mechanism, affecting normal development and playing a key role in reprogramming epigenomes during stem cell derivation. Here we report on DNA methylation patterns in native monkey embryonic stem cells (ESCs), fibroblasts, and ESCs generated through somatic cell nuclear transfer (SCNT), identifying and comparing epigenome programming and reprogramming. We characterize hundreds of regions that are hyper- or hypomethylated in fibroblasts compared to native ESCs and show that these are conserved in human cells and tissues. Remarkably, the vast majority of these regions are reprogrammed in SCNT ESCs, leading to almost perfect correlation between the epigenomic profiles of the native and reprogrammed lines. At least 58% of these changes are correlated in cis to transcription changes, Polycomb Repressive Complex-2 occupancy, or binding by the CTCF insulator. We also show that while epigenomic reprogramming is extensive and globally accurate, the efficiency of adding and stripping DNA methylation during reprogramming is regionally variable. In several cases, this variability results in regions that remain methylated in a fibroblast-like pattern even after reprogramming.

  12. Transflammation: Innate Immune Signaling in Nuclear Reprogramming.

    PubMed

    Meng, Shu; Chanda, Palas; Thandavarayan, Rajarajan A; Cooke, John P

    2017-09-12

    Induction of pluripotency in somatic cells by retroviral overexpression of four transcription factors has revolutionized the field of stem cell biology and regenerative medicine. The efficient induction of pluripotency requires the activation of innate immune signaling in a process termed "transflammation" [1]. Specifically, the stimulation of pattern recognition receptors (PRRs) causes global alterations in the expression and activity of epigenetic modifiers to favor an open chromatin configuration. Activation of toll-like receptors (TLR) or RIG-1-like receptors (RLR) [2] trigger signaling cascades that result in NFκB or IRF-3 mediated changes in epigenetic plasticity that facilitate reprogramming. Another form of nuclear reprogramming is so-called direct reprogramming or transdifferentiation of one somatic cell to another lineage. We have shown that transdifferentiation of human fibroblasts to endothelial cells also involves transflammation [3]. Recently, we also identified reactive oxygen species (ROS) [4] and reactive nitrogen species (RNS) [5] as mediators of innate immune signaling in nuclear reprogramming. Innate immune signaling plays a key role in nuclear reprogramming by regulating DNA accessibility (Figure 1). Here, we review recent progress of innate immunity signaling in nuclear reprogramming and epigenetic plasticity. Copyright © 2017. Published by Elsevier B.V.

  13. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration.

    PubMed

    He, Wen-Jun; Hou, Qian; Han, Qing-Wang; Han, Wei-Dong; Fu, Xiao-Bing

    2014-08-01

    Cardiovascular disease is a leading cause of death in industrialized countries. Scientists are trying to generate cardiomyocytes in vitro and in vivo to repair damaged heart tissue. Pluripotent reprogramming brings an alternative source of embryonic-like stem cells, and the possibility of regenerating mammalian tissues by first reverting somatic cells to induced pluripotent stem cells, followed by redifferentiating these cells into cardiomyocytes. More recently, lineage reprogramming of fibroblasts directly into functional cardiomyocytes has been reported. The procedure does not involve reverting cells back to a pluripotent stage, and, thus, would presumably reduce tumorigenic potential. Interestingly, lineage reprogramming could be used for in situ conversion of cell fate. Moreover, zebrafish-like regenerative mechanism in mammalian heart tissue, which was observed in mice within the first week of postpartum, should be further addressed. Here, we review the landmark progresses of the two major reprogramming strategies, compare their pros and cons in cardiovascular regeneration, and forecast the future directions of cardiac repair.

  14. Defining the Diversity of Phenotypic Respecification Using Multiple Cell Lines and Reprogramming Regimens

    PubMed Central

    Alicea, Bradly; Murthy, Shashanka; Keaton, Sarah A.; Cobbett, Peter; Cibelli, Jose B.

    2013-01-01

    To better understand the basis of variation in cellular reprogramming, we performed experiments with two primary objectives: first, to determine the degree of difference, if any, in reprogramming efficiency among cells lines of a similar type after accounting for technical variables, and second, to compare the efficiency of conversion of multiple similar cell lines to two separate reprogramming regimens–induced neurons and induced skeletal muscle. Using two reprogramming regimens, it could be determined whether converted cells are likely derived from a distinct subpopulation that is generally susceptible to reprogramming or are derived from cells with an independent capacity for respecification to a given phenotype. Our results indicated that when technical components of the reprogramming regimen were accounted for, reprogramming efficiency was reproducible within a given primary fibroblast line but varied dramatically between lines. The disparity in reprogramming efficiency between lines was of sufficient magnitude to account for some discrepancies in published results. We also found that the efficiency of conversion to one phenotype was not predictive of reprogramming to the alternate phenotype, suggesting that the capacity for reprogramming does not arise from a specific subpopulation with a generally “weak grip” on cellular identity. Our findings suggest that parallel testing of multiple cell lines from several sources may be needed to accurately assess the efficiency of direct reprogramming procedures, and that testing a larger number of fibroblast lines—even lines with similar origins—is likely the most direct means of improving reprogramming efficiency. PMID:23672680

  15. Heart regeneration using reprogramming technology

    PubMed Central

    IEDA, Masaki

    2013-01-01

    Loss of terminally differentiated cardiomyocytes due to heart disease is irreversible and current therapeutic regimes are limited. Cell therapy using stem cell-derived cardiomyocytes is an attractive option to repair injured hearts. The discovery of direct reprogramming of fibroblasts into induced pluripotent stem cells (iPSCs) and successful differentiation of iPSCs into cardiomyocytes provided a revolutionary paradigm in heart regenerative research. During the past decades, significant advances in stem cell culture, differentiation and purification protocols, as well as in cell transplantation methodologies, have been achieved. On the other hand, recent studies demonstrated that a somatic cell could be converted into an alternative differentiated cell type without first becoming a stem cell by overexpression of lineage-specific factors. We found that functional cardiomyocytes can be directly induced from fibroblasts by a combination of three cardiac transcription factors, Gata4, Mef2c and Tbx5, in vitro and in vivo. I will review the perspectives of heart regeneration using reprogramming technology. PMID:23474887

  16. Rejuvenation by partial reprogramming of the epigenome.

    PubMed

    Mendelsohn, Andrew R; Larrick, James; Lei, Jennifer L

    2017-03-17

    Epigenetic variation with age is one of the most important hallmarks of aging. Resetting or repairing the epigenome of aging cells in intact animals may rejuvenate the cells and perhaps the entire organism. In fact, differentiated adult cells, which by definition have undergone some epigenetic changes, are capable of being rejuvenated and reprogrammed to create pluripotent stem cells and viable cloned animals. Apparently, such reprogramming is capable of completely resetting the epigenome. However, attempts to fully reprogram differentiated cells in adult animals have failed in part because reprogramming leads to formation of teratomas. A preliminary method to partially reprogram adult cells in mature Hutchinson-Guilford progeria (HGPS) mice by transient induction of the Yamanaka factors OSKM(Oct4/Sox2/Klf4/c-Myc) appears to ameliorate aging-like phenotypes in HGPS mice, and promote youthful regenerative capability in middle-aged wild type individuals exposed to beta cell and muscle cell specific toxins. However, whatever epigenetic repair is induced by transient reprogramming does not endure and may be due to the induction of key homeostatic regulators instead. Some of the effect of transient reprogramming may result from increased proliferation and enhanced function of adult stem cells. Partial reprogramming may point the way to new anti-aging and pro-regenerative therapeutics. Redifferentiation of cells into their pre-existing phenotype with simultaneous epigenomic rejuvenation is an interesting variation that also should be pursued. However, discovery of methods to more precisely repair the epigenome is the most likely avenue to the development of powerful new anti-aging agents.

  17. Optimal ROS Signaling Is Critical for Nuclear Reprogramming.

    PubMed

    Zhou, Gang; Meng, Shu; Li, Yanhui; Ghebre, Yohannes T; Cooke, John P

    2016-05-03

    Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS) signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox)-inducible mouse embryonic fibroblasts (MEFs) carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM]) into induced pluripotent stem cells (iPSCs). ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22(phox)-a critical subunit of the Nox (1-4) complex-decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Early reprogramming regulators identified by prospective isolation and mass cytometry

    PubMed Central

    Lujan, Ernesto; Zunder, Eli R.; Ng, Yi Han; Goronzy, Isabel N.; Nolan, Garry P.; Wernig, Marius

    2015-01-01

    In the context of most induced pluripotent stem (iPS) cell reprogramming methods, heterogeneous populations of nonproductive and staggered productive intermediates arise at different reprogramming time points1–11. Despite recent reports claiming substantially increased reprogramming efficiencies using genetically modified donor cells12,13 prospectively isolating distinct reprogramming intermediates remains an important goal to decipher reprogramming mechanisms. Previous attempts to identify surface markers of intermediate cell populations were based on the assumption that during reprogramming cells progressively lose donor cell identity and gradually acquire iPS cell properties1,2,7,8,10. Here, we report that iPS cell and epithelial markers, such as SSEA1 and EpCAM, respectively, are not predictive of reprogramming during early phases. Instead, in a systematic functional surface marker screen we find that early reprogramming-prone cells express a unique set of surface markers, including CD73, CD49d and CD200 that are absent in fibroblasts and iPS cells. Single cell mass cytometry and prospective isolation show that these distinct intermediates are transient and bridge the gap between donor cell silencing and pluripotency marker acquisition during the early, presumably stochastic reprogramming phase2. Expression profiling revealed early upregulation of the transcriptional regulators Nr0b1 and Etv5 in this reprogramming state, preceding activation of key pluripotency regulators such as Rex1, Dppa2, Nanog and Sox2. Both factors are required for the generation of the early intermediate state and fully reprogrammed iPS cells, and thus mark some of the earliest known regulators of iPS cell induction. Our study deconvolutes the first steps in a hierarchical series of events that lead to pluripotency acquisition. PMID:25830878

  19. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells

    PubMed Central

    Hung, Sandy S.C.; Van Bergen, Nicole J.; Jackson, Stacey; Liang, Helena; Mackey, David A.; Hernández, Damián; Lim, Shiang Y.; Hewitt, Alex W.; Trounce, Ian; Pébay, Alice; Wong, Raymond C.B.

    2016-01-01

    Reprogramming of somatic cells into a pluripotent state is known to be accompanied by extensive restructuring of mitochondria and switch in metabolic requirements. Here we utilized Leber's hereditary optic neuropathy (LHON) as a mitochondrial disease model to study the effects of homoplasmic mtDNA mutations and subsequent oxidative phosphorylation (OXPHOS) defects in reprogramming. We obtained fibroblasts from a total of 6 LHON patients and control subjects, and showed a significant defect in complex I respiration in LHON fibroblasts by high-resolution respiratory analysis. Using episomal vector reprogramming, our results indicated that human induced pluripotent stem cell (hiPSC) generation is feasible in LHON fibroblasts. In particular, LHON-specific OXPHOS defects in fibroblasts only caused a mild reduction and did not significantly affect reprogramming efficiency, suggesting that hiPSC reprogramming can tolerate a certain degree of OXPHOS defects. Our results highlighted the induction of genes involved in mitochondrial biogenesis (TFAM, NRF1), mitochondrial fusion (MFN1, MFN2) and glycine production (GCAT) during reprogramming. However, LHON-associated OXPHOS defects did not alter the kinetics or expression levels of these genes during reprogramming. Together, our study provides new insights into the effects of mtDNA mutation and OXPHOS defects in reprogramming and genes associated with various aspects of mitochondrial biology. PMID:27127184

  20. MicroRNA-mediated somatic cell reprogramming.

    PubMed

    Kuo, Chih-Hao; Ying, Shao-Yao

    2013-02-01

    Since the first report of induced pluripotent stem cells (iPSCs) using somatic cell nuclear transfer (SCNT), much focus has been placed on iPSCs due to their great therapeutic potential for diseases such as abnormal development, degenerative disorders, and even cancers. Subsequently, Takahashi and Yamanaka took a novel approach by using four defined transcription factors to generate iPSCs in mice and human fibroblast cells. Scientists have since been trying to refine or develop better approaches to reprogramming, either by using different combinations of transcription factors or delivery methods. However, recent reports showed that the microRNA expression pattern plays a crucial role in somatic cell reprogramming and ectopic introduction of embryonic stem cell-specific microRNAs revert cells back to an ESC-like state, although, the exact mechanism underlying this effect remains unclear. This review describes recent work that has focused on microRNA-mediated approaches to somatic cell reprogramming as well as some of the pros and cons to these approaches and a possible mechanism of action. Based on the pivotal role of microRNAs in embryogenesis and somatic cell reprogramming, studies in this area must continue in order to gain a better understanding of the role of microRNAs in stem cells regulation and activity. Copyright © 2012 Wiley Periodicals, Inc.

  1. Lineage Reprogramming: A Promising Road for Pancreatic β Cell Regeneration.

    PubMed

    Wei, Rui; Hong, Tianpei

    2016-03-01

    Cell replacement therapy is a promising method to restore pancreatic β cell function and cure diabetes. Distantly related cells (fibroblasts, keratinocytes, and muscle cells) and developmentally related cells (hepatocytes, gastrointestinal, and pancreatic exocrine cells) have been successfully reprogrammed into β cells in vitro and in vivo. However, while some reprogrammed β cells bear similarities to bona fide β cells, others do not develop into fully functional β cells. Here we review various strategies currently used for β cell reprogramming, including ectopic expression of specific transcription factors associated with islet development, repression of maintenance factors of host cells, regulation of epigenetic modifications, and microenvironmental changes. Development of simple and efficient reprogramming methods is a key priority for developing fully functional β cells suitable for cell replacement therapy.

  2. Reprogramming mammalian somatic cells.

    PubMed

    Rodriguez-Osorio, N; Urrego, R; Cibelli, J B; Eilertsen, K; Memili, E

    2012-12-01

    Somatic cell nuclear transfer (SCNT), the technique commonly known as cloning, permits transformation of a somatic cell into an undifferentiated zygote with the potential to develop into a newborn animal (i.e., a clone). In somatic cells, chromatin is programmed to repress most genes and express some, depending on the tissue. It is evident that the enucleated oocyte provides the environment in which embryonic genes in a somatic cell can be expressed. This process is controlled by a series of epigenetic modifications, generally referred to as "nuclear reprogramming," which are thought to involve the removal of reversible epigenetic changes acquired during cell differentiation. A similar process is thought to occur by overexpression of key transcription factors to generate induced pluripotent stem cells (iPSCs), bypassing the need for SCNT. Despite its obvious scientific and medical importance, and the great number of studies addressing the subject, the molecular basis of reprogramming in both reprogramming strategies is largely unknown. The present review focuses on the cellular and molecular events that occur during nuclear reprogramming in the context of SCNT and the various approaches currently being used to improve nuclear reprogramming. A better understanding of the reprogramming mechanism will have a direct impact on the efficiency of current SCNT procedures, as well as iPSC derivation.

  3. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    PubMed

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  4. The role of mutant UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis.

    PubMed

    Garringer, Holly J; Fisher, Corinne; Larsson, Tobias E; Davis, Siobhan I; Koller, Daniel L; Cullen, Michael J; Draman, Mohamad S; Conlon, Niamh; Jain, Alka; Fedarko, Neal S; Dasgupta, Bhaskar; White, Kenneth E

    2006-10-01

    Familial tumoral calcinosis (TC) results from disruptions in phosphate metabolism and is characterized by high serum phosphate with normal or elevated 1,25 dihydroxyvitamin vitamin D concentrations and ectopic and vascular calcifications. Recessive loss-of-function mutations in UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3) and fibroblast growth factor-23 (FGF23) result in TC. The objective of the study was to determine the relationship between GALNT3 and FGF23 in familial TC. We assessed the major biochemical defects and potential genes involved in patients with TC. Combination therapy consisted of the phosphate binder Sevelamer and the carbonic anhydrase inhibitor acetazolamide. We report a patient homozygous for a GALNT3 exon 1 deletion, which is predicted to truncate the encoded protein. This patient had high serum FGF23 concentrations when assessed with a C-terminal FGF23 ELISA but low-normal FGF23 levels when tested with an ELISA for intact FGF23 concentrations. Matrix extracellular phosphoglycoprotein has been identified as a possible regulator of phosphate homeostasis. Serum matrix extracellular phosphoglycoprotein levels, however, were normal in the family with GALNT3-TC and a kindred with TC carrying the FGF23 S71G mutation. The tumoral masses of the patient with GALNT3-TC completely resolved after combination therapy. Our findings demonstrate that GALNT3 inactivation in patients with TC leads to inadequate production of biologically active FGF23 as the most likely cause of the hyperphosphatemic phenotype. Furthermore, combination therapy may be effective for reducing the tumoral burden associated with familial TC.

  5. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming.

    PubMed

    Budniatzky, Inbar; Gepstein, Lior

    2014-04-01

    Myocardial cell-replacement therapies are emerging as novel therapeutic paradigms for myocardial repair but are hampered by the lack of sources of autologous human cardiomyocytes. The recent advances in stem cell biology and in transcription factor-based reprogramming strategies may provide exciting solutions to this problem. In the current review, we describe the different reprogramming strategies that can give rise to cardiomyocytes for regenerative medicine purposes. Initially, we describe induced pluripotent stem cell technology, a method by which adult somatic cells can be reprogrammed to yield pluripotent stem cells that could later be coaxed ex vivo to differentiate into cardiomyocytes. The generated induced pluripotent stem cell-derived cardiomyocytes could then be used for myocardial cell transplantation and tissue engineering strategies. We also describe the more recent direct reprogramming approaches that aim to directly convert the phenotype of one mature cell type (fibroblast) to another (cardiomyocyte) without going through a pluripotent intermediate cell type. The advantages and shortcomings of each strategy for cardiac regeneration are discussed, along with the hurdles that need to be overcome on the road to clinical translation.

  6. FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice

    PubMed Central

    Ahlenius, Henrik; Chanda, Soham; Webb, Ashley E.; Yousif, Issa; Karmazin, Jesse; Prusiner, Stanley B.; Brunet, Anne; Südhof, Thomas C.; Wernig, Marius

    2016-01-01

    We and others have shown that embryonic and neonatal fibroblasts can be directly converted into induced neuronal (iN) cells with mature functional properties. Reprogramming of fibroblasts from adult and aged mice, however, has not yet been explored in detail. The ability to generate fully functional iN cells from aged organisms will be particularly important for in vitro modeling of diseases of old age. Here, we demonstrate production of functional iN cells from fibroblasts that were derived from mice close to the end of their lifespan. iN cells from aged mice had apparently normal active and passive neuronal membrane properties and formed abundant synaptic connections. The reprogramming efficiency gradually decreased with fibroblasts derived from embryonic and neonatal mice, but remained similar for fibroblasts from postnatal mice of all ages. Strikingly, overexpression of a transcription factor, forkhead box O3 (FoxO3), which is implicated in aging, blocked iN cell conversion of embryonic fibroblasts, whereas knockout or knockdown of FoxO3 increased the reprogramming efficiency of adult-derived but not of embryonic fibroblasts and also enhanced functional maturation of resulting iN cells. Hence, FoxO3 has a central role in the neuronal reprogramming susceptibility of cells, and the importance of FoxO3 appears to change during development. PMID:27402759

  7. Video: reprogramming cells.

    PubMed

    2008-12-19

    This video introduction to Science's year-end special issue features Shinya Yamanaka of Kyoto University, George Daley of Harvard University, and Science's Gretchen Vogel reviewing some of the work that led studies in reprogramming cells to be tagged the top scientific story for 2008.

  8. [Reprogramming of somatic cells. Problems and solutions].

    PubMed

    Schneider, T A; Fishman, V S; Liskovykh, M A; Ponamartsev, S V; Serov, O L; Tomilin, A N; Alenina, N

    2014-01-01

    An adult mammal is composed of more than 200 different types of specialized somatic cells whose differentiated state remains stable over the life of the organism. For a long time it was believed that the differentiation process is irreversible, and the transition between the two types of specialized cells is impossible. The possibility of direct conversion of one differentiated cell type to another was first shown in the 80s of the last century in experiments on the conversion of fibroblasts into myoblasts by ectopic expression of the transcription factor MyoD. Surprisingly, this technology has remained unclaimed in cell biology for a long time. Interest in it revived after 200 thanks to the research of Novel Prize winner Shinya Yamanaka who has shown that a small set of transcription factors (Oct4, Sox2, Klf4 and c-Myc) is capable of restoring pluripotency in somatic cells which they lost in the process of differentiation. In 2010, using a similar strategy and the tissue-specific transcription factors Vierbuchen and coauthors showed the possibility of direct conversion of fibroblasts into neurons, i. e. the possibility of transdifferentiation of one type of somatic cells in the other. The works of these authoras were a breakthrough in the field of cell biology and gave a powerful impulse to the development of cell technologies for the needs of regenerative medicine. The present review discusses the main historical discoveries that preceded this work, evaluates the status of the problem and the progress in the development of methods for reprogramming at the moment, describes the main approaches to solving the problems of reprogramming of somatic cells into neuronal, and briefly discusses the prospect of application of reprogramming and transdifferentiation of cells for such important application areas as regenerative medicine, cell replacement therapy and drug screening.

  9. Reprogramming of Somatic Cells Towards Pluripotency by Cell Fusion.

    PubMed

    Malinowski, Andrzej R; Fisher, Amanda G

    2016-01-01

    Pluripotent reprogramming can be dominantly induced in a somatic nucleus upon fusion with a pluripotent cell such as embryonic stem (ES) cell. Cell fusion between ES cells and somatic cells results in the formation of heterokaryons, in which the somatic nuclei begin to acquire features of the pluripotent partner. The generation of interspecies heterokaryons between mouse ES- and human somatic cells allows an experimenter to distinguish the nuclear events occurring specifically within the reprogrammed nucleus. Therefore, cell fusion provides a simple and rapid approach to look at the early nuclear events underlying pluripotent reprogramming. Here, we describe a polyethylene glycol (PEG)-mediated cell fusion protocol to generate interspecies heterokaryons and intraspecies hybrids between ES cells and B lymphocytes or fibroblasts.

  10. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy.

    PubMed

    Theodorou, Marina; Rauser, Benedict; Zhang, Jingzhong; Prakash, Nilima; Wurst, Wolfgang; Schick, Joel A

    2015-08-01

    Parkinson's disease is one of the most common neurodegenerative disorders characterized by cell death of dopaminergic neurons in the substantia nigra. Recent research has focused on cellular replacement through lineage reprogramming as a potential therapeutic strategy. This study sought to use genetics to define somatic cell types in vivo amenable to reprogramming. To stimulate in vivo reprogramming to dopaminergic neurons, we generated a Rosa26 knock-in mouse line conditionally overexpressing Mash1, Lmx1a, and Nurr1. These proteins are characterized by their role in neuronal commitment and development of midbrain dopaminergic neurons and have previously been shown to convert fibroblasts to dopaminergic neurons in vitro. We show that a tricistronic construct containing these transcription factors can reprogram astrocytes and fibroblasts in vitro. However, cassette overexpression triggered cell death in vivo, in part through endoplasmic reticulum stress, while we also detected "uncleaved" forms of the polyprotein, suggesting poor "cleavage" efficiency of the 2A peptides. Based on our results, the cassette overexpression induced apoptosis and precluded reprogramming in our mouse model. Therefore, we suggest that alternatives must be explored to balance construct design with efficacious reprogramming. It is evident that there are still biological obstacles to overcome for in vivo reprogramming to dopaminergic neurons.

  11. Transplantation of reprogrammed neurons for improved recovery after stroke.

    PubMed

    Kokaia, Zaal; Tornero, Daniel; Lindvall, Olle

    2017-01-01

    Somatic cells such as fibroblasts, reprogrammed to induced pluripotent stem cells, can be used to generate neural stem/progenitor cells or neuroblasts for transplantation. In this review, we summarize recent studies demonstrating that when grafted intracerebrally in animal models of stroke, reprogrammed neurons improve function, probably by several different mechanisms, e.g., trophic actions, modulation of inflammation, promotion of angiogenesis, cellular and synaptic plasticity, and neuroprotection. In our own work, we have shown that human skin-derived reprogrammed neurons, fated to cortical progeny, integrate in stroke-injured neuronal network and form functional afferent synapses with host neurons, responding to peripheral sensory stimulation. However, whether neuronal replacement plays a role for the improvement of sensory, motor, and cognitive deficits after transplantation of reprogrammed neurons is still unclear. We conclude that further preclinical studies are needed to understand the therapeutic potential of grafted reprogrammed neurons and to define a road map for their clinical translation in stroke. © 2017 Elsevier B.V. All rights reserved.

  12. Reprogramming aging and progeria.

    PubMed

    Freije, José M P; López-Otín, Carlos

    2012-12-01

    The aging rate of an organism depends on the ratio of tissue degeneration to tissue repair. As a consequence, molecular alterations that tip this balance toward degeneration cause accelerated aging. Conversely, interventions can be pursued to reduce tissue degeneration or to increase tissue repair with the aim of delaying the onset of age-associated manifestations. Recent studies on the biology of stem cells in aging have revealed the influence of systemic factors on their functionality and demonstrated the feasibility of reprogramming aged and progeroid cells. These results illustrate the reversibility of some aspects of the aging process and encourage the search for new anti-aging and anti-progeria interventions.

  13. Forward engineering neuronal diversity using direct reprogramming.

    PubMed

    Tsunemoto, Rachel K; Eade, Kevin T; Blanchard, Joel W; Baldwin, Kristin K

    2015-06-03

    The nervous system is comprised of a vast diversity of distinct neural cell types. Differences between neuronal subtypes drive the assembly of neuronal circuits and underlie the subtype specificity of many neurological diseases. Yet, because neurons are irreversibly post-mitotic and not readily available from patients, it has not been feasible to study specific subtypes of human neurons in larger numbers. A powerful means to study neuronal diversity and neurological disease is to establish methods to produce desired neuronal subtypes in vitro. Traditionally this has been accomplished by treating pluripotent or neural stem cells with growth factors and morphogens that recapitulate exogenous developmental signals. These approaches often require extended periods of culture, which can limit their utility. However, more recently, it has become possible to produce neurons directly from fibroblasts using transcription factors and/or microRNAs. This technique referred to as direct reprogramming or transdifferentiation has proven to be a rapid, robust, and reproducible method to generate mature neurons of many different subtypes from multiple cell sources. Here, we highlight recent advances in generating neurons of specific subtypes using direct reprogramming and outline various scenarios in which induced neurons may be applied to studies of neuronal function and neurological disease.

  14. Reprogramming of the Tumor Microenvironment by Stromal Pten-regulated miR-320

    PubMed Central

    Bronisz, A; Godlewski, J; Wallace, JA; Merchant, AS; Nowicki, MO; Mathsyaraja, H; Srinivasan, R; Trimboli, AJ; Martin, CK; Li, F; Yu, L; Fernandez, SA; Pécot, T; Rosol, TJ; Cory, S; Hallett, M; Park, M; Piper, MG; Marsh, CB; Yee, LD; Jimenez, RE; Nuovo, G; Lawler, SE; Chiocca, EA; Leone, G; Ostrowski, MC

    2011-01-01

    Phosphatase and tensin homolog deleted on chromosome ten (Pten) in stromal fibroblasts suppresses epithelial mammary tumors, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the transcriptional reprogramming of other cell types in the microenvironment. Downregulation of miR-320 and upregulation of one of its direct targets, ETS2, are critical events in Pten-deleted stromal fibroblasts responsible for inducing this oncogenic secretome, which in turn promotes tumor angiogenesis and tumor cell invasion. Expression of the Pten-miR-320-Ets2 regulated secretome distinguished human normal breast stroma from tumor stroma and robustly correlated with recurrence in breast cancer patients. This work reveals miR-320 as a critical component of the Pten tumor suppressor axis that acts in stromal fibroblasts to reprogram the tumor microenvironment and curtail tumor progression. PMID:22179046

  15. Heart development and regeneration via cellular interaction and reprogramming.

    PubMed

    Ieda, Masaki

    2013-01-01

    The heart consists of many types of cells, including cardiomyocytes, vascular cells, neural cells, and cardiac fibroblasts. Adult cardiomyocytes are terminally differentiated cells, and loss of cardiomyocytes as a result of heart damage is irreversible. To regenerate damaged hearts and restore cardiac function, understanding the cellular and molecular basis of heart development is of considerable importance. Although it is well known that heart function is tightly regulated by cell-cell interactions, their roles in heart development are not clear. Recent studies, including ours, identified important roles of cell-cell interactions in heart development and function. The balance between neural chemoattractants and chemorepellents secreted from cardiomyocytes determines cardiac nervous development. Nerve growth factor is a potent chemoattractant synthesized by cardiomyocytes, whereas Sema3a is a neural chemorepellent expressed specifically in the subendocardium. Disruption of this molecular balance induces disorganized cardiac innervation and may lead to sudden cardiac death due to lethal arrhythmias. Cardiac fibroblasts, of which there are large populations in the heart, secrete high levels of specific extracellular matrix and growth factors. Embryonic cardiac fibroblast-specific secreted factors collaboratively promote mitotic activity of embryonic cardiomyocytes and expansion of ventricular chambers during cardiogenesis. More recently, utilizing knowledge of the regulatory mechanisms of heart development, we found that cardiac fibroblasts can be directly reprogrammed into cardiomyocyte-like cells in vitro and in vivo by gene transfer of cardiac-specific transcription factors. Understanding the mechanisms of heart development and cardiac reprogramming technology may provide new therapeutic approaches for heart disease in the future.

  16. Generation of iPSC line HEL24.3 from human neonatal foreskin fibroblasts.

    PubMed

    Trokovic, Ras; Weltner, Jere; Otonkoski, Timo

    2015-07-01

    Human iPSC line HEL24.3 was generated from healthy human foreskin fibroblasts using non-integrative reprogramming method. Reprogramming factors Oct3/4, Sox2, Klf4, and cMyc were delivered using Sendai viruses.

  17. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming.

    PubMed

    Yamakawa, Hiroyuki; Ieda, Masaki

    2015-01-01

    Cardiovascular disease remains a leading cause of death for which current therapeutic regimens are limited. Following myocardial injury, endogenous cardiac fibroblasts, which account for more than half of the cells in the heart, proliferate and synthesize extracellular matrix, leading to fibrosis and heart failure. As terminally differentiated cardiomyocytes have little regenerative capacity following injury, development of cardiac regenerative therapy is highly desired. Embryonic stem (ES) and induced pluripotent stem (iPS) cells are promising tools for regenerative medicine; however, these stem cells demonstrate variable cardiac differentiation efficiency and tumorigenicity, which should be solved for clinical applications. Up until the last decade, it was an established theory that cardiomyocytes could only be produced from fibroblasts mediating through stem cells. However, in 2010, we reported for the first time a novel method of the direct reprogramming of fibroblasts into cardiomyocytes, demonstrating various reprogramming pathways exist. This review summarizes the latest trends in stem cell and regenerative research, touching upon iPS cells, partial reprogramming strategy, and direct cardiac reprogramming. Specifically, we examine the many recent advances in both in vitro and in vivo direct cardiac reprogramming, and explore the application of these methods to cardiovascular regenerative medicine.

  18. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency.

    PubMed

    Hanna, Jacob; Markoulaki, Styliani; Schorderet, Patrick; Carey, Bryce W; Beard, Caroline; Wernig, Marius; Creyghton, Menno P; Steine, Eveline J; Cassady, John P; Foreman, Ruth; Lengner, Christopher J; Dausman, Jessica A; Jaenisch, Rudolf

    2008-04-18

    Pluripotent cells can be derived from fibroblasts by ectopic expression of defined transcription factors. A fundamental unresolved question is whether terminally differentiated cells can be reprogrammed to pluripotency. We utilized transgenic and inducible expression of four transcription factors (Oct4, Sox2, Klf4, and c-Myc) to reprogram mouse B lymphocytes. These factors were sufficient to convert nonterminally differentiated B cells to a pluripotent state. However, reprogramming of mature B cells required additional interruption with the transcriptional state maintaining B cell identity by either ectopic expression of the myeloid transcription factor CCAAT/enhancer-binding-protein-alpha (C/EBPalpha) or specific knockdown of the B cell transcription factor Pax5. Multiple iPS lines were clonally derived from both nonfully and fully differentiated B lymphocytes, which gave rise to adult chimeras with germline contribution, and to late-term embryos when injected into tetraploid blastocysts. Our study provides definite proof for the direct nuclear reprogramming of terminally differentiated adult cells to pluripotency.

  19. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    PubMed

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  20. Reduced expression of Paternally Expressed Gene-3 enhances somatic cell reprogramming through mitochondrial activity perturbation.

    PubMed

    Theka, Ilda; Sottile, Francesco; Aulicino, Francesco; Garcia, Alvaro Castells; Cosma, Maria Pia

    2017-08-29

    Imprinted genes control several cellular and metabolic processes in embryonic and adult tissues. In particular, paternally expressed gene-3 (Peg3) is active in the adult stem cell population and during muscle and neuronal lineage development. Here we have investigated the role of Peg3 in mouse embryonic stem cells (ESCs) and during the process of somatic cell reprogramming towards pluripotency. Our data show that Peg3 knockdown increases expression of pluripotency genes in ESCs and enhances reprogramming efficiency of both mouse embryonic fibroblasts and neural stem cells. Interestingly, we observed that altered activity of Peg3 correlates with major perturbations of mitochondrial gene expression and mitochondrial function, which drive metabolic changes during somatic cell reprogramming. Overall, our study shows that Peg3 is a regulator of pluripotent stem cells and somatic cell reprogramming.

  1. Supramolecular nanosubstrate-mediated delivery for reprogramming and transdifferentiation of mammalian cells.

    PubMed

    Hou, Shuang; Choi, Jin-sil; Chen, Kuan-Ju; Zhang, Yang; Peng, Jinliang; Garcia, Mitch A; Yu, Jue-Hua; Thakore-Shah, Kaushali; Ro, Tracy; Chen, Jie-Fu; Peyda, Parham; Fan, Guoping; Pyle, April D; Wang, Hao; Tseng, Hsian-Rong

    2015-06-03

    Supramolecular nanosubstrate-mediated delivery (SNSMD) leverages the power of molecular self-assembly and a nanostructured substrate platform for the low toxicity, highly efficient co-delivery of biological factors encapsulated in a nanovector. Human fibroblasts are successfully reprogrammed into induced pluripotent stems and transdifferentiated into induced neuronal-like cells.

  2. Single Cell Analysis Reveals the Stochastic Phase of Reprogramming to Pluripotency Is an Ordered Probabilistic Process

    PubMed Central

    Burger, Steven; Russell, Alexander C.; Nelson, Craig E.

    2014-01-01

    Despite years of research, the reprogramming of human somatic cells to pluripotency remains a slow, inefficient process, and a detailed mechanistic understanding of reprogramming remains elusive. Current models suggest reprogramming to pluripotency occurs in two-phases: a prolonged stochastic phase followed by a rapid deterministic phase. In this paradigm, the early stochastic phase is marked by the random and gradual expression of pluripotency genes and is thought to be a major rate-limiting step in the successful generation of induced Pluripotent Stem Cells (iPSCs). Recent evidence suggests that the epigenetic landscape of the somatic cell is gradually reset during a period known as the stochastic phase, but it is known neither how this occurs nor what rate-limiting steps control progress through the stochastic phase. A precise understanding of gene expression dynamics in the stochastic phase is required in order to answer these questions. Moreover, a precise model of this complex process will enable the measurement and mechanistic dissection of treatments that enhance the rate or efficiency of reprogramming to pluripotency. Here we use single-cell transcript profiling, FACS and mathematical modeling to show that the stochastic phase is an ordered probabilistic process with independent gene-specific dynamics. We also show that partially reprogrammed cells infected with OSKM follow two trajectories: a productive trajectory toward increasingly ESC-like expression profiles or an alternative trajectory leading away from both the fibroblast and ESC state. These two pathways are distinguished by the coordinated expression of a small group of chromatin modifiers in the productive trajectory, supporting the notion that chromatin remodeling is essential for successful reprogramming. These are the first results to show that the stochastic phase of reprogramming in human fibroblasts is an ordered, probabilistic process with gene-specific dynamics and to provide a precise

  3. Single cell analysis reveals the stochastic phase of reprogramming to pluripotency is an ordered probabilistic process.

    PubMed

    Chung, Kyung-Min; Kolling, Frederick W; Gajdosik, Matthew D; Burger, Steven; Russell, Alexander C; Nelson, Craig E

    2014-01-01

    Despite years of research, the reprogramming of human somatic cells to pluripotency remains a slow, inefficient process, and a detailed mechanistic understanding of reprogramming remains elusive. Current models suggest reprogramming to pluripotency occurs in two-phases: a prolonged stochastic phase followed by a rapid deterministic phase. In this paradigm, the early stochastic phase is marked by the random and gradual expression of pluripotency genes and is thought to be a major rate-limiting step in the successful generation of induced Pluripotent Stem Cells (iPSCs). Recent evidence suggests that the epigenetic landscape of the somatic cell is gradually reset during a period known as the stochastic phase, but it is known neither how this occurs nor what rate-limiting steps control progress through the stochastic phase. A precise understanding of gene expression dynamics in the stochastic phase is required in order to answer these questions. Moreover, a precise model of this complex process will enable the measurement and mechanistic dissection of treatments that enhance the rate or efficiency of reprogramming to pluripotency. Here we use single-cell transcript profiling, FACS and mathematical modeling to show that the stochastic phase is an ordered probabilistic process with independent gene-specific dynamics. We also show that partially reprogrammed cells infected with OSKM follow two trajectories: a productive trajectory toward increasingly ESC-like expression profiles or an alternative trajectory leading away from both the fibroblast and ESC state. These two pathways are distinguished by the coordinated expression of a small group of chromatin modifiers in the productive trajectory, supporting the notion that chromatin remodeling is essential for successful reprogramming. These are the first results to show that the stochastic phase of reprogramming in human fibroblasts is an ordered, probabilistic process with gene-specific dynamics and to provide a precise

  4. Imprinting: DNA methyltransferases illuminate reprogramming.

    PubMed

    Calarco, Joseph P; Martienssen, Robert A

    2012-11-06

    Progress in studying epigenetic reprogramming in plants has been impeded by the difficulty in obtaining tissue for analysis. Now, using a combination of fluorescent reporters and translational fusions, a new study sheds some light on this process.

  5. Direct Reprogramming-The Future of Cardiac Regeneration?

    PubMed

    Doppler, Stefanie A; Deutsch, Marcus-André; Lange, Rüdiger; Krane, Markus

    2015-07-29

    Today, the only available curative therapy for end stage congestive heart failure (CHF) is heart transplantation. This therapeutic option is strongly limited by declining numbers of available donor hearts and by restricted long-term performance of the transplanted graft. The disastrous prognosis for CHF with its restricted therapeutic options has led scientists to develop different concepts of alternative regenerative treatment strategies including stem cell transplantation or stimulating cell proliferation of different cardiac cell types in situ. However, first clinical trials with overall inconsistent results were not encouraging, particularly in terms of functional outcome. Among other approaches, very promising ongoing pre-clinical research focuses on direct lineage conversion of scar fibroblasts into functional myocardium, termed "direct reprogramming" or "transdifferentiation." This review seeks to summarize strategies for direct cardiac reprogramming including the application of different sets of transcription factors, microRNAs, and small molecules for an efficient generation of cardiomyogenic cells for regenerative purposes.

  6. Direct Cardiac Reprogramming: From Developmental Biology to Cardiac Regeneration

    PubMed Central

    Qian, Li; Srivastava, Deepak

    2013-01-01

    Heart disease affects millions worldwide and is a progressive condition involving loss of cardiomyocytes. The human heart has limited endogenous regenerative capacity and is thus an important target for novel regenerative medicine approaches. While cell-based regenerative therapies hold promise, cellular reprogramming of endogenous cardiac fibroblasts, which represent more than half of the cells in the mammalian heart, may be an attractive alternative strategy for regenerating cardiac muscle. Recent advances leveraging years of developmental biology point to the feasibility of generating de novo cardiomyocyte-like cells from terminally differentiated non-myocytes in the heart in situ after ischemic damage. Here, we review the progress in cardiac reprogramming methods and consider the opportunities and challenges that lie ahead in refining this technology for regenerative medicine. PMID:24030021

  7. Targeted gene therapy and cell reprogramming in Fanconi anemia

    PubMed Central

    Rio, Paula; Baños, Rocio; Lombardo, Angelo; Quintana-Bustamante, Oscar; Alvarez, Lara; Garate, Zita; Genovese, Pietro; Almarza, Elena; Valeri, Antonio; Díez, Begoña; Navarro, Susana; Torres, Yaima; Trujillo, Juan P; Murillas, Rodolfo; Segovia, Jose C; Samper, Enrique; Surralles, Jordi; Gregory, Philip D; Holmes, Michael C; Naldini, Luigi; Bueren, Juan A

    2014-01-01

    Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies. PMID:24859981

  8. Reprogramming of somatic cells.

    PubMed

    Rajasingh, Johnson

    2012-01-01

    Reprogramming of adult somatic cells into pluripotent stem cells may provide an attractive source of stem cells for regenerative medicine. It has emerged as an invaluable method for generating patient-specific stem cells of any cell lineage without the use of embryonic stem cells. A revolutionary study in 2006 showed that it is possible to convert adult somatic cells directly into pluripotent stem cells by using a limited number of pluripotent transcription factors and is called as iPS cells. Currently, both genomic integrating viral and nonintegrating nonviral methods are used to generate iPS cells. However, the viral-based technology poses increased risk of safety, and more studies are now focused on nonviral-based technology to obtain autologous stem cells for clinical therapy. In this review, the pros and cons of the present iPS cell technology and the future direction for the successful translation of this technology into the clinic are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Reprogramming cells with synthetic proteins

    PubMed Central

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to “read” genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivo counterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies. PMID:25652623

  10. Cardiac fibroblast in development and wound healing.

    PubMed

    Deb, Arjun; Ubil, Eric

    2014-05-01

    Cardiac fibroblasts are the most abundant cell type in the mammalian heart and comprise approximately two-thirds of the total number of cardiac cell types. During development, epicardial cells undergo epithelial-mesenchymal-transition to generate cardiac fibroblasts that subsequently migrate into the developing myocardium to become resident cardiac fibroblasts. Fibroblasts form a structural scaffold for the attachment of cardiac cell types during development, express growth factors and cytokines and regulate proliferation of embryonic cardiomyocytes. In post natal life, cardiac fibroblasts play a critical role in orchestrating an injury response. Fibroblast activation and proliferation early after cardiac injury are critical for maintaining cardiac integrity and function, while the persistence of fibroblasts long after injury leads to chronic scarring and adverse ventricular remodeling. In this review, we discuss the physiologic function of the fibroblast during cardiac development and wound healing, molecular mediators of activation that could be possible targets for drug development for fibrosis and finally the use of reprogramming technologies for reversing scar. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium." Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling.

    PubMed

    Hsu, Yi-Chao; Chen, Chien-Tsun; Wei, Yau-Huei

    2016-04-01

    Nuclear reprogramming with pluripotency factors enables somatic cells to gain the properties of embryonic stem cells. Mitochondrial resetting and metabolic reprogramming are suggested to be key early events in the induction of human skin fibroblasts to induced pluripotent stem cells (iPSCs). We review recent advances in the study of the molecular basis for mitochondrial resetting and metabolic reprogramming in the regulation of the formation of iPSCs. In particular, the recent progress in using iPSCs for mitochondrial disease modeling was discussed. iPSCs rely on glycolysis rather than oxidative phosphorylation as a major supply of energy. Mitochondrial resetting and metabolic reprogramming thus play crucial roles in the process of generation of iPSCs from somatic cells. Neurons, myocytes, and cardiomyocytes are cells containing abundant mitochondria in the human body, which can be differentiated from iPSCs or trans-differentiated from fibroblasts. Generating these cells from iPSCs derived from skin fibroblasts of patients with mitochondrial diseases or by trans-differentiation with cell-specific transcription factors will provide valuable insights into the role of mitochondrial DNA heteroplasmy in mitochondrial disease modeling and serves as a novel platform for screening of drugs to treat patients with mitochondrial diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Cellular extract facilitates nuclear reprogramming by altering DNA methylation and pluripotency gene expression.

    PubMed

    Xiong, Xian-Rong; Lan, Dao-Liang; Li, Jian; Zi, Xiang-Dong; Ma, Li; Wang, Yong

    2014-06-01

    The functional reprogramming of a differentiated cell to a pluripotent state presents potential beneficial applications in disease mechanisms and regenerative medicine. Epigenetic modifications enable differentiated cells to perpetuate molecular memory to retain their identity. Therefore, the aim of this study was to investigate the reprogramming modification of yak fibroblast cells that were permeabilized and incubated in the extracts of mesenchymal stem cells derived from mice adipose tissue [adipose-derived stem cells (ADSCs)]. According to the results, the treatment of ADSC extracts promoted colony formation. Moreover, pluripotent gene expression was associated with the loss of repressive histone modifications and increased global demethylation. The genes Col1a1 and Col1a2, which are typically found in differentiated cells only, demonstrated decreased expression and increased methylation in the 5'-flanking regulatory regions. Moreover, yak fibroblast cells that were exposed to ADSC extracts resulted in significantly different eight-cell and blastocyst formation rates of cloned embryos compared with their untreated counterparts. This investigation provides the first evidence that nuclear reprogramming of yak fibroblast cells is modified after the ADSC extract treatment. This research also presents a methodology for studying the dedifferentiation of somatic cells that can potentially lead to an efficient way of reprogramming somatic cells toward a pluripotent state without genetic alteration.

  13. Totipotency, Pluripotency and Nuclear Reprogramming

    NASA Astrophysics Data System (ADS)

    Mitalipov, Shoukhrat; Wolf, Don

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  14. Brief report: impaired cell reprogramming in nonhomologous end joining deficient cells.

    PubMed

    Molina-Estevez, F Javier; Lozano, M Luz; Navarro, Susana; Torres, Yaima; Grabundzija, Ivana; Ivics, Zoltan; Samper, Enrique; Bueren, Juan A; Guenechea, Guillermo

    2013-08-01

    Although there is an increasing interest in defining the role of DNA damage response mechanisms in cell reprogramming, the relevance of proteins participating in nonhomologous end joining (NHEJ), a major mechanism of DNA double-strand breaks repair, in this process remains to be investigated. Herein, we present data related to the reprogramming of primary mouse embryonic fibroblasts (MEF) from severe combined immunodeficient (Scid) mice defective in DNA-PKcs, a key protein for NHEJ. Reduced numbers of induced pluripotent stem cell (iPSC) colonies were generated from Scid cells using reprogramming lentiviral vectors (LV), being the reprogramming efficiency fourfold to sevenfold lower than that observed in wt cells. Moreover, these Scid iPSC-like clones were prematurely lost or differentiated spontaneously. While the Scid mutation neither reduce the proliferation rate nor the transduction efficacy of fibroblasts transduced with reprogramming LV, both the expression of SA-β-Gal and of P16/INK(4a) senescence markers were highly increased in Scid versus wt MEFs during the reprogramming process, accounting for the reduced reprogramming efficacy of Scid MEFs. The use of improved Sleeping Beauty transposon/transposase systems allowed us, however, to isolate DNA-PKcs-deficient iPSCs which preserved their parental genotype and hypersensitivity to ionizing radiation. This new disease-specific iPSC model would be useful to understand the physiological consequences of the DNA-PKcs mutation during development and would help to improve current cell and gene therapy strategies for the disease. Copyright © 2013 AlphaMed Press.

  15. Genome-wide reprogramming in hybrids of somatic cells and embryonic stem cells.

    PubMed

    Ambrosi, Dominic J; Tanasijevic, Borko; Kaur, Anupinder; Obergfell, Craig; O'Neill, Rachel J; Krueger, Winfried; Rasmussen, Theodore P

    2007-05-01

    Recent experiments demonstrate that somatic nuclei can be reprogrammed to a pluripotent state when fused to ESCs. The resulting hybrids are pluripotent as judged by developmental assays, but detailed analyses of the underlying molecular-genetic control of reprogrammed transcription in such hybrids are required to better understand fusion-mediated reprogramming. We produced hybrids of mouse ESCs and fibroblasts that, although nearly tetraploid, exhibit characteristics of normal ESCs, including apparent immortality in culture, ESC-like colony morphology, and pluripotency. Comprehensive analysis of the mouse embryonic fibroblast/ESC hybrid transcriptome revealed global patterns of gene expression reminiscent of ESCs. However, combined analysis of variance and hierarchical clustering analyses revealed at least seven distinct classes of differentially regulated genes in comparisons of hybrids, ESCs, and somatic cells. The largest class includes somatic genes that are silenced in hybrids and ESCs, but a smaller class includes genes that are expressed at nearly equivalent levels in hybrids and ESCs that contain many genes implicated in pluripotency and chromatin function. Reprogrammed genes are distributed throughout the genome. Reprogramming events include both transcriptional silencing and activation of genes residing on chromosomes of somatic origin. Somatic/ESC hybrid cell lines resemble their pre-fusion ESC partners in terms of behavior in culture and pluripotency. However, they contain unique expression profiles that are similar but not identical to normal ESCs. ESC fusion-mediated reprogramming provides a tractable system for the investigation of mechanisms of reprogramming. Disclosure of potential conflicts of interest is found at the end of this article.

  16. Chromatin roadblocks to reprogramming 50 years on.

    PubMed

    Skene, Peter J; Henikoff, Steven

    2012-10-29

    A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon.

  17. Therapeutic cloning and cellular reprogramming.

    PubMed

    Rodriguez, Ramon M; Ross, Pablo J; Cibelli, Jose B

    2012-01-01

    Embryonic stem cells are capable of differentiating into any cell-type present in an adult organism, and constitute a renewable source of tissue for regenerative therapies. The transplant of allogenic stem cells is challenging due to the risk of immune rejection. Nevertheless, somatic cell reprogramming techniques allow the generation of isogenic embryonic stem cells, genetically identical to the patient. In this chapter we will discuss the cellular reprogramming techniques in the context of regenerative therapy and the biological and technical barriers that they will need to overcome before clinical use.

  18. Energy metabolism in nuclear reprogramming

    PubMed Central

    Folmes, Clifford DL; Nelson, Timothy J; Terzic, Andre

    2012-01-01

    Nuclear reprogramming with stemness factors enables resetting of somatic differentiated tissue back to the pluripotent ground state. Recent evidence implicates mitochondrial restructuring and bioenergetic plasticity as key components underlying execution of orchestrated dedifferentiation and derivation of induced pluripotent stem cells. Aerobic to anaerobic transition of somatic oxidative energy metabolism into a glycolytic metabotype promotes proficient reprogramming, establishing a novel regulator of acquired stemness. Metabolomic profiling has further identified specific metabolic remodeling traits defining lineage redifferentiation of pluripotent cells. Therefore, mitochondrial biogenesis and energy metabolism comprise a vital axis for biomarker discovery, intimately reflecting the molecular dynamics fundamental for the resetting and redirection of cell fate. PMID:22103608

  19. Biophysical regulation of epigenetic state and cell reprogramming

    NASA Astrophysics Data System (ADS)

    Downing, Timothy L.; Soto, Jennifer; Morez, Constant; Houssin, Timothee; Fritz, Ashley; Yuan, Falei; Chu, Julia; Patel, Shyam; Schaffer, David V.; Li, Song

    2013-12-01

    Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells’ epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)—a subunit of H3 methyltranferase—by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.

  20. Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries.

    PubMed

    Blanchard, Joel W; Xie, Jia; El-Mecharrafie, Nadja; Gross, Simon; Lee, Sohyon; Lerner, Richard A; Baldwin, Kristin K

    2017-09-11

    The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) is usually achieved by exogenous induction of transcription by factors acting in the nucleus. In contrast, during development, signaling pathways initiated at the membrane induce differentiation. The central idea of this study is to identify antibodies that can catalyze cellular de-differentiation and nuclear reprogramming by acting at the cell surface. We screen a lentiviral library encoding ∼100 million secreted and membrane-bound single-chain antibodies and identify antibodies that can replace either Sox2 and Myc (c-Myc) or Oct4 during reprogramming of mouse embryonic fibroblasts into iPSCs. We show that one Sox2-replacing antibody antagonizes the membrane-associated protein Basp1, thereby de-repressing nuclear factors WT1, Esrrb and Lin28a (Lin28) independent of Sox2. By manipulating this pathway, we identify three methods to generate iPSCs. Our results establish unbiased selection from autocrine combinatorial antibody libraries as a robust method to discover new biologics and uncover membrane-to-nucleus signaling pathways that regulate pluripotency and cell fate.

  1. Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons

    PubMed Central

    Seelk, Stefanie; Adrian-Kalchhauser, Irene; Hargitai, Balázs; Hajduskova, Martina; Gutnik, Silvia; Tursun, Baris; Ciosk, Rafal

    2016-01-01

    Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling. DOI: http://dx.doi.org/10.7554/eLife.15477.001 PMID:27602485

  2. Epigenetic reprogramming in plant sexual reproduction.

    PubMed

    Kawashima, Tomokazu; Berger, Frédéric

    2014-09-01

    Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation.

  3. Cell reprogramming: Into the groove

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Liu, Longqi; Laslett, Andrew L.; Esteban, Miguel A.

    2013-12-01

    Adult cells can be routinely reprogrammed into pluripotent stem cells by chemical and genetic means, such as the expression of a cocktail of exogenous transcription factors. It is now shown that growing cells on substrates with aligned features such as microgrooves can enhance this process.

  4. Glycolytic Reprogramming in Myofibroblast Differentiation and Lung Fibrosis

    PubMed Central

    Xie, Na; Tan, Zheng; Banerjee, Sami; Cui, Huachun; Ge, Jing; Liu, Rui-Ming; Bernard, Karen; Thannickal, Victor J.

    2015-01-01

    Rationale: Dysregulation of cellular metabolism has been shown to participate in several pathologic processes. However, the role of metabolic reprogramming is not well appreciated in the pathogenesis of organ fibrosis. Objectives: To determine if glycolytic reprogramming participates in the pathogenesis of lung fibrosis and assess the therapeutic potential of glycolytic inhibition in treating lung fibrosis. Methods: A cell metabolism assay was performed to determine glycolytic flux and mitochondrial respiration. Lactate levels were measured to assess glycolysis in fibroblasts and lungs. Glycolytic inhibition by genetic and pharmacologic approaches was used to demonstrate the critical role of glycolysis in lung fibrosis. Measurements and Main Results: Augmentation of glycolysis is an early and sustained event during myofibroblast differentiation, which is dependent on the increased expression of critical glycolytic enzymes, in particular, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). Augmented glycolysis contributes to the stabilization of hypoxia-inducible factor 1-α, a master regulator of glycolytic enzymes implicated in organ fibrosis, by increasing cellular levels of tricarboxylic acid cycle intermediate succinate in lung myofibroblasts. Inhibition of glycolysis by the PFKFB3 inhibitor 3PO or genomic disruption of the PFKFB3 gene blunted the differentiation of lung fibroblasts into myofibroblasts, and attenuated profibrotic phenotypes in myofibroblasts isolated from the lungs of patients with idiopathic pulmonary fibrosis. Inhibition of glycolysis by 3PO demonstrates therapeutic benefit in bleomycin-induced and transforming growth factor-β1–induced lung fibrosis in mice. Conclusions: Our data support the novel concept of glycolytic reprogramming in the pathogenesis of lung fibrosis and provide proof-of-concept that targeting this pathway may be efficacious in treating fibrotic disorders, such as idiopathic pulmonary fibrosis. PMID:26284610

  5. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes.

    PubMed

    Kang, Hoin; Park, Jong Im; Roh, Sangho

    2016-01-01

    In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes.

  6. Analysis of nuclear reprogramming in cloned miniature pig embryos by expression of Oct-4 and Oct-4 related genes

    SciTech Connect

    Lee, Eugine; Lee, So Hyun; Kim, Sue

    2006-10-06

    Xenotransplantation is a rapidly expanding field of research and cloned miniature pigs have been considered as a model animal for it. However, the efficiency of somatic cell nuclear transfer (SCNT) is extremely low, with most clones resulting in early lethality and several kinds of aberrant development. A possible explanation for the developmental failure of SCNT embryos is insufficient reprogramming of the somatic cell nucleus by the oocyte. In order to test this, we analyzed the reprogramming capacity of differentiated fibroblast cell nuclei and embryonic germ cell nuclei with Oct-4 and Oct-4 related genes (Ndp5211, Dppa2, Dppa3, and Dppa5), which are important for embryonic development, Hand1 and GATA-4, which are important for placental development, as molecular markers using RT-PCR. The Oct-4 expression level was significantly lower (P < 0.05) in cloned hatched blastocysts derived from fibroblasts and many of fibroblast-derived clones failed to reactivate at least one of the tested genes, while most of the germ cell clones and control embryos correctly expressed these genes. In conclusion, our results suggest that the reprogramming of fibroblast-derived cloned embryos is highly aberrant and this improper reprogramming could be one reason of the early lethality and post-implantation anomalies of somatic cell-derived clones.

  7. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    PubMed Central

    Bermejo-Álvarez, P.; Ramos-Ibeas, P.; Park, K.E.; Powell, A. P.; Vansandt, L.; Derek, Bickhart; Ramirez, M. A.; Gutiérrez-Adán, A.; Telugu, B. P.

    2015-01-01

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus. PMID:26328763

  8. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells.

    PubMed

    Bermejo-Álvarez, P; Ramos-Ibeas, P; Park, K E; Powell, A P; Vansandt, L; Derek, Bickhart; Ramirez, M A; Gutiérrez-Adán, A; Telugu, B P

    2015-09-02

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus.

  9. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.

    PubMed

    Kim, Young Mi; Kang, Yun Gyeong; Park, So Hee; Han, Myung-Kwan; Kim, Jae Ho; Shin, Ji Won; Shin, Jung-Woog

    2017-06-08

    Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.

  10. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells.

    PubMed

    Kinoshita, Taisuke; Nagamatsu, Go; Kosaka, Takeo; Takubo, Keiyo; Hotta, Akitsu; Ellis, James; Suda, Toshio

    2011-04-08

    During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner.

    PubMed

    Wang, Tao; Chen, Keshi; Zeng, Xiaoming; Yang, Jianguo; Wu, Yun; Shi, Xi; Qin, Baoming; Zeng, Lingwen; Esteban, Miguel Angel; Pan, Guangjin; Pei, Duanqing

    2011-12-02

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) resets the epigenome to an embryonic-like state. Vitamin C enhances the reprogramming process, but the underlying mechanisms are unclear. Here we show that the histone demethylases Jhdm1a/1b are key effectors of somatic cell reprogramming downstream of vitamin C. We first observed that vitamin C induces H3K36me2/3 demethylation in mouse embryonic fibroblasts in culture and during reprogramming. We then identified Jhdm1a/1b, two known vitamin-C-dependent H3K36 demethylases, as potent regulators of reprogramming through gain- and loss-of-function approaches. Furthermore, we found that Jhdm1b accelerates cell cycle progression and suppresses cell senescence during reprogramming by repressing the Ink4/Arf locus. Jhdm1b also cooperates with Oct4 to activate the microRNA cluster 302/367, an integral component of the pluripotency machinery. Our results therefore reveal a role for H3K36me2/3 in cell fate determination and establish a link between histone demethylases and vitamin-C-induced reprogramming.

  12. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    SciTech Connect

    Kinoshita, Taisuke; Nagamatsu, Go; Kosaka, Takeo; Takubo, Keiyo; Hotta, Akitsu; Ellis, James; Suda, Toshio

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  13. p73 is required for appropriate BMP-induced mesenchymal-to-epithelial transition during somatic cell reprogramming.

    PubMed

    Martin-Lopez, Marta; Maeso-Alonso, Laura; Fuertes-Alvarez, Sandra; Balboa, Diego; Rodríguez-Cortez, Virginia; Weltner, Jere; Diez-Prieto, Inmaculada; Davis, Andrew; Wu, Yaning; Otonkoski, Timo; Flores, Elsa R; Menéndez, Pablo; Marques, Margarita M; Marin, Maria C

    2017-09-07

    The generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming holds great potential for modeling human diseases. However, the reprogramming process remains very inefficient and a better understanding of its basic biology is required. The mesenchymal-to-epithelial transition (MET) has been recognized as a crucial step for the successful reprogramming of fibroblasts into iPSCs. It has been reported that the p53 tumor suppressor gene acts as a barrier of this process, while its homolog p63 acts as an enabling factor. In this regard, the information concerning the role of the third homolog, p73, during cell reprogramming is limited. Here, we derive total Trp73 knockout mouse embryonic fibroblasts, with or without Trp53, and examine their reprogramming capacity. We show that p73 is required for effective reprogramming by the Yamanaka factors, even in the absence of p53. Lack of p73 affects the early stages of reprogramming, impairing the MET and resulting in altered maturation and stabilization phases. Accordingly, the obtained p73-deficient iPSCs have a defective epithelial phenotype and alterations in the expression of pluripotency markers. We demonstrate that p73 deficiency impairs the MET, at least in part, by hindering BMP pathway activation. We report that p73 is a positive modulator of the BMP circuit, enhancing its activation by DNp73 repression of the Smad6 promoter. Collectively, these findings provide mechanistic insight into the MET process, proposing p73 as an enhancer of MET during cellular reprogramming.

  14. Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Efficient Nuclear Reprogramming.

    PubMed

    Sayed, Nazish; Ospino, Frank; Himmati, Farhan; Lee, Jieun; Chanda, Palas; Mocarski, Edward S; Cooke, John P

    2017-05-01

    We have revealed a critical role for innate immune signaling in nuclear reprogramming to pluripotency, and in the nuclear reprogramming required for somatic cell transdifferentiation. Activation of innate immune signaling causes global changes in the expression and activity of epigenetic modifiers to promote epigenetic plasticity. In our previous articles, we focused on the role of toll-like receptor 3 (TLR3) in this signaling pathway. Here, we define the role of another innate immunity pathway known to participate in response to viral RNA, the retinoic acid-inducible gene 1 receptor (RIG-1)-like receptor (RLR) pathway. This pathway is represented by the sensors of viral RNA, RIG-1, LGP2, and melanoma differentiation-associated protein 5 (MDA5). We first found that TLR3 deficiency only causes a partial inhibition of nuclear reprogramming to pluripotency in mouse tail-tip fibroblasts, which motivated us to determine the contribution of RLR. We found that knockdown of interferon beta promoter stimulator 1, the common adaptor protein for the RLR family, substantially reduced nuclear reprogramming induced by retroviral or by modified messenger RNA expression of Oct 4, Sox2, KLF4, and c-MYC (OSKM). Importantly, a double knockdown of both RLR and TLR3 pathway led to a further decrease in induced pluripotent stem cell (iPSC) colonies suggesting an additive effect of both these pathways on nuclear reprogramming. Furthermore, in murine embryonic fibroblasts expressing a doxycycline (dox)-inducible cassette of the genes encoding OSKM, an RLR agonist increased the yield of iPSCs. Similarly, the RLR agonist enhanced nuclear reprogramming by cell permeant peptides of the Yamanaka factors. Finally, in the dox-inducible system, RLR activation promotes activating histone marks in the promoter region of pluripotency genes. To conclude, innate immune signaling mediated by RLR plays a critical role in nuclear reprogramming. Manipulation of innate immune signaling may facilitate

  15. Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming

    PubMed Central

    Burridge, Paul W.; Keller, Gordon; Gold, Joseph D.; Wu, Joseph C.

    2012-01-01

    SUMMARY Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted method developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs), adult heart-derived cardiac progenitor cells (CPCs), and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSC and reprogrammed fibroblasts, highlighting potential applications and future challenges. PMID:22226352

  16. The cellular memory disc of reprogrammed cells.

    PubMed

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  17. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1

    PubMed Central

    Wang, Wei; Yang, Jian; Liu, Hui; Lu, Dong; Chen, Xiongfeng; Zenonos, Zenon; Campos, Lia S.; Rad, Roland; Guo, Ge; Zhang, Shujun; Bradley, Allan; Liu, Pentao

    2011-01-01

    Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expressing four transcription factors: Oct4, Sox2, Klf4, and c-Myc. Here we report that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming, but inhibiting it using a RAR-α dominant-negative form completely blocked it. Coexpressing Rarg (RAR-γ) and Lrh-1 (liver receptor homologue 1; Nr5a2) with the four factors greatly accelerated reprogramming so that reprogramming of mouse embryonic fibroblast cells to ground-state iPSCs requires only 4 d induction of these six factors. The six-factor combination readily reprogrammed primary human neonatal and adult fibroblast cells to exogenous factor-independent iPSCs, which resembled ground-state mouse ES cells in growth properties, gene expression, and signaling dependency. Our findings demonstrate that signaling through RARs has critical roles in molecular reprogramming and that the synergistic interaction between Rarg and Lrh1 directs reprogramming toward ground-state pluripotency. The human iPSCs described here should facilitate functional analysis of the human genome. PMID:21990348

  18. Reprogramming plant cells for endosymbiosis.

    PubMed

    Oldroyd, Giles E D; Harrison, Maria J; Paszkowski, Uta

    2009-05-08

    The establishment of arbuscular mycorrhizal (AM) symbioses, formed by most flowering plants in association with glomeromycotan fungi, and the root-nodule (RN) symbiosis, formed by legume plants and rhizobial bacteria, requires an ongoing molecular dialogue that underpins the reprogramming of root cells for compatibility. In both endosymbioses, there are distinct phases to the interaction, including a presymbiotic anticipation phase and, subsequently, an intraradical accommodation of the microsymbiont. Maintenance of the endosymbiosis then depends on reciprocal nutrient exchange with the microsymbiont-obtaining plant photosynthates in exchange for mineral nutrients: enhanced phosphate and nitrogen uptake from AM fungi and fixed nitrogen from rhizobia. Despite the taxonomically distinct groups of symbionts, commonalities are observed in the signaling components and the modulation of host cell responses in both AM and RN symbioses, reflecting common mechanisms for plant cell reprogramming during endosymbiosis.

  19. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency

    PubMed Central

    Hansson, Jenny; Rafiee, Mahmoud Reza; Reiland, Sonja; Polo, Jose M.; Gehring, Julian; Okawa, Satoshi; Huber, Wolfgang; Hochedlinger, Konrad; Krijgsveld, Jeroen

    2015-01-01

    Summary Generation of induced pluripotent stem cells (iPSCs) is a process whose mechanistic underpinnings are only beginning to emerge. Here, we applied in-depth quantitative proteomics to monitor proteome changes during the course of reprogramming of fibroblasts to iPSCs. We uncover a 2-step resetting of the proteome during the first and last three days of reprogramming, with multiple functionally related proteins changing in expression in a highly coordinated fashion. This comprised several biological processes with a previously unknown role in reprogramming, including changes in the stoichiometry of electron transport-chain complexes, repressed vesicle-mediated transport during the intermediate stage and an EMT-like process in the late phase. In addition, we demonstrate that the nucleoporin Nup210 is essential for reprogramming by permitting rapid cellular proliferation and subsequent progression through MET. Along with the identification of proteins expressed in a stage-specific manner, this study provides a rich resource towards an enhanced mechanistic understanding of cellular reprogramming. PMID:23260666

  20. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    PubMed Central

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-01

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs. PMID:28117672

  1. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming.

    PubMed

    Aksoy, Irene; Jauch, Ralf; Eras, Volker; Chng, Wen-Bin Alfred; Chen, Jiaxuan; Divakar, Ushashree; Ng, Calista Keow Leng; Kolatkar, Prasanna R; Stanton, Lawrence W

    2013-12-01

    The unique ability of Sox2 to cooperate with Oct4 at selective binding sites in the genome is critical for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). We have recently demonstrated that Sox17 can be converted into a reprogramming factor by alteration of a single amino acid (Sox17EK) within its DNA binding HMG domain. Here we expanded this study by introducing analogous mutations to 10 other Sox proteins and interrogated the role of N-and C-termini on the reprogramming efficiency. We found that point-mutated Sox7 and Sox17 can convert human and mouse fibroblasts into iPSCs, but Sox4, Sox5, Sox6, Sox8, Sox9, Sox11, Sox12, Sox13, and Sox18 cannot. Next we studied regions outside the HMG domain and found that the C-terminal transactivation domain of Sox17 and Sox7 enhances the potency of Sox2 in iPSC assays and confers weak reprogramming potential to the otherwise inactive Sox4EK and Sox18EK proteins. These results suggest that the glutamate (E) to lysine (K) mutation in the HMG domain is necessary but insufficient to swap the function of Sox factors. Moreover, the HMG domain alone fused to the VP16 transactivation domain is able to induce reprogramming, albeit at low efficiency. By molecular dissection of the C-terminus of Sox17, we found that the β-catenin interaction region contributes to the enhanced reprogramming efficiency of Sox17EK. To mechanistically understand the enhanced reprogramming potential of Sox17EK, we analyzed ChIP-sequencing and expression data and identified a subset of candidate genes specifically regulated by Sox17EK and not by Sox2. © AlphaMed Press.

  2. Cellular reprogramming in skin cancer.

    PubMed

    Song, Ihn Young; Balmain, Allan

    2015-06-01

    Early primitive stem cells have long been viewed as the cancer cells of origin (tumor initiating target cells) due to their intrinsic features of self-renewal and longevity. However, emerging evidence suggests a surprising capacity for normal committed cells to function as reserve stem cells upon reprogramming as a consequence of tissue damage resulting in inflammation and wound healing. This results in an alternative concept positing that tumors may originate from differentiated cells that can re-acquire stem cell properties due to genetic or epigenetic reprogramming. It is likely that both models are correct, and that a continuum of potential cells of origin exists, ranging from early primitive stem cells to committed progenitor or even terminally differentiated cells. A combination of the nature of the target cell and the specific types of gene mutations introduced determine tumor cell lineage, as well as potential for malignant conversion. Evidence from mouse skin models of carcinogenesis suggests that initiated cells at different stages within a stem cell hierarchy have varying degrees of requirement for reprogramming (e.g. inflammation stimuli), depending on their degree of differentiation. This article will present evidence in favor of these concepts that has been developed from studies of several mouse models of skin carcinogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

    PubMed Central

    Hermann, Andreas; Kim, Jeong Beom; Srimasorn, Sumitra; Zaehres, Holm; Reinhardt, Peter; Schöler, Hans R.; Storch, Alexander

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies. PMID:26977154

  4. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells

    PubMed Central

    Grabundzija, Ivana; Wang, Jichang; Sebe, Attila; Erdei, Zsuzsanna; Kajdi, Robert; Devaraj, Anantharam; Steinemann, Doris; Szuhai, Károly; Stein, Ulrike; Cantz, Tobias; Schambach, Axel; Baum, Christopher; Izsvák, Zsuzsanna; Sarkadi, Balázs; Ivics, Zoltán

    2013-01-01

    The discovery of direct cell reprogramming and induced pluripotent stem (iPS) cell technology opened up new avenues for the application of non-viral, transposon-based gene delivery systems. The Sleeping Beauty (SB) transposon is highly advanced for versatile genetic manipulations in mammalian cells. We established iPS cell reprogramming of mouse embryonic fibroblasts and human foreskin fibroblasts by transposition of OSKM (Oct4, Sox2, Klf4 and c-Myc) and OSKML (OSKM + Lin28) expression cassettes mobilized by the SB100X hyperactive transposase. The efficiency of iPS cell derivation with SB transposon system was in the range of that obtained with retroviral vectors. Co-expression of the miRNA302/367 cluster together with OSKM significantly improved reprogramming efficiency and accelerated the temporal kinetics of reprogramming. The iPS cells displayed a stable karyotype, and hallmarks of pluripotency including expression of stem cell markers and the ability to differentiate into embryoid bodies in vitro. We demonstrate Cre recombinase-mediated exchange allowing simultaneous removal of the reprogramming cassette and targeted knock-in of an expression cassette of interest into the transposon-tagged locus in mouse iPS cells. This strategy would allow correction of a genetic defect by site-specific insertion of a therapeutic gene construct into ‘safe harbor’ sites in the genomes of autologous, patient-derived iPS cells. PMID:23275558

  5. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells.

    PubMed

    Grabundzija, Ivana; Wang, Jichang; Sebe, Attila; Erdei, Zsuzsanna; Kajdi, Robert; Devaraj, Anantharam; Steinemann, Doris; Szuhai, Károly; Stein, Ulrike; Cantz, Tobias; Schambach, Axel; Baum, Christopher; Izsvák, Zsuzsanna; Sarkadi, Balázs; Ivics, Zoltán

    2013-02-01

    The discovery of direct cell reprogramming and induced pluripotent stem (iPS) cell technology opened up new avenues for the application of non-viral, transposon-based gene delivery systems. The Sleeping Beauty (SB) transposon is highly advanced for versatile genetic manipulations in mammalian cells. We established iPS cell reprogramming of mouse embryonic fibroblasts and human foreskin fibroblasts by transposition of OSKM (Oct4, Sox2, Klf4 and c-Myc) and OSKML (OSKM + Lin28) expression cassettes mobilized by the SB100X hyperactive transposase. The efficiency of iPS cell derivation with SB transposon system was in the range of that obtained with retroviral vectors. Co-expression of the miRNA302/367 cluster together with OSKM significantly improved reprogramming efficiency and accelerated the temporal kinetics of reprogramming. The iPS cells displayed a stable karyotype, and hallmarks of pluripotency including expression of stem cell markers and the ability to differentiate into embryoid bodies in vitro. We demonstrate Cre recombinase-mediated exchange allowing simultaneous removal of the reprogramming cassette and targeted knock-in of an expression cassette of interest into the transposon-tagged locus in mouse iPS cells. This strategy would allow correction of a genetic defect by site-specific insertion of a therapeutic gene construct into 'safe harbor' sites in the genomes of autologous, patient-derived iPS cells.

  6. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  7. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  8. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses.

    PubMed

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  9. Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells.

    PubMed

    Tsai, Su-Yi; Clavel, Carlos; Kim, Soo; Ang, Yen-Sin; Grisanti, Laura; Lee, Dung-Fang; Kelley, Kevin; Rendl, Michael

    2010-02-01

    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells by only four transcription factors (Oct4, Sox2, Klf4, and c-Myc) has great potential for tissue-specific regenerative therapies, eliminating the ethical issues surrounding the use of embryonic stem cells and the rejection problems of using non-autologous cells. The reprogramming efficiency generally is very low, however, and the problems surrounding the introduction of viral genetic material are only partially investigated. Recent efforts to reduce the number of virally expressed transcription factors succeeded at reprogramming neural stem cells into iPS cells by overexpressing Oct4 alone. However, the relative inaccessibility and difficulty of obtaining neural cells in humans remains to be resolved. Here we report that dermal papilla (DP) cells, which are specialized skin fibroblasts thought to instruct hair follicle stem cells, endogenously express high levels of Sox2 and c-Myc, and that these cells can be reprogrammed into iPS cells with only Oct4 and Klf4. Moreover, we show that DP cells are reprogrammed more efficiently than skin and embryonic fibroblasts. iPS cells derived from DP cells expressed pluripotency genes and differentiated into cells from all germ layers in vitro and widely contributed to chimeric mice in vivo, including the germline. Our work establishes DP cells as an easily accessible source to generate iPS cells with efficiency and with less genetic material. This opens up the possibility of streamlined generation of skin-derived, patient-specific pluripotent stem cells and of ultimately replacing the remaining two factors with small molecules for safe generation of transplantable cells.

  10. Marine Corps Budgetary Reprogramming Effectiveness

    DTIC Science & Technology

    2015-03-01

    authority to reprogram funds due to war losses however the request was denied. 2 The next example began in August of 2005 when a category five...at two points, August to September and March to May. For prior approval (PA), seasonal attributes were found primarily in the months of March to May...back to this program. Procurement: ~Iarine Cornss 07/09 -421~900 Budget Activi~ 2: Weanons and Comt >at Vehicles AAY7A I PIP 51,929 55,885 -12,100

  11. Reprogramming cancer cells: overview & current progress.

    PubMed

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  12. Five classic articles in somatic cell reprogramming.

    PubMed

    Park, In-Hyun

    2010-09-01

    Research on somatic cell reprogramming has progressed significantly over the past few decades, from nuclear transfer into frogs' eggs in 1952 to the derivation of human-induced pluripotent stem (iPS) cells in the present day. In this article, I review five landmark papers that have laid the foundation for current efforts to apply somatic cell reprogramming in the clinic.

  13. Towards understanding transcriptional networks in cellular reprogramming.

    PubMed

    Firas, Jaber; Polo, Jose M

    2017-10-01

    Most of the knowledge we have on the molecular mechanisms of transcription factor mediated reprogramming comes from studies conducted in induced pluripotency. Recently however, a few studies investigated the mechanisms of cellular reprogramming in direct and indirect transdifferentiation, which allows us to explore whether shared parallel mechanisms can be drawn. Moreover, there are currently several computational tools that have been developed to predict and enhance the reprogramming process by reconstructing the transcriptional networks of reprogramming cells. These new tools have the potential to greatly benefit the field of reprogramming, providing us with new approaches that can transform our understanding of the initiation, progression and successful completion of cellular fate transition. Copyright © 2017. Published by Elsevier Ltd.

  14. Chinese Herbs Interfering with Cancer Reprogramming Metabolism

    PubMed Central

    Zhong, Zhangfeng; Qiang, William W.; Tan, Wen; Zhang, Haotian; Wang, Shengpeng; Wang, Chunming; Qiang, Wenan; Wang, Yitao

    2016-01-01

    Emerging evidence promotes a reassessment of metabolic reprogramming regulation in cancer research. Although there exists a long history of Chinese herbs applied in cancer treatment, few reports have addressed the effects of Chinese herbal components on metabolic reprogramming, which is a central cancer hallmark involved in the slowing or prevention of chemoresistance in cancer cells. In this review, we have focused on four core elements altered by metabolic reprogramming in cancer cells. These include glucose transport, glycolysis, mitochondrial oxidative phosphorylation, and fatty acid synthesis. With this focus, we have summarized recent advances in metabolic reprogramming of cancer cells in response to specific Chinese herbal components. We propose that exploring Chinese herbal interference in cancer metabolic reprogramming might identify new therapeutic targets for cancer and more ways in which to approach metabolism-related diseases. PMID:27242914

  15. Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation.

    PubMed

    Masip, Manuel; Veiga, Anna; Izpisúa Belmonte, Juan Carlos; Simón, Carlos

    2010-11-01

    Ever since work on pluripotency induction was originally published, reporting the reprogramming of somatic cells to induced pluripotent stem cells (iPS cells) by the ectopic expression of the four transcription factors Oct4, Sox2, Klf4 and c-Myc, high expectations regarding their potential use for regenerative medicine have emerged. Very recently, the direct conversion of fibroblasts into functional neurons with no prior pluripotent stage has been described. Interconversion between adult cells from ontogenically different lineages by an induced transdifferentiation process based on the overexpression of a cocktail of transcription factors, while avoiding transition through an embryonic stem cell-like state, provides a new impetus in the field of regenerative medicine. Here, we review the induced reprogramming of somatic cells with defined factors and analyze their potential clinical use. Beginning with induced pluripotency, we summarize the initial objections including their extremely low efficiency and the risk of tumor generation. We also review recent reports describing iPS cells' capacity to generate viable offspring through tetraploid complementation, the most restrictive pluripotency criterion. Finally, we explore the available evidence for 'induced transdifferentiated cells' as a novel tool for adult cell fate modification.

  16. Cellular reprogramming: recent advances in modeling neurological diseases.

    PubMed

    Ming, Guo-Li; Brüstle, Oliver; Muotri, Alysson; Studer, Lorenz; Wernig, Marius; Christian, Kimberly M

    2011-11-09

    The remarkable advances in cellular reprogramming have made it possible to generate a renewable source of human neurons from fibroblasts obtained from skin samples of neonates and adults. As a result, we can now investigate the etiology of neurological diseases at the cellular level using neuronal populations derived from patients, which harbor the same genetic mutations thought to be relevant to the risk for pathology. Therapeutic implications include the ability to establish new humanized disease models for understanding mechanisms, conduct high-throughput screening for novel biogenic compounds to reverse or prevent the disease phenotype, identify and engineer genetic rescue of causal mutations, and develop patient-specific cellular replacement strategies. Although this field offers enormous potential for understanding and treating neurological disease, there are still many issues that must be addressed before we can fully exploit this technology. Here we summarize several recent studies presented at a symposium at the 2011 annual meeting of the Society for Neuroscience, which highlight innovative approaches to cellular reprogramming and how this revolutionary technique is being refined to model neurodevelopmental and neurodegenerative diseases, such as autism spectrum disorders, schizophrenia, familial dysautonomia, and Alzheimer's disease.

  17. [Ethical reflections on cell reprogramming].

    PubMed

    Aznar Lucea, Justo; Martínez, Miriam

    2012-01-01

    New advances in cell reprogramming, and particularly in obtaining iPS cells, have represented a promising possibility for avoiding the use of human embryonic cells in experimental research and clinical medicine, use which is ethically unacceptable, as obtaining these cells requires the destruction of human embryos. The road travelled to arrive at the discovery of iPS cells, and especially the ethical assessment of each of the steps taken to that end, are evaluated in this paper. The ethical judgement merited by the various uses that can be made of iPS cells is also examined, because just when it seemed that iPS cells could resolve the ethical problems inherent to the use of embryonic stem cells, new possibilities for using iPS cells, especially related with human reproduction, have opened up expectations for using these cells that are far removed from the most fundamental ethical standards. We conclude that the ethical debate on cell reprogramming and particularly on the experimental and clinical use of iPS cells remains open.

  18. Telomerase Reverse Transcriptase Has an Extratelomeric Function in Somatic Cell Reprogramming*

    PubMed Central

    Kinoshita, Taisuke; Nagamatsu, Go; Saito, Shigeru; Takubo, Keiyo; Horimoto, Katsuhisa; Suda, Toshio

    2014-01-01

    Reactivation of the endogenous telomerase reverse transcriptase (TERT) catalytic subunit and telomere elongation occur during the reprogramming of somatic cells to induced pluripotent stem (iPS) cells. However, the role of TERT in the reprogramming process is unclear. To clarify its function, the reprogramming process was examined in TERT-KO somatic cells. To exclude the effect of telomere elongation, tail-tip fibroblasts (TTFs) from first generation TERT-KO mice were used. Although iPS cells were successfully generated from TERT-KO TTFs, the efficiency of reprogramming these cells was markedly lower than that of WT TTFs. The gene expression profiles of iPS cells induced from TERT-KO TTFs were similar to those of WT iPS cells and ES cells, and TERT-KO iPS cells formed teratomas that differentiated into all three germ layers. These data indicate that TERT plays an extratelomeric role in the reprogramming process, but its function is dispensable. However, TERT-KO iPS cells showed transient defects in growth and teratoma formation during continuous growth. In addition, TERT-KO iPS cells developed chromosome fusions that accumulated with increasing passage numbers, consistent with the fact that TERT is essential for the maintenance of genome structure and stability in iPS cells. In a rescue experiment, an enzymatically inactive mutant of TERT (D702A) had a positive effect on somatic cell reprogramming of TERT-KO TTFs, which confirmed the extratelomeric role of TERT in this process. PMID:24733392

  19. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    PubMed

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies.

  20. Global transcriptomic analysis of induced cardiomyocytes predicts novel regulators for direct cardiac reprogramming.

    PubMed

    Talkhabi, Mahmood; Razavi, Seyed Morteza; Salari, Ali

    2017-04-04

    Heart diseases are the most significant cause of morbidity and mortality in the world. De novo generated cardiomyocytes (CMs) are a great cellular source for cell-based therapy and other potential applications. Direct cardiac reprogramming is the newest method to produce CMs, known as induced cardiomyocytes (iCMs). During a direct cardiac reprogramming, also known as transdifferentiation, non-cardiac differentiated adult cells are reprogrammed to cardiac identity by forced expression of cardiac-specific transcription factors (TFs) or microRNAs. To this end, many different combinations of TFs (±microRNAs) have been reported for direct reprogramming of mouse or human fibroblasts to iCMs, although their efficiencies remain very low. It seems that the investigated TFs and microRNAs are not sufficient for efficient direct cardiac reprogramming and other cardiac specific factors may be required for increasing iCM production efficiency, as well as the quality of iCMs. Here, we analyzed gene expression data of cardiac fibroblast (CFs), iCMs and adult cardiomyocytes (aCMs). The up-regulated and down-regulated genes in CMs (aCMs and iCMs) were determined as CM and CF specific genes, respectively. Among CM specific genes, we found 153 transcriptional activators including some cardiac and non-cardiac TFs that potentially activate the expression of CM specific genes. We also identified that 85 protein kinases such as protein kinase D1 (PKD1), protein kinase A (PRKA), calcium/calmodulin-dependent protein kinase (CAMK), protein kinase C (PRKC), and insulin like growth factor 1 receptor (IGF1R) that are strongly involved in establishing CM identity. CM gene regulatory network constructed using protein kinases, transcriptional activators and intermediate proteins predicted some new transcriptional activators such as myocyte enhancer factor 2A (MEF2A) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A), which may be required for qualitatively and

  1. Understanding the molecular mechanisms of reprogramming

    SciTech Connect

    Krause, Marie N.; Sancho-Martinez, Ignacio; Izpisua Belmonte, Juan Carlos

    2016-05-06

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called “Pioneer TFs”, play an important role during the stochastic phase of iPSC reprogramming [2–6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. - Highlights: • Pioneer transcription factor activity underlies the initial steps of iPSC generation. • Reprogramming can occur by cis- and/or trans- reprogramming events. • Cis-reprogramming implies remodeling of the chromatin for enabling TF accessibility. • Trans-reprogramming encompasses direct binding of Tfs to their target gene promoters.

  2. Reprogramming cell fate: a changing story.

    PubMed

    Chin, Michael T

    2014-01-01

    Direct reprogramming of adult, lineage-determined cells from one cell fate to another has long been an elusive goal in developmental biology. Recent studies have demonstrated that forced expression of lineage-specific transcription factors in various differentiated cell types can promote the adoption of different lineages. These seminal findings have the potential to revolutionize the field of regenerative medicine by providing replacement cells for various degenerative disorders. Current reprogramming protocols, however, are inefficient in that relatively few cells in a given population can be made to undergo reprogramming and the completeness and extent of reprogramming that occurs has been questioned. At present, the fundamental molecular mechanisms involved are still being elucidated. Although the potential clinical applications are extensive, these issues will need to be addressed before direct reprogramming may be used clinically. This review will give an overview of pioneering studies in the field, will describe what is known about direct reprogramming to specific lineage types, will summarize what is known about the molecular mechanisms involved in reprogramming and will discuss challenges for the future.

  3. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    PubMed Central

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H.

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods. PMID:26098448

  4. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes.

    PubMed

    Bui, Hong-Thuy; Kwon, Deug-Nam; Kang, Min-Hui; Oh, Mi-Hye; Park, Mi-Ryung; Park, Woo-Jin; Paik, Seung-Sam; Van Thuan, Nguyen; Kim, Jin-Hoi

    2012-12-01

    Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.

  5. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency.

    PubMed

    Hansson, Jenny; Rafiee, Mahmoud Reza; Reiland, Sonja; Polo, Jose M; Gehring, Julian; Okawa, Satoshi; Huber, Wolfgang; Hochedlinger, Konrad; Krijgsveld, Jeroen

    2012-12-27

    Generation of induced pluripotent stem cells (iPSCs) is a process whose mechanistic underpinnings are only beginning to emerge. Here, we applied in-depth quantitative proteomics to monitor proteome changes during the course of reprogramming of fibroblasts to iPSCs. We uncover a two-step resetting of the proteome during the first and last 3 days of reprogramming, with multiple functionally related proteins changing in expression in a highly coordinated fashion. This comprised several biological processes, including changes in the stoichiometry of electron transport-chain complexes, repressed vesicle-mediated transport during the intermediate stage, and an EMT-like process in the late phase. In addition, we demonstrate that the nucleoporin Nup210 is essential for reprogramming by its permitting of rapid cellular proliferation and subsequent progression through MET. Along with the identification of proteins expressed in a stage-specific manner, this study provides a rich resource toward an enhanced mechanistic understanding of cellular reprogramming. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming

    PubMed Central

    Cantone, Irene; Bagci, Hakan; Dormann, Dirk; Dharmalingam, Gopuraja; Nesterova, Tatyana; Brockdorff, Neil; Rougeulle, Claire; Vallot, Celine; Heard, Edith; Chaligne, Ronan; Merkenschlager, Matthias; Fisher, Amanda G.

    2016-01-01

    Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30–50%). After cell division, RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome. PMID:27507283

  7. Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming.

    PubMed

    Warlich, Eva; Kuehle, Johannes; Cantz, Tobias; Brugman, Martijn H; Maetzig, Tobias; Galla, Melanie; Filipczyk, Adam A; Halle, Stephan; Klump, Hannes; Schöler, Hans R; Baum, Christopher; Schroeder, Timm; Schambach, Axel

    2011-04-01

    Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iPSC, and imaged the conversion of fibroblasts to iPSC. We combined fluorescence microscopy with long-term single cell tracking, and used live-cell imaging to analyze the emergence and composition of early iPSC clusters. Applying our engineered lentiviral vectors, we demonstrate that vector silencing typically occurs prior to or simultaneously with the induction of an Oct4-EGFP pluripotency marker. Around 7 days post-transduction (pt), a subfraction of cells in clonal colonies expressed Oct4-EGFP and rapidly expanded. Cell tracking of single cell-derived iPSC colonies supported the concept that stochastic epigenetic changes are necessary for reprogramming. We also found that iPSC colonies may emerge as a genetic mosaic originating from different clusters. Improved vector design with continuous cell tracking thus creates a powerful system to explore the subtle dynamics of biological processes such as early reprogramming events.

  8. Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming

    PubMed Central

    Warlich, Eva; Kuehle, Johannes; Cantz, Tobias; Brugman, Martijn H; Maetzig, Tobias; Galla, Melanie; Filipczyk, Adam A; Halle, Stephan; Klump, Hannes; Schöler, Hans R; Baum, Christopher; Schroeder, Timm; Schambach, Axel

    2011-01-01

    Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iPSC, and imaged the conversion of fibroblasts to iPSC. We combined fluorescence microscopy with long-term single cell tracking, and used live-cell imaging to analyze the emergence and composition of early iPSC clusters. Applying our engineered lentiviral vectors, we demonstrate that vector silencing typically occurs prior to or simultaneously with the induction of an Oct4-EGFP pluripotency marker. Around 7 days post-transduction (pt), a subfraction of cells in clonal colonies expressed Oct4-EGFP and rapidly expanded. Cell tracking of single cell–derived iPSC colonies supported the concept that stochastic epigenetic changes are necessary for reprogramming. We also found that iPSC colonies may emerge as a genetic mosaic originating from different clusters. Improved vector design with continuous cell tracking thus creates a powerful system to explore the subtle dynamics of biological processes such as early reprogramming events. PMID:21285961

  9. NF-κB activation impairs somatic cell reprogramming in ageing.

    PubMed

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  10. Transcriptional Control of Somatic Cell Reprogramming.

    PubMed

    Xu, Yan; Zhang, Meng; Li, Wenjuan; Zhu, Xihua; Bao, Xichen; Qin, Baoming; Hutchins, Andrew P; Esteban, Miguel A

    2016-04-01

    Somatic cells and pluripotent cells display remarkable differences in most aspects of cell function. Accordingly, somatic cell reprogramming by exogenous factors requires comprehensive changes in gene transcription to induce a forced pluripotent state, which is encompassed by a simultaneous transformation of the epigenome. Nevertheless, how the reprogramming factors and other endogenous regulators coordinate to suppress the somatic cell gene program and activate the pluripotency gene network, and why the conversion is multi-phased and lengthy, remain enigmatic. We summarize the current knowledge of transcriptional regulation in somatic cell reprogramming, and highlight new perspectives that may help to reshape existing paradigms.

  11. Restoring totipotency through epigenetic reprogramming

    PubMed Central

    Wasson, Jadiel A.; Ruppersburg, Chelsey C.

    2013-01-01

    Epigenetic modifications are implicated in the maintenance and regulation of transcriptional memory by marking genes that were previously transcribed to facilitate transmission of these expression patterns through cell division. During germline specification and maintenance, extensive epigenetic modifications are acquired. Yet somehow at fertilization, the fusion of the highly differentiated sperm and egg results in formation of the totipotent zygote. This massive change in cell fate implies that the selective erasure and maintenance of epigenetic modifications at fertilization may be critical for the re-establishment of totipotency. In this review, we discuss recent studies that provide insight into the extensive epigenetic reprogramming that occurs around fertilization and the mechanisms that may be involved in the re-establishment of totipotency in the embryo. PMID:23117862

  12. Metabolic remodeling of the tumor microenvironment: migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth.

    PubMed

    Carito, Valentina; Bonuccelli, Gloria; Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Caroleo, Maria Cristina; Cione, Erika; Howell, Anthony; Pestell, Richard G; Lisanti, Michael P; Sotgia, Federica

    2012-09-15

    Migration stimulating factor (MSF) is a genetically truncated N-terminal isoform of fibronectin that is highly expressed during mammalian development in fetal fibroblasts, and during tumor formation in human cancer-associated myofibroblasts. However, its potential functional role in regulating tumor metabolism remains unexplored. Here, we generated an immortalized fibroblast cell line that recombinantly overexpresses MSF and studied their properties relative to vector-alone control fibroblasts. Our results indicate that overexpression of MSF is sufficient to confer myofibroblastic differentiation, likely via increased TGF-b signaling. In addition, MSF activates the inflammation-associated transcription factor NFκB, resulting in the onset of autophagy/mitophagy, thereby driving glycolytic metabolism (L-lactate production) in the tumor microenvironment. Consistent with the idea that glycolytic fibroblasts fuel tumor growth (via L-lactate, a high-energy mitochondrial fuel), MSF fibroblasts significantly increased tumor growth, by up to 4-fold. Mechanistic dissection of the MSF signaling pathway indicated that Cdc42 lies downstream of MSF and fibroblast activation. In accordance with this notion, Cdc42 overexpression in immortalized fibroblasts was sufficient to drive myofibroblast differentiation, to provoke a shift towards glycolytic metabolism and to promote tumor growth by up to 2-fold. In conclusion, the MSF/Cdc42/NFκB signaling cascade may be a critical druggable target in preventing "Warburg-like" cancer metabolism in tumor-associated fibroblasts. Thus, MSF functions in the metabolic remodeling of the tumor microenvironment by metabolically reprogramming cancer-associated fibroblasts toward glycolytic metabolism.

  13. Generation of iPSC line MU011.A-hiPS from homozygous α-thalassemia fetal skin fibroblasts.

    PubMed

    Tangprasittipap, Amornrat; Satirapod, Chonthicha; Jittorntrum, Bunyada; Lertritanan, Sassawat; Anurathaphan, Usanarat; Phanthong, Phetcharat; Borwornpinyo, Suparerk; Kitiyanant, Narisorn; Hongeng, Suradej

    2015-11-01

    Human iPSC line MU011.A-hiPS was generated from homozygous α-thalassemia (-(SEA)/-(SEA)) fetal skin fibroblasts using a non-integrative reprogramming method. Reprogramming factors OCT3/4, SOX2, KLF4, L-MYC, LIN28, and shRNA of TP53 contained in three episomal vectors were delivered using electroporation. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The Ink4/Arf locus is a barrier for iPS reprogramming

    PubMed Central

    Li, Han; Collado, Manuel; Villasante, Aranzazu; Strati, Katerina; Ortega, Sagrario; Cañamero, Marta; Blasco, Maria A.; Serrano, Manuel

    2013-01-01

    The mechanisms involved in the reprogramming of differentiated cells into induced Pluripotent Stem (iPS) cells by Oct4, Klf4 and Sox2 (3F) remain poorly understood 1. The Ink4/Arf tumour suppressor locus encodes three potent inhibitors of proliferation, namely p16Ink4a, p15Ink4b and Arf, which are basally expressed in differentiated cells and upregulated by aberrant mitogenic signals 2-4. We show here that the locus is completely silenced in iPS cells, as well as in embryonic stem (ES) cells, acquiring the epigenetic marks of a bivalent chromatin domain, and retaining the ability to be reactivated upon differentiation. Cell culture conditions during reprogramming enhance the expression of the Ink4/Arf locus, further highlighting the importance of silencing the locus to allow proliferation and reprogramming. Indeed, the 3F together repress the Ink4/Arf locus soon after their expression and concomitant with the appearance of the first molecular markers of stemness. This downregulation also occurs in cells carrying the oncoprotein large-T, which functionally inactivates the pathways regulated by the Ink4/Arf locus, thus implying that the silencing of the locus is intrinsic to reprogramming and not the result of a selective process. Genetic inhibition of the Ink4/Arf locus has a profound positive impact on the efficiency of iPS generation, increasing both the kinetics of reprogramming and the number of emerging iPS colonies. In murine cells, Arf, rather than Ink4a, is the main barrier to reprogramming through activation of p53 and p21; whereas, in human fibroblasts, INK4a is more important than ARF. Finally, organismal aging upregulates the Ink4/Arf locus 2,5 and, accordingly, reprogramming is less efficient in cells from old organisms, but this defect can be rescued by inhibiting the locus with an shRNA. All together, we conclude that the silencing of Ink4/Arf locus is rate limiting for reprogramming, and its transient inhibition may significantly improve the

  15. The Ink4/Arf locus is a barrier for iPS cell reprogramming.

    PubMed

    Li, Han; Collado, Manuel; Villasante, Aranzazu; Strati, Katerina; Ortega, Sagrario; Cañamero, Marta; Blasco, Maria A; Serrano, Manuel

    2009-08-27

    The mechanisms involved in the reprogramming of differentiated cells into induced pluripotent stem (iPS) cells by the three transcription factors Oct4 (also known as Pou5f1), Klf4 and Sox2 remain poorly understood. The Ink4/Arf locus comprises the Cdkn2a-Cdkn2b genes encoding three potent tumour suppressors, namely p16(Ink4a), p19(Arf) and p15(Ink4b), which are basally expressed in differentiated cells and upregulated by aberrant mitogenic signals. Here we show that the locus is completely silenced in iPS cells, as well as in embryonic stem (ES) cells, acquiring the epigenetic marks of a bivalent chromatin domain, and retaining the ability to be reactivated after differentiation. Cell culture conditions during reprogramming enhance the expression of the Ink4/Arf locus, further highlighting the importance of silencing the locus to allow proliferation and reprogramming. Indeed, the three factors together repress the Ink4/Arf locus soon after their expression and concomitant with the appearance of the first molecular markers of 'stemness'. This downregulation also occurs in cells carrying the oncoprotein large-T, which functionally inactivates the pathways regulated by the Ink4/Arf locus, thus indicating that the silencing of the locus is intrinsic to reprogramming and not the result of a selective process. Genetic inhibition of the Ink4/Arf locus has a profound positive effect on the efficiency of iPS cell generation, increasing both the kinetics of reprogramming and the number of emerging iPS cell colonies. In murine cells, Arf, rather than Ink4a, is the main barrier to reprogramming by activation of p53 (encoded by Trp53) and p21 (encoded by Cdkn1a); whereas, in human fibroblasts, INK4a is more important than ARF. Furthermore, organismal ageing upregulates the Ink4/Arf locus and, accordingly, reprogramming is less efficient in cells from old organisms, but this defect can be rescued by inhibiting the locus with a short hairpin RNA. All together, we conclude that

  16. Stem cell reprogramming: A 3D boost

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2016-03-01

    Biophysical factors in an optimized three-dimensional microenvironment enhance the reprogramming efficiency of human somatic cells into pluripotent stem cells when compared to traditional cell-culture substrates.

  17. Epigenetic reprogramming in plant and animal development.

    PubMed

    Feng, Suhua; Jacobsen, Steven E; Reik, Wolf

    2010-10-29

    Epigenetic modifications of the genome are generally stable in somatic cells of multicellular organisms. In germ cells and early embryos, however, epigenetic reprogramming occurs on a genome-wide scale, which includes demethylation of DNA and remodeling of histones and their modifications. The mechanisms of genome-wide erasure of DNA methylation, which involve modifications to 5-methylcytosine and DNA repair, are being unraveled. Epigenetic reprogramming has important roles in imprinting, the natural as well as experimental acquisition of totipotency and pluripotency, control of transposons, and epigenetic inheritance across generations. Small RNAs and the inheritance of histone marks may also contribute to epigenetic inheritance and reprogramming. Reprogramming occurs in flowering plants and in mammals, and the similarities and differences illuminate developmental and reproductive strategies.

  18. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.

    PubMed

    Folmes, Clifford D L; Nelson, Timothy J; Martinez-Fernandez, Almudena; Arrell, D Kent; Lindor, Jelena Zlatkovic; Dzeja, Petras P; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre

    2011-08-03

    The bioenergetics of somatic dedifferentiation into induced pluripotent stem cells remains largely unknown. Here, stemness factor-mediated nuclear reprogramming reverted mitochondrial networks into cristae-poor structures. Metabolomic footprinting and fingerprinting distinguished derived pluripotent progeny from parental fibroblasts according to elevated glucose utilization and production of glycolytic end products. Temporal sampling demonstrated glycolytic gene potentiation prior to induction of pluripotent markers. Functional metamorphosis of somatic oxidative phosphorylation into acquired pluripotent glycolytic metabolism conformed to an embryonic-like archetype. Stimulation of glycolysis promoted, while blockade of glycolytic enzyme activity blunted, reprogramming efficiency. Metaboproteomics resolved upregulated glycolytic enzymes and downregulated electron transport chain complex I subunits underlying cell fate determination. Thus, the energetic infrastructure of somatic cells transitions into a required glycolytic metabotype to fuel induction of pluripotency.

  19. Transcription factors that control inner ear development and their potential for transdifferentiation and reprogramming.

    PubMed

    Schimmang, Thomas

    2013-03-01

    Transcription factors (TFs) participate during various processes throughout inner ear development such as induction, morphogenesis and determination of cell fate and differentiation. The analysis of mouse mutants has been essential to define the requirement of different members of TF families during these processes. Next to their roles during normal development TFs have also been tested for their capacity to induce differentiation or reprogram cells upon misexpression. Recently the capacity of TFs to transdifferentiate easily accessible cells such as fibroblasts to highly specialized cell types has opened a new pathway for regenerative therapies. In this review the influence of TFs acting during different phases and processes of inner ear development will be summarized. A special focus will be given to TFs with a potential to reprogram or transdifferentiate cells to sensory cell types of the inner ear such as hair cells or neurons and thus may form part of future protocols directed to generate replacement cells in a clinical context.

  20. Historical origins of transdifferentiation and reprogramming.

    PubMed

    Graf, Thomas

    2011-12-02

    Transcription factor-induced reprogramming of specialized cells into other cell types and to pluripotency has revolutionized our thinking about cell plasticity, differentiation, and stem cells. The recent advances in this area were enabled by the confluence of a number of experimental breakthroughs that took place over the past 60 years. In this article, I give a historical and personal perspective of the events that set the stage for our current understanding of cellular reprogramming.

  1. Pioneer transcription factors in cell reprogramming.

    PubMed

    Iwafuchi-Doi, Makiko; Zaret, Kenneth S

    2014-12-15

    A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in "closed" chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as "pioneer factors" to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review.

  2. Pioneer transcription factors in cell reprogramming

    PubMed Central

    Iwafuchi-Doi, Makiko

    2014-01-01

    A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in “closed” chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as “pioneer factors” to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review. PMID:25512556

  3. Plasmid-Based Generation of Induced Neural Stem Cells from Adult Human Fibroblasts

    PubMed Central

    Capetian, Philipp; Azmitia, Luis; Pauly, Martje G.; Krajka, Victor; Stengel, Felix; Bernhardi, Eva-Maria; Klett, Mariana; Meier, Britta; Seibler, Philip; Stanslowsky, Nancy; Moser, Andreas; Knopp, Andreas; Gillessen-Kaesbach, Gabriele; Nikkhah, Guido; Wegner, Florian; Döbrössy, Máté; Klein, Christine

    2016-01-01

    Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV)-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC) 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72%) and glial cells (9% astrocytes, 6% oligodendrocytes). Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts). Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial) pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside the cells at

  4. Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming gene

    NASA Astrophysics Data System (ADS)

    Lang, Alex; Li, Hu; Collins, James; Mehta, Pankaj

    2013-03-01

    A common metaphor for describing development is a rugged epigenetic landscape where cell fates are represented as attracting valleys resulting from a complex regulatory network. Here, we introduce a framework for explicitly constructing epigenetic landscapes that combines genomic data with techniques from physics, specifically Hopfield neural networks. Each cell fate is a dynamic attractor, yet cells can change fate in response to external signals. Our model suggests that partially reprogrammed cells (cells found in reprogramming experiments but not in vivo) are a natural consequence of high-dimensional landscapes and predicts that partially reprogrammed cells should be hybrids that coexpress genes from multiple cell fates. We verify this prediction by reanalyzing existing data sets. Our model reproduces known reprogramming protocols and identifies candidate transcription factors for reprogramming to novel cell fates, suggesting epigenetic landscapes are a powerful paradigm for understanding cellular identity.

  5. Coaxial atomizer liquid intact lengths

    NASA Technical Reports Server (NTRS)

    Eroglu, Hasan; Chigier, Norman; Farago, Zoltan

    1991-01-01

    Average intact lengths of round liquid jets generated by airblast coaxial atomizer were measured from over 1500 photographs. The intact lengths were studied over a jet Reynolds number range of 18,000 and Weber number range of 260. Results are presented for two different nozzle geometries. The intact lengths were found to be strongly dependent on Re and We numbers. An empirical equation was derived as a function of these parameters. A comparison of the intact lengths for round jets and flat sheets shows that round jets generate shorter intact lengths.

  6. Matrix identity and tractional forces influence indirect cardiac reprogramming

    NASA Astrophysics Data System (ADS)

    Kong, Yen P.; Carrion, Bita; Singh, Rahul K.; Putnam, Andrew J.

    2013-12-01

    Heart regeneration through in vivo cardiac reprogramming has been demonstrated as a possible regenerative strategy. While it has been reported that cardiac reprogramming in vivo is more efficient than in vitro, the influence of the extracellular microenvironment on cardiac reprogramming remains incompletely understood. This understanding is necessary to improve the efficiency of cardiac reprogramming in order to implement this strategy successfully. Here we have identified matrix identity and cell-generated tractional forces as key determinants of the dedifferentiation and differentiation stages during reprogramming. Cell proliferation, matrix mechanics, and matrix microstructure are also important, but play lesser roles. Our results suggest that the extracellular microenvironment can be optimized to enhance cardiac reprogramming.

  7. (Photosynthesis in intact plants)

    SciTech Connect

    Not Available

    1990-01-01

    Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

  8. Epigenetic reprogramming in the porcine germ line

    PubMed Central

    2011-01-01

    Background Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig. Results Our results show loss of DNA methylation in PGC colonizing the genital ridges. Analysis of IGF2-H19 regulatory region showed a gradual demethylation between E22-E42. In contrast, DMR2 of IGF2R was already demethylated in male PGC by E22. In females, IGF2R demethylation was delayed until E29-31, and was de novo methylated by E42. DNA repeats were gradually demethylated from E25 to E29-31, and became de novo methylated by E42. Analysis of histone marks showed strong H3K27me3 staining in migratory PGC between E15 and E21. In contrast, H3K9me2 signal was low in PGC by E15 and completely erased by E21. Cell cycle analysis of gonadal PGC (E22-31) showed a typical pattern of cycling cells, however, migrating PGC (E17) showed an increased proportion of cells in G2. Conclusions Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in

  9. Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin

    PubMed Central

    Collins, Charlotte A.; Kretzschmar, Kai; Watt, Fiona M.

    2011-01-01

    Hair follicle formation depends on reciprocal epidermal-dermal interactions and occurs during skin development, but not in adult life. This suggests that the properties of dermal fibroblasts change during postnatal development. To examine this, we used a PdgfraEGFP mouse line to isolate GFP-positive fibroblasts from neonatal skin, adult telogen and anagen skin and adult skin in which ectopic hair follicles had been induced by transgenic epidermal activation of β-catenin (EF skin). We also isolated epidermal cells from each mouse. The gene expression profile of EF epidermis was most similar to that of anagen epidermis, consistent with activation of β-catenin signalling. By contrast, adult dermis with ectopic hair follicles more closely resembled neonatal dermis than adult telogen or anagen dermis. In particular, genes associated with mitosis were upregulated and extracellular matrix-associated genes were downregulated in neonatal and EF fibroblasts. We confirmed that sustained epidermal β-catenin activation stimulated fibroblasts to proliferate to reach the high cell density of neonatal skin. In addition, the extracellular matrix was comprehensively remodelled, with mature collagen being replaced by collagen subtypes normally present only in developing skin. The changes in proliferation and extracellular matrix composition originated from a specific subpopulation of fibroblasts located beneath the sebaceous gland. Our results show that adult dermis is an unexpectedly plastic tissue that can be reprogrammed to acquire the molecular, cellular and structural characteristics of neonatal dermis in response to cues from the overlying epidermis. PMID:22031549

  10. Reprogramming of the chick retinal pigmented epithelium after retinal injury

    PubMed Central

    2014-01-01

    Background One of the promises in regenerative medicine is to regenerate or replace damaged tissues. The embryonic chick can regenerate its retina by transdifferentiation of the retinal pigmented epithelium (RPE) and by activation of stem/progenitor cells present in the ciliary margin. These two ways of regeneration occur concomitantly when an external source of fibroblast growth factor 2 (FGF2) is present after injury (retinectomy). During the process of transdifferentiation, the RPE loses its pigmentation and is reprogrammed to become neuroepithelium, which differentiates to reconstitute the different cell types of the neural retina. Somatic mammalian cells can be reprogrammed to become induced pluripotent stem cells by ectopic expression of pluripotency-inducing factors such as Oct4, Sox2, Klf4, c-Myc and in some cases Nanog and Lin-28. However, there is limited information concerning the expression of these factors during natural regenerative processes. Organisms that are able to regenerate their organs could share similar mechanisms and factors with the reprogramming process of somatic cells. Herein, we investigate the expression of pluripotency-inducing factors in the RPE after retinectomy (injury) and during transdifferentiation in the presence of FGF2. Results We present evidence that upon injury, the quiescent (p27Kip1+/BrdU-) RPE cells transiently dedifferentiate and express sox2, c-myc and klf4 along with eye field transcriptional factors and display a differential up-regulation of alternative splice variants of pax6. However, this transient process of dedifferentiation is not sustained unless FGF2 is present. We have identified lin-28 as a downstream target of FGF2 during the process of retina regeneration. Moreover, we show that overexpression of lin-28 after retinectomy was sufficient to induce transdifferentiation of the RPE in the absence of FGF2. Conclusion These findings delineate in detail the molecular changes that take place in the RPE during

  11. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    NASA Astrophysics Data System (ADS)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  12. Oncometabolic Nuclear Reprogramming of Cancer Stemness

    PubMed Central

    Menendez, Javier A.; Corominas-Faja, Bruna; Cuyàs, Elisabet; García, María G.; Fernández-Arroyo, Salvador; Fernández, Agustín F.; Joven, Jorge; Fraga, Mario F.; Alarcón, Tomás

    2016-01-01

    Summary By impairing histone demethylation and locking cells into a reprogramming-prone state, oncometabolites can partially mimic the process of induced pluripotent stem cell generation. Using a systems biology approach, combining mathematical modeling, computation, and proof-of-concept studies with live cells, we found that an oncometabolite-driven pathological version of nuclear reprogramming increases the speed and efficiency of dedifferentiating committed epithelial cells into stem-like states with only a minimal core of stemness transcription factors. Our biomathematical model, which introduces nucleosome modification and epigenetic regulation of cell differentiation genes to account for the direct effects of oncometabolites on nuclear reprogramming, demonstrates that oncometabolites markedly lower the “energy barriers” separating non-stem and stem cell attractors, diminishes the average time of nuclear reprogramming, and increases the size of the basin of attraction of the macrostate occupied by stem cells. These findings establish the concept of oncometabolic nuclear reprogramming of stemness as a bona fide metabolo-epigenetic mechanism for generation of cancer stem-like cells. PMID:26876667

  13. Dysfunctional mitochondrial fission impairs cell reprogramming.

    PubMed

    Prieto, Javier; León, Marian; Ponsoda, Xavier; García-García, Francisco; Bort, Roque; Serna, Eva; Barneo-Muñoz, Manuela; Palau, Francesc; Dopazo, Joaquín; López-García, Carlos; Torres, Josema

    2016-12-01

    We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming. Microarray data revealed a prominent down-regulation of cell cycle pathways in Gdap1-null cells early in reprogramming and cell cycle profiling uncovered a G2/M growth arrest in Gdap1-null cells undergoing reprogramming. High-Content analysis showed that this growth arrest was DNA damage-independent. We propose that lack of efficient mitochondrial fission impairs cell reprogramming by interfering with cell cycle progression in a DNA damage-independent manner.

  14. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: New insight into the role of mitophagy in cell stemness

    PubMed Central

    Vazquez-Martin, Alejandro; Cufí, Sílvia; Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Vellon, Luciano; Menendez, Javier A.

    2012-01-01

    Recent studies have suggested a pivotal role for autophagy in stem cell maintenance and differentiation. Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) has been also suggested to bio-energetically take advantage of mitochondrial autophagy (mitophagy). We have preliminary addressed how mitophagy might play a role in the regulation of induced pluripotency using mdivi-1 (for mitochondrial division inhibitor), a highly efficacious small molecule that selectively inhibits the self-assembly of DRP1, a member of the dynamin family of large GTPases that mediates mitochondrial fission. At mdivi-1 concentrations that rapidly induced the formation of mitochondrial net-like or collapsed perinuclear mitochondrial structures, we observed that the reprogramming efficiency of mouse embryonic fibroblasts transduced with the Yamanaka three-factor cocktail (OCT4, KLF4, and SOX2) is drastically reduced by more than 95%. Treatment of MEFs with mdivi-1 at the early stages of reprogramming before the appearance of iPSC colonies was sufficient to completely inhibit somatic cell reprogramming. Therefore, the observed effects on reprogramming efficiencies were due likely to the inhibition of the process of reprogramming itself and not to an impairment of iPSC colony survival or growth. Moreover, the typical morphology of established iPSC colonies with positive alkaline phosphatase staining was negatively affected by mdivi-1 exposure. In the presence of mdivi-1, the colony morphology of the iPSCs was lost, and they somewhat resembled fibroblasts. The alkaline phosphatase staining was also significantly reduced, a finding that is indicative of differentiation. Our current findings provide new insight into how mitochondrial division is integrated into the reprogramming factors-driven transcriptional network that specifies the unique pluripotency of stem cells. PMID:22713507

  15. Metabolic Reprogramming, Autophagy, and Reactive Oxygen Species Are Necessary for Primordial Germ Cell Reprogramming into Pluripotency

    PubMed Central

    Sainz de la Maza, D.; Moratilla, A.; Aparicio, V.; Lorca, C.; Alcaina, Y.; Martín, D.

    2017-01-01

    Cellular reprogramming is accompanied by a metabolic shift from oxidative phosphorylation (OXPHOS) toward glycolysis. Previous results from our laboratory showed that hypoxia alone is able to reprogram primordial germ cells (PGCs) into pluripotency and that this action is mediated by hypoxia-inducible factor 1 (HIF1). As HIF1 exerts a myriad of actions by upregulating several hundred genes, to ascertain whether the metabolic switch toward glycolysis is solely responsible for reprogramming, PGCs were cultured in the presence of a pyruvate kinase M2 isoform (PKM2) activator, or glycolysis was promoted by manipulating PPARγ. Conversely, OXPHOS was stimulated by inhibiting PDK1 activity in normoxic or in hypoxic conditions. Inhibition or promotion of autophagy and reactive oxygen species (ROS) production was performed to ascertain their role in cell reprogramming. Our results show that a metabolic shift toward glycolysis, autophagy, and mitochondrial inactivation and an early rise in ROS levels are necessary for PGC reprogramming. All of these processes are governed by HIF1/HIF2 balance and strict intermediate Oct4 levels. Histone acetylation plays a role in reprogramming and is observed under all reprogramming conditions. The pluripotent cells thus generated were unable to self-renew, probably due to insufficient Blimp1 downregulation and a lack of Klf4 and cMyc expression. PMID:28757909

  16. iPS Cells Reprogrammed From Human Mesenchymal-Like Stem/Progenitor Cells of Dental Tissue Origin

    PubMed Central

    2010-01-01

    Generation of induced pluripotent stem (iPS) cells holds a great promise for regenerative medicine and other aspects of clinical applications. Many types of cells have been successfully reprogrammed into iPS cells in the mouse system; however, reprogramming human cells have been more difficult. To date, human dermal fibroblasts are the most accessible and feasible cell source for iPS generation. Dental tissues derived from ectomesenchyme harbor mesenchymal-like stem/progenitor cells and some of the tissues have been treated as biomedical wastes, for example, exfoliated primary teeth and extracted third molars. We asked whether stem/progenitor cells from discarded dental tissues can be reprogrammed into iPS cells. The 4 factors Lin28/Nanog/Oct4/Sox2 or c-Myc/Klf4/Oct4/Sox2 carried by viral vectors were used to reprogram 3 different dental stem/progenitor cells: stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), and dental pulp stem cells (DPSCs). We showed that all 3 can be reprogrammed into iPS cells and appeared to be at a higher rate than fibroblasts. They exhibited a morphology indistinguishable from human embryonic stem (hES) cells in cultures and expressed hES cell markers SSEA-4, TRA-1-60, TRA-1-80, TRA-2-49, Nanog, Oct4, and Sox2. They formed embryoid bodies in vitro and teratomas in vivo containing tissues of all 3 germ layers. We conclude that cells of ectomesenchymal origin serve as an excellent alternative source for generating iPS cells. PMID:19795982

  17. GM-CSF and MEF-conditioned media support feeder-free reprogramming of mouse granulocytes to iPS cells.

    PubMed

    Firas, Jaber; Liu, Xiaodong; Nefzger, Christian M; Polo, Jose M

    2014-06-01

    Induced pluripotent stem cells (iPSCs) are characterised by their ability to differentiate into any cell type of the body. Accordingly, iPSCs possess immense potential for disease modelling, pharmaceutical screening and autologous cell therapies. The most common source of iPSCs derivation is skin fibroblasts. However, from a clinical point of view, skin fibroblasts may not be ideal, as invasive procedures such as skin biopsies are required for their extraction. Moreover, fibroblasts are highly heterogeneous with a poorly defined developmental pathway, which makes studying reprogramming mechanistics difficult. Granulocytes, on the other hand, are easily obtainable, their developmental pathway has been extensively studied and fluorescence activated cell sorting allows for the isolation of these cells at high purity; thus iPSCs derivation from granulocytes could provide an alternative to fibroblast-derived iPSCs. Previous studies succeeded in producing iPSC colonies from mouse granulocytes but with the use of a mitotically inactivated feeder layer, restricting their use for studying reprogramming mechanistics. As granulocytes display poor survival under culture conditions, we investigated the influence of haematopoietic cytokines to stabilise this cell type in vitro and allow for reprogramming in the absence of a feeder layer. Our results show that treatment with MEF-conditioned media and/or initial exposure to GM-CSF allows for reprogramming of granulocytes under feeder-free conditions. This work can serve as a basis for future work aimed at dissecting the reprogramming mechanism as well as obtaining large numbers of iPSCs from a clinically relevant cell source.

  18. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  19. MRI of intact plants.

    PubMed

    Van As, Henk; Scheenen, Tom; Vergeldt, Frank J

    2009-01-01

    Nuclear magnetic resonance imaging (MRI) is a non-destructive and non-invasive technique that can be used to acquire two- or even three-dimensional images of intact plants. The information within the images can be manipulated and used to study the dynamics of plant water relations and water transport in the stem, e.g., as a function of environmental (stress) conditions. Non-spatially resolved portable NMR is becoming available to study leaf water content and distribution of water in different (sub-cellular) compartments. These parameters directly relate to stomatal water conductance, CO(2) uptake, and photosynthesis. MRI applied on plants is not a straight forward extension of the methods discussed for (bio)medical MRI. This educational review explains the basic physical principles of plant MRI, with a focus on the spatial resolution, factors that determine the spatial resolution, and its unique information for applications in plant water relations that directly relate to plant photosynthetic activity. © Springer Science+Business Media B.V. 2009

  20. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity.

    PubMed

    Abad, Maria; Hashimoto, Hisayuki; Zhou, Huanyu; Morales, Maria Gabriela; Chen, Beibei; Bassel-Duby, Rhonda; Olson, Eric N

    2017-03-14

    Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies.

  1. The physics of intact capture

    NASA Technical Reports Server (NTRS)

    Tsou, Peter; Griffiths, D. J.; Albee, A. L.

    1994-01-01

    The ability to capture projectiles intact at hypervelocities in underdense media open a new area of study in physics. Underdense material behaves markedly different than solid, liquid, or gas upon hypervelocity impact. This new phenomenon enables applications in science that would either not be possible or would be very costly by other means. This phenomenon has been fully demonstrated in the laboratory and validated in space. Even more interesting is the fact that this hypervelocity intact capture was accomplished passively. A better understanding of the physics of intact capture will lead to improvements in intact capture. A collection of physical observations of this phenomenon is presented here.

  2. The physics of intact capture

    NASA Technical Reports Server (NTRS)

    Tsou, Peter; Griffiths, D. J.; Albee, A. L.

    1994-01-01

    The ability to capture projectiles intact at hypervelocities in underdense media open a new area of study in physics. Underdense material behaves markedly different than solid, liquid, or gas upon hypervelocity impact. This new phenomenon enables applications in science that would either not be possible or would be very costly by other means. This phenomenon has been fully demonstrated in the laboratory and validated in space. Even more interesting is the fact that this hypervelocity intact capture was accomplished passively. A better understanding of the physics of intact capture will lead to improvements in intact capture. A collection of physical observations of this phenomenon is presented here.

  3. An integrative analysis of reprogramming in human isogenic system identified a clone selection criterion.

    PubMed

    Shutova, Maria V; Surdina, Anastasia V; Ischenko, Dmitry S; Naumov, Vladimir A; Bogomazova, Alexandra N; Vassina, Ekaterina M; Alekseev, Dmitry G; Lagarkova, Maria A; Kiselev, Sergey L

    2016-01-01

    The pluripotency of newly developed human induced pluripotent stem cells (iPSCs) is usually characterized by physiological parameters; i.e., by their ability to maintain the undifferentiated state and to differentiate into derivatives of the 3 germ layers. Nevertheless, a molecular comparison of physiologically normal iPSCs to the "gold standard" of pluripotency, embryonic stem cells (ESCs), often reveals a set of genes with different expression and/or methylation patterns in iPSCs and ESCs. To evaluate the contribution of the reprogramming process, parental cell type, and fortuity in the signature of human iPSCs, we developed a complete isogenic reprogramming system. We performed a genome-wide comparison of the transcriptome and the methylome of human isogenic ESCs, 3 types of ESC-derived somatic cells (fibroblasts, retinal pigment epithelium and neural cells), and 3 pairs of iPSC lines derived from these somatic cells. Our analysis revealed a high input of stochasticity in the iPSC signature that does not retain specific traces of the parental cell type and reprogramming process. We showed that 5 iPSC clones are sufficient to find with 95% confidence at least one iPSC clone indistinguishable from their hypothetical isogenic ESC line. Additionally, on the basis of a small set of genes that are characteristic of all iPSC lines and isogenic ESCs, we formulated an approach of "the best iPSC line" selection and confirmed it on an independent dataset.

  4. Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency

    PubMed Central

    Friedli, Marc; Turelli, Priscilla; Kapopoulou, Adamandia; Rauwel, Benjamin; Castro-Díaz, Nathaly; Rowe, Helen M.; Ecco, Gabriela; Unzu, Carmen; Planet, Evarist; Lombardo, Angelo; Mangeat, Bastien; Wildhaber, Barbara E.; Naldini, Luigi

    2014-01-01

    Endogenous retroelements (EREs) account for about half of the mouse or human genome, and their potential as insertional mutagens and transcriptional perturbators is suppressed by early embryonic epigenetic silencing. Here, we asked how ERE control is maintained during the generation of induced pluripotent stem cells (iPSCs), as this procedure involves profound epigenetic remodeling. We found that all EREs tested were markedly up-regulated during the reprogramming of either mouse embryonic fibroblasts, human CD34+ cells, or human primary hepatocytes. At the iPSC stage, EREs of some classes were repressed, whereas others remained highly expressed, yielding a pattern somewhat reminiscent of that recorded in embryonic stem cells. However, variability persisted between individual iPSC clones in the control of specific ERE integrants. Both during reprogramming and in iPS cells, the up-regulation of specific EREs significantly impacted on the transcription of nearby cellular genes. While transcription triggered by specific ERE integrants at highly precise developmental stages may be an essential step toward obtaining pluripotent cells, the broad and unspecific unleashing of the repetitive genome observed here may contribute to the inefficiency of the reprogramming process and to the phenotypic heterogeneity of iPSCs. PMID:24879558

  5. Oct4-enhanced green fluorescent protein transgenic pigs: a new large animal model for reprogramming studies.

    PubMed

    Nowak-Imialek, Monika; Kues, Wilfried A; Petersen, Bjoern; Lucas-Hahn, Andrea; Herrmann, Doris; Haridoss, Srividyameena; Oropeza, Marianne; Lemme, Erika; Schöler, Hans R; Carnwath, Joseph W; Niemann, Heiner

    2011-09-01

    The domesticated pig has emerged as an important tool for development of surgical techniques, advancement of xenotransplantation, creation of important disease models, and preclinical testing of novel cell therapies. However, germ line-competent pluripotent porcine stem cells have not yet been derived. This has been a major obstacle to genetic modification of pigs. The transcription factor Oct4 is essential for the maintenance of pluripotency and for reprogramming somatic cells to a pluripotent state. Here, we report the production of transgenic pigs carrying an 18 kb genomic sequence of the murine Oct4 gene fused to the enhanced green fluorescent protein (EGFP) cDNA (OG2 construct) to allow identification of pluripotent cells by monitoring Oct4 expression by EGFP fluorescence. Eleven viable transgenic piglets were produced by somatic cell nuclear transfer. Expression of the EGFP reporter construct was confined to germ line cells, the inner cell mass and trophectoderm of blastocysts, and testicular germ cells. Reprogramming of fibroblasts from these animals by fusion with pluripotent murine embryonic stem cells or viral transduction with human OCT4, SOX2, KLF4, and c-MYC cDNAs resulted in Oct4-EGFP reactivation. The OG2 pigs have thus proved useful for monitoring reprogramming and the induction and maintenance of pluripotency in porcine cells. In conclusion, the OG2 transgenic pigs are a new large animal model for studying the derivation and maintenance of pluripotent cells, and will be valuable for the development of cell therapy.

  6. bFGF signaling-mediated reprogramming of porcine primordial germ cells.

    PubMed

    Zhang, Yu; Ma, Jing; Li, Hai; Lv, Jiawei; Wei, Renyue; Cong, Yimei; Liu, Zhonghua

    2016-05-01

    Primordial germ cells (PGCs) have the ability to be reprogrammed into embryonic germ cells (EGCs) in vitro and are an alternative source of embryonic stem cells. Other than for the mouse, the systematic characterization of mammalian PGCs is still lacking, especially the process by which PGCs convert to pluripotency. This hampers the understanding of germ cell development and the derivation of authenticated EGCs from other species. We observed the morphological development of the genital ridge from Bama miniature pigs and found primary sexual differentiation in the E28 porcine embryo, coinciding with Blimp1 nuclear exclusion in PGCs. To explore molecular events involved in porcine PGC reprogramming, transcriptome data of porcine EGCs and fetal fibroblasts (FFs) were assembled and 1169 differentially expressed genes were used for Gene Ontology analysis. These genes were significantly enriched in cell-surface receptor-linked signal transduction, in agreement with the activation of LIF/Stat3 signaling and FGF signaling during the derivation of porcine EG-like cells. Using a growth-factor-defined culture system, we explored the effects of bFGF on the process and found that bFGF not only functioned at the very beginning of PGC dedifferentiation by impeding Blimp1 nuclear expression via a PI3K/AKT-dependent pathway but also maintained the viability of cultured PGCs thereafter. These results provide further insights into the development of germ cells from livestock and the mechanism of porcine PGC reprogramming.

  7. The Role of SIRT6 Protein in Aging and Reprogramming of Human Induced Pluripotent Stem Cells*

    PubMed Central

    Sharma, Amit; Diecke, Sebastian; Zhang, Wendy Y.; Lan, Feng; He, Chunjiang; Mordwinkin, Nicholas M.; Chua, Katrin F.; Wu, Joseph C.

    2013-01-01

    Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6, or SIRT6, has recently been identified as a critical regulator of transcription, genome stability, telomere integrity, DNA repair, and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging, we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects, but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6, little is known about the molecular mechanism of its regulation. We show, for the first, time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop, which has implications for the modulation of SIRT6 expression in reprogramming of aging cells. PMID:23653361

  8. Roadmap to cellular reprogramming--manipulating transcriptional networks with DNA, RNA, proteins and small molecules.

    PubMed

    Wörsdörfer, P; Thier, M; Kadari, A; Edenhofer, F

    2013-06-01

    Recent reports demonstrate that the plasticity of mammalian somatic cells is much higher than previously assumed and that ectopic expression of transcription factors may have the potential to induce the conversion of any cell type into another. Fibroblast cells can be converted into embryonic stem cell-like cells, neural cells, cardiomyocytes, macrophage-like cells as well as blood progenitors. Additionally, the conversion of astrocytes into neurons or neural stem cells into monocytes has been demonstrated. Nowadays, in the era of systems biology, continuously growing holistic data sets are providing increasing insights into core transcriptional networks and cellular signaling pathways. This knowledge enables cell biologists to understand how cellular fate is determined and how it could be manipulated. As a consequence for biomedical applications, it might be soon possible to convert patient specific somatic cells directly into desired transplantable other cell types. The clinical value, however, of such reprogrammed cells is currently limited due to the invasiveness of methods applied to induce reprogramming factor activity. This review will focus on experimental strategies to ectopically induce cell fate modulators. We will emphasize those strategies that enable efficient and robust overexpression of transcription factors by minimal genetic alterations of the host genome. Furthermore, we will discuss procedures devoid of any genomic manipulation, such as the direct delivery of mRNA, proteins, or the use of small molecules. By this, we aim to give a comprehensive overview on state of the art techniques that harbor the potential to generate safe reprogrammed cells for clinical applications.

  9. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    PubMed Central

    Hawkins, Kate E.; Joy, Shona; Delhove, Juliette M.K.M.; Kotiadis, Vassilios N.; Fernandez, Emilio; Fitzpatrick, Lorna M.; Whiteford, James R.; King, Peter J.; Bolanos, Juan P.; Duchen, Michael R.; Waddington, Simon N.; McKay, Tristan R.

    2016-01-01

    Summary The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation. PMID:26904936

  10. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells.

    PubMed

    Sharma, Amit; Diecke, Sebastian; Zhang, Wendy Y; Lan, Feng; He, Chunjiang; Mordwinkin, Nicholas M; Chua, Katrin F; Wu, Joseph C

    2013-06-21

    Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6, or SIRT6, has recently been identified as a critical regulator of transcription, genome stability, telomere integrity, DNA repair, and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging, we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects, but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6, little is known about the molecular mechanism of its regulation. We show, for the first, time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop, which has implications for the modulation of SIRT6 expression in reprogramming of aging cells.

  11. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming

    PubMed Central

    Kazantseva, Jekaterina; Sadam, Helle; Neuman, Toomas; Palm, Kaia

    2016-01-01

    Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression. PMID:27499390

  12. Small molecules increase direct neural conversion of human fibroblasts

    PubMed Central

    Pfisterer, Ulrich; Ek, Fredrik; Lang, Stefan; Soneji, Shamit; Olsson, Roger; Parmar, Malin

    2016-01-01

    The generation of human induced neurons (hiNs) via exogenous delivery of neural transcription factors represents a novel technique to obtain disease and patient specific neurons. These cells have the potential to be used for disease modeling, diagnostics and drug screening, and also to be further developed for brain repair. In the present study, we utilized hiNs to develop an unbiased screening assay for small molecules that increase the conversion efficiency. Using this assay, we screened 307 compounds from five annotated libraries and identified six compounds that were very potent in potentiating the reprogramming process. When combined in an optimal combination and dose, these compounds increased the reprogramming efficiency of human fibroblasts more than 6-fold. Global gene expression and CellNet analysis at different timepoints during the reprogramming process revealed that neuron-specific genes and gene regulatory networks (GRNs) became progressively more activated while converting cells shut down fibroblast-specific GRNs. Further bioinformatics analysis revealed that the addition of the six compound resulted in the accelerated upregulation of a subset of neuronal genes, and also increased expression of genes associated with transcriptional activity and mediation of cellular stress response. PMID:27917895

  13. Epigenetic Landscapes Explain Partially Reprogrammed Cells and Identify Key Reprogramming Genes

    PubMed Central

    Lang, Alex H.; Li, Hu; Collins, James J.; Mehta, Pankaj

    2014-01-01

    A common metaphor for describing development is a rugged “epigenetic landscape” where cell fates are represented as attracting valleys resulting from a complex regulatory network. Here, we introduce a framework for explicitly constructing epigenetic landscapes that combines genomic data with techniques from spin-glass physics. Each cell fate is a dynamic attractor, yet cells can change fate in response to external signals. Our model suggests that partially reprogrammed cells are a natural consequence of high-dimensional landscapes, and predicts that partially reprogrammed cells should be hybrids that co-express genes from multiple cell fates. We verify this prediction by reanalyzing existing datasets. Our model reproduces known reprogramming protocols and identifies candidate transcription factors for reprogramming to novel cell fates, suggesting epigenetic landscapes are a powerful paradigm for understanding cellular identity. PMID:25122086

  14. Space research with intact organisms

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.; Haddy, Francis J.

    1992-01-01

    Effects of space exposure on intact organisms are briefly reviewed, and examples of future experiments that might provide new information on the role of gravity in the evolution of life are suggested. It is noted that long term experiments with intact plant and animals for studying gravitational thresholds will provide important new insights.

  15. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells.

    PubMed

    Miyoshi, Keiko; Horiguchi, Taigo; Tanimura, Ayako; Hagita, Hiroko; Noma, Takafumi

    2015-01-01

    Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  16. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells

    PubMed Central

    Miyoshi, Keiko; Horiguchi, Taigo; Tanimura, Ayako; Hagita, Hiroko; Noma, Takafumi

    2015-01-01

    Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming. PMID:26339586

  17. Overcoming reprogramming resistance of Fanconi anemia cells

    PubMed Central

    Müller, Lars U. W.; Milsom, Michael D.; Harris, Chad E.; Vyas, Rutesh; Brumme, Kristina M.; Parmar, Kalindi; Moreau, Lisa A.; Schambach, Axel; Park, In-Hyun; London, Wendy B.; Strait, Kelly; Schlaeger, Thorsten; DeVine, Alexander L.; Grassman, Elke; D'Andrea, Alan; Daley, George Q.

    2012-01-01

    Fanconi anemia (FA) is a recessive syndrome characterized by progressive fatal BM failure and chromosomal instability. FA cells have inactivating mutations in a signaling pathway that is critical for maintaining genomic integrity and protecting cells from the DNA damage caused by cross-linking agents. Transgenic expression of the implicated genes corrects the phenotype of hematopoietic cells, but previous attempts at gene therapy have failed largely because of inadequate numbers of hematopoietic stem cells available for gene correction. Induced pluripotent stem cells (iPSCs) constitute an alternate source of autologous cells that are amenable to ex vivo expansion, genetic correction, and molecular characterization. In the present study, we demonstrate that reprogramming leads to activation of the FA pathway, increased DNA double-strand breaks, and senescence. We also demonstrate that defects in the FA DNA-repair pathway decrease the reprogramming efficiency of murine and human primary cells. FA pathway complementation reduces senescence and restores the reprogramming efficiency of somatic FA cells to normal levels. Disease-specific iPSCs derived in this fashion maintain a normal karyotype and are capable of hematopoietic differentiation. These data define the role of the FA pathway in reprogramming and provide a strategy for future translational applications of patient-specific FA iPSCs. PMID:22371882

  18. Reprogramming cellular identity for regenerative medicine

    PubMed Central

    Cherry, Anne B.C.; Daley, George Q.

    2012-01-01

    The choreographed development of over 200 distinct differentiated cell types from a single zygote is a complex and poorly understood process. Whereas development leads unidirectionally towards more restricted cell fates, recent work in cellular reprogramming has proven that striking conversions of one cellular identity into another can be engineered, promising countless applications in biomedical research and paving the way for modeling disease with patient-derived stem cells. To date, there has been little discussion of which disease models are likely to be most informative. We here review evidence demonstrating that because environmental influences and epigenetic signatures are largely erased during reprogramming, patient-specific models of diseases with strong genetic bases and high penetrance are likely to prove most informative in the near term. However, manipulating in vitro culture conditions may ultimately enable cell-based models to recapitulate gene-environment interactions. Here, we discuss the implications of the new reprogramming paradigm in biomedicine and outline how reprogramming of cell identities is enhancing our understanding of cell differentiation and prospects for cellular therapies and in vivo regeneration. PMID:22424223

  19. Blood pressure reprogramming adapter assists signal recording

    NASA Technical Reports Server (NTRS)

    Vick, H. A.

    1967-01-01

    Blood pressure reprogramming adapter separates the two components of a blood pressure signal, a dc pressure signal and an ac Korotkoff sounds signal, so that the Korotkoff sounds are recorded on one channel as received while the dc pressure signal is converted to FM and recorded on a second channel.

  20. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    PubMed Central

    Chanda, Soham; Ang, Cheen Euong; Davila, Jonathan; Pak, ChangHui; Mall, Moritz; Lee, Qian Yi; Ahlenius, Henrik; Jung, Seung Woo; Südhof, Thomas C.; Wernig, Marius

    2014-01-01

    Summary Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs) into mature induced neuronal (iN) cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN) expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage. PMID:25254342

  1. Targeted release of transcription factors for cell reprogramming by a natural micro-syringe.

    PubMed

    Berthoin, Lionel; Toussaint, Bertrand; Garban, Frédéric; Le Gouellec, Audrey; Caulier, Benjamin; Polack, Benoît; Laurin, David

    2016-11-20

    Ectopic expression of defined transcription factors (TFs) for cell fate handling has proven high potential interest in reprogramming differentiated cells, in particular for regenerative medicine, ontogenesis study and cell based modelling. Pluripotency or transdifferentiation induction as TF mediated differentiation is commonly produced by transfer of genetic information with safety concerns. The direct delivery of proteins could represent a safer alternative but still needs significant advances to be efficient. We have successfully developed the direct delivery of proteins by an attenuated bacterium with a type 3 secretion system that does not require challenging and laborious steps for production and purification of recombinant molecules. Here we show that this natural micro-syringe is able to inject TFs to primary human fibroblasts and cord blood CD34(+) hematopoietic stem cells. The signal sequence for vectorization of the TF Oct4 has no effect on DNA binding to its nucleic target. As soon as one hour after injection, vectorized TFs are detectable in the nucleus. The injection process is not associated with toxicity and the bacteria can be completely removed from cell cultures. A three days targeted release of Oct4 or Sox2 embryonic TFs results in the induction of the core pluripotency genes expression in fibroblasts and CD34(+) hematopoietic stem cells. This micro-syringe vectorization represents a new strategy for TF delivery and has potential applications for cell fate reprogramming.

  2. Sequential Regulatory Loops as Key Gatekeepers for Neuronal Reprogramming in Human Cells

    PubMed Central

    Xue, Yuanchao; Qian, Hao; Hu, Jing; Zhou, Bing; Zhou, Yu; Hu, Xihao; Karakhanyan, Aziz; Pang, Zhiping; Fu, Xiang-Dong

    2016-01-01

    Direct conversion of somatic cells into neurons holds great promise for regenerative medicine. However, as neuronal conversion is relatively inefficient on human cells compared to mouse cells, it has been unclear what might be key barriers to reprogramming in human cells. We recently elucidated an RNA program mediated by the polypyrimidine tract binding protein PTB to convert mouse embryonic fibroblasts (MEFs) into functional neurons. On human adult fibroblasts (HAFs), however, we unexpectedly find that invoke of the documented PTB-REST-miR-124 loop only generates immature neurons. We now report that the functionality requires sequential inactivation of PTB and the PTB paralog nPTB in HAFs. Inactivation of nPTB triggers another self-enforcing loop essential for neuronal maturation, which comprises nPTB, the transcription factor BRN2, and miR-9. These findings suggest two separate gatekeepers to control neuronal conversion and maturation and consecutively overcoming these gatekeepers enables deterministic reprogramming of HAFs into functional neurons. PMID:27110916

  3. Delayed transition to new cell fates during cellular reprogramming.

    PubMed

    Cheng, Xianrui; Lyons, Deirdre C; Socolar, Joshua E S; McClay, David R

    2014-07-15

    In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues.

  4. Reprogramming Postnatal Human Epidermal Keratinocytes Toward Functional Neural Crest Fates.

    PubMed

    Bajpai, Vivek K; Kerosuo, Laura; Tseropoulos, Georgios; Cummings, Kirstie A; Wang, Xiaoyan; Lei, Pedro; Liu, Biao; Liu, Song; Popescu, Gabriela K; Bronner, Marianne E; Andreadis, Stelios T

    2017-05-01

    During development, neural crest (NC) cells are induced by signaling events at the neural plate border of all vertebrate embryos. Initially arising within the central nervous system, NC cells subsequently undergo an epithelial to mesenchymal transition to migrate into the periphery, where they differentiate into diverse cell types. Here we provide evidence that postnatal human epidermal keratinocytes (KC), in response to fibroblast growth factor 2 and insulin like growth factor 1 signals, can be reprogrammed toward a NC fate. Genome-wide transcriptome analyses show that keratinocyte-derived NC cells are similar to those derived from human embryonic stem cells. Moreover, they give rise in vitro and in vivo to NC derivatives such as peripheral neurons, melanocytes, Schwann cells and mesenchymal cells (osteocytes, chondrocytes, adipocytes, and smooth muscle cells). By demonstrating that human keratin-14+ KC can form NC cells, even from clones of single cells, our results have important implications in stem cell biology and regenerative medicine. Stem Cells 2017;35:1402-1415. © 2017 AlphaMed Press.

  5. Innate Immune Suppression Enables Frequent Transfection with RNA Encoding Reprogramming Proteins

    PubMed Central

    Angel, Matthew; Yanik, Mehmet Fatih

    2010-01-01

    Background Generating autologous pluripotent stem cells for therapeutic applications will require the development of efficient DNA-free reprogramming techniques. Transfecting cells with in vitro-transcribed, protein-encoding RNA is a straightforward method of directly expressing high levels of reprogramming proteins without genetic modification. However, long-RNA transfection triggers a potent innate immune response characterized by growth inhibition and the production of inflammatory cytokines. As a result, repeated transfection with protein-encoding RNA causes cell death. Methodology/Principal Findings RNA viruses have evolved methods of disrupting innate immune signaling by destroying or inhibiting specific proteins to enable persistent infection. Starting from a list of known viral targets, we performed a combinatorial screen to identify siRNA cocktails that could desensitize cells to exogenous RNA. We show that combined knockdown of interferon-β (Ifnb1), Eif2ak2, and Stat2 rescues cells from the innate immune response triggered by frequent long-RNA transfection. Using this technique, we were able to transfect primary human fibroblasts every 24 hours with RNA encoding the reprogramming proteins Oct4, Sox2, Klf4, and Utf1. We provide evidence that the encoded protein is active, and we show that expression can be maintained for many days, through multiple rounds of cell division. Conclusions/Significance Our results demonstrate that suppressing innate immunity enables frequent transfection with protein-encoding RNA. This technique represents a versatile tool for investigating expression dynamics and protein interactions by enabling precise control over levels and timing of protein expression. Our finding also opens the door for the development of reprogramming and directed-differentiation methods based on long-RNA transfection. PMID:20668695

  6. BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence

    PubMed Central

    Hayashi, Yohei; Hsiao, Edward C.; Sami, Salma; Lancero, Mariselle; Schlieve, Christopher R.; Nguyen, Trieu; Yano, Koyori; Nagahashi, Ayako; Ikeya, Makoto; Matsumoto, Yoshihisa; Nishimura, Ken; Fukuda, Aya; Hisatake, Koji; Tomoda, Kiichiro; Asaka, Isao; Toguchida, Junya; Conklin, Bruce R.; Yamanaka, Shinya

    2016-01-01

    Fibrodysplasia ossificans progressiva (FOP) patients carry a missense mutation in ACVR1 [617G > A (R206H)] that leads to hyperactivation of BMP-SMAD signaling. Contrary to a previous study, here we show that FOP fibroblasts showed an increased efficiency of induced pluripotent stem cell (iPSC) generation. This positive effect was attenuated by inhibitors of BMP-SMAD signaling (Dorsomorphin or LDN1931890) or transducing inhibitory SMADs (SMAD6 or SMAD7). In normal fibroblasts, the efficiency of iPSC generation was enhanced by transducing mutant ACVR1 (617G > A) or SMAD1 or adding BMP4 protein at early times during the reprogramming. In contrast, adding BMP4 at later times decreased iPSC generation. ID genes, transcriptional targets of BMP-SMAD signaling, were critical for iPSC generation. The BMP-SMAD-ID signaling axis suppressed p16/INK4A-mediated cell senescence, a major barrier to reprogramming. These results using patient cells carrying the ACVR1 R206H mutation reveal how cellular signaling and gene expression change during the reprogramming processes. PMID:27794120

  7. Cellular Reprogramming Allows Generation of Autologous Hematopoietic Progenitors From AML Patients That Are Devoid of Patient-Specific Genomic Aberrations.

    PubMed

    Salci, Kyle R; Lee, Jong-Hee; Laronde, Sarah; Dingwall, Steve; Kushwah, Rahul; Fiebig-Comyn, Aline; Leber, Brian; Foley, Ronan; Dal Cin, Arianna; Bhatia, Mickie

    2015-06-01

    Current treatments that use hematopoietic progenitor cell (HPC) transplantation in acute myeloid leukemia (AML) patients substantially reduce the risk of relapse, but are limited by the availability of immune compatible healthy HPCs. Although cellular reprogramming has the potential to provide a novel autologous source of HPCs for transplantation, the applicability of this technology toward the derivation of healthy autologous hematopoietic cells devoid of patient-specific leukemic aberrations from AML patients must first be evaluated. Here, we report the generation of human AML patient-specific hematopoietic progenitors that are capable of normal in vitro differentiation to myeloid lineages and are devoid of leukemia-associated aberration found in matched patient bone marrow. Skin fibroblasts were obtained from AML patients whose leukemic cells possessed a distinct, leukemia-associated aberration, and used to create AML patient-specific induced pluripotent stem cells (iPSCs). Through hematopoietic differentiation of AML patient iPSCs, coupled with cytogenetic interrogation, we reveal that AML patient-specific HPCs possess normal progenitor capacity and are devoid of leukemia-associated mutations. Importantly, in rare patient skin samples that give rise to mosaic fibroblast cultures that continue to carry leukemia-associated mutations; healthy hematopoietic progenitors can also be generated via reprogramming selection. Our findings provide the proof of principle that cellular reprogramming can be applied on a personalized basis to generate healthy HPCs from AML patients, and should further motivate advances toward creating transplantable hematopoietic stem cells for autologous AML therapy.

  8. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process.

    PubMed

    Arioka, Yuko; Ito, Hiroyasu; Hirata, Akihiro; Semi, Katsunori; Yamada, Yasuhiro; Seishima, Mitsuru

    2017-02-04

    It remains unclear what cells are proper for the generation of induced pluripotent stem cells (iPSCs). Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is well known as a tissue stem cell and progenitor marker, both of which are reported to be sensitive to reprogramming. In the present study, we examined the reprogramming behavior of Lgr5-expressing cells (Lgr5+ cells). First, we compared reprogramming behavior using mouse Lgr5+ and Lgr5 negative (Lgr5-) hair follicles (HFs). The number of alkaline phosphatase staining-positive cells was lesser in a well of Lgr5+ HFs than in Lgr5- HFs; however, the ratio of Nanog+ SSEA1+ cells in the cell mixture derived from Lgr5+ HFs was much higher than that from Lgr5- HFs. Lgr5+ cells could be induced from mouse embryonic fibroblasts (MEFs) after transduction with Yamanaka factors. As shown in HFs, the progeny of Lgr5+ cells arising from MEFs highly converted into Nanog+ cells and did not form Nanog- colonies. The progeny represented the status of the late reprogramming phase to a higher degree than the nonprogeny. We also confirmed this using human Lg5+ cells. Our findings suggest that the use of Lgr5+ cells will minimize sorting efforts for obtaining superior iPSCs.

  9. Generation of human iPS cell line SKiPSc1 from healthy Human Neonatal Foreskin Fibroblast cells.

    PubMed

    Alawad, Abdullah; Alhazzaa, Othman; Altuwaijri, Saleh; Alkhrayef, Mohammad; Alagrafi, Faisal; Alhamdan, Ziyad; Alenazi, Abdullah; Alharbi, Sultan; Hammad, Mohamed

    2016-06-25

    The SKiPSc1 induced pluripotent stem (iPS) cell line was generated from Human Neonatal Foreskin Fibroblasts (HNFFs) obtained from a healthy donor infant that were reprogrammed using non-integrating Sendai viral vectors expressing Oct3/4, Sox2, c-Myc, and Klf4.

  10. Effectiveness of intact capture media

    SciTech Connect

    Tsou, P.; Aubert, J.; Brownlee, D.; Hrubesh, L.; Williams, J.; Albee, A.

    1989-01-01

    The possibility of capturing cosmic dust at hypervelocity has been demonstrated in the laboratory and in the unintended Solar Max spacecraft. This technology will enable a comet coma sample return mission and be important for the earth orbital cosmic dust collection mission, i.e., the Space Station Cosmic Dust Collection Facility. Since the only controllable factor in an intact capture of cosmic dust is the capturing medium, characterizing the effectiveness and properties of available capture media would be very important in the development of the technique for capturing hypervelocity cosmic dust intact. We have evaluated various capture underdense media for the relative effectiveness for intact capture. 2 refs., 2 figs.

  11. miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia.

    PubMed

    Wohl, Stefanie Gabriele; Reh, Thomas Andrew

    2016-05-01

    The Müller glia of fish provide a source for neuronal regeneration after injury, but they do not do so in mammals. We previously showed that lentiviral gene transfer of the transcription factor Achaete-scute homolog 1 (Ascl1/Mash1) in murine Müller glia cultures resulted in partial reprogramming of the cells to retinal progenitors. The microRNAs (miRNAs) miR-124-9-9* facilitate neuronal reprogramming of fibroblasts, but their role in glia reprogramming has not been reported. The aim of this study was to test whether (1) lentiviral gene transfer of miR-124-9-9* can reprogram Müller glia into retinal neurons and (2) miR-124-9-9* can improve Ascl1-induced reprogramming. Primary Müller glia cultures were generated from postnatal day (P) 11/12 mice, transduced with lentiviral particles, i.e., miR-124-9-9*-RFP, nonsense-RFP, Ascl1-GFP, or GFP-control. Gene expression and immunofluorescence analyses were performed within 3 weeks after infection. 1. Overexpression of miR-124-9-9* induced the expression of the proneural factor Ascl1 and additional markers of neurons, including TUJ1 and MAP2. 2. When Ascl1 and miR-124-9-9* were combined, 50 to 60% of Müller glia underwent neuronal reprogramming, whereas Ascl1 alone results in a 30 to 35% reprogramming rate. 3. Analysis of the miR-124-9-9* treated glial cells showed a reduction in the level of Ctdsp1 and Ptbp1, indicating a critical role for the REST pathway in the repression of neuronal genes in Müller glia. Our data further suggest that miR-124-9-9* and the REST complex may play a role in regulating the reprogramming of Müller glia to progenitors that underlies retinal regeneration in zebrafish.

  12. Neural reprogramming in retinal degenerations

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Anderson, James R.; Kinard, Krista; Marshak, David W.; Wilson, John H.; Wensel, Theodore; Lucas, Robert J.

    2008-01-01

    Purpose Early visual defects in degenerative diseases such as retinitis pigmentosa (RP) may arise from phased remodeling of the neural retina. We sought to explore the functional expression of ionotropic (iGluR) and group III, type 6 metabotropic (mGluR6) glutamate receptors in late-stage photoreceptor degenerations. Methods Excitation mapping with organic cations and computational molecular phenotyping were used to determine whether retinal neurons displayed functional glutamate receptor signaling in rodent models of retinal degenerations and a sample of human RP. Results After photoreceptor loss in rodent models of RP, bipolar cells lose mGluR6 and iGluR glutamate-activated currents, while amacrine and ganglion cells retain iGluR-mediated responsivity. Paradoxically, amacrine and ganglion cells show spontaneous iGluR signals in vivo even though bipolar cells lack glutamate-coupled depolarization mechanisms. Cone survival can rescue iGluR expression by OFF bipolar cells. In a case of human RP with cone sparing, iGluR signaling appeared intact, but the numbers of bipolar cells expressing functional iGluRs was double that of normal retina. Conclusions RP triggers permanent loss of bipolar cell glutamate receptor expression, though spontaneous iGluR-mediated signaling by amacrine and ganglion cells implies that such truncated bipolar cells still release glutamate in response to some non-glutamatergic depolarization. Focal cone-sparing can preserve iGluR display by nearby bipolar cells, which may facilitate late-RP photoreceptor transplant attempts. An instance of human RP provides evidence that rod bipolar cell dendrite switching likely triggers new gene expression patterns and may impair cone pathway function. PMID:17591910

  13. Reprogramming of germ cells into pluripotency

    PubMed Central

    Sekita, Yoichi; Nakamura, Toshinobu; Kimura, Tohru

    2016-01-01

    Primordial germ cells (PGCs) are precursors of all gametes, and represent the founder cells of the germline. Although developmental potency is restricted to germ-lineage cells, PGCs can be reprogrammed into a pluripotent state. Specifically, PGCs give rise to germ cell tumors, such as testicular teratomas, in vivo, and to pluripotent stem cells known as embryonic germ cells in vitro. In this review, we highlight the current knowledge on signaling pathways, transcriptional controls, and post-transcriptional controls that govern germ cell differentiation and de-differentiation. These regulatory processes are common in the reprogramming of germ cells and somatic cells, and play a role in the pathogenesis of human germ cell tumors. PMID:27621759

  14. Establishing epigenetic variation during genome reprogramming

    PubMed Central

    2013-01-01

    Transgenerational reprogramming of DNA methylation is important for transposon silencing and epigenetic inheritance. A stochastic regulation of methylation states in the germline may lead to epigenetic variation and the formation of epialleles that contribute to phenotypic variation. In Arabidopsis thaliana inbred lines, the frequency of single base variation of DNA methylation is much higher than genetic mutation and, interestingly, variable epialleles are pre-methylated in the male germline. However, these same alleles are targeted for demethylation in the pollen vegetative nucleus, by a mechanism that seems to contribute to the accumulation of small RNAs that reinforce transcriptional gene silencing in the gametes. These observations are paving the way toward understanding the extent of epigenetic reprogramming in higher plants, and the mechanisms regulating the stability of acquired epigenetic states across generations. PMID:23774895

  15. Epigenetic programming and reprogramming during development.

    PubMed

    Cantone, Irene; Fisher, Amanda G

    2013-03-01

    Cell identity is determined by specific gene expression patterns that are conveyed by interactions between transcription factors and DNA in the context of chromatin. In development, epigenetic modifiers are thought to stabilize gene expression and ensure that patterns of DNA methylation and histone modification are reinstated in cells as they divide. Global erasure of epigenetic marks occurs naturally at two stages in the mammalian life cycle, but it can also be artificially engineered using a variety of reprogramming strategies. Here we review some of the recent advances in understanding how epigenetic remodeling contributes to conversion of cell fate in vivo and in vitro. We summarize current models of epigenetic erasure and discuss the various enzymes and mechanisms that may operate in cellular reprogramming.

  16. Oxygen availability and metabolic reprogramming in cancer.

    PubMed

    Xie, Hong; Simon, M Celeste

    2017-08-24

    Hypoxia and dysregulated metabolism are defining features of solid tumors. How cancer cells adapt to low O2 has been illuminated by numerous studies, with "reprogrammed" metabolism being one of the most important mechanisms. This metabolic reprogramming not only promotes cancer cell plasticity, but also provides novel insights for treatment strategies. As the most studied O2 "sensor", hypoxia-inducible factor (HIF) is regarded as an important regulator of hypoxia-induced transcriptional responses. This review will summarize our current understanding of hypoxia-induced changes in cancer cell metabolism, with an initial focus on HIF-mediated effects, and highlight how these metabolic alterations affect malignant phenotypes. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  17. Progress in the reprogramming of somatic cells.

    PubMed

    Ma, Tianhua; Xie, Min; Laurent, Timothy; Ding, Sheng

    2013-02-01

    Pluripotent stem cells can differentiate into nearly all types of cells in the body. This unique potential provides significant promise for cell-based therapies to restore tissues or organs destroyed by injuries, degenerative diseases, aging, or cancer. The discovery of induced pluripotent stem cell (iPSC) technology offers a possible strategy to generate patient-specific pluripotent stem cells. However, because of concerns about the specificity, efficiency, kinetics, and safety of iPSC reprogramming, improvements or fundamental changes in this process are required before their effective clinical use. A chemical approach is regarded as a promising strategy to improve and change the iPSC process. Dozens of small molecules have been identified that can functionally replace reprogramming factors and significantly improve iPSC reprogramming. In addition to the prospect of deriving patient-specific tissues and organs from iPSCs, another attractive strategy for regenerative medicine is transdifferentiation-the direct conversion of one somatic cell type to another. Recent studies revealed a new paradigm of transdifferentiation: using transcription factors used in iPSC generation to induce transdifferentiation or called iPSC transcription factor-based transdifferentiation. This type of transdifferentiation not only reveals and uses the developmentally plastic intermediates generated during iPSC reprogramming but also produces a wide range of cells, including expandable tissue-specific precursor cells. Here, we review recent progress of small molecule approaches in the generation of iPSCs. In addition, we summarize the new concept of iPSC transcription factor-based transdifferentiation and discuss its application in generating various lineage-specific cells, especially cardiovascular cells.

  18. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    SciTech Connect

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  19. Matrix identity and tractional forces influence indirect cardiac reprogramming

    PubMed Central

    Kong, Yen P.; Carrion, Bita; Singh, Rahul K.; Putnam, Andrew J.

    2013-01-01

    Heart regeneration through in vivo cardiac reprogramming has been demonstrated as a possible regenerative strategy. While it has been reported that cardiac reprogramming in vivo is more efficient than in vitro, the influence of the extracellular microenvironment on cardiac reprogramming remains incompletely understood. This understanding is necessary to improve the efficiency of cardiac reprogramming in order to implement this strategy successfully. Here we have identified matrix identity and cell-generated tractional forces as key determinants of the dedifferentiation and differentiation stages during reprogramming. Cell proliferation, matrix mechanics, and matrix microstructure are also important, but play lesser roles. Our results suggest that the extracellular microenvironment can be optimized to enhance cardiac reprogramming. PMID:24326998

  20. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks.

    PubMed

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-12-10

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quantitative mass spectrometry-based analysis to probe in-depth dynamic proteome changes during somatic cell reprogramming. Our data reveal defined waves of proteome resetting, with the first wave occurring 48 h after the activation of the reprogramming transgenes and involving specific biological processes linked to the c-Myc transcriptional network. A second wave of proteome reorganization occurs in a later stage of reprogramming, where we characterize the proteome of two distinct pluripotent cellular populations. In addition, the overlay of our proteome resource with parallel generated -omics data is explored to identify post-transcriptionally regulated proteins involved in key steps during reprogramming.

  1. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos.

    PubMed

    Sepulveda-Rincon, Lessly P; Solanas, Edgar Del Llano; Serrano-Revuelta, Elisa; Ruddick, Lydia; Maalouf, Walid E; Beaujean, Nathalie

    2016-07-01

    Despite ongoing research in a number of species, the efficiency of embryo production by nuclear transfer remains low. Incomplete epigenetic reprogramming of the nucleus introduced in the recipient oocyte is one factor proposed to limit the success of this technique. Nonetheless, knowledge of reprogramming factors has increased-thanks to comparative studies on reprogramming of the paternal genome brought by sperm on fertilization-and will be reviewed here. Another valuable model of reprogramming is the one obtained in the absence of sperm fertilization through artificial activation-the parthenote-and will also be introduced. Altogether the objective of this review is to have a better understanding on the mechanisms responsible for the resistance to reprogramming, not only because it could improve embryonic development but also as it could benefit therapeutic reprogramming research. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Direct reprogramming and biomaterials for controlling cell fate.

    PubMed

    Kim, Eunsol; Tae, Giyoong

    2016-01-01

    Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.

  3. Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts

    PubMed Central

    Pang, Wenjing; Su, Jiaojiao; Wang, Yalei; Feng, Hui; Dai, Xin; Yuan, Yaozong; Chen, Xi; Yao, Weiyan

    2015-01-01

    Cancer-associated fibroblasts (CAF) are a major constituent of the pancreatic cancer microenvironment and that the meaning is as intended. Pancreatic cancer cells can induce normal fibroblasts to convert into CAF and, reciprocally, CAF promote tumor invasions and proliferations. The mechanism of the conversion from normal fibroblasts (NF) to CAF remains unclear. MicroRNA are short non-coding RNA involved in the post-transcription gene regulation, which have been defined as an imperative controller in tumor invasions, proliferations and colony formations. Microvesicles (MV) have been proved to be an important mediator of intercellular communication and can selectively transport secreted microRNA from a donor cell into a recipient cell. In this study, we isolated primary pancreatic fibroblasts from wild type C57 mice and co-cultured them with pancreatic cancer cell lines, BxPC-3 and SW1990, and observed the conversion from NF to CAF, or at least CAF-like cells. This phenomenon could also be replicated in primary fibroblasts treated with MV separated from a cancer cell media. We identified that miR-155 was upregulated in PaC-derived MV and we confirmed that normal fibroblasts could convert into CAF after MV containing miR-155 had been taken up. TP53INP1 is a target of miR-155 in fibroblasts and a downregulation of TP53INP1 protein levels could contribute to the fibroblasts’ activation. These results indicated that pancreatic cancer cells might reprogram normal adjacent fibroblasts into CAF by means of secreted MV containing miR-155. Targeting the circulating microRNA might be a potential therapy for malignant tumors. PMID:26195069

  4. Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery.

    PubMed

    Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica

    2013-09-01

    Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers.

  5. Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications.

    PubMed

    Qin, Hua; Zhao, Andong; Zhang, Cuiping; Fu, Xiaobing

    2016-12-01

    Somatic cells can be reprogrammed to pluripotent stem cells or transdifferentiate to another lineage cell type. Much efforts have been made to unravel the epigenetic mechanisms underlying the cell fate conversion. Histone modifications as the major epigenetic regulator are implicated in various aspects of reprogramming and transdifferentiation. Here, we discuss the roles of histone modifications on reprogramming and transdifferentiation and hopefully provide new insights into induction and promotion of the cell fate conversion by modulating histone modifications.

  6. On the sensitivity of intact cells to perturbation by ethanol

    SciTech Connect

    Hitzemann, R.; Whitaker-Azmitia, P. ); Dains, K.; Lin, J. )

    1989-01-01

    A comparison was made of ethanol's effects on the order of plasma membranes in intact cells and some isolated membrane preparations. Order was assessed by steady-state fluorescence polarization techniques using the non-permeant probe, TMA-DPH. The data show that two cultured cells, rat neonatal astroglial and N2A neuroblastoma, were sensitive to significant ethanol-induced disordering within the anesthetically relevant range. Human erythrocytes, cultured fibroblasts and homogenized astroglial cells required higher ethanol concentrations to produce a similar effect. Intact erythrocytes were approximately twice as sensitive as erythrocyte ghost membranes to ethanol induced perturbation. The neonatal glial and N2A cells were approximately five times more sensitive than synaptic membranes to ethanol effects. DMPC and DMPC + cholesterol liposomes and myelin membranes were insensitive to ethanol's effects. The incorporation of 10 mole % ganglioside GM{sub 1} sensitized the liposomes to ethanol-induced perturbation.

  7. Reprogramming stem cells is a microenvironmental task

    SciTech Connect

    Bissell, Mina J; Inman, Jamie

    2008-10-14

    That tumor cells for all practical purposes are unstable and plastic could be expected. However, the astonishing ability of the nuclei from cells of normal adult tissues to be reprogrammed - given the right embryonic context - found its final truth even for mammals in the experiments that allowed engineering Dolly (1). The landmark experiments showed that nuclei originating from cells of frozen mammary tissues were capable of being reprogrammed by the embryonic cytoplasm and its microenvironment to produce a normal sheep. The rest is history. However, whether microenvironments other than those of the embryos can also reprogram adult cells of different tissue origins still containing their cytoplasm is of obvious interest. In this issue of PNAS, the laboratory of Gilbert Smith (2) reports on how the mammary gland microenvironment can reprogram both embryonic and adult stem neuronal cells. The work is a follow-up to their previous report on testis stem cells that were reprogrammed by the mammary microenvironment (3). They demonstrated that cells isolated from the seminiferous tubules of the mature testis, mixed with normal mammary epithelial cells, contributed a sizable number of epithelial progeny to normal mammary outgrowths in transplanted mammary fat pads. However, in those experiments they were unable to distinguish which subpopulation of the testis cells contributed progeny to the mammary epithelial tree. The current work adds new, compelling, and provocative information to our understanding of stem cell plasticity. Booth et al. (2) use neuronal stem cells (NSCs) isolated from WAP-cre/R26R mice combined with unlabeled mammary epithelial cells that subsequently are implanted in cleared mammary fat pads. In this new microenvironment, the NSCs that are incorporated into the branching mammary tree make chimeric glands (Fig. 1) that remarkably can also express the milk protein {beta}-casein, progesterone receptor, and estrogen receptor {alpha}. Remarkably, the

  8. Intact capture of hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    1986-01-01

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  9. Intact capture of hypervelocity particles

    NASA Astrophysics Data System (ADS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  10. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts

    PubMed Central

    Albrengues, Jean; Bertero, Thomas; Grasset, Eloise; Bonan, Stephanie; Maiel, Majdi; Bourget, Isabelle; Philippe, Claude; Herraiz Serrano, Cecilia; Benamar, Samia; Croce, Olivier; Sanz-Moreno, Victoria; Meneguzzi, Guerrino; Feral, Chloe C.; Cristofari, Gael; Gaggioli, Cedric

    2015-01-01

    Carcinoma-associated fibroblasts (CAF) mediate the onset of a proinvasive tumour microenvironment. The proinflammatory cytokine LIF reprograms fibroblasts into a proinvasive phenotype, which promotes extracellular matrix remodelling and collective invasion of cancer cells. Here we unveil that exposure to LIF initiates an epigenetic switch leading to the constitutive activation of JAK1/STAT3 signalling, which results in sustained proinvasive activity of CAF. Mechanistically, p300-histone acetyltransferase acetylates STAT3, which, in turn, upregulates and activates the DNMT3b DNA methyltransferase. DNMT3b methylates CpG sites of the SHP-1 phosphatase promoter, which abrogates SHP-1 expression, and results in constitutive phosphorylation of JAK1. Sustained JAK1/STAT3 signalling is maintained by DNA methyltransferase DNMT1. Consistently, in human lung and head and neck carcinomas, STAT3 acetylation and phosphorylation are inversely correlated with SHP-1 expression. Combined inhibition of DNMT activities and JAK signalling, in vitro and in vivo, results in long-term reversion of CAF-associated proinvasive activity and restoration of the wild-type fibroblast phenotype. PMID:26667266

  11. Upregulation of Mitochondrial Content in Cytochrome c Oxidase Deficient Fibroblasts.

    PubMed

    Kogot-Levin, Aviram; Saada, Ann; Leibowitz, Gil; Soiferman, Devorah; Douiev, Liza; Raz, Itamar; Weksler-Zangen, Sarah

    2016-01-01

    Cytochrome-c-oxidase (COX) deficiency is a frequent cause of mitochondrial disease and is associated with a wide spectrum of clinical phenotypes. We studied mitochondrial function and biogenesis in fibroblasts derived from the Cohen (CDs) rat, an animal model of COX deficiency. COX activity in CDs-fibroblasts was 50% reduced compared to control rat fibroblasts (P<0.01). ROS-production in CDs fibroblasts increased, along with marked mitochondrial fragmentation and decreased mitochondrial membrane-potential, indicating mitochondrial dysfunction. Surprisingly, cellular ATP content, oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were unchanged. To clarify the discrepancy between mitochondrial dysfunction and ATP production, we studied mitochondrial biogenesis and turnover. The content of mitochondria was higher in CDs-fibroblasts. Consistently, AMPK activity and the expression of NRF1-target genes, NRF2 and PGC1-α that mediate mitochondrial biogenesis were increased (P<0.01 vs control fibroblast). In CDs-fibrobalsts, the number of autophagosomes (LC3+ puncta) containing mitochondria in CDs fibroblasts was similar to that in control fibroblasts, suggesting that mitophagy was intact. Altogether, our findings demonstrate that mitochondrial dysfunction and oxidative stress are associated with an increase in mitochondrial biogenesis, resulting in preservation of ATP generation.

  12. Interleukin 6 in intact and injured mouse peripheral nerves.

    PubMed

    Reichert, F; Levitzky, R; Rotshenker, S

    1996-03-01

    The multifunctional cytokine interleukin 6 (IL-6) has direct growth, survival and differentiation effects on peripheral and central neurons. Furthermore, it can modulate the production by non-neuronal cells of other cytokines and growth factors, and thereby affect nerve cells indirectly. We have studied IL-6 expression and production in intact and injured peripheral nerves of C57/BL/6NHSD mice, which display the normal rapid progression of Wallerian degeneration. The IL-6 mRNA was detected in nerves degenerating in vitro or in vivo, but not in intact nerves. In vitro- and in vivo-degenerating nerve segments and neuroma nerve segments synthesized and secreted IL-6. The onset of IL-6 production was rapid and prolonged. It was detected as early as 2 h after injury and persisted for the entire period of 21 days tested after the injury. Of the non-neuronal cells that reside in intact and injured nerves, macrophages and fibroblasts were the major contributors to IL-6 production. We also studied IL-6 production in intact and injured nerves of mutant C57BL/6-WLD/OLA/NHSD mice, which display very slow progression of Wallerian degeneration. Injured nerves of C57BL/6-WLD/OLA/NHSD mice produced significantly lower amounts of IL-6 than did rapidly degenerating nerves of C57/BL/6NHSD mice.

  13. Intact capture of cosmic dust

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1991-01-01

    The focus of this development effort is to capture dust particles at hypervelocities intact and unmelted in order to preserve volatile organics. At the same time, the capture process must minimize any organic elemental or compound contamination to prevent any compromise of exobiological analyses. Inorganic silicate aerogel has been developed as a successful capture medium to satisfy both requirements of intact capture and minimal organic contamination. Up to 6 km/s, silicate projectiles from a few microns up to 100 microns have been captured intact without any melting and with minimal loss of mass. Carbon in silicate aerogel can be reduced to less than 1 part in 1000 and hydrogen 3 parts in 1000 when baked in air. Under controlled inert gas environments, additional hydrocarbon reduction can be achieved.

  14. Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate?

    PubMed

    Boué, Stéphanie; Paramonov, Ida; Barrero, María José; Izpisúa Belmonte, Juan Carlos

    2010-09-17

    After the hope and controversy brought by embryonic stem cells two decades ago for regenerative medicine, a new turn has been taken in pluripotent cells research when, in 2006, Yamanaka's group reported the reprogramming of fibroblasts to pluripotent cells with the transfection of only four transcription factors. Since then many researchers have managed to reprogram somatic cells from diverse origins into pluripotent cells, though the cellular and genetic consequences of reprogramming remain largely unknown. Furthermore, it is still unclear whether induced pluripotent stem cells (iPSCs) are truly functionally equivalent to embryonic stem cells (ESCs) and if they demonstrate the same differentiation potential as ESCs. There are a large number of reprogramming experiments published so far encompassing genome-wide transcriptional profiling of the cells of origin, the iPSCs and ESCs, which are used as standards of pluripotent cells and allow us to provide here an in-depth analysis of transcriptional profiles of human and mouse cells before and after reprogramming. When compared to ESCs, iPSCs, as expected, share a common pluripotency/self-renewal network. Perhaps more importantly, they also show differences in the expression of some genes. We concentrated our efforts on the study of bivalent domain-containing genes (in ESCs) which are not expressed in ESCs, as they are supposedly important for differentiation and should possess a poised status in pluripotent cells, i.e. be ready to but not yet be expressed. We studied each iPSC line separately to estimate the quality of the reprogramming and saw a correlation of the lowest number of such genes expressed in each respective iPSC line with the stringency of the pluripotency test achieved by the line. We propose that the study of expression of bivalent domain-containing genes, which are normally silenced in ESCs, gives a valuable indication of the quality of the iPSC line, and could be used to select the best iPSC lines

  15. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors

    PubMed Central

    Hiramatsu, Kunihiko; Sasagawa, Satoru; Outani, Hidetatsu; Nakagawa, Kanako; Yoshikawa, Hideki; Tsumaki, Noriyuki

    2011-01-01

    Repair of cartilage injury with hyaline cartilage continues to be a challenging clinical problem. Because of the limited number of chondrocytes in vivo, coupled with in vitro de-differentiation of chondrocytes into fibrochondrocytes, which secrete type I collagen and have an altered matrix architecture and mechanical function, there is a need for a novel cell source that produces hyaline cartilage. The generation of induced pluripotent stem (iPS) cells has provided a tool for reprogramming dermal fibroblasts to an undifferentiated state by ectopic expression of reprogramming factors. Here, we show that retroviral expression of two reprogramming factors (c-Myc and Klf4) and one chondrogenic factor (SOX9) induces polygonal chondrogenic cells directly from adult dermal fibroblast cultures. Induced cells expressed marker genes for chondrocytes but not fibroblasts, i.e., the promoters of type I collagen genes were extensively methylated. Although some induced cell lines formed tumors when subcutaneously injected into nude mice, other induced cell lines generated stable homogenous hyaline cartilage–like tissue. Further, the doxycycline-inducible induction system demonstrated that induced cells are able to respond to chondrogenic medium by expressing endogenous Sox9 and maintain chondrogenic potential after substantial reduction of transgene expression. Thus, this approach could lead to the preparation of hyaline cartilage directly from skin, without generating iPS cells. PMID:21293062

  16. Acquisition of pluripotency through continued environmental influence on OCT4-induced plastic human fibroblasts.

    PubMed

    Salci, Kyle R; Lee, Jung Bok; Mitchell, Ryan R; Orlando, Luca; Fiebig-Comyn, Aline; Shapovalova, Zoya; Bhatia, Mickie

    2015-07-01

    The combination of OCT4 expression and short-term exposure to reprogramming media induces a state of transcriptional plasticity in human fibroblasts, capable of responding to changes in the extracellular environment that facilitate direct cell fate conversion toward lineage specific progenitors. Here we reveal that continued exposure of OCT4-induced plastic human fibroblasts to reprogramming media (RM) is sufficient to induce pluripotency. OCT4-derived induced pluripotent stem cell (iPSC(OCT4)) colonies emerged after prolonged culture in RM, and formed independently of lineage specific progenitors. Human iPSC(OCT4) are morphologically indistinguishable from conventionally derived iPSCs and express core proteins involved in maintenance of pluripotency. iPSC(OCT4) display in vivo functional pluripotency as measured by teratoma formation consisting of the three germ layers, and are capable of targeted in vitro differentiation. Our study indicates that acquisition of pluripotency is one of multiple cell fate choices that can be facilitated through environmental stimulation of OCT4-induced plasticity, and suggests the role of other reprogramming factors to induce pluripotency can be substituted by prolonged culture of plastic fibroblasts.

  17. Identification of the early and late responder genes during the generation of induced pluripotent stem cells from mouse fibroblasts

    PubMed Central

    Ham, Seokjin; Hong, Chang-Pyo; Seo, Seonghye; Choe, Moon Kyung; Shin, So-I; Lee, Choon-Soo; Kim, Hyo-Soo

    2017-01-01

    Background The generation of induced pluripotent stem cell (iPSC), a substitute for embryonic stem cell (ESC), requires the proper orchestration of a transcription program at the chromatin level. Our recent approach for the induction of pluripotent stem cells from fibroblasts using protein extracts from mouse ESCs could overcome the potential tumorigenicity risks associated with random retroviral integration. Here, we examine the epigenetic modifications and the transcriptome of two types of iPSC and of partially reprogrammed iPSCs (iPSCp) generated independently from adult cardiac and skin fibroblasts to assess any perturbations of the transcription program during reprogramming. Results The comparative dissection of the transcription profiles and histone modification patterns at lysines 4 and 27 of histone H3 of the iPSC, iPSCp, ESC, and somatic cells revealed that the iPSC was almost completely comparable to the ESC, regardless of their origins, whereas the genes of the iPSCp were dysregulated to a larger extent. Regardless of the origins of the somatic cells, the fibroblasts induced using the ESC protein extracts appear to be completely reprogrammed into pluripotent cells, although they show unshared marginal differences in their gene expression programs, which may not affect the maintenance of stemness. A comparative investigation of the iPSCp generated by unwanted reprogramming showed that the two groups of genes on the pathway from somatic cells to iPSC might function as sequential reprogramming-competent early and late responders to the induction stimulus. Moreover, some of the divergent genes expressed only in the iPSCp were associated with many tumor-related pathways. Conclusions Faithful transcriptional reprogramming should follow epigenetic alterations to generate induced pluripotent stem cells from somatic cells. This genome-wide comparison enabled us to define the early and late responder genes during the cell reprogramming process to iPSC. Our results

  18. Identification of the early and late responder genes during the generation of induced pluripotent stem cells from mouse fibroblasts.

    PubMed

    Park, Jihwan; Kwon, Yoo-Wook; Ham, Seokjin; Hong, Chang-Pyo; Seo, Seonghye; Choe, Moon Kyung; Shin, So-I; Lee, Choon-Soo; Kim, Hyo-Soo; Roh, Tae-Young

    2017-01-01

    The generation of induced pluripotent stem cell (iPSC), a substitute for embryonic stem cell (ESC), requires the proper orchestration of a transcription program at the chromatin level. Our recent approach for the induction of pluripotent stem cells from fibroblasts using protein extracts from mouse ESCs could overcome the potential tumorigenicity risks associated with random retroviral integration. Here, we examine the epigenetic modifications and the transcriptome of two types of iPSC and of partially reprogrammed iPSCs (iPSCp) generated independently from adult cardiac and skin fibroblasts to assess any perturbations of the transcription program during reprogramming. The comparative dissection of the transcription profiles and histone modification patterns at lysines 4 and 27 of histone H3 of the iPSC, iPSCp, ESC, and somatic cells revealed that the iPSC was almost completely comparable to the ESC, regardless of their origins, whereas the genes of the iPSCp were dysregulated to a larger extent. Regardless of the origins of the somatic cells, the fibroblasts induced using the ESC protein extracts appear to be completely reprogrammed into pluripotent cells, although they show unshared marginal differences in their gene expression programs, which may not affect the maintenance of stemness. A comparative investigation of the iPSCp generated by unwanted reprogramming showed that the two groups of genes on the pathway from somatic cells to iPSC might function as sequential reprogramming-competent early and late responders to the induction stimulus. Moreover, some of the divergent genes expressed only in the iPSCp were associated with many tumor-related pathways. Faithful transcriptional reprogramming should follow epigenetic alterations to generate induced pluripotent stem cells from somatic cells. This genome-wide comparison enabled us to define the early and late responder genes during the cell reprogramming process to iPSC. Our results indicate that the cellular

  19. Reprogramming cells to study vacuolar development

    PubMed Central

    Feeney, Mistianne; Frigerio, Lorenzo; Kohalmi, Susanne E.; Cui, Yuhai; Menassa, Rima

    2013-01-01

    During vegetative and embryonic developmental transitions, plant cells are massively reorganized to support the activities that will take place during the subsequent developmental phase. Studying cellular and subcellular changes that occur during these short transitional periods can sometimes present challenges, especially when dealing with Arabidopsis thaliana embryo and seed tissues. As a complementary approach, cellular reprogramming can be used as a tool to study these cellular changes in another, more easily accessible, tissue type. To reprogram cells, genetic manipulation of particular regulatory factors that play critical roles in establishing or repressing the seed developmental program can be used to bring about a change of cell fate. During different developmental phases, vacuoles assume different functions and morphologies to respond to the changing needs of the cell. Lytic vacuoles (LVs) and protein storage vacuoles (PSVs) are the two main vacuole types found in flowering plants such as Arabidopsis. Although both are morphologically distinct and carry out unique functions, they also share some similar activities. As the co-existence of the two vacuole types is short-lived in plant cells, how they replace each other has been a long-standing curiosity. To study the LV to PSV transition, LEAFY COTYLEDON2, a key transcriptional regulator of seed development, was overexpressed in vegetative cells to activate the seed developmental program. At the cellular level, Arabidopsis leaf LVs were observed to convert to PSV-like organelles. This presents the opportunity for further research to elucidate the mechanism of LV to PSV transitions. Overall, this example demonstrates the potential usefulness of cellular reprogramming as a method to study cellular processes that occur during developmental transitions. PMID:24348496

  20. Direct reprogramming by oncogenic Ras and Myc.

    PubMed

    Ischenko, Irene; Zhi, Jizu; Moll, Ute M; Nemajerova, Alice; Petrenko, Oleksi

    2013-03-05

    Genetically or epigenetically defined reprogramming is a hallmark of cancer cells. However, a causal association between genome reprogramming and cancer has not yet been conclusively established. In particular, little is known about the mechanisms that underlie metastasis of cancer, and even less is known about the identity of metastasizing cancer cells. In this study, we used a model of conditional expression of oncogenic KrasG12D allele in primary mouse cells to show that reprogramming and dedifferentiation is a fundamental early step in malignant transformation and cancer initiation. Our data indicate that stable expression of activated KrasG12D confers on cells a large degree of phenotypic plasticity that predisposes them to neoplastic transformation and acquisition of stem cell characteristics. We have developed a genetically tractable model system to investigate the origins and evolution of metastatic pancreatic cancer cells. We show that metastatic conversion of KrasG12D-expressing cells that exhibit different degrees of differentiation and malignancy can be reconstructed in cell culture, and that the proto-oncogene c-Myc controls the generation of self-renewing metastatic cancer cells. Collectively, our results support a model wherein non-stem cancer cells have the potential to dedifferentiate and acquire stem cell properties as a direct consequence of oncogene-induced plasticity. Moreover, the disturbance in the normally existing dynamic equilibrium between cancer stem cells and non-stem cancer cells allows the formation of cancer stem cells with high metastatic capacity at any time during cancer progression.

  1. Metabolic Reprogramming of Stem Cell Epigenetics

    PubMed Central

    Ryall, James G.; Cliff, Tim; Dalton, Stephen; Sartorelli, Vittorio

    2015-01-01

    Summary For many years, stem cell metabolism was viewed as a by product of cell fate status rather than an active regulatory mechanism, however there is now a growing appreciation that metabolic pathways influence epigenetic changes associated with lineage commitment, specification, and self-renewal. Here we review how metabolites generated during glycolytic and oxidative processes are utilized in enzymatic reactions leading to epigenetic modifications and transcriptional regulation. We discuss how “metabolic reprogramming” contributes to global epigenetic changes in the context of naïve and primed pluripotent states, somatic reprogramming, and hematopoietic and skeletal muscle tissue stem cells, and the implications for regenerative medicine. PMID:26637942

  2. Alleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming.

    PubMed

    Polak, Urszula; Li, Yanjie; Butler, Jill Sergesketter; Napierala, Marek

    2016-12-01

    Friedreich's ataxia (FRDA) is the most common autosomal recessive ataxia. This severe neurodegenerative disease is caused by an expansion of guanine-adenine-adenine (GAA) repeats located in the first intron of the frataxin (FXN) gene, which represses its transcription. Although transcriptional silencing is associated with heterochromatin-like changes in the vicinity of the expanded GAAs, the exact mechanism and pathways involved in transcriptional inhibition are largely unknown. As major remodeling of the epigenome is associated with somatic cell reprogramming, modulating chromatin modification pathways during the cellular transition from a somatic to a pluripotent state is likely to generate permanent changes to the epigenetic landscape. We hypothesize that the epigenetic modifications in the vicinity of the GAA repeats can be reversed by pharmacological modulation during somatic cell reprogramming. We reprogrammed FRDA fibroblasts into induced pluripotent stem cells (iPSCs) in the presence of various small molecules that target DNA methylation and histone acetylation and methylation. Treatment of FRDA iPSCs with two compounds, sodium butyrate (NaB) and Parnate, led to an increase in FXN expression and correction of repressive marks at the FXN locus, which persisted for several passages. However, prolonged culture of the epigenetically modified FRDA iPSCs led to progressive expansions of the GAA repeats and a corresponding decrease in FXN expression. Furthermore, we uncovered that differentiation of these iPSCs into neurons also results in resilencing of the FXN gene. Taken together, these results demonstrate that transcriptional repression caused by long GAA repeat tracts can be partially or transiently reversed by altering particular epigenetic modifications, thus revealing possibilities for detailed analyses of silencing mechanism and development of new therapeutic approaches for FRDA.

  3. An integrative analysis of reprogramming in human isogenic system identified a clone selection criterion

    PubMed Central

    Shutova, Maria V.; Surdina, Anastasia V.; Ischenko, Dmitry S.; Naumov, Vladimir A.; Bogomazova, Alexandra N.; Vassina, Ekaterina M.; Alekseev, Dmitry G.; Lagarkova, Maria A.; Kiselev, Sergey L

    2016-01-01

    ABSTRACT The pluripotency of newly developed human induced pluripotent stem cells (iPSCs) is usually characterized by physiological parameters; i.e., by their ability to maintain the undifferentiated state and to differentiate into derivatives of the 3 germ layers. Nevertheless, a molecular comparison of physiologically normal iPSCs to the “gold standard” of pluripotency, embryonic stem cells (ESCs), often reveals a set of genes with different expression and/or methylation patterns in iPSCs and ESCs. To evaluate the contribution of the reprogramming process, parental cell type, and fortuity in the signature of human iPSCs, we developed a complete isogenic reprogramming system. We performed a genome-wide comparison of the transcriptome and the methylome of human isogenic ESCs, 3 types of ESC-derived somatic cells (fibroblasts, retinal pigment epithelium and neural cells), and 3 pairs of iPSC lines derived from these somatic cells. Our analysis revealed a high input of stochasticity in the iPSC signature that does not retain specific traces of the parental cell type and reprogramming process. We showed that 5 iPSC clones are sufficient to find with 95% confidence at least one iPSC clone indistinguishable from their hypothetical isogenic ESC line. Additionally, on the basis of a small set of genes that are characteristic of all iPSC lines and isogenic ESCs, we formulated an approach of “the best iPSC line” selection and confirmed it on an independent dataset. PMID:26919644

  4. Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos

    PubMed Central

    Zhang, Sheng; Chen, Xin; Wang, Fang; An, Xinglan; Tang, Bo; Zhang, Xueming; Sun, Liguang; Li, Ziyi

    2016-01-01

    DNA methylation reprogramming plays important roles in mammalian embryogenesis. Mammalian somatic cell nuclear transfer (SCNT) embryos with reprogramming defects fail to develop. Thus, we compared DNA methylation reprogramming in preimplantation embryos from bovine SCNT and in vitro fertilization (IVF) and analyzed the influence of vitamin C (VC) on the reprogramming of DNA methylation. The results showed that global DNA methylation followed a typical pattern of demethylation and remethylation in IVF preimplantation embryos; however, the global genome remained hypermethylated in SCNT preimplantation embryos. Compared with the IVF group, locus DNA methylation reprogramming showed three patterns in the SCNT group. First, some pluripotency genes (POU5F1 and NANOG) and repeated elements (satellite I and α-satellite) showed insufficient demethylation and hypermethylation in the SCNT group. Second, a differentially methylated region (DMR) of an imprint control region (ICR) in H19 exhibited excessive demethylation and hypomethylation. Third, some pluripotency genes (CDX2 and SOX2) were hypomethylated in both the IVF and SCNT groups. Additionally, VC improved the DNA methylation reprogramming of satellite I, α-satellite and H19 but not that of POU5F1 and NANOG in SCNT preimplantation embryos. These results indicate that DNA methylation reprogramming was aberrant and that VC influenced DNA methylation reprogramming in SCNT embryos in a locus-specific manner. PMID:27456302

  5. Combining small molecules for cell reprogramming through an interatomic analysis.

    PubMed

    Feltes, Bruno César; Bonatto, Diego

    2013-11-01

    The knowledge available about the application and generation of induced pluripotent stem cells (iPSC) has grown since their discovery, and new techniques to enhance the reprogramming process have been described. Among the new approaches to induce iPSC that have gained great attention is the use of small molecules for reprogramming. The application of small molecules, unlike genetic manipulation, provides for control of the reprogramming process through the shifting of concentrations and the combination of different molecules. However, different researchers have reported the use of "reprogramming cocktails" with variable results and drug combinations. Thus, the proper combination of small molecules for successful and enhanced reprogramming is a matter for discussion. However, testing all potential drug combinations in different cell lineages is very costly and time-consuming. Therefore, in this article, we discuss the use of already employed molecules for iPSC generation, followed by the application of systems chemo-biology tools to create different data sets of protein-protein (PPI) and chemical-protein (CPI) interaction networks based on the knowledge of already used and new reprogramming cocktail combinations. We further analyzed the biological processes associated with PPI-CPI networks and provided new potential protein targets to be inhibited or expressed for stem cell reprogramming. In addition, we applied a new interference analysis to prospective targets that could negatively affect the classical pluripotency-associated factors (SOX2, NANOG, KLF4 and OCT4) and thus potentially improve reprogramming protocols.

  6. Authentication in Reprogramming of Sensor Networks for Mote Class Adversaries

    DTIC Science & Technology

    2006-01-01

    Authentication in Reprogramming of Sensor Networks for Mote Class Adversaries 1 Limin Wang Sandeep S. Kulkarni Software Engineering and Network...Systems Laboratory Department of Computer Science and Engineering Michigan State University East Lansing MI 48824 USA Abstract Reprogramming is an... Engineering ,Software Engineering and Network Systems Laboratory,East Lansing,MI,48824 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  7. Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming

    PubMed Central

    2014-01-01

    Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols. PMID:24625220

  8. Transcription factor-mediated reprogramming: epigenetics and therapeutic potential.

    PubMed

    Firas, Jaber; Liu, Xiaodong; Lim, Sue Mei; Polo, Jose M

    2015-03-01

    Cellular reprogramming refers to the conversion of one cell type into another by altering its epigenetic marks. This can be achieved by three different methods: somatic cell nuclear transfer, cell fusion and transcription factor (TF)-mediated reprogramming. TF-mediated reprogramming can occur through several means, either reverting backwards to a pluripotent state before redifferentiating to a new cell type (otherwise known as induced pluripotency), by transdifferentiating directly into a new cell type (bypassing the intermediate pluripotent stage), or, by using the induced pluripotency pathway without reaching the pluripotent state. The possibility of reprogramming any cell type of interest not only sheds new insights on cellular plasticity, but also provides a novel use of this technology across several platforms, most notably in cellular replacement therapies, disease modelling and drug screening. This review will focus on the different ways of implementing TF-mediated reprogramming, their associated epigenetic changes and its therapeutic potential.

  9. Direct reprogramming of adult cells: avoiding the pluripotent state.

    PubMed

    Kelaini, Sophia; Cochrane, Amy; Margariti, Andriana

    2014-01-01

    The procedure of using mature, fully differentiated cells and inducing them toward other cell types while bypassing an intermediate pluripotent state is termed direct reprogramming. Avoiding the pluripotent stage during cellular conversions can be achieved either through ectopic expression of lineage-specific factors (transdifferentiation) or a direct reprogramming process that involves partial reprogramming toward the pluripotent stage. Latest advances in the field seek to alleviate concerns that include teratoma formation or retroviral usage when it comes to delivering reprogramming factors to cells. They also seek to improve efficacy and efficiency of cellular conversion, both in vitro and in vivo. The final products of this reprogramming approach could be then directly implemented in regenerative and personalized medicine.

  10. Messenger RNA- versus retrovirus-based induced pluripotent stem cell reprogramming strategies: analysis of genomic integrity.

    PubMed

    Steichen, Clara; Luce, Eléanor; Maluenda, Jérôme; Tosca, Lucie; Moreno-Gimeno, Inmaculada; Desterke, Christophe; Dianat, Noushin; Goulinet-Mainot, Sylvie; Awan-Toor, Sarah; Burks, Deborah; Marie, Joëlle; Weber, Anne; Tachdjian, Gérard; Melki, Judith; Dubart-Kupperschmitt, Anne

    2014-06-01

    The use of synthetic messenger RNAs to generate human induced pluripotent stem cells (iPSCs) is particularly appealing for potential regenerative medicine applications, because it overcomes the common drawbacks of DNA-based or virus-based reprogramming strategies, including transgene integration in particular. We compared the genomic integrity of mRNA-derived iPSCs with that of retrovirus-derived iPSCs generated in strictly comparable conditions, by single-nucleotide polymorphism (SNP) and copy number variation (CNV) analyses. We showed that mRNA-derived iPSCs do not differ significantly from the parental fibroblasts in SNP analysis, whereas retrovirus-derived iPSCs do. We found that the number of CNVs seemed independent of the reprogramming method, instead appearing to be clone-dependent. Furthermore, differentiation studies indicated that mRNA-derived iPSCs differentiated efficiently into hepatoblasts and that these cells did not load additional CNVs during differentiation. The integration-free hepatoblasts that were generated constitute a new tool for the study of diseased hepatocytes derived from patients' iPSCs and their use in the context of stem cell-derived hepatocyte transplantation. Our findings also highlight the need to conduct careful studies on genome integrity for the selection of iPSC lines before using them for further applications. ©AlphaMed Press.

  11. Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency.

    PubMed

    Liao, Hung-Fu; Mo, Chu-Fan; Wu, Shinn-Chih; Cheng, Dai-Han; Yu, Chih-Yun; Chang, Kai-Wei; Kao, Tzu-Hao; Lu, Chia-Wei; Pinskaya, Marina; Morillon, Antonin; Lin, Shih-Shun; Cheng, Winston T K; Bourc'his, Déborah; Bestor, Timothy; Sung, Li-Ying; Lin, Shau-Ping

    2015-10-01

    Nuclear transfer (NT) is a technique used to investigate the development and reprogramming potential of a single cell. DNA methyltransferase-3-like, which has been characterized as a repressive transcriptional regulator, is expressed in naturally fertilized egg and morula/blastocyst at pre-implantation stages. In this study, we demonstrate that the use of Dnmt3l-knockout (Dnmt3l-KO) donor cells in combination with Trichostatin A treatment improved the developmental efficiency and quality of the cloned embryos. Compared with the WT group, Dnmt3l-KO donor cell-derived cloned embryos exhibited increased cell numbers as well as restricted OCT4 expression in the inner cell mass (ICM) and silencing of transposable elements at the blastocyst stage. In addition, our results indicate that zygotic Dnmt3l is dispensable for cloned embryo development at pre-implantation stages. In Dnmt3l-KO mouse embryonic fibroblasts, we observed reduced nuclear localization of HDAC1, increased levels of the active histone mark H3K27ac and decreased accumulation of the repressive histone marks H3K27me3 and H3K9me3, suggesting that Dnmt3l-KO donor cells may offer a more permissive epigenetic state that is beneficial for NT reprogramming.

  12. Messenger RNA- Versus Retrovirus-Based Induced Pluripotent Stem Cell Reprogramming Strategies: Analysis of Genomic Integrity

    PubMed Central

    Steichen, Clara; Luce, Eléanor; Maluenda, Jérôme; Tosca, Lucie; Moreno-Gimeno, Inmaculada; Desterke, Christophe; Dianat, Noushin; Goulinet-Mainot, Sylvie; Awan-Toor, Sarah; Burks, Deborah; Marie, Joëlle; Weber, Anne; Tachdjian, Gérard; Melki, Judith

    2014-01-01

    The use of synthetic messenger RNAs to generate human induced pluripotent stem cells (iPSCs) is particularly appealing for potential regenerative medicine applications, because it overcomes the common drawbacks of DNA-based or virus-based reprogramming strategies, including transgene integration in particular. We compared the genomic integrity of mRNA-derived iPSCs with that of retrovirus-derived iPSCs generated in strictly comparable conditions, by single-nucleotide polymorphism (SNP) and copy number variation (CNV) analyses. We showed that mRNA-derived iPSCs do not differ significantly from the parental fibroblasts in SNP analysis, whereas retrovirus-derived iPSCs do. We found that the number of CNVs seemed independent of the reprogramming method, instead appearing to be clone-dependent. Furthermore, differentiation studies indicated that mRNA-derived iPSCs differentiated efficiently into hepatoblasts and that these cells did not load additional CNVs during differentiation. The integration-free hepatoblasts that were generated constitute a new tool for the study of diseased hepatocytes derived from patients’ iPSCs and their use in the context of stem cell-derived hepatocyte transplantation. Our findings also highlight the need to conduct careful studies on genome integrity for the selection of iPSC lines before using them for further applications. PMID:24736403

  13. Conversion of human fibroblasts into monocyte-like progenitor cells

    PubMed Central

    Vitaloni, Marianna; Guenechea, Guillermo; Xia, Yun; Kurian, Leo; Dubova, Ilir; Bueren, Juan; Laricchia-Robbio, Leopoldo; Belmonte, Juan Carlos Izpisua

    2014-01-01

    Reprogramming technologies have emerged as a promising approach for future regenerative medicine. Here we report on the establishment of a novel methodology allowing for the conversion of human fibroblasts into Hematopoietic Progenitor-like Cells (HPC) with macrophage differentiation potential. SOX2 overexpression in human fibroblasts, a gene found to be upregulated during hematopoietic reconstitution in mice, induced the rapid appearance of CD34+ cells with a concomitant upregulation of mesoderm-related markers. Profiling of Cord Blood hematopoietic progenitor cell populations identified miR-125b as a factor facilitating commitment of SOX2-generated CD34+ cells to immature hematopoietic-like progenitor cells with grafting potential. Further differentiation towards the monocytic lineage resulted in the appearance of CD14+ cells with functional phagocytic capacity. In vivo transplantation of SOX2/miR-125b-generated CD34+ cells facilitated the maturation of the engrafted cells towards CD45+ cells and ultimately the monocytic/macrophage lineage. Altogether, our results indicate that strategies combining lineage conversion and further lineage specification by in vivo or in vitro approaches could help to circumvent long-standing obstacles for the reprogramming of human cells into hematopoietic cells with clinical potential. PMID:25175072

  14. Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways.

    PubMed

    Jullien, Jerome; Vodnala, Munender; Pasque, Vincent; Oikawa, Mami; Miyamoto, Kei; Allen, George; David, Sarah Anne; Brochard, Vincent; Wang, Stan; Bradshaw, Charles; Koseki, Haruhiko; Sartorelli, Vittorio; Beaujean, Nathalie; Gurdon, John

    2017-03-02

    Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos.

  15. Efficient production of retroviruses using PLGA/bPEI-DNA nanoparticles and application for reprogramming somatic cells.

    PubMed

    Seo, Eun Jin; Jang, Il Ho; Do, Eun Kyoung; Cheon, Hyo Cheon; Heo, Soon Chul; Kwon, Yang Woo; Jeong, Geun Ok; Kim, Ba Reun; Kim, Jae Ho

    2013-01-01

    Reprogramming of somatic cells to pluripotent cells requires the introduction of factors driving fate switches. Viral delivery has been the most efficient method for generation of induced pluripotent stem cells. Transfection, which precedes virus production, is a commonly-used process for delivery of nucleic acids into cells. The aim of this study is to evaluate the efficiency of PLGA/ bPEI nanoparticles in transfection and virus production. Using a modified method of producing PLGA nanoparticles, PLGA/bPEI-DNA nanoparticles were examined for transfection efficiency and virus production yield in comparison with PLGA-DNA, bPEI-DNA nanoparticles or liposome-DNA complexes. After testing various ratios of PLGA, bPEI, and DNA, the ratio of 6:3:1 (PLGA:bPEI:DNA, w/w/w) was determined to be optimal, with acceptable cellular toxicity. PLGA/bPEI-DNA (6:3:1) nanoparticles showed superior transfection efficiency, especially in multiple gene transfection, and viral yield when compared with liposome-DNA complexes. The culture supernatants of HEK293FT cells transfected with PLGA/bPEI-DNA of viral constructs containing reprogramming factors (Oct4, Sox2, Klf4, or c-Myc) successfully and more efficiently generated induced pluripotent stem cell colonies from mouse embryonic fibroblasts. These results strongly suggest that PLGA/bPEI-DNA nanoparticles can provide significant advantages in studying the effect of multiple factor delivery such as in reprogramming or direct conversion of cell fate.

  16. Nucleostemin maintains self-renewal of embryonic stem cells and promotes reprogramming of somatic cells to pluripotency.

    PubMed

    Qu, Jian; Bishop, J Michael

    2012-06-11

    Nucleostemin (NS) is a nucleolar GTP-binding protein that was first identified in neural stem cells, the functions of which remain poorly understood. Here, we report that NS is required for mouse embryogenesis to reach blastulation, maintenance of embryonic stem cell (ESC) self-renewal, and mammary epithelial cell (MEC) reprogramming to induced pluripotent stem (iPS) cells. Ectopic NS also cooperates with OCT4 and SOX2 to reprogram MECs and mouse embryonic fibroblasts to iPS cells. NS promotes ESC self-renewal by sustaining rapid transit through the G1 phase of the cell cycle. Depletion of NS in ESCs retards transit through G1 and induces gene expression changes and morphological differentiation through a mechanism that involves the MEK/ERK protein kinases and that is active only during a protracted G1. Suppression of cell cycle inhibitors mitigates these effects. Our results implicate NS in the maintenance of ESC self-renewal, demonstrate the importance of rapid transit through G1 for this process, and expand the known classes of reprogramming factors.

  17. Germ line, stem cells, and epigenetic reprogramming.

    PubMed

    Surani, M A; Durcova-Hills, G; Hajkova, P; Hayashi, K; Tee, W W

    2008-01-01

    The germ cell lineage has the unique attribute of generating the totipotent state. Development of blastocysts from the totipotent zygote results in the establishment of pluripotent primitive ectoderm cells in the inner cell mass of blastocysts, which subsequently develop into epiblast cells in postimplantation embryos. The germ cell lineage in mice originates from these pluripotent epiblast cells of postimplantation embryos in response to specific signals. Pluripotent stem cells and unipotent germ cells share some fundamental properties despite significant phenotypic differences between them. Additionally, early primordial germ cells can be induced to undergo dedifferentiation into pluripotent embryonic germ cells. Investigations on the relationship between germ cells and pluripotent stem cells may further elucidate the nature of the pluripotent state. Furthermore, comprehensive epigenetic reprogramming of the genome in early germ cells, including extensive erasure of epigenetic modifications, is a critical step toward establishment of totipotency. The mechanisms involved may be relevant for gaining insight into events that lead to reprogramming of somatic cells into pluripotent stem cells.

  18. Oncogenic regulation of tumor metabolic reprogramming

    PubMed Central

    Tarrado-Castellarnau, Míriam; de Atauri, Pedro; Cascante, Marta

    2016-01-01

    Development of malignancy is accompanied by a complete metabolic reprogramming closely related to the acquisition of most of cancer hallmarks. In fact, key oncogenic pathways converge to adapt the metabolism of carbohydrates, proteins, lipids and nucleic acids to the dynamic tumor microenvironment, conferring a selective advantage to cancer cells. Therefore, metabolic properties of tumor cells are significantly different from those of non-transformed cells. In addition, tumor metabolic reprogramming is linked to drug resistance in cancer treatment. Accordingly, metabolic adaptations are specific vulnerabilities that can be used in different therapeutic approaches for cancer therapy. In this review, we discuss the dysregulation of the main metabolic pathways that enable cell transformation and its association with oncogenic signaling pathways, focusing on the effects of c-MYC, hypoxia inducible factor 1 (HIF1), phosphoinositide-3-kinase (PI3K), and the mechanistic target of rapamycin (mTOR) on cancer cell metabolism. Elucidating these connections is of crucial importance to identify new targets and develop selective cancer treatments that improve response to therapy and overcome the emerging resistance to chemotherapeutics. PMID:28040803

  19. Nuclear Actin in Development and Transcriptional Reprogramming.

    PubMed

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  20. Shifting behaviour: epigenetic reprogramming in eusocial insects.

    PubMed

    Patalano, Solenn; Hore, Timothy A; Reik, Wolf; Sumner, Seirian

    2012-06-01

    Epigenetic modifications are ancient and widely utilised mechanisms that have been recruited across fungi, plants and animals for diverse but fundamental biological functions, such as cell differentiation. Recently, a functional DNA methylation system was identified in the honeybee, where it appears to underlie queen and worker caste differentiation. This discovery, along with other insights into the epigenetics of social insects, allows provocative analogies to be drawn between insect caste differentiation and cellular differentiation, particularly in mammals. Developing larvae in social insect colonies are totipotent: they retain the ability to specialise as queens or workers, in a similar way to the totipotent cells of early embryos before they differentiate into specific cell lineages. Further, both differentiating cells and insect castes lose phenotypic plasticity by committing to their lineage, losing the ability to be readily reprogrammed. Hence, a comparison of the epigenetic mechanisms underlying lineage differentiation (and reprogramming) between cells and social insects is worthwhile. Here we develop a conceptual model of how loss and regain of phenotypic plasticity might be conserved for individual specialisation in both cells and societies. This framework forges a novel link between two fields of biological research, providing predictions for a unified approach to understanding the molecular mechanisms underlying biological complexity.

  1. Nuclear Actin in Development and Transcriptional Reprogramming

    PubMed Central

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin’s roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation. PMID:28326098

  2. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming.

    PubMed

    No, Jin-Gu; Choi, Mi-Kyung; Kwon, Dae-Jin; Yoo, Jae Gyu; Yang, Byoung-Chul; Park, Jin-Ki; Kim, Dong-Hoon

    2015-01-01

    Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.

  3. Role of Hepatic-Specific Transcription Factors and Polycomb Repressive Complex 2 during Induction of Fibroblasts to Hepatic Fate

    PubMed Central

    Wee, Ping; Yaqubi, Moein

    2016-01-01

    Direct reprogramming using defined sets of transcription factors (TFs) is a recent strategy for generating induced hepatocytes (iHeps) from fibroblasts for use in regenerative medicine and drug development. Comprehensive studies detailing the regulatory role of TFs during this reprogramming process could help increase its efficiency. This study aimed to find the TFs with the greatest influences on the generation of iHeps from fibroblasts, and to further understand their roles in the regulation of the gene expression program. Here, we used systems biology approaches to analyze high quality expression data sets in combination with TF-binding sites data and protein-protein interactions data during the direct reprogramming of fibroblasts to iHeps. Our results revealed two main patterns for differentially expressed genes (DEGs): up-regulated genes were categorized as hepatic-specific pattern, and down-regulated genes were categorized as mesoderm- and fibroblast-specific pattern. Interestingly, hepatic-specific genes co-expressed and were regulated by hepatic-specific TFs, specifically Hnf4a and Foxa2. Conversely, the mesoderm- and fibroblast-specific pattern was mainly silenced by polycomb repressive complex 2 (PRC2) members, including Suz12, Mtf2, Ezh2, and Jarid2. Independent analysis of both the gene and core regulatory network of DE-TFs showed significant roles for Hnf4a, Foxa2, and PRC2 members in the regulation of the gene expression program and in biological processes during the direct conversion process. Altogether, using systems biology approaches, we clarified the role of Hnf4a and Foxa2 as hepatic-specific TFs, and for the first time, introduced the PRC2 complex as the main regulator that favors the direct reprogramming process in cooperation with hepatic-specific factors. PMID:27902735

  4. Monitoring Intact Viruses Using Aptamers.

    PubMed

    Kumar, Penmetcha K R

    2016-08-04

    Viral diagnosis and surveillance are necessary steps in containing the spread of viral diseases, and they help in the deployment of appropriate therapeutic interventions. In the past, the commonly employed viral detection methods were either cell-culture or molecule-level assays. Most of these assays are laborious and expensive, require special facilities, and provide a slow diagnosis. To circumvent these limitations, biosensor-based approaches are becoming attractive, especially after the successful commercialization of glucose and other biosensors. In the present article, I have reviewed the current progress using the biosensor approach for detecting intact viruses. At the time of writing this review, three types of bioreceptor surfaces (antibody-, glycan-, and aptamer-based) have been explored on different sensing platforms for detecting intact viruses. Among these bioreceptors, aptamer-based sensors have been increasingly explored for detecting intact viruses using surface plasmon resonance (SPR) and other platforms. Special emphasis is placed on the aptamer-based SPR platform in the present review.

  5. Monitoring Intact Viruses Using Aptamers

    PubMed Central

    Kumar, Penmetcha K. R.

    2016-01-01

    Viral diagnosis and surveillance are necessary steps in containing the spread of viral diseases, and they help in the deployment of appropriate therapeutic interventions. In the past, the commonly employed viral detection methods were either cell-culture or molecule-level assays. Most of these assays are laborious and expensive, require special facilities, and provide a slow diagnosis. To circumvent these limitations, biosensor-based approaches are becoming attractive, especially after the successful commercialization of glucose and other biosensors. In the present article, I have reviewed the current progress using the biosensor approach for detecting intact viruses. At the time of writing this review, three types of bioreceptor surfaces (antibody-, glycan-, and aptamer-based) have been explored on different sensing platforms for detecting intact viruses. Among these bioreceptors, aptamer-based sensors have been increasingly explored for detecting intact viruses using surface plasmon resonance (SPR) and other platforms. Special emphasis is placed on the aptamer-based SPR platform in the present review. PMID:27527230

  6. Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo.

    PubMed

    Dal-Pra, Sophie; Hodgkinson, Conrad P; Mirotsou, Maria; Kirste, Imke; Dzau, Victor J

    2017-02-16

    Rationale: Direct reprogramming of cardiac fibroblasts to cardac omyocytes has recently emerged as a novel and promising approach to regenerate the injured myocardium. We have previously demonstrated the feasibility of this approach in vitro and in vivo using a combination of four microRNAs (miR-1, miR-133, miR-208 and miR-499) that we named miR combo. However, the mechanism of miR combo mediated direct cardiac reprogramming is currently unknown. Objective: Here we investigated the possibility that miR combo initiated direct cardiac reprogramming through an epigenetic mechanism. Methods and Results: Using a qPCR array, we found that histone methyltransferases and demethylases that regulate the tri-methylation of H3K27 (H3K27me3), an epigenetic modification that marks transcriptional repression, were changed in miR combo treated fibroblasts. Accordingly, global H3K27me3 levels were downregulated by miR combo treatment. In particular, the promoter region of cardiac transcription factors showed decreased H3K27me3 as revealed by ChIP-qPCR. Inhibition of H3K27 methyltransferases or of the Polycomb Repressive Complex 2 (PRC2) by pharmaceutical inhibition or siRNA reduced the levels of H3K27me3 and induced cardiogenic markers at the RNA and protein level, similarly to miR combo treatment. In contrast, knockdown of the H3K27 demethylases Kdm6A and Kdm6B restored the levels of H3K27me3 and blocked the induction of cardiac gene expression in miR combo treated fibroblasts. Conclusions: In summary, we demonstrated that removal of the repressive mark H3K27me3 is essential for the induction of cardiac reprogramming by miR combo. Our data not only highlight the importance of regulating the epigenetic landscape during cell fate conversion but also provide a framework to improve this technique.

  7. Intramyocardial Fibroblast - Myocyte Communication

    PubMed Central

    Kakkar, Rahul; Lee, Richard T.

    2009-01-01

    Cardiac fibroblasts are emerging as key components of normal cardiac function as well as the response to stressors and injury. These most numerous cells of the heart interact with myocytes via paracrine mechanisms, alterations in extracellular matrix homeostasis, and direct cell-cell interactions. It is possible that they are a contributor to the inability of adult myocytes to proliferate, and may influence cardiac progenitor biology. Furthering our understanding of how cardiac fibroblast and myocytes interact may provide an avenue to novel treatments for heart failure prevention. This review discusses the most recent concepts in cardiac fibroblast-myocyte communication and areas of potential future research. PMID:20056945

  8. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal.

    PubMed

    Mills, Evanna L; O'Neill, Luke A

    2016-01-01

    Mitochondria are master regulators of metabolism. Mitochondria generate ATP by oxidative phosphorylation using pyruvate (derived from glucose and glycolysis) and fatty acids (FAs), both of which are oxidized in the Krebs cycle, as fuel sources. Mitochondria are also an important source of reactive oxygen species (ROS), creating oxidative stress in various contexts, including in the response to bacterial infection. Recently, complex changes in mitochondrial metabolism have been characterized in mouse macrophages in response to varying stimuli in vitro. In LPS and IFN-γ-activated macrophages (M1 macrophages), there is decreased respiration and a broken Krebs cycle, leading to accumulation of succinate and citrate, which act as signals to alter immune function. In IL-4-activated macrophages (M2 macrophages), the Krebs cycle and oxidative phosphorylation are intact and fatty acid oxidation (FAO) is also utilized. These metabolic alterations in response to the nature of the stimulus are proving to be determinants of the effector functions of M1 and M2 macrophages. Furthermore, reprogramming of macrophages from M1 to M2 can be achieved by targeting metabolic events. Here, we describe the role that metabolism plays in macrophage function in infection and immunity, and propose that reprogramming with metabolic inhibitors might be a novel therapeutic approach for the treatment of inflammatory diseases.

  9. Deterministic direct reprogramming of somatic cells to pluripotency.

    PubMed

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  10. Regulation of L-threonine dehydrogenase in somatic cell reprogramming.

    PubMed

    Han, Chuanchun; Gu, Hao; Wang, Jiaxu; Lu, Weiguang; Mei, Yide; Wu, Mian

    2013-05-01

    Increasing evidence suggests that metabolic remodeling plays an important role in the regulation of somatic cell reprogramming. Threonine catabolism mediated by L-threonine dehydrogenase (TDH) has been recognized as a specific metabolic trait of mouse embryonic stem cells. However, it remains unknown whether TDH-mediated threonine catabolism could regulate reprogramming. Here, we report TDH as a novel regulator of somatic cell reprogramming. Knockdown of TDH inhibits, whereas induction of TDH enhances reprogramming efficiency. Moreover, microRNA-9 post-transcriptionally regulates the expression of TDH and thereby inhibits reprogramming efficiency. Furthermore, protein arginine methyltransferase (PRMT5) interacts with TDH and mediates its post-translational arginine methylation. PRMT5 appears to regulate TDH enzyme activity through both methyltransferase-dependent and -independent mechanisms. Functionally, TDH-facilitated reprogramming efficiency is further enhanced by PRMT5. These results suggest that TDH-mediated threonine catabolism controls somatic cell reprogramming and indicate the importance of post-transcriptional and post-translational regulation of TDH.

  11. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen

    PubMed Central

    Slotkin, R. Keith; Vaughn, Matthew; Tanurdžic, Miloš; Borges, Filipe; Becker, Jörg D.; Feijó, José A.; Martienssen, Robert A.

    2009-01-01

    Summary The mutagenic activity of transposable elements (TEs) is suppressed by epigenetic silencing and small interfering RNAs (siRNAs), especially in gametes that would transmit transposed elements to the next generation. In pollen from the model plant Arabidopsis, we show that TEs are unexpectedly reactivated and transpose, but only in the pollen vegetative nucleus, which accompanies the sperm cells but does not provide DNA to the fertilized zygote. TE expression coincides with down-regulation of the heterochromatin remodeler DECREASE IN DNA METHYLATION 1 and of most TE siRNAs. However, 21 nucleotide siRNA from Athila retrotransposons is generated in pollen and accumulates in sperm, indicating that siRNA from TEs activated in the vegetative nucleus can target silencing in gametes. We propose a conserved role for reprogramming in germline companion cells, such as nurse cells in insects and vegetative nuclei in plants, to reveal intact TEs in the genome and regulate their activity in gametes. PMID:19203581

  12. Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC

    PubMed Central

    Kim, Bu-Yeo; Jeong, SangKyun; Lee, Seo-Young; Lee, So Min; Gweon, Eun Jeong; Ahn, Hyunjun; Kim, Janghwan; Chung, Sun-Ku

    2016-01-01

    Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1, encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it, we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However, the mALK2 leads to inhibitory pluripotency maintenance, or impaired clonogenic potential after single-cell dissociation as an inevitable step, which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus, current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome, and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors, CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617G>A. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern, as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time, labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies, which is hampered by inhibitory pluripotency-maintenance requirements, or vulnerability of single-cell-dissociated iPSCs. PMID:27256111

  13. Reprogramming of endometrial adult stromal cells in the presence of a ROCK inhibitor, thiazovivin, could obtain more efficient iPSCs.

    PubMed

    Mohseni, Rashin; Shoae-Hassani, Alireza; Verdi, Javad

    2015-05-01

    Today, there is a need for a platform to efficiently generate and maintain a feeder free culture of pluripotent stem cells by small molecules or pharmacological agents. Induced pluripotent stem cell (iPSC) is considered a promising resource for restorative cell therapy in clinical areas. While fully reprogrammed iPSCs are similar to embryonic stem cells, iPSCs could be derived from the patient's own cells (autologous), which avoids the immune rejection activities. Recent advances have demonstrated that iPSCs could be generated from human fibroblasts using only four transcription factors: OCT4, SOX2, CMYC, and KLF4. However, the limitations of reprogramming technologies include low efficiency, slow kinetics, transgene integration and residual expression. Surprisingly, adult stem cells from human endometrium (endometrial stem cells; EnSCs) express OCT4 and KLF4 pluripotency factors. On the other hand, small molecule inhibitors of specific signaling pathways such as thiazovivin have been used in various aspects of iPSC generation and maintenance. Thiazovivin is a selective small molecule that directly targets Rho-associated kinase (ROCK) and increases expression of pluripotency factors. The process using thiazovivin could be easier, faster and more cost effective than transgene integration into somatic cells. So reprogramming of OCT4 and KLF4 expressing EnSCs by a ROCK inhibitor, thiazovivin, could result in producing more efficient iPSCs compared with fibroblasts or conventional somatic cells without integration any transgene and retroviral vector. © 2015 International Federation for Cell Biology.

  14. Presence of arylsulfatase A (ARS A) in multiple sulfatase deficiency disorder fibroblasts.

    PubMed

    Fluharty, A L; Stevens, R L; Davis, L L; Shapiro, L J; Kihara, H

    1978-05-01

    Multiple deficiency disorder fibroblasts cultured in MEM-CO2 showed deficiencies of arylsulfatase A(ARS A) comparable to the deficiency in metachromatic leukodystrophy fibroblasts. However, the MSDD fibroblasts cultured in MEM-HEPES contained near normal levels of ARS A. Moreover, the enzyme from the latter fibroblasts was indistinguishable from ARS A of control fibroblasts on DEAE-cellulose chromatography, ratio of activity with several substrates, thermal inactivation, sensitivity to inhibitors, and precipitation by antiserum to human ARS A. These data support the conclusion that the ARS A genome is intact in MSDD fibroblasts and, by extension, in MSDD patients. Other sulfatases were present at levels ranging from mildly deficient to near normal but never as low as seen in the corresponding specific sulfatase deficient disorders.

  15. Integrating Gene Correction in the Reprogramming and Transdifferentiation Processes: A One-Step Strategy to Overcome Stem Cell-Based Gene Therapy Limitations.

    PubMed

    Lee, Seo-Young; Chung, Sun-Ku

    2016-01-01

    The recent advent of induced pluripotent stem cells (iPSCs) and gene therapy tools has raised the possibility of autologous cell therapy for rare genetic diseases. However, cellular reprogramming is inefficient in certain diseases such as ataxia telangiectasia, Fanconi anemia, LIG4 syndrome, and fibrodysplasia ossificans progressiva syndrome, owing to interference of the disease-related genes. To overcome these therapeutic limitations, it is necessary to fundamentally correct the abnormal gene during or prior to the reprogramming process. In addition, as genetic etiology of Parkinson's disease, it has been well known that induced neural stem cells (iNSCs) were progressively depleted by LRRK2 gene mutation, LRRK2 (G2019S). Thus, to maintain the induced NSCs directly derived from PD patient cells harboring LRRK2 (G2019S), it would be ideal to simultaneously treat the LRRK2 (G2019S) fibroblast during the process of TD. Therefore, simultaneous reprogramming (or TD) and gene therapy would provide the solution for therapeutic limitation caused by vulnerability of reprogramming or TD, in addition to being suitable for general application to the generation of autologous cell-therapy products for patients with genetic defects, thereby obviating the need for the arduous processes currently required.

  16. Integrating Gene Correction in the Reprogramming and Transdifferentiation Processes: A One-Step Strategy to Overcome Stem Cell-Based Gene Therapy Limitations

    PubMed Central

    Lee, Seo-Young

    2016-01-01

    The recent advent of induced pluripotent stem cells (iPSCs) and gene therapy tools has raised the possibility of autologous cell therapy for rare genetic diseases. However, cellular reprogramming is inefficient in certain diseases such as ataxia telangiectasia, Fanconi anemia, LIG4 syndrome, and fibrodysplasia ossificans progressiva syndrome, owing to interference of the disease-related genes. To overcome these therapeutic limitations, it is necessary to fundamentally correct the abnormal gene during or prior to the reprogramming process. In addition, as genetic etiology of Parkinson's disease, it has been well known that induced neural stem cells (iNSCs) were progressively depleted by LRRK2 gene mutation, LRRK2 (G2019S). Thus, to maintain the induced NSCs directly derived from PD patient cells harboring LRRK2 (G2019S), it would be ideal to simultaneously treat the LRRK2 (G2019S) fibroblast during the process of TD. Therefore, simultaneous reprogramming (or TD) and gene therapy would provide the solution for therapeutic limitation caused by vulnerability of reprogramming or TD, in addition to being suitable for general application to the generation of autologous cell-therapy products for patients with genetic defects, thereby obviating the need for the arduous processes currently required. PMID:28074097

  17. Usefulness of a non-invasive reporter system for monitoring reprogramming state in pig cells: results of a cell fusion experiment.

    PubMed

    Ozawa, Akio; Akasaka, Eri; Watanabe, Satoshi; Yoshida, Mitsutoshi; Miyoshi, Kazuchika; Sato, Masahiro

    2010-08-01

    Dedifferentiation of differentiated cells such as fibroblasts into pluripotent stem cells, so-called iPS cells, was first reported by Yamanaka et al., who successfully employed retroviral gene delivery of four stem-cell-specific transcription factors (Oct-3/4, Klf4, Sox2 and c-myc). Despite the mouse system in which an Oct-3/4 or Nanog promoter-based reporter system has already been established, there is no useful system in pigs for reporting the reprogramming state of gene-engineered cells. In this study, we constructed a pOEIN plasmid carrying a ca. 5.4-kb mouse Oct-3/4 promoter linked to the EGFP cDNA and neomycin expression unit and produced a porcine embryonic cell line stably incorporating it in the genome. Cell fusion with mouse embryonal carcinoma cell line F9 resulted in generation of colonies with distinct EGFP-derived fluorescence around 14 days after fusion. RT-PCR using these colonies also confirmed expression of endogenous porcine pluripotency-specific Oct-3/4, Sox2 and Stat3 mRNA. These findings suggest that mouse-derived components are sufficient to induce dedifferentiation of differentiated pig cells and also that reprogramming proceeds gradually. The present non-invasive reporter system will be useful to better define the reprogramming mechanism and/or to identify novel reprogramming molecules in the pig.

  18. The expanding horizon of MicroRNAs in cellular reprogramming.

    PubMed

    Adlakha, Yogita K; Seth, Pankaj

    2017-01-01

    Research over the last few years in cellular reprogramming has enlightened the magical potential of microRNAs (miRNAs) in changing the cell fate from somatic to pluripotent. Recent investigations on exploring the role(s) of miRNAs in somatic cell reprogramming revealed that they target a wide range of molecules and refine their protein output. This leads to fine tuning of distinct cellular processes including cell cycle, signalling pathways, transcriptional activation/silencing and epigenetic modelling. The concerted actions of miRNA on different pathways simultaneously strengthen the transition from a differentiated to de-differentiated state. Despite the well characterized transcriptional and epigenetic machinery underlying somatic cell reprogramming, the molecular circuitry for miRNA mediated cellular reprogramming is rather fragmented. This review summarizes recent findings addressing the role of miRNAs in inducing or suppressing reprogramming thus uncovering novel potentials of miRNAs as regulators of induced pluripotency maintenance, establishment and associated signalling pathways. Our bioinformatic analysis sheds light on various unexplored biological processes and pathways associated with reprogramming inducing miRNAs, thus helps in identifying roadblocks to full reprogramming. Specifically, the biological significance of highly conserved and most studied miRNA cluster, i.e. miR-302-367, in reprogramming is also highlighted. Further, roles of miRNAs in the differentiation of neurons from iPSCs are discussed. A recent approach of direct conversion or transdifferentiation of differentiated cells into neurons by miRNAs is also elaborated. This approach is now widely gaining impetus for the generation of neurological patient's brain cells directly from his/her somatic cells in an efficient and safe manner. Thus, decoding the intricate circuitry between miRNAs and other gene regulatory networks will not only uncover novel pathways in the direct reprogramming of

  19. Direct neuronal reprogramming: learning from and for development.

    PubMed

    Masserdotti, Giacomo; Gascón, Sergio; Götz, Magdalena

    2016-07-15

    The key signalling pathways and transcriptional programmes that instruct neuronal diversity during development have largely been identified. In this Review, we discuss how this knowledge has been used to successfully reprogramme various cell types into an amazing array of distinct types of functional neurons. We further discuss the extent to which direct neuronal reprogramming recapitulates embryonic development, and examine the particular barriers to reprogramming that may exist given a cell's unique developmental history. We conclude with a recently proposed model for cell specification called the 'Cook Islands' model, and consider whether it is a fitting model for cell specification based on recent results from the direct reprogramming field.

  20. Programming and reprogramming a human heart cell.

    PubMed

    Sahara, Makoto; Santoro, Federica; Chien, Kenneth R

    2015-03-12

    The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the "programming" and "reprogramming" of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.

  1. Transdifferentiation: a cell and molecular reprogramming process.

    PubMed

    Sisakhtnezhad, Sajjad; Matin, Maryam M

    2012-06-01

    Evidence has emerged recently indicating that differentiation is not entirely a one-way process, and that it is possible to convert one cell type to another, both in vitro and in vivo. This phenomenon is called transdifferentiation, and is generally defined as the stable switch of one cell type to another. Transdifferentiation plays critical roles during development and in regeneration pathways in nature. Although this phenomenon occurs rarely in nature, recent studies have been focused on transdifferentiation and the reprogramming ability of cells to produce specific cells with new phenotypes for use in cell therapy and regenerative medicine. Thus, understanding the principles and the mechanism of this process is important for producing desired cell types. Here some well-documented examples of transdifferentiation, and their significance in development and regeneration are reviewed. In addition, transdifferentiation pathways are considered and their potential molecular mechanisms, especially the role of master switch genes, are considered. Finally, the significance of transdifferentiation in regenerative medicine is discussed.

  2. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    PubMed Central

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells can affect numerous cellular processes, including cell growth, proliferation, differentiation, and survival. The potential dependence of cancer cells on the deregulated lipid metabolism suggests that enzymes and regulating factors involved in this process are promising targets for cancer treatment. In this review, we focus on the features associated with the lipid metabolic pathways in cancer, and highlight recent advances on the therapeutic targets of specific lipid metabolic enzymes or regulating factors and target-directed small molecules that can be potentially used as anticancer drugs. PMID:28053954

  3. A Cell Electrofusion Chip for Somatic Cells Reprogramming

    PubMed Central

    Wu, Wei; Zeng, Yuxiao; Yang, Jun; Xu, Haiwei; Yin, Zheng Qin

    2015-01-01

    Cell fusion is a potent approach to explore the mechanisms of somatic cells reprogramming. However, previous fusion methods, such as polyethylene glycol (PEG) mediated cell fusion, are often limited by poor fusion yields. In this study, we developed a simplified cell electrofusion chip, which was based on a micro-cavity/ discrete microelectrode structure to improve the fusion efficiency and to reduce multi-cell electrofusion. Using this chip, we could efficiently fuse NIH3T3 cells and mouse embryonic stem cells (mESCs) to induce somatic cells reprogramming. We also found that fused cells demethylated gradually and 5-hydroxymethylcytosine (5hmC) was involved in the demethylation during the reprogramming. Thus, the cell electrofusion chip would facilitate reprogramming mechanisms research by improving efficiency of cell fusion and reducing workloads. PMID:26177036

  4. Nuclear reprogramming and its role in vascular smooth muscle cells.

    PubMed

    Zaina, Silvio; del Pilar Valencia-Morales, Maria; Tristán-Flores, Fabiola E; Lund, Gertrud

    2013-09-01

    In general terms, "nuclear reprogramming" refers to a change in gene expression profile that results in a significant switch in cellular phenotype. Nuclear reprogramming was first addressed by pioneering studies of cell differentiation during embryonic development. In recent years, nuclear reprogramming has been studied in great detail in the context of experimentally controlled dedifferentiation and transdifferentiation of mammalian cells for therapeutic purposes. In this review, we present a perspective on nuclear reprogramming in the context of spontaneous, pathophysiological phenotypic switch of vascular cells occurring in the atherosclerotic lesion. In particular, we focus on the current knowledge of epigenetic mechanisms participating in the extraordinary flexibility of the gene expression profile of vascular smooth muscle cells and other cell types participating in atherogenesis. Understanding how epigenetic changes participate in vascular cell plasticity may lead to effective therapies based on the remodelling of the vascular architecture.

  5. Reprogramming to pluripotency: from frogs to stem cells.

    PubMed

    Rossant, Janet

    2009-09-18

    This year's Albert Lasker Basic Medical Research Award goes to John Gurdon and Shinya Yamanaka for their contributions to our understanding of how to reprogram adult cells back to early embryonic states.

  6. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  7. Class IIa Histone Deacetylases and Myocyte Enhancer Factor 2 Proteins Regulate the Mesenchymal-to-Epithelial Transition of Somatic Cell Reprogramming*

    PubMed Central

    Zhuang, Qiang; Qing, Xiaobing; Ying, Yue; Wu, Haitao; Benda, Christina; Lin, Jiao; Huang, Zhijian; Liu, Longqi; Xu, Yan; Bao, Xichen; Qin, Baoming; Pei, Duanqing; Esteban, Miguel A.

    2013-01-01

    Class IIa histone deacetylases (HDACs) and myocyte enhancer factor 2 (MEF2) proteins compose a signaling module that orchestrates lineage specification during embryogenesis. We show here that this module also regulates the generation of mouse induced pluripotent stem cells by defined transcription factors. Class IIa HDACs and MEF2 proteins rise steadily during fibroblast reprogramming to induced pluripotent stem cells. MEF2 proteins tend to block the process by inducing the expression of Tgfβ cytokines, which impairs the necessary phase of mesenchymal-to-epithelial transition (MET). Conversely, class IIa HDACs endeavor to suppress the activity of MEF2 proteins, thus enhancing the MET and colony formation efficiency. Our work highlights an unexpected role for a developmental axis in somatic cell reprogramming and provides new insight into how the MET is regulated in this context. PMID:23467414

  8. Human Cardiomyocytes Prior to Birth by Integration-Free Reprogramming of Amniotic Fluid Cells.

    PubMed

    Jiang, Guihua; Herron, Todd J; Di Bernardo, Julie; Walker, Kendal A; O'Shea, K Sue; Kunisaki, Shaun M

    2016-12-01

    : The establishment of an abundant source of autologous cardiac progenitor cells would represent a major advance toward eventual clinical translation of regenerative medicine strategies in children with prenatally diagnosed congenital heart disease. In support of this concept, we sought to examine whether functional, transgene-free human cardiomyocytes (CMs) with potential for patient-specific and autologous applications could be reliably generated following routine amniocentesis. Under institutional review board approval, amniotic fluid specimens (8-10 ml) at 20 weeks gestation were expanded and reprogrammed toward pluripotency using nonintegrating Sendai virus (SeV) expressing OCT4, SOX2, cMYC, and KLF4. Following exposure of these induced pluripotent stem cells to cardiogenic differentiation conditions, spontaneously beating amniotic fluid-derived cardiomyocytes (AF-CMs) were successfully generated with high efficiency. After 6 weeks, quantitative gene expression revealed a mixed population of differentiated atrial, ventricular, and nodal AF-CMs, as demonstrated by upregulation of multiple cardiac markers, including MYH6, MYL7, TNNT2, TTN, and HCN4, which were comparable to levels expressed by neonatal dermal fibroblast-derived CM controls. AF-CMs had a normal karyotype and demonstrated loss of NANOG, OCT4, and the SeV transgene. Functional characterization of SIRPA(+) AF-CMs showed a higher spontaneous beat frequency in comparison with dermal fibroblast controls but revealed normal calcium transients and appropriate chronotropic responses after β-adrenergic agonist stimulation. Taken together, these data suggest that somatic cells present within human amniotic fluid can be used to generate a highly scalable source of functional, transgene-free, autologous CMs before a child is born. This approach may be ideally suited for patients with prenatally diagnosed cardiac anomalies. This study presents transgene-free human amniotic fluid-derived cardiomyocytes (AF

  9. Reprogramming Bacteria to Seek and Destroy a Herbicide

    PubMed Central

    Sinha, Joy; Reyes, Samuel J.; Gallivan, Justin P.

    2010-01-01

    A major goal of synthetic biology is to reprogram cells to perform complex tasks. Here we show how a combination of in vitro and in vivo selection rapidly identifies a synthetic riboswitch that activates protein translation in response to the herbicide atrazine. We further demonstrate that this riboswitch can reprogram bacteria to migrate in the presence of atrazine. Finally, we show that incorporating a gene from an atrazine catabolic pathway allows these cells to seek and destroy atrazine. PMID:20453864

  10. Reprogramming of human exocrine pancreas cells to beta cells.

    PubMed

    Staels, Willem; Heremans, Yves; Heimberg, Harry

    2015-12-01

    One of the key promises of regenerative medicine is providing a cure for diabetes. Cell-based therapies are proving their safety and efficiency, but donor beta cell shortages and immunological issues remain major hurdles. Reprogramming of human pancreatic exocrine cells towards beta cells would offer a major advantage by providing an abundant and autologous source of beta cells. Over the past decade our understanding of transdifferentiation processes greatly increased allowing us to design reprogramming protocols that fairly aim for clinical trials.

  11. High Fidelity Drug Repurposing, Molecular Profiling, and Cell Reprogramming

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0288 TITLE: High Fidelity Drug Repurposing, Molecular Profiling, and Cell Reprogramming PRINCIPAL INVESTIGATOR: Dr...SUBTITLE High Fidelity Drug Repurposing, Molecular Profiling, and Cell Reprogramming 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...network pharmacology and CRCs) to discover and test repurposed drugs that target PCa on an individual patient basis. Objective 1: We will enrich the FDA

  12. Understanding Parkinson's Disease through the Use of Cell Reprogramming.

    PubMed

    Playne, Rebecca; Connor, Bronwen

    2017-04-01

    Recent progress in the field of somatic cell reprogramming offers exciting new possibilities for the study and treatment of Parkinson's disease (PD). Reprogramming technology offers the ability to untangle the diverse contributing risk factors for PD, such as ageing, genetics and environmental toxins. In order to gain novel insights into such a complex disease, cell-based models of PD should represent, as closely as possible, aged human dopaminergic neurons of the substantia nigra. However, the generation of high yields of functionally mature, authentic ventral midbrain dopamine (vmDA) neurons has not been easy to achieve. Furthermore, ensuring cells represent aged rather than embryonic neurons has presented a significant challenge. To date, induced pluripotent stem (iPS) cells have received much attention for modelling PD. Nonetheless, direct reprogramming strategies (either to a neuronal or neural stem/progenitor fate) represent a valid alternative that are yet to be extensively explored. Direct reprogramming is faster and more efficient than iPS cell reprogramming, and appears to conserve age-related markers. At present, however, protocols aiming to derive authentic, mature vmDA neurons by direct reprogramming of adult human somatic cells are sorely lacking. This review will discuss the strategies that have been employed to generate vmDA neurons and their potential for the study and treatment of PD.

  13. The neurosteroid dehydroepiandrosterone could improve somatic cell reprogramming.

    PubMed

    Shoae-Hassani, Alireza; Sharif, Shiva; Verdi, Javad

    2011-10-01

    Expression of four major reprogramming transgenes, including Oct4, Sox2, Klf4 and c-myc, in somatic cells enables them to have pluripotency. These cells are iPSC (induced pluripotent stem cell) that currently show the greatest potential for differentiation into cells of the three germ lineages. One of the issues facing the successful reprogramming and clinical translation of iPSC technology is the high rate of apoptosis after the reprogramming process. Reprogramming is a stressful process, and the p53 apoptotic pathway plays a negative role in cell growth and self-renewal. Apoptosis via the p53 pathway serves as a major barrier in nuclear somatic cell reprogramming during iPSC generation. DHEA (dehydroepiandrosterone) is an abundant steroid that is produced at high levels in the adrenal cells, and withdrawal of DHEA increases the levels of p53 in the epithelial and stromal cells, resulting in increased levels of apoptotic cells; meanwhile, DHEA decreases cellular apoptosis. DHEA could improve the efficacy of reprogramming yield due to a decrease in apoptosis via the p53 pathway and an increase in cell viability.

  14. Advances in reprogramming-based study of neurologic disorders.

    PubMed

    Nityanandam, Anjana; Baldwin, Kristin K

    2015-06-01

    The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing.

  15. Advances in Reprogramming-Based Study of Neurologic Disorders

    PubMed Central

    Baldwin, Kristin K.

    2015-01-01

    The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing. PMID:25749371

  16. The expression of pluripotency genes and neuronal markers after neurodifferentiation in fibroblasts co-cultured with human umbilical cord blood mononuclear cells.

    PubMed

    Marinowic, D R; Domingues, M F; Machado, D C; DaCosta, J C

    2015-01-01

    Human umbilical cord blood is an attractive source of stem cells; however, it has a heterogeneous cell population with few mesenchymal stem cells. Cell reprogramming induced by different methodologies can confer pluripotency to differentiated adult cells. The objective of this study was to evaluate the reprogramming of fibroblasts and their subsequent neural differentiation after co-culture with umbilical cord blood mononuclear cells. Cells were obtained from four human umbilical cords. The mononuclear cells were cultured for 7 d and subsequently co-cultured with mouse fibroblast NIH-3T3 cells for 6 d. The pluripotency of the cells was evaluated by RT-PCR using primers specific for pluripotency marker genes. The pluripotency was also confirmed by adipogenic and osteogenic differentiation. Neural differentiation of the reprogrammed cells was evaluated by immunofluorescence. All co-cultured cells showed adipogenic and osteogenic differentiation capacity. After co-cultivation, cells expressed the pluripotency gene KLF4. Statistically significant differences in cell area, diameter, optical density, and fractal dimension were observed by confocal microscopy in the neurally differentiated cells. Contact in the form of co-cultivation of fibroblasts with umbilical cord blood mononuclear fraction for 6 d promoted the reprogramming of these cells, allowing the later induction of neural differentiation.

  17. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts.

    PubMed

    Questa, María; Romorini, Leonardo; Blüguermann, Carolina; Solari, Claudia María; Neiman, Gabriel; Luzzani, Carlos; Scassa, María Élida; Sevlever, Gustavo Emilio; Guberman, Alejandra Sonia; Miriuka, Santiago Gabriel

    2016-03-01

    Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC) line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls. Copyright © 2015 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.

  18. Intact capture of hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  19. Intact capture of hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  20. Intact capture of hypervelocity projectiles.

    PubMed

    Tsou, P

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media.

  1. Extracellular Mitochondrial DNA is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis.

    PubMed

    Ryu, Changwan; Sun, Huanxing; Gulati, Mridu; Herazo-Maya, Jose; Chen, Yonglin; Osafo-Addo, Awo; Brandsdorfer, Caitlin; Winkler, Julia; Blaul, Christina; Faunce, Jaden; Pan, Hongyi; Woolard, Tony; Tzouvelekis, Argyrios; Antin-Ozerkis, Danielle E; Puchalski, Jonathan T; Slade, Martin; Gonzalez, Anjelica L; Bogenhagen, Daniel F; Kirillov, Varvara; Feghali-Bostwick, Carol; Gibson, Kevin; Lindell, Kathleen; Herzog, Raimund I; Dela Cruz, Charles S; Mehal, Wajahat; Kaminski, Naftali; Herzog, Erica L; Trujillo, Glenda

    2017-08-07

    Idiopathic pulmonary fibrosis (IPF) involves the accumulation of alpha smooth muscle actin (αSMA) expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor beta-1 (TGFβ1), and mechanical influences such as local tissue stiffness. While IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA) have not been identified in IPF. We aimed to define an association between mtDNA and fibroblast responses in IPF. We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGFβ1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, and in plasma samples from two longitudinal IPF cohorts and demographically-matched controls. Measurements and Main Results Exposure to mtDNA augments αSMA expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGFβ1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival. These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.

  2. Dupuytren's Contracture: Fibroblast Contraction?

    PubMed Central

    Gabbiani, Giulio; Majno, Guido

    1972-01-01

    In 6 cases of Dupuytren's disease and 1 of Ledderhose's disease, the nodules of the palmar and plantar aponeurosis were examined by light and electron microscopy. The cells composing these nodules, presumably fibroblasts, showed three significant ultrastructural features: (1) a fibrillar system similar to that of smooth muscle cells; (2) nuclear deformations such as are found in contracted cells, the severest being recognizable by light microscopy (cross-banded nuclei); (3) cell-to-cell and cell-to-stroma attachments. Based on these data and on recent information about the biology of the fibroblasts, it is suggested that these cells are fibroblasts that have modulated into contractile cells (myofibroblasts), and that their contraction plays a role in the pathogenesis of the contracture observed clinically. ImagesFig 10Fig 5Fig 11Fig 6 and 7Fig 8Fig 1Fig 2Fig 9Fig 3Fig 4 PMID:5009249

  3. Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages

    PubMed Central

    Lichtenberger, Beate M.; Mastrogiannaki, Maria; Watt, Fiona M.

    2016-01-01

    Sustained epidermal Wnt/β-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-β) signalling mediate the dermal changes. Pharmacological inhibition or genetic deletion of these pathways prevents β-catenin-induced dermal reprogramming and EF formation. Epidermal Shh stimulates proliferation of the papillary fibroblast lineage, whereas TGF-β2 controls proliferation, differentiation and ECM production by reticular fibroblasts. Hh inhibitors do not affect TGF-β target gene expression in reticular fibroblasts, and TGF-β inhibition does not prevent Hh target gene induction in papillary fibroblasts. However, when Hh signalling is inhibited the reticular dermis does not respond to epidermal β-catenin activation. We conclude that the dermal response to epidermal Wnt/β-catenin signalling depends on distinct fibroblast lineages responding to different paracrine signals. PMID:26837596

  4. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

    PubMed Central

    Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S.; Bode, Niklas; Halvorsen, Bente; Ulas, Thomas; Skjelland, Mona; De Nardo, Dominic; Labzin, Larisa I.; Kerksiek, Anja; Hempel, Chris; Heneka, Michael T.; Hawxhurst, Victoria; Fitzgerald, Michael L; Trebicka, Jonel; Gustafsson, Jan-Åke; Westerterp, Marit; Tall, Alan R.; Wright, Samuel D.; Espevik, Terje; Schultze, Joachim L.; Nickenig, Georg; Lütjohann, Dieter; Latz, Eicke

    2016-01-01

    Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol levels. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Since cholesterol accumulation and deposition of cholesterol crystals (CCs) triggers a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility, in preventing and reversing atherosclerosis. Here we show that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load, and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques, and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the anti-atherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Since CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis. PMID:27053774

  5. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming.

    PubMed

    Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S; Bode, Niklas; Halvorsen, Bente; Ulas, Thomas; Skjelland, Mona; De Nardo, Dominic; Labzin, Larisa I; Kerksiek, Anja; Hempel, Chris; Heneka, Michael T; Hawxhurst, Victoria; Fitzgerald, Michael L; Trebicka, Jonel; Björkhem, Ingemar; Gustafsson, Jan-Åke; Westerterp, Marit; Tall, Alan R; Wright, Samuel D; Espevik, Terje; Schultze, Joachim L; Nickenig, Georg; Lütjohann, Dieter; Latz, Eicke

    2016-04-06

    Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.

  6. Reprogramming: A Preventive Strategy in Hypertension Focusing on the Kidney

    PubMed Central

    Tain, You-Lin; Joles, Jaap A.

    2015-01-01

    Adulthood hypertension can be programmed in response to a suboptimal environment in early life. However, developmental plasticity also implies that one can prevent hypertension in adult life by administrating appropriate compounds during early development. We have termed this reprogramming. While the risk of hypertension has been assessed in many mother-child cohorts of human developmental programming, interventions necessary to prove causation and provide a reprogramming strategy are lacking. Since the developing kidney is particularly vulnerable to environmental insults and blood pressure is determined by kidney function, renal programming is considered key in developmental programming of hypertension. Common pathways, whereby both genetic and acquired developmental programming converge into the same phenotype, have been recognized. For instance, the same reprogramming interventions aimed at shifting nitric oxide (NO)-reactive oxygen species (ROS) balance, such as perinatal citrulline or melatonin supplements, can be protective in both genetic and developmentally programmed hypertension. Furthermore, a significantly increased expression of gene Ephx2 (soluble epoxide hydrolase) was noted in both genetic and acquired animal models of hypertension. Since a suboptimal environment is often multifactorial, such common reprogramming pathways are a practical finding for translation to the clinic. This review provides an overview of potential clinical applications of reprogramming strategies to prevent programmed hypertension. We emphasize the kidney in the following areas: mechanistic insights from human studies and animal models to interpret programmed hypertension; identified risk factors of human programmed hypertension from mother-child cohorts; and the impact of reprogramming strategies on programmed hypertension from animal models. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies. PMID

  7. Reprogramming: A Preventive Strategy in Hypertension Focusing on the Kidney.

    PubMed

    Tain, You-Lin; Joles, Jaap A

    2015-12-25

    Adulthood hypertension can be programmed in response to a suboptimal environment in early life. However, developmental plasticity also implies that one can prevent hypertension in adult life by administrating appropriate compounds during early development. We have termed this reprogramming. While the risk of hypertension has been assessed in many mother-child cohorts of human developmental programming, interventions necessary to prove causation and provide a reprogramming strategy are lacking. Since the developing kidney is particularly vulnerable to environmental insults and blood pressure is determined by kidney function, renal programming is considered key in developmental programming of hypertension. Common pathways, whereby both genetic and acquired developmental programming converge into the same phenotype, have been recognized. For instance, the same reprogramming interventions aimed at shifting nitric oxide (NO)-reactive oxygen species (ROS) balance, such as perinatal citrulline or melatonin supplements, can be protective in both genetic and developmentally programmed hypertension. Furthermore, a significantly increased expression of gene Ephx2 (soluble epoxide hydrolase) was noted in both genetic and acquired animal models of hypertension. Since a suboptimal environment is often multifactorial, such common reprogramming pathways are a practical finding for translation to the clinic. This review provides an overview of potential clinical applications of reprogramming strategies to prevent programmed hypertension. We emphasize the kidney in the following areas: mechanistic insights from human studies and animal models to interpret programmed hypertension; identified risk factors of human programmed hypertension from mother-child cohorts; and the impact of reprogramming strategies on programmed hypertension from animal models. It is critical that the observed effects on developmental reprogramming in animal models are replicated in human studies.

  8. Reprogramming cancer cells in endocrine-related tumors: open issues.

    PubMed

    Tafani, M; Perrone, G A; Pucci, B; Russo, A; Bizzarri, M; Mechanick, J I; Carpi, A; Russo, M A

    2014-01-01

    Reprogramming technologies have been developed to revert somatic differentiated cells into pluripotent stem cells that can be differentiated into different lineages potentially useful in stem cell therapy. Reprogramming methods have been progressively refined to increase their efficiency, to obtain a cell population suitable for differentiation, and to eliminate viral plasmid which could be responsible for many unwanted side-effects when used in personalized medicine. All these methods are aimed to introduce into the cell genes or mRNAs encoding a set of four transcription factors (OCT- 4, SOX-2, KLF-4 and c-MYC) or a set of three lincRNAs (large intragenic non-coding RNAs) acting downstream of the reprogramming transcription factors OCT-4, SOX-2 and NANOG. Translational clinical applications in human pathologies and in developmental, repair and cancer biology have been numerous. Cancer cells can be, at least in principle, reprogrammed into a normal phenotype. This is a recently raised issue, rapidly advancing in many human tumors, especially endocrine-related cancers, such as breast, prostate and ovarian ca. The present review aims to describe basic phenomena observed in reprogramming tumor cells and solid tumors and to discuss their meaning in human hormone-related cancers. We will also discuss the fact that some of the targeted transcription factors are "normally" activated in a number of physiological processes, such as morphogenesis, hypoxia and wound healing, suggesting an in vivo role of reprogramming for development and homeostasis. Finally, we will review concerns and warnings raised for in vivo reprogramming of human tumors and for the use of induced pluripotent stem cells (iPSCs) in human therapy.

  9. A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts

    NASA Astrophysics Data System (ADS)

    Pandian, Ganesh N.; Nakano, Yusuke; Sato, Shinsuke; Morinaga, Hironobu; Bando, Toshikazu; Nagase, Hiroki; Sugiyama, Hiroshi

    2012-07-01

    Cellular reprogramming involves profound alterations in genome-wide gene expression that is precisely controlled by a hypothetical epigenetic code. Small molecules have been shown to artificially induce epigenetic modifications in a sequence independent manner. Recently, we showed that specific DNA binding hairpin pyrrole-imidazole polyamides (PIPs) could be conjugated with chromatin modifying histone deacetylase inhibitors like SAHA to epigenetically activate certain pluripotent genes in mouse fibroblasts. In our steadfast progress to improve the efficiency of SAHA-PIPs, we identified a novel compound termed, δ that could dramatically induce the endogenous expression of Oct-3/4 and Nanog. Genome-wide gene analysis suggests that in just 24 h and at nM concentration, δ induced multiple pluripotency-associated genes including Rex1 and Cdh1 by more than ten-fold. δ treated MEFs also rapidly overcame the rate-limiting step of epithelial transition in cellular reprogramming by switching ``'' the complex transcriptional gene network.

  10. Triton shells of intact erythrocytes.

    PubMed

    Sheetz, M P; Sawyer, D

    1978-01-01

    About 40% of human erythrocyte membrane protein is resistant to solubilization in 0.5% Triton X-114. These components comprise a structure called a Triton shell roughly similar in size and shape to the original erythrocyte and thus constitute a cytoskeleton. With increasing concentrations of Triton the lipid content of the Triton shell decreases dramatically, whereas the majority of the protein components remain constant. Exceptions to this rule include proteins contained in band 3, the presumed anion channel, and in band 4 which decrease with increasing Triton concentration. The Triton-insoluble complex includes spectrin (bands 1 and 2), actin (band 5), and bands 3' and 7. Component 3' has an apparent molecular weight of 88,000 daltons as does 3; but unlike 3, it is insensitive to protease treatment of the intact cell, has a low extinction coefficient at 280 nm, and is solubilized from the shells in alkaline water solutions. Component 7 also has a low extinction coefficient at 280 nm. Spectrin alone is solubilized from the Triton shells in isotonic media. The solubilized spectrin contains no bound Triton and coelectrophoreses with spectrin eluted in hypotonic solutions from ghosts. Electron micrographs of fixed Triton shells stained with uranyl acetate show the presence of numerous filaments which appear beaded and are 80--120 A in diameter. The filaments cannot be composed mainly af actin, but enough spectrin is present to form the filaments. Triton shells may provide an excellent source of material useful in the investigation of the erythrocyte cytoskeleton.

  11. Intact Transition Epitope Mapping (ITEM)

    NASA Astrophysics Data System (ADS)

    Yefremova, Yelena; Opuni, Kwabena F. M.; Danquah, Bright D.; Thiesen, Hans-Juergen; Glocker, Michael O.

    2017-08-01

    Intact transition epitope mapping (ITEM) enables rapid and accurate determination of protein antigen-derived epitopes by either epitope extraction or epitope excision. Upon formation of the antigen peptide-containing immune complex in solution, the entire mixture is electrosprayed to translate all constituents as protonated ions into the gas phase. There, ions from antibody-peptide complexes are separated from unbound peptide ions according to their masses, charges, and shapes either by ion mobility drift or by quadrupole ion filtering. Subsequently, immune complexes are dissociated by collision induced fragmentation and the ion signals of the "complex-released peptides," which in effect are the epitope peptides, are recorded in the time-of-flight analyzer of the mass spectrometer. Mixing of an antibody solution with a solution in which antigens or antigen-derived peptides are dissolved is, together with antigen proteolysis, the only required in-solution handling step. Simplicity of sample handling and speed of analysis together with very low sample consumption makes ITEM faster and easier to perform than other experimental epitope mapping methods.

  12. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells.

    PubMed

    Bähre, Heike; Danker, Kerstin Y; Stasch, Johannes-Peter; Kaever, Volkhard; Seifert, Roland

    2014-01-24

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1β1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn(2+) but not Mg(2+), the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1β1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC-tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC-time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn(2+) is a physiological sGC cofactor. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Netrin-1 regulates somatic cell reprogramming and pluripotency maintenance

    PubMed Central

    Ozmadenci, Duygu; Féraud, Olivier; Markossian, Suzy; Kress, Elsa; Ducarouge, Benjamin; Gibert, Benjamin; Ge, Jian; Durand, Isabelle; Gadot, Nicolas; Plateroti, Michela; Bennaceur-Griscelli, Annelise; Scoazec, Jean-Yves; Gil, Jesus; Deng, Hongkui; Bernet, Agnes; Mehlen, Patrick; Lavial, Fabrice

    2015-01-01

    The generation of induced pluripotent stem (iPS) cells holds great promise in regenerative medicine. The use of the transcription factors Oct4, Sox2, Klf4 and c-Myc for reprogramming is extensively documented, but comparatively little is known about soluble molecules promoting reprogramming. Here we identify the secreted cue Netrin-1 and its receptor DCC, described for their respective survival/death functions in normal and oncogenic contexts, as reprogramming modulators. In various somatic cells, we found that reprogramming is accompanied by a transient transcriptional repression of Netrin-1 mediated by an Mbd3/Mta1/Chd4-containing NuRD complex. Mechanistically, Netrin-1 imbalance induces apoptosis mediated by the receptor DCC in a p53-independent manner. Correction of the Netrin-1/DCC equilibrium constrains apoptosis and improves reprogramming efficiency. Our work also sheds light on Netrin-1's function in protecting embryonic stem cells from apoptosis mediated by its receptor UNC5b, and shows that the treatment with recombinant Netrin-1 improves the generation of mouse and human iPS cells. PMID:26154507

  14. Epigenetic reprogramming in mammalian species after SCNT-based cloning.

    PubMed

    Niemann, Heiner

    2016-07-01

    The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.

  15. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts

    PubMed Central

    Huh, Christine J; Zhang, Bo; Victor, Matheus B; Dahiya, Sonika; Batista, Luis FZ; Horvath, Steve; Yoo, Andrew S

    2016-01-01

    Aging is a major risk factor in many forms of late-onset neurodegenerative disorders. The ability to recapitulate age-related characteristics of human neurons in culture will offer unprecedented opportunities to study the biological processes underlying neuronal aging. Here, we show that using a recently demonstrated microRNA-based cellular reprogramming approach, human fibroblasts from postnatal to near centenarian donors can be efficiently converted into neurons that maintain multiple age-associated signatures. Application of an epigenetic biomarker of aging (referred to as epigenetic clock) to DNA methylation data revealed that the epigenetic ages of fibroblasts were highly correlated with corresponding age estimates of reprogrammed neurons. Transcriptome and microRNA profiles reveal genes differentially expressed between young and old neurons. Further analyses of oxidative stress, DNA damage and telomere length exhibit the retention of age-associated cellular properties in converted neurons from corresponding fibroblasts. Our results collectively demonstrate the maintenance of age after neuronal conversion. DOI: http://dx.doi.org/10.7554/eLife.18648.001 PMID:27644593

  16. Reprogramming of plants during systemic acquired resistance

    PubMed Central

    Gruner, Katrin; Griebel, Thomas; Návarová, Hana; Attaran, Elham; Zeier, Jürgen

    2013-01-01

    Genome-wide microarray analyses revealed that during biological activation of systemic acquired resistance (SAR) in Arabidopsis, the transcript levels of several hundred plant genes were consistently up- (SAR+ genes) or down-regulated (SAR− genes) in systemic, non-inoculated leaf tissue. This transcriptional reprogramming fully depended on the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1). Functional gene categorization showed that genes associated with salicylic acid (SA)-associated defenses, signal transduction, transport, and the secretory machinery are overrepresented in the group of SAR+ genes, and that the group of SAR− genes is enriched in genes activated via the jasmonate (JA)/ethylene (ET)-defense pathway, as well as in genes associated with cell wall remodeling and biosynthesis of constitutively produced secondary metabolites. This suggests that SAR-induced plants reallocate part of their physiological activity from vegetative growth towards SA-related defense activation. Alignment of the SAR expression data with other microarray information allowed us to define three clusters of SAR+ genes. Cluster I consists of genes tightly regulated by SA. Cluster II genes can be expressed independently of SA, and this group is moderately enriched in H2O2- and abscisic acid (ABA)-responsive genes. The expression of the cluster III SAR+ genes is partly SA-dependent. We propose that SA-independent signaling events in early stages of SAR activation enable the biosynthesis of SA and thus initiate SA-dependent SAR signaling. Both SA-independent and SA-dependent events tightly co-operate to realize SAR. SAR+ genes function in the establishment of diverse resistance layers, in the direct execution of resistance against different (hemi-)biotrophic pathogen types, in suppression of the JA- and ABA-signaling pathways, in redox homeostasis, and in the containment of defense response activation. Our data further indicated that SAR-associated defense priming can be

  17. Activity of PLCε contributes to chemotaxis of fibroblasts towards PDGF

    PubMed Central

    Martins, Marta; Warren, Sean; Kimberley, Christopher; Margineanu, Anca; Peschard, Pascal; McCarthy, Afshan; Yeo, Maggie; Marshall, Christopher J.; Dunsby, Christopher; French, Paul M. W.; Katan, Matilda

    2012-01-01

    Summary Cell chemotaxis, such as migration of fibroblasts towards growth factors during development and wound healing, requires precise spatial coordination of signalling events. Phosphoinositides and signalling enzymes involved in their generation and hydrolysis have been implicated in regulation of chemotaxis; however, the role and importance of specific components remain poorly understood. Here, we demonstrate that phospholipase C epsilon (PLCε) contributes to fibroblast chemotaxis towards platelet-derived growth factor (PDGF-BB). Using PLCe1 null fibroblasts we show that cells deficient in PLCε have greatly reduced directionality towards PDGF-BB without detrimental effect on their basal ability to migrate. Furthermore, we show that in intact fibroblasts, signalling events, such as activation of Rac, are spatially compromised by the absence of PLCε that affects the ability of cells to enlarge their protrusions in the direction of the chemoattractant. By further application of live cell imaging and the use of FRET-based biosensors, we show that generation of Ins(1,4,5)P3 and recruitment of PLCε are most pronounced in protrusions responding to the PDGF-BB gradient. Furthermore, the phospholipase C activity of PLCε is critical for its role in chemotaxis, consistent with the importance of Ins(1,4,5)P3 generation and sustained calcium responses in this process. As PLCε has extensive signalling connectivity, using transgenic fibroblasts we ruled out its activation by direct binding to Ras or Rap GTPases, and suggest instead new unexpected links for PLCε in the context of chemotaxis. PMID:22992460

  18. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis

    PubMed Central

    Shao, Zhicheng; Zhang, Ruowen; Khodadadi-Jamayran, Alireza; Chen, Bo; Crowley, Michael R.; Festok, Muhamad A.; Crossman, David K.; Townes, Tim M.; Hu, Kejin

    2016-01-01

    It is well known that both recipient cells and donor nuclei demonstrate a mitotic advantage as observed in the traditional reprogramming with somatic cell nuclear transfer (SCNT). However, it is not known whether a specific mitotic factor plays a critical role in reprogramming. Here we identify an isoform of human bromodomain-containing 3 (BRD3), BRD3R (BRD3 with Reprogramming activity), as a reprogramming factor. BRD3R positively regulates mitosis during reprogramming, upregulates a large set of mitotic genes at early stages of reprogramming, and associates with mitotic chromatin. Interestingly, a set of the mitotic genes upregulated by BRD3R constitutes a pluripotent molecular signature. The two BRD3 isoforms display differential binding to acetylated histones. Our results suggest a molecular interpretation for the mitotic advantage in reprogramming and show that mitosis may be a driving force of reprogramming. PMID:26947130

  19. Binding, uptake, and release of nicotine by human gingival fibroblasts

    SciTech Connect

    Hanes, P.J.; Schuster, G.S.; Lubas, S. )

    1991-02-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4{degree}C using a mixture of {sup 3}H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between {sup 3}H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37{degree}C after treating cells with {sup 3}H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours.

  20. Pleurotus eryngii Polysaccharide Promotes Pluripotent Reprogramming via Facilitating Epigenetic Modification.

    PubMed

    Deng, Wenwen; Cao, Xia; Wang, Yan; Yu, Qingtong; Zhang, Zhijian; Qu, Rui; Chen, Jingjing; Shao, Genbao; Gao, Xiangdong; Xu, Ximing; Yu, Jiangnan

    2016-02-17

    Pleurotus eryngii is a medicinal/edible mushroom with great nutritional value and bioactivity. Its polysaccharide has recently been developed into an effective gene vector via cationic modification. In the present study, cationized P. eryngii polysaccharide (CPS), hybridized with calcium phosphate (CP), was used to codeliver plasmids (Oct4, Sox2, Klf4, c-Myc) for generating induced pluripotent stem cells (iPSCs). The results revealed that the hybrid nanoparticles could significantly enhance the process and efficiency of reprogramming (1.6-fold increase) compared with the CP nanoparticles. The hybrid CPS also facilitated epigenetic modification during the reprogramming. Moreover, these hybrid nanoparticles exhibited multiple pathways (both caveolae- and clathrin-mediated endocytosis) in their cellular internalization, which accounted for the improved iPSCs generation. These findings therefore present a novel application of P. eryngii polysaccharide in pluripotent reprogramming via active epigenetic modification.

  1. The Role of microRNAs in Animal Cell Reprogramming.

    PubMed

    Cruz-Santos, María Concepción; Aragón-Raygoza, Alejandro; Espinal-Centeno, Annie; Arteaga-Vázquez, Mario; Cruz-Hernández, Andrés; Bako, Laszlo; Cruz-Ramírez, Alfredo

    2016-07-15

    Our concept of cell reprogramming and cell plasticity has evolved since John Gurdon transferred the nucleus of a completely differentiated cell into an enucleated Xenopus laevis egg, thereby generating embryos that developed into tadpoles. More recently, induced expression of transcription factors, oct4, sox2, klf4, and c-myc has evidenced the plasticity of the genome to change the expression program and cell phenotype by driving differentiated cells to the pluripotent state. Beyond these milestone achievements, research in artificial cell reprogramming has been focused on other molecules that are different than transcription factors. Among the candidate molecules, microRNAs (miRNAs) stand out due to their potential to control the levels of proteins that are involved in cellular processes such as self-renewal, proliferation, and differentiation. Here, we review the role of miRNAs in the maintenance and differentiation of mesenchymal stem cells, epimorphic regeneration, and somatic cell reprogramming to induced pluripotent stem cells.

  2. Epigenetic regulation of B lymphocyte differentiation, transdifferentiation, and reprogramming.

    PubMed

    Barneda-Zahonero, Bruna; Roman-Gonzalez, Lidia; Collazo, Olga; Mahmoudi, Tokameh; Parra, Maribel

    2012-01-01

    B cell development is a multistep process that is tightly regulated at the transcriptional level. In recent years, investigators have shed light on the transcription factor networks involved in all the differentiation steps comprising B lymphopoiesis. The interplay between transcription factors and the epigenetic machinery involved in establishing the correct genomic landscape characteristic of each cellular state is beginning to be dissected. The participation of "epigenetic regulator-transcription factor" complexes is also crucial for directing cells during reprogramming into pluripotency or lineage conversion. In this context, greater knowledge of epigenetic regulation during B cell development, transdifferentiation, and reprogramming will enable us to understand better how epigenetics can control cell lineage commitment and identity. Herein, we review the current knowledge about the epigenetic events that contribute to B cell development and reprogramming.

  3. Nuclear reprogramming in mammalian somatic cell nuclear cloning

    PubMed Central

    Tamada, H.; Kikyo, N.

    2007-01-01

    Nuclear cloning is still a developing technique used to create genetically identical animals by somatic cell nuclear transfer into unfertilized eggs. Despite an intensive effort in a number of laboratories, the success rate of obtaining viable offspring from this technique remains less than 5%. In the past few years many investigators reported the reprogramming of specific nuclear activities in cloned animals, such as genome-wide gene expression patterns, DNA methylation, genetic imprinting, histone modifications and telomere length regulation. The results highlight the tremendous difficulty the clones face to reprogram the original differentiation status of the donor nuclei. Nevertheless, nuclei prepared from terminally differentiated lymphocytes can overcome this barrier and produce apparently normal mice. Study of this striking nuclear reprogramming activity should significantly contribute to our understanding of cell differentiation in more physiological settings. PMID:15237217

  4. 46 CFR 174.185 - Intact stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Intact stability. 174.185 Section 174.185 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Offshore Supply Vessels § 174.185 Intact stability. (a...

  5. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 DWT and above contracted after the effective date...

  6. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 deadweight tons (DWT) and above, contracted after...

  7. 46 CFR 174.015 - Intact stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Intact stability. 174.015 Section 174.015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Deck Cargo Barges § 174.015 Intact stability. (a) Except...

  8. 46 CFR 174.015 - Intact stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Intact stability. 174.015 Section 174.015 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Deck Cargo Barges § 174.015 Intact stability. (a) Except...

  9. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 deadweight tons (DWT) and above, contracted after...

  10. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 deadweight tons (DWT) and above, contracted after...

  11. 46 CFR 174.185 - Intact stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Intact stability. 174.185 Section 174.185 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Offshore Supply Vessels § 174.185 Intact stability. (a...

  12. 46 CFR 172.070 - Intact stability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Intact stability. 172.070 Section 172.070 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO... § 172.070 Intact stability. All tank vessels of 5,000 deadweight tons (DWT) and above, contracted after...

  13. Cellular reprogramming for understanding and treating human disease

    PubMed Central

    Kanherkar, Riya R.; Bhatia-Dey, Naina; Makarev, Evgeny; Csoka, Antonei B.

    2014-01-01

    In the last two decades we have witnessed a paradigm shift in our understanding of cells so radical that it has rewritten the rules of biology. The study of cellular reprogramming has gone from little more than a hypothesis, to applied bioengineering, with the creation of a variety of important cell types. By way of metaphor, we can compare the discovery of reprogramming with the archeological discovery of the Rosetta stone. This stone slab made possible the initial decipherment of Egyptian hieroglyphics because it allowed us to see this language in a way that was previously impossible. We propose that cellular reprogramming will have an equally profound impact on understanding and curing human disease, because it allows us to perceive and study molecular biological processes such as differentiation, epigenetics, and chromatin in ways that were likewise previously impossible. Stem cells could be called “cellular Rosetta stones” because they allow also us to perceive the connections between development, disease, cancer, aging, and regeneration in novel ways. Here we present a comprehensive historical review of stem cells and cellular reprogramming, and illustrate the developing synergy between many previously unconnected fields. We show how stem cells can be used to create in vitro models of human disease and provide examples of how reprogramming is being used to study and treat such diverse diseases as cancer, aging, and accelerated aging syndromes, infectious diseases such as AIDS, and epigenetic diseases such as polycystic ovary syndrome. While the technology of reprogramming is being developed and refined there have also been significant ongoing developments in other complementary technologies such as gene editing, progenitor cell production, and tissue engineering. These technologies are the foundations of what is becoming a fully-functional field of regenerative medicine and are converging to a point that will allow us to treat almost any disease. PMID

  14. Similarities in the Metabolic Reprogramming of Immune System and Endothelium

    PubMed Central

    Tang, Chu-Yik; Mauro, Claudio

    2017-01-01

    Cellular metabolism has been known for its role in bioenergetics. In recent years, much light has been shed on the reprogrammable cellular metabolism underlying many vital cellular processes, such as cell activation, proliferation, and differentiation. Metabolic reprogramming in immune and endothelial cells (ECs) is being studied extensively. These cell compartments are implicated in inflammation and pathogenesis of many diseases but their similarities in metabolic reprogramming have not been analyzed in detail. One of the most notable metabolic reprogramming is the Warburg-like effect, famously described as one of the hallmarks of cancer cells. Immune cells and ECs can display this phenotype that is characterized by a metabolic switch favoring glycolysis over oxidative phosphorylation (OXPHOS) in aerobic conditions. Though energy-inefficient, aerobic glycolysis confers many benefits to the respiring cells ranging from higher rate of adenosine triphosphate production to maintaining redox homeostasis. Chemical and biological regulators either promote or perturb this effect. In this review, nitric oxide, hypoxia-inducible factor, and adenosine monophosphate-activated protein kinase have been discussed for their common involvement in metabolic reprogramming of both systems. From in vitro and animal studies, various discrepancies exist regarding the effects of those regulators on metabolic switch. However, it is generally accepted that glycolysis favors inflammatory reactions while OXPHOS favors anti-inflammatory processes. The reasons for such observation are currently subject of intense studies and not completely understood. Finally, metabolic reprogramming in immune cells and ECs does not limit to the physiological state in health but can also be observed in pathological states, such as atherosclerosis and cancer. These new insights provide us with a better understanding of the similarities in metabolic reprogramming across a number of cell types, which could pave

  15. MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis-regulatory module analysis

    PubMed Central

    Santolini, Marc; Sakakibara, Iori; Gauthier, Morgane; Ribas-Aulinas, Francesc; Takahashi, Hirotaka; Sawasaki, Tatsuya; Mouly, Vincent; Concordet, Jean-Paul; Defossez, Pierre-Antoine; Hakim, Vincent; Maire, Pascal

    2016-01-01

    Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF. PMID:27302134

  16. MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis-regulatory module analysis.

    PubMed

    Santolini, Marc; Sakakibara, Iori; Gauthier, Morgane; Ribas-Aulinas, Francesc; Takahashi, Hirotaka; Sawasaki, Tatsuya; Mouly, Vincent; Concordet, Jean-Paul; Defossez, Pierre-Antoine; Hakim, Vincent; Maire, Pascal

    2016-10-14

    Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues.

    PubMed

    Hanna, Jacob H; Saha, Krishanu; Jaenisch, Rudolf

    2010-11-12

    Direct reprogramming of somatic cells to induced pluripotent stem cells by ectopic expression of defined transcription factors has raised fundamental questions regarding the epigenetic stability of the differentiated cell state. In addition, evidence has accumulated that distinct states of pluripotency can interconvert through the modulation of both cell-intrinsic and exogenous factors. To fully realize the potential of in vitro reprogrammed cells, we need to understand the molecular and epigenetic determinants that convert one cell type into another. Here we review recent advances in this rapidly moving field and emphasize unresolved and controversial questions. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Synthesis of polyester by means of genetic code reprogramming.

    PubMed

    Ohta, Atsushi; Murakami, Hiroshi; Higashimura, Eri; Suga, Hiroaki

    2007-12-01

    Here we report the ribosomal polymerization of alpha-hydroxy acids by means of genetic code reprogramming. The flexizyme system, a ribozyme-based tRNA acylation tool, was used to re-assign individual codons to seven types of alpha-hydroxy acids, and then polyesters were synthesized under controls of the reprogrammed genetic code using a reconstituted cell-free translation system. The sequence and length of the polyester segments were specified by the mRNA template, indicating that high-fidelity ribosome expression of polyesters was possible. This work opens a door for the mRNA-directed synthesis of backbone-altered biopolymers.

  19. Chromatin modification and epigenetic reprogramming in mammalian development.

    PubMed

    Li, En

    2002-09-01

    The developmental programme of embryogenesis is controlled by both genetic and epigenetic mechanisms. An emerging theme from recent studies is that the regulation of higher-order chromatin structures by DNA methylation and histone modification is crucial for genome reprogramming during early embryogenesis and gametogenesis, and for tissue-specific gene expression and global gene silencing. Disruptions to chromatin modification can lead to the dysregulation of developmental processes, such as X-chromosome inactivation and genomic imprinting, and to various diseases. Understanding the process of epigenetic reprogramming in development is important for studies of cloning and the clinical application of stem-cell therapy.

  20. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration.

    PubMed

    Jopling, Chris; Boue, Stephanie; Izpisua Belmonte, Juan Carlos

    2011-02-01

    The ultimate goal of regenerative medicine is to replace lost or damaged cells. This can potentially be accomplished using the processes of dedifferentiation, transdifferentiation or reprogramming. Recent advances have shown that the addition of a group of genes can not only restore pluripotency in a fully differentiated cell state (reprogramming) but can also induce the cell to proliferate (dedifferentiation) or even switch to another cell type (transdifferentiation). Current research aims to understand how these processes work and to eventually harness them for use in regenerative medicine.

  1. Analysis of nuclear reprogramming following nuclear transfer to Xenopus oocyte.

    PubMed

    Jullien, Jerome

    2015-01-01

    Germinal vesicle of stage V-VI Xenopus Laevis oocytes (at the prophase I stage of meiosis) can be used to transplant mammalian nuclei. In this type of interspecies nuclear transfer no cell division occurs and no new cell types are generated. However, the transplanted nuclei undergo extensive transcriptional reprogramming. Here, it is first explained how to carry out transplantation of multiple mammalian cell nuclei to Xenopus oocytes. It is then described how to perform RT-qPCR, Western Blot, Chromatin Immunoprecipitation, and live imaging analysis to monitor transcriptional reprogramming of the nuclei transplanted to oocytes.

  2. Differential Reprogramming Based on Constructive Interference for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Hu, Bing; Sun, Zhixin

    2016-09-01

    To improve the performance of reprogramming in wireless sensor network, we present a novel reprogramming structure and constructive interference-based dissemination protocol (CIDP) to transmit the patch through out the network fast and reliability. CIDP disseminates the patch, which is divided into several packets, to the network exploiting constructive interference. We evaluate our implementation of CIDP using simulation under different number of nodes. Our results show that CIDP disseminates the patch less than 4 milliseconds. In general, the probability of a node receives the complete patch as high as 99.99%.

  3. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience.

    PubMed

    Mertens, Jerome; Marchetto, Maria C; Bardy, Cedric; Gage, Fred H

    2016-07-01

    The scarcity of live human brain cells for experimental access has for a long time limited our ability to study complex human neurological disorders and elucidate basic neuroscientific mechanisms. A decade ago, the development of methods to reprogramme somatic human cells into induced pluripotent stem cells enabled the in vitro generation of a wide range of neural cells from virtually any human individual. The growth of methods to generate more robust and defined neural cell types through reprogramming and direct conversion into induced neurons has led to the establishment of various human reprogramming-based neural disease models.

  4. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells.

    PubMed

    Vazquez-Martin, Alejandro; Corominas-Faja, Bruna; Cufi, Sílvia; Vellon, Luciano; Oliveras-Ferraros, Cristina; Menendez, Octavio J; Joven, Jorge; Lupu, Ruth; Menendez, Javier A

    2013-01-15

    Induced pluripotent stem (iPS) cells share some basic properties, such as self-renewal and pluripotency, with cancer cells, and they also appear to share several metabolic alterations that are commonly observed in human tumors. The cancer cells' glycolytic phenotype, first reported by Otto Warburg, is necessary for the optimal routing of somatic cells to pluripotency. However, how iPS cells establish a Warburg-like metabolic phenotype and whether the metabolic pathways that support the bioenergetics of iPS cells are produced by the same mechanisms that are selected during the tumorigenic process remain largely unexplored. We recently investigated whether the reprogramming-competent metabotype of iPS cells involves changes in the activation/expression status of the H(+)-ATPase, which is a core component of mitochondrial oxidative phosphorylation that is repressed at both the activity and protein levels in human carcinomas, and of the lipogenic switch, which refers to a marked overexpression and hyperactivity of the acetyl-CoA carboxylase (ACACA) and fatty acid synthase (FASN) lipogenic enzymes that has been observed in nearly all examined cancer types. A comparison of a starting population of mouse embryonic fibroblasts and their iPS cell progeny revealed that somatic cell reprogramming involves a significant increase in the expression of ATPase inhibitor factor 1 (IF1), accompanied by extremely low expression levels of the catalytic β-F1-ATPase subunit. The pharmacological inhibition of ACACA and FASN activities markedly decreases reprogramming efficiency, and ACACA and FASN expression are notably upregulated in iPS cells. Importantly, iPS cells exhibited a significant intracellular accumulation of neutral lipid bodies; however, these bodies may be a reflection of intense lysosomal/autophagocytic activity rather than bona fide lipid droplet formation in iPS cells, as they were largely unresponsive to pharmacological modulation of PPARgamma and FASN activities. The

  5. Cadherin-11 Induces Rheumatoid Arthritis Fibroblast-Like Synoviocytes to Form Lining Layers in Vitro

    PubMed Central

    Kiener, Hans P.; Lee, David M.; Agarwal, Sandeep K.; Brenner, Michael B.

    2006-01-01

    The synovial lining of diarthrodial joints is composed of a condensed network of synoviocytes that form an intact layer via cell-to-cell contacts with significant intercellular matrix spaces. However, the molecular basis for synovial lining formation and its structural integrity has not been previously defined. In this study, using a three-dimensional fibroblast-like synoviocyte in vitro organ culture system, we provide evidence that cadherin-11 expressed in fibroblast-like synoviocytes plays a determining role in establishing the synovial lining layer. Fibroblast-like synoviocytes that were grown in three-dimensional matrices demonstrated formation of a lining structure at the interface between the matrix and the fluid phase. Treatment of fibroblast-like synoviocyte organ cultures with a cadherin-11-Fc fusion protein efficiently abrogated lining layer organization. Moreover, because E-cadherin-expressing fibroblasts failed to organize a lining layer structure at the tissue boundary, this effect appears to be a distinct characteristic of fibroblasts expressing cadherin-11. We found that cadherin-11 mediated fibroblast-like synoviocyte cell-to-cell adhesion via formation of adherens junctions that were linked to and remodeled the actin cytoskeleton. Together, these studies implicate cadherin-11 in synovial tissue and lining layer formation and provide an in vitro system to model fibroblast-like synoviocyte behavior and function in organizing the synovial tissue. PMID:16651616

  6. Nuclear reprogramming of cloned embryos produced in vitro.

    PubMed

    Han, Y M; Kang, Y K; Koo, D B; Lee, K K

    2003-01-01

    Despite the fact that cloned animals derived from somatic cells have been successfully generated in a variety of mammalian species, there are still many unsolved problems with current cloning technology. Somatic cell nuclear transfer has shown several developmental aberrancies, including a high rate of abortion during early gestation and increased perinatal death. One cause of these developmental failures of cloned embryos may reside in the epigenetic reprogramming of somatic donor genome. In mammals, DNA methylation is an essential process in the regulation of transcription during embryonic development and is generally associated with gene silencing. A genome-wide demethylation may be a prerequisite for the formation of pluripotent stem cells that are important for later development. We analyzed methylation patterns in cloned bovine embryos to monitor the epigenetic reprogramming process of donor genomic DNA. Aberrant methylation profiles of cloned bovine embryos were observed in various genomic regions, except in single-copy gene sequences. The overall genomic methylation status of cloned embryos was quite different from that of normal embryos produced in vitro or in vivo. These results suggest that the developmental failures of cloned embryos may be due to incomplete epigenetic reprogramming of donor genomic DNA. We expect that advances in understanding the molecular events for reprogramming of donor genome will contribute to clarify the developmental defects of cloned embryos.

  7. Movement Planning and Reprogramming in Individuals with Autism

    ERIC Educational Resources Information Center

    Nazarali, Natasha; Glazebrook, Cheryl M.; Elliott, Digby

    2009-01-01

    Two experiments explored how individuals with and without autism plan and reprogram movements. Participants were given partial or complete information regarding the location of the upcoming manual movement. In Experiment 1, direct information specified the hand or direction of the upcoming movement. These results replicated previous reports that…

  8. Molecular Imaging of Metabolic Reprograming in Mutant IDH Cells.

    PubMed

    Viswanath, Pavithra; Chaumeil, Myriam M; Ronen, Sabrina M

    2016-01-01

    Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG). Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG). In turn, 2-HG, which has been termed an "oncometabolite," inhibits key α-KG-dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprograming that extends beyond 2-HG production, and this reprograming often differs from what has been previously reported in other cancer types. In this review, we will discuss in detail what is known to date about the metabolic reprograming of mutant IDH cells, and how this reprograming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells, and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  9. Renal stem cell reprogramming: Prospects in regenerative medicine

    PubMed Central

    Morales, Elvin E; Wingert, Rebecca A

    2014-01-01

    Stem cell therapy is a promising future enterprise for renal replacement in patients with acute and chronic kidney disease, conditions which affect millions worldwide and currently require patients to undergo lifelong medical treatments through dialysis and/or organ transplant. Reprogramming differentiated renal cells harvested from the patient back into a pluripotent state would decrease the risk of tissue rejection and provide a virtually unlimited supply of cells for regenerative medicine treatments, making it an exciting area of current research in nephrology. Among the major hurdles that need to be overcome before stem cell therapy for the kidney can be applied in a clinical setting are ensuring the fidelity and relative safety of the reprogrammed cells, as well as achieving feasible efficiency in the reprogramming processes that are utilized. Further, improved knowledge about the genetic control of renal lineage development is vital to identifying predictable and efficient reprogramming approaches, such as the expression of key modulators or the regulation of gene activity through small molecule mimetics. Here, we discuss several recent advances in induced pluripotent stem cell technologies. We also explore strategies that have been successful in renal progenitor generation, and explore what these methods might mean for the development of cell-based regenerative therapies for kidney disease. PMID:25258667

  10. Cellular Reprogramming Using Defined Factors and MicroRNAs

    PubMed Central

    Eguchi, Takanori; Kuboki, Takuo

    2016-01-01

    Development of human bodies, organs, and tissues contains numerous steps of cellular differentiation including an initial zygote, embryonic stem (ES) cells, three germ layers, and multiple expertized lineages of cells. Induced pluripotent stem (iPS) cells have been recently developed using defined reprogramming factors such as Nanog, Klf5, Oct3/4 (Pou5f1), Sox2, and Myc. This outstanding innovation is largely changing life science and medicine. Methods of direct reprogramming of cells into myocytes, neurons, chondrocytes, and osteoblasts have been further developed using modified combination of factors such as N-myc, L-myc, Sox9, and microRNAs in defined cell/tissue culture conditions. Mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) are also emerging multipotent stem cells with particular microRNA expression signatures. It was shown that miRNA-720 had a role in cellular reprogramming through targeting the pluripotency factor Nanog and induction of DNA methyltransferases (DNMTs). This review reports histories, topics, and idea of cellular reprogramming. PMID:27382371

  11. 45 CFR 1606.13 - Interim and termination funding; reprogramming.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Interim and termination funding; reprogramming. 1606.13 Section 1606.13 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION TERMINATION AND DEBARMENT PROCEDURES; RECOMPETITION § 1606.13 Interim and...

  12. Metabolic reprogramming by viruses in the sunlit and dark ocean.

    PubMed

    Hurwitz, Bonnie L; Hallam, Steven J; Sullivan, Matthew B

    2013-11-07

    Marine ecosystem function is largely determined by matter and energy transformations mediated by microbial community interaction networks. Viral infection modulates network properties through mortality, gene transfer and metabolic reprogramming. Here we explore the nature and extent of viral metabolic reprogramming throughout the Pacific Ocean depth continuum. We describe 35 marine viral gene families with potential to reprogram metabolic flux through central metabolic pathways recovered from Pacific Ocean waters. Four of these families have been previously reported but 31 are novel. These known and new carbon pathway auxiliary metabolic genes were recovered from a total of 22 viral metagenomes in which viral auxiliary metabolic genes were differentiated from low-level cellular DNA inputs based on small subunit ribosomal RNA gene content, taxonomy, fragment recruitment and genomic context information. Auxiliary metabolic gene distribution patterns reveal that marine viruses target overlapping, but relatively distinct pathways in sunlit and dark ocean waters to redirect host carbon flux towards energy production and viral genome replication under low nutrient, niche-differentiated conditions throughout the depth continuum. Given half of ocean microbes are infected by viruses at any given time, these findings of broad viral metabolic reprogramming suggest the need for renewed consideration of viruses in global ocean carbon models.

  13. Metabolic reprogramming by viruses in the sunlit and dark ocean

    PubMed Central

    2013-01-01

    Background Marine ecosystem function is largely determined by matter and energy transformations mediated by microbial community interaction networks. Viral infection modulates network properties through mortality, gene transfer and metabolic reprogramming. Results Here we explore the nature and extent of viral metabolic reprogramming throughout the Pacific Ocean depth continuum. We describe 35 marine viral gene families with potential to reprogram metabolic flux through central metabolic pathways recovered from Pacific Ocean waters. Four of these families have been previously reported but 31 are novel. These known and new carbon pathway auxiliary metabolic genes were recovered from a total of 22 viral metagenomes in which viral auxiliary metabolic genes were differentiated from low-level cellular DNA inputs based on small subunit ribosomal RNA gene content, taxonomy, fragment recruitment and genomic context information. Auxiliary metabolic gene distribution patterns reveal that marine viruses target overlapping, but relatively distinct pathways in sunlit and dark ocean waters to redirect host carbon flux towards energy production and viral genome replication under low nutrient, niche-differentiated conditions throughout the depth continuum. Conclusions Given half of ocean microbes are infected by viruses at any given time, these findings of broad viral metabolic reprogramming suggest the need for renewed consideration of viruses in global ocean carbon models. PMID:24200126

  14. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors.

    PubMed

    Hendry, Caroline E; Vanslambrouck, Jessica M; Ineson, Jessica; Suhaimi, Norseha; Takasato, Minoru; Rae, Fiona; Little, Melissa H

    2013-09-01

    Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFβ-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.

  15. Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells.

    PubMed

    Black, Joshua B; Adler, Andrew F; Wang, Hong-Gang; D'Ippolito, Anthony M; Hutchinson, Hunter A; Reddy, Timothy E; Pitt, Geoffrey S; Leong, Kam W; Gersbach, Charles A

    2016-09-01

    Overexpression of exogenous fate-specifying transcription factors can directly reprogram differentiated somatic cells to target cell types. Here, we show that similar reprogramming can also be achieved through the direct activation of endogenous genes using engineered CRISPR/Cas9-based transcriptional activators. We use this approach to induce activation of the endogenous Brn2, Ascl1, and Myt1l genes (BAM factors) to convert mouse embryonic fibroblasts to induced neuronal cells. This direct activation of endogenous genes rapidly remodeled the epigenetic state of the target loci and induced sustained endogenous gene expression during reprogramming. Thus, transcriptional activation and epigenetic remodeling of endogenous master transcription factors are sufficient for conversion between cell types. The rapid and sustained activation of endogenous genes in their native chromatin context by this approach may facilitate reprogramming with transient methods that avoid genomic integration and provides a new strategy for overcoming epigenetic barriers to cell fate specification. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy

    PubMed Central

    Scherz-Shouval, Ruth; Santagata, Sandro; Mendillo, Marc L.; Sholl, Lynette M.; Ben-Aharon, Irit; Beck, Andrew H.; Dias-Santagata, Dora; Koeva, Martina; Stemmer, Salomon M.; Whitesell, Luke; Lindquist, Susan

    2014-01-01

    Summary Stromal cells within the tumor microenvironment are essential for tumor progression and metastasis. Surprisingly little is known about the factors that drive the transcriptional reprogramming of stromal cells within tumors. We report that the transcriptional regulator Heat-Shock Factor 1 (HSF1) is frequently activated in cancer-associated fibroblasts (CAFs), where it is a potent enabler of malignancy. HSF1 drives a transcriptional program in CAFs that complements, yet is completely different from, the program it drives in adjacent cancer cells. This CAF program is uniquely structured to support the malignant potential of cancer cells in a non-cell-autonomous way. Two central stromal signaling molecules—TGFβ and stromal-derived factor 1 (SDF1) – play a critical role. In early stage breast and lung cancer, high stromal HSF1 activation is strongly associated with poor patient outcome. Thus, tumors co-opt the ancient survival functions of HSF1 to orchestrate malignancy in both cell-autonomous and non-cell-autonomous ways, with far-reaching therapeutic implications. PMID:25083868

  17. The developmental potential of iPSCs is greatly influenced by reprogramming factor selection.

    PubMed

    Buganim, Yosef; Markoulaki, Styliani; van Wietmarschen, Niek; Hoke, Heather; Wu, Tao; Ganz, Kibibi; Akhtar-Zaidi, Batool; He, Yupeng; Abraham, Brian J; Porubsky, David; Kulenkampff, Elisabeth; Faddah, Dina A; Shi, Linyu; Gao, Qing; Sarkar, Sovan; Cohen, Malkiel; Goldmann, Johanna; Nery, Joseph R; Schultz, Matthew D; Ecker, Joseph R; Xiao, Andrew; Young, Richard A; Lansdorp, Peter M; Jaenisch, Rudolf

    2014-09-04

    Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection

    PubMed Central

    Buganim, Yosef; Markoulaki, Styliani; van Wietmarschen, Niek; Hoke, Heather; Wu, Tao; Ganz, Kibibi; Akhtar-Zaidi, Batool; He, Yupeng; Abraham, Brian J.; Porubsky, David; Kulenkampff, Elisabeth; Faddah, Dina A.; Shi, Linyu; Gao, Qing; Sarkar, Sovan; Cohen, Malkiel; Goldmann, Johanna; Nery, Joseph R.; Schultz, Matthew D.; Ecker, Joseph R.; Xiao, Andrew; Young, Richard A.; Lansdorp, Peter M.; Jaenisch, Rudolf

    2014-01-01

    Summary Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human. PMID:25192464

  19. Concise review: harmonies played by microRNAs in cell fate reprogramming.

    PubMed

    Moradi, Sharif; Asgari, Sassan; Baharvand, Hossein

    2014-01-01

    It is now well-established that somatic cells can be reprogrammed to alternative cell fates by ectopic coexpression of defined factors. Reprogramming technology has uncovered a huge plasticity besides gene regulatory networks (GRNs) of differentiated cell states. MicroRNAs (miRNAs), which are an integral part of GRNs, have recently emerged as a powerful reprogramming toolbox. They regulate numerous genes, thereby modulating virtually all cellular processes, including somatic cell reprogramming. Not only can miRNAs provide novel opportunities for interrogating mechanisms of induced pluripotency and direct lineage reprogramming but they also offer hope for the efficient creation of safe cell sources for regenerative medicine. In reviewing landmark roles of miRNAs in cell reprogramming, we offer suggestions for evolution of the reprogramming field.

  20. Combined positive effect of oocyte extracts and brilliant cresyl blue stained recipient cytoplasts on epigenetic reprogramming and gene expression in buffalo nuclear transfer embryos.

    PubMed

    Sadeesh, E M; Fozia, Shah; Meena, Kataria

    2017-04-01

    This study examined the effects of buffalo oocyte extracts (BOE) on donor cells reprogramming and molecular characterisation of oocytes screened via brilliant cresyl blue (BCB) staining and comparison of gene expression profiles of developmentally important genes in blastocysts from IVF and cloned derived from BOE treated donor cells with BCB selected recipient cytoplasts. Relative abundance (RA) of OCT4 and NANOG was increased (P < 0.05) and HDAC-1, DNMT-1, and DNMT-3A decreased (P < 0.05) in extract treated cells (ETCs). This ETCs dedifferentiated into neuron-like lineage under appropriate induction condition. The RA of NASP, EEF1A1, DNMT1, ODC1 and RPS27A was increased (P < 0.05) in BCB+ oocytes, whereas ATP5A1 and S100A10 increased (P < 0.05) in BCB- oocytes. Total cell number and RA of OCT4, NANOG, SOX2, DNMT1, IGF2, IGF2R, MNSOD, GLUT1, BAX and BCL2 in cloned blastocysts derived from BCB+ oocytes with ETC more closely followed that of IVF counterparts compared to BCB+ oocytes with extract untreated cell and BCB- oocytes with ETC derived blastocysts. In conclusion, BOE influenced epigenetic reprogramming of buffalo fibroblasts making them suitable donors for nuclear transfer (NT). BCB staining can be effectively used for selection of developmentally competent oocytes for NT. The combined effects of epigenetic reprogramming of donor nuclei by BOE and higher nuclear reprogramming capacity of BCB+ oocytes improve developmentally important gene expression in cloned blastocysts. Whether these improvements have long-term effects on buffalo calves born following embryo transfer remains unknown.

  1. Telomere Reprogramming and Maintenance in Porcine iPS Cells

    PubMed Central

    Ji, Guangzhen; Ruan, Weimin; Liu, Kai; Wang, Fang; Sakellariou, Despoina; Chen, Jijun; Yang, Yang; Okuka, Maja; Han, Jianyong; Liu, Zhonghua; Lai, Liangxue; Gagos, Sarantis; Xiao, Lei; Deng, Hongkui; Li, Ning; Liu, Lin

    2013-01-01

    Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells). Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells. PMID:24098638

  2. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    PubMed

    Tain, You-Lin; Huang, Li-Tung; Hsu, Chien-Ning

    2017-02-16

    Adult-onset chronic non-communicable diseases (NCDs) can originate from early life through so-called the "developmental origins of health and disease" (DOHaD) or "developmental programming". The DOHaD concept offers the "reprogramming" strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs.

  3. Reprogramming bladder cancer cells for studying cancer initiation and progression.

    PubMed

    Iskender, Banu; Izgi, Kenan; Canatan, Halit

    2016-10-01

    The induced pluripotent stem cell (iPSC) technology is the forced expression of specific transcription factors in somatic cells resulting in transformation into self-renewing, pluripotent cells which possess the ability to differentiate into any type of cells in the human body. While malignant cells could also be reprogrammed into iPSC-like cells with lower efficiency due to the genetic and epigenetic barriers in cancer cells, only a limited number of cancer cell types could be successfully reprogrammed until today. In the present study, we aimed at reprogramming two bladder cancer cell lines HTB-9 and T24 using a non-integrating Sendai virus (SeV) system. We have generated six sub-clones using distinct combinations of four factors-OCT4, SOX2, KLF4 and c-MYC-in two bladder cancer cell lines. Only a single sub-clone, T24 transduced with 4Fs, gave rise to iPSC-like cells. Bladder cancer cell-derived T24 4F cells represent unique features of pluripotent cells such as epithelial-like morphology, colony-forming ability, expression of pluripotency-associated markers and bearing the ability to differentiate in vitro. This is the first study focusing on the reprogramming susceptibility of two different bladder cancer cell lines to nuclear reprogramming. Further molecular characterisation of T24 4F cells could provide a better insight for biomarker research in bladder carcinogenesis and could offer a valuable tool for the development of novel therapeutic approaches in bladder carcinoma.

  4. Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts.

    PubMed

    Gonçalves, N J N; Bressan, F F; Roballo, K C S; Meirelles, F V; Xavier, P L P; Fukumasu, H; Williams, C; Breen, M; Koh, S; Sper, R; Piedrahita, J; Ambrósio, C E

    2017-04-01

    Takahashi and Yamanaka established the first technique in which transcription factors related to pluripotency are incorporated into the genome of somatic cells to enable reprogramming of these cells. The expression of these transcription factors enables a differentiated somatic cell to reverse its phenotype to an embryonic state, generating induced pluripotent stem cells (iPSCs). iPSCs from canine fetal fibroblasts were produced through lentiviral polycistronic human and mouse vectors (hOSKM/mOSKM), aiming to obtain pluripotent stem cells with similar features to embryonic stem cells (ESC) in this animal model. The cell lines obtained in this study were independent of LIF or any other supplemental inhibitors, resistant to enzymatic procedure (TrypLE Express Enzyme), and dependent on bFGF. Clonal lines were obtained from slightly different protocols with maximum reprogramming efficiency of 0.001%. All colonies were positive for alkaline phosphatase, embryoid body formation, and spontaneous differentiation and expressed high levels of endogenous OCT4 and SOX2. Canine iPSCs developed tumors at 120 days post-injection in vivo. Preliminary chromosomal evaluations were performed by FISH hybridization, revealing no chromosomal abnormality. To the best of our knowledge, this report is the first to describe the ability to reprogram canine somatic cells via lentiviral vectors without supplementation and with resistance to enzymatic action, thereby demonstrating the pluripotency of these cell lines.

  5. Properties of sulfatases in cultured skin fibroblasts of multiple sulfatase deficient patients.

    PubMed

    Yutaka, T; Okada, S; Kato, T; Inui, K; Yabuuchi, H

    1981-10-01

    Various sulfatase activities were assayed in cultured skin fibroblasts from patients with multiple sulfatase deficiency (MSD). MSD cell lines displayed deficiencies of arylsulfatase A and iduronate sulfatase, but activities of arylsulfatase B, N-acetylgalactosamine 6-sulfate sulfatase and N-acetylglucosamine 6-sulfate sulfatase were within normal ranges, but not consistently. Arylsulfatase A, minor anionic arylsulfatase and N-acetylgalactosamine 6-sulfate sulfatase in MSD cell lines had similar Km, pH optima, inhibitory or activator sensitivity to that of normal skin fibroblasts. Arylsulfatase B in MSD cell lines also had properties similar to that of normal skin fibroblasts, except an abnormal heat stability. From our results, we conclude that properties of arylsulfatase A, minor anionic arylsulfatase and N-acetylgalactosamine 6-sulfate sulfatase in MSD fibroblasts were intact. On the other hand, arylsulfatase B in MSD might be a functionally abnormal enzyme.

  6. Isolation of the pericellular matrix of human fibroblast cultures

    PubMed Central

    1979-01-01

    The pericellular matrix of human fibroblast cultures was isolated, using sequential extraction with sodium deoxycholate and hypotonic buffer in the presence of protease inhibitor. The matrix attached to the growth substratum had a "sackcloth-like" structure as seen by phase contrast, immunofluorescence, and scanning electron microscopy, and it had a vaguely filamentous ultrastructure similar to that seen in intact cell layers. The matrix consisted of hyaluronic acid and heparan sulfate as the major glycosaminoglycan components and fibronectin and procollagen as major polypeptides as shown by metabolic labeling, gel electrophoresis, immunofluorescence, and collagenase digestion. This pericellular matrix can be regarded as an in vitro equivalent of the loose connective tissue matrix. PMID:383722

  7. The role of oxidized ATM in the regulation of oxidative stress-induced energy metabolism reprogramming of CAFs.

    PubMed

    Tang, Shifu; Yang, Li; Tang, Xi; Liu, Manran

    2014-10-28

    Cancer-associated fibroblasts (CAFs) are the predominant cell type in tumor microenvironment (TM) and featured with the distinct energy metabolism reprogramming (EMR) phenotype caused by many factors such as hypoxia and growth factors. The EMR of CAFs plays a key role in biological behaviors of cancer cells including proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Recently, accumulative evidence indicates that oxidative stress (OS) mediates the EMR of CAFs under conditions of various stimuli. However, the precise mechanism by which OS causes the EMR of CAFs is not clear. Interestingly, our previous work suggested that ataxia-telangiectasia mutated (ATM) signaling is activated independent of DNA double strand breaks (DSBs) in CAFs derived from human breast cancers compared with paired normal fibroblasts (NFs). Recent studies have shown that ATM protein kinase, as a redox sensor, is closely associated with cellular energy metabolism. Thus, it is very possible that ATM protein kinase regulates the EMR of CAFs. So, it is necessary to perform an integral study on how oxidized ATM regulates the EMR of CAFs in response to various stimuli evoking OS. This will facilitate to develop a new powerful strategy of preventing and treating cancers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Photoreceptor-like cells from reprogramming cultured mammalian RPE cells

    PubMed Central

    Yan, Run-Tao; Huang, Jian; Guidry, Clyde; Wang, Shu-Zhen

    2013-01-01

    Purpose Previous studies showed that chick retinal pigment epithelium (RPE) cells can be reprogrammed by a specific gene to take on the path of photoreceptor differentiation. In this study, we tested whether this reprogramming scheme could be applied to mammalian RPE cells. Methods Human RPE cell lines ARPE-19, a spontaneously transformed line of RPE cells derived from a 19-year-old person, and hTERT-RPE1, a telomerase-immortalized RPE cell line derived from a 1-year-old person, were commercially obtained and cultured as recommended. Primary RPE cell cultures were established using RPE isolated from 3- to 6-month-old pig and postnatal day 5 mouse. Cultured cells were transduced with a virus expressing neuroD, neurogenin1 (ngn1), or ngn3, basic helix-loop-helix (bHLH) genes previously identified as capable of inducing RPE-to-photoreceptor reprogramming in the chick system. Alternatively, cells in the culture were transfected chemically or physically through electroporation with vector DNA expressing one of the three genes. The cultures were then analyzed for RPE-to-photoreceptor reprogramming with in situ hybridization and/or immunostaining for photoreceptor gene expression. Results Both hTERT-RPE1 and ARPE-19 cultures gave rise to cells bearing markers of photoreceptors after transduction or transfection with vehicles expressing neuroD or ngn1. The new cells expressed genes encoding photoreceptor proteins, including interphotoreceptor retinoid-binding protein IRBP), recoverin, retinal cone arrestin 3, transducin α-subunit, Cone-rod homeobox protein (Crx), and red opsin. They displayed morphologies resembling differentiating photoreceptor cells. In primary porcine and mouse RPE cell cultures, transduction with lenti virus (Lvx-IRES-ZsGreen1) expressing ngn1 or ngn3 resulted in the emergence of ZsGreen1+ cells that exhibited morphologies reminiscent of differentiating photoreceptor cells. Immunochemistry showed that some ZsGreen1+ cells were positive for neural

  9. Preparation of extracellular matrices produced by cultured and primary fibroblasts

    PubMed Central

    Franco-Barraza, Janusz; Beacham, Dorothy A.; Amatangelo, Michael D.; Cukierman, Edna

    2016-01-01

    are composed mainly of fibronectin fibrillar lattices. Utilizing in vivo-like 3-D matrices as substrates allows the acquisition of information that is physiologically relevant to cell-matrix interactions, structure, function, and signaling, which differ from data obtained by culturing cells on conventional 2-D substrates in vitro (Cukierman et al., 2001). These protocols were initially derived from methods described in UNIT 10.4, which were modified to obtain fibroblast-derived 3-D matrices and to characterize cellular responses to them. The basic approach is to allow fibroblasts to produce their own 3-D matrix (see Basic Protocol). For this purpose, fibroblasts are plated and maintained in culture in a confluent state. After 5 to 9 days, unextracted 3-D matrix cultures can be sorted into normal or activated (i.e., myofibroblastic, fibrotic or desmoplastic) phenotypes (see Support Protocol 1) or matrices are denuded of cells, and cellular remnants are removed. Such extraction results in an intact fibroblast-derived 3-D matrix that is free of cellular debris and remains attached to the culture surface (see Figure 10.9.1). The fibroblast-derived 3-D matrices are then washed with Dulbecco’s phosphate-buffer solution (DPBS+) and can be stored 2 to 6 weeks at 4°C or up to 3 weeks frozen at −80°C. Moreover, to analyze the effect of matrix pliability on cellular behavior, prepared 3-D matrices can be rigidified by chemical cross-linking (see Support Protocol 2 and UNIT 17.10). Additionally, to evaluate the quality and functionality of the fibroblast-derived 3-D matrices, support protocols present a variety of procedures for measuring matrix production phenotypes such as matrix thickness and fiber alignment/orientation (see Support Protocol 1), as well as cell responsiveness to the 3-D matrix microenvironment (see Support Protocols 3 to 6). The rapid cell attachment of fibroblasts plated within the matrix can be quantified. By plating isolated fibroblasts in the 3-D

  10. Effects of biomaterial-derived fibroblast conditioned medium on the α-amylase expression of parotid gland acinar cells.

    PubMed

    Chou, Ya-Shuan; Young, Tai-Horng; Lou, Pei-Jen

    2015-11-01

    present study represents the first description of the role of NT-4 in the expression of α-amylase of PGACs and the role of PVDF in the reprogramming fibroblasts into neural progenitor-like cells, indicating that PVDF could promote the expression of α-amylase by PGACs via the NT-4 produced by fibroblasts. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. DNA Replication Is an Integral Part of the Mouse Oocyte’s Reprogramming Machinery

    PubMed Central

    Wang, Bingyuan; Pfeiffer, Martin J.; Schwarzer, Caroline; Araúzo-Bravo, Marcos J.; Boiani, Michele

    2014-01-01

    Many of the structural and mechanistic requirements of oocyte-mediated nuclear reprogramming remain elusive. Previous accounts that transcriptional reprogramming of somatic nuclei in mouse zygotes may be complete in 24–36 hours, far more rapidly than in other reprogramming systems, raise the question of whether the mere exposure to the activated mouse ooplasm is sufficient to enact reprogramming in a nucleus. We therefore prevented DNA replication and cytokinesis, which ensue after nuclear transfer, in order to assess their requirement for transcriptional reprogramming of the key pluripotency genes Oct4 (Pou5f1) and Nanog in cloned mouse embryos. Using transcriptome and allele-specific analysis, we observed that hundreds of mRNAs, but not Oct4 and Nanog, became elevated in nucleus-transplanted oocytes without DNA replication. Progression through the first round of DNA replication was essential but not sufficient for transcriptional reprogramming of Oct4 and Nanog, whereas cytokinesis and thereby cell-cell interactions were dispensable for transcriptional reprogramming. Responses similar to clones also were observed in embryos produced by fertilization in vitro. Our results link the occurrence of reprogramming to a previously unappreciated requirement of oocyte-mediated nuclear reprogramming, namely DNA replication. Nuclear transfer alone affords no immediate transition from a somatic to a pluripotent gene expression pattern unless DNA replication is also in place. This study is therefore a resource to appreciate that the quest for always faster reprogramming methods may collide with a limit that is dictated by the cell cycle. PMID:24836291

  12. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers.

    PubMed

    Seisenberger, Stefanie; Peat, Julian R; Hore, Timothy A; Santos, Fátima; Dean, Wendy; Reik, Wolf

    2013-01-05

    In mammalian development, epigenetic modifications, including DNA methylation patterns, play a crucial role in defining cell fate but also represent epigenetic barriers that restrict developmental potential. At two points in the life cycle, DNA methylation marks are reprogrammed on a global scale, concomitant with restoration of developmental potency. DNA methylation patterns are subsequently re-established with the commitment towards a distinct cell fate. This reprogramming of DNA methylation takes place firstly on fertilization in the zygote, and secondly in primordial germ cells (PGCs), which are the direct progenitors of sperm or oocyte. In each reprogramming window, a unique set of mechanisms regulates DNA methylation erasure and re-establishment. Recent advances have uncovered roles for the TET3 hydroxylase and passive demethylation, together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. Deamination by AID, BER and passive demethylation have been implicated in reprogramming in PGCs, but the process in its entirety is still poorly understood. In this review, we discuss the dynamics of DNA methylation reprogramming in PGCs and the zygote, the mechanisms involved and the biological significance of these events. Advances in our understanding of such natural epigenetic reprogramming are beginning to aid enhancement of experimental reprogramming in which the role of potential mechanisms can be investigated in vitro. Conversely, insights into in vitro reprogramming techniques may aid our understanding of epigenetic reprogramming in the germline and supply important clues in reprogramming for therapies in regenerative medicine.

  13. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?

    PubMed

    Yilmazer, Açelya; de Lázaro, Irene; Taheri, Hadiseh

    2015-12-01

    Chromatin dynamics have been the major focus of many physiological and pathological processes over the past 20 years. Epigenetic mechanisms have been shown to be reshaped during both cellular reprogramming and tumorigenesis. For this reason, cancer cell reprogramming can provide a powerful tool to better understand both regenerative and cancer-fate processes, with a potential to develop novel therapeutic approaches. Recent studies showed that cancer cells can be reprogrammed to a pluripotent state by the overexpression of reprogramming transcription factors. Activation of transcription factors and modification of chromatin regulators may result in the remodeling of epigenetic status and refueling of tumorigenicity in these reprogrammed cancer cells. However, studies focusing on cancer cell reprogramming are contradictory; some studies reported increased tumor progression whereas others showed that cellular reprogramming has a treatment potential for cancer. In this review, first, the current knowledge on the epigenetic mechanisms involved during cancer development and cellular reprogramming will be presented. Later, different reports and key factors about pluripotency-based reprogramming of cancer cells will be reviewed in detail. New insights will be provided on cancer biology and therapy in the light of cellular reprogramming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Temporal alterations in cardiac fibroblast function following induction of pressure overload

    PubMed Central

    Stewart, James A.; Massey, Erin P.; Fix, Charity; Zhu, Jinyu; Goldsmith, Edie C.

    2014-01-01

    Increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis. While numerous studies have focused on the mechanisms of myocyte hypertrophy, comparatively little is known regarding the response of the interstitial fibroblasts to increased cardiovascular load. Fibroblasts are the most numerous cell type in the mammalian myocardium and have long been recognized as producing the majority of the myocardial extracellular matrix. It is only now becoming appreciated that other aspects of fibroblast behavior are important to overall cardiac function. The present studies were performed to examine the temporal alterations in fibroblast activity in response to increased cardiovascular load. Rat myocardial fibroblasts were isolated at specific time-points (3, 7, 14, and 28 days) after induction of pressure overload by abdominal aortic constriction. Bioassays were performed to measure specific parameters of fibroblast function including remodeling and contraction of 3-dimensional collagen gels, migration, and proliferation. In addition, the expression of extracellular matrix receptors of the integrin family was examined. Myocardial hypertrophy and fibrosis were evident within 7 days after constriction of the abdominal aorta. Collagen gel contraction, migration, and proliferation were enhanced in fibroblasts from pressure-overloaded animals compared to fibroblasts from sham animals. Differences in fibroblast function and protein expression were evident within 7 days of aortic constriction, concurrent with the onset of hypertrophy and fibrosis of the intact myocardium. These data provide further support for the idea that rapid and dynamic changes in fibroblast phenotype accompany and contribute to the progression of cardiovascular disease. PMID:20217135

  15. Calorie restriction and susceptibility to intact pathogens

    PubMed Central

    2008-01-01

    Long-term calorie restriction (CR) causes numerous physiological changes that ultimately increase mean and maximum lifespan of most species examined to date. One physiological change that occurs with CR is enhanced immune function, as tested using antigens and mitogens to stimulate an immune response. Fewer studies have used intact pathogen exposure to test whether the enhanced capacity of the immune response during CR actually decreases susceptibility of hosts to their pathogens. So far, studies using intact bacteria, virus, and helminth worm exposure indicate that, despite similar or enhanced immune system function, CR hosts are more susceptible to infection by intact pathogens than their fully fed counterparts. Long-term CR studies that examine susceptibility to a variety of parasite taxa will help determine if direct CR or CR mimetics will be beneficial to people living in pathogen-rich environments. PMID:19424864

  16. Somatic cell reprogramming-free generation of genetically modified pigs

    PubMed Central

    Tanihara, Fuminori; Takemoto, Tatsuya; Kitagawa, Eri; Rao, Shengbin; Do, Lanh Thi Kim; Onishi, Akira; Yamashita, Yukiko; Kosugi, Chisato; Suzuki, Hitomi; Sembon, Shoichiro; Suzuki, Shunichi; Nakai, Michiko; Hashimoto, Masakazu; Yasue, Akihiro; Matsuhisa, Munehide; Noji, Sumihare; Fujimura, Tatsuya; Fuchimoto, Dai-ichiro; Otoi, Takeshige

    2016-01-01

    Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs. PMID:27652340

  17. Aging and reprogramming: a two-way street

    PubMed Central

    Mahmoudi, Salah; Brunet, Anne

    2012-01-01

    Aging is accompanied by the functional decline of cells, tissues, and organs, as well as a striking increase in a wide range of diseases. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) opens new avenues for the aging field and has important applications for therapeutic treatments of age-related diseases. Here we review emerging studies on how aging and age-related pathways influence iPSC generation and property. We discuss the exciting possibility that reverting to a pluripotent stem cell stage erases several deficits associated with aging and will provide new strategies for rejuvenation. Finally, we argue that reprogramming provides a unique opportunity to model aging and perhaps exceptional longevity. PMID:23146768

  18. Generating pluripotent stem cells: differential epigenetic changes during cellular reprogramming.

    PubMed

    Tobin, Stacey C; Kim, Kitai

    2012-08-31

    Pluripotent stem cells hold enomous potential for therapuetic applications in tissue replacement therapy. Reprogramming somatic cells from a patient donor to generate pluripotent stem cells involves both ethical concerns inherent in the use of embryonic and oocyte-derived stem cells, as well as issues of histocompatibility. Among the various pluripotent stem cells, induced pluripotent stem cells (iPSC)--derived by ectopic expression of four reprogramming factors in donor somatic cells--are superior in terms of ethical use, histocompatibility, and derivation method. However, iPSC also show genetic and epigenetic differences that limit their differentiation potential, functionality, safety, and potential clinical utility. Here, we discuss the unique characteristics of iPSC and approaches that are being taken to overcome these limitations.

  19. Generating pluripotent stem cells: Differential epigenetic changes during cellular reprogramming

    PubMed Central

    Tobin, Stacey C.; Kim, Kitai

    2013-01-01

    Pluripotent stem cells hold enomous potential for therapuetic applications in tissue replacement therapy. Reprogramming somatic cells from a patient donor to generate pluripotent stem cells involves both ethical concerns inherent in the use of embryonic and oocyte-derived stem cells, as well as issues of histocompatibility. Among the various pluripotent stem cells, induced pluripotent stem cells (iPSC)—derived by ectopic expression of four reprogramming factors in donor somatic cells—are superior in terms of ethical use, histocompatibility, and derivation method. However, iPSC also show genetic and epigenetic differences that limit their differentiation potential, functionality, safety, and potential clinical utility. Here, we discuss the unique characteristics of iPSC and approaches that are being taken to overcome these limitations. PMID:22819821

  20. Cell Fate Reprogramming by Control of Intracellular Network Dynamics

    PubMed Central

    Zañudo, Jorge G. T.; Albert, Réka

    2015-01-01

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method’s potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. PMID:25849586

  1. Metabolic reprogramming in macrophages and dendritic cells in innate immunity

    PubMed Central

    Kelly, Beth; O'Neill, Luke AJ

    2015-01-01

    Activation of macrophages and dendritic cells (DCs) by pro-inflammatory stimuli causes them to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS), similar to the Warburg effect in tumors. However, it is only recently that the mechanisms responsible for this metabolic reprogramming have been elucidated in more detail. The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays an important role under conditions of both hypoxia and normoxia. The withdrawal of citrate from the tricarboxylic acid (TCA) cycle has been shown to be critical for lipid biosynthesis in both macrophages and DCs. Interference with this process actually abolishes the ability of DCs to activate T cells. Another TCA cycle intermediate, succinate, activates HIF-1α and promotes inflammatory gene expression. These new insights are providing us with a deeper understanding of the role of metabolic reprogramming in innate immunity. PMID:26045163

  2. Reprogramming of adult rod photoreceptors prevents retinal degeneration

    PubMed Central

    Montana, Cynthia L.; Kolesnikov, Alexander V.; Shen, Susan Q.; Myers, Connie A.; Kefalov, Vladimir J.; Corbo, Joseph C.

    2013-01-01

    A prime goal of regenerative medicine is to direct cell fates in a therapeutically useful manner. Retinitis pigmentosa is one of the most common degenerative diseases of the eye and is associated with early rod photoreceptor death followed by secondary cone degeneration. We hypothesized that converting adult rods into cones, via knockdown of the rod photoreceptor determinant Nrl, could make the cells resistant to the effects of mutations in rod-specific genes, thereby preventing secondary cone loss. To test this idea, we engineered a tamoxifen-inducible allele of Nrl to acutely inactivate the gene in adult rods. This manipulation resulted in reprogramming of rods into cells with a variety of cone-like molecular, histologic, and functional properties. Moreover, reprogramming of adult rods achieved cellular and functional rescue of retinal degeneration in a mouse model of retinitis pigmentosa. These findings suggest that elimination of Nrl in adult rods may represent a unique therapy for retinal degeneration. PMID:23319618

  3. Epigenetic memory and cell fate reprogramming in plants.

    PubMed

    Birnbaum, Kenneth D; Roudier, François

    2017-02-01

    Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration.

  4. Somatic cell reprogramming-free generation of genetically modified pigs.

    PubMed

    Tanihara, Fuminori; Takemoto, Tatsuya; Kitagawa, Eri; Rao, Shengbin; Do, Lanh Thi Kim; Onishi, Akira; Yamashita, Yukiko; Kosugi, Chisato; Suzuki, Hitomi; Sembon, Shoichiro; Suzuki, Shunichi; Nakai, Michiko; Hashimoto, Masakazu; Yasue, Akihiro; Matsuhisa, Munehide; Noji, Sumihare; Fujimura, Tatsuya; Fuchimoto, Dai-Ichiro; Otoi, Takeshige

    2016-09-01

    Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs.

  5. Spermatogenesis disruption by dioxins: Epigenetic reprograming and windows of susceptibility.

    PubMed

    Pilsner, J Richard; Parker, Mikhail; Sergeyev, Oleg; Suvorov, Alexander

    2017-04-01

    Dioxins are a group of highly persistent chemicals that are generated as by-products of industrial and natural processes. Reduction in sperm counts is among the most sensitive endpoints of dioxin toxicity. The exact mechanism by which dioxins reduce sperm counts is not known. Recent data implicate the role of epididymal factors rather than disruption of spermatogenesis. Studies reviewed here demonstrate that dioxins induce the transfer of environmental conditions to the next generation via male germline following exposures during the window of epigenetic reprogramming of primordial germ cells. Increased incidence of birth defects in offspring of male veterans exposed to dioxin containing, Agent Orange, suggest that dioxins may induce epigenomic changes in male germ cells of adults during spermatogenesis. This is supported by recent animal data that show that environmental conditions can cause epigenetic dysregulation in sperm in the context of specific windows of epigenetic reprogramming during spermatogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Epigenetic memory and cell fate reprogramming in plants

    PubMed Central

    Roudier, François

    2017-01-01

    Abstract Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration. PMID:28316791

  7. Development-Inspired Reprogramming of the Mammalian Central Nervous System

    PubMed Central

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-01

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the exciting demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell-type into another not only turns fundamental principles of development on their head but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may impact regeneration and modeling of a system historically considered immutable and hardwired. PMID:24482482

  8. Reprogramming of the Circadian Clock by Nutritional Challenge

    PubMed Central

    Eckel-Mahan, Kristin L.; Patel, Vishal R.; de Mateo, Sara; Orozco-Solis, Ricardo; Ceglia, Nicholas J.; Sahar, Saurabh; Dilag, Sherry; Dyar, Kenneth A.; Baldi, Pierre; Sassone-Corsi, Paolo

    2014-01-01

    Summary Circadian rhythms and cellular metabolism are intimately linked. Here we reveal that a high-fat diet (HFD) generates a profound reorganization of specific metabolic pathways, leading to widespread remodeling of the liver clock. Strikingly, in addition to disrupting the normal circadian cycle, HFD causes an unexpectedly large-scale genesis of de novo oscillating transcripts, resulting in reorganization of the coordinated oscillations between coherent transcripts and metabolites. The mechanisms underlying this reprogramming involve both the impairment of CLOCK:BMAL1 chromatin recruitment, and a pronounced cyclic activation of surrogate pathways through the transcriptional regulator PPARγ. Finally, we demonstrate that it is specifically the nutritional challenge, and not the development of obesity, that causes the reprogramming of the clock and that the effects of the diet on the clock are reversible. PMID:24360271

  9. Development-inspired reprogramming of the mammalian central nervous system.

    PubMed

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-31

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.

  10. Direct conversion of human fibroblasts into functional osteoblasts by defined factors.

    PubMed

    Yamamoto, Kenta; Kishida, Tsunao; Sato, Yoshiki; Nishioka, Keisuke; Ejima, Akika; Fujiwara, Hiroyoshi; Kubo, Toshikazu; Yamamoto, Toshiro; Kanamura, Narisato; Mazda, Osam

    2015-05-12

    Osteoblasts produce calcified bone matrix and contribute to bone formation and remodeling. In this study, we established a procedure to directly convert human fibroblasts into osteoblasts by transducing some defined factors and culturing in osteogenic medium. Osteoblast-specific transcription factors, Runt-related transcription factor 2 (Runx2), and Osterix, in combination with Octamer-binding transcription factor 3/4 (Oct4) and L-Myc (RXOL) transduction, converted ∼ 80% of the fibroblasts into osteocalcin-producing cells. The directly converted osteoblasts (dOBs) induced by RXOL displayed a similar gene expression profile as normal human osteoblasts and contributed to bone repair after transplantation into immunodeficient mice at artificial bone defect lesions. The dOBs expressed endogenous Runx2 and Osterix, and did not require continuous expression of the exogenous genes to maintain their phenotype. Another combination, Oct4 plus L-Myc (OL), also induced fibroblasts to produce bone matrix, but the OL-transduced cells did not express Osterix and exhibited a more distant gene expression profile to osteoblasts compared with RXOL-transduced cells. These findings strongly suggest successful direct reprogramming of fibroblasts into functional osteoblasts by RXOL, a technology that may provide bone regeneration therapy against bone disorders.

  11. Fibroblast cell line establishment, cryopreservation and interspecies embryos reconstruction in red panda ( Ailurus fulgens).

    PubMed

    Tao, Yong; Liu, Jianming; Zhang, Yunhai; Zhang, Meiling; Fang, Junshun; Han, Wei; Zhang, Zhizhong; Liu, Ya; Ding, Jianping; Zhang, Xiaorong

    2009-05-01

    In evolution, the red panda (Ailurus fulgens) plays a pivotal role in the higher level phylogeny of arctoides carnivore mammals. The red panda inhabits certain Asian countries only and its numbers are decreasing. Therefore, the development of feasible ways to preserve this species is necessary. Genetic resource cryopreservation and somatic cell nuclear transfer (SCNT) have been used extensively to rescue this endangered species. The present study describes the establishment, for the first time, of a red panda ear fibroblast cell line, which was then cryopreserved, thawed and cultured. Through micromanipulation, interspecies embryos were reconstructed using the cryopreserved-thawed fibroblasts of the red panda as the donor and rabbit oocytes as recipients. A total of 194 enucleated rabbit oocytes were reconstructed with red panda ear fibroblasts; enucleated oocytes were activated without fusion as the control. The results show that the fibroblast cell line was established successfully by tissue culture and then cryopreserved in liquid nitrogen. Supplementation with 20% fetal bovine serum and 8% dimethyl sulphoxide in basic medium facilitated the cryopreservation. The interspecies embryos were successfully reconstructed. The cleavage, morulae and blastocyst rates after in vitro culture were 71, 47 and 23% (31/194), respectively. This study indicated that a somatic cell line could be established and cryopreserved from red panda and that rabbit cytoplast supports mitotic cleavage of the red panda karyoplasts and is capable of reprogramming the nucleus to achieve blastocysts.

  12. The hallmarks of fibroblast ageing.

    PubMed

    Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz

    2014-06-01

    Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Heterogeneous nuclear transfer embryos reconstructed by bovine oocytes and camel (Camelus bactrianus) skin fibroblasts and their subsequent development.

    PubMed

    Zhou, Huanmin; Guo, Zhenhua

    2006-01-01

    This study reconstructed heterogeneous embryos using camel skin fibroblast cells as donor karyoplasts and the bovine oocytes as recipient cytoplasts to investigate the reprogramming of camel somatic cell nuclei in bovine oocyte cytoplasm and the developmental potential of the reconstructed embryos. Serum-starved skin fibroblast cells, obtained from adult camel, were electrically fused into enucleated bovine metaphase II (MII) oocytes that were matured in vitro. The fused eggs were activated by Inomycin with 2 mM/ml 6-dimethylaminopurine. The activated reconstructed embryos were cocultured with bovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% fetal calf serum for 168 h. Results showed that 53% of the injected oocytes were successfully fused, 34% of the fused eggs underwent the first egg cleavage, and 100% of them developed to four- or 16-cell embryo stages. The first completed cleavage of xenonuclear transfer camel embryos occurred between 22 and 48 h following activation. This study demonstrated that the reconstructed embryos underwent the first embryonic division and that the reprogramming of camel fibroblast nuclei can be initiated in enucleated bovine MII oocytes.

  14. Modeling the phenotype of spinal muscular atrophy by the direct conversion of human fibroblasts to motor neurons.

    PubMed

    Zhang, Qi-Jie; Li, Jin-Jing; Lin, Xiang; Lu, Ying-Qian; Guo, Xin-Xin; Dong, En-Lin; Zhao, Miao; He, Jin; Wang, Ning; Chen, Wan-Jin

    2017-02-14

    Spinal muscular atrophy (SMA) is a lethal autosomal recessive neurological disease characterized by selective degeneration of motor neurons in the spinal cord. In recent years, the development of cellular reprogramming technology has provided an alternative and effective method for obtaining patient-specific neurons in vitro. In the present study, we applied this technology to the field of SMA to acquire patient-specific induced motor neurons that were directly converted from fibroblasts via the forced expression of 8 defined transcription factors. The infected fibroblasts began to grow in a dipolar manner, and the nuclei gradually enlarged. Typical Tuj1-positive neurons were generated at day 23. After day 35, induced neurons with multiple neurites were observed, and these neurons also expressed the hallmarks of Tuj1, HB9, ISL1 and CHAT. The conversion efficiencies were approximately 5.8% and 5.5% in the SMA and control groups, respectively. Additionally, the SMA-induced neurons exhibited a significantly reduced neurite outgrowth rate compared with the control neurons. After day 60, the SMA-induced neurons also exhibited a liability of neuronal degeneration and remarkable fracturing of the neurites was observed. By directly reprogramming fibroblasts, we established a feeder-free conversion system to acquire SMA patient-specific induced motor neurons that partially modeled the phenotype of SMA in vitro.

  15. Oxamflatin Treatment Enhances Cloned Porcine Embryo Development and Nuclear Reprogramming*

    PubMed Central

    Mao, Jiude; Zhao, Ming-Tao; Whitworth, Kristin M.; Spate, Lee D.; Walters, Eric M.; O'Gorman, Chad; Lee, Kiho; Samuel, Melissa S.; Murphy, Clifton N.; Wells, Kevin; Rivera, Rocio M.

    2015-01-01

    Abstract Faulty epigenetic reprogramming of somatic nuclei is thought to be the main reason for low cloning efficiency by somatic cell nuclear transfer (SCNT). Histone deacetylase inhibitors (HDACi), such as Scriptaid, improve developmental competence of SCNT embryos in several species. Another HDACi, Oxamflatin, is about 100 times more potent than Scriptaid in the ability to inhibit nuclear-specific HDACs. The present study determined the effects of Oxamflatin treatment on embryo development, DNA methylation, and gene expression. Oxamflatin treatment enhanced blastocyst formation of SCNT embryos in vitro. Embryo transfer produced more pigs born and fewer mummies from the Oxamflatin-treated group compared to the Scriptaid-treated positive control. Oxamflatin also decreased DNA methylation of POU5F1 regulatory elements and centromeric repeat elements in day-7 blastocysts. When compared to in vitro–fertilized (IVF) embryos, the methylation status of POU5F1, NANOG, and centromeric repeat was similar in the cloned embryos, indicating these genes were successfully reprogrammed. However, compared to the lack of methylation of XIST in day-7 IVF embryos, a higher methylation level in day-7 cloned embryos was observed, implying that X chromosomes were activated in day-7 IVF blastocysts, but were not fully activated in cloned embryos, i.e., reprogramming of XIST was delayed. A time-course analysis of XIST DNA methylation on day-13, -15, -17, and -19 in vivo embryos revealed that XIST methylation initiated at about day 13 and was not completed by day 19. The methylation of the XIST gene in day-19 control cloned embryos was delayed again when compared to in vivo embryos. However, methylation of XIST in Oxamflatin-treated embryos was comparable with in vivo embryos, which further demonstrated that Oxamflatin could accelerate the delayed reprogramming of XIST gene and thus might improve cloning efficiency. PMID:25548976

  16. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    PubMed Central

    Tain, You-Lin; Huang, Li-Tung; Hsu, Chien-Ning

    2017-01-01

    Adult-onset chronic non-communicable diseases (NCDs) can originate from early life through so-called the “developmental origins of health and disease” (DOHaD) or “developmental programming”. The DOHaD concept offers the “reprogramming” strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs. PMID:28212315

  17. Exploring the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation.

    PubMed

    Xu, Li; Zhang, Kun; Wang, Jin

    2014-01-01

    We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model showed good

  18. Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development.

    PubMed

    Perera, P I P; Ordoñez, C A; Dedicova, B; Ortega, P E M

    2014-05-21

    Gametes have the unique potential to enter the sporophytic pathway, called androgenesis. The plants produced are usually haploid and recombinant due to the preceding meiosis and they can double their chromosome number to form doubled haploids, which are completely homozygous. Availability of the doubled haploids facilitates mapping the genes of agronomically important traits, shortening the time of the breeding process required to produce new hybrids and homozygous varieties, and saving the time and cost for inbreeding. This study aimed to test the feasibility of using isolated and in vitro cultured immature cassava (Manihot esculenta) microspores to reprogramme and initiate sporophytic development. Different culture media and different concentrations of two ion components (Cu(2+) and Fe(2+)) were tested in two genotypes of cassava. External structural changes, nuclear divisions and cellular changes during reprogramming were analysed by scanning electron microscopy, by staining with 4',6-diamidino-2-phenylindole, and through classical histology and transmission electron microscopy. In two cassava genotypes, different developmental stages of microspores were found to initiate sporophytic cell divisions, that is, with tetrads of TMS 60444 and with mid or late uni-nucleate microspores of SM 1219-9. In the modified NLN medium (NLNS), microspore enlargements were observed. The medium supplemented with either sodium ferrous ethylene-diamine-tetraacetic acid (NaFeEDTA) or CuSO4·5H2O induced sporophytic cell division in both genotypes. A low frequency of the reprogramming and the presence of non-responsive microspores among the responsive ones in tetrads were found to be related to the viability and exine formation of the microspores. The present study clearly demonstrated that reprogramming occurs much faster in isolated microspore culture than in anther culture. This paves the way for the development of an efficient technique for the production of homozygous lines in

  19. Exploring the Mechanisms of Differentiation, Dedifferentiation, Reprogramming and Transdifferentiation

    PubMed Central

    Xu, Li; Zhang, Kun; Wang, Jin

    2014-01-01

    We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model showed good

  20. Autism Spectrum Disorder and intact executive functioning.

    PubMed

    Ferrara, R; Ansermet, F; Massoni, F; Petrone, L; Onofri, E; Ricci, P; Archer, T; Ricci, S

    2016-01-01

    Earliest notions concerning autism (Autism Spectrum Disorders, ASD) describe the disturbance in executive functioning. Despite altered definition, executive functioning, expressed as higher cognitive skills required complex behaviors linked to the prefrontal cortex, are defective in autism. Specific difficulties in children presenting autism or verbal disabilities at executive functioning levels have been identified. Nevertheless, the developmental deficit of executive functioning in autism is highly diversified with huge individual variation and may even be absent. The aim of the present study to examine the current standing of intact executive functioning intact in ASD.

  1. Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming

    PubMed Central

    Han, Ji Woong

    2011-01-01

    Abstract Introduction of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, can successfully reprogram somatic cells into embryonic stem (ES)-like cells. These cells, which are referred to as induced pluripotent stem (iPS) cells, closely resemble embryonic stem cells in genomic, cell biologic, and phenotypic characteristics, and the creation of these special cells was a major triumph in cell biology. In contrast to pluripotent stem cells generated by somatic cell nuclear-transfer (SCNT) or ES cells derived from the inner cell mass (ICM) of the blastocyst, direct reprogramming provides a convenient and reliable means of generating pluripotent stem cells. iPS cells have already shown incredible potential for research and for therapeutic applications in regenerative medicine within just a few years of their discovery. In this review, current techniques of generating iPS cells and mechanisms of nuclear reprogramming are reviewed, and the potential for therapeutic applications is discussed. Antioxid. Redox Signal. 15, 1799–1820. PMID:21194386

  2. GATA family members as inducers for cellular reprogramming to pluripotency

    PubMed Central

    Shu, Jian; Zhang, Ke; Zhang, Minjie; Yao, Anzhi; Shao, Sida; Du, Fengxia; Yang, Caiyun; Chen, Wenhan; Wu, Chen; Yang, Weifeng; Sun, Yingli; Deng, Hongkui

    2015-01-01

    Members of the GATA protein family play important roles in lineage specification and transdifferentiation. Previous reports show that some members of the GATA protein family can also induce pluripotency in somatic cells by substituting for Oct4, a key pluripotency-associated factor. However, the mechanism linking lineage-specifying cues and the activation of pluripotency remains elusive. Here, we report that all GATA family members can substitute for Oct4 to induce pluripotency. We found that all members of the GATA family could inhibit the overrepresented ectodermal-lineage genes, which is consistent with previous reports indicating that a balance of different lineage-specifying forces is important for the restoration of pluripotency. A conserved zinc-finger DNA-binding domain in the C-terminus is critical for the GATA family to induce pluripotency. Using RNA-seq and ChIP-seq, we determined that the pluripotency-related gene Sall4 is a direct target of GATA family members during reprogramming and serves as a bridge linking the lineage-specifying GATA family to the pluripotency circuit. Thus, the GATA family is the first protein family of which all members can function as inducers of the reprogramming process and can substitute for Oct4. Our results suggest that the role of GATA family in reprogramming has been underestimated and that the GATA family may serve as an important mediator of cell fate conversion. PMID:25591928

  3. PPARδ Reprograms Glutamine Metabolism in Sorafenib-Resistant HCC.

    PubMed

    Kim, Mi-Jin; Choi, Yeon-Kyung; Park, Soo Young; Jang, Se Young; Lee, Jung Yi; Ham, Hye Jin; Kim, Byung-Gyu; Jeon, Hui-Jeon; Kim, Ji-Hyun; Kim, Jung-Guk; Lee, In-Kyu; Park, Keun-Gyu

    2017-09-01

    The tyrosine kinase inhibitor sorafenib is the only therapeutic agent approved for the treatment of advanced hepatocellular carcinoma (HCC), but acquired resistance to sorafenib is high. Here, we report metabolic reprogramming in sorafenib-resistant HCC and identify a regulatory molecule, peroxisome proliferator-activated receptor-δ (PPARδ), as a potential therapeutic target. Sorafenib-resistant HCC cells showed markedly higher glutamine metabolism and reductive glutamine carboxylation, which was accompanied by increased glucose-derived pentose phosphate pathway and glutamine-derived lipid biosynthetic pathways and resistance to oxidative stress. These glutamine-dependent metabolic alterations were attributed to PPARδ, which was upregulated in sorafenib-resistant HCC cells and human HCC tissues. Furthermore, PPARδ contributed to increased proliferative capacity and redox homeostasis in sorafenib-resistant HCC cells. Accordingly, inhibiting PPARδ activity reversed compensatory metabolic reprogramming in sorafenib-resistant HCC cells and sensitized them to sorafenib. Therefore, targeting compensatory metabolic reprogramming of glutamine metabolism in sorafenib-resistant HCC by inhibiting PPARδ constitutes a potential therapeutic strategy for overcoming sorafenib-resistance in HCC.Implications: This study provides novel insight into the mechanism underlying sorafenib resistance and a potential therapeutic strategy targeting PPARδ in advanced hepatocellular carcinoma. Mol Cancer Res; 15(9); 1230-42. ©2017 AACR. ©2017 American Association for Cancer Research.

  4. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects

    PubMed Central

    Shang, Run-Ze; Qu, Shi-Bin; Wang, De-Sheng

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal cancers, and its rate of incidence is rising annually. Despite the progress in diagnosis and treatment, the overall prognoses of HCC patients remain dismal due to the difficulties in early diagnosis and the high level of tumor invasion, metastasis and recurrence. It is urgent to explore the underlying mechanism of HCC carcinogenesis and progression to find out the specific biomarkers for HCC early diagnosis and the promising target for HCC chemotherapy. Recently, the reprogramming of cancer metabolism has been identified as a hallmark of cancer. The shift from the oxidative phosphorylation metabolic pathway to the glycolysis pathway in HCC meets the demands of rapid cell proliferation and offers a favorable microenvironment for tumor progression. Such metabolic reprogramming could be considered as a critical link between the different HCC genotypes and phenotypes. The regulation of metabolic reprogramming in cancer is complex and may occur via genetic mutations and epigenetic modulations including oncogenes, tumor suppressor genes, signaling pathways, noncoding RNAs, and glycolytic enzymes etc. Understanding the regulatory mechanisms of glycolysis in HCC may enrich our knowledge of hepatocellular carcinogenesis and provide important foundations in the search for novel diagnostic biomarkers and promising therapeutic targets for HCC. PMID:28018100

  5. Stress Response and Perinatal Reprogramming: Unraveling (Mal)adaptive Strategies

    PubMed Central

    Musazzi, Laura; Marrocco, Jordan

    2016-01-01

    Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli. PMID:27057367

  6. Glucose enhances tilapia against Edwardsiella tarda infection through metabolome reprogramming.

    PubMed

    Zeng, Zhao-Hai; Du, Chao-Chao; Liu, Shi-Rao; Li, Hui; Peng, Xuan-Xian; Peng, Bo

    2017-02-01

    We have recently reported that the survival of tilapia, Oreochromis niloticus, during Edwardsiella tarda infection is tightly associated with their metabolome, where the survived O. niloticus has distinct metabolomic profile to dying O. niloticus. Glucose is the key metabolite to distinguish the survival- and dying-metabolome. More importantly, exogenous administration of glucose to the fish greatly enhances their survival for the infection, indicating the functional roles of glucose in metabolome repurposing, known as reprogramming metabolomics. However, the underlying information for the reprogramming is not yet available. Here, GC/MS based metabolomics is used to understand the mechanisms by which how exogenous glucose elevates O. niloticus, anti-infectious ability to E. tarda. Results showed that exogenous glucose promotes stearic acid and palmitic acid biosynthesis but attenuates TCA cycle to potentiate O. niloticus against bacterial infection, which is confirmed by the fact that exogenous stearic acid increases immune protection in O. niloticus against E. tarda infection in a manner of Mx protein. These results indicate that exogenous glucose reprograms O. niloticus anti-infective metabolome that characterizes elevation of stearic acid and palmitic acid and attenuation of the TCA cycle. Therefore, our results proposed a novel mechanism that glucose promotes unsaturated fatty acid biosynthesis to cope with infection, thereby highlighting a potential way of enhancing fish immunity in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine.

    PubMed

    Asuelime, Grace E; Shi, Yanhong

    2012-08-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting.

  8. Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle.

    PubMed

    Chiche, Aurélie; Le Roux, Isabelle; von Joest, Mathieu; Sakai, Hiroshi; Aguín, Sabela Búa; Cazin, Coralie; Salam, Rana; Fiette, Laurence; Alegria, Olinda; Flamant, Patricia; Tajbakhsh, Shahragim; Li, Han

    2017-03-02

    In vivo reprogramming is a promising approach for tissue regeneration in response to injury. Several examples of in vivo reprogramming have been reported in a variety of lineages, but some including skeletal muscle have so far proven refractory. Here, we show that acute and chronic injury enables transcription-factor-mediated reprogramming in skeletal muscle. Lineage tracing indicates that this response frequently originates from Pax7+ muscle stem cells. Injury is associated with accumulation of senescent cells, and advanced aging or local irradiation further enhanced in vivo reprogramming, while selective elimination of senescent cells reduced reprogramming efficiency. The effect of senescence appears to be, at least in part, due to the release of interleukin 6 (IL-6), suggesting a potential link with the senescence-associated secretory phenotype. Collectively, our findings highlight a beneficial paracrine effect of injury-induced senescence on cellular plasticity, which will be important for devising strategies for reprogramming-based tissue repair.

  9. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.

    PubMed

    Del Vecchio, Domitilla; Abdallah, Hussein; Qian, Yili; Collins, James J

    2017-01-25

    To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells.

  10. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming

    PubMed Central

    Hirsch, Calley L.; Coban Akdemir, Zeynep; Wang, Li; Jayakumaran, Gowtham; Trcka, Dan; Weiss, Alexander; Hernandez, J. Javier; Pan, Qun; Han, Hong; Xu, Xueping; Xia, Zheng; Salinger, Andrew P.; Wilson, Marenda; Vizeacoumar, Frederick; Datti, Alessandro; Li, Wei; Cooney, Austin J.; Barton, Michelle C.; Blencowe, Benjamin J.

    2015-01-01

    Embryonic stem cells are maintained in a self-renewing and pluripotent state by multiple regulatory pathways. Pluripotent-specific transcriptional networks are sequentially reactivated as somatic cells reprogram to achieve pluripotency. How epigenetic regulators modulate this process and contribute to somatic cell reprogramming is not clear. Here we performed a functional RNAi screen to identify the earliest epigenetic regulators required for reprogramming. We identified components of the SAGA histone acetyltransferase complex, in particular Gcn5, as critical regulators of reprogramming initiation. Furthermore, we showed in mouse pluripotent stem cells that Gcn5 strongly associates with Myc and that, upon initiation of somatic reprogramming, Gcn5 and Myc form a positive feed-forward loop that activates a distinct alternative splicing network and the early acquisition of pluripotency-associated splicing events. These studies expose a Myc–SAGA pathway that drives expression of an essential alternative splicing regulatory network during somatic cell reprogramming. PMID:25877919

  11. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming.

    PubMed

    Hirsch, Calley L; Coban Akdemir, Zeynep; Wang, Li; Jayakumaran, Gowtham; Trcka, Dan; Weiss, Alexander; Hernandez, J Javier; Pan, Qun; Han, Hong; Xu, Xueping; Xia, Zheng; Salinger, Andrew P; Wilson, Marenda; Vizeacoumar, Frederick; Datti, Alessandro; Li, Wei; Cooney, Austin J; Barton, Michelle C; Blencowe, Benjamin J; Wrana, Jeffrey L; Dent, Sharon Y R

    2015-04-15

    Embryonic stem cells are maintained in a self-renewing and pluripotent state by multiple regulatory pathways. Pluripotent-specific transcriptional networks are sequentially reactivated as somatic cells reprogram to achieve pluripotency. How epigenetic regulators modulate this process and contribute to somatic cell reprogramming is not clear. Here we performed a functional RNAi screen to identify the earliest epigenetic regulators required for reprogramming. We identified components of the SAGA histone acetyltransferase complex, in particular Gcn5, as critical regulators of reprogramming initiation. Furthermore, we showed in mouse pluripotent stem cells that Gcn5 strongly associates with Myc and that, upon initiation of somatic reprogramming, Gcn5 and Myc form a positive feed-forward loop that activates a distinct alternative splicing network and the early acquisition of pluripotency-associated splicing events. These studies expose a Myc-SAGA pathway that drives expression of an essential alternative splicing regulatory network during somatic cell reprogramming.

  12. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?

    PubMed Central

    Hay, Nissim

    2017-01-01

    In recent years there has been a growing interest among cancer biologists in cancer metabolism. This Review summarizes past and recent advances in our understanding of the reprogramming of glucose metabolism in cancer cells, which is mediated by oncogenic drivers and by the undifferentiated character of cancer cells. The reprogrammed glucose metabolism in cancer cells is required to fulfil anabolic demands. This Review discusses the possibility of exploiting the reprogrammed glucose metabolism for therapeutic approaches that selectively target cancer cells. PMID:27634447

  13. DNA excision repair in permeable human fibroblasts

    SciTech Connect

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the (3H)DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells.

  14. HYDROCARBON VAPOR DIFFUSION IN INTACT CORE SLEEVES

    EPA Science Inventory

    The diffusion of 2,2,4-trimethylpentane (TMP) and 2,2,5-trimethylhexane (TMH) vapors put of residually contaminated sandy soil from the U.S. Environmental Protection Agency (EPA) field research site at Traverse City, Michigan, was measured and modeled. The headspace of an intact ...

  15. HYDROCARBON VAPOR DIFFUSION IN INTACT CORE SLEEVES

    EPA Science Inventory

    The diffusion of 2,2,4-trimethylpentane (TMP) and 2,2,5-trimethylhexane (TMH) vapors put of residually contaminated sandy soil from the U.S. Environmental Protection Agency (EPA) field research site at Traverse City, Michigan, was measured and modeled. The headspace of an intact ...

  16. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells.

    PubMed

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-12-20

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprogramming, pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations.

  17. Establishment of Hepatocellular Cancer Induced Pluripotent Stem Cells Using a Reprogramming Technique

    PubMed Central

    Kim, Han Joon; Jeong, Jaemin; Park, Sunhoo; Jin, Young-Woo; Lee, Seung-Sook; Lee, Seung Bum; Choi, Dongho

    2017-01-01

    Background/Aims Cancer is known to be a disease by many factors. However, specific results of reprogramming by pluripotency-related transcription factors remain to be scarcely reported. Here, we verified potential effects of pluripotent-related genes in hepatocellular carcinoma cancer cells. Methods To better understand reprogramming of cancer cells in different genetic backgrounds, we used four liver cancer cell lines representing different states of p53 (HepG2, Hep3B, Huh7 and PLC). Retroviral-mediated introduction of reprogramming related genes (KLF4, Oct4, Sox2, and Myc) was used to induce the expression of proteins related to a pluripotent status in liver cancer cells. Results Hep3B cells (null p53) exhibited a higher efficiency of reprogramming in comparison to the other liver cancer cell lines. The reprogrammed Hep3B cells acquired similar characteristics to pluripotent stem cells. However, loss of stemness in Hep3B-iPCs was detected during continual passage. Conclusions We demonstrated that reprogramming was achieved in tumor cells through retroviral induction of genes associated with reprogramming. Interestingly, the reprogrammed pluripotent cancer cells (iPCs) were very different from original cancer cells in terms of colony shape and expressed markers. The induction of pluripotency of liver cancer cells correlated with the status of p53, suggesting that different expression level of p53 in cancer cells may affect their reprogramming. PMID:27728962

  18. Small Particles Intact Capture Experiment (SPICE)

    NASA Technical Reports Server (NTRS)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  19. Small Particles Intact Capture Experiment (SPICE)

    NASA Technical Reports Server (NTRS)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  20. Fibroblast heterogeneity: more than skin deep.

    PubMed

    Sorrell, J Michael; Caplan, Arnold I

    2004-02-15

    Dermal fibroblasts are a dynamic and diverse population of cells whose functions in skin in many respects remain unknown. Normal adult human skin contains at least three distinct subpopulations of fibroblasts, which occupy unique niches in the dermis. Fibroblasts from each of these niches exhibit distinctive differences when cultured separately. Specific differences in fibroblast physiology are evident in papillary dermal fibroblasts, which reside in the superficial dermis, and reticular fibroblasts, which reside in the deep dermis. Both of these subpopulations of fibroblasts differ from the fibroblasts that are associated with hair follicles. Fibroblasts engage in fibroblast-epidermal interactions during hair development and in interfollicular regions of skin. They also play an important role in cutaneous wound repair and an ever-increasing role in bioengineering of skin. Bioengineered skin currently performs important roles in providing (1) a basic understanding of skin biology, (2) a vehicle for testing topically applied products and (3) a resource for skin replacement.

  1. [Fibroblast growth factor-2].

    PubMed

    Faitová, J

    2004-01-01

    Fibroblast growth factor-2 is a member of a large family of proteins that bind heparin and heparan sulfate and modulate the function of a wide range of cell types. FGF-2 occurs in several isoforms resulting from alternative initiations of traslation: an 18 kDa cytoplasmic isoform and four larger molecular weight nuclear isoforms (22, 22.5, 24 and 34 kDa). It acts mainly through a paracrine/autocrine mechanism involving high affinity transmembrane receptors and heparan sulfate proteoglycan low affinity receptors. It is expressed mostly in tissues of mesoderm and neuroectoderm origin, and plays an important role in mesoderm induction, stimulates the growth and development of the new blood vessels (angiogenesis), normal wound healing and tissue development. FGF-2 positively regulates hematopoiesis by acting on various cellular targets: stromal cells, early and committed hematopoietic progenitors and possibly some mature blood cells. FGF-2 is a potent hematopoietic growth factor that is likely to play an important role in physiological and pathological hematopoiesis.

  2. Prostacyclin analogs inhibit fibroblast migration.

    PubMed

    Kohyama, Tadashi; Liu, Xiangde; Kim, Hui Jung; Kobayashi, Tetsu; Ertl, Ronald F; Wen, Fu-Qiang; Takizawa, Hajime; Rennard, Stephen I

    2002-08-01

    The controlled accumulation of fibroblasts to sites of inflammation is crucial to effective tissue repair after injury. Either inadequate or excessive accumulation of fibroblasts could result in abnormal tissue function. Prostacyclin (PGI(2)) is a potent mediator in the coagulation and inflammatory processes. The aim of this study was to investigate the effect of PGI(2) on chemotaxis of human fetal lung fibroblasts (HFL-1). Using the blind well chamber technique, we found that the PGI(2) analog carbaprostacyclin (10(-6) M) inhibited HFL-1 chemotaxis to human plasma fibronectin (20 microg/ml) 58.0 +/- 13.2% (P < 0.05) and to platelet-derived growth factor (PDGF)-BB (10 ng/ml) 48.7 +/- 4.6% (P < 0.05). Checkerboard analysis demonstrated that carbaprostacyclin inhibits both directed and undirected migration. The inhibitory effect of the carbaprostacyclin was concentration dependent and blocked by the cAMP-dependent protein kinase (PKA) inhibitor KT-5720, suggesting that a cAMP-PKA pathway may be involved in the process. Two other PGI(2) analogs, ciprostene and dehydro-15-cyclohexyl carbaprostacyclin (both 10(-6) M), significantly inhibited fibroblast migration to fibronectin. In summary, PGI(2) appears to inhibit fibroblast chemotaxis to fibronectin and PDGF-BB. Such an effect may contribute to the regulation of fibroblasts in wound healing and could contribute to the pathogenesis of diseases characterized by abnormal tissue repair remodeling.

  3. Genetic reprogramming of transcription factor ap-2gamma in bovine somatic cell nuclear transfer preimplantation embryos and placentomes.

    PubMed

    Aston, Kenneth I; Li, Gugan-Peng; Hicks, Brady A; Winger, Quinton A; White, Kenneth L

    2009-03-01

    Bovine somatic cell nuclear transfer (SCNT) efficiency remains very low despite a tremendous amount of research devoted to its improvement over the past decade. Frequent early and mid-gestational losses are commonly accompanied by placental abnormalities. A transcription factor, activating protein AP-2gamma, has been shown to be necessary for proper placental development in the mouse. We first evaluated the expression of the gene coding for AP-2gamma (Tfap2c) in several bovine fibroblast donor cell lines and found it was not expressed. Subsequently we determined the expression profile of Tfap2c in oocytes and various stages of preimplantation in vitro fertilized (IVF) embryos. Tfap2c was undetectable in oocytes and early embryos, and was detectable at relatively high levels in morula and blastocyst IVF embryos. The lack of expression in oocytes and donor cells means Tfap2c must be induced in the zygote at the morula stage in properly reprogrammed embryos. SCNT embryos expressed Tfap2c at the eight-cell stage, 2 days earlier than control embryos. Control embryos first expressed Tfap2c at the morula stage, and at this stage Tfap2c was significantly lower in the SCNT embryos. No differences in expression were detected at the blastocyst stage. To determine whether Tfap2c was properly reprogrammed in the placenta of SCNT pregnancies, we evaluated its expression in cotyledons and caruncles of SCNT and control pregnancies between days 55 and 90 gestation. Expression of Tfap2c in caruncles significantly increased between days 55 and 90, while expression in cotyledons was relatively consistent over that same period. Expression levels in SCNT tissues were not different from controls. This data indicates Tfap2c expression is altered in early preimplantation SCNT embryos, which may have developmental consequences resulting from genes influenced by Tfap2c, but expression was not different at the blastocyst stage and in placentomes.

  4. Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients.

    PubMed

    Santambrogio, Paolo; Dusi, Sabrina; Guaraldo, Michela; Rotundo, Luisa Ida; Broccoli, Vania; Garavaglia, Barbara; Tiranti, Valeria; Levi, Sonia

    2015-09-01

    Pantothenate kinase-associated neurodegeneration is an early onset autosomal recessive movement disorder caused by mutation of the pantothenate kinase-2 gene, which encodes a mitochondrial enzyme involved in coenzyme A synthesis. The disorder is characterised by high iron levels in the brain, although the pathological mechanism leading to this accumulation is unknown. To address this question, we tested primary skin fibroblasts from three patients and three healthy subjects, as well as neurons induced by direct fibroblast reprogramming, for oxidative status, mitochondrial functionality and iron parameters. The patients' fibroblasts showed altered oxidative status, reduced antioxidant defence, and impaired cytosolic and mitochondrial aconitase activities compared to control cells. Mitochondrial iron homeostasis and functionality analysis of patient fibroblasts indicated increased labile iron pool content and reactive oxygen species development, altered mitochondrial shape, decreased membrane potential and reduced ATP levels. Furthermore, analysis of induced neurons, performed at a single cell level, confirmed some of the results obtained in fibroblasts, indicating an altered oxidative status and signs of mitochondrial dysfunction, possibly due to iron mishandling. Thus, for the first time, altered biological processes have been identified in vitro in live diseased neurons. Moreover, the obtained induced neurons can be considered a suitable human neuronal model for the identification of candidate therapeutic compounds for this disease. Copyright © 2015. Published by Elsevier Inc.

  5. Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients

    PubMed Central

    Santambrogio, Paolo; Dusi, Sabrina; Guaraldo, Michela; Rotundo, Luisa Ida; Broccoli, Vania; Garavaglia, Barbara; Tiranti, Valeria; Levi, Sonia

    2015-01-01

    Pantothenate kinase-associated neurodegeneration is an early onset autosomal recessive movement disorder caused by mutation of the pantothenate kinase-2 gene, which encodes a mitochondrial enzyme involved in coenzyme A synthesis. The disorder is characterised by high iron levels in the brain, although the pathological mechanism leading to this accumulation is unknown. To address this question, we tested primary skin fibroblasts from three patients and three healthy subjects, as well as neurons induced by direct fibroblast reprogramming, for oxidative status, mitochondrial functionality and iron parameters. The patients' fibroblasts showed altered oxidative status, reduced antioxidant defence, and impaired cytosolic and mitochondrial aconitase activities compared to control cells. Mitochondrial iron homeostasis and functionality analysis of patient fibroblasts indicated increased labile iron pool content and reactive oxygen species development, altered mitochondrial shape, decreased membrane potential and reduced ATP levels. Furthermore, analysis of induced neurons, performed at a single cell level, confirmed some of the results obtained in fibroblasts, indicating an altered oxidative status and signs of mitochondrial dysfunction, possibly due to iron mishandling. Thus, for the first time, altered biological processes have been identified in vitro in live diseased neurons. Moreover, the obtained induced neurons can be considered a suitable human neuronal model for the identification of candidate therapeutic compounds for this disease. PMID:25836419

  6. Comparison of reprogramming genes in induced pluripotent stem cells and nuclear transfer cloned embryos.

    PubMed

    Duan, Lian; Wang, Zhendong; Shen, Jingling; Shan, Zhiyan; Shen, Xinghui; Wu, Yanshuang; Sun, Ruizhen; Li, Tong; Yuan, Rui; Zhao, Qiaoshi; Bai, Guangyu; Gu, Yanli; Jin, Lianhong; Lei, Lei

    2014-08-01

    The most effective reprogramming methods, somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs), are widely used in biological research and regenerative medicine, yet the mechanism that reprograms somatic cells to totipotency remains unclear and thus reprogramming efficiency is still low. Microarray technology has been employed in analyzing the transcriptomes changes during iPS reprogramming. Unfortunately, it is difficult to obtain enough DNA from SCNT reconstructed embryos to take advantage of this technology. In this study, we aimed to identify critical genes from the transcriptional profile for iPS reprogramming and compared expression levels of these genes in SCNT reprogramming. By integrating gene expression information from microarray databases and published studies comparing somatic cells with either miPSCs or mouse embryonic stem cells (ESCs), we obtained two lists of co-upregulated genes. The gene ontology (GO) enriched analysis of these two lists demonstrated that the reprogramming process is associated with numerous biological processes. Specifically, we selected 32 genes related to heterochromatin, embryonic development, and cell cycle from our co-upregulated gene datasets and examined the gene expression level in iPSCs and SCNT embryos by qPCR. The results revealed that some reprogramming related genes in iPSCs were also expressed in SCNT reprogramming. We established the network of gene interactions that occur with genes differentially expressed in iPS and SCNT reprogramming and then performed GO analysis on the genes in the network. The network genes function in chromatin organization, heterochromatin, transcriptional regulation, and cell cycle. Further researches to improve reprogramming efficiency, especially in SCNT, will focus on functional studies of these selected genes.

  7. Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells.

    PubMed

    Knappe, Nathalie; Novak, Daniel; Weina, Kasia; Bernhardt, Mathias; Reith, Maike; Larribere, Lionel; Hölzel, Michael; Tüting, Thomas; Gebhardt, Christoffer; Umansky, Viktor; Utikal, Jochen

    2016-04-01

    The combination of cancer-focused studies and research related to nuclear reprogramming has gained increasing importance since both processes-reprogramming towards pluripotency and malignant transformation-share essential features. Studies have revealed that incomplete reprogramming of somatic cells leads to malignant transformation indicating that epigenetic regulation associated with iPSC generation can drive cancer development [J Mol Cell Biol 2011;341-350; Cell 2012;151:1617-1632; Cell 2014;156:663-677]. However, so far it is unclear whether incomplete reprogramming also affects cancer cells and their function. In the context of melanoma, dedifferentiation correlates to therapy resistance in mouse studies and has been documented in melanoma patients [Nature 2012;490:412-416; Clin Cancer Res 2014;20:2498-2499]. Therefore, we sought to investigate directed dedifferentiation using incomplete reprogramming of melanoma cells. Using a murine model we investigated the effects of partial reprogramming on the cellular plasticity of melanoma cells. We demonstrate for the first time that induced partial reprogramming results in a reversible phenotype switch in melanoma cells. Partially reprogrammed cells at day 12 after transgene induction display elevated invasive potential in vitro and increased lung colonization in vivo. Additionally, using global gene expression analysis of partially reprogrammed cells, we identified SNAI3 as a novel invasion-related marker in human melanoma. SNAI3 expression correlates with tumor thickness in primary melanomas and thus, may be of prognostic value. In summary, we show that investigating intermediate states during the process of reprogramming melanoma cells can reveal novel insights into the pathogenesis of melanoma progression. We propose that deeper analysis of partially reprogrammed melanoma cells may contribute to identification of yet unknown signaling pathways that can drive melanoma progression.

  8. PINOCYTOSIS IN FIBROBLASTS

    PubMed Central

    Steinman, Ralph M.; Silver, Jonathan M.; Cohn, Zanvil A.

    1974-01-01

    Horseradish peroxidase (HRP) was used as a marker to determine the rate of ongoing pinocytosis in several fibroblast cell lines. The enzyme was interiorized in the fluid phase without evidence of adsorption to the cell surface. Cytochemical reaction product was not found on the cell surface and was visualized only within intracellular vesicles and granules. Uptake was directly proportional to the administered concentration of HRP and to the duration of exposure. The rate of HRP uptake was 0.0032–0.0035% of the administered load per 106 cells per hour for all cells studied with one exception: L cells, after reaching confluence, progressively increased their pinocytic activity two- to fourfold. After uptake of HRP, L cells inactivated HRP with a half-life of 6–8 h. Certain metabolic requirements of pinocytosis were then studied in detail in L cells. Raising the environmental temperature increased pinocytosis over a range of 2–38°C. The Q10 was 2.7 and the activation energy, 17.6 kcal/mol. Studies on the levels of cellular ATP in the presence of various metabolic inhibitors (fluoride, 2-desoxyglycose, azide, and cyanide) showed that L cells synthesized ATP by both glycolytic and respiratory pathways. A combination of a glycolytic and a respiratory inhibitor was needed to depress cellular ATP levels as well as pinocytic activity to 10–20% of control values, whereas drugs administered individually had only partial effects. In spite of the availability of an accurate quantitative assay for fluid and solute uptake, the function of pinocytosis in tissue culture cells remains unknown. PMID:4140194

  9. Cells Lacking β-Actin are Genetically Reprogrammed and Maintain Conditional Migratory Capacity*

    PubMed Central

    Tondeleir, Davina; Lambrechts, Anja; Müller, Matthias; Jonckheere, Veronique; Doll, Thierry; Vandamme, Drieke; Bakkali, Karima; Waterschoot, Davy; Lemaistre, Marianne; Debeir, Olivier; Decaestecker, Christine; Hinz, Boris; Staes, An; Timmerman, Evy; Colaert, Niklaas; Gevaert, Kris; Vandekerckhove, Joël; Ampe, Christophe

    2012-01-01

    Vertebrate nonmuscle cells express two actin isoforms: cytoplasmic β- and γ-actin. Because of the presence and localized translation of β-actin at the leading edge, this isoform is generally accepted to specifically generate protrusive forces for cell migration. Recent evidence also implicates β-actin in gene regulation. Cell migration without β-actin has remained unstudied until recently and it is unclear whether other actin isoforms can compensate for this cytoplasmic function and/or for its nuclear role. Primary mouse embryonic fibroblasts lacking β-actin display compensatory expression of other actin isoforms. Consistent with this preservation of polymerization capacity, β-actin knockout cells have unchanged lamellipodial protrusion rates despite a severe migration defect. To solve this paradox we applied quantitative proteomics revealing a broad genetic reprogramming of β-actin knockout cells. This also explains why reintroducing β-actin in knockout cells does not restore the affected cell migration. Pathway analysis suggested increased Rho-ROCK signaling, consistent with observed phenotypic changes. We therefore developed and tested a model explaining the phenotypes in β-actin knockout cells based on increased Rho-ROCK signaling and increased TGFβ production resulting in increased adhesion and contractility in the knockout cells. Inhibiting ROCK or myosin restores migration of β-actin knockout cells indicating that other actins compensate for β-actin in this process. Consequently, isoactins act redundantly in providing propulsive forces for cell migration, but β-actin has a unique nuclear function, regulating expression on transcriptional and post-translational levels, thereby preventing myogenic differentiation. PMID:22448045

  10. Xenopus egg cytoplasm with intact actin.

    PubMed

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  11. Silica Aerogel Captures Cosmic Dust Intact

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1994-01-01

    The mesostructure of silica aerogel resembles stings of grapes, ranging in size from 10 to 100 angstrom. This fine mesostructure transmits nearly 90 percent of incident light in the visible, while providing sufficiently gentle dissipation of the kinetric energy of hypervelocity cosmic dust particles to permit their intact capture. We introduced silica aerogel in 1987 as capture medium to take advantage of its low density, fine mesostruicture and most importantly, its transparency, allowing optical location of captured micron sized particles.

  12. Silica Aerogel Captures Cosmic Dust Intact

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1994-01-01

    The mesostructure of silica aerogel resembles stings of grapes, ranging in size from 10 to 100 angstrom. This fine mesostructure transmits nearly 90 percent of incident light in the visible, while providing sufficiently gentle dissipation of the kinetric energy of hypervelocity cosmic dust particles to permit their intact capture. We introduced silica aerogel in 1987 as capture medium to take advantage of its low density, fine mesostruicture and most importantly, its transparency, allowing optical location of captured micron sized particles.

  13. Reprogramming of retinoblastoma cancer cells into cancer stem cells.

    PubMed

    Yue, Fengming; Hirashima, Kanji; Tomotsune, Daihachiro; Takizawa-Shirasawa, Sakiko; Yokoyama, Tadayuki; Sasaki, Katsunori

    2017-01-22

    Retinoblastoma is the most common intraocular malignancy in pediatric patients. It develops rapidly in the retina and can be fatal if not treated promptly. It has been proposed that a small population of cancer cells, termed cancer stem cells (CSCs), initiate tumorigenesis from immature tissue stem cells or progenitor cells. Reprogramming technology, which can convert mature cells into pluripotent stem cells (iPS), provides the possibility of transducing malignant cancer cells back to CSCs, a type of early stage of cancer. We herein took advantage of reprogramming technology to induce CSCs from retinoblastoma cancer cells. In the present study, the 4 Yamanaka transcription factors, Oct4, Sox2, Klf4 and c-myc, were transduced into retinoblastoma cells (Rbc51). iPS-like colonies were observed 15 days after transduction and showed significantly enhanced CSC properties. The gene and protein expression levels of pluripotent stem cell markers (Tra-1-60, Oct4, Nanog) and cancer stem cell markers (CD133, CD44) were up-regulated in transduced Rbc51 cells compared to control cells. Moreover, iPS-like CSCs could be sorted using the Magnetic-activated cell sorting (MACS) method. A sphere formation assay demonstrated spheroid formation in transduced Rbc51 cells cultured in serum free media, and these spheroids could be differentiated into Pax6-, Nestin-positive neural progenitors and rhodopsin- and recoverin-positive mature retinal cells. The cell viability after 5-Fu exposure was higher in transduced Rbc51 cells. In conclusion, CSCs were generated from retinoblastoma cancer cells using reprogramming technology. Our novel method can generate CSCs, the study of which can lead to better understanding of cancer-specific initiation, cancer epigenetics, and the overlapping mechanisms of cancer development and pluripotent stem cell behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming.

    PubMed

    D'Alessandro, Angelo; El Kasmi, Karim C; Plecitá-Hlavatá, Lydie; Ježek, Petr; Li, Min; Zhang, Hui; Gupte, Sachin A; Stenmark, Kurt R

    2017-08-14

    The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 00, 000-000.