Sample records for repulsion type magnetically

  1. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  2. Influence of a repulsive vector coupling in magnetized quark matter

    NASA Astrophysics Data System (ADS)

    Denke, Robson Z.; Pinto, Marcus Benghi

    2013-09-01

    We consider two flavor magnetized quark matter in the presence of a repulsive vector coupling (GV) devoting special attention to the low temperature region of the phase diagram to show how this type of interaction counterbalances the effects produced by a strong magnetic field. The most important effects occur at intermediate and low temperatures affecting the location of the critical end point as well as the region of first order chiral transitions. When GV=0 the presence of high magnetic fields (eB≥10mπ2) increases the density coexistence region with respect to the case when B and GV are absent while a decrease of this region is observed at high GV values and vanishing magnetic fields. Another interesting aspect observed at the low temperature region is that the usual decrease of the coexistence chemical value (inverse magnetic catalysis) at GV=0 is highly affected by the presence of the vector interaction which acts in the opposite way. Our investigation also shows that the presence of a repulsive vector interaction enhances the de Haas-van Alphen oscillations which, for very low temperatures, take place at eB≲6mπ2. We observe that the presence of a magnetic field, together with a repulsive vector interaction, gives rise to a complex transition pattern since B favors the appearance of multiple solutions to the gap equation whereas GV turns some metastable solutions into stable ones allowing for a cascade of transitions to occur.

  3. Subsurface bending and reorientation of tilted vortex lattices in bulk isotropic superconductors due to Coulomb-like repulsion at the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, E.; Guillamón, I.; Galvis, J. A.

    Here, we study vortex lattices (VLs) in superconducting weak-pinning platelet-like single crystals of β–Bi 2Pd in tilted magnetic fields with a scanning tunneling microscope. We show that vortices exit the sample perpendicular to the surface and are thus bent beneath the surface. The structure and orientation of the tilted VLs in the bulk are, for large tilt angles, strongly affected by Coulomb-type intervortex repulsion at the surface due to stray magnetic fields.

  4. Subsurface bending and reorientation of tilted vortex lattices in bulk isotropic superconductors due to Coulomb-like repulsion at the surface

    DOE PAGES

    Herrera, E.; Guillamón, I.; Galvis, J. A.; ...

    2017-11-03

    Here, we study vortex lattices (VLs) in superconducting weak-pinning platelet-like single crystals of β–Bi 2Pd in tilted magnetic fields with a scanning tunneling microscope. We show that vortices exit the sample perpendicular to the surface and are thus bent beneath the surface. The structure and orientation of the tilted VLs in the bulk are, for large tilt angles, strongly affected by Coulomb-type intervortex repulsion at the surface due to stray magnetic fields.

  5. Repulsive vacuum-induced forces on a magnetic particle

    NASA Astrophysics Data System (ADS)

    Sinha, Kanupriya

    2018-03-01

    We study the possibility of obtaining a repulsive vacuum-induced force for a magnetic point particle near a surface. Considering the toy model of a particle with an electric-dipole transition and a large magnetic spin, we analyze the interplay between the repulsive magnetic-dipole and the attractive electric-dipole contributions to the total Casimir-Polder force. Particularly noting that the magnetic-dipole interaction is longer ranged than the electric dipole due to the difference in their respective characteristic transition frequencies, we find a regime where the repulsive magnetic contribution to the total force can potentially exceed the attractive electric part in magnitude for a sufficiently large spin. We analyze ways to further enhance the magnitude of the repulsive magnetic Casimir-Polder force for an excited particle, such as by preparing it in a "super-radiant" magnetic sublevel and designing surface resonances close to the magnetic transition frequency.

  6. A magnetic bearing based on eddy-current repulsion

    NASA Technical Reports Server (NTRS)

    Nikolajsen, J. L.

    1987-01-01

    This paper describes a new type of electromagnetic bearing, called the Eddy-Current Bearing, which works by repulsion between fixed AC-electromagnets and a conducting rotor. The following advantages are expected: inherent stability, higher load carrying capacity than DC-electromagnetic bearings, simultaneous radial, angular and thrust support, motoring and generating capability, and backup mode of operation in case of primary power failure. A prototype is under construction.

  7. Review of 72.5kV double-break vacuum circuit breaker based on rapid repulsion actuator

    NASA Astrophysics Data System (ADS)

    Zhuofan, Tang; Lijun, Qin

    2017-07-01

    72.5kV double-break vacuum circuit breakers based on rapid repulsion actuator remain blank in China. Based on the theoretical analysis and experimental results from researchers, the design of 72.5kV double-break vacuum circuit breakers based on rapid repulsion actuator was presented. It takes the form of double-break, using two standard 40.5kV vacuum interrupter in series at the bottom, which adopt a permanent magnetic repulsion actuator. The permanent magnetic repulsion actuator consists of rapid repulsion actuator and magnetic retentivity actuator. On the basis above, we produced the prototype, and the superiority of the design was verified through the experiments.

  8. Attractive and repulsive magnetic suspension systems overview

    NASA Technical Reports Server (NTRS)

    Cope, David B.; Fontana, Richard R.

    1992-01-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  9. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  10. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  11. High speed maglev design

    DOEpatents

    Rote, Donald M.; He, Jianliang; Coffey, Howard

    1993-01-01

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.

  12. High speed maglev design

    DOEpatents

    Rote, D.M.; Jianliang He; Coffey, H.

    1993-10-19

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields. 4 figures.

  13. Improved high speed maglev design

    DOEpatents

    Rote, D.M.; He, Jianliang; Coffey, H.T.

    1992-01-01

    This report discusses a propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes dividing the superconducting magnets into two types: a strong field magnet which is located vertically below the vehicle for propulsion and guidance and a weak field superconducting magnet located at the ends of the vehicle for levitation and added guidance. Several proposed embodiments exist for the placement of the magnetic field shielding: locating the shielding on the vehicle, locating the shielding on the guideway, and locating the shielding on the guideway and adding shielding to the vertical undercarriage. In addition, the separation between the be vehicle and the guideway can be controlled to reduce the exposure of the passenger cabin to magnetic fields.

  14. Casimir repulsion in sphere-plate geometry

    NASA Astrophysics Data System (ADS)

    Pirozhenko, Irina G.; Bordag, Michael

    2013-04-01

    The electromagnetic vacuum energy is considered in the presence of a perfectly conducting plane and a ball with dielectric permittivity ɛ and magnetic permeability μ, μ≠1. The attention is focused on the Casimir repulsion in this system caused by the magnetic permeability of the sphere. In the case of a perfectly permeable sphere, μ=∞, the vacuum energy is estimated numerically. The short- and long-distance asymptotes corresponding to the repulsive force and respective low-temperature corrections and high-temperature limits are found for a wide range of μ. The constraints on the Casimir repulsion in this system are discussed.

  15. Artificial magnetic field for the space station (Protecting space stations in future space missions)

    NASA Astrophysics Data System (ADS)

    Ahmadi Tara, Miss

    Problem Explanation Strong solar storms and cosmic rays make great disturbances for equip-ment outside the magnetosphere. Also these disturbances are so harmful for biological process of living cells. If one decides to stay more outside the Earth, one's healthy is in a great danger. To investigate space station situation against strong solar storms, 5 recent strong solar storms have been selected. Dst of these storms are more than -300 nT. Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artifi-cial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) artificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artificial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) ar-tificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: General equation of artificial field: Equations of artificial field basic on the magnetic reconnection: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance General equation of artificial field: Equations of artificial field basic on the magnetic reconnec-tion: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance Results Tab II. Danger percentage of 5 strong solar storms for equipment and astronauts in the future space station within the influence on artificial field As has been shown in Tab II artificial magnetic field could pass great dangers of solar storms and protect space station wherever of free space. FIG.2) Upper panel shows X-ray flux at two wavelengths 0.5-4 ˚ and 1-8 ˚. Lower Panel shows Proton flux in various energy levels received on the Moon's A A surface from solar storm 2000(obtained from simulation) 0-14(UT) obtained from outside the field, 14-7(UT) obtained from receiver in the field, 7-0(UT) obtained from receiver behind in-strument Conclusion In this brief paper, I describe a way to protect future space station from energetic particles. This field could reduce damage of solar storms and cosmic rays that arrived to the space station outside the Earth magnetic field. This field performs as magnetosphere for space station. It could change its situation and make easy live on the space station. This strong magnetic field must be generated by low-temperature superconductors. They are suit-able material to use at generating a strong magnetic field. These materials could be used in the structure of spacecrafts during long duration space travels in future

  16. Attraction, merger, reflection, and annihilation in magnetic droplet soliton scattering

    NASA Astrophysics Data System (ADS)

    Maiden, M. D.; Bookman, L. D.; Hoefer, M. A.

    2014-05-01

    The interaction behaviors of solitons are defining characteristics of these nonlinear, coherent structures. Due to recent experimental observations, thin ferromagnetic films offer a promising medium in which to study the scattering properties of two-dimensional magnetic droplet solitons, particle-like, precessing dipoles. Here, a rich set of two-droplet interaction behaviors are classified through micromagnetic simulations. Repulsive and attractive interaction dynamics are generically determined by the relative phase and speeds of the two droplets and can be classified into four types: (1) merger into a breather bound state, (2) counterpropagation trapped along the axis of symmetry, (3) reflection, and (4) violent droplet annihilation into spin wave radiation and a breather. Utilizing a nonlinear method of images, it is demonstrated that these dynamics describe repulsive/attractive scattering of a single droplet off of a magnetic boundary with pinned/free spin boundary conditions, respectively. These results explain the mechanism by which propagating and stationary droplets can be stabilized in a confined ferromagnet.

  17. Quasiparticle-continuum level repulsion in a quantum magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plumb, K. W.; Hwang, Kyusung; Qiu, Y.

    2015-11-30

    When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here,more » we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu 2PO 6.« less

  18. Slow dynamics approaching the glass transition in repulsive magnetic fluids

    NASA Astrophysics Data System (ADS)

    Mériguet, G.; Dubois, E.; Dupuis, V.; Perzynski, R.

    2004-04-01

    We study the dynamics of concentrated ionic magnetic colloidal dispersions, which are constituted of γ - Fe2O3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion, using magneto-optical birefringence measurements. By gradually increasing the volume fraction Φ of the particles at constant ionic strength in the repulsive region of the phase diagram, we observe a dramatic increase of the characteristic time associated with the rotation of the particles that we induce by applying a field pulse. This increase is reminiscent of the divergence of the relaxation time observed at the approach of a glass transition and confirms the existence of a glassy phase in these magnetic colloids.

  19. An AC-electromagnetic bearing for flywheel energy storage in space

    NASA Technical Reports Server (NTRS)

    Nikolajsen, Jorgen L.

    1993-01-01

    A repulsive type AC-electromagnetic bearing was developed and tested. It was conceived on the basis of the so-called Magnetic River suspension for high-speed trains. The appearance of the bearing is similar to the traditional DC-type electromagnetic bearing but the operating principle is different. The magnets are fed with alternating current instead of direct current and the rotor is fitted with a conducting sleeve (e.g. aluminum) instead of a ferromagnetic sleeve. The repulsion is due to induction of eddy-currents in the conducting sleeve. The bearing is inherently stable and requires no feedback control. It provides support in five degrees of freedom such that a short rotor may be fully supported by a single bearing. These capabilities were demonstrated experimentally. On the down side, the load carrying capacity and the damping obtained so far were quite low compared to the DC-type bearing. Also, significant heating of the conducting sleeve was experienced. The AC-bearing is essentially a modified induction motor and there are strong indications that it can be run both as a motor and as a generator with no commutator requirements. It is therefore considered to be a good candidate for support of energy storage flywheels in space.

  20. Self-arraying of charged levitating droplets.

    PubMed

    Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent

    2011-06-01

    Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation.

  1. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  2. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets.

    PubMed

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  3. Computer Simulation of Energy Parameters and Magnetic Effects in Fe-Si-C Ternary Alloys

    NASA Astrophysics Data System (ADS)

    Ridnyi, Ya. M.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-06-01

    The paper presents ab initio simulation with the WIEN2k software package of the equilibrium structure and properties of silicon and carbon atoms dissolved in iron with the body-centered cubic crystal system of the lattice. Silicon and carbon atoms manifest a repulsive interaction in the first two nearest neighbors, in the second neighbor the repulsion being stronger than in the first. In the third and next-nearest neighbors a very weak repulsive interaction occurs and tends to zero with increasing distance between atoms. Silicon and carbon dissolution reduces the magnetic moment of iron atoms.

  4. Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet

    NASA Astrophysics Data System (ADS)

    Du, Haifeng; Zhao, Xuebing; Rybakov, Filipp N.; Borisov, Aleksandr B.; Wang, Shasha; Tang, Jin; Jin, Chiming; Wang, Chao; Wei, Wensheng; Kiselev, Nikolai S.; Zhang, Yuheng; Che, Renchao; Blügel, Stefan; Tian, Mingliang

    2018-05-01

    We report direct evidence of the field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B 20 -type FeGe nanostripes observed by means of high-resolution Lorentz transmission electron microscopy. It is shown that above certain critical values of an external magnetic field the character of such long-range skyrmion interactions changes from attraction to repulsion. Experimentally measured equilibrium inter-skyrmion and skyrmion-edge distances as a function of the applied magnetic field shows quantitative agreement with the results of micromagnetic simulations. The important role of demagnetizing fields and the internal symmetry of three-dimensional magnetic skyrmions are discussed in detail.

  5. A 2 Tesla Full Scale High Performance Periodic Permanent Magnet Model for Attractive (228 KN) and repulsive Maglev

    NASA Technical Reports Server (NTRS)

    Stekly, Z. J. J.; Gardner, C.; Domigan, P.; Baker, J.; Hass, M.; McDonald, C.; Wu, C.; Farrell, R. A.

    1996-01-01

    Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Intermagnetics General Corporation. Placing these assemblies in a supporting structure with a 2.1 cm pole to pole separation resulted in a periodic field with a maximum value of 2.04 T. This is believed to be the highest field ever achieved by this type of device. The attractive force between the two 602 kg magnet assemblies is 228 kN, providing enough force for suspension of a 45,500 kg vehicle. If used in an attractive maglev system with an appropriate flat iron rail, one assembly will generate the same force with a gap of 1.05 cm leading to a lift to weight ratio of 38.6, not including the vehicle attachment structure. This permanent magnet compares well with superconducting systems which have lift to weight ratios in the range of 5 to 10. This paper describes the magnet assemblies and their measured magnetic performance. The measured magnetic field and resulting attractive magnetic force have a negative spring characteristic. Appropriate control coils are necessary to provide stable operation. The estimated performance of the assemblies in a stable repulsive mode, with eddy currents in a conducting guideway, is also discussed.

  6. Fluxoids configurations in finite superconducting networks

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Haham, Noam; Shaulov, Avner A.; Yeshurun, Yosef

    2017-12-01

    Analysis of superconducting ladders consisting of rectangular loops, yields an Ising like expression for the total energy of the ladders as a function of the loops vorticities and the applied magnetic field. This expression shows that fluxoids can be treated as repulsively interacting objects driven towards the ladder center by the applied field. Distinctive repulsive interactions between fluxoids are obtained depending on the ratio l between the loops length and the common width of adjacent loops. A 'short range' and a 'long range' interactions obtained for l ≳ 1 and l ≪ 1, respectively, give rise to remarkably different fluxoid configurations. The different configurations of fluxoids in different types of ladders are illustrated by simulations.

  7. Electromagnetic Meissner effect launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1991-01-01

    An electromagnetic projectile launcher provides acceleration of a superconducting projectile through the diamagnetic repulsion of the superconducting projectile. A superconducting layer is provided aft of the projectile, either directly on the projectile or on a platform upon which the projectile is carried, and a traveling magnetic field is caused to propagate along a magnetic field drive coil in which the projectile is disposed. The resulting diamagnetic repulsion between the superconducting projectile and the traveling magnetic field causes the projectile to be propelled along the coil. In one embodiment, a segmented drive coil is used to generate the traveling magnetic field.

  8. Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2015-05-01

    We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.

  9. Instability of the sliding Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Fleurov, V.; Kagalovsky, V.; Lerner, I. V.; Yurkevich, I. V.

    2018-05-01

    We revise a phase diagram for the sliding Luttinger liquid (SLL) of coupled one-dimensional quantum wires packed in two- or three-dimensional arrays in the absence of a magnetic field. We analyse whether physically justifiable (reasonable) inter-wire interactions, i.e. either the screened Coulomb or ‘Coulomb-blockade’ type interactions, stabilise the SLL phase. Calculating the scaling dimensions of the most relevant perturbations (the inter-wire single-particle hybridisation, charge-density wave, and superconducting inter-wire couplings), we find that their combination always destroys the SLL phase for the repulsive intra-wire interaction. However, suppressing the inter-wire tunnelling of repulsive fermions (when the charge-density wave is the only remaining perturbation), one can observe a stability region emerging due to the inter-wire forward scattering interaction.

  10. The Layered Structure of The Universe

    NASA Astrophysics Data System (ADS)

    Kursunoglu, Behram N.

    2003-06-01

    It has now become a habit for the cosmologists to introduce attraction or repulsion generating substances to describe the observed cosmological behavior of matter. Examples are dark energy to provide repulsive force to cause increasing acceleration accompanying the expansion of the universe, quintessence providing repulsive force. In this paper we believe that what is needed in the final analysis is attraction and repulsion. We show here that universe can be conceived to consist of attractive and repulsive layers of matter expanding with increasing acceleration. The generalized theory of gravitation as developed originally by Einstein and Schrödinger as a non-symmetric theory was modified by this author using Bianchi-Einstein Identities yielding coupling between the field and electric charge as well as between the field and magnetic charge, and there appears a fundamental length parameter ro where quintessence constitute magnetic repulsive layers while dark energy and all other kinds of names invented by cosmologists refer to attractive electric layers. This layered structure of the universe resembles the layered structure of the elementary particle predicted by this theory decades ago (1, 3, and 6). This implies a layer Doughnut structure of the universe. We have therefore, obtained a unification of the structure of the universe and the structure of elementary particles. Overall the forces consist of long range attractive, long range repulsive, short-range attractive, and short-range repulsive variety. We further discovered the existence of space oscillations whose roles in the expansion of the universe with increasing acceleration and further the impact in the propagation of the gravitational waves can be expected to play a role in their observation.

  11. Analysis and Design of a Double-Divert Spiral Groove Seal

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Berard, Gerald

    2007-01-01

    This viewgraph presentation describes the design and analysis of a double spiral groove seal. The contents include: 1) Double Spiral Design Features; 2) Double Spiral Operational Features; 3) Mating Ring/Rotor Assembly; 4) Seal Ring Assembly; 5) Insert Segment Joints; 6) Rotor Assembly Completed Prototype Parts; 7) Seal Assembly Completed Prototype Parts; 8) Finite Element Analysis; 9) Computational Fluid Dynamics (CFD) Analysis; 10) Restrictive Orifice Design; 11) Orifice CFD Model; 12) Orifice Results; 13) Restrictive Orifice; 14) Seal Face Coning; 15) Permanent Magnet Analysis; 16) Magnetic Repulsive Force; 17) Magnetic Repulsive Test Results; 18) Spin Testing; and 19) Testing and Validation.

  12. Modeling and strain gauging of eddy current repulsion deicing systems

    NASA Technical Reports Server (NTRS)

    Smith, Samuel O.

    1993-01-01

    Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.

  13. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Xiang; Zhang, Wen-Ming; Li, Wen-Bo; Wei, Ke-Xiang; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2018-03-01

    The combination of nonlinear bistable and flextensional mechanisms has the advantages of wide operating frequency and high equivalent piezoelectric constant. In this paper, three magnetically coupled flextensional vibration energy harvesters (MF-VEHs) are designed from three magnetically coupled vibration systems which utilize a magnetic repulsion, two symmetrical magnetic attractions and multi-magnetic repulsions, respectively. The coupled dynamic models are developed to describe the electromechanical transitions. Simulations under harmonic excitation and random excitation are carried out to investigate the performance of the MF-VEHs with different parameters. Experimental validations of the MF-VEHs are performed under different excitation levels. The experimental results verify that the developed mathematical models can be used to accurately characterize the MF-VEHs for various magnetic coupling modes. A comparison of three MF-VEHs is provided and the results illustrate that a reasonable arrangement of multiple magnets can reduce the threshold excitation intensity and increase the harvested energy.

  14. Coherent control of the route of magnetic phases in quasi-1D armchair graphene nanoribbons via doping in the presence of electronic correlations

    NASA Astrophysics Data System (ADS)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen; Davoudiniya, Masoumeh

    2018-03-01

    In this work, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons would be observed in the presence of electronic dopant. However, the mutual interactions between electrons are also considered based on theoretically tight-binding and Hubbard model calculations considering nearest neighbors within the framework of Green's function technique. This work showed that charge concentration of dopant in such system depending on the weak and strong mutual repulsions plays a crucial role in determining the magnetic phase. It follows from the obtained results that the ground state turns paramagnetic in a range of carrier concentrations by neglecting the electronic correlations. The inclusion of a Coulombic repulsion between electrons stops the phase transition and system remains in its ground state antiferromagnetic phase. Furthermore, we concluded that magnetic phases are insensitive to the electron-electron interaction at all weak and strong concentrations of dopant. In addition, this paper provides a controllable gap engineering by doping and inclusion of electron-electron repulsions for further studies on such system as a new potential nanomaterial for magnetic graphene nanoribbon-based applications.

  15. Enhancement of spin polarization induced by Coulomb on-site repulsion between localized pz electrons in graphene embedded with line defects.

    PubMed

    Ren, Ji-Chang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Zejun; Van Hove, Michel A

    2015-11-11

    It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.

  16. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity

    PubMed Central

    Davis, J. C. Séamus; Lee, Dung-Hai

    2013-01-01

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron–electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron–electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron–electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs. PMID:24114268

  17. Science Can Be Attractive.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Discusses the properties of neodymium magnets and magnets in general and how magnets can be used to teach students important scientific principles, such as attraction, repulsion, and polarity; the role of magnetic forces in electronic communications and computers; the magnetic properties of the earth and compasses; and the relationship between…

  18. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  19. Multi-winding homopolar electric machine

    DOEpatents

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  20. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  1. Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Wu, Jin; Kottapalli, Ajay Giri Prakash; Chen, Di; Yang, Zhuoqing; Ding, Guifu; Lye, Sun Woh; Miao, Jianmin

    2017-12-01

    This paper reports a fully-integrated, batch-fabricated electromagnetic actuator which features micro-patterned NdFeB magnets. The entire actuator is fabricated through MEMS-compatible laminated surface micromachining technology, eliminating the requirement for further component assembly processes. The fabrication strategy allowed the entire volume of the actuator to be reduced to a small size of 2.5 × 2.5 × 2 mm3, which is one of the smallest NdFeB-based electromagnetic actuators demonstrated to date. The magnetic properties of NdFeB thin films are further investigated and optimized using different types of lithographically-defined micromolds. By altering the direction of the input current, actuating displacements of approximately ±10 μm are achieved during both the attraction and the repulsion operations. This work demonstrates the viability and compatibility of using polymer-bonded magnets for magnetic MEMS applications.

  2. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  3. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion

    NASA Astrophysics Data System (ADS)

    Tang, Q. C.; Yang, Y. L.; Li, Xinxin

    2011-12-01

    This paper presents miniaturized energy harvesters, where the frequency up-conversion technique is used to improve the bandwidth of vibration energy harvesters. The proposed and developed miniature piezoelectric energy harvester utilizes magnetic repulsion forces to achieve non-contact frequency up-conversion, thereby avoiding mechanical collision and wear for long-term working durability. A pair of piezoelectric resonant cantilevers is micro-fabricated to generate electric power. A simplified model involving linear oscillators and magnetic interaction is deployed to demonstrate the feasibility of the device design. A bench-top harvester has been fabricated and characterized, resulting in average power generation of over 10 µW within a broad frequency range of 10-22 Hz under 1g acceleration.

  4. Deformation of Water by a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, Zijun; Dahlberg, E. Dan

    2011-03-01

    After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.

  5. Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, Bernard

    2012-06-20

    Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearbymore » proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.« less

  6. Theory of multinonlinear media and its application to the soliton processes in ferrite–ferroelectric structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherkasskii, M. A., E-mail: macherkasskii@hotmail.com; Nikitin, A. A.; Kalinikos, B. A.

    A theory is developed to describe the wave processes that occur in waveguide media having several types of nonlinearity, specifically, multinonlinear media. It is shown that the nonlinear Schrödinger equation can be used to describe the general wave process that occurs in such media. The competition between the electric wave nonlinearity and the magnetic wave nonlinearity in a layered multinonlinear ferrite–ferroelectric structure is found to change a total repulsive nonlinearity into a total attractive nonlinearity.

  7. A battery-run pulsed motor with inherent dynamic electronic switch control

    NASA Astrophysics Data System (ADS)

    Tripathi, K. C.; Lal, P.; Sarma, P. R.; Sharma, A. K.; Prakash, V.

    1980-02-01

    A new type of battery-run brushless ferrite-magnet dc motor system is described. Its rotor part consists of a few permanent ceramic (ferrite) magnets uniformly spread on the rim of a disk (wheel) and the stator part consists of electromagnets placed in such a way that when energized, they always form a repulsive couple to rotate the disk. A sensor coil is placed to give an induced pulse signal, which acts as an inherent dynamic switching time control for the automatic electronic control system. Control of speed, brake system, and safety measures are also discussed. Experimental values for the present system are given. Some possible applications are suggested.

  8. Direct observation of attractive skyrmions and skyrmion clusters in the cubic helimagnet Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Loudon, J. C.; Leonov, A. O.; Bogdanov, A. N.; Hatnean, M. Ciomaga; Balakrishnan, G.

    2018-04-01

    We report the discovery of attractive magnetic skyrmions and their clusters in noncentrosymmetric ferromagnets. These three-dimensional solitons have been predicted to exist in the cone phase of chiral ferromagnets [J. Phys: Condens. Matter 28, 35LT01 (2016), 10.1088/0953-8984/28/35/35LT01] and are fundamentally different from the more common repulsive axisymmetric skyrmions that occur in the magnetically saturated state. We present real-space images of these skyrmion clusters in thin (˜70 nm) single-crystal samples of Cu2OSeO3 taken using transmission electron microscopy and develop a phenomenological theory describing this type of skyrmion.

  9. Self-bound droplets of a dilute magnetic quantum liquid

    NASA Astrophysics Data System (ADS)

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  10. Self-bound droplets of a dilute magnetic quantum liquid.

    PubMed

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-10

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  11. Anomalous matching effect and attractive vortex interaction in 7.5-/μm triangular microhole lattice on Pb film

    NASA Astrophysics Data System (ADS)

    Ishida, Takekazu; Yoshida, Masaaki; Nakata, Shin'ichiro; Koyama, Tomio

    2002-10-01

    It is considerably exciting to explore the novel vortex physics in multiply connected superconductors. We prepare triangular microhole lattice on Pb film (TriMHoLP) by evaporation of a type-I superconductor Pb upon a capillary plate (6-μm hole and 7.5-μm pitch) in vacuum. We measure the magnetization of TriMHoLP in the RSO mode under low fields (| H|⩽4.7 G). The polarity of magnetization peaks is identical against the field reversal. The magnetization curves as a function of temperature taken in a field-cooling mode of RSO are always positive irrelevant to the field polarity. We show that a vortex-vortex interaction is not always repulsive in a low- κ superconductor. We consider that a spontaneous magnetization and an anomalous matching effect near Tc are relevant to the attractive interaction between vortices.

  12. Frictionless Bearing Uses Permanent Magnets

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The purpose of this innovation was to develop a frictionless bearing for high speed, light load applications. The device involves the incorporation of permanent magnets in the bearing design. The repulsion of like magnetic poles provides concentric support of the inner member so that no metallic contact occurs between the bearing surfaces.

  13. Itinerant fermions on a triangular lattice: Unconventional magnetism and other ordered states

    NASA Astrophysics Data System (ADS)

    Ye, Mengxing; Chubukov, Andrey V.

    2018-06-01

    We consider a system of 2D fermions on a triangular lattice with well separated electron and hole pockets of similar sizes, centered at certain high-symmetry points in the Brillouin zone. We first analyze Stoner-type spin-density-wave (SDW) magnetism. We show that SDW order is degenerate at the mean-field level. Beyond mean-field, the degeneracy is lifted and is either 120∘ "triangular" order (same as for localized spins), or a collinear order with antiferromagnetic spin arrangement on two-thirds of sites, and nonmagnetic on the rest of sites. We also study a time-reversal symmetric directional spin bond order, which emerges when some interactions are repulsive and some are attractive. We show that this order is also degenerate at a mean-field level, but beyond mean-field the degeneracy is again lifted. We next consider the evolution of a magnetic order in a magnetic field starting from an SDW state in zero field. We show that a field gives rise to a canting of an SDW spin configuration. In addition, it necessarily triggers the directional bond order, which, we argue, is linearly coupled to the SDW order in a finite field. We derive the corresponding term in the free energy. Finally, we consider the interplay between an SDW order and superconductivity and charge order. For this, we analyze the flow of the couplings within parquet renormalization group (pRG) scheme. We show that magnetism wins if all interactions are repulsive and there is little energy space for pRG to develop. However, if system parameters are such that pRG runs over a wide range of energies, the system may develop either superconductivity or an unconventional charge order, which breaks time-reversal symmetry.

  14. Magnetic bion condensation: A new mechanism of confinement and mass gap in four dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uensal, Mithat

    In recent work, we derived the long-distance confining dynamics of certain QCD-like gauge theories formulated on small S{sup 1}xR{sup 3} based on symmetries, an index theorem, and Abelian duality. Here, we give the microscopic derivation. The solution reveals a new mechanism of confinement in QCD(adj) in the regime where we have control over both perturbative and nonperturbative aspects. In particular, consider SU(2) QCD(adj) theory with 1{<=}n{sub f}{<=}4 Majorana fermions, a theory which undergoes gauge symmetry breaking at small S{sup 1}. If the magnetic charge of the Bogomol'nyi-Prasad-Sommerfield (BPS) monopole is normalized to unity, we show that confinement occurs due tomore » condensation of objects with magnetic charge 2, not 1. Because of index theorems, we know that such an object cannot be a two identical monopole configuration. Its net topological charge must vanish, and hence it must be topologically indistinguishable from the perturbative vacuum. We construct such non-self-dual topological excitations, the magnetically charged, topologically null molecules of a BPS monopole and KK antimonopole, which we refer to as magnetic bions. An immediate puzzle with this proposal is the apparent Coulomb repulsion between the BPS-KK pair. An attraction which overcomes the Coulomb repulsion between the two is induced by 2n{sub f}-fermion exchange. Bion condensation is also the mechanism of confinement in N=1 SYM on the same four-manifold. The SU(N) generalization hints a possible hidden integrability behind nonsupersymmetric QCD of affine Toda type, and allows us to analytically compute the mass gap in the gauge sector. We currently do not know the extension to R{sup 4}.« less

  15. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the underlying principles involved in MTF. Magnetized Target Fusion is an attempt to combine MCF (magnetic confinement fusion) for energy confinement and ICF (inertial confinement fusion) for efficient compression heating and wall free containment of the fusing plasma. It also seeks to combine the best features to these two main commonplace approaches to fusion.

  16. Selfbound quantum droplets

    NASA Astrophysics Data System (ADS)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  17. Microscopic origin of magnetism and magnetic interactions in ferropnictides

    NASA Astrophysics Data System (ADS)

    Johannes, M. D.; Mazin, I. I.

    2009-06-01

    One year after their initial discovery, two schools of thought have crystallized regarding the electronic structure and magnetic properties of ferropnictide systems. One postulates that these are itinerant weakly correlated metallic systems that become magnetic by virtue of spin-Peierls-type transition due to near nesting between the hole and the electron Fermi-surface pockets. The other argues that these materials are strongly or at least moderately correlated and the electrons are considerably localized and close to a Mott-Hubbard transition, with the local magnetic moments interacting via short-range superexchange. In this Rapid Communication we argue that neither picture is fully correct. The systems are moderately correlated but with correlations driven by Hund’s rule coupling rather than by the on-site Hubbard repulsion. The iron moments are largely local, driven by Hund’s intra-atomic exchange. Superexchange is not operative, and the interactions between the Fe moments are considerably long range and driven mostly by one-electron energies of all occupied states.

  18. A Double-Decker Levitation Experiment Using a Sandwich of Superconductors.

    ERIC Educational Resources Information Center

    Jacob, Anthony T.; And Others

    1988-01-01

    Shows that the mutual repulsion that enables a superconductor to levitate a magnet and a magnet to levitate a superconductor can be combined into a single demonstration. Uses an overhead projector, two pellets of "1-2-3" superconductor, Nd-Fe-B magnets, liquid nitrogen, and paraffin. Offers superconductor preparation, hazards, and disposal…

  19. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    PubMed Central

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  20. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    PubMed

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.

  1. Giant magnetoelectric effect in pure manganite-manganite heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Sanjukta; Pankaj, Ravindra; Yarlagadda, Sudhakar

    2017-11-01

    Obtaining strong magnetoelectric couplings in bulk materials and heterostructures is an ongoing challenge. We demonstrate that manganite heterostructures of the form (Insulator) /(LaMnO3)(n)/Interface/(CaMnO3)(n)/(Insulator) show strong multiferroicity in magnetic manganites where ferroelectric polarization is realized by charges leaking from LaMnO3 to CaMnO3 due to repulsion. Here, an effective nearest-neighbor electron-electron (electron-hole) repulsion (attraction) is generated by cooperative electron-phonon interaction. Double exchange, when a particle virtually hops to its unoccupied neighboring site and back, produces magnetic polarons that polarize antiferromagnetic regions. Thus a striking giant magnetoelectric effect ensues when an external electrical field enhances the electron leakage across the interface.

  2. Transport and selective chaining of bidisperse particles in a travelling wave potential.

    PubMed

    Tierno, Pietro; Straube, Arthur V

    2016-05-01

    We combine experiments, theory and numerical simulation to investigate the dynamics of a binary suspension of paramagnetic colloidal particles dispersed in water and transported above a stripe-patterned magnetic garnet film. The substrate generates a one-dimensional periodic energy landscape above its surface. The application of an elliptically polarized rotating magnetic field causes the landscape to translate, inducing direct transport of paramagnetic particles placed above the film. The ellipticity of the applied field can be used to control and tune the interparticle interactions, from net repulsive to net attractive. When considering particles of two distinct sizes, we find that, depending on their elevation above the surface of the magnetic substrate, the particles feel effectively different potentials, resulting in different mobilities. We exploit this feature to induce selective chaining for certain values of the applied field parameters. In particular, when driving two types of particles, we force only one type to condense into travelling parallel chains. These chains confine the movement of the other non-chaining particles within narrow colloidal channels. This phenomenon is explained by considering the balance of pairwise magnetic forces between the particles and their individual coupling with the travelling landscape.

  3. A Magnetic Set-Up to Help Teach Newton's Laws

    ERIC Educational Resources Information Center

    Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai

    2009-01-01

    A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…

  4. Unified Description of Dynamics of a Repulsive Two-Component Fermi Gas

    NASA Astrophysics Data System (ADS)

    Grochowski, Piotr T.; Karpiuk, Tomasz; Brewczyk, Mirosław; Rzążewski, Kazimierz

    2017-11-01

    We study a binary spin mixture of a zero-temperature repulsively interacting Li 6 atoms using both the atomic-orbital and density-functional approaches. The gas is initially prepared in a configuration of two magnetic domains and we determine the frequency of the spin-dipole oscillations which are emerging after the repulsive barrier, initially separating the domains, is removed. We find, in agreement with recent experiment [G. Valtolina et al., Nat. Phys. 13, 704 (2017), 10.1038/nphys4108], the occurrence of a ferromagnetic instability in an atomic gas while the interaction strength between different spin states is increased, after which the system becomes ferromagnetic. The ferromagnetic instability is preceded by the softening of the spin-dipole mode.

  5. Path planning for mobile robot using the novel repulsive force algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Siyue; Yin, Guoqiang; Li, Xueping

    2018-01-01

    A new type of repulsive force algorithm is proposed to solve the problem of local minimum and the target unreachable of the classic Artificial Potential Field (APF) method in this paper. The Gaussian function that is related to the distance between the robot and the target is added to the traditional repulsive force, solving the problem of the goal unreachable with the obstacle nearby; variable coefficient is added to the repulsive force component to resize the repulsive force, which can solve the local minimum problem when the robot, the obstacle and the target point are in the same line. The effectiveness of the algorithm is verified by simulation based on MATLAB and actual mobile robot platform.

  6. Paramagnetism Paradoxes: Projectable Demonstrations

    ERIC Educational Resources Information Center

    Sauls, Frederick C.; Vitz, Ed

    2008-01-01

    Drops of oil in Mn(SO[subscript 4])(aq) and drops of the solution in oil show opposite effects when brought near a rare earth magnet. Oxygen, nitrogen, and air bubbles atop water show expected attraction, repulsion, and null behavior, respectively. Air bubbles atop aqueous Mn(SO[subscript 4]) show paradoxical behavior because the magnet's…

  7. Domain wall structure and interactions in 50 nm wide Cobalt nanowires

    NASA Astrophysics Data System (ADS)

    Tu, Kun-Hua; Ojha, Shuchi; Ross, Caroline A.

    2018-05-01

    Arrays of cobalt nanowires with widths of 50 nm, thickness of 5 and 20 nm and periodicity of 70 nm were fabricated by pattern transfer from a self-assembled block copolymer film. Transverse domain walls (DWs) were imaged by magnetic force microscopy, indicating repulsive interactions between DWs of the same sign in the 20 nm thick wires. Micromagnetic simulations were used to identify the interactions in the six distinct cases of a pair of transverse DWs in adjacent wires, considering all the possible combinations of head-to-head and tail-to-tail DWs and the orientation of the core magnetization. The boundary between repulsive and attractive DW interactions is mapped out for wires as a function of thickness, width and interwire spacing.

  8. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while minimizing it on the opposite side. The advantage of this configuration is that it makes it possible to approach the theoretical maximum force per unit area that could be exerted by a given amount of permanent-magnet material. The configuration is named after physicist Klaus Halbach, who conceived it for use in particle accelerators. Halbach arrays have also been studied for use in magnetic-levitation ("maglev") railroad trains. In a radial Halbach magnetic bearing, the basic Halbach arrangement is modified into a symmetrical arrangement of sector-shaped permanent magnets mounted on the outer cylindrical surface of a drum rotor (see Figure 2). The magnets are oriented to concentrate the magnetic field on their radially outermost surface. The stator coils are mounted in a stator shell surrounding the rotor.

  9. New laser power sensor using weighing method

    NASA Astrophysics Data System (ADS)

    Pinot, P.; Silvestri, Z.

    2018-01-01

    We present a set-up using a piece of pyrolytic carbon (PyC) to measure laser power in the range from a few milliwatts to a few watts. The experimental configuration consists in measuring the magnetic repulsion force acting between a piece of PyC placed on a weighing pan and in a magnetic induction generated by a magnet array in a fixed position above the PyC sheet. This involves a repulsion force on the PyC piece which is expressed in terms of mass by the balance display. The quantities affecting the measurement results have been identified. An example of metrological characterization in terms of accuracy, linearity and sensitivity is given. A relative uncertainty of optical power measurement for the first experimental set-up is around 1%. The wavelength and power density dependence on power response of this device has been demonstrated. This PyC-based device presented here in weighing configuration and the other one previously studied in levitation configuration offer a new technique for measuring optical power.

  10. Subgap in the Surface Bound States Spectrum of Superfluid (3) 3 He-B with Rough Surface

    NASA Astrophysics Data System (ADS)

    Nagato, Y.; Higashitani, S.; Nagai, K.

    2018-03-01

    The subgap structure in the surface bound states spectrum of superfluid ^3He-B with rough surface is discussed. The subgap is formed by the level repulsion between the surface bound state and the continuum states in the course of multiple scattering by the surface roughness. We show that the level repulsion is originated from the nature of the wave function of the surface bound state that is now recognized as Majorana fermion. We study the superfluid ^3He-B with a rough surface and in a magnetic field perpendicular to the surface using the quasi-classical Green function together with a random S-matrix model. We calculate the self-consistent order parameters, the spin polarization density and the surface density of states. It is shown that the subgap is found also in a magnetic field perpendicular to the surface. The magnetic field dependence of the transverse acoustic impedance is also discussed.

  11. Solitary waves and nonlinear dynamic coherent structures in magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Smagin, V. V.; Borich, M. A.; Zhuravlev, A. S.

    2009-03-01

    Within the framework of the extended nonlinear Schrödinger equation (ENSE), two types of nonlinear states of magnetization in a ferromagnet-dielectric-metal metamagnetic structure have been obtained and investigated. These states have an internal structure; e.g., a periodic sequence of compound solitons is formed by kink-antikink pairs (shock waves), and coherent periodic breather structures are formed by “bright” quasi-solitons. Conditions have been found under which the envelope of these states is described by a modified Korteweg-de Vries (mKdV) equation. It is shown that the compound solitons are described by an mKdV equation with repulsion, and the breather structures, by an mKdV equation with attraction. It is shown also that the characteristic properties of the solutions are determined by the sign of the group-velocity dispersion rather than by the sign of the group velocity itself. The results obtained can be used for searching new nonlinear dynamic coherent structures, e.g., compound solitons and breathers in high-dispersion magnetic metamaterials.

  12. Magnetophoretic transistors in a tri-axial magnetic field.

    PubMed

    Abedini-Nassab, Roozbeh; Joh, Daniel Y; Albarghouthi, Faris; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B

    2016-10-18

    The ability to direct and sort individual biological and non-biological particles into spatially addressable locations is fundamentally important to the emerging field of single cell biology. Towards this goal, we demonstrate a new class of magnetophoretic transistors, which can switch single magnetically labeled cells and magnetic beads between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors driven by a two-dimensional in-plane rotating field, the addition of a vertical magnetic field bias provides significant advantages in preventing the formation of particle clumps and in better replicating the operating principles of circuits in general. However, the three-dimensional driving field requires a complete redesign of the magnetic track geometry and switching electrodes. We have solved this problem by developing several types of transistor geometries which can switch particles between two different tracks by either presenting a local energy barrier or by repelling magnetic objects away from a given track, hereby denoted as "barrier" and "repulsion" transistors, respectively. For both types of transistors, we observe complete switching of magnetic objects with currents of ∼40 mA, which is consistent over a range of particle sizes (8-15 μm). The switching efficiency was also tested at various magnetic field strengths (50-90 Oe) and driving frequencies (0.1-0.6 Hz); however, we again found that the device performance only weakly depended on these parameters. These findings support the use of these novel transistor geometries to form circuit architectures in which cells can be placed in defined locations and retrieved on demand.

  13. Nonlinear Dynamics of Multi-Component Bose-Einstein Condensates ---Anti-Gravity Transport and Vortex Chaos---

    NASA Astrophysics Data System (ADS)

    Nakamura, K.

    Bose-Einstein condensate(BEC) provides a nice stage when the nonlinearSchrödinger equation plays a vital role. We study the dynamics of multi-component repulsive BEC in 2 dimensions with harmonic traps by using the nonlinear Schrödinger (or Gross-Pitaevskii) equation. Firstly we consider a driven two-component BEC with each component trapped in different vertical positions. The appropriate tuning of the oscillation frequency of the magnetic field leads to a striking anti-gravity transport of BEC. This phenomenon is a manifestation of macroscopic non-adiabatic tunneling in a system with two internal(electronic) degrees of freedom. The dynamics splits into a fast complex spatio-temporal oscillation of each condensate wavefunctions together with a slow levitation of the total center of mass. Secondly, we examine the three-component repulsive BEC in 2 dimensions in a harmonic trap in the absence of magnetic field, and construct a model of conservative chaos based on a picture of vortex molecules. We obtain an effective nonlinear dynamics for three vortex cores, which represents three charged particles under the uniform magnetic field with the repulsive inter-particle potential quadratic in the inter-vortex distance r_{ij} on short scale and logarithmic in r_{ij} on large scale. The vortices here acquire the inertia in marked contrast to the standard theory of point vortices since Onsager. We then explore ``the chaos in the three-body problem" in the context of vortices with inertia.

  14. An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murad, Paul

    2010-01-28

    The Pulsar 1913+16 binary system may represent a 'young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectorymore » of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the 'dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies.The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal effects are discussed.« less

  15. A repulsive magnetic force driven translation micromirror

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Zuo, Hui; He, Siyuan

    2017-10-01

    This paper presents a repulsive magnetic force driven micromirror with large displacement and high surface quality which well solves the limitation of the previous design, i.e. large variation in translation starting position and low repeatability, caused by the touching points between the moving film and substrate before and in operation. The new design utilizes a driving mechanism, i.e. permanent magnet ring above and electromagnet underneath the moving film, to lift the moving film from touching the substrate and generate a repulsive magnetic force (instead of attractive force in the previous design) to push the moving film up and away from the substrate for translation. Due to the touching, the previous design has to pre-oscillate for 20-30 min at 1 Hz before usage (after resting for a few hours) to reduce the starting position variation from ~15 µm to 3-4 µm. Even after the pre-oscillation, the repeatability is still low, which is 14.2% because of the touching in operation. In the design presented in this paper, the touching between the moving film and the substrate is completely eliminated before and in operation. As a result, the starting position of the translating mirror is constant each time and the repeatability is  <1%. In addition, this design does not need the residual stress gradient to curve up the moving film. The maximum displacement of 144 µm can be achieved when 140 mA current is applied on the electromagnet. As an application, the micromirror is used as the movable mirror in a Michelson interferometer to measure the wavelength of a laser beam. The result shows a measurement accuracy of 2.19% for a 532 nm laser beam.

  16. A gradient field defeats the inherent repulsion between magnetic nanorods

    PubMed Central

    Gu, Yu; Burtovyy, Ruslan; Custer, John; Luzinov, Igor; Kornev, Konstantin G.

    2014-01-01

    When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients. PMID:26064550

  17. Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire

    NASA Astrophysics Data System (ADS)

    Choomphon-anomakhun, Natthaphon; Ebner, Armin D.; Natenapit, Mayuree; Ritter, James A.

    2017-04-01

    A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical model was shown to be capable of realistically predicting the dynamic nature of magnetic particle capture and accumulation around a wire in HGMS-type systems.

  18. [Evaluation of three dimensional orthodontic force produced by magnet of fix appliance].

    PubMed

    Dai, Xin; Hou, Zhi-ming; Yao, Ge; Wen, Jing-long

    2008-12-01

    To analyze the feature and magnitude of three dimensional orthodontic force produced by the magnet of fix appliance. Forces detected by universal fatigue test system included the attractive and repulsive,the inclined and rotated orthodontic forces of two magnets in different air gaps, and the integrated inclined and rotated orthodontic forces of two magnets and NiTi wire. The attractive and repulsive forces of two magnets were 4.68 to 0.45 N and 3.00 to 0.40 N respectively in the air gaps of 0 to 5 mm. The inclined orthodontic forces were 1.54 to 1.67 N, 0.63 to 0.69 N, 0.47 to 0.54 N when the magnets were vertically inclined 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The rotated orthodontic forces were 0.97 to 1.32 N, 0.53 to 0.59 N, 0.39 to 0.48 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The integrated orthodontic force of two magnets and 0.014-inch NiTi wire was 0.32 to 0.5 N when the magnets was vertically inclined 10 degrees to 40 degrees in the air gap of 4 mm. The integrated orthodontic force of two magnets and 0.012-inch NiTi wire was 0.32 to 0.39 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gap of 3 mm. Magnets made into orthodontic brackets to some extent could replace the mechanical orthodontic force produced by orthodontic wires and elastics.

  19. Permanent Magnetic Bearing for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Morales, Winfredo; Fusaro, Robert; Kascak, Albert

    2008-01-01

    A permanent, totally passive magnetic bearing rig was designed, constructed, and tested. The suspension of the rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm using an air impeller. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  20. Nanoscale Interparticle Distance within Dimers in Solution Measured by Light Scattering

    PubMed Central

    2017-01-01

    We demonstrate a novel approach to quantify the interparticle distance in colloidal dimers using Mie scattering. The interparticle distance is varied in a controlled way by changing the ionic strength of the solution and the magnetic attraction between the particles. The measured scaling behavior is interpreted using an energy–distance model that includes the repulsive electrostatic and attractive magnetic interactions. The center-to-center distances of particles with a 525 nm radius can be determined with a root-mean-square accuracy of 12 nm. The data show that the center-to-center distance is larger by 83 nm compared to perfect spheres. The underlying distance offset can be attributed to repulsion by charged protrusions caused by particle surface roughness. The measurement method accurately quantifies interparticle distances that can be used to study cluster formation and colloid aggregation in complex systems, e.g., in biosensing applications. PMID:29183122

  1. Quantum chaos and breaking of all anti-unitary symmetries in Rydberg excitons.

    PubMed

    Aßmann, Marc; Thewes, Johannes; Fröhlich, Dietmar; Bayer, Manfred

    2016-07-01

    Symmetries are the underlying principles of fundamental interactions in nature. Chaos in a quantum system may emerge from breaking these symmetries. Compared to vacuum, crystals are attractive for studying quantum chaos, as they not only break spatial isotropy, but also lead to novel quasiparticles with modified interactions. Here we study yellow Rydberg excitons in cuprous oxide which couple strongly to the vacuum light field and interact significantly with crystal phonons, leading to inversion symmetry breaking. In a magnetic field, time-reversal symmetry is also broken and the exciton states show a complex splitting pattern, resulting in quadratic level repulsion for small splittings. In contrast to atomic chaotic systems in a magnetic field, which show only a linear level repulsion, this is a signature of a system where all anti-unitary symmetries are broken simultaneously. This behaviour can otherwise be found only for the electro-weak interaction or engineered billiards.

  2. Casimir effect for perfect electromagnetic conductors (PEMCs): a sum rule for attractive/repulsive forces

    NASA Astrophysics Data System (ADS)

    Rode, Stefan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-04-01

    We discuss the Casimir effect for boundary conditions involving perfect electromagnetic conductors, which interpolate between perfect electric conductors and perfect magnetic conductors. Based on the corresponding reciprocal Green’s tensor we construct the Green’s tensor for two perfectly reflecting plates with magnetoelectric coupling (non-reciprocal media) within the framework of macroscopic quantum electrodynamics. We calculate the Casimir force between two arbitrary perfect electromagnetic conductor plates, resulting in a universal analytic expression that connects the attractive Casimir force with the repulsive Boyer force. We relate the results to a duality symmetry of electromagnetism.

  3. Observation of superconducting vortex clusters in S/F hybrids

    DOE PAGES

    Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; ...

    2016-12-09

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopymore » is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Here, our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.« less

  4. Observation of superconducting vortex clusters in S/F hybrids.

    PubMed

    Di Giorgio, C; Bobba, F; Cucolo, A M; Scarfato, A; Moore, S A; Karapetrov, G; D'Agostino, D; Novosad, V; Yefremenko, V; Iavarone, M

    2016-12-09

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2 . This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.

  5. Observation of superconducting vortex clusters in S/F hybrids

    PubMed Central

    Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; Scarfato, A.; Moore, S. A.; Karapetrov, G.; D’Agostino, D.; Novosad, V.; Yefremenko, V.; Iavarone, M.

    2016-01-01

    While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field Hc2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed. PMID:27934898

  6. Looking through the mirror: optical microcavity-mirror image photonic interaction.

    PubMed

    Shi, Lei; Xifré-Pérez, E; García de Abajo, F J; Meseguer, F

    2012-05-07

    Although science fiction literature and art portray extraordinary stories of people interacting with their images behind a mirror, we know that they are not real and belong to the realm of fantasy. However, it is well known that charges or magnets near a good electrical conductor experience real attractive or repulsive forces, respectively, originating in the interaction with their images. Here, we show strong interaction between an optical microcavity and its image under external illumination. Specifically, we use silicon nanospheres whose high refractive index makes well-defined optical resonances feasible. The strong interaction produces attractive and repulsive forces depending on incident wavelength, cavity-metal separation and resonance mode symmetry. These intense repulsive photonic forces warrant a new kind of optical levitation that allows us to accurately manipulate small particles, with important consequences for microscopy, optical sensing and control of light by light at the nanoscale.

  7. Small traveling clusters in attractive and repulsive Hamiltonian mean-field models.

    PubMed

    Barré, Julien; Yamaguchi, Yoshiyuki Y

    2009-03-01

    Long-lasting small traveling clusters are studied in the Hamiltonian mean-field model by comparing between attractive and repulsive interactions. Nonlinear Landau damping theory predicts that a Gaussian momentum distribution on a spatially homogeneous background permits the existence of traveling clusters in the repulsive case, as in plasma systems, but not in the attractive case. Nevertheless, extending the analysis to a two-parameter family of momentum distributions of Fermi-Dirac type, we theoretically predict the existence of traveling clusters in the attractive case; these findings are confirmed by direct N -body numerical simulations. The parameter region with the traveling clusters is much reduced in the attractive case with respect to the repulsive case.

  8. Pinning time statistics for vortex lines in disordered environments.

    PubMed

    Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe C

    2014-12-01

    We study the pinning dynamics of magnetic flux (vortex) lines in a disordered type-II superconductor. Using numerical simulations of a directed elastic line model, we extract the pinning time distributions of vortex line segments. We compare different model implementations for the disorder in the surrounding medium: discrete, localized pinning potential wells that are either attractive and repulsive or purely attractive, and whose strengths are drawn from a Gaussian distribution; as well as continuous Gaussian random potential landscapes. We find that both schemes yield power-law distributions in the pinned phase as predicted by extreme-event statistics, yet they differ significantly in their effective scaling exponents and their short-time behavior.

  9. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    PubMed

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  10. The Resistive-Wall Instability in Multipulse Linear Induction Accelerators

    DOE PAGES

    Ekdahl, Carl

    2017-05-01

    The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less

  11. The Resistive-Wall Instability in Multipulse Linear Induction Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl

    The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less

  12. Singlet vs. triplet interelectronic repulsion in confined atoms

    NASA Astrophysics Data System (ADS)

    Sarsa, A.; Buendía, E.; Gálvez, F. J.; Katriel, J.

    2018-06-01

    Hund's multiplicity rule invariably holds for the ground configurations of few-electron atoms as well as those of multi-electron quantum dots. However, the ordering of the corresponding interelectronic repulsions exhibits a reversal in the former but not in the latter system, upon varying the system parameters. Here, we investigate the transition between these two types of behaviour by studying few-electron atoms confined in spherical cavities. "Counter-intuitive" ordering of the interelectronic repulsions is confirmed when the nuclear charge is low enough and the cavity radius is large enough.

  13. Magnetic anisotropy in nickel complexes as determined by combined magnetic susceptibility/magnetization/theoretical studies

    NASA Astrophysics Data System (ADS)

    Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan

    2004-05-01

    The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.

  14. A constitutive model for the forces of a magnetic bearing including eddy currents

    NASA Technical Reports Server (NTRS)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  15. Repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism.

    PubMed

    Conduit, G J; Simons, B D

    2009-11-13

    Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the most well-characterized phases of correlated Fermi systems. A recent experiment has reported the first evidence for novel phase behavior on the repulsive side of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting recent theoretical studies to the atomic trap geometry, we show that an adiabatic ferromagnetic transition would take place at a weaker interaction strength than is observed in experiment. This discrepancy motivates a simple nonequilibrium theory that takes account of the dynamics of magnetic defects and three-body losses. The formalism developed displays good quantitative agreement with experiment.

  16. Magnetic bearings for inertial energy storage

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. Ernest; Eakin, Vickie

    1987-01-01

    Advanced flywheels utilizing high strength fibers must operate at high rotational speeds and as such must operate in vacuum to reduce windage losses. The utilization of magnetic bearings in the flywheels overcome lubrication and seal problems, resulting in an energy storage system offering potential improvements over conventional electrochemical energy storage. Magnetic bearings evolved in the 1950s from the simple application of permanent magnets positioned to exert repulsive forces to the present where permanent magnets and electromagnets have been combined to provide axial and radial suspension. Further development of magnetic suspension has led to the design of a shaftless flywheel system for aerospace application. Despite the lack of proof of concept, integrated magnetic suspension in inertial storage systems can provide significant performance improvements to warrant development and tests.

  17. Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Glazebrook, R. T.

    2016-10-01

    1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.

  18. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    NASA Astrophysics Data System (ADS)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  19. Electrostatic repulsive out-of-plane actuator using conductive substrate.

    PubMed

    Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin

    2016-10-07

    A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.

  20. Electrostatic repulsive out-of-plane actuator using conductive substrate

    PubMed Central

    Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin

    2016-01-01

    A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode. PMID:27713542

  1. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Zhao, G. P.; Fangohr, Hans; Liu, J. Ping; Xia, W. X.; Xia, J.; Morvan, F. J.

    2015-01-01

    Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.

  2. Development of a High-speed Electromagnetic Repulsion Mechanism for High-voltage Vacuum Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Tsukima, Mitsuru; Takeuchi, Toshie; Koyama, Kenichi; Yoshiyasu, Hajimu

    This paper presents a design and testing of a new high-speed electromagnetic driving mechanism for a high-voltage vacuum circuit breaker (VCB). This mechanism is based on a high-speed electromagnetic repulsion and a permanent magnet spring (PMS). This PMS is introduced instead of the conventional disk spring due to its low spring energy and more suitable force characteristics for VCB application. The PMS has been optimally designed by the 3d non-linear finite-elements magnetic field analysis and investigated its internal friction and eddy-current effect. Furthermore, we calculated the dynamic of this mechanism coupling with the electromagnetic field and circuit analysis, in order to satisfy the operating characteristics—contact velocity, response time and so on, required for the high-speed VCB. A prototype VCB, which was built based on the above analysis shows sufficient operating performance. Finally, the short circuit interruption tests were carried out with this prototype breaker, and we have been able to verify its satisfying performance.

  3. Quantum magnetic phase transition in square-octagon lattice.

    PubMed

    Bao, An; Tao, Hong-Shuai; Liu, Hai-Di; Zhang, XiaoZhong; Liu, Wu-Ming

    2014-11-05

    Quantum magnetic phase transition in square-octagon lattice was investigated by cellular dynamical mean field theory combining with continuous time quantum Monte Carlo algorithm. Based on the systematic calculation on the density of states, the double occupancy and the Fermi surface evolution of square-octagon lattice, we presented the phase diagrams of this splendid many particle system. The competition between the temperature and the on-site repulsive interaction in the isotropic square-octagon lattice has shown that both antiferromagnetic and paramagnetic order can be found not only in the metal phase, but also in the insulating phase. Antiferromagnetic metal phase disappeared in the phase diagram that consists of the anisotropic parameter λ and the on-site repulsive interaction U while the other phases still can be detected at T = 0.17. The results found in this work may contribute to understand well the properties of some consuming systems that have square-octagon structure, quasi square-octagon structure, such as ZnO.

  4. Negative-mass mitigation of Coulomb repulsion for terahertz undulator radiation of electron bunches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balal, N.; Magory, E.; Bandurkin, I. V.

    2015-10-19

    It is proposed to utilize the effect of negative mass for stabilization of the effective axial size of very dense and short electron bunches produced by photo-injector guns by using combined undulator and strong uniform magnetic fields. It has been shown that in the “abnormal” regime, an increase in the electron energy leads to a decrease in the axial velocity of the electron; due to the negative-mass effect, the Coulomb repulsion of electrons leads to their attraction and formation of a fairly stable and compact bunch “nucleus.” An undulator with a strong uniform magnetic field providing the negative-mass effect ismore » designed for an experimental source of terahertz radiation. The use of the negative-mass regime in this experiment should result in a long-pulse coherent spontaneous undulator emission from a short dense moderately relativistic (5.5 MeV) photo-injector electron bunch with a high (up to 20%) efficiency and a narrow frequency spectrum.« less

  5. Flux quench in a system of interacting spinless fermions in one dimension

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yuya O.; Misguich, Grégoire; Oshikawa, Masaki

    2016-05-01

    We study a quantum quench in a one-dimensional spinless fermion model (equivalent to the XXZ spin chain), where a magnetic flux is suddenly switched off. This quench is equivalent to imposing a pulse of electric field and therefore generates an initial particle current. This current is not a conserved quantity in the presence of a lattice and interactions, and we investigate numerically its time evolution after the quench, using the infinite time-evolving block decimation method. For repulsive interactions or large initial flux, we find oscillations that are governed by excitations deep inside the Fermi sea. At long times we observe that the current remains nonvanishing in the gapless cases, whereas it decays to zero in the gapped cases. Although the linear response theory (valid for a weak flux) predicts the same long-time limit of the current for repulsive and attractive interactions (relation with the zero-temperature Drude weight), larger nonlinearities are observed in the case of repulsive interactions compared with that of the attractive case.

  6. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  7. Conceptual design of a high-speed electromagnetic switch for a modified flux-coupling-type SFCL and its application in renewable energy system.

    PubMed

    Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin

    2016-01-01

    The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors.

  8. Study of Electromagnetic Repulsion Switch to High Speed Reclosing and Recover Time Characteristics of Superconductor

    NASA Astrophysics Data System (ADS)

    Koyama, Tomonori; Kaiho, Katsuyuki; Yamaguchi, Iwao; Yanabu, Satoru

    Using a high-temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor and vacuum interrupter as the commutation switch were connected in parallel using a bypass coil. When the fault current flows in this equipment, the superconductor is quenched and the current is then transferred to the parallel coil due to the voltage drop in the superconductor. This large current in the parallel coil actuates the magnetic repulsion mechanism of the vacuum interrupter and the current in the superconductor is broken. Using this equipment, the current flow time in the superconductor can be easily minimized. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. This system has many merits. So, we introduced to electromagnetic repulsion switch. There is duty of high speed re-closing after interrupting fault current in the electrical power system. So the SFCL should be recovered to superconducting state before high speed re-closing. But, superconductor generated heat at the time of quench. It takes time to recover superconducting state. Therefore it is a matter of recovery time. In this paper, we studied recovery time of superconductor. Also, we proposed electromagnetic repulsion switch with reclosing system.

  9. High-nuclearity mixed-valence clusters and mixed-valence chains: general approach to the calculation of the energy levels and bulk magnetic properties.

    PubMed

    Clemente-Juan, J M; Borrás-Almenar, J J; Coronado, E; Palii, A V; Tsukerblat, B S

    2009-05-18

    A general approach to the problem of electron delocalization in the high-nuclearity mixed-valence (MV) clusters containing an arbitrary number of localized spins and itinerant electrons is developed. Along with the double exchange, we consider the isotropic magnetic exchange between the localized electrons as well as the Coulomb intercenter repulsion. As distinguished from the previous approaches dealing with the MV systems in which itinerant electrons are delocalized over all constituent metal sites, here, we consider a more common case of systems exhibiting partial delocalization and containing several delocalized domains. Taking full advantage of the powerful angular momentum technique, we were able to derive closed form analytical expressions for the matrix elements of the full Hamiltonian. These expressions provide an efficient tool for treating complex mixed-valence systems, because they contain only products of 6j-symbols (that appear while treating the delocalized parts) and 9j-symbols (exchange interactions in localized parts) and do not contain high-order recoupling coefficients and 3j-symbols that essentially constrained all previous theories of mixed valency. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk thermodynamic properties (magnetic susceptibility, magnetization, and magnetic specific heat) of high-nuclearity MV clusters. Finally, this approach has been used to discuss the magnetic properties of the octanuclear MV cluster [Fe(8)(mu(4)-O)(4)(4-Cl-pz)(12)Cl(4)](-) and the diphthalocyanine chains [YPc(2)].CH(2)Cl(2) and [ScPc(2)].CH(2)Cl(2) composed of MV dimers interacting through the magnetic exchange and Coulomb repulsion.

  10. Nontrivial interplay of strong disorder and interactions in quantum spin-Hall insulators doped with dilute magnetic impurities

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Hui; Cazalilla, Miguel A.

    2018-06-01

    We investigate nonperturbatively the effect of a magnetic dopant impurity on the edge transport of a quantum spin Hall (QSH) insulator. We show that for a strongly coupled magnetic dopant located near the edge of a system, a pair of transmission antiresonances appear. When the chemical potential is on resonance, interaction effects broaden the antiresonance width with decreasing temperature, thus suppressing transport for both repulsive and moderately attractive interactions. Consequences for the recently observed QSH insulating phase of the 1 -T' of WTe2 are briefly discussed.

  11. Repulsive Casimir force in Bose–Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Biswas, Shovon

    2018-04-01

    We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.

  12. Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion.

    PubMed

    Togashi, Kazunobu; von Schimmelmann, Melanie J; Nishiyama, Makoto; Lim, Chae-Seok; Yoshida, Norihiro; Yun, Bokyoung; Molday, Robert S; Goshima, Yoshio; Hong, Kyonsoo

    2008-06-12

    Cyclic nucleotide-gated channels (CNGCs) transduce external signals required for sensory processes, e.g., photoreception, olfaction, and taste. Nerve growth cone guidance by diffusible attractive and repulsive molecules is regulated by differential growth cone Ca2+ signaling. However, the Ca2+-conducting ion channels that transduce guidance molecule signals are largely unknown. We show that rod-type CNGC-like channels function in the repulsion of cultured Xenopus spinal neuron growth cones by Sema3A, which triggers the production of the cGMP that activates the Xenopus CNGA1 (xCNGA1) subunit-containing channels in interneurons. Downregulation of xCNGA1 or overexpression of a mutant xCNGA1 incapable of binding cGMP abolished CNG currents and converted growth cone repulsion to attraction in response to Sema3A. We also show that Ca2+ entry through xCNGCs is required to mediate the repulsive Sema3A signal. These studies extend our knowledge of the function of CNGCs by demonstrating their requirement for signal transduction in growth cone guidance.

  13. Interplay between superconductivity and magnetism in Fe(1-x)Pd(x)Te.

    PubMed

    Karki, Amar B; Garlea, V Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E W; Jin, Rongying

    2013-06-04

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As(1-x)P(x))2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe(1-x)Pd(x)Te. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature T(N/S), and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T'(N). Superconductivity sets in when T'(N) reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions.

  14. On the Klein–Gordon oscillator subject to a Coulomb-type potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br; Furtado, C., E-mail: furtado@fisica.ufpb.br

    2015-04-15

    By introducing the scalar potential as modification in the mass term of the Klein–Gordon equation, the influence of a Coulomb-type potential on the Klein–Gordon oscillator is investigated. Relativistic bound states solutions are achieved to both attractive and repulsive Coulomb-type potentials and the arising of a quantum effect characterized by the dependence of angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system is shown. - Highlights: • Interaction between the Klein–Gordon oscillator and a modified mass term. • Relativistic bound states for both attractive and repulsive Coulomb-type potentials. • Dependence of the Klein–Gordon oscillator frequency on themore » quantum numbers. • Relativistic analogue of a position-dependent mass system.« less

  15. Self-assembling fluidic machines

    NASA Astrophysics Data System (ADS)

    Grzybowski, Bartosz A.; Radkowski, Michal; Campbell, Christopher J.; Lee, Jessamine Ng; Whitesides, George M.

    2004-03-01

    This letter describes dynamic self-assembly of two-component rotors floating at the interface between liquid and air into simple, reconfigurable mechanical systems ("machines"). The rotors are powered by an external, rotating magnetic field, and their positions within the interface are controlled by: (i) repulsive hydrodynamic interactions between them and (ii) by localized magnetic fields produced by an array of small electromagnets located below the plane of the interface. The mechanical functions of the machines depend on the spatiotemporal sequence of activation of the electromagnets.

  16. Authentic Assessment Tool for the Measurement of Students' Understanding of the Valence Shell Electron Pair Repulsion Theory

    ERIC Educational Resources Information Center

    Wuttisela, Karntarat

    2017-01-01

    There are various types of instructional media related to Valence Shell Electron Pair Repulsion (VSEPR) but there is a lack of diversity of resources devoted to assessment. This research presents an assessment and comparison of students' understanding of VSEPR theory before and after tuition involving the use of the foam molecule model (FMM) and…

  17. Interface magnetism and electronic structure: ZnO(0001)/Co3O4 (111)

    NASA Astrophysics Data System (ADS)

    Kupchak, I. M.; Serpak, N. F.; Shkrebtii, A.; Hayn, R.

    2018-03-01

    We have studied the structural, electronic, and magnetic properties of spinel Co3O4 (111) surfaces and their interfaces with ZnO(0001) using density functional theory within the generalized gradient approximation with the on-site Coulomb repulsion term. Two possible forms of spinel surface, containing Co2 + or Co3 + ions and terminated with either cobalt or oxygen ions, were considered, as well as their interface with zinc oxide. Our calculations demonstrate that Co3 + ions attain nonzero magnetic moments at the surface and interface, in contrast to the bulk, where they are not magnetic, leading to the ferromagnetic ordering. Since heavily Co doped ZnO samples can contain a Co3O4 secondary phase, such magnetic ordering at the interface might explain the origin of the magnetism in such diluted magnetic semiconductors.

  18. The shape and dynamics of local attraction

    NASA Astrophysics Data System (ADS)

    Strömbom, D.; Siljestam, M.; Park, J.; Sumpter, D. J. T.

    2015-11-01

    Moving animal groups, such as flocks of birds or schools of fish, exhibit a varity of self-organized complex dynamical behaviors and shapes. This kind of flocking behavior has been studied using self-propelled particle models, in which the "particles" interact with their nearest neighbors through repulsion, attraction and alignment responses. In particular, it has been shown that models based on attraction alone can generate a range of dynamic groups in 2D, with periodic boundary conditions, and in the absence of repulsion. Here we investigate the effects of changing these conditions on the type of groups observed in the model. We show that replacing the periodic boundary conditions with a weak global attaction term in 2D, and extending the model to 3D does not significantly change the type of groups observed. We also provide a description of how attraction strength and blind angle determine the groups generated in the 3D version of the model. Finally, we show that adding repulsion do change the type of groups oberved, making them appear and behave more like real moving animal groups. Our results suggest that many biological instances of collective motion may be explained without assuming that animals explicitly align with each other. Instead, complex collective motion is explained by the interplay of attraction and repulsion forces. Supplementary material in the form of four mp4 files available from the Journal web page at http://dx.doi.org/10.1140/epjst/e2015-50093-5

  19. High-field instability of a field-induced triplon Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Rakhimov, Abdulla; Sherman, E. Ya.; Kim, Chul Koo

    2010-01-01

    We study properties of magnetic field-induced Bose-Einstein condensate of triplons as a function of temperature and the field within the Hartree-Fock-Bogoliubov approach including the anomalous density. We show that the magnetization is continuous across the transition, in agreement with the experiment. In sufficiently strong fields the condensate becomes unstable due to triplon-triplon repulsion. As a result, the system is characterized by two critical magnetic fields: one producing the condensate and the other destroying it. We show that nonparabolic triplon dispersion arising due to the gapped bare spectrum and the crystal structure has a strong influence on the phase diagram.

  20. Substorms: The Attempt at Magnetospheric Dynamic Equilibrium between Magnetically-Driven Frontside Reconnection and Particle-Driven Reconnection in a Multiple-Current-Sheet Magnetotail

    NASA Astrophysics Data System (ADS)

    Sofko, G. J.; Hussey, G. C.; McWilliams, K. A.; Reimer, A. S.

    2016-12-01

    We propose a multi-current-sheet model for magnetic substorms. Those storms are normally driven by frontside magnetically-driven reconnection (MDRx), in which the diffusion zone current JD and the electric field E have a "load" relationship JD*E >0, indicating transfer if magnetic energy to the particles in the "reconnection jets". As a result of lobe field line transport over the north and south poles, polar cap particles are subject to parallel energization as they flow upward out of the ionosphere. These particles convectively drift toward the equator and subsequently mirror near the Neutral Sheet (NSh) region, forming an extended westward NSh current sheet which is unstable and "tears up" into multiple current sheets. Each current sheet has very different behaviour at its ends: (a) strong magnetic pressure and weak particle pressure at its tailward end; (b) strong particle pressure and weak magnetic field at its earthward end. Therefore, in each Separation Zone (SZ) between current sheets, a strong eastward magnetic curl develops. The associated eastward SZ current, caused by diamagnetic electron drift, is squeezed by the repulsion of the westward currents tailward and earthward. That current becomes intense enough to act as a diffusion zone for "generator-type" or Particle-driven reconnection (PDRx) for which JD*E<0, indicating that the particles return energy to the magnetic field. The PDRx produces a Dipolarization Front (DF) on the earthward side of the SZ and a Plasmoid (PMD) on the tailward side. Such DF-PMD pairs form successively in time and radial downtail SZ distance. In this way, the magnetosphere attempts to achieve a dynamic equilibrium between magnetic and particle energy.

  1. Quest for Casimir repulsion between Chern-Simons surfaces

    NASA Astrophysics Data System (ADS)

    Fialkovsky, Ignat; Khusnutdinov, Nail; Vassilevich, Dmitri

    2018-04-01

    In this paper we critically reconsider the Casimir repulsion between surfaces that carry the Chern-Simons interaction (corresponding to the Hall-type conductivity). We present a derivation of the Lifshitz formula valid for arbitrary planar geometries and discuss its properties. This analysis allows us to resolve some contradictions in the previous literature. We compute the Casimir energy for two surfaces that have constant longitudinal and Hall conductivities. The repulsion is possible only if both surfaces have Hall conductivities of the same sign. However, there is a critical value of the longitudinal conductivity above which the repulsion disappears. We also consider a model where both parity odd and parity even terms in the conductivity are produced by the polarization tensor of surface modes. In contrast to the previous publications [L. Chen and S.-L. Wan, Phys. Rev. B 84, 075149 (2011), 10.1103/PhysRevB.84.075149; Phys. Rev. B 85, 115102 (2012), 10.1103/PhysRevB.85.115102], we include the parity anomaly term. This term ensures that the conductivities vanish for infinitely massive surface modes. We find that at least for a single mode, regardless of the sign and value of its mass, there is no Casimir repulsion.

  2. Hidden magnetism in periodically modulated one dimensional dipolar fermions

    NASA Astrophysics Data System (ADS)

    Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.

    2017-12-01

    The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.

  3. Testing Nelder-Mead based repulsion algorithms for multiple roots of nonlinear systems via a two-level factorial design of experiments.

    PubMed

    Ramadas, Gisela C V; Rocha, Ana Maria A C; Fernandes, Edite M G P

    2015-01-01

    This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

  4. Vortex relaxation in type-II superconductors following current quenches

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Harsh; Assi, Hiba; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe

    2015-03-01

    The mixed phase in type-II superconductors is characterized by the presence of mutually repulsive magnetic flux lines that are driven by external currents and pinned by point-like or extended material defects. We represent the disordered vortex system in the London limit by an elastic directed line model, whose relaxational dynamics we investigate numerically by means of Langevin Molecular Dynamics. We specifically study the effects of sudden changes of the driving current on the time evolution of the mean flux line gyration radius and the associated transverse displacement correlation functions. Upon quenching from the moving into the pinned glassy phase, we observe algebraically slow relaxation. The associated two-time height-autocorrelations display broken time translation invariance and can be described by a simple aging scaling form, albeit with non-universal scaling exponents. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  5. Interplay between superconductivity and magnetism in Fe1−xPdxTe

    PubMed Central

    Karki, Amar B.; Garlea, V. Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E. W.; Jin, Rongying

    2013-01-01

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R′Mo6X8 (R′ = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As1−xPx)2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe1−xPdxTe. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature TN/S, and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T′N. Superconductivity sets in when T′N reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions. PMID:23690601

  6. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    NASA Astrophysics Data System (ADS)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  7. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    PubMed

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  8. Passive magnetic bearing for a horizontal shaft

    DOEpatents

    Post, Richard F.

    2003-12-02

    A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.

  9. Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.

    2017-01-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  10. Magnetic gates and guides for superconducting vortices

    DOE PAGES

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.; ...

    2017-04-04

    Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less

  11. Magnetic gates and guides for superconducting vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Colauto, F.; Buzdin, A. I.

    Here, we image the motion of superconducting vortices in niobium film covered with a regular array of thin permalloy stripes. By altering the magnetization orientation in the stripes using a small in-plane magnetic field, we can tune the strength of interactions between vortices and the stripe edges, enabling acceleration or retardation of the superconducting vortices in the sample and consequently introducing strong tunable anisotropy into the vortex dynamics. We discuss our observations in terms of the attraction/repulsion between point magnetic charges carried by vortices and lines of magnetic charges at the stripe edges, and derive analytical formulas for the vortex-magneticmore » stripes coupling. Our approach demonstrates the analogy between the vortex motion regulated by the magnetic stripe array and electric carrier flow in gated semiconducting devices. Scaling down the geometrical features of the proposed design may enable controlled manipulation of single vortices, paving the way for Abrikosov vortex microcircuits and memories.« less

  12. Drag and lift forces between a rotating conductive sphere and a cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2018-06-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  13. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2.

    PubMed

    Yamashita, Takuya; Takenaka, Takaaki; Tokiwa, Yoshifumi; Wilcox, Joseph A; Mizukami, Yuta; Terazawa, Daiki; Kasahara, Yuichi; Kittaka, Shunichiro; Sakakibara, Toshiro; Konczykowski, Marcin; Seiro, Silvia; Jeevan, Hirale S; Geibel, Christoph; Putzke, Carsten; Onishi, Takafumi; Ikeda, Hiroaki; Carrington, Antony; Shibauchi, Takasada; Matsuda, Yuji

    2017-06-01

    In exotic superconductors, including high- T c copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu 2 Si 2 , which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu 2 Si 2 , demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

  14. Strongly correlated materials.

    PubMed

    Morosan, Emilia; Natelson, Douglas; Nevidomskyy, Andriy H; Si, Qimiao

    2012-09-18

    Strongly correlated materials are profoundly affected by the repulsive electron-electron interaction. This stands in contrast to many commonly used materials such as silicon and aluminum, whose properties are comparatively unaffected by the Coulomb repulsion. Correlated materials often have remarkable properties and transitions between distinct, competing phases with dramatically different electronic and magnetic orders. These rich phenomena are fascinating from the basic science perspective and offer possibilities for technological applications. This article looks at these materials through the lens of research performed at Rice University. Topics examined include: Quantum phase transitions and quantum criticality in "heavy fermion" materials and the iron pnictide high temperature superconductors; computational ab initio methods to examine strongly correlated materials and their interface with analytical theory techniques; layered dichalcogenides as example correlated materials with rich phases (charge density waves, superconductivity, hard ferromagnetism) that may be tuned by composition, pressure, and magnetic field; and nanostructure methods applied to the correlated oxides VO₂ and Fe₃O₄, where metal-insulator transitions can be manipulated by doping at the nanoscale or driving the system out of equilibrium. We conclude with a discussion of the exciting prospects for this class of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Passive Magnetic Bearing Flywheel

    NASA Technical Reports Server (NTRS)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  16. SODA Repuslive Function Shaping

    NASA Image and Video Library

    2017-06-16

    SODA, Swarm Orbital Dynamics Advisor, a tool that provides the orbital maneuvers required to achieve a desired type of relative swarm motion. The SODA algorithm uses a repulsive potential that is a function of the distances between each pair of satellites. Choosing the parameters of the function is a swarm design choice, as different values can yield very different maneuvers and thus impact fuel use and mission life. This is an animation illustrating how the peaks of the repulsive potential function vary when varying certain parameters.

  17. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to different less symmetric structures and phonons. The results of these calculations are compared with either experiments or calculations based on the density functional theory (DFT), and they all show very good agreement. Importantly, the lowest energy configuration of SIAs agrees with DFT calculations that show that it is an exception within bcc transition metals controlled by magnetism. Moreover, the migration energy of interstitials is significantly lower than that of vacancies, which is essential for correct analysis of the effects of irradiation. Finally, the core structure and glide of ½ <111 > screw dislocations that control the plastic flow in single crystals of bcc metals was explored. The results fully agree with available DFT based studies and with experimental observations of the slip geometry of bcc iron at low temperatures.

  18. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.; Zheng, Hong; Norman, M. R.; Mitchell, J. F.

    2016-08-01

    The quasi-2D nickelate La4Ni3O8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La4Ni3O10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. Here, we show using synchrotron X-ray diffraction on high-pO2 floating zone-grown single crystals that this transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. The charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that found in the related 1/3-hole doped single-layer R-P nickelate, La5/3Sr1/3NiO4 (LSNO-1/3; Ni2.33+), with orientation at 45° to the Ni-O bonds. The charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.

  19. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  20. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.

    PubMed

    Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob; Corni, Stefano; Frediani, Luca; Steindal, Arnfinn Hykkerud; Guido, Ciro A; Scalmani, Giovanni; Mennucci, Benedetta

    2018-03-13

    Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdW TS ) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdW TS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdW TS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.

  1. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    PubMed

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  2. Quantum dot as spin current generator and energy harvester

    NASA Astrophysics Data System (ADS)

    Szukiewicz, Barbara; Wysokiński, Karol I.

    2015-05-01

    The thermoelectric transport in the device composed of a central nanoscopic system in contact with two electrodes and subject to the external magnetic field of Zeeman type has been studied. The device can support pure spin current in the electrodes and may serve as a source of the temperature induced spin currents with possible applications in spintronics. The system may also be used as an energy harvester. We calculate its thermodynamic efficiency η and the power output P. The maximal efficiency of the device reaches the Carnot value when the device works reversibly but with the vanishing power. The interactions between carriers diminish the maximal efficiency of the device, which under the constant load drops well below the Carnot limit but may exceed the Curzon-Ahlborn limit. While the effect of intradot Coulomb repulsion on η depends on the parameters, the interdot/interlevel interaction strongly diminishes the device efficiency.

  3. Dynamic stability of repulsive-force maglev suspension systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Rote, D.M.; Mulcahy, T.M.

    1996-11-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents both measured and calculated magnetic-force data. Because dynamic instability is not acceptable for any commercial maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments on maglev systems and compares the results with predictions calculated by a nonlinear-dynamics computer code. Instabilities of an electrodynamic-suspension system type vehicle model were obtained by experimental observation and computer simulation of a five-degree-of-freedom maglev vehicle moving on a guidewaymore » that consists of a pair of L-shaped aluminum conductors attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.« less

  4. The first-principles investigations on magnetic ground-state in Sm-doped phenanthrene

    NASA Astrophysics Data System (ADS)

    Han, Jia-Xing; Zhong, Guo-Hua; Wang, Xiao-Hui; Chen, Xiao-Jia; Lin, Hai-Qing

    2017-05-01

    Based on the density functional theory plus the effective Coulomb repulsion U, we have investigated the crystal structure, electronic properties and magnetic characteristics in Sm-doped phenanthrene, recently characterized as a superconductor with Tc˜5 -6 Kelvin. Calculated total energies of different magnetic states indicate that Sm-doped phenanthrene is stable at the ferromagnetic ground-state. Considered the strong electronic correlations effect due to the intercalation of Sm-4f electrons, we found that the Sm-4f contributes to the Fermi surface together with C-2p, which is different from K-doped phenanthrene. Compared with alkali-metal-doped phenanthrene, Sm atom has larger local magnetic moment, which suppresses the superconductivity in conventional superconductors. Our results indicate that the electron-electron correlations play an important role in superconductivity of Sm-doped phenanthrene.

  5. Magnetic nanoparticle-based cancer nanodiagnostics

    NASA Astrophysics Data System (ADS)

    Zubair, Yousaf Muhammad; Yu, Jing; Hou, Yang-Long; Gao, Song

    2013-05-01

    Diagnosis facilitates the discovery of an impending disease. A complete and accurate treatment of cancer depends heavily on its early medical diagnosis. Cancer, one of the most fatal diseases world-wide, consistently affects a larger number of patients each year. Magnetism, a physical property arising from the motion of electrical charges, which causes attraction and repulsion between objects and does not involve radiation, has been under intense investigation for several years. Magnetic materials show great promise in the application of image contrast enhancement to accurately image and diagnose cancer. Chelating gadolinium (Gd III) and magnetic nanoparticles (MNPs) have the prospect to pave the way for diagnosis, operative management, and adjuvant therapy of different kinds of cancers. The potential of MNP-based magnetic resonance (MR) contrast agents (CAs) now makes it possible to image portions of a tumor in parts of the body that would be unclear with the conventional magnetic resonance imaging (MRI). Multiple functionalities like variety of targeting ligands and image contrast enhancement have recently been added to the MNPs. Keeping aside the additional complexities in synthetic steps, costs, more convoluted behavior, and effects in-vivo, multifunctional MNPs still face great regulatory hurdles before clinical availability for cancer patients. The trade-off between additional functionality and complexity is a subject of ongoing debate. The recent progress regarding the types, design, synthesis, morphology, characterization, modification, and the in-vivo and in-vitro uses of different MRI contrast agents, including MNPs, to diagnose cancer will be the focus of this review. As our knowledge of MNPs' characteristics and applications expands, their role in the future management of cancer patients will become very important. Current hurdles are also discussed, along with future prospects of MNPs as the savior of cancer victims.

  6. Meissner motor using high-Tc ceramic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, A.; Ishikawa, A.; Suzuki, M.

    1989-03-01

    The authors developed a brand new superconducting motor using high-Tc ceramic superconductors for the first time. This motor utilizes the repulsive force caused by the Meissner effect, which appears below Tc and disappears above that, and is therefore referred to as the Meissner Motor. The motor rotated at a maximum speed of 40 rpm. Though the repulsive force to drive the motor increased with the decrease of temperature or the increase of the gradient magnetic field, it was only about 1.1 gf/g at 77 K in 3500 G/cm. The motor has a maximum torque of 5.0 gf-cm theoretically, but actuallymore » had a torque below 0.66 gf-cm, because it took some time to be cooled below Tc. The rotating speed of the motor was limited by heating ability and its torque was limited by cooling ability.« less

  7. Electric levitation using ϵ-near-zero metamaterials.

    PubMed

    Rodríguez-Fortuño, Francisco J; Vakil, Ashkan; Engheta, Nader

    2014-01-24

    The ability to manufacture metamaterials with exotic electromagnetic properties has potential for surprising new applications. Here we report how a specific type of metamaterial--one whose permittivity is near zero--exerts a repulsive force on an electric dipole source, resulting in levitation of the dipole. The phenomenon relies on the expulsion of the time-varying electric field from the metamaterial interior, resembling the perfect diamagnetic expulsion of magnetostatic fields. Leveraging this concept, we study some realistic requirements for the levitation or repulsion of a polarized particle radiating at any frequency, from microwave to optics.

  8. Topological magnetic phase in LaMnO3 (111) bilayer

    NASA Astrophysics Data System (ADS)

    Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai

    Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as Hubbard type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semi-metal (graphene-like) which is also a half-metal (different from graphene nor previous studied LaNiO3 (111) bilayer). The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (~ 1 . 7 meV) than the undistorted one (~11 meV).

  9. Analysis of magnetic gradients to study gravitropism.

    PubMed

    Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan

    2013-01-01

    Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.

  10. Repulsive Guidance Molecules (RGMs) and Neogenin in Bone Morphogenetic Protein (BMP) signaling

    PubMed Central

    Tian, Chenxi; Liu, Jun

    2015-01-01

    Summary Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type I and type II serine/threonine kinase receptors and intracellular Smad proteins. The BMP pathway regulates multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type I trans-membrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction. PMID:23740870

  11. Tunable tunneling: stationary states of the Bose-Einstein condensate in traps of finite depth

    NASA Astrophysics Data System (ADS)

    Mahmud, K. W.

    2001-03-01

    The complete set of stationary solutions in a finite square well for repulsive and attractive Bose-Einstein condensates was obtained. An immediate application of these different solution types is tunable tunneling. Magnetically tunable Feshbach resonances [1] can change the scattering length of certain atoms, such as ^85Rb , by several orders of magnitude, including the sign, and thereby also change the mean field nonlinearity term of the equation and the tunneling of the wavefunction. Extending earlier work on the solutions of the Gross-Pitaevskii equation under box and periodic boundary conditions [2,3], we find both linear-type localized solutions and uniquely nonlinear partially localized states where the tails of the wavefunction become nonzero at infinity when the nonlinearity increases. The tunneling and localization of the wavefunction therefore becomes an external experimentally controllable parameter. PACS numbers: 03.75.Fi, 05.30.Jp, 67.40.-w 1. Ph. Courteille et al., Phys. Rev. Lett. 81, 69 (1998) 2, 3. L. D. Carr, C. W. Clark, and W. P. Reinhardt, Phys. Rev. A 62, 063610 and 063611 (2000)

  12. Spin filtering by field-dependent resonant tunneling.

    PubMed

    Ristivojevic, Zoran; Japaridze, George I; Nattermann, Thomas

    2010-02-19

    We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong.

  13. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2

    PubMed Central

    Yamashita, Takuya; Takenaka, Takaaki; Tokiwa, Yoshifumi; Wilcox, Joseph A.; Mizukami, Yuta; Terazawa, Daiki; Kasahara, Yuichi; Kittaka, Shunichiro; Sakakibara, Toshiro; Konczykowski, Marcin; Seiro, Silvia; Jeevan, Hirale S.; Geibel, Christoph; Putzke, Carsten; Onishi, Takafumi; Ikeda, Hiroaki; Carrington, Antony; Shibauchi, Takasada; Matsuda, Yuji

    2017-01-01

    In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction. PMID:28691082

  14. Controlling the growth of multiple ordered heteromolecular phases by utilizing intermolecular repulsion

    NASA Astrophysics Data System (ADS)

    Henneke, Caroline; Felter, Janina; Schwarz, Daniel; Stefan Tautz, F.; Kumpf, Christian

    2017-06-01

    Metal/organic interfaces and their structural, electronic, spintronic and thermodynamic properties have been investigated intensively, aiming to improve and develop future electronic devices. In this context, heteromolecular phases add new design opportunities simply by combining different molecules. However, controlling the desired phases in such complex systems is a challenging task. Here, we report an effective way of steering the growth of a bimolecular system composed of adsorbate species with opposite intermolecular interactions--repulsive and attractive, respectively. The repulsive species forms a two-dimensional lattice gas, the density of which controls which crystalline phases are stable. Critical gas phase densities determine the constant-area phase diagram that describes our experimental observations, including eutectic regions with three coexisting phases. We anticipate the general validity of this type of phase diagram for binary systems containing two-dimensional gas phases, and also show that the density of the gas phase allows engineering of the interface structure.

  15. Defect Dynamics in Artificial Colloidal Ice: Real-Time Observation, Manipulation, and Logic Gate.

    PubMed

    Loehr, Johannes; Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-10-14

    We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable "nor" gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles.

  16. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltador, C., E-mail: carlo.baltador@igi.cnr.it; Veltri, P.; Agostinetti, P.

    2016-02-15

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. Themore » study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.« less

  17. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets

    NASA Astrophysics Data System (ADS)

    Baltador, C.; Veltri, P.; Agostinetti, P.; Chitarin, G.; Serianni, G.

    2016-02-01

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.

  18. The Role of Repulsion in Colloidal Crystal Engineering with DNA

    DOE PAGES

    Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.; ...

    2017-10-24

    Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost a decade ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. In this paper, a comprehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson–Crickmore » base-pairing interactions and depletion interactions—and systematically varied the salt concentration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive interactions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. Finally, this model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less

  19. The Role of Repulsion in Colloidal Crystal Engineering with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.

    Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost a decade ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. In this paper, a comprehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson–Crickmore » base-pairing interactions and depletion interactions—and systematically varied the salt concentration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive interactions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. Finally, this model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less

  20. The Role of Repulsion in Colloidal Crystal Engineering with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.

    Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost two decades ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. Here, a com-prehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson-Crick base pairingmore » interactions and depletion interactions—and systematically varied the salt concen-tration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive inter-actions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. This model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less

  1. Tight-binding calculation of the magnetic moment of CrAs under pressure

    NASA Astrophysics Data System (ADS)

    Autieri, Carmine; Cuono, Giuseppe; Forte, Filomena; Noce, Canio

    2018-03-01

    We analyze the evolution of the local magnetic moment of the newly discovered pressure-induced superconductor CrAs, as a function of the applied pressure. Our theoretical method is based on a combination of the tight-binding approximation and the Löwdin down-folding procedure, which enables us to derive a low-energy effective Hamiltonian projected onto the Cr-subsector. We set up our calculations by considering several sets of ab initio derived hopping parameters, corresponding to different volumes of the unit cell, and use them to obtain the simulated pressure-dependence of the Cr magnetic moment, which is evaluated within a mean-field treatment of the Coulomb repulsion between the electrons at the Cr sites. Our calculations show good agreement with available experimental data, both for the normal phase measured 1.7 µB for Cr magnetic moment, and concerning the observed reduction of its amplitude for values that exceed the characteristic critical pressure.

  2. Repulsive force support system feasibility study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.

    1987-01-01

    A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings.

  3. Antiferromagnetic order in the Hubbard model on the Penrose lattice

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Tsunetsugu, Hirokazu

    2017-12-01

    We study an antiferromagnetic order in the ground state of the half-filled Hubbard model on the Penrose lattice and investigate the effects of quasiperiodic lattice structure. In the limit of infinitesimal Coulomb repulsion U →+0 , the staggered magnetizations persist to be finite, and their values are determined by confined states, which are strictly localized with thermodynamics degeneracy. The magnetizations exhibit an exotic spatial pattern, and have the same sign in each of cluster regions, the size of which ranges from 31 sites to infinity. With increasing U , they continuously evolve to those of the corresponding spin model in the U =∞ limit. In both limits of U , local magnetizations exhibit a fairly intricate spatial pattern that reflects the quasiperiodic structure, but the pattern differs between the two limits. We have analyzed this pattern change by a mode analysis by the singular value decomposition method for the fractal-like magnetization pattern projected into the perpendicular space.

  4. Magnetic skyrmions on a two-lane racetrack

    NASA Astrophysics Data System (ADS)

    Müller, Jan

    2017-02-01

    Magnetic skyrmions are particle-like textures in magnetization, characterized by a topological winding number. Nanometer-scale skyrmions have been observed at room temperature in magnetic multilayer structures. The combination of their small size, topological quantization and their efficient electric manipulation makes them interesting candidates for information carriers in high-performance memory devices. A skyrmion racetrack memory has been suggested, in which information is encoded in the distance between skyrmions moving in a one-dimensional nanostrip. Here, I propose an alternative design where skyrmions move in two (or more) parallel lanes and the information is stored in the lane number of each skyrmion. Such a multilane track can be constructed by controlling the height profile of the nanostrip. Repulsive skyrmion-skyrmion interactions in narrow nanostrips guarantee that skyrmions on different lanes cannot pass each other. Current pulses can be used to induce a lane change, and combining these elements provides a robust, efficient design for skyrmion-based storage devices.

  5. Recent results of studies of acceleration of compact toroids

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Hartmen, C. W.; Eddleman, J.

    1984-03-01

    The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.

  6. Modeling and analysis of Galfenol cantilever vibration energy harvester with nonlinear magnetic force

    NASA Astrophysics Data System (ADS)

    Cao, Shuying; Sun, Shuaishuai; Zheng, Jiaju; Wang, Bowen; Wan, Lili; Pan, Ruzheng; Zhao, Ran; Zhang, Changgeng

    2018-05-01

    Galfenol traditional cantilever energy harvesters (TCEHs) have bigger electrical output only at resonance and exhibit nonlinear mechanical-magnetic-electric coupled (NMMEC) behaviors. To increase low-frequency broadband performances of a TCEH, an improved CEH (ICEH) with magnetic repulsive force is studied. Based on the magnetic dipole model, the nonlinear model of material, the Faraday law and the dynamic principle, a lumped parameter NMMEC model of the devices is established. Comparisons between the calculated and measured results show that the proposed model can provide reasonable data trends of TCEH under acceleration, bias field and different loads. Simulated results show that ICEH exhibits low-frequency resonant, hard spring and bistable behaviors, thus can harvest more low-frequency broadband vibration energy than TCEH, and can elicit snap-through and generate higher voltage even under weak noise. The proposed structure and model are useful for improving performances of the devices.

  7. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  8. Domain wall remote pinning in magnetic nano wires

    NASA Astrophysics Data System (ADS)

    Read, Dan; Miguel, Jorge; Maccherozzi, Francesco; Cavill, Stuart; Dhesi, Sarnjeet; Cardiff University Collaboration; Diamond Light Source Collaboration

    2013-03-01

    In the current race for information storage media with ever increasing density the position of magnetic domain walls, the region in a magnetic system where the local magnetization continually rotates its direction between adjacent magnetic domains, is one of the most promising routes for future storage media devices. Information storage requires ultrafast read-out and writing operations, but domain walls need to be pinned so that the information is safely stored in the long term. Here we investigate the use of remote magnetostatic charges to trap domain walls. By using X-ray photoelectron emission microscopy we have followed the position of domain walls of opposite charge being pinned or repelled by pinning potentials of increasing strength. Micromagnetic simulations show an excellent agreement with the experimental results. We demonstrate the attractive or repulsive character of the interaction between domain wall and trap depending upon the sign of their magnetic charges. These quasi-static experiments are the antecedent to ultrafast time-resolved XMCD-PEEM experiments where the spin-transfer torque effect will be studied dynamically by applying picosecond-long current pulses across the magnetic nanowire.

  9. Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Ming; Lin, Chang-Shou; Lin, Tai-Chia; Lin, Wen-Wei

    2004-09-01

    In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration method is very effective in that it converges linearly in 10-20 steps.

  10. Nonlinear evolution of magnetic flux ropes. I - Low-beta limit

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.

    1993-01-01

    We study the nonlinear self-similar evolution of a cylindrical magnetic flux tube with two components of the magnetic field, axial and azimuthal. We restrict ourselves to the case of a plasma of low beta. Introducing a special class of configurations we call 'separable fields', we reduce the problem to an ordinary differential equation. Two cases are to be distinguished: (1) when the total field minimizes on the symmetry axis, the magnetic configuration inexorably collapses, and (2) when, on the other hand, the total field maximizes on the symmetry axis, the magnetic configuration behaves analogously to a nonlinear oscillator. Here we focus on the latter case. The effective potential of the motion contains two terms: a strong repulsive term and a weak restoring term associated with the pinch. We solve the nonlinear differential equation of motion numerically and find that the period of oscillations grows exponentially with the energy of the oscillator. Our treatment emphasizes the role of the force-free configuration as the lowest potential energy state about which the system oscillates.

  11. The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1978-01-01

    It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.

  12. Magneto-Adaptive Surfactants Showing Anti-Curie Behavior and Tunable Surface Tension as Porogens for Mesoporous Particles with 12-Fold Symmetry.

    PubMed

    Hermann, Stefanie; Wessig, Martin; Kollofrath, Dennis; Gerigk, Melanie; Hagedorn, Kay; Odendal, James A; Hagner, Matthias; Drechsler, Markus; Erler, Philipp; Fonin, Mikhail; Maret, Georg; Polarz, Sebastian

    2017-05-08

    Gaining external control over self-organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self-assembly is dictated by microphase separation, the hydrophobic effect, and head-group repulsion. It is desirable to supplement surfactants with an added mode of long-range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition-metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure-directing agents enabled the formation of porous solids with 12-fold rotational symmetry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Stacked charge stripes in the quasi-2D trilayer nickelate La 4 Ni 3 O 8

    DOE PAGES

    Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.; ...

    2016-07-26

    The quasi-2D nickelate La 4Ni 3O 8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La 4Ni 3O 10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. We show using synchrotron X-ray diffraction on high-pO(2) floating zone-grown single crystals that thismore » transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. We found that the charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that those in the related 1/3-hole doped single- layer R-P nickelate, La 5/3Sr 1/3NiO 4 (LSNO-1/3; Ni 2.33+), with orientation at 45 degrees to the Ni-O bonds. Furthermore, the charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.« less

  14. Stacked charge stripes in the quasi-2D trilayer nickelate La 4 Ni 3 O 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.

    The quasi-2D nickelate La 4Ni 3O 8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La 4Ni 3O 10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. We show using synchrotron X-ray diffraction on high-pO(2) floating zone-grown single crystals that thismore » transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. We found that the charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that those in the related 1/3-hole doped single- layer R-P nickelate, La 5/3Sr 1/3NiO 4 (LSNO-1/3; Ni 2.33+), with orientation at 45 degrees to the Ni-O bonds. Furthermore, the charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.« less

  15. Performance evaluation of nonlinear energy harvesting with magnetically coupled dual beams

    NASA Astrophysics Data System (ADS)

    Lan, Chunbo; Tang, Lihua; Qin, Weiyang

    2017-04-01

    To enhance the output power and broaden the operation bandwidth of vibration energy harvesters (VEH), nonlinear two degree-of-freedom (DOF) energy harvesters have attracted wide attention recently. In this paper, we investigate the performance of a nonlinear VEH with magnetically coupled dual beams and compare it with the typical Duffing-type VEH to find the advantages and drawbacks of this nonlinear 2-DOF VEH. First, based on the lumped parameter model, the characteristics of potential energy shapes and static equilibriums are analyzed. It is noted that the dual beam configuration is much easy to be transformed from a mono-stable state into a bi-stable state when the repulsive magnet force increases. Based on the equilibrium positions and different kinds of nonlinearities, four nonlinearity regimes are determined. Second, the performance of 1-DOF and 2-DOF configurations are compared respectively in these four nonlinearity regimes by simulating the forward sweep responses of these two nonlinear VEHs under different acceleration levels. Several meaningful conclusions are obtained. First, the main alternative to enlarge the operation bandwidth for dual-beam configuration is chaotic oscillation, in which two beams jump between two stable positions chaotically. However, the large-amplitude periodic oscillations, such as inter-well oscillation, cannot take place in both piezoelectric and parasitic beams at the same time. Generally speaking, both of the magnetically coupled dual-beam energy harvester and Duffingtype energy harvester, have their own advantages and disadvantages, while given a large enough base excitation, the maximum voltages of these two systems are almost the same in all these four regimes.

  16. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    DOE PAGES

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; ...

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less

  17. Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions

    NASA Astrophysics Data System (ADS)

    Riegger, L.; Darkwah Oppong, N.; Höfer, M.; Fernandes, D. R.; Bloch, I.; Fölling, S.

    2018-04-01

    We report on the experimental realization of a state-dependent lattice for a two-orbital fermionic quantum gas with strong interorbital spin exchange. In our state-dependent lattice, the ground and metastable excited electronic states of 173Yb take the roles of itinerant and localized magnetic moments, respectively. Repulsive on-site interactions in conjunction with the tunnel mobility lead to spin exchange between mobile and localized particles, modeling the coupling term in the well-known Kondo Hamiltonian. In addition, we find that this exchange process can be tuned resonantly by varying the on-site confinement. We attribute this to a resonant coupling to center-of-mass excited bound states of one interorbital scattering channel.

  18. 1,3-syn-Diaxial Repulsion of Typical Protecting Groups Used in Carbohydrate Chemistry in 3-O-Substituted Derivatives of Isopropyl d-Idopyranosides.

    PubMed

    Komarova, Bozhena S; Gerbst, Alexey G; Finogenova, Anastasiia M; Dmitrenok, Andrey S; Tsvetkov, Yury E; Nifantiev, Nikolay E

    2017-09-01

    The strength of 1,3-syn-diaxial repulsion was evaluated for main types of protecting groups (alkyl, silyl, and acyl) usually used in carbohydrate chemistry. As molecular probes for this study, derivatives of isopropyl 2-O-benzyl-4,6-O-benzylidene-α-d-idopyranoside bearing allyl, acetyl, and tert-butyldiphenylsilyl (TBDPS) protecting groups at O-3 were prepared from p-methoxyphenyl d-galactopyranoside. The equilibrium between O S 2 and 4 C 1 conformations in these compounds was investigated using 3 J H,H and 3 J C,H coupling constants that were determined from 1D 1 H NMR and 2D J-resolved HMBC spectra in various solvents. The analysis of the corresponding coupling constants calculated using DFT/B3LYP/pcJ-1 approximation applied to conformations optimized at DFT/B3LYP/6-311++G** level supported the investigation. Proportions of conformers in the equilibrium revealed the highest repulsion between the 3-allyloxy group and the isopropoxy aglycon and its dependence on the solvent polarity. Differences in the conformational behavior of 3-O-allyl and 3-O-acetyl-α-d-idopyranoside derivatives complied with the notion that higher electron density on O-3 increased 1,3-syn-diaxial repulsion. 3-O-TBDPS derivative existed mainly in 4 C 1 conformation. The attenuation of the 1,3-syn-diaxial repulsive interaction indicates that TBDPS has stereoelectronic properties that may have significance in context of fixing unnatural pyranoside conformation with the help of silyl groups but have been disregarded until now.

  19. Optoelectronic and magnetic properties of Mn-doped indium tin oxide: A first-principles study

    NASA Astrophysics Data System (ADS)

    Nath Tripathi, Madhvendra; Saeed Bahramy, Mohammad; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-10-01

    The manganese doped indium tin oxide (ITO) has integrated magnetics, electronics, and optical properties for next generation multifunctional devices. Our first-principles density functional theory (DFT) calculations show that the manganese atom replaces b-site indium atom, located at the second coordination shell of the interstitial oxygen in ITO. It is also found that both anti-ferromagnetic and ferromagnetic behaviors are realizable. The calculated magnetic moment of 3.95μB/Mn as well as the high transmittance of ˜80% for a 150 nm thin film of Mn doped ITO is in good agreement with the experimental data. The inclusion of on-site Coulomb repulsion corrections via DFT + U methods turns out to improve the optical behavior of the system. The optical behaviors of this system reveal its suitability for the magneto-opto-electronic applications.

  20. Annealing a magnetic cactus into phyllotaxis

    NASA Astrophysics Data System (ADS)

    Nisoli, Cristiano; Gabor, Nathaniel M.; Lammert, Paul E.; Maynard, J. D.; Crespi, Vincent H.

    2010-04-01

    The appearance of mathematical regularities in the disposition of leaves on a stem, scales on a pine-cone, and spines on a cactus has puzzled scholars for millennia; similar so-called phyllotactic patterns are seen in self-organized growth, polypeptides, convection, magnetic flux lattices and ion beams. Levitov showed that a cylindrical lattice of repulsive particles can reproduce phyllotaxis under the (unproved) assumption that minimum of energy would be achieved by two-dimensional Bravais lattices. Here we provide experimental and numerical evidence that the Phyllotactic lattice is actually a ground state. When mechanically annealed, our experimental “magnetic cactus” precisely reproduces botanical phyllotaxis, along with domain boundaries (called transitions in Botany) between different phyllotactic patterns. We employ a structural genetic algorithm to explore the more general axially unconstrained case, which reveals multijugate (multiple spirals) as well as monojugate (single-spiral) phyllotaxis.

  1. Frequency adjustable MEMS vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  2. Mass determination with the magnetic levitation method—proposal for a new design of electromechanical system

    NASA Astrophysics Data System (ADS)

    Kajastie, H.; Riski, K.; Satrapinski, A.

    2009-06-01

    The method for realization of the kilogram using 'superconducting magnetic levitation' was re-evaluated at MIKES. The realization of the kilogram based on the traditional levitation method is limited by the imperfections of the superconducting materials and the indefinable dependence between supplied electrical energy and the gravitational potential energy of the superconducting mass. This indefiniteness is proportional to the applied magnetic field and is caused by increasing losses and trapped magnetic fluxes. A new design of an electromechanical system for the levitation method is proposed. In the proposed system the required magnetic field and the corresponding force are reduced, as the mass of the body (hanging from a mass comparator) is compensated by the reference weight on the mass comparator. The direction of the magnetic force can be upward (levitation force, when the body is over the coil) or downward (repulsive force, when the body is under the coil). The initial force to move the body from the coil is not needed and magnetic field sensitivity is increased, providing linearization of displacement versus applied current. This new construction allows a lower magnetic induction, reduces energy losses compared with previous designs of electromechanical system and reduces the corresponding systematic error.

  3. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE PAGES

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.; ...

    2018-05-31

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  4. Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and FLEX results [Doping evolution of charge and spin excitations in two-leg Hubbard ladders: Comparing DMRG and RPA+FLEX results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.

    Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less

  5. A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations

    ERIC Educational Resources Information Center

    Petersson, T.; Hellsing, B.

    2010-01-01

    A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…

  6. Defect formation in LaGa(Mg,Ni)O3-δ : A statistical thermodynamic analysis validated by mixed conductivity and magnetic susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Naumovich, E. N.; Kharton, V. V.; Yaremchenko, A. A.; Patrakeev, M. V.; Kellerman, D. G.; Logvinovich, D. I.; Kozhevnikov, V. L.

    2006-08-01

    A statistical thermodynamic approach to analyze defect thermodynamics in strongly nonideal solid solutions was proposed and validated by a case study focused on the oxygen intercalation processes in mixed-conducting LaGa0.65Mg0.15Ni0.20O3-δ perovskite. The oxygen nonstoichiometry of Ni-doped lanthanum gallate, measured by coulometric titration and thermogravimetric analysis at 923-1223K in the oxygen partial pressure range 5×10-5to0.9atm , indicates the coexistence of Ni2+ , Ni3+ , and Ni4+ oxidation states. The formation of tetravalent nickel was also confirmed by the magnetic susceptibility data at 77-600K , and by the analysis of p -type electronic conductivity and Seebeck coefficient as function of the oxygen pressure at 1023-1223K . The oxygen thermodynamics and the partial ionic and hole conductivities are strongly affected by the point-defect interactions, primarily the Coulombic repulsion between oxygen vacancies and/or electron holes and the vacancy association with Mg2+ cations. These factors can be analyzed by introducing the defect interaction energy in the concentration-dependent part of defect chemical potentials expressed by the discrete Fermi-Dirac distribution, and taking into account the probabilities of local configurations calculated via binomial distributions.

  7. Topological magnetic phase in LaMnO3 (111) bilayer

    NASA Astrophysics Data System (ADS)

    Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai

    2015-11-01

    Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as the Hubbard-type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semimetal (graphenelike) which is also a half metal [different from graphene or the previously studied LaNiO3 (111) bilayer]. The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (˜1.7 meV) than the undistorted one (˜11 meV). Therefore, to suppress the lattice distortion can be helpful to enhance the robustness of the topological phase in perovskite (111) bilayers.

  8. Wideband electromagnetic energy harvesting from ambient vibrations

    NASA Astrophysics Data System (ADS)

    Mallick, Dhiman; Podder, Pranay; Roy, Saibal

    2015-06-01

    Different bandwidth widening schemes of electromagnetic energy harvesters have been reported in this work. The devices are fabricated on FR4 substrate using laser micromachining techniques. The linear device operate in a narrow band around the resonance; in order to tune resonant frequency of the device electrically, two different types of complex load topologies are adopted. Using capacitive load, the resonant frequency is tuned in the low frequency direction whereas using inductive load, the resonant frequency is tuned in the high frequency direction. An overall tuning range of ˜2.4 Hz is obtained at 0.3g though the output power dropped significantly over the tuning range. In order to improve the off-resonance performance, nonlinear oscillation based systems are adopted. A specially designed spring arm with fixed-guided configuration produced single well nonlinear monostable configuration. With increasing input acceleration, wider bandwidth is obtained with such a system as large displacement, stretching nonlinearity comes into play and 9.55 Hz bandwidth is obtained at 0.5g. The repulsive force between one static and one vibrating oppositely polarized magnets are used to generate bistable nonlinear potential system. The distance between the mentioned magnets is varied between 4 to 10 mm to produce tunable nonlinearity with a maximum half power bandwidth over 3 Hz at 0.5g.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimbert, P.; Fernandez, J. I.; Eguia, I.

    It is well known that one of the main advantages of the high speed forming (HSF) processes is the improvement in the forming limits of the used materials.Using the Electromagnetic Forming (EMF) technology two materials have been tested with different mechanical and physical properties: the AA5754 aluminium and the AZ31B magnesium alloys.The EMF process principle can be described as follows: A significant amount of electrical energy is stored in a bank of capacitors which are suddenly discharged releasing all the stored energy. This electric discharge runs through a coil which generates an intense transient magnetic field. At the same timemore » transient Eddy currents are induced in the electrically conductive part placed some millimetres far from the coil. Another intense magnetic field is generated due to those Eddy currents but on the opposite direction as the one generated by the coil. A big magnetic repulsion force is created between the part and the coil. This magnetic repulsion between both fields is used to launch the blank with no physical contact and obtain the desired deformation on it.The Forming Limit Diagrams (FLD) obtained in the EMF experiments were them compared to the ones obtained with the 'Nakazima' method at conventional deformation speed for both alloys. In parallel to these physical experiments, some simulations were carried out. But trying to simulate this process by FEM is a though work. There are several physics and many factors to take into account in a few microseconds deformation process. And all these factors are tightly related with each other, that is why to this date there is no commercial software able to simulate the EMF process accurately.From LABEIN-Tecnalia we are working with to different softwares to simulate the whole process: Maxwell 3D for the electromagnetic part and PAM-STAMP2G for the mechanical part of the problem.« less

  10. Dilution effects on combined magnetic and electric dipole interactions: A study of ferromagnetic cobalt nanoparticles with tuneable interactions

    NASA Astrophysics Data System (ADS)

    Hod, M.; Dobroserdova, A.; Samin, S.; Dobbrow, C.; Schmidt, A. M.; Gottlieb, M.; Kantorovich, S.

    2017-08-01

    Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.

  11. Dilution effects on combined magnetic and electric dipole interactions: A study of ferromagnetic cobalt nanoparticles with tuneable interactions.

    PubMed

    Hod, M; Dobroserdova, A; Samin, S; Dobbrow, C; Schmidt, A M; Gottlieb, M; Kantorovich, S

    2017-08-28

    Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.

  12. Aharonov-Bohm effect with many vortices

    NASA Astrophysics Data System (ADS)

    Franchini, Fabio; Scharff Goldhaber, Alfred

    2008-12-01

    The Aharonov-Bohm (A-B) effect is the prime example of a zero-field-strength configuration where a nontrivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction, we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.

  13. Modeling and analysis of a negative stiffness magnetic suspension vibration isolator with experimental investigations.

    PubMed

    Zhu, Yu; Li, Qiang; Xu, Dengfeng; Hu, Chuxiong; Zhang, Ming

    2012-09-01

    This paper presents a negative stiffness magnetic suspension vibration isolator (NSMSVI) using magnetic spring and rubber ligaments. The positive stiffness is obtained by repulsive magnetic spring while the negative stiffness is gained by rubber ligaments. In order to study the vibration isolation performance of the NSMSVI, an analytical expression of the vertical stretch force of the rubber ligament is constructed. Experiments are carried out, which demonstrates that the analytical expression is effective. Then an analytical expression of the vertical stiffness of the rubber ligament is deduced by the derivative of the stretch force of the rubber ligament with respect to the displacement of the inner magnetic ring. Furthermore, the parametric study of the magnetic spring and rubber ligament are carried out. As a case study, the size dimensions of the magnetic spring and rubber ligament are determined. Finally, an NSMSVI table was built to verify the vibration isolation performance of the NSMSVI. The transmissibility curves of the NSMSVI are subsequently calculated and tested by instruments. The experimental results reveal that there is a good consistency between the measured transmissibility and the calculated ones, which proves that the proposed NSMSVI is effective and can realize low-frequency vibration isolation.

  14. Magnetic Control of Concentration Gradient in Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2005-01-01

    A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.

  15. Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface.

    PubMed

    Li, Gang; Höpfner, Philipp; Schäfer, Jörg; Blumenstein, Christian; Meyer, Sebastian; Bostwick, Aaron; Rotenberg, Eli; Claessen, Ralph; Hanke, Werner

    2013-01-01

    Two-dimensional electron systems, as exploited for device applications, can lose their conducting properties because of local Coulomb repulsion, leading to a Mott-insulating state. In triangular geometries, any concomitant antiferromagnetic spin ordering can be prevented by geometric frustration, spurring speculations about 'melted' phases, known as spin liquid. Here we show that for a realization of a triangular electron system by epitaxial atom adsorption on a semiconductor, such spin disorder, however, does not appear. Our study compares the electron excitation spectra obtained from theoretical simulations of the correlated electron lattice with data from high-resolution photoemission. We find that an unusual row-wise antiferromagnetic spin alignment occurs that is reflected in the photoemission spectra as characteristic 'shadow bands' induced by the spin pattern. The magnetic order in a frustrated lattice of otherwise non-magnetic components emerges from longer-range electron hopping between the atoms. This finding can offer new ways of controlling magnetism on surfaces.

  16. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Zhang, L. B.; Abdelkefi, A.; Dai, H. L.; Naseer, R.; Wang, L.

    2017-11-01

    In this paper, an operable strategy to enhance the output power of piezoelectric energy harvesting from vortex-induced vibration (VIV) using nonlinear magnetic forces is proposed for the first time. Two introduced small magnets with a repulsive force are, respectively, attached on a lower support and the bottom of a circular cylinder which is subjected to a uniform wind speed. Experiments show that the natural frequency of the VIV-based energy harvester is significantly changed by varying the relative position of the two magnets and hence the synchronization region is shifted. It is observed that the proposed energy harvester displays a softening behavior due to the impact of nonlinear magnetic forces, which greatly increases the performance of the VIV-based energy harvesting system, showing a wider synchronization region and a higher level of the harvested power by 138% and 29%, respectively, compared to the classical configuration. This proposed design can provide the groundwork to promote the output power of conventional VIV-based piezoelectric generators, further enabling to realize self-powered systems.

  17. Tunneling of Two Interacting Fermions

    NASA Astrophysics Data System (ADS)

    Ishmukhamedov, Ilyas; Ishmukhamedov, Altay

    2018-04-01

    We consider two interacting atoms subject to a one-dimensional anharmonic trap and magnetic field gradient. This system has been recently investigated by the Heidelberg group in the experiment on two 6Li atoms. In the present paper the tunneling of two cold 6Li atoms, initially prepared in the center-of-mass and relative motion excited state, is explored and full time-dependent simulation of the tunneling dynamics is performed. The dynamics is analyzed for the interatomic coupling strength ranging from strong attraction to strong repulsion.

  18. Superfluid state of atomic 6Li in a magnetic trap

    NASA Astrophysics Data System (ADS)

    Houbiers, M.; Ferwerda, R.; Stoof, H. T. C.; McAlexander, W. I.; Sackett, C. A.; Hulet, R. G.

    1997-12-01

    We report on a study of the superfluid state of spin-polarized atomic 6Li confined in a magnetic trap. Density profiles of this degenerate Fermi gas and the spatial distribution of the BCS order parameter are calculated in the local-density approximation. The critical temperature is determined as a function of the number of particles in the trap. Furthermore, we consider the mechanical stability of an interacting two-component Fermi gas, in the case of both attractive and repulsive interatomic interactions. For spin-polarized 6Li we also calculate the decay rate of the gas and show that within the mechanically stable regime of phase space, the lifetime is long enough to perform experiments on the gas below and above the critical temperature if a bias magnetic field of about 5 T is applied. Moreover, we propose that a measurement of the decay rate of the system might signal the presence of the superfluid state.

  19. Silicon MEMS bistable electromagnetic vibration energy harvester using double-layer micro-coils

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Mallick, D.; Roy, S.

    2015-12-01

    This work reports the development of a MEMS bistable electromagnetic vibrational energy harvester (EMVEH) consisting of a silicon-on-insulator (SOI) spiral spring, double layer micro-coils and miniaturized NdFeB magnets. Furthermore, with respect to the spiral silicon spring based VEH, four different square micro-coil topologies with different copper track width and number of turns have been investigated to determine the optimal coil dimensions. The micro-generator with the optimal micro-coil generated 0.68 micro-watt load power over an optimum resistive load at 0.1g acceleration, leading to normalized power density of 3.5 kg.s/m3. At higher accelerations the load power increased, and the vibrating magnet collides with the planar micro-coil producing wider bandwidth. Simulation results show that a substantially wider bandwidth could be achieved in the same device by introducing bistable nonlinearity through a repulsive configuration between the moving and fixed permanent magnets.

  20. Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.

    PubMed

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-11-29

    Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.

  1. Effects of a hyperonic many-body force on BΛ values of hypernuclei

    NASA Astrophysics Data System (ADS)

    Isaka, M.; Yamamoto, Y.; Rijken, Th. A.

    2017-04-01

    The stiff equation of state (EoS) giving the neutron-star mass of 2 M⊙ suggests the existence of strongly repulsive many-body effects (MBE) not only in nucleon channels but also in hyperonic ones. As a specific model for MBE, the repulsive multi-Pomeron exchange potential (MPP) is added to the two-body interaction together with the phenomenological three-body attraction. For various versions of the Nijmegen interaction models, the MBE parts are determined so as to reproduce the observed data of BΛ. The mass dependence of BΛ values is shown to be reproduced well by adding MBE to the strong MPP repulsion, assuring the stiff EoS of hyperon-mixed neutron-star matter, in which P -state components of the adopted interaction model lead to almost vanishing contributions. The nuclear matter Λ N G -matrix interactions are derived and used in Λ hypernuclei on the basis of the averaged-density approximation (ADA). The BΛ values of hypernuclei with 9 ≤A ≤59 are analyzed in the framework of antisymmetrized molecular dynamics with use of the two types of Λ N G -matrix interactions including strong and weak MPP repulsions. The calculated values of BΛ reproduce the experimental data well within a few hundred keV. The values of BΛ in p states also can be reproduced well, when the ADA is modified to be suitable also for weakly bound Λ states.

  2. Construction of exchange repulsion in terms of the wave functions at QM/MM boundary region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Umino, Satoru; Morita, Akihiro

    2015-08-28

    We developed a simple method to calculate exchange repulsion between a quantum mechanical (QM) solute and a molecular mechanical (MM) molecule in the QM/MM approach. In our method, the size parameter in the Buckingham type potential for the QM solute is directly determined in terms of the one-electron wave functions of the solute. The point of the method lies in the introduction of the exchange core function (ECF) defined as a Slater function which mimics the behavior of the exterior electron density at the QM/MM boundary region. In the present paper, the ECF was constructed in terms of the Becke-Rousselmore » (BR) exchange hole function. It was demonstrated that the ECF yielded by the BR procedure can faithfully reproduce the radial behavior of the electron density of a QM solute. The size parameter of the solute as well as the exchange repulsion are, then, obtained using the overlap model without any fitting procedure. To examine the efficiency of the method, it was applied to calculation of the exchange repulsions for minimal QM/MM systems, hydrogen-bonded water dimer, and H{sub 3}O{sup +}–H{sub 2}O. We found that our approach is able to reproduce the potential energy curves for these systems showing reasonable agreements with those given by accurate full quantum chemical calculations.« less

  3. Full Counting Statistics for Interacting Fermions with Determinantal Quantum Monte Carlo Simulations.

    PubMed

    Humeniuk, Stephan; Büchler, Hans Peter

    2017-12-08

    We present a method for computing the full probability distribution function of quadratic observables such as particle number or magnetization for the Fermi-Hubbard model within the framework of determinantal quantum Monte Carlo calculations. Especially in cold atom experiments with single-site resolution, such a full counting statistics can be obtained from repeated projective measurements. We demonstrate that the full counting statistics can provide important information on the size of preformed pairs. Furthermore, we compute the full counting statistics of the staggered magnetization in the repulsive Hubbard model at half filling and find excellent agreement with recent experimental results. We show that current experiments are capable of probing the difference between the Hubbard model and the limiting Heisenberg model.

  4. Perfect Spin Filter by Periodic Drive of a Ferromagnetic Quantum Barrier

    NASA Astrophysics Data System (ADS)

    Thuberg, Daniel; Muñoz, Enrique; Eggert, Sebastian; Reyes, Sebastián A.

    2017-12-01

    We consider the problem of particle tunneling through a periodically driven ferromagnetic quantum barrier connected to two leads. The barrier is modeled by an impurity site representing a ferromagnetic layer or a quantum dot in a tight-binding Hamiltonian with a local magnetic field and an ac-driven potential, which is solved using the Floquet formalism. The repulsive interactions in the quantum barrier are also taken into account. Our results show that the time-periodic potential causes sharp resonances of perfect transmission and reflection, which can be tuned by the frequency, the driving strength, and the magnetic field. We demonstrate that a device based on this configuration could act as a highly tunable spin valve for spintronic applications.

  5. Competing orders in the Hofstadter t -J model

    NASA Astrophysics Data System (ADS)

    Tu, Wei-Lin; Schindler, Frank; Neupert, Titus; Poilblanc, Didier

    2018-01-01

    The Hofstadter model describes noninteracting fermions on a lattice in the presence of an external magnetic field. Motivated by the plethora of solid-state phases emerging from electron interactions, we consider an interacting version of the Hofstadter model, including a Hubbard repulsion U . We investigate this model in the large-U limit corresponding to a t -J Hamiltonian with an external (orbital) magnetic field. By using renormalized mean-field theory supplemented by exact diagonalization calculations of small clusters, we find evidence for competing symmetry-breaking phases, exhibiting (possibly coexisting) charge, bond, and superconducting orders. Topological properties of the states are also investigated, and some of our results are compared to related experiments involving ultracold atoms loaded on optical lattices in the presence of a synthetic gauge field.

  6. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  7. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Yi, Ming; Shuai, Jianwei

    2013-09-01

    Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.

  8. Chromatid repulsion associated with Roberts/SC phocomelia syndrome is reduced in malignant cells and not expressed in interspecies somatic-cell hybrids.

    PubMed Central

    Krassikoff, N E; Cowan, J M; Parry, D M; Francke, U

    1986-01-01

    Different cell types from a female patient with Roberts/SC phocomelia syndrome were evaluated quantitatively for the presence of repulsion of heterochromatin and satellite regions of mitotic chromosomes. Whereas EBV-transformed lymphoblasts from an established cell line revealed these phenomena at frequencies equal to those in PHA-stimulated lymphocytes and cultured skin fibroblasts, aneuploid cells from a metastatic melanoma displayed them at 50% lower frequency. Cocultivation of the patient's fibroblasts with either an immortal Chinese hamster cell line or with a human male fibroblast strain carrying a t(4;6)(p14;q21) translocation showed that the phenomenon was not corrected or induced by a diffusible factor or by cell-to-cell contact. In each experiment, only the patient's metaphase spreads revealed chromatid repulsion. In fusion hybrids between the patient's fibroblasts and an established Chinese hamster cell line, the human chromosomes behaved perfectly normally, suggesting that the gene product which is missing or mutant in Roberts/SC phocomelia syndrome is supplied by the Chinese hamster genome. Images Fig. 1 Fig. 2 Fig. 3 PMID:3788975

  9. Transition from amplitude to oscillation death in a network of oscillators

    NASA Astrophysics Data System (ADS)

    Nandan, Mauparna; Hens, C. R.; Pal, Pinaki; Dana, Syamal K.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  10. Lefschetz thimbles in fermionic effective models with repulsive vector-field

    NASA Astrophysics Data System (ADS)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2018-06-01

    We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.

  11. Transition from amplitude to oscillation death in a network of oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandan, Mauparna; Department of Mathematics, National Institute of Technology, Durgapur 713209; Hens, C. R.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determinemore » the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.« less

  12. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.

    PubMed

    Miao, Yipu; Merz, Kenneth M

    2015-04-14

    We present an efficient implementation of ab initio self-consistent field (SCF) energy and gradient calculations that run on Compute Unified Device Architecture (CUDA) enabled graphical processing units (GPUs) using recurrence relations. We first discuss the machine-generated code that calculates the electron-repulsion integrals (ERIs) for different ERI types. Next we describe the porting of the SCF gradient calculation to GPUs, which results in an acceleration of the computation of the first-order derivative of the ERIs. However, only s, p, and d ERIs and s and p derivatives could be executed simultaneously on GPUs using the current version of CUDA and generation of NVidia GPUs using a previously described algorithm [Miao and Merz J. Chem. Theory Comput. 2013, 9, 965-976.]. Hence, we developed an algorithm to compute f type ERIs and d type ERI derivatives on GPUs. Our benchmarks shows the performance GPU enable ERI and ERI derivative computation yielded speedups of 10-18 times relative to traditional CPU execution. An accuracy analysis using double-precision calculations demonstrates that the overall accuracy is satisfactory for most applications.

  13. [On the contribution of magnets in sequelae of facial paralysis. Preliminary clinical study].

    PubMed

    Fombeur, J P; Koubbi, G; Chevalier, A M; Mousset, C

    1988-01-01

    This trial was designed to evaluate the efficacy of EPOREC 1 500 magnets as an adjuvant to rehabilitation following peripheral facial paralysis. Magnetotherapy is used in many other specialties, and in particular in rheumatology. The properties of repulsion between identical poles were used to decrease the effect of sequelae in the form of contractures on the facial muscles. There were two groups of 20 patients: one group with physiotherapy only and the other with standard rehabilitation together with the use of magnets. These 40 patients had facial paralysis of various origins (trauma, excision of acoustic neuroma, Bell's palsy etc). Obviously all patients had an intact nerve. It was at the time of the development of contractures that magnets could be used in terms of evaluation of their efficacy of action on syncinesiae, contractures and spasticity. Magnets were worn at night for a mean period of six months and results were assessed in terms of disappearance of eye-mouth syncinesiae, and in terms of normality of facial tone. Improvement and total recovery without sequelae were obtained far more frequently in the group which wore magnets, encouraging us to continue along these lines.

  14. Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap

    NASA Astrophysics Data System (ADS)

    Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.

    2015-05-01

    The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.

  15. Can Like Charges Attract Each Other?

    ERIC Educational Resources Information Center

    Balta, Nuri

    2012-01-01

    Electroscopes are sensitive instruments useful for investigations of static electricity. They are devices that are used for detecting whether an object is charged or uncharged. They also determine the type of charge. Their operation is based on the principle of like sign charge repulsion.

  16. Axelrod models of social influence with cultural repulsion

    NASA Astrophysics Data System (ADS)

    Radillo-Díaz, Alejandro; Pérez, Luis A.; Del Castillo-Mussot, Marcelo

    2009-12-01

    Since both attractive and repulsive effects among agents are important in social systems, we present simulations of two models based on Axelrod’s homogenization mechanism that includes repulsion. These models are the repulsive model, where all individuals can repel, and the partially repulsive model where only a fraction of repelling agents are considered. In these two models, attractive dynamics is implemented for agents with the ability to repel each other only if the number of features shared by them is greater than a threshold parameter. Otherwise, repelling dynamics is used. In the repulsive model, the transition from a monocultural state to a fragmented one often occurs abruptly from one cultural-variability value to the next one and a second transition emerges. For the partially repulsive model, there are also two different transitions present: the initial one being as abrupt as the one found for the repulsive model, whereas the second one follows a less abrupt behavior and resembles that of the original Axelrod model. However, the second transition for this model occurrs from a partially fragmented state and not from a monocultural one.

  17. Supramolecular "Big Bang" in a Single-Ionic Surfactant/Water System Driven by Electrostatic Repulsion: From Vesicles to Micelles.

    PubMed

    Leclercq, Loïc; Bauduin, Pierre; Nardello-Rataj, Véronique

    2017-04-11

    In aqueous solution, dimethyldi-n-octylammonium chloride, [DiC 8 ][Cl], spontaneously forms dimers at low concentrations (1-10 mM) to decrease the strength of the hydrophobic-water contact. Dimers represent ideal building blocks for the abrupt edification of vesicles at 10 mM. These vesicles are fully characterized by dynamic and static light scattering, self-diffusion nuclear magnetic resonance, and freeze-fracture transmission electron microscopy. An increase in concentration leads to electrostatic repulsion between vesicles that explode into small micelles at 30 mM. These transitions are detected by means of surface tension, conductivity, and solubility of hydrophobic solutes as well as by isothermal titration microcalorimetry. These unusual supramolecular transitions emerge from the surfactant chemical structure that combines two contradictory features: (i) the double-chain structure tending to form low planar aggregates with low water solubility and (ii) the relatively short chains giving high hydrophilicity. The well-balanced hydrophilic-hydrophobic character of [DiC 8 ][Cl] is then believed to be at the origin of the unusual supramolecular sequence offering new opportunities for drug delivery systems.

  18. Tunable interactions between paramagnetic colloidal particles driven in a modulated ratchet potential.

    PubMed

    Straube, Arthur V; Tierno, Pietro

    2014-06-14

    We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.

  19. Agricultural Electricity. Electric Motors. Student Manual.

    ERIC Educational Resources Information Center

    Benson, Robert T.

    Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…

  20. Experimental and Theoretical Investigations of a Mechanical Lever System Driven by a DC Motor

    NASA Astrophysics Data System (ADS)

    Nana, B.; Fautso Kuiate, G.; Yamgoué, S. B.

    This paper presents theoretical and experimental results on the investigation of the dynamics of a nonlinear electromechanical system made of a lever arm actuated by a DC motor and controlled through a repulsive magnetic force. We use the method of harmonic balance to derive oscillatory solutions. Theoretical tools such as, bifurcation diagrams, Lyapunov exponents, phase portraits, are used to unveil the rich nonlinear behavior of the system including chaos and hysteresis. The experimental results are in close accordance with the theoretical predictions.

  1. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    PubMed

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  2. Instant transformation of learned repulsion into motivational "wanting".

    PubMed

    Robinson, Mike J F; Berridge, Kent C

    2013-02-18

    Learned cues for pleasant reward often elicit desire, which, in addicts, may become compulsive. According to the dominant view in addiction neuroscience and reinforcement modeling, such desires are the simple products of learning, coming from a past association with reward outcome. We demonstrate that cravings are more than merely the products of accumulated pleasure memories-even a repulsive learned cue for unpleasantness can become suddenly desired via the activation of mesocorticolimbic circuitry. Rats learned repulsion toward a Pavlovian cue (a briefly-inserted metal lever) that always predicted an unpleasant Dead Sea saltiness sensation. Yet, upon first reencounter in a novel sodium-depletion state to promote mesocorticolimbic reactivity (reflected by elevated Fos activation in ventral tegmentum, nucleus accumbens, ventral pallidum, and the orbitofrontal prefrontal cortex), the learned cue was instantly transformed into an attractive and powerful motivational magnet. Rats jumped and gnawed on the suddenly attractive Pavlovian lever cue, despite never having tasted intense saltiness as anything other than disgusting. Instant desire transformation of a learned cue contradicts views that Pavlovian desires are essentially based on previously learned values (e.g., prediction error or temporal difference models). Instead desire is recomputed at reencounter by integrating Pavlovian information with the current brain/physiological state. This powerful brain transformation reverses strong learned revulsion into avid attraction. When applied to addiction, related mesocorticolimbic transformations (e.g., drugs or neural sensitization) of cues for already-pleasant drug experiences could create even more intense cravings. This cue/state transformation helps define what it means to say that addiction hijacks brain limbic circuits of natural reward. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Synchronization of coupled active rotators by common noise

    NASA Astrophysics Data System (ADS)

    Dolmatova, Anastasiya V.; Goldobin, Denis S.; Pikovsky, Arkady

    2017-12-01

    We study the effect of common noise on coupled active rotators. While such a noise always facilitates synchrony, coupling may be attractive (synchronizing) or repulsive (desynchronizing). We develop an analytical approach based on a transformation to approximate angle-action variables and averaging over fast rotations. For identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling. For nonidentical rotators, the most nontrivial effect occurs at moderate repulsive coupling, where a juxtaposition of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion obeys a nontrivial power law.

  4. Hadron resonance gas with repulsive interactions and fluctuations of conserved charges

    DOE PAGES

    Huovinen, Pasi; Petreczky, Peter

    2017-12-11

    We discuss the role of repulsive baryon-baryon interactions in a hadron gas using relativistic virial expansion and repulsive mean field approaches. The fluctuations of the baryon number as well as strangeness-baryon correlations are calculated in the hadron resonance gas with repulsive interactions and compared with the recent lattice QCD results. In particular, we calculate the difference between the second and fourth order fluctuations and correlations of baryon number and strangeness, that have been proposed as probes of deconfinement. We show that for not too high temperatures these differences could be understood in terms of repulsive interactions.

  5. Coulomb repulsion in short polypeptides.

    PubMed

    Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M

    2015-01-08

    Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each other or the main chain.

  6. The role of electronic dopant on full band in-plane RKKY coupling in armchair graphene nanoribbons-magnetic impurity system

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-05-01

    Motivated by the growing interest in solving the obstacles of spintronics applications, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) effective pairwise interaction between magnetic impurities interacting through the π -electrons embedded in both electronically doped-semiconducting and metallic armchair graphene nanoribbons. In terms of the Green's function formalism, treated in a tight-binding approximation with hopping beyond Dirac cone approximation, the RKKY coupling is an attraction or a repulsion depending on the magnetic impurities distances. Our results show that the RKKY coupling in semiconducting nanoribbons is much more affected by doping than metallic ones. Furthermore, we found that the RKKY coupling increases with ribbon width, while there exist some critical electronic concentrations in RKKY interaction oscillations. On the other hand, we find an unusual incoming wave-vector direction for electrons which describes more clearly the ferro- and antiferromagnetic spin configurations in such system. Also, the RKKY coupling at low and high-temperature regions has been addressed for both ferro- and antiferromagnetic spin arrangements.

  7. Local magnetic moments in iron and nickel at ambient and Earth's core conditions.

    PubMed

    Hausoel, A; Karolak, M; Şaşιoğlu, E; Lichtenstein, A; Held, K; Katanin, A; Toschi, A; Sangiovanni, G

    2017-07-12

    Some Bravais lattices have a particular geometry that can slow down the motion of Bloch electrons by pre-localization due to the band-structure properties. Another known source of electronic localization in solids is the Coulomb repulsion in partially filled d or f orbitals, which leads to the formation of local magnetic moments. The combination of these two effects is usually considered of little relevance to strongly correlated materials. Here we show that it represents, instead, the underlying physical mechanism in two of the most important ferromagnets: nickel and iron. In nickel, the van Hove singularity has an unexpected impact on the magnetism. As a result, the electron-electron scattering rate is linear in temperature, in violation of the conventional Landau theory of metals. This is true even at Earth's core pressures, at which iron is instead a good Fermi liquid. The importance of nickel in models of geomagnetism may have therefore to be reconsidered.

  8. A magnetic gradient induced force in NMR restricted diffusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magneticmore » properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.« less

  9. Local magnetic moments in iron and nickel at ambient and Earth’s core conditions

    PubMed Central

    Hausoel, A.; Karolak, M.; Şaşιoğlu, E.; Lichtenstein, A.; Held, K.; Katanin, A.; Toschi, A.; Sangiovanni, G.

    2017-01-01

    Some Bravais lattices have a particular geometry that can slow down the motion of Bloch electrons by pre-localization due to the band-structure properties. Another known source of electronic localization in solids is the Coulomb repulsion in partially filled d or f orbitals, which leads to the formation of local magnetic moments. The combination of these two effects is usually considered of little relevance to strongly correlated materials. Here we show that it represents, instead, the underlying physical mechanism in two of the most important ferromagnets: nickel and iron. In nickel, the van Hove singularity has an unexpected impact on the magnetism. As a result, the electron–electron scattering rate is linear in temperature, in violation of the conventional Landau theory of metals. This is true even at Earth’s core pressures, at which iron is instead a good Fermi liquid. The importance of nickel in models of geomagnetism may have therefore to be reconsidered. PMID:28799538

  10. A Crystal Field Approach to Orbitally Degenerate SMMs: Beyond the Spin-Only Hamiltonian

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Lakshmi; Marriott, Katie; Murrie, Mark; Hill, Stephen

    Single-Molecule Magnets (SMMs) with large magnetization reversal barriers are promising candidates for high-density information storage. Recently, a large uniaxial magnetic anisotropy was observed for a mononuclear trigonal bipyramidal (TBP) [NiIICl3(Me-abco)2] SMM. High-field EPR studies analyzed on the basis of a spin-only Hamiltonian give ¦D¦>400 cm-1, which is close to the spin-orbit coupling parameter λ = 668 cm-1 for NiII, suggesting an orbitally degenerate ground state. The spin-only description is ineffective in this limit, necessitating the development of a model that includes the orbital moment. Here we describe a phenomenological approach that takes into account a full description of crystal field, electron-electron repulsion and spin-orbit coupling effects on the ground state of a NiII ion in a TBP coordination geometry. The model is in good agreement with the high-field EPR experiments, validating its use for spectroscopic studies of orbitally degenerate molecular nanomagnets. This work was supported by the NSF (DMR-1309463).

  11. Magnon condensation and spin superfluidity

    NASA Astrophysics Data System (ADS)

    Bunkov, Yury M.; Safonov, Vladimir L.

    2018-04-01

    We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.

  12. Fiber Reinforcement of Gun Propellants

    DTIC Science & Technology

    1982-06-02

    finish, glass Keviar 1.5 mm Aromatic polyamide, DuPont Kevlar 29 Pulp Type 1979 Kynol 0.9 mm Cross linked amorphous phenolic polymer, 1Iarbison...meniscus even appears to indicate repulsion. Also, single fibers were dipped into molten TNT, with results shown in Fig. 6. Kevlar was the fiber type...slowly cooled, while observations were made. Figure 7 depicts the results of one such experiment. Again, Kevlar was used. The droplet shown resulted

  13. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.

    PubMed

    Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K

    2015-12-01

    We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.

  14. Electronic state and optical response in a hydrogen-bonded molecular conductor

    NASA Astrophysics Data System (ADS)

    Naka, Makoto; Ishihara, Sumio

    2018-06-01

    Motivated by recent experimental studies of hydrogen-bonded molecular conductors κ -X 3(Cat-EDT-TTF) 2[X =H , D], interplays of protons and correlated electrons, and their effects on magnetic, dielectric, and optical properties, are studied theoretically. We introduce a model Hamiltonian for κ -X 3(Cat-EDT-TTF) 2, in which molecular dimers are connected by hydrogen bonds. Ground-state phase diagram and optical conductivity spectra are examined by using the mean-field approximation and the exact diagonalization method in finite-size cluster. Three types of the competing electronic and protonic phases, charge density wave phase, polar charge-ordered phase, and antiferromagnetic dimer-Mott insulating phase are found. Observed softening of the interdimer excitation due to the electron-proton coupling implies reduction of the effective electron-electron repulsion, i.e., "Hubbard U ," due to the quantum proton motion. Contrastingly, the intradimer charge excitation is hardened due to the proton-electron coupling. Implications of the theoretical calculations to the recent experimental results in κ -X 3(Cat-EDT-TTF) 2 are discussed.

  15. Long-ranged electrostatic repulsion and crystallization of emulsion droplets in an ultralow dielectric medium supercritical carbon dioxide.

    PubMed

    Ryoo, Won; Webber, Stephen E; Bonnecaze, Roger T; Johnston, Keith P

    2006-01-31

    Electrostatic repulsion stabilizes micrometer-sized water droplets with spacings greater than 10 microm in an ultralow dielectric medium, CO2 (epsilon = 1.5), at elevated pressures. The morphology of the water/CO2 emulsion is characterized by optical microscopy and laser diffraction as a function of height. The counterions, stabilized with a nonionic, highly branched, stubby hydrocarbon surfactant, form an extremely thick double layer with a Debye screening length of 8.9 microm. As a result of the balance between electrostatic repulsion and the downward force due to gravity, the droplets formed a hexagonal crystalline lattice at the bottom of the high-pressure cell with spacings of over 10 microm. The osmotic pressure, calculated by solving the Poisson-Boltzmann equation in the framework of the Wigner-Seitz cell model, is in good agreement with that determined from the sedimentation profile measured by laser diffraction. Thus, the long-ranged stabilization of the emulsion may be attributed to electrostatic stabilization. The ability to form new types of colloids in CO2 with electrostatic stabilization is beneficial because steric stabilization is often unsatisfactory because of poor solvation of the stabilizers.

  16. Parallel manipulation of individual magnetic microbeads for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Peng, Zhengchun

    Many scientists and engineers are turning to lab-on-a-chip systems for faster and cheaper analysis of chemical reactions and biomolecular interactions. A common approach that facilitates the handling of reagents and biomolecules in these systems utilizes micro/nano beads as the solid carrier. Physical manipulation, such as assembly, transport, sorting, and tweezing, of beads on a chip represents an essential step for fully utilizing their potentials in a wide spectrum of bead-based analysis. Previous work demonstrated manipulation of either an ensemble of beads without individual control, or single beads but lacks the capability for parallel operation. Parallel manipulation of individual beads is required to meet the demand for high-throughput and location-specific analysis. In this work, we introduced two methods for parallel manipulation of individual magnetic microbeads, which can serve as effective lab-on-a-chip platforms and/or efficient analytic tools. The first method employs arrays of soft ferromagnetic patterns fabricated inside a microfluidic channel and subjected to an external magnetic field. We demonstrated that the system can be used to assemble individual beads (1-3 mum) from a flow of suspended beads into a regular array on the chip, hence improving the integrated electrochemical detection of biomolecules bound to the bead surface. By rotating the external field, the assembled microbeads can be remotely controlled with synchronized, high-speed circular motion around individual soft magnets on the chip. We employed this manipulation mode for efficient sample mixing in continuous microflow. Furthermore, we discovered a simple but effective way of transporting the microbeads on the chip by varying the strength of the local bias field within a revolution of the external field. In addition, selective transport of microbeads with different size was realized, providing a platform for effective on-chip sample separation and offering the potential for multiplexing capability. The second method integrates magnetic and dielectrophoretic manipulations of the same microbeads. The device combines tapered conducting wires and fingered electrodes to generate desirable magnetic and electric fields, respectively. By externally programming the magnetic attraction and dielectrophoretic repulsion forces, out-of-plane oscillation of the microbeads across the channel height was realized. This manipulation mode can facilitate the interaction between the beads with multiple layers of sample fluid inside the channel. We further demonstrated the tweezing of microbeads in liquid with high spatial resolutions, i.e., from submicrometer to nanometer range, by fine-tuning the net force from magnetic attraction and dielectrophoretic repulsion of the beads. The highresolution control of the out-of-plane motion of the microbeads led to the invention of massively parallel biomolecular tweezers. We believe the maturation of bead-based microtweezers will revolutionize the state-of-art tools currently used for single cell and single molecule studies.

  17. Floating Chip Mounting System Driven by Repulsive Force of Permanent Magnets for Multiple On-Site SPR Immunoassay Measurements

    PubMed Central

    Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi

    2012-01-01

    We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030

  18. Interaction of two-dimensional magnetoexcitons

    NASA Astrophysics Data System (ADS)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  19. Field-controlled magnetic order with insulator-metal transitions in a periodic Anderson-like organic polymer.

    PubMed

    Ding, L J; Yao, K L; Fu, H H

    2011-01-07

    The zero- and low-temperature behaviors of a quasi-one-dimensional organic polymer proposed as a symmetrical periodic Anderson-like chain model, in which the localized f orbitals hybridize with the conduction orbitals at even sites, are investigated by means of many-body Green's function theory. In the absence of magnetic field, the ground state of the system turns out to be ferrimagnetic. The temperature-induced phase diagrams have been explored, where the competition between the Hubbard repulsion U on the localized f orbital and the hybridization strength V makes an important impact on the transition temperature. In a magnetic field, it is found that a 1/3 magnetization plateau appears and two critical fields indicating the insulator-metal transitions at zero temperature emerge, which are closely related to the energy bands. Furthermore, the single-site entanglement entropy is a good indicator of quantum phase transitions. The temperature-field-induced phase diagram has also been attained, wherein the magnetization plateau state, the gapless phase and the spin polarized state are revealed. The temperature dependence of thermodynamic quantities such as the magnetization, susceptibility and specific heat are calculated to characterize the corresponding phases. It is also found that the up-spin and down-spin hole excitations are responsible for the thermodynamic properties.

  20. Spectral and magnetic properties of hematite Fe2O3 (001) surface: results from DFT+DMFT

    NASA Astrophysics Data System (ADS)

    Kabir, Alamgir; Turkowski, Volodymyr; Rahman, Talat S.

    2015-03-01

    It has been demonstrated that strong correlation effects may significantly modify the spectrum of a system, in particular leading to an increase of the bandgap and to a change in the orbital occupancies, which affects the magnetic properties of the system. With this in mind, we have examined the spectral and magnetic properties of the hematite Fe2O3 film system with (001) surface orientation by using the combined density functional theory (DFT) and dynamical mean-field theory (DMFT) approach. We pay special attention to the surface geometry and electronic structure, magnetization and magnetic anisotropy (MA) of the system by performing calculations at different values of the parameters for the local Coulomb repulsion and exchange energy. To calculate the MA of the system, we propose and apply a combined Bruno model within DMFT, and demonstrate that under-coordinated surface Fe atoms contribute significantly to the MA of the film. We also compare our results with the DFT+U solution and show that the dynamical effects taken into account by the DMFT significantly affect system properties, notably leading to a decrease of the atomic magnetic moments. Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354.

  1. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    NASA Technical Reports Server (NTRS)

    Schoenhuber, P.; Moon, F. C.

    1995-01-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation forces, e.g. microgravity - magnetic damping devices.

  2. Quantum correlations in chiral graphene nanoribbons.

    PubMed

    Tan, Xiao-Dong; Koop, Cornelie; Liao, Xiao-Ping; Sun, Litao

    2016-11-02

    We compute the entanglement and the quantum discord (QD) between two edge spins in chiral graphene nanoribbons (CGNRs) thermalized with a reservoir at temperature T (canonical ensemble). We show that the entanglement only exists in inter-edge coupled spin pairs, and there is no entanglement between any two spins at the same ribbon edge. By contrast, almost all edge spin pairs can hold non-zero QD, which strongly depends on the ribbon width and the Coulomb repulsion among electrons. More intriguingly, the dominant entanglement always occurs in the pair of nearest abreast spins across the ribbon, and even at room temperature this type of entanglement is still very robust, especially for narrow CGNRs with the weak Coulomb repulsion. These remarkable properties make CGNRs very promising for possible applications in spin-quantum devices.

  3. Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO2 Slabs.

    PubMed

    Li, Zheng-Yao; Wang, Huibo; Yang, Wenyun; Yang, Jinbo; Zheng, Lirong; Chen, Dongfeng; Sun, Kai; Han, Songbai; Liu, Xiangfeng

    2018-01-17

    Exploiting advanced layered transition metal oxide cathode materials is of great importance to rechargeable sodium batteries. Layered oxides are composed of negatively charged TMO 2 slabs (TM = transition metal) separated by Na + diffusion layers. Herein, we propose a novel insight, for the first time, to control the electrochemical properties by tuning Coulombic repulsion between negatively charged TMO 2 slabs. Coulombic repulsion can finely tailor the d-spacing of Na ion layers and material structural stability, which can be achieved by employing Na + cations to serve as effective shielding layers between TMO 2 layers. A series of O3-type Na x Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 (x = 1.0, 0.9, 0.8, and 0.7) have been prepared, and Na 0.7 Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 shows the largest Coulombic repulsion between TMO 2 layers, the largest space for Na ion diffusion, the best structural stability, and also the longest Na-O chemical bond with weaker Coulombic attraction, thus leading to the best electrochemical performance. Meanwhile, the thermal stability depends on the Na concentration in pristine materials. Ex situ X-ray absorption (XAS) analysis indicates that Mn, Fe, and Cu ions are all electrochemically active components during insertion and extraction of sodium ion. This study enables some new insights to promote the development of advanced layered Na x TMO 2 materials for rechargeable sodium batteries in the future.

  4. Effective interactions between inclusions in an active bath

    NASA Astrophysics Data System (ADS)

    Zaeifi Yamchi, Mahdi; Naji, Ali

    2017-11-01

    We study effective two- and three-body interactions between non-active colloidal inclusions in an active bath of chiral or non-chiral particles, using Brownian dynamics simulations within a standard, two-dimensional model of disk-shaped inclusions and active particles. In a non-chiral active bath, we first corroborate previous findings on effective two-body repulsion mediated between the inclusions by elucidating the detailed non-monotonic features of the two-body force profiles, including a primary maximum and a secondary hump at larger separations that was not previously reported. We then show that these features arise directly from the formation, and sequential overlaps, of circular layers (or "rings") of active particles around the inclusions, as the latter are brought to small surface separations. These rings extend to radial distances of a few active-particle radii from the surface of inclusions, giving the hard-core inclusions relatively thick, soft, repulsive "shoulders," whose multiple overlaps then enable significant (non-pairwise) three-body forces in both non-chiral and chiral active baths. The resulting three-body forces can even exceed the two-body forces in magnitude and display distinct repulsive and attractive regimes at intermediate to large self-propulsion strengths. In a chiral active bath, we show that, while active particles still tend to accumulate at the immediate vicinity of the inclusions, they exhibit strong depletion from the intervening region between the inclusions and partial depletion from relatively thick, circular zones further away from the inclusions. In this case, the effective, predominantly repulsive interactions between the inclusions turn to active, chirality-induced, depletion-type attractions, acting over an extended range of separations.

  5. Space-time crystals of trapped ions.

    PubMed

    Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang

    2012-10-19

    Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.

  6. The Adam family metalloprotease Kuzbanian regulates the cleavage of the roundabout receptor to control axon repulsion at the midline

    PubMed Central

    Coleman, Hope A.; Labrador, Juan-Pablo; Chance, Rebecca K.; Bashaw, Greg J.

    2010-01-01

    Slits and their Roundabout (Robo) receptors mediate repulsive axon guidance at the Drosophila ventral midline and in the vertebrate spinal cord. Slit is cleaved to produce fragments with distinct signaling properties. In a screen for genes involved in Slit-Robo repulsion, we have identified the Adam family metalloprotease Kuzbanian (Kuz). Kuz does not regulate midline repulsion through cleavage of Slit, nor is Slit cleavage essential for repulsion. Instead, Kuz acts in neurons to regulate repulsion and Kuz can cleave the Robo extracellular domain in Drosophila cells. Genetic rescue experiments using an uncleavable form of Robo show that this receptor does not maintain normal repellent activity. Finally, Kuz activity is required for Robo to recruit its downstream signaling partner, Son of sevenless (Sos). These observations support the model that Kuz-directed cleavage is important for Robo receptor activation. PMID:20570941

  7. Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    PubMed Central

    González-Fuenzalida, R. A.; Moliner-Martínez, Y.; Prima-Garcia, Helena; Ribera, Antonio; Campins-Falcó, P.; Zaragozá, Ramon J.

    2014-01-01

    The use of magnetic nanomaterials for analytical applications has increased in the recent years. In particular, magnetic nanomaterials have shown great potential as adsorbent phase in several extraction procedures due to the significant advantages over the conventional methods. In the present work, the influence of magnetic forces over the extraction efficiency of triazines using superparamagnetic silica nanoparticles (NPs) in magnetic in tube solid phase microextraction (Magnetic-IT-SPME) coupled to CapLC has been evaluated. Atrazine, terbutylazine and simazine has been selected as target analytes. The superparamagnetic silica nanomaterial (SiO2-Fe3O4) deposited onto the surface of a capillary column gave rise to a magnetic extraction phase for IT-SPME that provided a enhancemment of the extraction efficiency for triazines. This improvement is based on two phenomena, the superparamegnetic behavior of Fe3O4 NPs and the diamagnetic repulsions that take place in a microfluidic device such a capillary column. A systematic study of analytes adsorption and desorption was conducted as function of the magnetic field and the relationship with triazines magnetic susceptibility. The positive influence of magnetism on the extraction procedure was demonstrated. The analytical characteristics of the optimized procedure were established and the method was applied to the determination of the target analytes in water samples with satisfactory results. When coupling Magnetic-IT-SPME with CapLC, improved adsorption efficiencies (60%–63%) were achieved compared with conventional adsorption materials (0.8%–3%). PMID:28344221

  8. Fluxoids behavior in superconducting ladders

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Haham, Noam; Shaulov, Avner; Yeshurun, Yosef

    2018-03-01

    The nature of the interaction between fluxoids and between them and the external magnetic field is studied in one-dimensional superconducting networks. An Ising like expression is derived for the energy of a network revealing that fluxoids behave as repulsively interacting objects driven towards the network center by the effective applied field. Competition between these two interactions determines the equilibrium arrangement of fluxoids in the network as a function of the applied field. It is demonstrated that the fluxoids configurations are not always commensurate to the network symmetry. Incommensurate, degenerated configurations may be formed even in networks with an odd number of loops.

  9. Electronic conduction in doped multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Ho; Seidel, Jan; Kim, Sang-Yong; Gajek, M.; Yu, P.; Holcomb, M. B.; Martin, L. W.; Ramesh, R.; Chu, Y. H.

    2009-03-01

    Competition between multiple ground states, that are energetically similar, plays a key role in many interesting material properties and physical phenomena as for example in high-Tc superconductors (electron kinetic energy vs. electron-electron repulsion), colossal magnetoresistance (metallic state vs. charge ordered insulating state), and magnetically frustrated systems (spin-spin interactions). We are exploring the idea of similar competing phenomena in doped multiferroics by control of band-filling. In this paper we present systematic investigations of divalent Ca doping of ferroelectric BiFeO3 in terms of structural and electronic conduction properties as well as diffusion properties of oxygen vacancies.

  10. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage Phi29.

    PubMed

    Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E

    2014-06-20

    We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interactions facilitate packaging despite increasing the energy of the theoretical optimum spooled DNA conformation.

  11. Comment on ;Acceleration of particles to high energy via gravitational repulsion in the Schwarzschild field; [Astropart. Phys. 86 (2017) 18-20

    NASA Astrophysics Data System (ADS)

    Spallicci, Alessandro D. A. M.

    2017-09-01

    Comments are due on a recent paper by McGruder III (2017) in which the author deals with the concept of gravitational repulsion in the context of the Schwarzschild-Droste solution. Repulsion (deceleration) for ingoing particles into a black hole is a concept proposed several times starting from Droste himself in 1916. It is a coordinate effect appearing to an observer at a remote distance from the black hole and when coordinate time is employed. Repulsion has no bearing and relation to the local physics of the black hole, and moreover it cannot be held responsible for accelerating outgoing particles. Thereby, the energy boost of cosmic rays cannot be produced by repulsion.

  12. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field.

    PubMed

    Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin

    2016-01-05

    A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Haloing in bimodal magnetic colloids: The role of field-induced phase separation

    NASA Astrophysics Data System (ADS)

    Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Suloeva, L.; Zubarev, A.

    2012-07-01

    If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter10.1039/c0sm00261e 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters—the initial nanoparticle concentration (φ0) and the magnetic-to-thermal energy ratio (α)—and the three accumulation regimes are mapped onto a α-φ0 phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems.

  14. Development of haptic system for surgical robot

    NASA Astrophysics Data System (ADS)

    Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo

    2017-04-01

    In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.

  15. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  16. Gyrotron multistage depressed collector based on E × B drift concept using azimuthal electric field. I. Basic design

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Avramidis, Konstantinos A.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2018-03-01

    Multistage Depressed Collectors (MDCs) are widely used in vacuum tubes to regain energy from the depleted electron beam. However, the design of an MDC for gyrotrons, especially for those deployed in fusion experiments and future power plants, is not trivial. Since gyrotrons require relatively high magnetic fields, their hollow annular electron beam is magnetically confined in the collector. In such a moderate magnetic field, the MDC concept based on E × B drift is very promising. Several concrete design approaches based on the E × B concept have been proposed. This paper presents a realizable design of a two-stage depressed collector based on the E × B concept. A collector efficiency of 77% is achievable, which will be able to increase the total gyrotron efficiency from currently 50% to more than 60%. Secondary electrons reduce the efficiency only by 1%. Moreover, the collector efficiency is resilient to the change of beam current (i.e., space charge repulsion) and beam misalignment as well as magnetic field perturbations. Therefore, compared to other E × B conceptual designs, this design approach is promising and fairly feasible.

  17. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness

    NASA Astrophysics Data System (ADS)

    Zheng, Yisheng; Zhang, Xinong; Luo, Yajun; Zhang, Yahong; Xie, Shilin

    2018-02-01

    By now, many translation quasi-zero stiffness (QZS) mechanisms have been proposed to overcome the restriction between the isolation frequency range and the load bearing capacity of linear isolators. The couplings of rotor systems undertake the functions of transmitting static driving torque and isolating disturbing torque simultaneously, which creates the demand of torsion QZS mechanisms. Hence a QZS coupling is presented in this paper, where a torsion magnetic spring (TMS) composed of two coaxial ring magnet arrangements in repulsive configuration is employed to produce negative torsion stiffness to counteract the positive stiffness of a rubber spring. In this paper, the expressions of magnetic torque and stiffness are given firstly and verified by finite element simulations; and the effect of geometric parameters of the TMS on its stiffness characteristic is analyzed in detail, which contributes to the optimal design of the TMS. Then dynamic analysis of the QZS coupling is performed and the analytical expression of the torque transmissibility is achieved based on the Harmonic Balance Method. Finally, simulation of the torque transmissibility is carried out to reveal how geometric parameters of the TMS affect the isolation performance.

  18. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis.

    PubMed

    Li, Xin; Li, Xianran; Fridman, Eyal; Tesso, Tesfaye T; Yu, Jianming

    2015-09-22

    Heterosis is a main contributor to yield increase in many crop species. Different mechanisms have been proposed for heterosis: dominance, overdominance, epistasis, epigenetics, and protein metabolite changes. However, only limited examples of molecular dissection and validation of these mechanisms are available. Here, we present an example of discovery and validation of heterosis generated by a combination of repulsion linkage and dominance. Using a recombinant inbred line population, a separate quantitative trait locus (QTL) for plant height (qHT7.1) was identified near the genomic region harboring the known auxin transporter Dw3 gene. With two loci having repulsion linkage between two inbreds, heterosis in the hybrid can appear as a single locus with an overdominance mode of inheritance (i.e., pseudo-overdominance). Individually, alleles conferring taller plant height exhibited complete dominance over alleles conferring shorter height. Detailed analyses of different height components demonstrated that qHT7.1 affects both the upper and lower parts of the plant, whereas Dw3 affects only the part below the flag leaf. Computer simulations show that repulsion linkage could influence QTL detection and estimation of effect in segregating populations. Guided by findings in linkage mapping, a genome-wide association study of plant height with a sorghum diversity panel pinpointed genomic regions underlying the trait variation, including Dw1, Dw2, Dw3, Dw4, and qHT7.1. Multilocus mixed model analysis confirmed the advantage of complex trait dissection using an integrated approach. Besides identifying a specific genetic example of heterosis, our research indicated that integrated molecular dissection of complex traits in different population types can enable plant breeders to fine tune the breeding process for crop production.

  19. TASEP of interacting particles of arbitrary size

    NASA Astrophysics Data System (ADS)

    Narasimhan, S. L.; Baumgaertner, A.

    2017-10-01

    A mean-field description of the stationary state behaviour of interacting k-mers performing totally asymmetric exclusion processes (TASEP) on an open lattice segment is presented employing the discrete Takahashi formalism. It is shown how the maximal current and the phase diagram, including triple-points, depend on the strength of repulsive and attractive interactions. We compare the mean-field results with Monte Carlo simulation of three types interacting k-mers: monomers, dimers and trimers. (a) We find that the Takahashi estimates of the maximal current agree quantitatively with those of the Monte Carlo simulation in the absence of interaction as well as in both the the attractive and the strongly repulsive regimes. However, theory and Monte Carlo results disagree in the range of weak repulsion, where the Takahashi estimates of the maximal current show a monotonic behaviour, whereas the Monte Carlo data show a peaking behaviour. It is argued that the peaking of the maximal current is due to a correlated motion of the particles. In the limit of very strong repulsion the theory predicts a universal behavior: th maximal currents of k-mers correspond to that of non-interacting (k+1) -mers; (b) Monte Carlo estimates of the triple-points for monomers, dimers and trimers show an interesting general behaviour : (i) the phase boundaries α * and β* for entry and exit current, respectively, as function of interaction strengths show maxima for α* whereas β * exhibit minima at the same strength; (ii) in the attractive regime, however, the trend is reversed (β * > α * ). The Takahashi estimates of the triple-point for monomers show a similar trend as the Monte Carlo data except for the peaking of α * ; for dimers and trimers, however, the Takahashi estimates show an opposite trend as compared to the Monte Carlo data.

  20. Evidences of Changes in Surface Electrostatic Charge Distribution during Stabilization of HPV16 Virus-Like Particles

    PubMed Central

    Vega, Juan F.; Vicente-Alique, Ernesto; Núñez-Ramírez, Rafael; Wang, Yang; Martínez-Salazar, Javier

    2016-01-01

    The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development. PMID:26885635

  1. Direct Measurements of Long-Range Repulsive Interactions in the L_α phase of Polymer-Coated Highly Flexible Membranes

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Safinya, Cyrus R.

    1997-03-01

    Using two complimentary techniques, we have measured repulsive interactions in the L_α phase of very flexible membranes composed of the surfactant C12E5 and small amounts of polymer-lipids derived from polyethylene glycol (PEG-DMPE 5000, PEG-DMPE 2000 and PEG-DMPE 550). In the first method, the lamellar repeat distance of samples in equilibrium with a dextran solution of known osmotic pressure is determined, yielding a direct measurement of pressure versus distance. These data immediately differentiate the repulsive interaction between flexible polymer-decorated membranes from polymer-brush forces found in rigid lamellar systems. In the second method, fits to high-resolution x-ray data yield the η parameter, proportional to (κB)-1\\over2, where B is the layer compressional modulus and κ is the bending rigidity of a single membrane. Combining the two types of data to eliminate B, one can quantitatively determine the κ of a decorated membrane as a function of polymer-lipid concentration. For the bare C12E5 membrane, where κ is known , a direct comparison of the compressibility modulus values derived via the two methods is also possible. This work supported by NSF-DMR-9624091; PRF-31352-AC7 CULAR-STB/UC:96-118.

  2. Is repulsion good for the health of chimeras?

    NASA Astrophysics Data System (ADS)

    Jalan, Sarika; Ghosh, Saptarshi; Patra, Bibhabasu

    2017-10-01

    Yes! Very much so. A chimera state refers to the coexistence of a coherent-incoherent dynamical evolution of identically coupled oscillators. We investigate the impact of multiplexing of a layer having repulsively coupled oscillators on the occurrence of chimeras in the layer having attractively coupled identical oscillators. We report that there exists an enhancement in the appearance of the chimera state in one layer of the multiplex network in the presence of repulsive coupling in the other layer. Furthermore, we show that a small amount of inhibition or repulsive coupling in one layer is sufficient to yield the chimera state in another layer by destroying its synchronized behavior. These results can be used to obtain insight into dynamical behaviors of those systems where both attractive and repulsive couplings exist among their constituents.

  3. The expansion of polarization charge layers into magnetized vacuum - Theory and computer simulations

    NASA Technical Reports Server (NTRS)

    Galvez, Miguel; Borovsky, Joseph E.

    1991-01-01

    The formation and evolution of polarization charge layers on cylindrical plasma streams moving in vacuum are investigated using analytic theory and 2D electrostatic particle-in-cell computer simulations. It is shown that the behavior of the electron charge layer goes through three stages. An early time expansion is driven by electrostatic repulsion of electrons in the charge layer. At the intermediate stage, the simulations show that the electron-charge-layer expansion is halted by the positively charged plasma stream. Electrons close to the stream are pulled back to the stream and a second electron expansion follows in time. At the late stage, the expansion of the ion charge layer along the magnetic field lines accompanies the electron expansion to form an ambipolar expansion. It is found that the velocities of these electron-ion expansions greatly exceed the velocities of ambipolar expansions which are driven by plasma temperatures.

  4. Large-stroke convex micromirror actuated by electromagnetic force for optical power control.

    PubMed

    Hossain, Md Mahabub; Bin, Wu; Kong, Seong Ho

    2015-11-02

    This paper contributes a novel design and the corresponding fabrication process to research on the unique topic of micro-electro-mechanical systems (MEMS) deformable convex micromirror used for focusing-power control. In this design, the shape of a thin planar metal-coated polymer-membrane mirror is controlled electromagnetically by using the repulsive force between two magnets, a permanent magnet and a coil solenoid, installed in an actuator system. The 5 mm effective aperture of a large-stroke micromirror showed a maximum center displacement of 30.08 µm, which enabled control of optical power across a wide range that could extend up to around 20 diopters. Specifically, utilizing the maximum optical power of 20 diopter by applying a maximum controlling current of 0.8 A yielded consumption of at most 2 W of electrical power. It was also demonstrated that this micromirror could easily be integrated in miniature tunable optical imaging systems.

  5. Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films

    NASA Astrophysics Data System (ADS)

    Janantha, P. A. Praveen; Sprenger, Patrick; Hoefer, Mark A.; Wu, Mingzhong

    2017-07-01

    The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y3Fe5O12 thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.

  6. A Repulsive Electrostatic Mechanism for Protein Export through the Type III Secretion Apparatus

    PubMed Central

    Rathinavelan, Thenmalarchelvi; Zhang, Lingling; Picking, Wendy L.; Weis, David D.; De Guzman, Roberto N.; Im, Wonpil

    2010-01-01

    Abstract Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. The trajectories reveal a screwlike rotation motion during the export of nativelike helix-turn-helix conformations. Interestingly, the channel interior with excessive electronegative potential creates an energy barrier for MxiH to enter the channel, whereas the same may facilitate the ejection of the effectors into host cells. Structurally known basal regions and ATPase underneath the basal region also have electronegative interiors. Effector proteins also have considerable electronegative potential patches on their surfaces. From these observations, we propose a repulsive electrostatic mechanism for protein translocation through the type III secretion apparatus. Based on this mechanism, the ATPase activity and/or proton motive force could be used to energize the protein translocation through these nanomachines. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported. PMID:20141759

  7. Dynamical generation of a repulsive vector contribution to the quark pressure

    NASA Astrophysics Data System (ADS)

    Restrepo, Tulio E.; Macias, Juan Camilo; Pinto, Marcus Benghi; Ferrari, Gabriel N.

    2015-03-01

    Lattice QCD results for the coefficient c2 appearing in the Taylor expansion of the pressure show that this quantity increases with the temperature towards the Stefan-Boltzmann limit. On the other hand, model approximations predict that when a vector repulsion, parametrized by GV, is present this coefficient reaches a maximum just after Tc and then deviates from the lattice predictions. Recently, this discrepancy has been used as a guide to constrain the (presently unknown) value of GV within the framework of effective models at large Nc (LN). In the present investigation we show that, due to finite Nc effects, c2 may also develop a maximum even when GV=0 since a vector repulsive term can be dynamically generated by exchange-type radiative corrections. Here we apply the optimized perturbation theory (OPT) method to the two-flavor Polyakov-Nambu-Jona-Lasinio model (at GV=0 ) and compare the results with those furnished by lattice simulations and by the LN approximation at GV=0 and also at GV≠0 . The OPT numerical results for c2 are impressively accurate for T ≲1.2 Tc but, as expected, they predict that this quantity develops a maximum at high T . After identifying the mathematical origin of this extremum we argue that such a discrepant behavior may naturally arise within this type of effective quark theories (at GV=0 ) whenever the first 1 /Nc corrections are taken into account. We then interpret this hypothesis as an indication that beyond the large-Nc limit the correct high-temperature (perturbative) behavior of c2 will be faithfully described by effective models only if they also mimic the asymptotic freedom phenomenon.

  8. Magnetism, superconductivity, and spontaneous orbital order in iron-based superconductors: Which comes first and why?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.

    Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less

  9. Magnetism, superconductivity, and spontaneous orbital order in iron-based superconductors: Which comes first and why?

    DOE PAGES

    Chubukov, Andrey V.; Khodas, M.; Fernandes, Rafael M.

    2016-12-02

    Magnetism and nematic order are the two nonsuperconducting orders observed in iron-based superconductors. To elucidate the interplay between them and ultimately unveil the pairing mechanism, several models have been investigated. In models with quenched orbital degrees of freedom, magnetic fluctuations promote stripe magnetism, which induces orbital order. In models with quenched spin degrees of freedom, charge fluctuations promote spontaneous orbital order, which induces stripe magnetism. Here, we develop an unbiased approach, in which we treat magnetic and orbital fluctuations on equal footing. Key to our approach is the inclusion of the orbital character of the low-energy electronic states into renormalizationmore » group (RG) analysis. We analyze the RG flow of the couplings and argue that the same magnetic fluctuations, which are known to promote s ± superconductivity, also promote an attraction in the orbital channel, even if the bare orbital interaction is repulsive. We next analyze the RG flow of the susceptibilities and show that, if all Fermi pockets are small, the system first develops a spontaneous orbital order, then s ± superconductivity, and magnetic order does not develop down to T=0. We argue that this scenario applies to FeSe. In systems with larger pockets, such as BaFe 2As 2 and LaFeAsO, we find that the leading instability is either towards a spin-density wave or superconductivity. We argue that in this situation nematic order is caused by composite spin fluctuations and is vestigial to stripe magnetism. Finally, our results provide a unifying description of different iron-based materials.« less

  10. Electronic and Structural Properties of ABO3: Role of the B-O Coulomb Repulsions for Ferroelectricity

    PubMed Central

    Miura, Kaoru; Azuma, Masaki; Funakubo, Hiroshi

    2011-01-01

    We have investigated the role of the Ti–O Coulomb repulsions in the appearance of the ferroelectric state in BaTiO3 as well as the role of the Zn–O Coulomb repulsions in BiZn0.5Ti0.5O3, using a first-principles calculation with optimized structures. In tetragonal BaTiO3, it is found that the Coulomb repulsions between Ti 3s and 3p states and O 2s and 2p states have an important role for the appearance of Ti ion displacement. In BiZn0.5Ti0.5O3, on the other hand, the stronger Zn–O Coulomb repulsions, which are due to the 3s, 3p, and 3d (d10) states of the Zn ion, have more important role than the Ti–O Coulomb repulsions for the appearance of the tetragonal structure. Our suggestion is consistent with the other ferroelectric perovskite oxides ABO3 in the appearance of tetragonal structures as well as rhombohedral structures. PMID:28879987

  11. Electronic and Structural Properties of ABO3: Role of the B-O Coulomb Repulsions for Ferroelectricity.

    PubMed

    Miura, Kaoru; Azuma, Masaki; Funakubo, Hiroshi

    2011-01-17

    We have investigated the role of the Ti-O Coulomb repulsions in the appearance of the ferroelectric state in BaTiO3 as well as the role of the Zn-O Coulomb repulsions in BiZn0.5Ti0.5O3, using a first-principles calculation with optimized structures. In tetragonal BaTiO3, it is found that the Coulomb repulsions between Ti 3s and 3p states and O 2s and 2p states have an important role for the appearance of Ti ion displacement. In BiZn0.5Ti0.5O3, on the other hand, the stronger Zn-O Coulomb repulsions, which are due to the 3s, 3p, and 3d (d10) states of the Zn ion, have more important role than the Ti-O Coulomb repulsions for the appearance of the tetragonal structure. Our suggestion is consistent with the other ferroelectric perovskite oxides ABO3 in the appearance of tetragonal structures as well as rhombohedral structures.

  12. Theory of Friedel oscillations in monolayer graphene and group-VI dichalcogenides in a magnetic field

    NASA Astrophysics Data System (ADS)

    Rusin, Tomasz M.; Zawadzki, Wlodek

    2018-05-01

    Friedel oscillations (FO) of electron density caused by a deltalike neutral impurity in two-dimensional (2D) systems in a magnetic field are calculated. Three 2D cases are considered: free electron gas, monolayer graphene, and group-VI dichalcogenides. An exact form of the renormalized Green's function is used in the calculations, as obtained by a summation of the infinite Dyson series and regularization procedure. Final results are valid for large ranges of potential strengths V0, electron densities ne, magnetic fields B , and distances from the impurity r . Realistic models for the impurities are used. The first FO of induced density in WS2 are described by the relation Δ n (r ) ∝sin(2 π r /TFO) /r2 , where TFO∝1 /√{EF} . For weak impurity potentials, the amplitudes of FO are proportional to V0. For attractive potentials and high fields, the total electron density remains positive for all r . On the other hand, for low fields, repulsive potentials and small r , the total electron density may become negative, so that many-body effects should be taken into account.

  13. Giant volume magnetostriction in the Y{sub 2}Fe{sub 17} single crystal at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, S. A., E-mail: nikitin@phys.msu.ru; Pankratov, N. Yu.; Smarzhevskaya, A. I.

    2015-05-21

    An investigation of the Y{sub 2}Fe{sub 17} compound belonging to the class of intermetallic alloys of rare-earth and 3d-transition metals is presented. The magnetization, magnetostriction, and thermal expansion of the Y{sub 2}Fe{sub 17} single crystal were studied. The forced magnetostriction and magnetostriction constants were investigated in the temperature range of the magnetic ordering close to the room temperature. The giant field induced volume magnetostriction was discovered in the room temperature region in the magnetic field up to 1.2 T. The contributions of both anisotropic single-ion and isotropic pair exchange interactions to the volume magnetostriction and magnetostriction constants were determined. The experimentalmore » results were interpreted within the framework of the Standard Theory of Magnetostriction and the Landau thermodynamic theory. It was found out that the giant values of the volume magnetostriction were caused by the strong dependence of the 3d-electron Coulomb charge repulsion on the deformations and width of the 3d-electron energy band.« less

  14. Influence of hopping self-energy effects and quasiparticle degradation on the antiferromagnetic ordering in the bilayer honeycomb Hubbard model

    NASA Astrophysics Data System (ADS)

    Honerkamp, Carsten

    2017-12-01

    We study the Hubbard model on the AB-stacked bilayer honeycomb lattice with a repulsive on-site interaction U in second-order perturbation theory and in self-consistent random phase approximation. We determine the changes in the antiferromagnetic magnetic ordering tendencies due to the real and imaginary parts of the self-energy at the band crossing points. In particular, we present an estimate for the threshold value U* below which the magnetic order is endangered by the splitting of the quadratic band touching points into four Dirac points by an interaction-induced interlayer skew hopping. For most of the parameter space, however, the quasiparticle degradation by the frequency-dependence of the sublattice-diagonal self-energies and the Dirac-cone steepening are more essential for suppressing the AF ordering tendencies considerably. Our results might help to understand the energy scales obtained in renormalization group treatments of the same model and shed light on recent quantum Monte Carlo investigations about the fate of the magnetic ordering down to lower U .

  15. Tunable bistable devices for harvesting energy from spinning wheels

    NASA Astrophysics Data System (ADS)

    Elhadidi, Mohamed; Helal, Mohammed; Nassar, Omar; Arafa, Mustafa; Zeyada, Yasser

    2015-04-01

    Bistable systems have recently been employed for vibration energy harvesting owing to their favorable dynamic characteristics and desirable response for wideband excitation. In this paper, we investigate the use of bistable harvesters to extract energy from spinning wheels. The proposed harvester consists of a piezoelectric cantilever beam that is mounted on a rigid spinning hub and carries a tip mass in the form of a permanent magnet. Magnetic repulsion forces from an opposite magnet cause the beam to possess two stable equilibrium positions. Inter-well lead-lag oscillations caused by rotation in a vertical plane provide a good source for energy extraction. The design offers frequency tuning, as the centrifugal forces strain the harvester, thereby increasing its natural frequency to cope with a variable rotational speed. This has applications in self-powered sensors mounted on spinning wheels, such as tire pressure monitoring sensors. An effort is made to select the design parameters to enable the harvester to exhibit favorable inter-well oscillations across a range of rotational speeds for enhanced energy harvesting. Findings of the present work are verified both numerically and experimentally.

  16. Experimental mixtures of superparamagnetic and single-domain magnetite with respect to Day-Dunlop plots

    NASA Astrophysics Data System (ADS)

    Kumari, Monika; Hirt, Ann M.; Uebe, Rene; Schüler, Dirk; Tompa, Éva; Pósfai, Mihály; Lorenz, Wolfram; Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer

    2015-06-01

    Day-Dunlop plots are widely used in paleomagnetic and environmental studies as a tool to determine the magnetic domain state of magnetite, i.e., superparamagnetic (SP), stable single-domain (SD), pseudosingle-domain (PSD), multidomain (MD), and their mixtures. The few experimental studies that have examined hysteresis properties of SD-SP mixtures of magnetite found that the ratios of saturation remanent magnetization to saturation magnetization and the coercivity of remanence to coercivity are low, when compared to expected theoretical mixing trends based on Langevin theory. This study reexamines Day-Dunlop plots using experimentally controlled mixtures of SD and SP magnetite grains. End-members include magnetotactic bacteria (MSR-1) as the SD source, and a commercial ferrofluid or magnetotactic bacteria (ΔA12) as the SP source. Each SP-component was added incrementally to a SD sample. Experimental results from these mixing series show that the magnetization and coercivity ratios are lower than the theoretical prediction for bulk SP magnetic size. Although steric repulsion was present between the particles, we cannot rule out interaction in the ferrofluid for higher concentrations. The SP bacteria are noninteracting as the magnetite was enclosed by an organic bilipid membrane. Our results demonstrate that the magnetization and coercivity ratios of SD-SP mixtures can lie in the PSD range, and that an unambiguous interpretation of particle size can only be made with information about the magnetic properties of the end-members.

  17. The Design, Synthesis, and Biological Evaluation of New Paclitaxel Analogs With the Ability to Evade Efflux by P-Glycoprotein

    DTIC Science & Technology

    2005-05-01

    H O R1 7 10 13 3’ O O OH NH O O OH AcO HO O BzO H O Ph 7 10 13 3’ O 1 (R1=Ph...R2= Ac, paclitaxel) 2 (TX-67) 1a (R1=t-BuO R2= H , docetaxel) Figure 1. Paclitaxel, Docetaxel and TX-67 4 1.1 Seelig model vs. Active Transport...BzO H O O Type I Type I Type II Type I Type I Type II 3` 13 2 4 7 10 1` OH O Pgp repulsion motif Figure 2. TX-67 recognition elements

  18. The Discovery of Gravitational Repulsion by Johannes Droste

    NASA Astrophysics Data System (ADS)

    McGruder, Charles Hosewell; VanDerMeer, B. Wieb

    2018-01-01

    In 1687 Newton published his universal law of gravitation, which states that the gravitational force is always attractive. This law is based on our terrestrial experience with slowly moving bodies (v << c). In 1915 Einstein completed his theory of general relativity (also referred to as Einstein’s Theory of Gravitation), which is valid not just for slowly moving bodies but also for those with relativistic velocities. In 1916 Johannes Droste submitted a PhD thesis on general relativity to his advisor, H.A. Lorentz. In it he calculated the motion of a particle in what he called a “single center” and today we call the Schwarzschild field and found that highly relativistic particles experience gravitational repulsion. Thus, his thesis written in Dutch and never before translated contains the discovery of gravitational repulsion. Because of its historical importance we translate the entire section of his thesis containing the discovery of gravitational repulsion. We also translate his thesis in the hope of clearing up a major historical misconception. Namely, that David Hilbert in 1917 discovered gravitational repulsion. In fact, Hilbert rediscovered it, apparently completely independent of Droste’s work. Finally we note that one of the biggest mysteries of astrophysics is the question of how highly energetic particles in relativistic jets and cosmic rays are accelerated. It has been suggested that gravitational repulsion is the mechanism responsible for these phenomena. An historical understanding of gravitational repulsion is therefore pertinent.

  19. Motion direction discrimination training reduces perceived motion repulsion.

    PubMed

    Jia, Ke; Li, Sheng

    2017-04-01

    Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.

  20. Salt-Dependent DNA-DNA Spacings in Intact Bacteriophage lambda Reflect Relative Importance of DNA Self-Repulsion and Bending Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Qiu; D Rau; V Parsegian

    2011-12-31

    Using solution synchrotron x-ray scattering, we measure the variation of DNA-DNA d spacings in bacteriophage {lambda} with mono-, di-, and polyvalent salt concentrations, for wild-type [48.5 x 10{sup 3} base pairs (bp)] and short-genome-mutant (37.8 kbp) strains. From the decrease in d spacings with increasing salt, we deduce the relative contributions of DNA self-repulsion and bending to the energetics of packaged phage genomes. We quantify the DNA-DNA interaction energies within the intact phage by combining the measured d spacings in the capsid with measurements of osmotic pressure in DNA assemblies under the same salt conditions in bulk solution. In themore » commonly used Tris-Mg buffer, the DNA-DNA interaction energies inside the phage capsids are shown to be about 1 kT/bp, an order of magnitude larger than the bending energies.« less

  1. Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.

    PubMed

    Rodríguez-López, Tonalli; del Río, Fernando

    2012-01-28

    In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.

  2. Inter-Cellular Forces Orchestrate Contact Inhibition of Locomotion

    PubMed Central

    Davis, John R.; Luchici, Andrei; Mosis, Fuad; Thackery, James; Salazar, Jesus A.; Mao, Yanlan; Dunn, Graham A.; Betz, Timo; Miodownik, Mark; Stramer, Brian M.

    2015-01-01

    Summary Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors. PMID:25799385

  3. A bead-spring chain as a one-dimensional polyelectrolyte gel.

    PubMed

    Manning, Gerald S

    2018-05-23

    The physical principles underlying expansion of a single-chain polyelectrolyte coil caused by Coulomb repulsions among its ionized groups, and the expansion of a cross-linked polyelectrolyte gel, are probably the same. In this paper, we analyze a "one-dimensional" version of a gel, namely, a linear chain of charged beads connected by Hooke's law springs. In the Debye-Hückel range of relatively weak Coulomb strength, where counterion condensation does not occur, the springs are realistically stretched on a nanolength scale by the repulsive interactions among the beads, if we use a spring constant normalized by the inverse square of the solvent Bjerrum length. The persistence length and radius of gyration counter-intuitively decrease when Coulomb strength is increased, if analyzed in the framework of an OSF-type theory; however, a buckling theory generates the increase that is consistent with bead-spring simulations.

  4. Nonlinear dispersive waves in repulsive lattices

    NASA Astrophysics Data System (ADS)

    Mehrem, A.; Jiménez, N.; Salmerón-Contreras, L. J.; García-Andrés, X.; García-Raffi, L. M.; Picó, R.; Sánchez-Morcillo, V. J.

    2017-07-01

    The propagation of nonlinear waves in a lattice of repelling particles is studied theoretically and experimentally. A simple experimental setup is proposed, consisting of an array of coupled magnetic dipoles. By driving harmonically the lattice at one boundary, we excite propagating waves and demonstrate different regimes of mode conversion into higher harmonics, strongly influenced by dispersion and discreteness. The phenomenon of acoustic dilatation of the chain is also predicted and discussed. The results are compared with the theoretical predictions of the α -Fermi-Pasta-Ulam equation, describing a chain of masses connected by nonlinear quadratic springs and numerical simulations. The results can be extrapolated to other systems described by this equation.

  5. Thermally tunable grating using thermo-responsive magnetic fluid

    NASA Astrophysics Data System (ADS)

    Zaibudeen, A. W.; Philip, John

    2017-04-01

    We report a thermally tunable grating prepared using poly(N-isopropylacrylamide) and super paramagnetic iron oxide nanoparticles. The array spacing is reversibly tuned by varying the temperature between 5 and 38 °C. Here, the ability of thermo-responsive polymer brushes to alter their conformation at an interface is exploited to control the grating spacing in nanoscale. The underlying mechanism for the temperature dependent conformational changes are studied by measuring the subtle intermolecular forces between the polymer covered interfaces. It is observed that the interparticle forces are repulsive and exponentially decaying with distance. The thermo-responsive grating is simple to use and offers a wide range of applications.

  6. Repulsion of polarized particles from two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fortuño, Francisco J.; Picardi, Michela F.; Zayats, Anatoly V.

    2018-05-01

    Repulsion of nanoparticles, molecules, and atoms from surfaces can have important applications in nanomechanical devices, microfluidics, optical manipulation, and atom optics. Here, through the solution of a classical scattering problem, we show that a dipole source oscillating at a frequency ω can experience a robust and strong repulsive force when its near-field interacts with a two-dimensional material. As an example, the case of graphene is considered, showing that a broad bandwidth of repulsion can be obtained at frequencies for which propagation of plasmon modes is allowed 0 <ℏ ω <(5 /3 ) μc , where μc is the chemical potential tunable electrically or by chemical doping.

  7. Soft repulsive mixtures under gravity: Brazil-nut effect, depletion bubbles, boundary layering, nonequilibrium shaking

    NASA Astrophysics Data System (ADS)

    Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut

    2012-04-01

    A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.

  8. Soft repulsive mixtures under gravity: brazil-nut effect, depletion bubbles, boundary layering, nonequilibrium shaking.

    PubMed

    Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut

    2012-04-07

    A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.

  9. Prototypal dithiazolodithiazolyl radicals: synthesis, structures, and transport properties.

    PubMed

    Beer, Leanne; Britten, James F; Brusso, Jaclyn L; Cordes, A Wallace; Haddon, Robert C; Itkis, Mikhail E; MacGregor, Douglas S; Oakley, Richard T; Reed, Robert W; Robertson, Craig M

    2003-11-26

    New synthetic routes to 1,2,3-dithiazolo-1,2,3-dithiazolylium salts, based on double Herz condensations of N-alkylated 2,6-diaminopyridinium salts with sulfur monochloride, have been developed. The two prototypal 1,2,3-dithiazolo-1,2,3-dithiazolyl radicals HBPMe and HBPEt have been prepared and characterized in solution by cyclic voltammetry and EPR spectroscopy. Measured electrochemical cell potentials and computed (B3LYP/6-31G) gas-phase disproportionation enthalpies favor a low on-site Coulombic repulsion energy U in the solid state. The crystal structures of HBPR (R = Me, Et) have been determined by X-ray crystallography (at 293 K). Both consist of slipped pi-stacks of undimerized radicals, with many close intermolecular S- - -S contacts. Magnetic, conductivity, and optical measurements have been performed and the results interpreted in light of extended Hückel band calculations. The crystalline materials are paramagnetic above 100 K, with room-temperature conductivities sigma(RT) of 10(-5)-10(-6) S cm(-1); the slightly greater conductivity of the R = Et compound can be associated with a more well developed band structure. We suggest a Mott-Hubbard insulator ground state for these materials, with an on-site Coulomb repulsion energy U of about 1.0 eV.

  10. Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom Using Mathematica

    ERIC Educational Resources Information Center

    Acosta, César R.; Tapia, J. Alejandro; Cab, César

    2014-01-01

    Slater type orbitals were used to construct the overlap and the Hamiltonian core matrices; we also found the values of the bi-electron repulsion integrals. The Hartree Fock Roothaan approximation process starts with setting an initial guess value for the elements of the density matrix; with these matrices we constructed the initial Fock matrix.…

  11. EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion

    PubMed Central

    Sugiyama, Nami; Gucciardo, Erika; Tatti, Olga; Varjosalo, Markku; Hyytiäinen, Marko; Gstaiger, Matthias

    2013-01-01

    Changes in EphA2 signaling can affect cancer cell–cell communication and motility through effects on actomyosin contractility. However, the underlying cell–surface interactions and molecular mechanisms of how EphA2 mediates these effects have remained unclear. We demonstrate here that EphA2 and membrane-anchored membrane type-1 matrix metalloproteinase (MT1-MMP) were selectively up-regulated and coexpressed in invasive breast carcinoma cells, where, upon physical interaction in same cell–surface complexes, MT1-MMP cleaved EphA2 at its Fibronectin type-III domain 1. This cleavage, coupled with EphA2-dependent Src activation, triggered intracellular EphA2 translocation, as well as an increase in RhoA activity and cell junction disassembly, which suggests an overall repulsive effect between cells. Consistent with this, cleavage-prone EphA2-D359I mutant shifted breast carcinoma cell invasion from collective to rounded single-cell invasion within collagen and in vivo. Up-regulated MT1-MMP also codistributed with intracellular EphA2 in invasive cells within human breast carcinomas. These results reveal a new proteolytic regulatory mechanism of cell–cell signaling in cancer invasion. PMID:23629968

  12. Self-accelerated Universe Induced by Repulsive Effects as an Alternative to Dark Energy and Modified Gravities

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Quevedo, Hernando

    2018-01-01

    The existence of current-time universe's acceleration is usually modeled by means of two main strategies. The first makes use of a dark energy barotropic fluid entering by hand the energy-momentum tensor of Einstein's theory. The second lies on extending the Hilbert-Einstein action giving rise to the class of extended theories of gravity. In this work, we propose a third approach, derived as an intrinsic geometrical effect of space-time, which provides repulsive regions under certain circumstances. We demonstrate that the effects of repulsive gravity naturally emerge in the field of a homogeneous and isotropic universe. To this end, we use an invariant definition of repulsive gravity based upon the behavior of the curvature eigenvalues. Moreover, we show that repulsive gravity counterbalances the standard gravitational attraction influencing both late and early times of the universe evolution. This phenomenon leads to the present speed up and to the fast expansion due to the inflationary epoch. In so doing, we are able to unify both dark energy and inflation in a single scheme, showing that the universe changes its dynamics when {\\ddot{H}\\over H}=-2 \\dot{H}, at the repulsion onset time where this condition is satisfied. Further, we argue that the spatial scalar curvature can be taken as vanishing because it does not affect at all the emergence of repulsive gravity. We check the goodness of our approach through two cosmological fits involving the most recent union 2.1 supernova compilation.

  13. Swarming and pattern formation due to selective attraction and repulsion.

    PubMed

    Romanczuk, Pawel; Schimansky-Geier, Lutz

    2012-12-06

    We discuss the collective dynamics of self-propelled particles with selective attraction and repulsion interactions. Each particle, or individual, may respond differently to its neighbours depending on the sign of their relative velocity. Thus, it is able to distinguish approaching (coming closer) and retreating (moving away) individuals. This differentiation of the social response is motivated by the response to looming visual stimuli and may be seen as a generalization of the previously proposed escape and pursuit interactions motivated by empirical evidence for cannibalism as a driving force of collective migration in locusts and Mormon crickets. The model can account for different types of behaviour such as pure attraction, pure repulsion or escape and pursuit, depending on the values (signs) of the different response strengths. It provides, in the light of recent experimental results, an interesting alternative to previously proposed models of collective motion with an explicit velocity-alignment interaction. We discuss the derivation of a coarse-grained description of the system dynamics, which allows us to derive analytically the necessary condition for emergence of collective motion. Furthermore, we analyse systematically the onset of collective motion and clustering in numerical simulations of the model for varying interaction strengths. We show that collective motion arises only in a subregion of the parameter space, which is consistent with the analytical prediction and corresponds to an effective escape and/or pursuit response.

  14. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  15. Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates.

    PubMed

    Barone, Vincenzo; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo

    2017-03-14

    The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.

  16. Probing spin dynamics and quantum relaxation in Li Y0.998 Ho0.002 F4 via 19F NMR

    NASA Astrophysics Data System (ADS)

    Graf, M. J.; Lascialfari, A.; Borsa, F.; Tkachuk, A. M.; Barbara, B.

    2006-01-01

    We report measurements of F19 nuclear spin-lattice relaxation 1/T1 as a function of temperature and external magnetic field in a LiY0.998Ho0.002F4 single crystal, a single-ion magnet exhibiting interesting quantum effects. The F19 1/T1 is found to depend on the coupling with the diluted rare-earth (RE) moments, making it an effective probe of the rare-earth spin dynamics. The results for 1/T1 show a behavior similar to that observed in molecular nanomagnets, a result which we attribute to the discreteness of the energy levels in both cases. At intermediate temperatures the lifetime broadening of the crystal field split RE magnetic levels follows a T3 power law. At low temperature the field dependence of 1/T1 shows peaks in correspondence to the critical magnetic fields for energy level crossings (LC). A key result of this study is that the broadening of the levels at LC is found to become extremely small at low temperatures, about 1.7mT , a value which is comparable to the weak dipolar fields at the RE lattice positions. Thus, unlike the molecular magnets, decoherence effects are strongly suppressed, and it may be possible to measure directly the level repulsions at avoided level crossings.

  17. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altsybeev, Igor

    2016-01-22

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.

  18. Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals.

    PubMed

    Tovkach, O M; Chernyshuk, S B; Lev, B I

    2012-12-01

    We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that monopoles do not "feel" the type of nematic cell: monopole-monopole interaction turns out to be the same in homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L→∞.

  19. An application of eddy current damping effect on single point diamond turning of titanium alloys

    NASA Astrophysics Data System (ADS)

    Yip, W. S.; To, S.

    2017-11-01

    Titanium alloys Ti6Al4V (TC4) have been popularly applied in many industries. They have superior material properties including an excellent strength-to-weight ratio and corrosion resistance. However, they are regarded as difficult to cut materials; serious tool wear, a high level of cutting vibration and low surface integrity are always involved in machining processes especially in ultra-precision machining (UPM). In this paper, a novel hybrid machining technology using an eddy current damping effect is firstly introduced in UPM to suppress machining vibration and improve the machining performance of titanium alloys. A magnetic field was superimposed on samples during single point diamond turning (SPDT) by exposing the samples in between two permanent magnets. When the titanium alloys were rotated within a magnetic field in the SPDT, an eddy current was generated through a stationary magnetic field inside the titanium alloys. An eddy current generated its own magnetic field with the opposite direction of the external magnetic field leading a repulsive force, compensating for the machining vibration induced by the turning process. The experimental results showed a remarkable improvement in cutting force variation, a significant reduction in adhesive tool wear and an extreme long chip formation in comparison to normal SPDT of titanium alloys, suggesting the enhancement of the machinability of titanium alloys using an eddy current damping effect. An eddy current damping effect was firstly introduced in the area of UPM to deliver the results of outstanding machining performance.

  20. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.

    PubMed

    Hodaei, Amin; Akhlaghi, Omid; Khani, Navid; Aytas, Tunahan; Sezer, Dilek; Tatli, Buse; Menceloglu, Yusuf Z; Koc, Bahattin; Akbulut, Ozge

    2018-03-21

    A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.

  1. Gauged baby Skyrme model with a Chern-Simons term

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2017-02-01

    The properties of the multisoliton solutions of the (2 +1 )-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant g , and the electric potential. It is found that, generically, the coupling to the Chern-Simons term strongly affects the usual pattern of interaction between the skyrmions, in particular the electric repulsion between the solitons may break the multisoliton configuration into partons. We show that as the gauge coupling becomes strong, both the magnetic flux and the electric charge of the solutions become quantized although they are not topological numbers.

  2. Slow relaxation mode in concentrated oil-in-water microemulsions consisting of repulsive droplets

    NASA Astrophysics Data System (ADS)

    Hattori, Y.; Ushiki, H.; Courbin, L.; Panizza, P.

    2007-02-01

    The present contribution reports on the observation of two diffusive relaxation modes in a concentrated microemulsion made of repulsive droplets. These two modes can be interpreted in the frame of Weissman’s and Pusey’s theoretical pioneering works. The fast mode is associated to the collective diffusion of droplets whereas the slow one corresponds to the relaxation of droplet concentration fluctuations associated with composition and/or size. We show that (i) repulsive interactions considerably slow down the latter and (ii) a generalized Stokes Einstein relationship between its coefficient of diffusion and the Newtonian viscosity of the solutions, similar to the Walden’s rule for electrolytes, holds for concentrated microemulsion systems made of repulsive droplets.

  3. Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline.

    PubMed

    Fan, Xueping; Labrador, Juan Pablo; Hing, Huey; Bashaw, Greg J

    2003-09-25

    Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Here we present evidence that the SH3-SH2 adaptor protein Dreadlocks (Dock), the p21-activated serine-threonine kinase (Pak), and the Rac1/Rac2/Mtl small GTPases can function during Robo repulsion. Loss-of-function and genetic interaction experiments suggest that limiting the function of Dock, Pak, or Rac partially disrupts Robo repulsion. In addition, Dock can directly bind to Robo's cytoplasmic domain, and the association of Dock and Robo is enhanced by stimulation with Slit. Furthermore, Slit stimulation can recruit a complex of Dock and Pak to the Robo receptor and trigger an increase in Rac1 activity. These results provide a direct physical link between the Robo receptor and an important cytoskeletal regulatory protein complex and suggest that Rac can function in both attractive and repulsive axon guidance.

  4. Electron Pair Repulsion Responsible for the Peculiar Edge Effects and Surface Chemistry of Black Phosphorus.

    PubMed

    Kong, Xiang-Peng; Shen, Xiaomei; Jang, Joonkyung; Gao, Xingfa

    2018-03-01

    The electronic and optical properties of black phosphorus (black-P) are significantly modulated by fabricating the edges of this two-dimensional material. Electron lone pairs (ELPs) are ubiquitous in black-P, but their role in creating the edge effects of black-P is poorly understood. Using first-principle calculations, we report ELPs of black-P experience severe Coulomb repulsion and play a central role in creating the edge effects of black-P. We discover the outermost P atoms of the zigzag edges of black-PQDs are free of the Coulomb repulsion, but the P atoms of the armchair edges do experience the Coulomb repulsion. The Coulomb repulsion serves as a new chemical driving force to make electron donor-acceptor bonds with chemical groups bearing vacant orbitals. Our results provide insights into the mechanism responsible for the peculiar edge effects of black-P and highlight the opportunity to use the ELPs of black-P for their damage-free surface functionalization.

  5. Polymer Brushes under High Load

    PubMed Central

    Balko, Suzanne M.; Kreer, Torsten; Costanzo, Philip J.; Patten, Tim E.; Johner, Albert; Kuhl, Tonya L.; Marques, Carlos M.

    2013-01-01

    Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties. PMID:23516470

  6. The contribution of phosphate–phosphate repulsions to the free energy of DNA bending

    PubMed Central

    Range, Kevin; Mayaan, Evelyn; Maher, L. J.; York, Darrin M.

    2005-01-01

    DNA bending is important for the packaging of genetic material, regulation of gene expression and interaction of nucleic acids with proteins. Consequently, it is of considerable interest to quantify the energetic factors that must be overcome to induce bending of DNA, such as base stacking and phosphate–phosphate repulsions. In the present work, the electrostatic contribution of phosphate–phosphate repulsions to the free energy of bending DNA is examined for 71 bp linear and bent-form model structures. The bent DNA model was based on the crystallographic structure of a full turn of DNA in a nucleosome core particle. A Green's function approach based on a linear-scaling smooth conductor-like screening model was applied to ascertain the contribution of individual phosphate–phosphate repulsions and overall electrostatic stabilization in aqueous solution. The effect of charge neutralization by site-bound ions was considered using Monte Carlo simulation to characterize the distribution of ion occupations and contribution of phosphate repulsions to the free energy of bending as a function of counterion load. The calculations predict that the phosphate–phosphate repulsions account for ∼30% of the total free energy required to bend DNA from canonical linear B-form into the conformation found in the nucleosome core particle. PMID:15741179

  7. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.

  8. Modified interactions among globular proteins below isoelectric point in the presence of mono-, di- and tri-valent ions: A small angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Das, Kaushik; Kundu, Sarathi; Mehan, Sumit; Aswal, V. K.

    2016-02-01

    Both short range attraction and long range electrostatic repulsion exist among globular protein Bovine Serum Albumin in solution below its isoelectric point (pI ≈ 4.8). At pD ≈ 4.0, below pI, protein has a net positive surface charge although local charge inhomogeneity presents. Small angle neutron scattering study reveals that in the presence of both mono-(Na+) and di-(Ni2+) valent ions attractive interaction increases and repulsive interaction decreases with the increase of salt concentration. However, for tri-valent (Fe3+) ions, both attractive and repulsive interaction increases with increasing salt concentration but the relative strength of repulsion is more than the attraction.

  9. Dual-species Bose-Einstein condensate of {sup 87}Rb and {sup 133}Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarron, D. J.; Cho, H. W.; Jenkin, D. L.

    2011-07-15

    We report the formation of a dual-species Bose-Einstein condensate of {sup 87}Rb and {sup 133}Cs in the same trapping potential. Our method exploits the efficient sympathetic cooling of {sup 133}Cs via elastic collisions with {sup 87}Rb, initially in a magnetic quadrupole trap and subsequently in a levitated optical trap. The two condensates each contain up to 2x10{sup 4} atoms and exhibit a striking phase separation, revealing the mixture to be immiscible due to strong repulsive interspecies interactions. Sacrificing all the {sup 87}Rb during the cooling, we create single-species {sup 133}Cs condensates of up to 6x10{sup 4} atoms.

  10. Single-Molecule Studies of Hyaluronic Acid Conformation

    NASA Astrophysics Data System (ADS)

    Innes-Gold, Sarah; Berezney, John; Saleh, Omar

    Hyaluronic acid (HA) is a charged linear polysaccharide abundant in extracellular spaces. Its solution conformation and mechanical properties help define the environment outside of cells, play key roles in cell motility and adhesion processes, and are of interest for the development of HA biomaterials. Intra-chain hydrogen bonds and electrostatic repulsion contribute to HAs physical structure, but the nature of this structure, as well as its dependence on solution electrostatics, are not well-understood. To address this problem, we have investigated HA conformation and mechanical properties under a range of solution conditions systematically designed to affect charge screening or hydrogen bonding. We used magnetic tweezers to apply biological-scale stretching forces to individual HA chains under varying solution conditions.

  11. Two-dimensional melting of colloids with long-range attractive interactions.

    PubMed

    Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa

    2017-02-22

    The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.

  12. Maglev crude oil pipeline

    NASA Technical Reports Server (NTRS)

    Knolle, Ernst G.

    1994-01-01

    This maglev crude oil pipeline consists of two conduits guiding an endless stream of long containers. One conduit carries loaded containers and the other empty returns. The containers are levitated by permanent magnets in repulsion and propelled by stationary linear induction motors. The containers are linked to each other in a manner that allows them, while in continuous motion, to be folded into side by side position at loading and unloading points. This folding causes a speed reduction in proportion to the ratio of container diameter to container length. While in side by side position, containers are opened at their ends to be filled or emptied. Container size and speed are elected to produce a desired carrying capacity.

  13. Self-assembly and electrostriction of arrays and chains of hopfion particles in chiral liquid crystals

    PubMed Central

    Ackerman, Paul J.; van de Lagemaat, Jao; Smalyukh, Ivan I.

    2015-01-01

    Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains that exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields. PMID:25607778

  14. Sequential vortex hopping in an array of artificial pinning centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keay, J. C.

    2010-02-24

    We use low-temperature magnetic force microscopy (MFM) to study the hopping motion of vortices in an array of artificial pinning centers (APCs). The array consists of nanoscale holes etched in a niobium thin film by Ar-ion sputtering through an anodic aluminum-oxide template. Variable-temperature magnetometry shows a transition temperature of 7.1 K and an enhancement of the magnetization up to the third matching field at 5 K. Using MFM with attractive and repulsive tip-vortex interaction, we measure the vortex-pinning strength and investigate the motion of individual vortices in the APC array. The depinning force for individual vortices at low field rangedmore » from 0.7 to 1.2 pN. The motion of individual vortices was found to be reproducible and consistent with movement between adjacent holes in the film. The movements are repeatable but the sequence of hops depends on the scan direction. This asymmetry in the motion indicates nonuniform local pinning, a consequence of array disorder and hole-size variation.« less

  15. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  16. Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding

    NASA Astrophysics Data System (ADS)

    Shim, J. Y.; Kim, I. S.; Lee, K. J.; Kang, B. Y.

    2011-12-01

    Recently, there has been a trend in the automotive industry to focus on the improvement of lightweight materials, such as aluminum and magnesium because the welding of dissimilar metals causes many welding defects. Magnetic pulse welding (MPW), one of the solid state welding technologies, uses electromagnetic force from current discharged through a working coil which develops a repulsive force between the induced currents flowing parallel and in the opposite direction in the tube to be welded. The objective of this paper is to develop a numerical model for analysis of the interaction between the outer pipe and the working coil using a finite element method (FEM) in the MPW process. Four Maxwell equations are solved using a general electromagnetic mechanics computer program, ANSYS/EMAG code. Experiments were also carried out with a W-MPW60 machine manufactured by WELMATE CO., LTD. with the Al1070 and SM45C for Al pipe and steel bar respectively. The calculated and measured results were compared to verify the proposed model.

  17. Gauged multisoliton baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, P. J.; van de Lagemaat, J.; Smalyukh, I. I.

    Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains thatmore » exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields.« less

  19. Magnetic excitation spectra of strongly correlated quasi-one-dimensional systems: Heisenberg versus Hubbard-like behavior

    NASA Astrophysics Data System (ADS)

    Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.

    2016-11-01

    We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.

  20. First-principles investigation of graphitic carbon nitride monolayer with embedded Fe atom

    NASA Astrophysics Data System (ADS)

    Abdullahi, Yusuf Zuntu; Yoon, Tiem Leong; Halim, Mohd Mahadi; Hashim, Md. Roslan; Lim, Thong Leng

    2018-01-01

    Density-functional theory (DFT) calculations with spin-polarized generalized gradient approximation and Hubbard U correction are carried out to investigate the mechanical, structural, electronic and magnetic properties of graphitic heptazine with embedded Fe atom under bi-axial tensile strain and applied perpendicular electric field. It was found that the binding energy of heptazine with embedded Fe atom system decreases as larger tensile strain is applied, while it increases as larger electric field strength is applied. Our calculations also predict a band gap at a peak value of 5% tensile strain but at expense of the structural stability of the system. The band gap open up at 5% tensile strain is due to distortion in the structure caused by the repulsive effect in the cavity between the lone pairs of the edge nitrogen atoms and dxy /dx2 -y2 orbital of Fe atom, forcing the unoccupied pz- orbital is forced to shift toward higher energy. The electronic and magnetic properties of the heptazine with embedded Fe system under perpendicular electric field up to a peak value of 8 V/nm is also well preserved despite an obvious buckled structure. Such properties are desirable for diluted magnetic semiconductors, spintronics, and sensing devices.

  1. Electromagnetic Nature of Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Schaeffer, Bernard

    2014-09-01

    As it is known since two millenaries, there is an attraction between an electric charge and a neutral object. Coulomb found the fundamental laws of electricity two centuries ago. After one century of nuclear physics, the fundamental laws of the strong force are still ignored. It has been found that electric and magnetic Coulomb's laws alone, without any hypothetical centrifugal force, are able to predict the binding energy of the simplest bound nucleus, the deuteron 2 H with a precision of 4 % . The nuclear potential is given by the formula: Uem2 H / A =e2/4 πɛ0 (1/rnp + a - 1/rnp - a ) + μ0 |μnμp |/4 π rnp3. This potential shows a horizontal inflection point where the electric and magnetic forces are equilibrated, coinciding with the experimental deuteron binding energy. Similar results have been obtained for the α particle 4 He where the electric attractive potential is four times larger than that of 2 H while the magnetic repulsion is only 1 . 5 times larger and the 4 HE binding energy six times larger than that of the deuteron. These results, prove the electromagnetic nature of the nuclear energy without the usual assumptions.

  2. Magnetically driven metal-insulator transition in NaOsO3

    NASA Astrophysics Data System (ADS)

    Calder, Stuart

    2013-03-01

    The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials, enjoying interest both for its fundamental nature and technological application. Various mechanisms producing MITs have been extensively considered over the years, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic one-dimensional lattice). One additional route to a MIT proposed by Slater in 1951, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention, particularly from an experimental viewpoint. Using neutron and x-ray scattering we have shown that the MIT in NaOsO3 is coincident with the onset of long-range commensurate magnetic order at 410 K. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in light of recent work on other 5d systems that contrastingly have been predicted to host a Mott spin-orbit insulating state. Work was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

  3. Possibility of a ferromagnetic and conducting metal-organic network

    NASA Astrophysics Data System (ADS)

    Mabrouk, Manel; Hayn, Roland; Denawi, Hassan; Ben Chaabane, Rafik

    2018-05-01

    In this paper, we present first principles calculations based on the spin-polarized generalized gradient approximation with on-site Coulomb repulsion term (SGGA + U), to explore the electronic and magnetic properties of the novel planar metal-organic networks TM-Pc and TM-TCNB (where TM means a transition metal of the 3d series: Ti, V, Cr, …, or Zn, Pc - Phthalocyanine, and TCNB - Tetracyanobenzene) as free-standing sheets. This work is an extension of two earlier research works dealing with the Mn (Mabrouk et al., 2015) and Fe (Mabrouk et al., 2017) cases. Our theoretical investigations demonstrate that TM-Pc are more stable than TM-TCNB. Our results unveil that all the TM-Pc frameworks have an insulating behavior with the exception of Mn-Pc which is half-metallic and favor antiferromagnetic order in the case of our magnetic systems except for V-Pc which is ferromagnetic. In contrast, the TM-TCNB networks are metallic at least in one spin direction and exhibit long-range ferromagnetic coupling in case for magnetic structures, which represent ideal candidates and an interesting prospect of unprecedented applications in spintronics. In addition, these results may shed light to achieve a new pathway on further experimental research in molecular spintronics.

  4. Quantum droplets of light in the presence of synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Wilson, Kali; Westerberg, Niclas; Valiente, Manuel; Duncan, Callum; Wright, Ewan; Ohberg, Patrik; Faccio, Daniele

    2017-04-01

    Recently, quantum droplets have been demonstrated in dipolar Bose-Einstein condensates, where the long range (nonlocal) attractive interaction is counterbalanced by a local repulsive interaction. In this work, we investigate the formation of quantum droplets in a two-dimensional nonlocal fluid of light. Fluids of light allow us to control the geometry of the system, and thus introduce vorticity which in turn creates an artificial magnetic field for the quantum droplet. In a quantum fluid of light, the photons comprising the fluid are treated as a gas of interacting Bose-particles, where the nonlocal interaction comes from the nonlinearity inherent in the material, in our case an attractive third-order thermo-optical nonlinearity. In contrast to matter-wave droplets, photon fluid droplets are not stabilised by local particle-particle scattering, but from the quantum pressure itself, i.e., a balance between diffraction and the nonlocal nonlinearity. We will present a numerical and analytical investigation of the ground state of these droplets and of their subsequent dynamics under the influence of a self-induced artificial magnetic field, and discuss experimental work with the possibility to include artificial gauge interactions between droplets.

  5. Development of electromagnetic welding facility of flat plates for nuclear industry

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Sahoo, Subhanarayan; Sarkar, Biswanath; Shyam, Anurag

    2017-04-01

    Electromagnetic pulse welding (EMPW) process, one of high speed welding process uses electromagnetic force from discharged current through working coil, which develops a repulsive force between the induced current flowing parallel and in opposite direction. For achieving the successful weldment using this process the design of working coil is the most important factor due to high magnetic field on surface of work piece. In case of high quality flat plate welding factors such as impact velocity, angle of impact standoff distance, thickness of flyer and overlap length have to be chosen carefully. EMPW has wide applications in nuclear industry, automotive industry, aerospace, electrical industries. However formability and weldability still remain major issues. Due to ease in controlling the magnetic field enveloped inside tubes, the EMPW has been widely used for tube welding. In case of flat components control of magnetic field is difficult. Hence the application of EMPW gets restricted. The present work attempts to make a novel contribution by investigating the effect of process parameters on welding quality of flat plates. The work emphasizes the approaches and engineering calculations required to effectively use of actuator in EMPW of flat components.

  6. Casimir Repulsion between Metallic Objects in Vacuum

    DTIC Science & Technology

    2010-08-27

    levitation , as the particle is unstable to displacements away from the symmetry axis. DOI: 10.1103/PhysRevLett.105.090403 PACS numbers: 03.70.+k, 03.65.w...force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime...ever be repulsive? In this Letter, we answer this question in the affirmative by showing that a small elongated metal particle centered above a thin

  7. Casimir repulsion between metallic objects in vacuum.

    PubMed

    Levin, Michael; McCauley, Alexander P; Rodriguez, Alejandro W; Reid, M T Homer; Johnson, Steven G

    2010-08-27

    We give an example of a geometry in which two metallic objects in vacuum experience a repulsive Casimir force. The geometry consists of an elongated metal particle centered above a metal plate with a hole. We prove that this geometry has a repulsive regime using a symmetry argument and confirm it with numerical calculations for both perfect and realistic metals. The system does not support stable levitation, as the particle is unstable to displacements away from the symmetry axis.

  8. Coulomb repulsion and the electron beam directed energy weapon

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-09-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into small spots at large distances from defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Based on estimates, the nonreversible terms should be small - of the order of 0.1 mm. If this is true, it is possible to design a practical electron beam directed weapon not limited by Coulomb repulsion.

  9. Livermore's 2004 R&D 100 Awards: Magnetically Levitated Train Takes Flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2005-09-20

    the 1960s, transportation industry planners have sought an energy-efficient design for a train that can glide through air at speeds up to 500 kilometers per hour. This type of train, called a magnetically levitated (maglev) train, is thought to be a viable solution to meet the nation's growing need for intercity and urban transportation networks. However, despite some promising developments, unresolved concerns with the operation and safety of maglev trains has prevented the transition from demonstration model to commercial development. Inductrack, a maglev system originally conceived by Livermore physicist Richard Post, is designed to address these issues. Post's work onmore » Inductrack began with funding from Livermore's Laboratory Directed Research and Development Program, and in 2003, the technology was licensed to General Atomics (GA) in San Diego for train and transit system applications. This year, members of the Livermore-GA team received an R&D 100 Award for Inductrack's development. Inductrack uses permanent magnets to produce the magnetic fields that levitate the train and provides economic and operational advantages over other maglev systems. It can be adapted to both high-speed and urban-speed environments. In the event of a power failure, the train slows gradually until it comes to rest on its auxiliary wheels. The maintenance requirements for Inductrack are also lower than they are for other systems, plus it has a short turning radius and is designed for quiet operation. Previous designs for maglev systems did not offer the energy efficiency or safety protections that are in the Inductrack design. Electromagnetic systems (EMS) use powered electromagnets to levitate the train. However, these systems are based on magnetic attraction rather than repulsion and thus are inherently unstable. In EMS trains, the levitation gap--the separation between the magnet pole faces and the iron rail--is only about 10 millimeters and, during operation, must be maintained to within {+-}1 millimeter. Position sensors and electronic feedback systems are required to control the magnetic current and to compensate for the inherent instability. This requirement, plus the onboard source of emergency power required to ensure operational safety during a sudden power loss, increases the complexity of EMS trains. In contrast, in electrodynamic systems (EDS), large superconducting magnet coils mounted on the sides of the train generate high-intensity magnetic field poles. Interaction of the current between the coils and the track levitates the train. At operating speeds (above a liftoff speed of about 100 kilometers per hour), the magnetic levitation force balances the weight of the car at a stable position. EDS trains do not require the feedback control systems that EMS trains use to stabilize levitation. However, the superconducting magnetic coils must be kept at temperatures of only 5 kelvins, so costly electrically powered cryogenic equipment is required. Also, passengers, especially those with pacemakers, must be shielded from the high magnetic fields generated by the superconductors.« less

  10. Tuning structure and mobility of solvation shells surrounding tracer additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmer, James; Jain, Avni; Bollinger, Jonathan A.

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083–4089 (2012)]. For the latter case, we show that the mobility of surroundingmore » solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer’s enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.« less

  11. Tuning structure and mobility of solvation shells surrounding tracer additives.

    PubMed

    Carmer, James; Jain, Avni; Bollinger, Jonathan A; van Swol, Frank; Truskett, Thomas M

    2015-03-28

    Molecular dynamics simulations and a stochastic Fokker-Planck equation based approach are used to illuminate how position-dependent solvent mobility near one or more tracer particle(s) is affected when tracer-solvent interactions are rationally modified to affect corresponding solvation structure. For tracers in a dense hard-sphere fluid, we compare two types of tracer-solvent interactions: (1) a hard-sphere-like interaction, and (2) a soft repulsion extending beyond the hard core designed via statistical mechanical theory to enhance tracer mobility at infinite dilution by suppressing coordination-shell structure [Carmer et al., Soft Matter 8, 4083-4089 (2012)]. For the latter case, we show that the mobility of surrounding solvent particles is also increased by addition of the soft repulsive interaction, which helps to rationalize the mechanism underlying the tracer's enhanced diffusivity. However, if multiple tracer surfaces are in closer proximity (as at higher tracer concentrations), similar interactions that disrupt local solvation structure instead suppress the position-dependent solvent dynamics.

  12. Nematic and chiral superconductivity induced by odd-parity fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fengcheng; Martin, Ivar

    Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less

  13. Nematic and chiral superconductivity induced by odd-parity fluctuations

    DOE PAGES

    Wu, Fengcheng; Martin, Ivar

    2017-10-09

    Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less

  14. Communication: Free-energy analysis of hydration effect on protein with explicit solvent: Equilibrium fluctuation of cytochrome c

    NASA Astrophysics Data System (ADS)

    Karino, Yasuhito; Matubayasi, Nobuyuki

    2011-01-01

    The relationship between the protein conformation and the hydration effect is investigated for the equilibrium fluctuation of cytochrome c. To elucidate the hydration effect with explicit solvent, the solvation free energy of the protein immersed in water was calculated using the molecular dynamics simulation coupled with the method of energy representation. The variations of the protein intramolecular energy and the solvation free energy are found to compensate each other in the course of equilibrium structural fluctuation. The roles of the attractive and repulsive components in the protein-water interaction are further examined for the solvation free energy. The attractive component represented as the average sum of protein-water interaction energy is dominated by the electrostatic effect and is correlated to the solvation free energy through the linear-response-type relationship. No correlation with the (total) solvation free energy is seen, on the other hand, for the repulsive component expressed as the excluded-volume effect.

  15. Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: numerical study.

    PubMed

    Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco

    2014-08-01

    The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.

  16. Inter-cellular forces orchestrate contact inhibition of locomotion.

    PubMed

    Davis, John R; Luchici, Andrei; Mosis, Fuad; Thackery, James; Salazar, Jesus A; Mao, Yanlan; Dunn, Graham A; Betz, Timo; Miodownik, Mark; Stramer, Brian M

    2015-04-09

    Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein.

    PubMed

    del Alamo, Marta; Mateu, Mauricio G

    2005-01-28

    In previous studies, thermodynamic dissection of the dimerization interface in CA-C, the C-terminal domain of the capsid protein of human immunodeficiency virus type 1, revealed that individual mutation to alanine of Ser178, Glu180, Glu187 or Gln192 led to significant increases in dimerization affinity. Four related aspects derived from this observation have been now addressed, and the results can be summarized as follows: (i) thermodynamic analyses indicate the presence of an intersubunit electrostatic repulsion between both Glu180 residues. (ii) The mutation Glu180 to Ala was detected in nearly all type 2 human immunodeficiency virus variants, and in several simian immunodeficiency viruses analyzed. However, this mutation was strictly co-variant with mutations Ser178Asp in a neighboring residue, and Glu187Gln. Thermodynamic analysis of multiple mutants showed that Ser178Asp compensated, alone or together with Glu187Gln, the increase in affinity caused by the mutation Glu180Ala, and restored a lower dimerization affinity. (iii) The increase in the affinity constant caused by the multiple mutation to Ala of Ser178, Glu180, Glu187 and Gln192 was more than one order of magnitude lower than predicted if additivity were present, despite the fact that the 178/180 pair and the two other residues were located more than 10A apart. (iv) Mutations in CA-C that caused non-additive increases in dimerization affinity also caused a non-additive increase in the capacity of the isolated CA-C domain to inhibit the assembly of capsid-like HIV-1 particles in kinetic assays. In summary, the study of a protein-protein interface involved in the building of a viral capsid has revealed unusual features, including intersubunit electrostatic repulsions, co-variant, compensatory mutations that may evolutionarily preserve a low association constant, and long-range, large magnitude non-additive effects on association.

  18. Transferable model of water with variable molecular size

    NASA Astrophysics Data System (ADS)

    Kiss, Péter T.; Baranyai, András

    2011-06-01

    By decreasing the steepness of the repulsive wing in the intermolecular potential, one can extend the applicability of a water model to the high pressure region. Exploiting this trivial possibility, we published a polarizable model of water which provided good estimations not only of gas clusters, ambient liquid, hexagonal ice, but ice VII at very high pressures as well [A. Baranyai and P. Kiss, J. Chem. Phys. 133, 144109 (2010), 10.1063/1.3490660]. This straightforward method works well provided the closest O-O distance is reasonably shorter in the high pressure phase than in hexagonal ice. If these O-O distances are close to each other and we fit the interactions to obtain an accurate picture of hexagonal ice, we underestimate the density of the high-pressure phases. This can be overcome if models use contracted molecules under high external pressure.In this paper we present a method, which is capable to describe the contraction of water molecules under high pressure by using two simple repulsion-attraction functions. These functions represent the dispersion interaction under low pressure and high pressure. The switch function varies between 0 and 1 and portions the two repulsions among the individual particles. The argument of the switch function is a virial-type expression, which can be interpreted as a net force compressing the molecule. We calculated the properties of gas clusters, densities, and internal energies of ambient water, hexagonal ice, ice III, ice VI, and ice VII phases and obtained excellent match of experimental data.

  19. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 < E < 0.361 v / nm) covering non-linear response regime, and ionic salt concentration (0.049 < SC < 0.69 [M]) covering weak to strong Debye screening of the colloid. The effect of different colloidal repulsions are then studied on temperature, reduced mobility and zeta potential which is computed based on charge distribution within the spherical colloidal EDL. System temperature and electrophoretic mobility both show a direct and inverse relationship respectively with electric field and colloidal repulsion. Mobility declining with colloidal repulsion reaches a plateau which is a relatively constant value at each electrolyte salinity for Aii > 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  20. d -wave superconductivity in the presence of nearest-neighbor Coulomb repulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, M.; Hahner, U. R.; Schulthess, T. C.

    Dynamic cluster quantum Monte Carlo calculations for a doped two-dimensional extended Hubbard model are used to study the stability and dynamics of d-wave pairing when a nearest-neighbor Coulomb repulsion V is present in addition to the on-site Coulomb repulsion U. We find that d-wave pairing and the superconducting transition temperature Tc are only weakly suppressed as long as V does not exceed U/2. This stability is traced to the strongly retarded nature of pairing that allows the d-wave pairs to minimize the repulsive effect of V. When V approaches U/2, large momentum charge fluctuations are found to become important andmore » to give rise to a more rapid suppression of d-wave pairing and T c than for smaller V.« less

  1. Half-collision analysis of far-wing diffuse structure in Cs-Xe

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Hillard, M. E.; Lempert, W. R.

    1987-01-01

    Laser excitation in the far red wing of the second principal series doublet of Cs mixed with Xe revealed a diffuse structure associated with the 2P(3/2) component. The structure is thought to originate from a reflection type of spectrum between the weakly bound E 2Sigma(1/2) excited state and the X 2Sigma(1/2) repulsive ground state of CsXe.

  2. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given. This article was submitted as part of a collection of articles on surface nanotechnology for biological applications. Other papers on this topic can be found in issue 2 of vol. 3 (2011). This issue can be found from the Nanoscale homepage [http://www.rsc.org/nanoscale].

  3. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  4. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  5. Measuring the effects of Coulomb repulsion via signal decay in an atmospheric pressure laser ionization ion mobility spectrometer.

    PubMed

    Ihlenborg, Marvin; Schuster, Ann-Kathrin; Grotemeyer, Juergen; Gunzer, Frank

    2018-01-01

    Using lasers in ion mobility spectrometry offers a lot of advantages compared to standard ionization sources. Especially, the ion yield can be drastically increased. It can, however, reach levels where the Coulomb repulsion leads to unwanted side effects. Here, we investigate how the Coulomb repulsion can be detected apart from the typical signal broadening by measuring effects created already in the reaction region and comparing them with corresponding finite element method simulations.

  6. Repulsive Casimir-Polder potential by a negative reflecting surface

    NASA Astrophysics Data System (ADS)

    Yuan, Qi-Zhang

    2015-07-01

    We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.

  7. Spin-Orbital entangled 2DEG in the δ-doped interface LaδSr2IrO4: Density-Functional Studies and Transport Results from Boltzmann Equations

    NASA Astrophysics Data System (ADS)

    Bhandari, Churna; Popovic, Zoran; Satpathy, Sashi

    The strong spin-orbit coupled iridates are of considerable interest because of the Mottminsulating state,which is produced by the combined effect of a strong spin-orbit coupling (SOC) and Coulomb repulsion. In this work, using density-functional methods, we predict the existence of a spin-orbital entangled two dimensional electron gas (2DEG) in the delta-doped structure, where a single SrO layer is replaced by an LaO layer. In the bulk Sr2IrO4, a strong SOC splits the t2 g states into Jeff = 1 / 2 and 3 / 2 states. The Coulomb repulsion further splits the half-filled Jeff = 1 / 2 bands into a lower and an upper Hubbard band (UHB) producing a Mott insulator. In the δ-doped structure, La dopes electrons into the UHB, and our results show that the doped electrons are strongly localized in one or two Ir layers at the interface, reminiscent of the 2DEG in the well-studied LaAlO3/SrTiO3 interface. The UHB, consisting of spin-orbit entangled states, is partially filled, resulting in a spin-orbital entangled 2DEG. Transport properties of the 2DEG shows many interesting features, which we study by solving the semi-classical Boltzmann transport equation in the presence of the magnetic and electric fields.

  8. Modeling of full-Heusler alloys within tight-binding approximation: Case study of Fe2MnAl

    NASA Astrophysics Data System (ADS)

    Azhar, A.; Majidi, M. A.; Nanto, D.

    2017-07-01

    Heusler alloys have been known for about a century, and predictions of magnetic moment values using Slater-Pauling rule have been successful for many such materials. However, such a simple counting rule has been found not to always work for all Heusler alloys. For instance, Fe2CuAl has been found to have magnetic moment of 3.30 µB per formula unit although the Slater-Pauling rule suggests the value of 2 µB. On the other hand, a recent experiment shows that a non-stoichiometric Heusler compound Fe2Mn0.5Cu0.5Al possesses magnetic moment of 4 µB, closer to the Slater-Pauling prediction for the stoichiometric compound. Such discrepancies signify that the theory to predict the magnetic moment of Heusler alloys in general is still far from being complete. Motivated by this issue, we propose to do a theoretical study on a full-Heusler alloy Fe2MnAl to understand the formation of magnetic moment microscopically. We model the system by constructing a density-functional-theory-based tight-binding Hamiltonian and incorporating Hubbard repulsive as well as spin-spin interactions for the electrons occupying the d-orbitals. Then, we solve the model using Green's function approach, and treat the interaction terms within the mean-field approximation. At this stage, we aim to formulate the computational algorithm for the overall calculation process. Our final goal is to compute the total magnetic moment per unit cell of this system and compare it with the experimental data.

  9. Validity and limitations of the superexchange model for the magnetic properties of Sr2IrO4 and Ba2IrO4 mediated by the strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.; Mazurenko, V. V.; Katanin, A. A.

    2015-12-01

    Layered perovskites Sr2IrO4 and Ba2IrO4 are regarded as the key materials for understanding the properties of magnetic relativistic insulators, mediated by the strong spin-orbit (SO) coupling. One of the most fundamental issues is to which extent these properties can be described by the superexchange (SE) model, formulated in the limit of the large Coulomb repulsion for some appropriately selected pseudospin states, and whether these materials themselves can be classified as Mott insulators. In this work, we address these issues by deriving the relevant models and extracting parameters of these models from the electronic-structure calculations with the SO coupling, based on the density functional theory. First, we construct the effective Hubbard-type model for the magnetically active t2 g bands, by recasting the problem in the language of localized Wannier orbitals. Then, we map the obtained electron model onto the pseudospin model by applying the theory of SE interactions, which is based on the second-order perturbation theory with respect to the transfer integrals. We discuss the microscopic origin of anisotropic SE interactions, inherent to the compass Heisenberg model, and the appearance of the antisymmetric Dzyaloshinskii-Moriya term, associated with the additional rotation of the IrO6 octahedra in Sr2IrO4 . In order to solve the pseudospin Hamiltonian problem and evaluate the Néel temperature (TN), we employ the nonlinear sigma model. We have found that, while for Sr2IrO4 our value of TN agrees with the experimental data, for Ba2IrO4 it is overestimated by a factor of 2. We argue that this discrepancy is related to limitations of the SE model: while for more localized t2 g states in Sr2IrO4 it works reasonably well, the higher-order terms in the perturbation theory expansion play a more important role in the more "itinerant" Ba2IrO4 , giving rise to the new type of isotropic and anisotropic exchange interactions, which are not captured by the SE model. This conclusion is supported by unrestricted Hartree-Fock calculations for the same electron model, where in the case of Ba2IrO4 , already on the mean-field level, we were able to reproduce the experimentally observed magnetic ground state, while for Sr2IrO4 the main results are essentially the same as in the SE model.

  10. Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin

    NASA Astrophysics Data System (ADS)

    Drain, John F.; Drautz, Ralf; Pettifor, D. G.

    2014-04-01

    It is known that while group VII 4d Tc and 5d Re have hexagonally close-packed (hcp) ground states, 3d Mn adopts a complex χ-phase ground state, exhibiting complex noncollinear magnetic ordering. Density functional theory (DFT) calculations have shown that without magnetism, the χ phase is still the ground state of Mn implying that magnetism and the resultant atomic-size difference between large- and small-moment atoms are not the critical factors, as is commonly believed, in driving the anomalous stability of the χ phase over hcp. Using a canonical tight-binding (TB) model, it is found that for a more than half-filled d band, while harder potentials stabilize close-packed hcp, a softer potential stabilizes the more open χ phase. By analogy with the structural trend from open to close-packed phases down the group IV elements, the anomalous stability of the χ phase in Mn is shown to be due to 3d valent Mn lacking d states in the core which leads to an effectively softer atomic repulsion between the atoms than in 4d Tc and 5d Re. Subsequently, an analytic bond-order potential (BOP) is developed to investigate the structural and magnetic properties of elemental Mn at 0 K. It is derived within BOP theory directly from a new short-ranged orthogonal d-valent TB model of Mn, the parameters of which are fitted to reproduce the DFT binding energy curves of the four experimentally observed phases of Mn, namely, α, β, γ, δ, and ɛ-Mn. Not only does the BOP reproduce qualitatively the DFT binding energy curves of the five different structure types, it also predicts the complex collinear antiferromagnetic (AFM) ordering in α-Mn, the ferrimagnetic ordering in β-Mn, and the AFM ordering in γ-, δ-, and ɛ-Mn that are found by DFT. A BOP expansion including 14 moments is sufficiently converged to reproduce most of the properties of the TB model with the exception of the elastic shear constants, which require further moments. The current TB model, however, predicts values of the shear moduli and the vacancy formation energies that are approximately a factor of 2 too small, so that a future more realistic model for MD simulations will require these properties to be included from the outset in the fitting database.

  11. Dimensionality Controlled Octahedral Symmetry-Mismatch and Functionalities in Epitaxial LaCoO₃/SrTiO₃ Heterostructures.

    PubMed

    Qiao, Liang; Jang, Jae Hyuck; Singh, David J; Gai, Zheng; Xiao, Haiyan; Mehta, Apurva; Vasudevan, Rama K; Tselev, Alexander; Feng, Zhenxing; Zhou, Hua; Li, Sean; Prellier, Wilfrid; Zu, Xiaotao; Liu, Zijiang; Borisevich, Albina; Baddorf, Arthur P; Biegalski, Michael D

    2015-07-08

    Epitaxial strain provides a powerful approach to manipulate physical properties of materials through rigid compression or extension of their chemical bonds via lattice-mismatch. Although symmetry-mismatch can lead to new physics by stabilizing novel interfacial structures, challenges in obtaining atomic-level structural information as well as lack of a suitable approach to separate it from the parasitical lattice-mismatch have limited the development of this field. Here, we present unambiguous experimental evidence that the symmetry-mismatch can be strongly controlled by dimensionality and significantly impact the collective electronic and magnetic functionalities in ultrathin perovskite LaCoO3/SrTiO3 heterojunctions. State-of-art diffraction and microscopy reveal that symmetry breaking dramatically modifies the interfacial structure of CoO6 octahedral building-blocks, resulting in expanded octahedron volume, reduced covalent screening, and stronger electron correlations. Such phenomena fundamentally alter the electronic and magnetic behaviors of LaCoO3 thin-films. We conclude that for epitaxial systems, correlation strength can be tuned by changing orbital hybridization, thus affecting the Coulomb repulsion, U, instead of by changing the band structure as the common paradigm in bulks. These results clarify the origin of magnetic ordering for epitaxial LaCoO3 and provide a route to manipulate electron correlation and magnetic functionality by orbital engineering at oxide heterojunctions.

  12. Universal thermodynamics of the one-dimensional attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Yu, Yi-Cong; Batchelor, M. T.; Guan, Xi-Wen

    2018-03-01

    The one-dimensional (1D) Hubbard model, describing electrons on a lattice with an on-site repulsive interaction, provides a paradigm for the physics of quantum many-body phenomena. Here, by solving the thermodynamic Bethe ansatz equations, we study the universal thermodynamics, quantum criticality, and magnetism of the 1D attractive Hubbard model. We show that the compressibility and the susceptibility of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like state obey simple additivity rules at low temperatures, indicating an existence of two free quantum fluids. The magnetic properties, such as magnetization and susceptibility, reveal three physical regions: quantum fluids at low temperatures, a non-Fermi liquid at high temperatures, and the quantum fluid to non-Fermi liquid crossover in between. The lattice interaction is seen to significantly influence the nature of the FFLO-like state in 1D. Furthermore, we show that the dimensionless Wilson ratio provides an ideal parameter to map out the various phase boundaries and to characterize the two free fluids of the FLLO-like state. The quantum scaling functions for the thermal and magnetic properties yield the same dynamic critical exponent z =2 and correlation critical exponent ν =1 /2 in the quantum critical region whenever a phase transition occurs. Our results provide a rigorous understanding of quantum criticality and free fluids of many-body systems on a 1D lattice.

  13. Electron Correlation in Oxygen Vacancy in SrTiO3

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Demkov, Alexander A.

    2014-03-01

    Oxygen vacancies are an important type of defect in transition metal oxides. In SrTiO3 they are believed to be the main donors in an otherwise intrinsic crystal. At the same time, a relatively deep gap state associated with the vacancy is widely reported. To explain this inconsistency we investigate the effect of electron correlation in an oxygen vacancy (OV) in SrTiO3. When taking correlation into account, we find that the OV-induced localized level can at most trap one electron, while the second electron occupies the conduction band. Our results offer a natural explanation of how the OV in SrTiO3 can produce a deep in-gap level (about 1 eV below the conduction band bottom) in photoemission, and at the same time be an electron donor. Our analysis implies an OV in SrTiO3 should be fundamentally regarded as a magnetic impurity, whose deep level is always partially occupied due to the strong Coulomb repulsion. An OV-based Anderson impurity model is derived, and its implications are discussed. This work was supported by Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences under award number DESC0008877.

  14. A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids

    NASA Astrophysics Data System (ADS)

    Goharshadi, Elaheh K.; Morsali, Ali; Mansoori, G. Ali

    2007-01-01

    Isotherms of experimental data of internal pressure of dense fluids versus molar volume, Vm are shown to have each a maximum point at a Vmax below the critical molar volume. In this study, we investigated the role of attractive and repulsive intermolecular energies on this behavior using a molecular dynamics simulation technique. In the simulation, we choose the Lennard-Jones (LJ) intermolecular potential energy function. The LJ potential is known to be an effective potential representing a statistical average of the true pair and many-body interactions in simple molecular systems. The LJ potential function is divided into attractive and repulsive parts. MD calculations have produced internal energy, potential energy, transitional kinetic energy, and radial distribution function (RDF) for argon at 180 K and 450 K using LJ potential, LJ repulsive, and LJ attractive parts. It is shown that the LJ potential function is well capable of predicting the inflection point in the internal energy-molar volume curve as well as maximum point in the internal pressure-molar volume curve. It is also shown that at molar volumes higher than Vmax, the attractive forces have strong influence on determination of internal energy and internal pressure. At volumes lower than Vmax, neither repulsive nor attractive forces are dominating. Also, the coincidence between RDFs resulting from LJ potential and repulsive parts of LJ potential improves as molar volume approaches Vmax from high molar volumes. The coincidence becomes complete at Vmax ⩾ V.

  15. Modeling, design, and testing of a proof-of-concept prototype damper with friction and eddy current damping effects

    NASA Astrophysics Data System (ADS)

    Amjadian, Mohsen; Agrawal, Anil K.

    2018-01-01

    Friction is considered as one of the most reliable mechanisms of energy dissipation that has been utilized extensively in passive damping devices to mitigate vibration of civil engineering structures subjected to extreme natural hazards such as earthquakes and windstorms. However, passive friction dampers are well-known for having a highly nonlinear hysteretic behavior caused by stick-slip motion at low velocities, a phenomenon that is inherent in friction and increases the acceleration response of the structure under control unfavorably. The authors have recently proposed the theoretical concept of a new type of damping device termed as "Passive Electromagnetic Eddy Current Friction Damper" (PEMECFD) in which an eddy current damping mechanism was utilized not only to decrease the undesirable effects of stick-slip motion, but also to increase the energy dissipation capacity of the damping device as a whole. That study was focused on demonstration of the theoretical performance of the proposed damping device through numerical simulations. This paper further investigates the influence of eddy current damping on energy dissipation due to friction through modeling, design, and testing of a proof-of-concept prototype damper. The design of this damper has been improved over the design in the previous study. The normal force in this damper is produced by the repulsive magnetic force between two cuboidal permanent magnets (PMs) magnetized in the direction normal to the direction of the motion. The eddy current damping force is generated because of the motion of the two PMs and two additional PMs relative to a copper plate in their vicinity. The dynamic models for the force-displacement relationship of the prototype damper are based on LuGre friction model, electromagnetic theory, and inertial effects of the prototype damper. The parameters of the dynamic models have been identified through a series of characterization tests on the prototype damper under harmonic excitations of different frequencies in the laboratory. Finally, the identified dynamic models have been validated by subjecting the prototype damper to two different random excitations. The results indicate that the proposed dynamic models are capable of representing force-displacement behavior of the new type of passive damping device for a wide range of operating conditions.

  16. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study.

    PubMed

    Krutyeva, M; Pasini, S; Monkenbusch, M; Allgaier, J; Maiz, J; Mijangos, C; Hartmann-Azanza, B; Steinhart, M; Jalarvo, N; Richter, D

    2017-05-28

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  17. Positive effects of repulsion on boundedness in a fully parabolic attraction-repulsion chemotaxis system with logistic source

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhuang, Mengdi; Zheng, Sining

    2018-02-01

    In this paper we study the global boundedness of solutions to the fully parabolic attraction-repulsion chemotaxis system with logistic source: ut = Δu - χ∇ ṡ (u∇v) + ξ∇ ṡ (u∇w) + f (u), vt = Δv - βv + αu, wt = Δw - δw + γu, subject to homogeneous Neumann boundary conditions in a bounded and smooth domain Ω ⊂Rn (n ≥ 1), where χ, α, ξ, γ, β and δ are positive constants, and f : R → R is a smooth function generalizing the logistic source f (s) = a - bsθ for all s ≥ 0 with a ≥ 0, b > 0 and θ ≥ 1. It is shown that when the repulsion cancels the attraction (i.e. χα = ξγ), the solution is globally bounded if n ≤ 3, or θ >θn : = min ⁡ {n+2}/4, n/√{n2 + 6 n + 17 }/-n2 - 3 n + 4 4 } with n ≥ 2. Therefore, due to the inhibition of repulsion to the attraction, in any spatial dimension, the exponent θ is allowed to take values less than 2 such that the solution is uniformly bounded in time.

  18. Repulsion-based model for contact angle saturation in electrowetting

    PubMed Central

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results. PMID:25759748

  19. Repulsion-based model for contact angle saturation in electrowetting.

    PubMed

    Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

  20. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    PubMed

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  2. Spontaneous symmetry breaking due to the trade-off between attractive and repulsive couplings.

    PubMed

    Sathiyadevi, K; Karthiga, S; Chandrasekar, V K; Senthilkumar, D V; Lakshmanan, M

    2017-04-01

    Spontaneous symmetry breaking is an important phenomenon observed in various fields including physics and biology. In this connection, we here show that the trade-off between attractive and repulsive couplings can induce spontaneous symmetry breaking in a homogeneous system of coupled oscillators. With a simple model of a system of two coupled Stuart-Landau oscillators, we demonstrate how the tendency of attractive coupling in inducing in-phase synchronized (IPS) oscillations and the tendency of repulsive coupling in inducing out-of-phase synchronized oscillations compete with each other and give rise to symmetry breaking oscillatory states and interesting multistabilities. Further, we provide explicit expressions for synchronized and antisynchronized oscillatory states as well as the so called oscillation death (OD) state and study their stability. If the Hopf bifurcation parameter (λ) is greater than the natural frequency (ω) of the system, the attractive coupling favors the emergence of an antisymmetric OD state via a Hopf bifurcation whereas the repulsive coupling favors the emergence of a similar state through a saddle-node bifurcation. We show that an increase in the repulsive coupling not only destabilizes the IPS state but also facilitates the reentrance of the IPS state.

  3. Discontinuous nature of the repulsive-to-attractive colloidal glass transition

    PubMed Central

    van de Laar, T.; Higler, R.; Schroën, K.; Sprakel, J.

    2016-01-01

    In purely repulsive colloidal systems a glass transition can be reached by increasing the particle volume fraction beyond a certain threshold. The resulting glassy state is governed by configurational cages which confine particles and restrict their motion. A colloidal glass may also be formed by inducing attractive interactions between the particles. When attraction is turned on in a repulsive colloidal glass a re-entrant solidification ensues. Initially, the repulsive glass melts as free volume in the system increases. As the attraction strength is increased further, this weakened configurational glass gives way to an attractive glass in which motion is hindered by the formation of physical bonds between neighboring particles. In this paper, we study the transition from repulsive-to-attractive glasses using three-dimensional imaging at the single-particle level. We show how the onset of cage weakening and bond formation is signalled by subtle changes in local structure. We then demonstrate the discontinuous nature of the solid-solid transition, which is marked by a critical onset at a threshold bonding energy. Finally, we highlight how the interplay between bonding and caging leads to complex and heterogeneous dynamics at the microscale. PMID:26940737

  4. Discontinuous nature of the repulsive-to-attractive colloidal glass transition.

    PubMed

    van de Laar, T; Higler, R; Schroën, K; Sprakel, J

    2016-03-04

    In purely repulsive colloidal systems a glass transition can be reached by increasing the particle volume fraction beyond a certain threshold. The resulting glassy state is governed by configurational cages which confine particles and restrict their motion. A colloidal glass may also be formed by inducing attractive interactions between the particles. When attraction is turned on in a repulsive colloidal glass a re-entrant solidification ensues. Initially, the repulsive glass melts as free volume in the system increases. As the attraction strength is increased further, this weakened configurational glass gives way to an attractive glass in which motion is hindered by the formation of physical bonds between neighboring particles. In this paper, we study the transition from repulsive-to-attractive glasses using three-dimensional imaging at the single-particle level. We show how the onset of cage weakening and bond formation is signalled by subtle changes in local structure. We then demonstrate the discontinuous nature of the solid-solid transition, which is marked by a critical onset at a threshold bonding energy. Finally, we highlight how the interplay between bonding and caging leads to complex and heterogeneous dynamics at the microscale.

  5. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; Allgaier, J.; Maiz, J.; Mijangos, C.; Hartmann-Azanza, B.; Steinhart, M.; Jalarvo, N.; Richter, D.

    2017-05-01

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  6. Modeling and calculation of RKKY exchange coupling to explain Ti-vacancy-induced ferromagnetism in Ta-doped TiO2

    NASA Astrophysics Data System (ADS)

    Majidi, Muhammad Aziz; Bupu, Annamaria; Fauzi, Angga Dito

    2017-12-01

    We present a theoretical study on Ti-vacancy-induced ferromagnetism in anatase TiO2. A recent experimental study has revealed room temperature ferromagnetism in Ta-doped anatase TiO2thin films (Rusydi et al., 2012) [7]. Ta doping assists the formation of Ti vacancies which then induce the formation of localized magnetic moments around the Ti vacancies. As neighboring Ti vacancies are a few unit cells apart, the ferromagnetic order is suspected to be mediated by itinerant electrons. We propose that such an electron-mediated ferromagnetism is driven by Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. To examine our hypothesis, we construct a tight-binding based model Hamiltonian for the anatase TiO2 system. We calculate the RKKY exchange coupling constant of TiO2 as a function of distance between local magnetic moments at various temperatures. We model the system by taking only the layer containing a unit of TiO2, at which the Ti vacancy is believed to form, as our effective two-dimensional unit cell. Our model incorporates the Hubbard repulsive interactions between electrons occupying Ti d orbitals treated within mean-field approximation. The density of states profile resulting from the model captures the relevant electronic properties of TiO2, such as the energy gap of 3.4 eV and the n-type character, which may be a measure of the adequacy of the model. The calculated RKKY coupling constant shows that the ferromagnetic coupling extends up to 3-4 unit cells and enhances slightly as temperature is increased from 0 to 400 K. These results support our hypothesis that the ferromagnetism of this system is driven by RKKY mechanism.

  7. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  8. Is the Lorentz signature of the metric of spacetime electromagnetic in origin?

    NASA Astrophysics Data System (ADS)

    Itin, Yakov; Hehl, Friedrich W.

    2004-07-01

    We formulate a premetric version of classical electrodynamics in terms of the excitation H=( H, D) and the field strength F=( E, B). A local, linear, and symmetric spacetime relation between H and F is assumed. It yields, if electric/magnetic reciprocity is postulated, a Lorentzian metric of spacetime thereby excluding Euclidean signature (which is, nevertheless, discussed in some detail). Moreover, we determine the Dufay law (repulsion of like charges and attraction of opposite ones), the Lenz rule (the relative sign in Faraday's law), and the sign of the electromagnetic energy. In this way, we get a systematic understanding of the sign rules and the sign conventions in electrodynamics. The question in the title of the paper is answered affirmatively.

  9. Attraction between pancake vortices and vortex molecule formation in the crossing lattices in thin films of layered superconductors

    NASA Astrophysics Data System (ADS)

    Samokhvalov, A. V.; Mel'nikov, A. S.; Buzdin, A. I.

    2012-05-01

    We study the intervortex interaction in thin films of layered superconductors for the magnetic field tilted with respect to the c axis. In such a case, the crossing lattice of Abrikosov vortices (AVs) and Josephson vortices appears. The interaction between pancake vortices, forming the AVs, with Josephson ones, produces the zigzag deformation of the AV line. This deformation induces a long-range attraction between Abrikosov vortices and, in thin films, it competes with another long-range interaction, i.e., with Pearl's repulsion. This interplay results in the formation of clusters of Abrikosov vortices, which can be considered as vortex molecules. The number of vortices in such clusters depends on field tilting angle and film thickness.

  10. Religion, Repulsion, and Reaction Formation: Transforming Repellent Attractions and Repulsions.

    PubMed

    Cohen, Dov; Kim, Emily; Hudson, Nathan W

    2017-06-12

    Protestants were more likely than non-Protestants to demonstrate phenomena consistent with the use of reaction formation. Lab experiments showed that when manipulations were designed to produce taboo attractions (to unconventional sexual practices), Protestants instead showed greater repulsion. When implicitly conditioned to produce taboo repulsions (to African Americans), Protestants instead showed greater attraction. Supportive evidence from other studies came from clinicians' judgments, defense mechanism inventories, and a survey of respondent attitudes. Other work showed that Protestants who diminished and displaced threatening affect were more likely to sublimate this affect into creative activities; the present work showed that Protestants who do not or cannot diminish or displace such threatening affect instead reverse it. Traditional individual difference variables showed little ability to predict reaction formation, suggesting that the observed processes go beyond what we normally study when we talk about self-control. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Retrieval-Induced Inhibition in Short-Term Memory.

    PubMed

    Kang, Min-Suk; Choi, Joongrul

    2015-07-01

    We used a visual illusion called motion repulsion as a model system for investigating competition between two mental representations. Subjects were asked to remember two random-dot-motion displays presented in sequence and then to report the motion directions for each. Remembered motion directions were shifted away from the actual motion directions, an effect similar to the motion repulsion observed during perception. More important, the item retrieved second showed greater repulsion than the item retrieved first. This suggests that earlier retrieval exerted greater inhibition on the other item being held in short-term memory. This retrieval-induced motion repulsion could be explained neither by reduced cognitive resources for maintaining short-term memory nor by continued inhibition between short-term memory representations. These results indicate that retrieval of memory representations inhibits other representations in short-term memory. We discuss mechanisms of retrieval-induced inhibition and their implications for the structure of memory. © The Author(s) 2015.

  12. An Avoidance Model for Short-Range Order Induced by Soft Repulsions in Systems of Rigid Rods

    NASA Astrophysics Data System (ADS)

    Han, Jining; Herzfeld, Judith

    1996-03-01

    The effects of soft repulsions on hard particle systems are calculated using an avoidance model which improves upon the simple mean field approximation. Avoidance reduces, but does not eliminate, the energy due to soft repulsions. On the other hand, it also reduces the configurational entropy. Under suitable conditions, this simple trade-off yields a free energy that is lower than the mean field value. In these cases, the variationally determined avoidance gives an estimate for the short-range positional order induced by soft repulsions. The results indicate little short-range order for isotropically oriented rods. However, for parallel rods, short-range order increases to significant levels as the particle axial ratio increases. The implications for long- range positional ordering are also discussed. In particular, avoidance may explain the smectic ordering of tobacco mosaic virus at volume fractions lower than those necessary for smectic ordering of hard particles.

  13. Coulomb-repulsion-assisted double ionization from doubly excited states of argon

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen

    2017-08-01

    We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.

  14. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-07-01

    We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.

  15. Semiflexible polymers confined in a slit pore with attractive walls: two-dimensional liquid crystalline order versus capillary nematization.

    PubMed

    Milchev, Andrey; Egorov, Sergei A; Binder, Kurt

    2017-03-01

    Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.

  16. Ball Lightning–Aerosol Electrochemical Power Source or A Cloud of Batteries

    PubMed Central

    2007-01-01

    Despite numerous attempts, an adequate theoretical and experimental simulation of ball lightning still remains incomplete. According to the model proposed here, the processes of electrochemical oxidation within separate aerosol particles are the basis for this phenomenon, and ball lightning is a cloud of composite nano or submicron particles, where each particle is a spontaneously formed nanobattery which is short-circuited by the surface discharge because it is of such a small size. As free discharge-shorted current loops, aerosol nanobatteries are exposed to a powerful mutual magnetic dipole–dipole attraction. The gaseous products and thermal energy produced by each nanobattery as a result of the intra-particle self-sustaining electrochemical reactions, cause a mutual repulsion of these particles over short distances and prevent their aggregation, while a collectivization of the current loops of separate particles, due to the electric arc overlapping between adjacent particles, weakens their mutual magnetic attraction over short distances. Discharge currents in the range of several amperes to several thousand amperes as well as the pre-explosive mega ampere currents, generated in the reduction–oxidation reactions and distributed between all the aerosol particles, explain both the magnetic attraction between the elements of the ball lightning substance and the impressive electromagnetic effects of ball lightning.

  17. Theoretical exploration of optical response of Fe3O4-reduced graphene oxide nanoparticle system within dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Kusumaatmadja, R.; Fauzi, A. D.; Phan, W. Y.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We theoretically investigate the optical conductivity and its related optical response of Fe3O4-reduced graphene oxide (rGO) nanoparticle system. Experimental data of magnetization of the Fe3O4-rGO nanoparticle system have shown that the saturation magnetization can be enhanced by controlling the rGO content with the maximum enhancement reached at the optimal rGO content of about 5 weight percentage. We hypothesize that the magnetization enhancement is due to spin-flipping of Fe ions at tetrahedral sites induced by oxygen vacancies at the Fe3O4 nanoparticle boundaries. These oxygen vacancies are formed due to adsorption of oxygen atoms by rGO flakes around the Fe3O4 nanoparticle. In this study, we aim to explore the implications of this effect to the optical response of the system as a function of the rGO content. Our model incorporates Hubbard-repulsive interactions between electrons occupying the e g orbitals of Fe3+ and Heisenberg-like interactions between electron spins and spins of Fe3+ ions. We treat the relevant interactions within mean-field and dynamical mean-field approximations. Our results are to be compared with the existing experimental reflectance data of Fe3O4 nanoparticle system.

  18. Self assembly of magnetic nanoparticles at silicon surfaces.

    PubMed

    Theis-Bröhl, Katharina; Gutfreund, Philipp; Vorobiev, Alexei; Wolff, Max; Toperverg, Boris P; Dura, Joseph A; Borchers, Julie A

    2015-06-21

    Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density.

  19. Self-Powered Temperature-Mapping Sensors Based on Thermo-Magneto-Electric Generator.

    PubMed

    Chun, Jinsung; Kishore, Ravi Anant; Kumar, Prashant; Kang, Min-Gyu; Kang, Han Byul; Sanghadasa, Mohan; Priya, Shashank

    2018-04-04

    We demonstrate a thermo-magneto-electric generator (TMEG) based on second-order phase transition of soft magnetic materials that provides a promising pathway for scavenging low-grade heat. It takes advantage of the cyclic magnetic forces of attraction and repulsion arising through ferromagnetic-to-paramagnetic phase transition to create mechanical vibrations that are converted into electricity through piezoelectric benders. To enhance the mechanical vibration frequency and thereby the output power of the TMEG, we utilize the nonlinear behavior of piezoelectric cantilevers and enhanced thermal transport through silver (Ag) nanoparticles (NPs) applied on the surface of a soft magnet. This results in large enhancement of the oscillation frequency reaching up to 9 Hz (300% higher compared with that of the prior literature). Optimization of the piezoelectric beam and Ag NP distribution resulted in the realization of nonlinear TMEGs that can generate a high output power of 80 μW across the load resistance of 0.91 MΩ, which is 2200% higher compared with that of the linear TMEG. Using a nonlinear TMEG, we fabricated and evaluated self-powered temperature-mapping sensors for monitoring the thermal variations across the surface. Combined, our results demonstrate that nonlinear TMEGs can provide additional functionality including temperature monitoring, thermal mapping, and powering sensor nodes.

  20. Binary collision approximations for the memory function for density fluctuations in equilibrium atomic liquids

    NASA Astrophysics Data System (ADS)

    Noah, Joyce E.

    Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.

  1. Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy

    NASA Astrophysics Data System (ADS)

    Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon

    We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.

  2. Pressure induced structural phase transition from NaCl-type (B1) to CsCl-type (B2) structure in sodium chloride

    NASA Astrophysics Data System (ADS)

    Jain, Aayushi; Dixit, R. C.

    2018-05-01

    Pressure induced structural phase transition of NaCl-type (B1) to CsCl-type (B2) structure in Sodium Chloride NaCl are presented. An effective interionic interaction potential (EIOP) with long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge is reported here. The reckon value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are compatible as compared with reported data. The variations of elastic constants and their combinations with pressure follow ordered behavior. The present approach has also succeeded in predicting the Born and relative stability criteria.

  3. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids

    NASA Astrophysics Data System (ADS)

    Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.

    2016-06-01

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  4. Tiam–Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion

    PubMed Central

    2016-01-01

    Ephrin receptors interact with membrane-bound ephrin ligands to regulate contact-mediated attraction or repulsion between opposing cells, thereby influencing tissue morphogenesis. Cell repulsion requires bidirectional trans-endocytosis of clustered Eph–ephrin complexes at cell interfaces, but the mechanisms underlying this process are poorly understood. Here, we identified an actin-regulating pathway allowing ephrinB+ cells to trans-endocytose EphB receptors from opposing cells. Live imaging revealed Rac-dependent F-actin enrichment at sites of EphB2 internalization, but not during vesicle trafficking. Systematic depletion of Rho family GTPases and their regulatory proteins identified the Rac subfamily and the Rac-specific guanine nucleotide exchange factor Tiam2 as key components of EphB2 trans-endocytosis, a pathway previously implicated in Eph forward signaling, in which ephrins act as in trans ligands of Eph receptors. However, unlike in Eph signaling, this pathway is not required for uptake of soluble ligands in ephrinB+ cells. We also show that this pathway is required for EphB2-stimulated contact repulsion. These results support the existence of a conserved pathway for EphB trans-endocytosis that removes the physical tether between cells, thereby enabling cell repulsion. PMID:27597758

  5. Can Coulomb repulsion for charged particle beams be overcome?

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-01-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into a small spots at large distances from the defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Since the nonreversible terms should be small, it might be possible to construct an electron beam directed energy weapon.

  6. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids.

    PubMed

    Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B

    2016-06-07

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  7. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    DOE PAGES

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; ...

    2017-02-02

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, we measured the corresponding polymer melt under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where themore » segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Moreover, the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.« less

  8. Magnetic excitation spectra of strongly correlated quasi-one-dimensional systems: Heisenberg versus Hubbard-like behavior

    DOE PAGES

    Nocera, Alberto; Patel, Niravkumar D.; Fernandez-Baca, Jaime A.; ...

    2016-11-28

    In this paper, we study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small asmore » U/t ~ 2–3, although ratios of peak intensities at different momenta continue evolving with increasing U/t converging only slowly to the Heisenberg limit. Finally, we discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U/t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.« less

  9. Magnetic excitation spectra of strongly correlated quasi-one-dimensional systems: Heisenberg versus Hubbard-like behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nocera, Alberto; Patel, Niravkumar D.; Fernandez-Baca, Jaime A.

    In this paper, we study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small asmore » U/t ~ 2–3, although ratios of peak intensities at different momenta continue evolving with increasing U/t converging only slowly to the Heisenberg limit. Finally, we discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U/t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.« less

  10. Self-Assembly and Electrostriction of Arrays and Chains of Hopfion Particles in Chiral Liquid Crystals

    DOE PAGES

    Ackerman, P. J.; van de Lagemaat, J.; Smalyukh, I. I.

    2015-01-21

    Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains thatmore » exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields.« less

  11. Magnetic-field-induced mixed-level Kondo effect in two-level systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Arturo; Ngo, Anh T.; Ulloa, Sergio E.

    2016-10-17

    We consider a two-orbital impurity system with intra-and interlevel Coulomb repulsion that is coupled to a single conduction channel. This situation can generically occur in multilevel quantum dots or in systems of coupled quantum dots. For finite energy spacing between spin-degenerate orbitals, an in-plane magnetic field drives the system from a local-singlet ground state to a "mixed-level" Kondo regime, where the Zeeman-split levels are degenerate for opposite-spin states. We use the numerical renormalization group approach to fully characterize this mixed-level Kondo state and discuss its properties in terms of the applied Zeeman field, temperature, and system parameters. Under suitable conditions,more » the total spectral function is shown to develop a Fermi-level resonance, so that the linear conductance of the system peaks at a finite Zeeman field while it decreases as a function of temperature. These features, as well as the local moment and entropy contribution of the impurity system, are commensurate with Kondo physics, which can be studied in suitably tuned quantum dot systems.« less

  12. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterberg, F.

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed inmore » an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.« less

  13. Models And Experiments Of Laminar Diffusion Flames In Non-Uniform Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Baker, J.; Varagani, R.; Saito, K.

    2003-01-01

    Non-uniform magnetic fields affect laminar diffusion flames as a result of the paramagnetic and diamagnetic properties of the products and reactants. Paramagnetism is the weak attraction to a magnetic field a material exhibits as a result of permanent magnetic dipole moments in the atoms of the material. Diamagnetism is the weak repulsion to a magnetic field exhibited by a material due to the lack of permanent magnetic dipole moments in the atoms of a material. The forces associated with paramagnetic and diamagnetism are several orders of magnitude less than the forces associated with the more familiar ferromagnetism. A typical example of a paramagnetic gas is oxygen while hydrocarbon fuels and products of combustion are almost always diamagnetic. The fact that magnets can affect flame behavior has been recognized for more than one hundred years. Early speculation was that such behavior was due to the magnetic interaction with the ionized gases associated with a flame. Using a scaling analysis, it was later shown that for laminar diffusion flames the magnetic field/ionized gas interaction was insignificant to the paramagnetic and diamagnetic influences. In this effort, the focus has been on examining laminar diffusion slot flames in the presence of non-uniform upward decreasing magnetic fields produced using permanent magnets. The principal reason for choosing slot flames was mathematical models of such flames show an explicit dependence on gravitational body forces, in the buoyancy-controlled regime, and an applied magnetic field would also impose a body force. In addition, the behavior of such flames was more easily visualized while maintaining the symmetry of the two-dimensional problem whereas it would have been impossible to obtain a symmetric magnetic field around a circular flame and still visually record the flame height and shape along the burner axis. The motivation for choosing permanent magnets to produce the magnetic fields was the assumption that space-related technologies based on the knowledge gained during this investigation would more likely involve permanent magnets as opposed to electromagnets. While no analysis has been done here to quantify the impact that an electric field, associated with an electromagnetic, would have relative to the paramagnetic and diamagnetic interactions, by using permanent magnets this potential effect was completely eliminated and thus paramagnetic and diamagnetic effects were isolated.

  14. Two-dimensional symbiotic solitons and vortices in binary condensates with attractive cross-species interaction

    PubMed Central

    Ma, Xuekai; Driben, Rodislav; Malomed, Boris A.; Meier, Torsten; Schumacher, Stefan

    2016-01-01

    We consider a two-dimensional (2D) two-component spinor system with cubic attraction between the components and intra-species self-repulsion, which may be realized in atomic Bose-Einstein condensates, as well as in a quasi-equilibrium condensate of microcavity polaritons. Including a 2D spatially periodic potential, which is necessary for the stabilization of the system against the critical collapse, we use detailed numerical calculations and an analytical variational approximation (VA) to predict the existence and stability of several types of 2D symbiotic solitons in the spinor system. Stability ranges are found for symmetric and asymmetric symbiotic fundamental solitons and vortices, including hidden-vorticity (HV) modes, with opposite vorticities in the two components. The VA produces exceptionally accurate predictions for the fundamental solitons and vortices. The fundamental solitons, both symmetric and asymmetric ones, are completely stable, in either case when they exist as gap solitons or regular ones. The symmetric and asymmetric vortices are stable if the inter-component attraction is stronger than the intra-species repulsion, while the HV modes have their stability region in the opposite case. PMID:27703235

  15. The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay

    NASA Astrophysics Data System (ADS)

    Lohe, M. A.

    2017-12-01

    We apply the Watanabe-Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.

  16. Long-lived force patterns and deformation waves at repulsive epithelial boundaries

    NASA Astrophysics Data System (ADS)

    Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier

    2017-10-01

    For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.

  17. Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid

    NASA Astrophysics Data System (ADS)

    Oh, Jong-Seok; Choi, Seung-Bok; Lee, Yang-Sub

    2015-02-01

    This work presents a torque measurement method of 3-degree-of-freedom (3-DOF) haptic master featuring controllable electrorheological (ER) fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.

  18. Electrostatic interaction between stereocilia: I. Its role in supporting the structure of the hair bundle.

    PubMed

    Dolgobrodov, S G; Lukashkin, A N; Russell, I J

    2000-12-01

    This paper provides theoretical estimates for the forces of electrostatic interaction between adjacent stereocilia in auditory and vestibular hair cells. Estimates are given for parameters within the measured physiological range using constraints appropriate for the known geometry of the hair bundle. Stereocilia are assumed to possess an extended, negatively charged surface coat, the glycocalyx. Different charge distribution profiles within the glycocalyx are analysed. It is shown that charged glycocalices on the apical surface of the hair cells can support spatial separation between adjacent stereocilia in the hair bundles through electrostatic repulsion between stereocilia. The charge density profile within the glycocalyx is a crucial parameter. In fact, attraction instead of repulsion between adjacent stereocilia will be observed if the charge of the glycocalyx is concentrated near the membrane of the stereocilia, thereby making this type of charge distribution unlikely. The forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena that have been recorded from the periphery of the auditory and vestibular systems.

  19. Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement.

    PubMed

    Zhao, Mengzhen; Wang, Xu; Ren, Shaokang; Xing, Yikang; Wang, Jun; Teng, Nan; Zhao, Dongxia; Liu, Wei; Zhu, Dan; Su, Shao; Shi, Jiye; Song, Shiping; Wang, Lihua; Chao, Jie; Wang, Lianhui

    2017-07-05

    DNA origami has been established as addressable templates for site-specific anchoring of gold nanoparticles (AuNPs). Given that AuNPs are assembled by charged DNA oligonucleotides, it is important to reduce the charge repulsion between AuNPs-DNA and the template to realize high yields. Herein, we developed a cavity-type DNA origami as templates to organize 30 nm AuNPs, which formed dimer and tetramer plasmonic nanostructures. Transmission electron microscopy images showed that high yields of dimer and tetramer plasmonic nanostructures were obtained by using the cavity-type DNA origami as the template. More importantly, we observed significant Raman signal enhancement from molecules covalently attached to the plasmonic nanostructures, which provides a new way to high-sensitivity Raman sensing.

  20. Three-body effects in Casimir-Polder repulsion

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.; Abalo, E. K.; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen Å.; Buhmann, Stefan Yoshi; Scheel, Stefan

    2015-04-01

    In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction between a polarizable atom and a wedge, in which repulsion occurs if the atom is sufficiently anisotropic and close enough to the symmetry plane of the wedge. A similar repulsion occurs if such an atom passes a thin cylinder or a wire. An obvious extension is to compute the interaction between such an atom and two facing wedges, which includes as a special case the interaction of an atom with a conducting screen possessing a slit, or between two parallel wires. To this end we further extend the electromagnetic multiple-scattering formalism for three-body interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between two parallel conducting plates. In that case, three-body effects are shown to be small and are dominated by three- and four-scattering terms. The atom-wedge calculation is illustrated by an analogous scalar situation, described in the Appendix. The wedge-wedge-atom geometry is difficult to analyze because this is a scale-free problem. However, it is not so hard to investigate the three-body corrections to the interaction between an anisotropic atom or nanoparticle and a pair of parallel conducting cylinders and show that the three-body effects are very small and do not affect the Casimir-Polder repulsion at large distances between the cylinders. Finally, we consider whether such highly anisotropic atoms needed for repulsion are practically realizable. Since this appears rather difficult to accomplish, it may be more feasible to observe such effects with highly anisotropic nanoparticles.

  1. Properties and applications of submicron magnetic structures

    NASA Astrophysics Data System (ADS)

    Silevitch, Daniel Marc

    The interactions between an array of magnetic dots and a superconducting thin film were studied using transport measurements and magnetic imaging. The transport measurements examined the enhancement in the pinning of flux vortices when the vortex lattice was commensurate with the dot array. The degradation of the pinning enhancement due to the controlled introduction of disorder into the dot lattice was studied. Enhanced pinning was observed to persist in disordered arrays when the vortex lattice had the same density as the dot lattice. When the vortex density was an integral multiple of the dot lattice density, the enhanced pinning was suppressed with increasing disorder. Magnetic imaging was carried out on superconductors with ordered arrays of pinning sites. The vortices were observed to form regions of local order even when the vortex density was less than the dot density. There were also a significant number of vortices pinned in the interstitials of the dot lattice, indicating that the pinning potential is comparable in strength to the inter-vortex repulsion. The transport properties of ferromagnetic nanowires were also investigated. The behavior of straight nanowires was studied as a function of the magnitude and angle of the applied magnetic field. A model was developed for the magnetization behavior of the nanowire which reproduced the observed transport properties. The magnetic reversal properties were examined and found to be consistent with the curling mode of reversal, and an estimate for the initial nucleation volume was obtained. This behavior was compared to the behavior of mechanically bent nanowires. The bent wires were qualitatively similar to two independent straight wires. The bent wires, however, also showed interaction effects due to the domain configuration that had an effect on the magnetization behavior. An estimate for the energy barrier of nucleating a domain wall in a nanowire was derived from these interaction effects. A resistance contribution due to the domain configuration was isolated; the resistance was found to decrease in the presence of a domain wall.

  2. Effects of humidity on the magnetic and woody characteristics of powder-type magnetic wood

    NASA Astrophysics Data System (ADS)

    Oka, H.; Tokuta, H.; Namizaki, Y.; Sekino, N.

    2004-05-01

    Among three types of proposed magnetic wood, powder-type magnetic wood can be made of recycled magnetic materials from IT devices, consumer electronics and waste wood. Because of its wood powder content, powder-type magnetic wood shows special characteristics different from those of typical magnetic materials. We focused on the relationship between humidity and magnetic characteristics of powder-type magnetic wood. The magnetic powder ratio, wood powder density and magnetic binder density were all examined as parameters for AC permeability.

  3. Structural characterization of a magnetic granular system under a time-dependent magnetic field: Voronoi tessellation and multifractal analysis

    NASA Astrophysics Data System (ADS)

    Moctezuma, R. E.; Arauz-Lara, J. L.; Donado, F.

    2018-04-01

    The structure of a two-dimensional magnetic granular system was determined by multifractal and Voronoi polygon analysis for a wide range of particle concentrations. Randomizing of the particle motions are produced by applying to the system a time-dependent sinusoidal magnetic field directed along the vertical direction. Both repulsive and attractive short-range interactions between the particles are induced. A direct observation of such system shows qualitatively that, as particle concentration increases, the structure evolves from being liquid-like at low particle concentrations to solid-like at high concentrations. We observe the formation of clusters which are small and weakly bonded and short-lived at low concentrations. Above a threshold particle concentration, clusters grow larger and are more strongly attached. In the system, one can distinguish the mobile particles from the immobile particles belonging to clusters, they can be considered separately as two different phases, a fluid and a solid. We determined the information entropy of the system as a whole and separately from each phase as particle concentration increases. The distribution of the Voronoi polygon areas are well fitted by a two-parameter gamma distribution and we have found that the regularity factor shows a notable change when pieces of the solid phase start to form. The methods we use here show that they can use even when the system is heterogeneous and they provide information when changes start.

  4. A novel eddy current damper: theory and experiment

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Babak; Khamesee, Mir Behrad; Golnaraghi, Farid

    2009-04-01

    A novel eddy current damper is developed and its damping characteristics are studied analytically and experimentally. The proposed eddy current damper consists of a conductor as an outer tube, and an array of axially magnetized ring-shaped permanent magnets separated by iron pole pieces as a mover. The relative movement of the magnets and the conductor causes the conductor to undergo motional eddy currents. Since the eddy currents produce a repulsive force that is proportional to the velocity of the conductor, the moving magnet and the conductor behave as a viscous damper. The eddy current generation causes the vibration to dissipate through the Joule heating generated in the conductor part. An accurate, analytical model of the system is obtained by applying electromagnetic theory to estimate the damping properties of the proposed eddy current damper. A prototype eddy current damper is fabricated, and experiments are carried out to verify the accuracy of the theoretical model. The experimental test bed consists of a one-degree-of-freedom vibration isolation system and is used for the frequency and transient time response analysis of the system. The eddy current damper model has a 0.1 m s-2 (4.8%) RMS error in the estimation of the mass acceleration. A damping coefficient as high as 53 Ns m-1 is achievable with the fabricated prototype. This novel eddy current damper is an oil-free, inexpensive damper that is applicable in various vibration isolation systems such as precision machinery, micro-mechanical suspension systems and structure vibration isolation.

  5. Accuracy of embedded fragment calculation for evaluating electron interactions in mixed valence magnetic systems: study of 2e-reduced lindqvist polyoxometalates.

    PubMed

    Suaud, Nicolas; López, Xavier; Ben Amor, Nadia; Bandeira, Nuno A G; de Graaf, Coen; Poblet, Josep M

    2015-02-10

    Accurate quantum chemical calculations on real-world magnetic systems are challenging, the inclusion of electron correlation being the bottleneck of such task. One method proposed to overcome this difficulty is the embedded fragment approach. It tackles a chemical problem by dividing it into small fragments, which are treated in a highly accurate way, surrounded by an embedding included at an approximate level. For the vast family of medium-to-large sized polyoxometalates, two-electron-reduced systems are habitual and their magnetic properties are interesting. In this paper, we aim at assessing the quality of embedded fragment calculations by checking their ability to reproduce the electronic spectra of a complete system, here the mixed-metal series [MoxW6-xO19](4-) (x = 0-6). The microscopic parameters extracted from fragment calculations (electron hopping, intersite electrostatic repulsion, local orbital energy, etc.) have been used to reproduce the spectra through model Hamiltonian calculations. These energies are compared to the results of the highly accurate ab initio difference dedicated configuration interaction (DDCI) method on the complete system. In general, the model Hamiltonian calculations using parameters extracted from embedded fragments nearly exactly reproduce the DDCI spectra. This is quite an important result since it can be generalized to any inorganic magnetic system. Finally, the occurrence of singlet or triplet ground states in the series of molecules studied is rationalized upon the interplay of the parameters extracted.

  6. Out-of-equilibrium dynamics and extended textures of topological defects in spin ice

    NASA Astrophysics Data System (ADS)

    Udagawa, M.; Jaubert, L. D. C.; Castelnovo, C.; Moessner, R.

    2016-09-01

    Memory effects have been observed across a wide range of geometrically frustrated magnetic materials, possibly including Pr2Ir2O7 where a spontaneous Hall effect has been observed. Frustrated magnets are also famous for the emergence of topological defects. Here we explore how the interaction between these defects can be responsible for a rich diversity of out-of-equilibrium dynamics, dominated by topological bottlenecks and multiscale energy barriers. Our model is an extension of the spinice model on the pyrochlore lattice, where farther-neighbor spin interactions give rise to a nearest-neighbor coupling between topological defects. This coupling can be chosen to be "unnatural" or not, i.e., attractive or repulsive between defects carrying the same topological charge. After applying a field quench, our model supports, for example, long-lived magnetization plateaux, and allows for the metastability of a "fragmented" spin liquid, an unconventional phase of matter where long-range order co-exists with a spin liquid. Perhaps most strikingly, the attraction between same-sign charges produces clusters of these defects in equilibrium, whose stability is due to a combination of energy and topological barriers. These clusters may take the form of a "jellyfish" spin texture, centered on a hexagonal ring with branches of arbitrary length. The ring carries a clockwise or counterclockwise circular flow of magnetization. This emergent toroidal degrees of freedom provide a possibility for time-reversal symmetry breaking with potential relevance to the spontaneous Hall effect observed in Pr2Ir2O7 .

  7. Study on a kind of ϕ-Laplacian Liénard equation with attractive and repulsive singularities.

    PubMed

    Xin, Yun; Cheng, Zhibo

    2017-01-01

    In this paper, by application of the Manasevich-Mawhin continuation theorem, we investigate the existence of a positive periodic solution for a kind of ϕ -Laplacian singular Liénard equation with attractive and repulsive singularities.

  8. On spatial attention and its field size on the repulsion effect

    PubMed Central

    Cutrone, Elizabeth K.; Heeger, David J.; Carrasco, Marisa

    2018-01-01

    We investigated the attentional repulsion effect—stimuli appear displaced further away from attended locations—in three experiments: one with exogenous (involuntary) attention, and two with endogenous (voluntary) attention with different attention-field sizes. It has been proposed that differences in attention-field size can account for qualitative differences in neural responses elicited by attended stimuli. We used psychophysical comparative judgments and manipulated either exogenous attention via peripheral cues or endogenous attention via central cues and a demanding rapid serial visual presentation task. We manipulated the attention field size of endogenous attention by presenting streams of letters at two specific locations or at two of many possible locations during each block. We found a robust attentional repulsion effect in all three experiments: with endogenous and exogenous attention and with both attention-field sizes. These findings advance our understanding of the influence of spatial attention on the perception of visual space and help relate this repulsion effect to possible neurophysiological correlates.

  9. Quasi-one-dimensional spin-orbit- and Rabi-coupled bright dipolar Bose-Einstein-condensate solitons

    NASA Astrophysics Data System (ADS)

    Chiquillo, Emerson

    2018-01-01

    We study the formation of stable bright solitons in quasi-one-dimensional (quasi-1D) spin-orbit- (SO-) and Rabi-coupled two pseudospinor dipolar Bose-Einstein condensates (BECs) of 164Dy atoms in the presence of repulsive contact interactions. As a result of the combined attraction-repulsion effect of both interactions and the addition of SO and Rabi couplings, two kinds of ground states in the form of self-trapped bright solitons can be formed, a plane-wave soliton (PWS) and a stripe soliton (SS). These quasi-1D solitons cannot exist in a condensate with purely repulsive contact interactions and SO and Rabi couplings (no dipole). Neglecting the repulsive contact interactions, our findings also show the possibility of creating PWSs and SSs. When the strengths of the two interactions are close to each other, the SS develops an oscillatory instability indicating a possibility of a breather solution, eventually leading to its destruction. We also obtain a phase diagram showing regions where the solution is a PWS or SS.

  10. Thermal fluctuations and stability of a particle levitated by a repulsive Casimir force in a liquid.

    PubMed

    Inui, Norio; Goto, Kosuke

    2013-11-01

    We study the vertical Brownian motion of a gold particle levitated by a repulsive Casimir force to a silica plate immersed in bromobenzene. The time evolution of the particle distribution starting from an equilibrium position, where the Casimir force and gravitational force are balanced, is considered by solving the Langevin equation using the Monte Carlo method. When the gold particle is very close to the silica plate, the Casimir force changes from repulsive to attractive, and the particle eventually sticks to the surface. The escape rate from a metastable position is calculated by solving the Fokker-Plank equation; it agrees with the value obtained by Kramers' escape theory. The duration of levitation increases as the particle radius increases up to around 2.3 μm. As an example, we show that a 1-μm-diameter gold particle can be levitated for a significantly long time by the repulsive Casimir force at room temperature.

  11. Measured long-range repulsive Casimir-Lifshitz forces.

    PubMed

    Munday, J N; Capasso, Federico; Parsegian, V Adrian

    2009-01-08

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction.

  12. Classical dimer model with anisotropic interactions on the square lattice

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi

    2009-07-01

    We discuss phase transitions and the phase diagram of a classical dimer model with anisotropic interactions defined on a square lattice. For the attractive region, the perturbation of the orientational order parameter introduced by the anisotropy causes the Berezinskii-Kosterlitz-Thouless transitions from a dimer-liquid to columnar phases. According to the discussion by Nomura and Okamoto for a quantum-spin chain system [J. Phys. A 27, 5773 (1994)], we proffer criteria to determine transition points and also universal level-splitting conditions. Subsequently, we perform numerical diagonalization calculations of the nonsymmetric real transfer matrices up to linear dimension specified by L=20 and determine the global phase diagram. For the repulsive region, we find the boundary between the dimer-liquid and the strong repulsion phases. Based on the dispersion relation of the one-string motion, which exhibits a twofold “zero-energy flat band” in the strong repulsion limit, we give an intuitive account for the property of the strong repulsion phase.

  13. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner.

    PubMed

    Wilson, Nicole H; Stoeckli, Esther T

    2013-08-07

    Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Emergent Fermi Sea in A System of Interacting Bosons

    NASA Astrophysics Data System (ADS)

    Wu, Yinghai; Jain, Jainendra

    2015-03-01

    An understanding of the possible ways in which interactions can produce fundamentally new emergent many-body states is a central problem of condensed matter physics. We ask if a Fermi sea can arise in a system of bosons subject to contact interaction. Based on exact diagonalization studies and variational wave functions, we predict that such a state is likely to occur when a system of two-component bosons in two dimensions, interacting via a species independent contact interaction, is exposed to a synthetic magnetic field of strength that corresponds to a filling factor of unity. The bosons each bind a single vortex as a result of the repulsive interaction, and these fermionic bound states, namely composite fermions, form a spin-singlet Fermi sea. Financial support from the DOE under Grant No. DE-SC0005042.

  15. Dielectric response of Anderson and pseudogapped insulators

    NASA Astrophysics Data System (ADS)

    Feigel’man, M. V.; Ivanov, D. A.; Cuevas, E.

    2018-05-01

    Using a combination of analytic and numerical methods, we study the polarizability of a (non-interacting) Anderson insulator in one-, two-, and three-dimensions and demonstrate that, in a wide range of parameters, it scales proportionally to the square of the localization length, contrary to earlier claims based on the effective-medium approximation. We further analyze the effect of electron–electron interactions on the dielectric constant in quasi-1D, quasi-2D and 3D materials with large localization length, including both Coulomb repulsion and phonon-mediated attraction. The phonon-mediated attraction (in the pseudogapped state on the insulating side of the superconductor-insulator transition) produces a correction to the dielectric constant, which may be detected from a linear response of a dielectric constant to an external magnetic field.

  16. Casimir effect and radiative heat transfer between Chern Insulators

    NASA Astrophysics Data System (ADS)

    Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego

    2015-03-01

    Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.

  17. Emerging magnetism and anomalous Hall effect in iridate–manganite heterostructures

    PubMed Central

    Nichols, John; Gao, Xiang; Lee, Shinbuhm; Meyer, Tricia L.; Freeland, John W.; Lauter, Valeria; Yi, Di; Liu, Jian; Haskel, Daniel; Petrie, Jonathan R.; Guo, Er-Jia; Herklotz, Andreas; Lee, Dongkyu; Ward, Thomas Z.; Eres, Gyula; Fitzsimmons, Michael R.; Lee, Ho Nyung

    2016-01-01

    Strong Coulomb repulsion and spin–orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Here we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO3 and the 5d paramagnetic metal SrIrO3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. These findings show that low dimensional spin–orbit entangled 3d–5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials. PMID:27596572

  18. Mapping repulsive to attractive interaction in driven-dissipative quantum systems

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Koch, Jens

    2017-11-01

    Repulsive and attractive interactions usually lead to very different physics. Striking exceptions exist in the dynamics of driven-dissipative quantum systems. For the example of a photonic Bose-Hubbard dimer, we establish a one-to-one mapping relating cases of onsite repulsion and attraction. We prove that the mapping is valid for an entire class of Markovian open quantum systems with a time-reversal-invariant Hamiltonian and physically meaningful inverse-sign Hamiltonian. To underline the broad applicability of the mapping, we illustrate the one-to-one correspondence between the nonequilibrium dynamics in a geometrically frustrated spin lattice and those in a non-frustrated partner lattice.

  19. High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.

    PubMed

    Illuminati, Fabrizio; Albus, Alexander

    2004-08-27

    We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions.

  20. Embedding beyond electrostatics-The role of wave function confinement.

    PubMed

    Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob

    2016-09-14

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.

  1. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less

  2. Repulsive nature of optical potentials for high-energy heavy-ion scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.

    2010-10-15

    The recent works by the present authors predicted that the real part of heavy-ion optical potentials changes its character from attraction to repulsion around the incident energy per nucleon E/A=200-300 MeV on the basis of the complex G-matrix interaction and the double-folding model (DFM) and revealed that the three-body force plays an important role there. In the present paper, we have precisely analyzed the energy dependence of the calculated DFM potentials and its relation to the elastic-scattering angular distributions in detail in the case of the {sup 12}C+{sup 12}C system in the energy range of E/A=100-400 MeV. The tensor forcemore » contributes substantially to the energy dependence of the real part of the DFM potentials and plays an important role to lower the attractive-to-repulsive transition energy. The nearside and farside (N/F) decompositions of the elastic-scattering amplitudes clarify the close relation between the attractive-to-repulsive transition of the potentials and the characteristic evolution of the calculated angular distributions with the increase of the incident energy. Based on the present analysis, we propose experimental measurements for the predicted strong diffraction phenomena of the elastic-scattering angular distribution caused by the N/F interference around the attractive-to-repulsive transition energy together with the reduced diffractions below and above the transition energy.« less

  3. Acidic pH retards the fibrillization of human Islet Amyloid Polypeptide due to electrostatic repulsion of histidines.

    PubMed

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z H

    2013-08-07

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  4. Sorption of organic phosphates and its effects on aggregation of hematite nanoparticles in monovalent and bivalent solutions.

    PubMed

    Xu, Chen-Yang; Li, Jiu-Yu; Xu, Ren-Kou; Hong, Zhi-Neng

    2017-03-01

    Sorption of organic phosphates-myo-inositol hexakisphosphate (IHP) and glycerol phosphate (GP) and its effects on the early stage of hematite aggregation kinetics were investigated at different pH and electrolyte composition. KH 2 PO 4 (KP) was taken as an inorganic P source for comparison. Results indicated that for all types of P, the sorption amounts decreased with increasing solution pH. Sorption amount of IHP was almost two times that of KP, while those of GP and KP were close. Both organic P and inorganic P interacted with hematite via ligand exchange through their phosphate groups, which conveyed negative charges to mineral surface and significantly decreased the zeta potential of hematite. In Na + solution, critical coagulation concentrations (CCCs) of hematite suspensions increased with increasing P concentration and followed the order of KP < GP < IHP at pH 5.5. Compared with KP, the organic P could more effectively stabilize the hematite suspension not only through increasing the negative charges and electrostatic repulsive force, but also through steric repulsion between P-sorbed hematite nanoparticles. When the pH was increased from 5.5 to 10.0, the CCCs of the hematite suspensions with GP and IHP decreased mainly because of the great reductions in organic P sorption amounts and consequent decreases in electrostatic and steric repulsive forces. However, enhanced aggregation was observed in the presence of IHP at pH 4.5 and above in low Ca 2+ solutions. The precipitation of calcium phytate formed net-like structure, which served as bridges to bind hematite nanoparticles and resulted in enhanced aggregation. These results have important implications for assessing the fate and transport of organic P and hematite nanoparticles in soil and aquatic environments.

  5. Indians Repulse British With Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the early introduction of rockets to Europe, they were used only as weapons. Enemy troops in India repulsed the British with rockets. Later, in Britain, Sir William Congreve developed a rocket that could fire to about 9,000 feet. The British fired Congreve rockets against the United States in the War of 1812.

  6. Dynamic and programmable self-assembly of micro-rafts at the air-water interface

    PubMed Central

    Wang, Wendong; Giltinan, Joshua; Zakharchenko, Svetlana; Sitti, Metin

    2017-01-01

    Dynamic self-assembled material systems constantly consume energy to maintain their spatiotemporal structures and functions. Programmable self-assembly translates information from individual parts to the collective whole. Combining dynamic and programmable self-assembly in a single platform opens up the possibilities to investigate both types of self-assembly simultaneously and to explore their synergy. This task is challenging because of the difficulty in finding suitable interactions that are both dissipative and programmable. We present a dynamic and programmable self-assembling material system consisting of spinning at the air-water interface circular magnetic micro-rafts of radius 50 μm and with cosinusoidal edge-height profiles. The cosinusoidal edge-height profiles not only create a net dissipative capillary repulsion that is sustained by continuous torque input but also enable directional assembly of micro-rafts. We uncover the layered arrangement of micro-rafts in the patterns formed by dynamic self-assembly and offer mechanistic insights through a physical model and geometric analysis. Furthermore, we demonstrate programmable self-assembly and show that a 4-fold rotational symmetry encoded in individual micro-rafts translates into 90° bending angles and square-based tiling in the assembled structures of micro-rafts. We anticipate that our dynamic and programmable material system will serve as a model system for studying nonequilibrium dynamics and statistical mechanics in the future. PMID:28560332

  7. Dynamic and programmable self-assembly of micro-rafts at the air-water interface.

    PubMed

    Wang, Wendong; Giltinan, Joshua; Zakharchenko, Svetlana; Sitti, Metin

    2017-05-01

    Dynamic self-assembled material systems constantly consume energy to maintain their spatiotemporal structures and functions. Programmable self-assembly translates information from individual parts to the collective whole. Combining dynamic and programmable self-assembly in a single platform opens up the possibilities to investigate both types of self-assembly simultaneously and to explore their synergy. This task is challenging because of the difficulty in finding suitable interactions that are both dissipative and programmable. We present a dynamic and programmable self-assembling material system consisting of spinning at the air-water interface circular magnetic micro-rafts of radius 50 μm and with cosinusoidal edge-height profiles. The cosinusoidal edge-height profiles not only create a net dissipative capillary repulsion that is sustained by continuous torque input but also enable directional assembly of micro-rafts. We uncover the layered arrangement of micro-rafts in the patterns formed by dynamic self-assembly and offer mechanistic insights through a physical model and geometric analysis. Furthermore, we demonstrate programmable self-assembly and show that a 4-fold rotational symmetry encoded in individual micro-rafts translates into 90° bending angles and square-based tiling in the assembled structures of micro-rafts. We anticipate that our dynamic and programmable material system will serve as a model system for studying nonequilibrium dynamics and statistical mechanics in the future.

  8. Skyrmion dynamics in width-varying nanotracks and implications for skyrmionic applications

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Kang, Wang; Zhu, Daoqian; Zhang, Xichao; Lei, Na; Zhang, Youguang; Zhou, Yan; Zhao, Weisheng

    2017-11-01

    A comprehensive study of the magnetic skyrmion dynamics in terms of size, velocity, energy, and stability in width-varying nanotracks is reported by micromagnetic simulations. We find that the diameter of a skyrmion reduces with the decrease in the nanotrack width in the spin Hall effect (SHE)-induced skyrmion motion. Accordingly, the skyrmion energy increases giving rise to the growing instability of the skyrmion. It is also numerically demonstrated that the velocity of the skyrmion varies during the motion, since the repulsive force of the nanotrack edges acting on the skyrmion as well as the driving force created by the SHE associated with the size of the skyrmion have a joint impact on the skyrmion motion dynamics in the width-varying nanotrack. In addition, one interesting finding reveals that skyrmions with small sizes, which may be inaccessible to typical approaches by means of directly injecting a spin-polarized current, could be obtained by utilizing this structure. This finding is potential for generating nanoscale skyrmions in skyrmionic applications with ultra-dense density. Finally, inspired by the skyrmion dynamics in the width-varying nanotrack, a general summary on the tradeoff between the nanotrack width (storage density) and the skyrmion velocity (data access speed) is given by further analyzing the skyrmion dynamics in parallel nanotracks with different widths, which may provide guidelines in designing racetrack-type skyrmionic applications.

  9. Understanding Dark Energy

    NASA Astrophysics Data System (ADS)

    Greyber, Howard

    2009-11-01

    By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum region between Superclusters also plays a role in adding extra repulsive gravity force. Note that cosmologist Stephen Hawking comments on his website that ``There is no reason to rule out negative pressure. This is just tension.''

  10. Robust High-Resolution Cloth Using Parallelism, History-Based Collisions and Accurate Friction

    PubMed Central

    Selle, Andrew; Su, Jonathan; Irving, Geoffrey; Fedkiw, Ronald

    2015-01-01

    In this paper we simulate high resolution cloth consisting of up to 2 million triangles which allows us to achieve highly detailed folds and wrinkles. Since the level of detail is also influenced by object collision and self collision, we propose a more accurate model for cloth-object friction. We also propose a robust history-based repulsion/collision framework where repulsions are treated accurately and efficiently on a per time step basis. Distributed memory parallelism is used for both time evolution and collisions and we specifically address Gauss-Seidel ordering of repulsion/collision response. This algorithm is demonstrated by several high-resolution and high-fidelity simulations. PMID:19147895

  11. Thermodynamic curvature for attractive and repulsive intermolecular forces

    NASA Astrophysics Data System (ADS)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2013-09-01

    The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.

  12. Dark matter repulsion could thwart direct detection

    DOE PAGES

    Davoudiasl, Hooman

    2017-11-20

    We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less

  13. Dark matter repulsion could thwart direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, Hooman

    We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less

  14. Antiswarming: Structure and dynamics of repulsive chemically active particles

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John F.

    2017-12-01

    Chemically active Brownian particles with surface catalytic reactions may repel each other due to diffusiophoretic interactions in the reaction and product concentration fields. The system behavior can be described by a "chemical" coupling parameter Γc that compares the strength of diffusiophoretic repulsion to Brownian motion, and by a mapping to the classical electrostatic one component plasma (OCP) system. When confined to a constant-volume domain, body-centered cubic (bcc) crystals spontaneously form from random initial configurations when the repulsion is strong enough to overcome Brownian motion. Face-centered cubic (fcc) crystals may also be stable. The "melting point" of the "liquid-to-crystal transition" occurs at Γc≈140 for both bcc and fcc lattices.

  15. Comparison and evaluation of leakage flux on various types of dental magnetic attachment.

    PubMed

    Nishida, M; Tegawa, Y; Kinouchi, Y

    2008-01-01

    A dental magnetic attachment is a device to retain dental prostheses such as overdentures by magnetic attraction. As compared with mechanical attachments, the dental magnetic attachment has superior characteristics such as easy insertion, good esthetics and less lateral pressure to its abutment tooth. As a result, it has come to be used widely. There are various types of dental magnetic attachments. There are a cup type and a sandwich type in Japan, and several types of dental magnetic attachments in other countries. They are used for a long term in the mouth, it is necessary to clarify those leakage magnetic fields. Therefore, in this paper, we evaluate the leakage magnetic fields leaking out of sandwich type and open magnetic circuit type of dental magnetic attachment.

  16. Was Dick Tracy Right? Do Magnetic Fields Rule the Cosmos?

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.

    2007-12-01

    Astronomers generally subordinate magnetic forces to gravitational ones at all but the smallest scales. The 'Dual Proposal', however, introduces a new scale, λo=400 pc [1]. Here the photon has a real mass and the graviton an imaginary one, both of mc2=hc/λo = 10 - 25 eV. The resulting sinusoidal gravitational potential (φ = - (GM/r) Cos[kor], ko=2 π/λo) does not compromise solar system dynamics, explains the large tidal forces observed in the Milky Way, and predicts that the Galaxy has a central, physical stationary bar. The sinusoidal potential is powerless to bind large amorphous objects such as clusters of galaxies (or the Universe itself). Here one needs the massive photon (φ = (Q/r) Exp[- kor]). Chibisov (1976) has shown that at large scales (s>>λo), a massive photon will generally provide an attractive force rather than the usual repulsive one of the massless photon. At recent meetings of the AAS I have shown how the new cosmic magnetic fields can bind the Coma cluster or strip the gas (and plasma) from the stars in the Bullet Collision (Clowe et al 2006). In this poster, I demonstrate how magnetic fields can replace gravitational ones in cosmology. Two elements are critical. The Dark Ages are needed to explain the evolution of the scale factor a(t) from the time of nucleosynthesis to the present. Gravitational energy densities (ΔW/ΔV= (1/2) ρφ ) and magnetic energy densities (ΔW/ΔV= (1/2) J.A ) are now absolute and thus meaningful. Ref [1]: "Analogies between electricity and gravity", Metrologia 41 (2004) S115-S124.

  17. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = μ cos φ dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/dθ in polar coordinates, where the force Fθ depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary power for magnetic field switching device can be achieved in order to deflect the rotor magnet in transit. The Wiegand effect itself (bistable FeCoV wire called "Vicalloy") invented by John Wiegand (Switchable Magnetic Device, US Patent ♯4,247,601), utilizing Barkhausen jumps of magnetic domains, is also applied for a similar achievement (Dilatush, 1977). Conventional approaches for spiral magnetic gradient force production have not been adequate for magnetostatic motors to perform useful work. It is proposed that integrating a magnetic force control device with a spiral stator inhomogeneous axial magnetic field motor is a viable approach to add a sufficient nonlinear boundary shift to apply the angular momentum and potential energy gained in 315 degrees of the motor cycle.

  18. Understanding the surface properties and rheology of a silica suspension mediated by a comb-type poly(acrylic acid)/poly(ethylene oxide) (PAA/PEO) copolymer: effect of salinity.

    PubMed

    Yang, Dingzheng; Yan, Bin; Xiang, Li; Xu, Haolan; Wang, Xiaogang; Zeng, Hongbo

    2018-06-13

    Understanding the surface properties and rheology of colloidal suspensions in the presence of polymer additives with high salinity are of great importance in formulating construction materials and optimizing process conditions in the mining and petroleum industry. In this work, the surface properties and rheology of a model spherical silica aqueous suspension mediated by a comb-type poly(acrylic acid)/poly(ethylene oxide) (PAA/PEO) copolymer at various salt concentrations have been investigated. Adsorption measurements using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) align well with zeta potential tests and show that polymer adsorption on silica surfaces is enhanced at high salinity (i.e., 3 M NaCl) than at low salinity (i.e., 1 mM NaCl) due to the suppression of the electrical double layer. Surface Forces Apparatus (SFA) measurements reveal that for interactions between two mica surfaces (the basal plane of which has a similar structure as silica) at a high polymer concentration (e.g., 2 wt%), steric repulsion dominates in 1 mM NaCl while bridging attraction is observed in 3 M NaCl. Surface force measurements agree with rheological results on silica suspensions with 0.5 to 2 wt% of PAA/PEO addition, which shows a significant decrease in yield stress in 1 mM NaCl due to steric repulsion but an insignificant variation in yield stress in 3 M NaCl due to attractive bridging interactions. This work provides useful information regarding the surface properties and rheological properties of comb-type polymer-mediated silica suspensions under different salinity conditions, with implications on designing and processing complex colloidal suspensions with polymer additives for various applications.

  19. system

    NASA Astrophysics Data System (ADS)

    Garcilazo, H.; Valcarce, A.; Vijande, J.

    2017-07-01

    Using local central Yukawa-type Malfliet-Tjon interactions reproducing the low-energy parameters and phase shifts of the nn system, and the latest updates of the nΛ and ΛΛ Nijmegen ESC08c potentials, we study the possible existence of a bound state. Our results indicate that the is unbound, being just above threshold. We discuss the role played by the 1 S 0 nn repulsive term of the Yukawa-type Malfliet-Tjon interaction. Supported by COFAA-IPN (México), Ministerio de Economía, Industria y Competitividad and EU FEDER (FPA2013-47443, FPA2015-69714-REDT, FPA2016-77177), Junta de Castilla y León (SA041U16) and Generalitat Valenciana PrometeoII/2014/066

  20. Gauge field back reaction on a black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, D.; Kephart, T.W.

    1993-02-15

    The order-[h bar] fluctuations of gauge fields in the vicinity of a black hole can create a repulsive antigravity region extending out beyond the renormalized Schwarzschild horizon. If the strength of this repulsive force increases as higher orders in the back reaction are included, the formation of a wormholelike object could occur.

  1. Electron Pairing, Repulsion, and Correlation: A Simplistic Approach

    ERIC Educational Resources Information Center

    Olsson, Lars-Fride; Kloo, Lars

    2004-01-01

    The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.

  2. Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion

    PubMed Central

    Gundry, Christine; Marco, Sergi; Rainero, Elena; Miller, Bryan; Dornier, Emmanuel; Mitchell, Louise; Caswell, Patrick T.; Campbell, Andrew D.; Hogeweg, Anna; Sansom, Owen J.; Morton, Jennifer P.; Norman, Jim C.

    2017-01-01

    The Rab GTPase effector, Rab-coupling protein (RCP) is known to promote invasive behaviour in vitro by controlling integrin and receptor tyrosine kinase (RTK) trafficking, but how RCP influences metastasis in vivo is unclear. Here we identify an RTK of the Eph family, EphA2, to be a cargo of an RCP-regulated endocytic pathway which controls cell:cell repulsion and metastasis in vivo. Phosphorylation of RCP at Ser435 by Lemur tyrosine kinase-3 (LMTK3) and of EphA2 at Ser897 by Akt are both necessary to promote Rab14-dependent (and Rab11-independent) trafficking of EphA2 which generates cell:cell repulsion events that drive tumour cells apart. Genetic disruption of RCP or EphA2 opposes cell:cell repulsion and metastasis in an autochthonous mouse model of pancreatic adenocarcinoma—whereas conditional knockout of another RCP cargo, α5 integrin, does not suppress pancreatic cancer metastasis—indicating a role for RCP-dependent trafficking of an Eph receptor to drive tumour dissemination in vivo. PMID:28294115

  3. The evolution processes of DNA sequences, languages and carols

    NASA Astrophysics Data System (ADS)

    Hauck, Jürgen; Henkel, Dorothea; Mika, Klaus

    2001-04-01

    The sequences of bases A, T, C and G of about 100 enolase, secA and cytochrome DNA were analyzed for attractive or repulsive interactions by the numbers T 1,T 2,T 3; r of nearest, next-nearest and third neighbor bases of the same kind and the concentration r=other bases/analyzed base. The area of possible T1, T2 values is limited by the linear borders T 2=2T 1-2, T 2=0 or T1=0 for clustering, attractive or repulsive interactions and the border T2=-2 T1+2(2- r) for a variation from repulsive to attractive interactions at r⩽2. Clustering is preferred by most bases in sequences of enolases and secA’ s. Major deviations with repulsive interactions of some bases are observed for archaea bacteria in secA and for highly developed animals and the human species in enolase sequences. The borders of the structure map for enthalpy stabilized structures with maximum interactions are approached in few cases. Most letters of the natural languages and some music notes are at the borders of the structure map.

  4. Measured long-range repulsive Casimir–Lifshitz forces

    PubMed Central

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  5. Single-particle potential of the Λ hyperon in nuclear matter with chiral effective field theory NLO interactions including effects of Y N N three-baryon interactions

    NASA Astrophysics Data System (ADS)

    Kohno, M.

    2018-03-01

    Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.

  6. Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.

    PubMed

    Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R

    2016-07-12

    In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.

  7. An Adaptation-Induced Repulsion Illusion in Tactile Spatial Perception

    PubMed Central

    Li, Lux; Chan, Arielle; Iqbal, Shah M.; Goldreich, Daniel

    2017-01-01

    Following focal sensory adaptation, the perceived separation between visual stimuli that straddle the adapted region is often exaggerated. For instance, in the tilt aftereffect illusion, adaptation to tilted lines causes subsequently viewed lines with nearby orientations to be perceptually repelled from the adapted orientation. Repulsion illusions in the nonvisual senses have been less studied. Here, we investigated whether adaptation induces a repulsion illusion in tactile spatial perception. In a two-interval forced-choice task, participants compared the perceived separation between two point-stimuli applied on the forearms successively. Separation distance was constant on one arm (the reference) and varied on the other arm (the comparison). In Experiment 1, we took three consecutive baseline measurements, verifying that in the absence of manipulation, participants’ distance perception was unbiased across arms and stable across experimental blocks. In Experiment 2, we vibrated a region of skin on the reference arm, verifying that this focally reduced tactile sensitivity, as indicated by elevated monofilament detection thresholds. In Experiment 3, we applied vibration between the two reference points in our distance perception protocol and discovered that this caused an illusory increase in the separation between the points. We conclude that focal adaptation induces a repulsion aftereffect illusion in tactile spatial perception. The illusion provides clues as to how the tactile system represents spatial information. The analogous repulsion aftereffects caused by adaptation in different stimulus domains and sensory systems may point to fundamentally similar strategies for dynamic sensory coding. PMID:28701936

  8. Coercivity temperature dependence of Sm2Co17-type sintered magnets with different cell and cell boundary microchemistry

    NASA Astrophysics Data System (ADS)

    Yu, Nengjun; Zhu, Minggang; Song, Liwei; Fang, Yikun; Song, KuiKui; Wang, Qiang; Li, Wei

    2018-04-01

    High maximum energy product ((BH)max) Sm(CobalFe0.18Cu0.07Zr0.03)7.7 magnet (type-A) and high temperature Sm(CobalFe0.1Cu0.09Zr0.03)7.2 magnet (type-B) were prepared by a traditional powder metallurgical technology. A record (BH)max of 98.7 kJ/m3 with a coercivity (Hcj) of 501.5 kA/m at 773 K was achieved for the type-B magnet, which is much higher than that of type-A magnet (63.7 kJ/m3). The microstructures of the magnets were revealed by high-resolution transmission electron microscope. The average cell size of the type-A and B magnet are 110 nm and 90 nm, respectively. Moreover, the type-B magnet shows a wider cell boundary than the type-A magnet. Additionally, the element distribution of the cell/cell boundary interfaces was measured by energy-dispersive spectroscopy. The cell phase of the type-A magnet contains a higher Fe content as about 17 at%, comparing with that of the type-B magnet (∼8.9 at%). On the other hand, the Cu content of the cell boundary phase is 18 at% almost twice higher than the type-B magnet (8.6 at%). Theoretical Hcj temperature dependence of these two kinds of magnets indicates that the lower Cu content in the cell boundary phase and the appropriate Fe content in the cell phase are the key factors for the high Hcj for the type-B magnet at elevated temperature.

  9. Rivalry of homeostatic and sensory-evoked emotions: Dehydration attenuates olfactory disgust and its neural correlates.

    PubMed

    Meier, Lea; Friedrich, Hergen; Federspiel, Andrea; Jann, Kay; Morishima, Yosuke; Landis, Basile Nicolas; Wiest, Roland; Strik, Werner; Dierks, Thomas

    2015-07-01

    Neural correlates have been described for emotions evoked by states of homeostatic imbalance (e.g. thirst, hunger, and breathlessness) and for emotions induced by external sensory stimulation (such as fear and disgust). However, the neurobiological mechanisms of their interaction, when they are experienced simultaneously, are still unknown. We investigated the interaction on the neurobiological and the perceptional level using subjective ratings, serum parameters, and functional magnetic resonance imaging (fMRI) in a situation of emotional rivalry, when both a homeostatic and a sensory-evoked emotion were experienced at the same time. Twenty highly dehydrated male subjects rated a disgusting odor as significantly less repulsive when they were thirsty. On the neurobiological level, we found that this reduction in subjective disgust during thirst was accompanied by a significantly reduced neural activity in the insular cortex, a brain area known to be considerably involved in processing of disgust. Furthermore, during the experience of disgust in the satiated condition, we observed a significant functional connectivity between brain areas responding to the disgusting odor, which was absent during the stimulation in the thirsty condition. These results suggest interference of conflicting emotions: an acute homeostatic imbalance can attenuate the experience of another emotion evoked by the sensory perception of a potentially harmful external agent. This finding offers novel insights with regard to the behavioral relevance of biologically different types of emotions, indicating that some types of emotions are more imperative for behavior than others. As a general principle, this modulatory effect during the conflict of homeostatic and sensory-evoked emotions may function to safeguard survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  11. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.

    PubMed

    Xia, Yin; Cortez-Retamozo, Virna; Niederkofler, Vera; Salie, Rishard; Chen, Shanzhuo; Samad, Tarek A; Hong, Charles C; Arber, Silvia; Vyas, Jatin M; Weissleder, Ralph; Pittet, Mikael J; Lin, Herbert Y

    2011-02-01

    Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.

  12. Mean-field behavior in coupled oscillators with attractive and repulsive interactions.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2012-05-01

    We consider a variant of the Kuramoto model of coupled oscillators in which both attractive and repulsive pairwise interactions are allowed. The sign of the coupling is assumed to be a characteristic of a given oscillator. Specifically, some oscillators repel all the others, thus favoring an antiphase relationship with them. Other oscillators attract all the others, thus favoring an in-phase relationship. The Ott-Antonsen ansatz is used to derive the exact low-dimensional dynamics governing the system's long-term macroscopic behavior. The resulting analytical predictions agree with simulations of the full system. We explore the effects of changing various parameters, such as the width of the distribution of natural frequencies and the relative strengths and proportions of the positive and negative interactions. For the particular model studied here we find, unexpectedly, that the mixed interactions produce no new effects. The system exhibits conventional mean-field behavior and displays a second-order phase transition like that found in the original Kuramoto model. In contrast to our recent study of a different model with mixed interactions [Phys. Rev. Lett. 106, 054102 (2011)], the π state and traveling-wave state do not appear for the coupling type considered here.

  13. Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Huang, Biao; Zhang, Qi; Lu, Xilin

    2018-05-01

    Eddy-current tuned mass dampers (EC-TMDs) are non-contacting passive control devices and are developed on the basis of conventional tuned mass dampers. They comprise a solid mass, a stiffness element, and a damping element, wherein the damping mechanism originates from eddy currents. By relative motion between a non-magnetic conductive metal and a permanent magnet in a dynamic system, a time-varying magnetic field is induced in the conductor, thereby generating eddy currents. The eddy currents induce a magnetic field with opposite polarity, causing repulsive forces, i.e., damping forces. This technology can overcome the drawbacks of conventional tuned mass dampers, such as limited service life, deterioration of mechanical properties, and undesired additional stiffness. The experimental and analytical study of this system installed on a multi-degree-of-freedom structure is presented in this paper. A series of shaking table tests were conducted on a five-story steel-frame model with/without an EC-TMD to evaluate the effectiveness and performance of the EC-TMD in suppressing the vibration of the model under seismic excitations. The experimental results show that the EC-TMD can effectively reduce the displacement response, acceleration response, interstory drift ratio, and maximum strain of the columns under different earthquake excitations. Moreover, an analytical method was proposed on the basis of electromagnetic and structural dynamic theories. A comparison between the test and simulation results shows that the simulation method can be used to estimate the response of structures with an EC-TMD under earthquake excitations with acceptable accuracy.

  14. Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattie, Jr., R. W.; Callahan, N. B.; Cude-Woods, C.

    Here, the precise value of the mean neutron lifetime, τn, plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of anmore » in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/–0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties.« less

  15. Topological magnons in a one-dimensional itinerant flatband ferromagnet

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Fei; Gu, Zhao-Long; Dong, Zhao-Yang; Li, Jian-Xin

    2018-06-01

    Different from previous scenarios that topological magnons emerge in local spin models, we propose an alternative that itinerant electron magnets can host topological magnons. A one-dimensional Tasaki model with a flatband is considered as the prototype. This model can be viewed as a quarter-filled periodic Anderson model with impurities located in between and hybridizing with the nearest-neighbor conducting electrons, together with a Hubbard repulsion for these electrons. By increasing the Hubbard interaction, the gap between the acoustic and optical magnons closes and reopens while the Berry phase of the acoustic band changes from 0 to π , leading to the occurrence of a topological transition. After this transition, there always exist in-gap edge magnonic modes, which is consistent with the bulk-edge correspondence. The Hubbard interaction-driven transition reveals a new mechanism to realize nontrivial magnon bands.

  16. Elementary Aharonov-Bohm system in three space dimensions: Quantum attraction with no classical force

    NASA Astrophysics Data System (ADS)

    Goldhaber, Alfred; Requist, Ryan

    2003-07-01

    As a consequence of the Aharonov-Bohm effect, there is a quantum-induced attraction between a charged particle and a rigid, impenetrable hoop made from an arbitrarily thin tube containing a superconductor quantum of magnetic flux. This is remarkable because in classical physics there is no force between the two objects, and quantum-mechanical effects (associated with uncertainty-principle energy) generally are repulsive rather than attractive. For an incident spinless charged particle in a P wave (in a configuration with total angular momentum zero) we verify a resonance just above threshold using the Kohn variational principle in its S-matrix form. Even if optimistic choices of parameters describing a model system with these properties were feasible, the temperature required to observe the resonance would be far lower than has yet been attained in the laboratory.

  17. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Edler, D.; Mishra, C.; Wächtler, F.; Nath, R.; Sinha, S.; Santos, L.

    2017-08-01

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  18. Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection

    DOE PAGES

    Pattie, Jr., R. W.; Callahan, N. B.; Cude-Woods, C.; ...

    2018-05-11

    Here, the precise value of the mean neutron lifetime, τn, plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of anmore » in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/–0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties.« less

  19. Quantum Fluctuations in Quasi-One-Dimensional Dipolar Bose-Einstein Condensates.

    PubMed

    Edler, D; Mishra, C; Wächtler, F; Nath, R; Sinha, S; Santos, L

    2017-08-04

    Recent experiments have revealed that beyond-mean-field corrections are much more relevant in weakly interacting dipolar condensates than in their nondipolar counterparts. We show that in quasi-one-dimensional geometries quantum corrections in dipolar and nondipolar condensates are strikingly different due to the peculiar momentum dependence of the dipolar interactions. The energy correction of the condensate presents not only a modified density dependence, but it may even change from attractive to repulsive at a critical density due to the surprising role played by the transversal directions. The anomalous quantum correction translates into a strongly modified physics for quantum-stabilized droplets and dipolar solitons. Moreover, and for similar reasons, quantum corrections of three-body correlations, and hence of three-body losses, are strongly modified by the dipolar interactions. This intriguing physics can be readily probed in current experiments with magnetic atoms.

  20. Pairing mechanism in Bi-O superconductors: A finite-size chain calculation

    NASA Astrophysics Data System (ADS)

    Aligia, A. A.; Nuez Regueiro, M. D.; Gagliano, E. R.

    1989-09-01

    We have studied the pairing mechanism in BiO3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic.

  1. Emerging magnetism and anomalous Hall effect in iridate–manganite heterostructures

    DOE PAGES

    Nichols, John; Gao, Xiang; Lee, Shinbuhm; ...

    2016-09-06

    We know strong Coulomb repulsion and spin–orbit coupling to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Furthermore, we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO 3 and the 5d paramagnetic metal SrIrO 3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. Our findings show that low dimensionalmore » spin–orbit entangled 3d–5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials.« less

  2. Alignment of dust grains in ionized regions

    NASA Technical Reports Server (NTRS)

    Anderson, Nels; Watson, William D.

    1993-01-01

    The rate at which charged dust grains in a plasma are torqued by passing ions and electrons is calculated. When photo-emission of electrons is not important, attraction of ions by the grain monopole potential increases the rate at which the grains' spins are dealigned by nearly an order of magnitude. Consequently, the energy density of the magnetic field required to align grains in an H II region may be increased by about an order of magnitude. In contrast, electric dipole and quadrupole moments are unlikely to produce large dealignment rates for grains of modest length-to-width ratio. Nonetheless, for positively charged grains these higher-order moments likely prevent monopole repulsion of ions from reducing the dealignment rate far below that for neutral grains. The presence of positive grain charge therefore does not greatly facilitate grain alignment in an H II region.

  3. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells

    NASA Astrophysics Data System (ADS)

    Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2014-06-01

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  4. Interesting features of transmission across locally periodic delta potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharani, M., E-mail: m-dharani@blr.amrita.edu, E-mail: mdharu@yahoo.co.in; Shastry, C. S.

    2016-05-23

    We study the theory of transmission of electrons through N delta potential barriers as well as wells. Some of the interesting features like the correlation between resonance peak positions and box states, number of peaks in transmission band and bound states are analyzed for locally periodic attractive, repulsive and pair of attractive and repulsive potentials.

  5. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    ERIC Educational Resources Information Center

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  6. Electronic Structure in Pi Systems: Part I. Huckel Theory with Electron Repulsion.

    ERIC Educational Resources Information Center

    Fox, Marye Anne; Matsen, F. A.

    1985-01-01

    Pi-CI theory is a simple, semi-empirical procedure which (like Huckel theory) treats pi and pseudo-pi orbitals; in addition, electron repulsion is explicitly included and molecular configurations are mixed. Results obtained from application of pi-CI to ethylene are superior to either the Huckel molecular orbital or valence bond theories. (JN)

  7. CPT symmetry and antimatter gravity in general relativity

    NASA Astrophysics Data System (ADS)

    Villata, M.

    2011-04-01

    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.

  8. Classical and quantum analysis of repulsive singularities in four-dimensional extended supergravity

    NASA Astrophysics Data System (ADS)

    Gaida, I.; Hollmann, H. R.; Stewart, J. M.

    1999-07-01

    Non-minimal repulsive singularities (`repulsons') in extended supergravity theories are investigated. The short-distance antigravity properties of the repulsons are tested at the classical and the quantum level by a scalar test-particle. Using a partial wave expansion it is shown that the particle is totally reflected at the origin. A high-frequency incoming particle undergoes a phase shift of icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/>/2. However, the phase shift for a low-frequency particle depends upon the physical data of the repulson. The curvature singularity at a finite distance rh turns out to be transparent for the scalar test-particle and the coordinate singularity at the origin serves as the repulsive barrier to bounce back the particles.

  9. Repulsive Effect for Unbound High Energy Particles Along Rotation Axis in Kerr-Taub-NUT Spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Chen, Song-Bai

    2018-04-01

    We have investigated the acceleration of the unbound high energy particles moving along the rotation axis in the Kerr-Taub-NUT spacetime, and then study the dependence of the repulsive effects on the NUT charge for the particles in the spacetime. Whether the repulsive effects with the NUT charge become stronger depends on the Carter constant, the position and velocity of the particles themselves. We also present numerically the changes of the observable velocity and acceleration with the NUT charge for the unbound particles in the Kerr-Taub-NUT spacetime. Supported by the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 17A124, and the Construct Program of Key Disciplines in Hunan Province

  10. Cosmicflows-3: Cold Spot Repeller?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, Hélène M.; Graziani, Romain; Dupuy, Alexandra

    The three-dimensional gravitational velocity field within z ∼ 0.1 has been modeled with the Wiener filter methodology applied to the Cosmicflows-3 compilation of galaxy distances. The dominant features are a basin of attraction and two basins of repulsion. The major basin of attraction is an extension of the Shapley concentration of galaxies. One basin of repulsion, the Dipole Repeller, is located near the anti-apex of the cosmic microwave background dipole. The other basin of repulsion is in the proximate direction toward the “Cold Spot” irregularity in the cosmic microwave background. It has been speculated that a vast void might contributemore » to the amplitude of the Cold Spot from the integrated Sachs–Wolfe effect.« less

  11. One-loop quantum gravity repulsion in the early Universe.

    PubMed

    Broda, Bogusław

    2011-03-11

    Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.

  12. Development of a 32 Inch Diameter Levitated Ducted Fan Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher a.; Solano, Paul A.; Thompson, William K.; Vrnak, Daniel R.

    2006-01-01

    The NASA John H. Glenn Research Center has developed a revolutionary 32 in. diameter Levitated Ducted Fan (LDF) conceptual design. The objective of this work is to develop a viable non-contact propulsion system utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels, and mitigate many of the concerns and limitations encountered in conventional aircraft propulsors. The physical layout consists of a ducted fan drum rotor with blades attached at the outer diameter and supported by a stress tuner ring at the inner diameter. The rotor is contained within a stator. This concept exploits the unique physical dimensions and large available surface area to optimize a custom, integrated, electromagnetic system that provides both the levitation and propulsion functions. The rotor is driven by modulated electromagnetic fields between the rotor and the stator. When set in motion, the time varying magnetic fields interact with passive coils in the stator assembly to produce repulsive forces between the stator and the rotor providing magnetic suspension. LDF can provide significant improvements in aviation efficiency, reliability, and safety, and has potential application in ultra-efficient motors, computers, and space power systems.

  13. BCS: the Scientific "Love of my Life"

    NASA Astrophysics Data System (ADS)

    Anderson, Philip W.

    After short comments on my early addenda to BCS — gauge invariance and the Anderson-Higgs mechanism, the dirty superconductor "theorem," and the spinor representation — I focus on the interaction mechanisms which cause electron-electron pairing. These bifurcate into two almost non-overlapping classes. In order to cause electrons to pair in spite of the strong, repulsive, instantaneous Coulomb vertex, the electrons can evade each others' propinquity on the same site at the same time either dynamically, by retaining D° (s-wave) relative symmetry, but avoiding each other in time — called "dynamic screening" — or by assuming a non-symmetric relative wave function, avoiding each other in space. All simple metals and alloys, including all the (so far) technically useful superconductors, follow the former scheme. But starting with the first discovery of "heavy-electron" super-conductors in 1979, and continuing with the "organics" and the magnetic transition metal compounds such as the cuprates and the iron pnictides, it appears that the second class may turn out to be numerically superior and theoretically more fascinating. The basic interaction in many of these cases appears to be the "kinetic exchange" or superexchange characteristic of magnetic insulators.

  14. Spin rotational symmetry breaking by orbital current patterns in two-leg Cu-O Hubbard ladders

    NASA Astrophysics Data System (ADS)

    Chudzinski, Piotr; Gabay, Marc; Giamarchi, Thierry

    2010-03-01

    In the weak-coupling limit, we study, as a function of doping, two-leg ladders with a unit cell containing both Cu and O atoms. For purely repulsive interactions, using bosonization and a novel RG scheme, we find that in a broad region of the phase diagram, the ground state consists of a pattern of orbital currents (OCP) defined on the top of an incommensurate density wave. The internal symmetry of the OCP is specific for the ladder structure, different than the ones suggested up to now for 2D cuprates. We focus on this OCP and look for measurable signals of its existence: we compute magnetic fields induced within the ladder and we check what kind of changes in the phase diagram one may expect due to SU(2) spin-rotational symmetry breaking. We also investigate a single impurity problem (incl. OCP): we discuss if Kondo physics is at play, and make qualitative predictions about the nature of impurity backscattering. This enables us to show the influence of SU(2) symmetry breaking on conductivity. We estimate the value of gap opened due to the OCP, give analytic expressions for correlation functions and discuss magnetic properties of a new phase.

  15. Observation of the Leggett-Rice Effect in a Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Trotzky, S.; Beattie, S.; Luciuk, C.; Smale, S.; Bardon, A. B.; Enss, T.; Taylor, E.; Zhang, S.; Thywissen, J. H.

    2015-01-01

    We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of 40K precesses about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure a Leggett-Rice parameter γ =1.08 (9 ) and a bare transverse spin diffusivity D0⊥=2.3 (4 )ℏ/m for a normal-state gas initialized with full polarization and at one-fifth of the Fermi temperature, where m is the atomic mass. One might expect γ =0 at unitarity, where two-body scattering is purely dissipative. We observe γ →0 as temperature is increased towards the Fermi temperature, consistent with calculations that show the degenerate Fermi sea restores a nonzero γ . Tuning the scattering length a , we find that a sign change in γ occurs in the range 0 <(kFa )-1≲1.3 , where kF is the Fermi momentum. We discuss how γ reveals the effective interaction strength of the gas, such that the sign change in γ indicates a switching of branch between a repulsive and an attractive Fermi gas.

  16. Some improvements in DNA interaction calculations

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Swissler, T. J.; Rein, R.

    1974-01-01

    Calculations are made on specific DNA-type complexes using refined expressions for electrostatic and polarization energies. Dispersion and repulsive terms are included in the evaluation of the total interaction energy. It is shown that the expansion of the electrostatic potential to include multipole moments up to octopole is necessary to achieve convergence of first-order energies. Polarization energies are not as sensitive to this expansion. The calculations also support the usefulness of the hard sphere model for DNA hydrogen bonds and indicate how stacking interactions are influenced by second-order energies.

  17. Superconductivity in the Penson-Kolb Model on a Triangular Lattice

    NASA Astrophysics Data System (ADS)

    Ptok, A.; Mierzejewski, M.

    2008-07-01

    We investigate properties of the two-dimensional Penson-Kolb model with repulsive pair hopping interaction. In the case of a bipartite square lattice this interaction may lead to the η-type pairing, when the phase of superconducting order parameter changes from one lattice site to the neighboring one. We show that this interaction may be responsible for the onset of superconductivity also for a triangular lattice. We discuss the spatial dependence of the superconducting order parameter and demonstrate that the total momentum of the paired electrons is determined by the lattice geometry.

  18. Diatomic predissociation line widths

    NASA Technical Reports Server (NTRS)

    Child, M. S.

    1973-01-01

    Predissociation by rotation and curve crossing in diatomic molecules is discussed. The pattern of predissociation line widths is seen as providing a highly sensitive yardstick for the determination of unknown potential curves. In addition, the computation of such a pattern for given potential curves is considered a matter of routine, unless the predissociation happens to occur from an adiabatic potential curve. Analytic formulas are used to provide physical insight into the details of the predissociation pattern, to the extent that a direct inversion procedure is developed for determination of the repulsive potential curves for Type 1 predissociations.

  19. Equilibrium Phase Behavior of a Continuous-Space Microphase Former.

    PubMed

    Zhuang, Yuan; Zhang, Kai; Charbonneau, Patrick

    2016-03-04

    Periodic microphases universally emerge in systems for which short-range interparticle attraction is frustrated by long-range repulsion. The morphological richness of these phases makes them desirable material targets, but our relatively coarse understanding of even simple models hinders controlling their assembly. We report here the solution of the equilibrium phase behavior of a microscopic microphase former through specialized Monte Carlo simulations. The results for cluster crystal, cylindrical, double gyroid, and lamellar ordering qualitatively agree with a Landau-type free energy description and reveal the nontrivial interplay between cluster, gel, and microphase formation.

  20. Constant pH simulations of pH responsive polymers

    NASA Astrophysics Data System (ADS)

    Sharma, Arjun; Smith, J. D.; Walters, Keisha B.; Rick, Steven W.

    2016-12-01

    Polyacidic polymers can change structure over a narrow range of pH in a competition between the hydrophobic effect, which favors a compact state, and electrostatic repulsion, which favors an extended state. Constant pH molecular dynamics computer simulations of poly(methacrylic acid) reveal that there are two types of structural changes, one local and one global, which make up the overall response. The local structural response depends on the tacticity of the polymer and leads to different cooperative effects for polymers with different stereochemistries, demonstrating both positive and negative cooperativities.

  1. Experimental verification of an eddy-current bearing

    NASA Technical Reports Server (NTRS)

    Nikolajsen, Jorgen L.

    1989-01-01

    A new type of electromagnetic bearing was built and tested. It consists of fixed AC-electromagnets in a star formation surrounding a conducting rotor. The bearing works by repulsion due to eddy-currents induced in the rotor. A single bearing is able to fully support a short rotor. The rotor support is inherently stable in all five degrees of freedom. No feedback control is needed. The bearing is also able to accelerate the rotor up to speed and decelerate the rotor back to standstill. The bearing design and the experimentation to verify its capabilities are described.

  2. Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mary X.; Brodin, Jeffrey D.; Millan, Jaime A.

    Colloidal crystal engineering with DNA can be used to realize precise control over nanoparticle (NP) arrangement. Here, we investigate a case of DNA-based assembly where the properties of DNA as a polyelectrolyte brush are employed to alter a hybridization-driven NP crystallization pathway. Using the co-assembly of DNA-conjugated proteins and spherical gold 2 nanoparticles (AuNPs) as a model system, we explore how steric repulsion between non-complementary, neighboring DNA-NPs due to overlapping DNA shells can influence their ligand-directed behavior. Specifically, our experimental data coupled with coarse-grained molecular dynamics (MD) simulations reveal that by changing factors related to NP repulsion, two structurally distinctmore » outcomes can be achieved. When steric repulsion between DNA-AuNPs is significantly greater than that between DNA-proteins, a lower packing density crystal lattice is favored over the structure that is predicted by design rules based on DNA-hybridization considerations alone. This is enabled by the large difference in DNA density on AuNPs versus proteins and can be tuned by modulating the flexibility, and thus conformational entropy, of the DNA on the constituent particles. At intermediate ligand flexibility, the crystallization pathways are energetically similar and the structural outcome can be adjusted using the density of DNA duplexes on DNA-AuNPs and by screening the Coulomb potential between them. Such lattices are shown to undergo dynamic reorganization upon changing salt concentration. These data help elucidate the structural considerations necessary for understanding repulsive forces in DNA-assembly and lay the groundwork for using them to increase architectural diversity in engineering colloidal crystals.« less

  3. Regardless-of-Speed Superconducting LSM Controlled-Repulsive MAGLEV Vehicle

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Egashira, Tatsuya; Hirai, Ryuichi

    1996-01-01

    This paper proposes a new repulsive Maglev vehicle which a superconducting linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. The combined levitation and propulsion control is carried out by controlling mechanical-load angle and armature-current. Dynamic simulations show successful operations with good ride-quality by using a compact control method proposed here.

  4. Electrostatic forces in planetary rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Shan, Linhua; Havnes, O.

    1988-01-01

    The average charge on a particle in a particle-plasma cloud, the plasma potential inside the cloud, and the Coulomb force acting on the particle are calculated. The net repulsive electrostatic force on a particle depends on the plasma density, temperature, density of particles, particle size, and the gradient of the particle density. In a uniformly dense ring the electrostatic repulsion is zero. It is also shown that the electrostatic force acts like a pressure force, that even a collisionless ring can be stable against gravitational collapse, and that a finite ring thickness does not necessarily imply a finite velocity dispersion. A simple criterion for the importance of electrostatic forces in planetary rings is derived which involves the calculation of the vertical ring thickness which would result if only electrostatic repulsion were responsible for the finite ring thickness. Electrostatic forces are entirely negligible in the main rings of Saturn and the E and G rings. They may also be negligible in the F ring. However, the Uranian rings and Jupiter's ring seem to be very much influenced by electrostatic repulsion. In fact, electrostatic forces could support a Jovian ring which is an order of magnitude more dense than observed.

  5. Simultaneous shape repulsion and global assimilation in the perception of aspect ratio

    PubMed Central

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Although local interactions involving orientation and spatial frequency are well understood, less is known about spatial interactions involving higher level pattern features. We examined interactive coding of aspect ratio, a prevalent two-dimensional feature. We measured perception of two simultaneously flashed ellipses by randomly post-cueing one of them and having observers indicate its aspect ratio. Aspect ratios interacted in two ways. One manifested as an aspect-ratio-repulsion effect. For example, when a slightly tall ellipse and a taller ellipse were simultaneously flashed, the less tall ellipse appeared flatter and the taller ellipse appeared even taller. This repulsive interaction was long range, occurring even when the ellipses were presented in different visual hemifields. The other interaction manifested as a global assimilation effect. An ellipse appeared taller when it was a part of a global vertical organization than when it was a part of a global horizontal organization. The repulsion and assimilation effects temporally dissociated as the former slightly strengthened, and the latter disappeared when the ellipse-to-mask stimulus onset asynchrony was increased from 40 to 140 ms. These results are consistent with the idea that shape perception emerges from rapid lateral and hierarchical neural interactions. PMID:21248223

  6. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces

    PubMed Central

    Kanduč, Matej; Netz, Roland R.

    2015-01-01

    Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can—if strong enough—give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface–surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles. PMID:26392526

  7. Distinct collective states due to trade-off between attractive and repulsive couplings

    NASA Astrophysics Data System (ADS)

    Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.

    2018-03-01

    We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.

  8. The correlation between fragility, density, and atomic interaction in glass-forming liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijin; Guan, Pengfei, E-mail: pguan@csrc.ac.cn; Wang, W. H.

    2016-07-21

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R{sub I,} R{sub II}, and R{sub III}, respectively, with qualitatively disparate dynamic behaviors: R{sub I} which can be described by “softness makes strong glasses,” R{sub II} where fragility is independent of softness and can only be tuned by density, and R{sub III}more » with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.« less

  9. Bond lifetime and diffusion coefficient in colloids with short-range interactions.

    PubMed

    Ndong Mintsa, E; Germain, Ph; Amokrane, S

    2015-03-01

    We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.

  10. Solution of multi-center molecular integrals of Slater-type orbitals

    NASA Technical Reports Server (NTRS)

    Tai, H.

    1989-01-01

    The troublesome multi-center molecular integrals of Slater-type orbitals (STO) in molecular physics calculations can be evaluated by using the Fourier transform and proper coupling of the two center exchange integrals. A numerical integration procedure is then readily rendered to the final expression in which the integrand consists of well known special functions of arguments containing the geometrical arrangement of the nuclear centers and the exponents of the atomic orbitals. A practical procedure was devised for the calculation of a general multi-center molecular integrals coupling arbitrary Slater-type orbitals. Symmetry relations and asymptotic conditions are discussed. Explicit expressions of three-center one-electron nuclear-attraction integrals and four-center two-electron repulsion integrals for STO of principal quantum number n=2 are listed. A few numerical results are given for the purpose of comparison.

  11. Raman non-coincidence effect of boroxol ring: The interplay between repulsion and attraction forces in the glassy, supercooled and liquid state

    NASA Astrophysics Data System (ADS)

    Kalampounias, Angelos G.; Papatheodorou, George N.

    2018-06-01

    Temperature dependent Raman spectra of boric oxide have been measured in a temperature range covering the glassy, supercooled and liquid state. The shift of the isotropic band assigned to boroxol rings relative to the anisotropic component upon heating the glass is measured and attributed to the Raman non-coincidence effect. The measured shift is associated with the competition between attraction and repulsion forces with increasing temperature. The relation of dephasing and orientational relaxation times to the non-coincidence effect of the condensed phases has been examined. We discuss our results in the framework of the current phenomenological status of the field in an attempt to separate the attraction and repulsion contributions corresponding to the observed non-coincidence effect.

  12. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central dominant (CD) galaxies directly from ambient intercluster medium (ICM). However, for high mass accretion rate, the influence of cosmological constant on Bondi accretion dynamics, generically, diminishes. As active galactic nuclei (AGN)/ICM feedback can be advertently linked to Bondi type spherical accretion, any proper modeling of AGN feedback or megaparsecs-scale jet dynamics or accretion flow from ICM onto the central regions of host galaxies should take into account the relevant information of repulsive Λ, especially in context to supergiant elliptical galaxies or CD galaxies present in rich galaxy clusters. This could also explore the feasibility to limit the value of Λ, from the kinematics in local galactic-scales.

  13. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  14. Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.

    PubMed

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja

    2018-06-26

    nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  15. Color Improves Speed of Processing But Not Perception in a Motion Illusion

    PubMed Central

    Perry, Carolyn J.; Fallah, Mazyar

    2012-01-01

    When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored. PMID:22479255

  16. The effects of attractive vs. repulsive instructional cuing on balance performance.

    PubMed

    Kinnaird, Catherine; Lee, Jaehong; Carender, Wendy J; Kabeto, Mohammed; Martin, Bernard; Sienko, Kathleen H

    2016-03-16

    Torso-based vibrotactile feedback has been shown to improve postural performance during quiet and perturbed stance in healthy young and older adults and individuals with balance impairments. These systems typically include tactors distributed around the torso that are activated when body motion exceeds a predefined threshold. Users are instructed to "move away from the vibration". However, recent studies have shown that in the absence of instructions, vibrotactile stimulation induces small (~1°) non-volitional responses in the direction of its application location. It was hypothesized that an attractive cuing strategy (i.e., "move toward the vibration") could improve postural performance by leveraging this natural tendency. Eight healthy older adults participated in two non-consecutive days of computerized dynamic posturography testing while wearing a vibrotactile feedback system comprised of an inertial measurement unit and four tactors that were activated in pairs when body motion exceeded 1° anteriorly or posteriorly. A crossover design was used. On each day participants performed 24 repetitions of Sensory Organization Test condition 5 (SOT5), three repetitions each of SOT 1-6, three repetitions of the Motor Control Test, and five repetitions of the Adaptation Test. Performance metrics included A/P RMS, Time-in-zone and 95 % CI Ellipse. Performance improved with both cuing strategies but participants performed better when using repulsive cues. However, the rate of improvement was greater for attractive versus repulsive cuing. The results suggest that when the cutaneous signal is interpreted as an alarm, cognition overrides sensory information. Furthermore, although repulsive cues resulted in better performance, attractive cues may be as good, if not better, than repulsive cues following extended training.

  17. Color improves speed of processing but not perception in a motion illusion.

    PubMed

    Perry, Carolyn J; Fallah, Mazyar

    2012-01-01

    When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored.

  18. Classical impurities and boundary Majorana zero modes in quantum chains

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Nersesyan, Alexander A.

    2016-09-01

    We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.

  19. Application Study of a High Temperature Superconducting Fault Current Limiter for Electric Power System

    NASA Astrophysics Data System (ADS)

    Naito, Yuji; Shimizu, Iwao; Yamaguchi, Iwao; Kaiho, Katsuyuki; Yanabu, Satoru

    Using high temperature superconductor, a Superconducting Fault Current Limiter (SFCL) was made and tested. Superconductor and vacuum interrupter as commutation switch are connected in parallel with bypass coil. When a fault occurs and the excessive current flows, superconductor is first quenched and the current is transferred to bypass coil because on voltage drop of superconductor. At the same time, since magnetic field is generated by current which flows in bypass coil, commutation switch is immediately driven by electromagnetic repulsion plate connected to driving rod of vacuum interrupter, and superconductor is separated from this circuit. Using the testing model, we could separate the superconductor from a circuit due to movement of vacuum interrupter within half-cycle current and transfer all current to bypass coil. Since operation of a commutation switch is included in current limiting operation of this testing model, it is one of helpful circuit of development of SFCL in the future. Moreover, since it can make the consumed energy of superconductor small during fault state due to realization of high-speed switch with simple composition, the burden of superconductor is reduced compared with conventional resistive type SFCL and it is considered that the flexibility of a SFCL design increases. Cooperation with a circuit breaker was also considered, the trial calculation of a parameter and energy of operation is conducted and discussion in the case of installing the SFCL to electric power system is made.

  20. Electric-field-induced assembly and propulsion of chiral colloidal clusters.

    PubMed

    Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning

    2015-05-19

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.

Top