CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells.
Schofield, L; McConville, M J; Hansen, D; Campbell, A S; Fraser-Reid, B; Grusby, M J; Tachado, S D
1999-01-08
Immunoglobulin G (IgG) responses require major histocompatibility complex (MHC)-restricted recognition of peptide fragments by conventional CD4(+) helper T cells. Immunoglobulin G responses to glycosylphosphatidylinositol (GPI)- anchored protein antigens, however, were found to be regulated in part through CD1d-restricted recognition of the GPI moiety by thymus-dependent, interleukin-4-producing CD4(+), natural killer cell antigen 1.1 [(NK1.1)+] helper T cells. The CD1-NKT cell pathway regulated immunogobulin G responses to the GPI-anchored surface antigens of Plasmodium and Trypanosoma and may be a general mechanism for rapid, MHC-unrestricted antibody responses to diverse pathogens.
1986-01-01
We have examined requirements for antigen presentation to a panel of MHC class I-and class II-restricted, influenza virus-specific CTL clones by controlling the form of virus presented on the target cell surface. Both H-2K/D- and I region-restricted CTL recognize target cells exposed to infectious virus, but only the I region-restricted clones efficiently lysed histocompatible target cells pulsed with inactivated virus preparations. The isolated influenza hemagglutinin (HA) polypeptide also could sensitize target cells for recognition by class II-restricted, HA-specific CTL, but not by class I-restricted, HA- specific CTL. Inhibition of nascent viral protein synthesis abrogated the ability of target cells to present viral antigen relevant for class I-restricted CTL recognition. Significantly, presentation for class II- restricted recognition was unaffected in target cells exposed to preparations of either inactivated or infectious virus. This differential sensitivity suggested that these H-2I region-restricted CTL recognized viral polypeptides derived from the exogenously introduced virions, rather than viral polypeptides newly synthesized in the infected cell. In support of this contention, treatment of the target cells with the lysosomotropic agent chloroquine abolished recognition of infected target cells by class II-restricted CTL without diminishing class I-restricted recognition of infected target cells. Furthermore, when the influenza HA gene was introduced into target cells without exogenous HA polypeptide, the target cells that expressed the newly synthesized protein product of the HA gene were recognized only by H-2K/D-restricted CTL. These observations suggest that important differences may exist in requirements for antigen presentation between H-2K/D and H-2I region-restricted CTL. These differences may reflect the nature of the antigenic epitopes recognized by these two CTL subsets. PMID:3485173
Roy, Sobhan; Ly, Dalam; Li, Nan-Sheng; Altman, John D.; Piccirilli, Joseph A.; Moody, D. Branch; Adams, Erin J.
2014-01-01
CD1c is a member of the group 1 CD1 family of proteins that are specialized for lipid antigen presentation. Despite high cell surface expression of CD1c on key antigen-presenting cells and the discovery of its mycobacterial lipid antigen presentation capability, the molecular basis of CD1c recognition by T cells is unknown. Here we present a comprehensive functional and molecular analysis of αβ T-cell receptor (TCR) recognition of CD1c presenting mycobacterial phosphomycoketide antigens. Our structure of CD1c with the mycobacterial phosphomycoketide (PM) shows similarities to that of CD1c-mannosyl-β1-phosphomycoketide in that the A' pocket accommodates the mycoketide alkyl chain; however, the phosphate head-group of PM is shifted ∼6 Å in relation to that of mannosyl-β1-PM. We also demonstrate a bona fide interaction between six human TCRs and CD1c-mycoketide complexes, measuring high to moderate affinities. The crystal structure of the DN6 TCR and mutagenic studies reveal a requirement of five complementarity determining region (CDR) loops for CD1c recognition. Furthermore, mutagenesis of CD1c reveals residues in both the α1 and α2 helices involved in TCR recognition, yet not entirely overlapping among the examined TCRs. Unlike patterns for MHC I, no archetypical binding footprint is predicted to be shared by CD1c-reactive TCRs, even when recognizing the same or similar antigens. PMID:25298532
Molecular analysis of antigen-independent adhesion forces between T and B lymphocytes.
Amblard, F; Auffray, C; Sekaly, R; Fischer, A
1994-01-01
The low-affinity interactions underlying antigen recognition by T-cell receptors (TCRs) are thought to involve antigen-independent adhesion mechanisms. Using a hydrodynamic approach, we found that antigen-independent adhesion occurred between human B cells and resting T cells in a transient and temperature-dependent fashion. The mean cell-cell adhesion force was 0.32 x 10(-9) N and was generated by similar contributions (0.16 x 10(-9) N) of the LFA-1- and CD2-dependent adhesion pathways. After T-cell stimulation with a phorbol ester, the force contributed by LFA-1 was drastically increased, while that of CD2 was unaffected. We propose that weak receptor-mediated adhesion initiates antigen-independent intercellular contacts required for antigen recognition by the TCR and is upregulated following TCR engagement. The method used permits adhesion forces between living cells to be resolved at the molecular level and should prove valuable for the rapid assessment of interaction forces between various types of cells and cell-sized particles. Images PMID:7909604
Hale, A H; Lyles, D S; Fan, D P
1980-02-01
We have investigated the minimal molecular requirements for elicitation of anti-Sendai virus cytotoxic T lymphocytes (CTL), and the minimal molecular requirements for the recognition and lysis processes associated with anti-Sendai virus CTL-target cell interactions. This report demonstrates a) that the hemagglutinin-neuraminidase and/or fusion glycoproteins of Sendai virus can elicit anti-Sendai virus CTL and b) that these glycoproteins and H-2 antigens must be within the same membrane lipid bilayer for effective elicitation of anti-Sendai-virus CTL and for effective recognition and lysis of target cells by anti-Sendai virus CTL.
USDA-ARS?s Scientific Manuscript database
The antigen recognition by the host immune system is a complex biochemical process that requires a battery of enzymes. Cathepsins are one of the enzyme superfamilies involving in antigenic degradations. We observed the up-regulation of cathepsin H and L transcripts during the early stage of Edward...
A structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Lu; Velikovsky, C. Alejandro; Xu, Gang
Adaptive immunity in jawless vertebrates is mediated by leucine-rich repeat proteins called 'variable lymphocyte receptors' (VLRs). Two types of VLR (A and B) are expressed by mutually exclusive lymphocyte populations in lamprey. VLRB lymphocytes resemble the B cells of jawed vertebrates; VLRA lymphocytes are similar to T cells. We determined the structure of a high-affinity VLRA isolated from lamprey immunized with hen egg white lysozyme (HEL) in unbound and antigen-bound forms. The VLRA-HEL complex demonstrates that certain VLRAs, like {gamma}{delta} T-cell receptors (TCRs) but unlike {alpha}{beta} TCRs, can recognize antigens directly, without a requirement for processing or antigen-presenting molecules. Thus,more » these VLRAs feature the nanomolar affinities of antibodies, the direct recognition of unprocessed antigens of both antibodies and {gamma}{delta} TCRs, and the exclusive expression on the lymphocyte surface that is unique to {alpha}{beta} and {gamma}{delta} TCRs.« less
T cell activation is determined by the number of presented antigens.
Deeg, Janosch; Axmann, Markus; Matic, Jovana; Liapis, Anastasia; Depoil, David; Afrose, Jehan; Curado, Silvia; Dustin, Michael L; Spatz, Joachim P
2013-01-01
Antigen recognition is a key event during T cell activation. Here, we introduce nanopatterned antigen arrays that mimic the antigen presenting cell surface during T cell activation. The assessment of activation related events revealed the requirement of a minimal density of 90-140 stimulating major histocompatibility complex class II proteins (pMHC) molecules per μm(2). We demonstrate that these substrates induce T cell responses in a pMHC dose-dependent manner and that the number of presented pMHCs dominates over local pMHC density.
T Cell Activation is Determined by the Number of Presented Antigens
2013-01-01
Antigen recognition is a key event during T cell activation. Here, we introduce nanopatterned antigen arrays that mimic the antigen presenting cell surface during T cell activation. The assessment of activation related events revealed the requirement of a minimal density of 90–140 stimulating major histocompatibility complex class II proteins (pMHC) molecules per μm2. We demonstrate that these substrates induce T cell responses in a pMHC dose-dependent manner and that the number of presented pMHCs dominates over local pMHC density. PMID:24117051
ɣδ T cell receptor ligands and modes of antigen recognition
Champagne, Eric
2011-01-01
T lymphocytes expressing the γδ-type of T cell receptors for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs. PMID:21298486
γδ T cell receptor ligands and modes of antigen recognition.
Champagne, Eric
2011-04-01
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Pathogenesis and spectrum of autoimmunity.
Perl, Andras
2012-01-01
The immune system specifically recognizes and eliminates foreign antigens and, thus, protects integrity of the host. During maturation of the immune system, tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. Autoreactive B and T cells that are generated during immune responses are eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. However, autoreactive cells may survive due to failure of apoptosis or molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens, or aberrant lymphokine production. Preservation of the host requires the development of immune responses to foreign antigen and tolerance to self-antigens. Autoimmunity results from a breakdown of tolerance to self-antigens through an interplay of genetic and environmental factors.One of the basic functions of the immune system is to specifically recognize and eliminate foreign antigens and, thus, protect integrity of the host. Through rearrangements and somatic mutations of various gene segments encoding T and B cell receptors and antibody molecules, the immune system acquires tremendous diversity. During maturation of the immune system, recognition of self-antigens plays an important role in shaping the repertoires of immune receptors. Tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. These self-defense mechanisms are mediated on the levels of central and peripheral tolerance, i.e., autoreactive T cells are either eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. Likewise, autoreactive B cells are eliminated in the bone marrow or peripheral lymphoid organs. However, immune responses triggered by foreign antigens may be sustained by molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens. Further downstream, execution of immune responses depends on the functioning of intracellular signaling networks and the cooperation of many cell types communicating via surface receptors, cytokines, chemokines, and antibody molecules. Therefore, autoimmunity represents the end result of the breakdown of one or multiple basic mechanisms of immune tolerance (Table 1).
Interfacial metal and antibody recognition.
Zhou, Tongqing; Hamer, Dean H; Hendrickson, Wayne A; Sattentau, Quentin J; Kwong, Peter D
2005-10-11
The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca(2+), Ba(2+), or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with approximately 1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition.
Interfacial metal and antibody recognition
Zhou, Tongqing; Hamer, Dean H.; Hendrickson, Wayne A.; Sattentau, Quentin J.; Kwong, Peter D.
2005-01-01
The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca2+, Ba2+, or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with ≈1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition. PMID:16195378
Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H
2010-12-01
Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.
Zeng, Xun; Wei, Yu-ling; Huang, Jun; Newell, Evan W.; Yu, Hongxiang; Kidd, Brian A.; Kuhns, Michael S.; Waters, Ray W.; Davis, Mark M.; Weaver, Casey T.; Chien, Yueh-hsiu
2012-01-01
Summary γδ T cells contribute uniquely to host immune defense. However, how they function remains an enigma. Although it is unclear what most γδ T cells recognize, common dogma asserts that they recognize self-antigens. While they are the major initial Interleukin-17 (IL-17) producers in infections, it is unclear what is required to trigger these cells to act. Here, we report that a noted B cell antigen, the algae protein-phycoerythrin (PE) is an antigen for murine and human γδ T cells. PE also stained specific bovine γδ T cells. Employing this specificity, we demonstrated that antigen recognition, but not extensive clonal expansion, was required to activate naïve γδ T cells to make IL-17. In this activated state, γδ T cells gained the ability to respond to cytokine signals that perpetuated the IL-17 production. These results underscore the adaptability of lymphocyte antigen receptors and suggest a previously unrecognized antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222
Engelhard, V H; Powers, G A; Moore, L C; Holterman, M J; Correa-Freire, M C
1984-01-01
HLA-A2 and -B7 antigens were introduced into EL4 (H-2b) cells by cell-liposome fusion and were used as targets or stimulators for cytotoxic T lymphocytes (CTL) generated in C57B1/6 (H-2b) mice. It was found that such EL4-HLA cells were not recognized by CTL that had been raised against either a human cell line bearing these HLA antigens or the purified HLA-A2 and -B7 antigens reconstituted into liposomes. In addition, EL4-HLA cells were not capable of inducing CTL that could recognize a human cell line bearing HLA-A2 and -B7 antigens. Instead, EL4-HLA cells induced CTL that specifically lysed EL4-HLA cells and not human cells expressing HLA-A2 and -B7. CTL recognition required the presence of HLA antigens on the EL4 cell surface and was inhibited by antibodies against either H-2b or HLA-A/B. Monoclonal antibody binding studies showed that the expected polymorphic determinants of the HLA-A2 and -B7 antigens were still present on EL4-HLA cells. However, the specificity of CTL or their precursors that are capable of recognizing HLA-A2 or -B7 was altered after these antigens became associated with the EL4 surface. Possible explanations for these results are discussed.
Immunity to Intracellular Salmonella Depends on Surface-associated Antigens
Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk
2012-01-01
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937
Presentation of lipid antigens to T cells.
Mori, Lucia; De Libero, Gennaro
2008-04-15
T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.
Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J; Castellanos Rivera, Ruth M; Wells, Lindsey F; Havlik, L Patrick; Smith, J Kennon; Agbandje-McKenna, Mavis; Asokan, Aravind
2017-06-13
Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.
Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; ...
2016-02-09
Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.
Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less
Molecular recognition of microbial lipid-based antigens by T cells.
Gras, Stephanie; Van Rhijn, Ildiko; Shahine, Adam; Le Nours, Jérôme
2018-05-01
The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.
Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells.
Brown, Christine E; Starr, Renate; Martinez, Catalina; Aguilar, Brenda; D'Apuzzo, Massimo; Todorov, Ivan; Shih, Chu-Chih; Badie, Behnam; Hudecek, Michael; Riddell, Stanley R; Jensen, Michael C
2009-12-01
Solid tumors contain a subset of stem-like cells that are resistant to the cytotoxic effects of chemotherapy/radiotherapy, but their susceptibility to cytolytic T lymphocyte (CTL) effector mechanisms has not been well characterized. Using a panel of early-passage human brain tumor stem/initiating cell (BTSC) lines derived from high-grade gliomas, we show that BTSCs are subject to immunologic recognition and elimination by CD8(+) CTLs. Compared with serum-differentiated CD133(low) tumor cells and established glioma cell lines, BTSCs are equivalent with respect to expression levels of HLA class I and ICAM-1, similar in their ability to trigger degranulation and cytokine synthesis by antigen-specific CTLs, and equally susceptible to perforin-dependent CTL-mediated cytolysis. BTSCs are also competent in the processing and presentation of antigens as evidenced by the killing of these cells by CTL when antigen is endogenously expressed. Moreover, we show that CTLs can eliminate all BTSCs with tumor-initiating activity in an antigen-specific manner in vivo. Current models predict that curative therapies for many cancers will require the elimination of the stem/initiating population, and these studies lay the foundation for developing immunotherapeutic approaches to eradicate this tumor population.
Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A.; David, Chella S.; Admon, Arie; López, Daniel
2015-01-01
The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. PMID:25635267
God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul
2014-01-01
While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4+ T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4+ T cells via the HLA class II pathway. This defect in CD4+ T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4+ T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II–peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4+ T-cell recognition. Biochemical analysis showed that these molecules were greater than 30 000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47 000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies. PMID:24628049
Vaccination and the TAP-independent antigen processing pathways.
López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen
2013-09-01
The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.
Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A; David, Chella S; Admon, Arie; López, Daniel
2015-04-01
The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Local and global anatomy of antibody-protein antigen recognition.
Wang, Meryl; Zhu, David; Zhu, Jianwei; Nussinov, Ruth; Ma, Buyong
2018-05-01
Deciphering antibody-protein antigen recognition is of fundamental and practical significance. We constructed an antibody structural dataset, partitioned it into human and murine subgroups, and compared it with nonantibody protein-protein complexes. We investigated the physicochemical properties of regions on and away from the antibody-antigen interfaces, including net charge, overall antibody charge distributions, and their potential role in antigen interaction. We observed that amino acid preference in antibody-protein antigen recognition is entropy driven, with residues having low side-chain entropy appearing to compensate for the high backbone entropy in interaction with protein antigens. Antibodies prefer charged and polar antigen residues and bridging water molecules. They also prefer positive net charge, presumably to promote interaction with negatively charged protein antigens, which are common in proteomes. Antibody-antigen interfaces have large percentages of Tyr, Ser, and Asp, but little Lys. Electrostatic and hydrophobic interactions in the Ag binding sites might be coupled with Fab domains through organized charge and residue distributions away from the binding interfaces. Here we describe some features of antibody-antigen interfaces and of Fab domains as compared with nonantibody protein-protein interactions. The distributions of interface residues in human and murine antibodies do not differ significantly. Overall, our results provide not only a local but also a global anatomy of antibody structures. Copyright © 2017 John Wiley & Sons, Ltd.
Haggerty, Timothy J.; Dunn, Ian S.; Rose, Lenora B.; Newton, Estelle E.; Pandolfi, Franco; Kurnick, James T.
2014-01-01
In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90) share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer. PMID:25503774
Immunologic Regulation in Pregnancy: From Mechanism to Therapeutic Strategy for Immunomodulation
Chen, Shyi-Jou; Liu, Yung-Liang; Sytwu, Huey-Kang
2012-01-01
The immunologic interaction between the fetus and the mother is a paradoxical communication that is regulated by fetal antigen presentation and/or by recognition of and reaction to these antigens by the maternal immune system. There have been significant advances in understanding of abnormalities in the maternal-fetal immunologic relationship in the placental bed that can lead to pregnancy disorders. Moreover, immunologic recognition of pregnancy is vital for the maintenance of gestation, and inadequate recognition of fetal antigens may cause abortion. In this paper, we illustrate the complex immunologic aspects of human reproduction in terms of the role of human leukocyte antigen (HLA), immune cells, cytokines and chemokines, and the balance of immunity in pregnancy. In addition, we review the immunologic processes of human reproduction and the current immunologic therapeutic strategies for pathological disorders of pregnancy. PMID:22110530
MacLachlan, Bruce J; Greenshields-Watson, Alexander; Mason, Georgina H; Schauenburg, Andrea J; Bianchi, Valentina; Rizkallah, Pierre J; Sewell, Andrew K; Fuller, Anna; Cole, David K
2017-02-06
Human CD8+ cytotoxic T lymphocytes (CTLs) are known to play an important role in tumor control. In order to carry out this function, the cell surface-expressed T-cell receptor (TCR) must functionally recognize human leukocyte antigen (HLA)-restricted tumor-derived peptides (pHLA). However, we and others have shown that most TCRs bind sub-optimally to tumor antigens. Uncovering the molecular mechanisms that define this poor recognition could aid in the development of new targeted therapies that circumnavigate these shortcomings. Indeed, present therapies that lack this molecular understanding have not been universally effective. Here, we describe methods that we commonly employ in the laboratory to determine how the nature of the interaction between TCRs and pHLA governs T-cell functionality. These methods include the generation of soluble TCRs and pHLA and the use of these reagents for X-ray crystallography, biophysical analysis, and antigen-specific T-cell staining with pHLA multimers. Using these approaches and guided by structural analysis, it is possible to modify the interaction between TCRs and pHLA and to then test how these modifications impact T-cell antigen recognition. These findings have already helped to clarify the mechanism of T-cell recognition of a number of cancer antigens and could direct the development of altered peptides and modified TCRs for new cancer therapies.
Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin
2014-01-01
CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IE
Immunization with SV40-transformed cells yields mainly MHC-restricted monoclonal antibodies
1986-01-01
Recognition of antigens on cell surfaces only in the context of the MHC- encoded alloantigens of the presenting cell (self + X) has classically been considered the province of T cells. However, evidence from several sources has indicated that B cells and antibodies can exhibit self + X- restricted recognition as well. This report concerns the mAb response to SV40-transformed H-2b fibroblast cell lines. The specificities of the antibodies obtained have been analyzed for binding to a panel of SV40-transformed H-2-syngeneic, H-2-allogeneic, and H-2b mutant fibroblast cell lines, as well as cell lines not bearing cell surface SV40 transformation-associated antigens. A large proportion of primary C57BL/6 (71%) and BALB/c (68%) splenic B cells responding to in vitro stimulation with SV40-transformed H-2b cells recognize cell surface antigens associated with SV40 transformation only when coexpressed with MHC antigens of the immunizing cell, particularly the Kb molecule, on transformed cells. To extensively define the nature of antigen recognition by these antibodies, we have generated and characterized nine hybridoma antibodies specific for SV40-transformed H-2-syngeneic cell lines. Seven of these hybridoma antibodies recognize SV40- associated transformation antigens in the context of H-2b molecules. Six of these are restricted by the Kb molecule and discriminate among a panel of SV40-transformed Kb mutant cell lines, thus confirming the participation of class I MHC-encoded molecules in the recognition by B cells of cell surface antigens. PMID:3014034
Dendrimeric Antigens for Drug Allergy Diagnosis: A New Approach for Basophil Activation Tests.
Molina, Noemi; Martin-Serrano, Angela; Fernandez, Tahia D; Tesfaye, Amene; Najera, Francisco; Torres, María J; Mayorga, Cristobalina; Vida, Yolanda; Montañez, Maria I; Perez-Inestrosa, Ezequiel
2018-04-24
Dendrimeric Antigens (DeAns) consist of dendrimers decorated with multiple units of drug antigenic determinants. These conjugates have been shown to be a powerful tool for diagnosing penicillin allergy using in vitro immunoassays, in which they are recognized by specific IgE from allergic patients. Here we propose a new diagnostic approach using DeAns in cellular tests, in which recognition occurs through IgE bound to the basophil surface. Both IgE molecular recognition and subsequent cell activation may be influenced by the tridimensional architecture and size of the immunogens. Structural features of benzylpenicilloyl-DeAn and amoxicilloyl-DeAn (G2 and G4 PAMAM) were studied by diffusion Nuclear Magnetic Resonance (NMR) experiments and are discussed in relation to molecular dynamics simulation (MDS) observations. IgE recognition was clinically evaluated using the basophil activation test (BAT) for allergic patients and tolerant subjects. Diffusion NMR experiments, MDS and cellular studies provide evidence that the size of the DeAn, its antigen composition and tridimensional distribution play key roles in IgE-antigen recognition at the effector cell surface. These results indicate that the fourth generation DeAns induce a higher level of basophil activation in allergic patients. This approach can be considered as a potential complementary diagnostic method for evaluating penicillin allergy.
Coevolution of T-cell receptors with MHC and non-MHC ligands
Castro, Caitlin C.; Luoma, Adrienne M.; Adams, Erin J.
2015-01-01
Summary The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470
The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops.
Tsuchiya, Yuko; Mizuguchi, Kenji
2016-04-01
Of the complementarity-determining regions (CDRs) of antibodies, H3 loops, with varying amino acid sequences and loop lengths, adopt particularly diverse loop conformations. The diversity of H3 conformations produces an array of antigen recognition patterns involving all the CDRs, in which the residue positions actually in contact with the antigen vary considerably. Therefore, for a deeper understanding of antigen recognition, it is necessary to relate the sequence and structural properties of each residue position in each CDR loop to its ability to bind antigens. In this study, we proposed a new method for characterizing the structural features of the CDR loops and obtained the antigen-binding ability of each residue position in each CDR loop. This analysis led to a simple set of rules for identifying probable antigen-binding residues. We also found that the diversity of H3 loop lengths and conformations affects the antigen-binding tendencies of all the CDR loops. © 2016 The Protein Society.
Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.
Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J
2018-02-21
Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.
Nicholls, Sarah; Piper, Karen P.; Mohammed, Fiyaz; Dafforn, Timothy R.; Tenzer, Stefan; Salim, Mahboob; Mahendra, Premini; Craddock, Charles; van Endert, Peter; Schild, Hansjörg; Cobbold, Mark; Engelhard, Victor H.; Moss, Paul A. H.; Willcox, Benjamin E.
2009-01-01
T cell recognition of minor histocompatibility antigens (mHags) underlies allogeneic immune responses that mediate graft-versus-host disease and the graft-versus-leukemia effect following stem cell transplantation. Many mHags derive from single amino acid polymorphisms in MHC-restricted epitopes, but our understanding of the molecular mechanisms governing mHag immunogenicity and recognition is incomplete. Here we examined antigenic presentation and T-cell recognition of HA-1, a prototypic autosomal mHag derived from single nucleotide dimorphism (HA-1H versus HA-1R) in the HMHA1 gene. The HA-1H peptide is restricted by HLA-A2 and is immunogenic in HA-1R/R into HA-1H transplants, while HA-1R has been suggested to be a “null allele” in terms of T cell reactivity. We found that proteasomal cleavage and TAP transport of the 2 peptides is similar and that both variants can bind to MHC. However, the His>Arg change substantially decreases the stability and affinity of HLA-A2 association, consistent with the reduced immunogenicity of the HA-1R variant. To understand these findings, we determined the structure of an HLA-A2-HA-1H complex to 1.3Å resolution. Whereas His-3 is accommodated comfortably in the D pocket, incorporation of the lengthy Arg-3 is predicted to require local conformational changes. Moreover, a soluble TCR generated from HA-1H-specific T-cells bound HA-1H peptide with moderate affinity but failed to bind HA-1R, indicating complete discrimination of HA-1 variants at the level of TCR/MHC interaction. Our results define the molecular mechanisms governing immunogenicity of HA-1, and highlight how single amino acid polymorphisms in mHags can critically affect both MHC association and TCR recognition. PMID:19234124
Nair, Priyanka; Amsen, Derk; Blander, J Magarian
2011-12-01
Dendritic cells are innate sentinels of the immune system and potent activators of naÏve T cells. Mechanisms must exist to enable these cells to achieve maximal activation of T cells specific for microbial antigens, while avoiding activation of T cells specific for self-antigens. Here we discuss how a combination of signals from pattern recognition receptors and T cells co-ordinates subcellular trafficking of antigen with both major histocompatibility complex class I and class II molecules and T-cell costimulatory molecules, resulting in the preferential presentation of microbial peptides within a stimulatory context. © 2011 John Wiley & Sons A/S.
Vasou, Andri; Sultanoglu, Nazife; Goodbourn, Stephen
2017-01-01
Modern vaccinology has increasingly focused on non-living vaccines, which are more stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory substances, known as adjuvants, are traditionally used to increase the magnitude of protective adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants often include substances that stimulate pattern recognition receptors (PRRs), essential components of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules with similar, but additional, immunostimulatory activity, such as defective interfering particles (DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some of the recent advances in vaccine development related to the use of TLR agonists, summarizes the current knowledge regarding DIP immunogenicity, and discusses the potential applications of DIPs in vaccine adjuvantation. PMID:28703784
Hawse, William F.; Gloor, Brian E.; Ayres, Cory M.; Kho, Kevin; Nuter, Elizabeth; Baker, Brian M.
2013-01-01
T cells use the αβ T cell receptor (TCR) to recognize antigenic peptides presented by class I major histocompatibility complex proteins (pMHCs) on the surfaces of antigen-presenting cells. Flexibility in both TCRs and peptides plays an important role in antigen recognition and discrimination. Less clear is the role of flexibility in the MHC protein; although recent observations have indicated that mobility in the MHC can impact TCR recognition in a peptide-dependent fashion, the extent of this behavior is unknown. Here, using hydrogen/deuterium exchange, fluorescence anisotropy, and structural analyses, we show that the flexibility of the peptide binding groove of the class I MHC protein HLA-A*0201 varies significantly with different peptides. The variations extend throughout the binding groove, impacting regions contacted by TCRs as well as other activating and inhibitory receptors of the immune system. Our results are consistent with statistical mechanical models of protein structure and dynamics, in which the binding of different peptides alters the populations and exchange kinetics of substates in the MHC conformational ensemble. Altered MHC flexibility will influence receptor engagement, impacting conformational adaptations, entropic penalties associated with receptor recognition, and the populations of binding-competent states. Our results highlight a previously unrecognized aspect of the “altered self” mechanism of immune recognition and have implications for specificity, cross-reactivity, and antigenicity in cellular immunity. PMID:23836912
Vaccines against advanced melanoma.
Blanchard, Tatiana; Srivastava, Pramod K; Duan, Fei
2013-01-01
Research shows that cancers are recognized by the immune system but that the immune recognition of tumors does not uniformly result in tumor rejection or regression. Quantitating the success or failure of the immune system in tumor elimination is difficult because we do not really know the total numbers of encounters of the immune system with the tumors. Regardless of that important issue, recognition of the tumor by the immune system implicitly contains the idea of the tumor antigen, which is what is actually recognized. We review the molecular identity of all forms of tumor antigens (antigens with specific mutations, cancer-testis antigens, differentiation antigens, over-expressed antigens) and discuss the use of these multiple forms of antigens in experimental immunotherapy of mouse and human melanoma. These efforts have been uniformly unsuccessful; however, the approaches that have not worked or have somewhat worked have been the source of many new insights into melanoma immunology. From a critical review of the various approaches to vaccine therapy we conclude that individual cancer-specific mutations are truly the only sources of cancer-specific antigens, and therefore, the most attractive targets for immunotherapy. Published by Elsevier Inc.
Pipatpanukul, Chinnawut; Takeya, Sasaki; Baba, Akira; Amarit, Ratthasart; Somboonkaew, Armote; Sutapun, Boonsong; Kitpoka, Pimpun; Kunakorn, Mongkol; Srikhirin, Toemsak
2018-04-15
The application of Surface Plasmon Resonance Imaging (SPRi) for the detection of transmembrane antigen of the Rhesus (Rh) blood group system is demonstrated. Clinically significant Rh blood group system antigens, including D, C, E, c, and e, can be simultaneously identified via solid phase immobilization assay, which offers significant time savings and assay simplification. Red blood cells (RBCs) flowed through the micro-channel, where a suitable condition for Rh blood group detection was an RBC dilution of 1:10 with a stop-flow condition. Stop flow showed an improvement in specific binding compared to continuous flow. Rh antigens required a longer incubation time to react with the immobilized antibody than A and B antigens due to the difference in antigen type and their location on the RBC. The interaction between the immobilized antibodies and their specific antigenic counterpart on the RBC showed a significant difference in RBC removal behavior using shear flow, measured from the decay of the SPR signal. The strength of the interaction between the immobilized antibody and RBC antigen was determined from the minimum wall shear stress required to start the decay process in the SPR signal. For a given range of immobilized antibody surface densities, the Rh antigen possesses a stronger interaction than A, B, and AB antigens. Identification of 82 samples of ABO and Rh blood groups using SPRi showed good agreement with the standard micro-column agglutination technique. A wider coverage of antigenic recognition for RBC when using the solid phase immobilization assay was demonstrated for the RBC with the antigenic site located on the transmembrane protein of the clinically significant Rh antigen. Given the level of accuracy and precision, the technique showed potential for the detection of the Rh minor blood group system. Copyright © 2017 Elsevier B.V. All rights reserved.
Trichinella spiralis: strong antibody response to a 49 kDa newborn larva antigen in infected rats.
Salinas-Tobon, Maria Del Rosario; Navarrete-Leon, Anaid; Mendez-Loredo, Blanca Esther; Esquivel-Aguirre, Dalia; Martínez-Abrajan, Dulce Maria; Hernandez-Sanchez, Javier
2007-02-01
In this work, we analyzed the kinetics of anti-Trichinella spiralis newborn larva (NBL) antibodies (Ab) and the antigenic recognition pattern of NBL proteins and its dose effects. Wistar rats were infected with 0, 700, 2000, 4000 and 8000 muscle larvae (ML) and bled at different time intervals up to day 31 post infection (p.i.). Ab production was higher with 2000 ML dose and decreased with 8000, 4000 and 700 ML. Abs were not detected until day 10, peaked on day 14 for the 2000 ML dose and on day 19 for the other doses and thereafter declined slowly from 19 to 31 days p.i. In contrast, Abs to ML increased from day 10, peaked on day 19 and remained high until the end of the study. Abs bound strongly at least to three NBL components of 188, 205 and 49 kDa. NBL antigen of 188 and 205 kDa were recognized 10-26 days p.i. and that of 49 kDa from day 10 to day 31 p.i. A weak recognition towards antigens of 52, 54, 62 and 83 kDa was also observed during the infection. An early recognition of 31, 43, 45, 55, 68 and 85 kDa ML antigens was observed whereas the response to those of 43, 45, 48, 60, 64 and 97 kDa (described previously as TSL-1 antigens) occurred late in the infection. A follow-up of antigen recognition up to day 61 with the optimal immunization dose (2000 ML) evidenced a decline of Ab production to the 49 kDa NBL antigen 42 days p.i., which suggested antigenic differences with the previously reported 43 kDa ML antigen strongly recognized late in the infection. To analyze the stage-specificity of the 49 kDa NBL antigen, polyclonal antibodies (PoAb) were obtained in rats immunized with 49 kDa NBL antigen. PoAb reacted strongly with the 49 kDa NBL component in NBL total soluble extract but no reactivity was observed with soluble antigen of the other T. spiralis stages. Albeit with less intensity, the 49 kDa component was also recognized by PoAb together with other antigens of 53, 97 and 107 kDa, in NBL excretory-secretory products (NBL-ESP). Thus, our results reveal differences in the kinetics of anti-NBL and ML Ab responses. While anti-NBL Abs declined slowly from day 19 until the end of the experiment, Abs to ML antigen remained high in the same period. It is remarkable the optimal Ab response to NBL antigens with 2000 ML infective dose and the reduced number of NBL antigens identified throughout the experimental T. spiralis infection, standing out the immunodominant 49 kDa antigen. Interestingly, this antigen, which was prominently expressed in NBL somatic proteins, was also detected in NBL-ESP.
TNF-induced target cell killing by CTL activated through cross-presentation.
Wohlleber, Dirk; Kashkar, Hamid; Gärtner, Katja; Frings, Marianne K; Odenthal, Margarete; Hegenbarth, Silke; Börner, Carolin; Arnold, Bernd; Hämmerling, Günter; Nieswandt, Bernd; van Rooijen, Nico; Limmer, Andreas; Cederbrant, Karin; Heikenwalder, Mathias; Pasparakis, Manolis; Protzer, Ulrike; Dienes, Hans-Peter; Kurts, Christian; Krönke, Martin; Knolle, Percy A
2012-09-27
Viruses can escape cytotoxic T cell (CTL) immunity by avoiding presentation of viral components via endogenous MHC class I antigen presentation in infected cells. Cross-priming of viral antigens circumvents such immune escape by allowing noninfected dendritic cells to activate virus-specific CTLs, but they remain ineffective against infected cells in which immune escape is functional. Here, we show that cross-presentation of antigen released from adenovirus-infected hepatocytes by liver sinusoidal endothelial cells stimulated cross-primed effector CTLs to release tumor necrosis factor (TNF), which killed virus-infected hepatocytes through caspase activation. TNF receptor signaling specifically eliminated infected hepatocytes that showed impaired anti-apoptotic defense. Thus, CTL immune surveillance against infection relies on two similarly important but distinct effector functions that are both MHC restricted, requiring either direct antigen recognition on target cells and canonical CTL effector function or cross-presentation and a noncanonical effector function mediated by TNF. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
Induction of peripheral T cell tolerance and allo/xenoimmunity.
Charpentier, B; Alard, P; Hiesse, C; Lantz, O
1994-03-01
It is theoretically impossible or at least difficult to tolerize animals in xenogeneic situation, particularly in non-concordant species. Both humoral defense and several cellular components (T and non T) are offensive weapons which can be directed at myriad of self-antigens in a normal situation, at allo-antigens in abnormal situations, at xeno-antigens in exceptional situations. In either cases, the fine epitopic definition of allo/xeno antigens seen by the TCR is far from being totally known. From recent studies showing the precise requirement of peptides assembly composition in the MHC class I and II groove it should be theoretically possible to tolerize any group of peptides if they are presented, some other, because not presented, may remain ignored, thus apparently tolerized. It is also know, that transplantation tolerance is not a law of "either nothing or all" but a multiple process depending of both the affinity of the TCR and the nature/compositions of the target. In view of the complex array of factors influencing the pathway of T cell activation, three forms of T cell non responsiveness may be suggested in the context of xenogeneic recognition: physical deletion of potentially reactive T cells occurring predominantly in the thymus, non reactivity of T cells resulting from their failure to be influenced by antigens, and anergy possibly due to inappropriate signals from non professional antigen presenting cells. Future investigations must elucidate the requirements for inducing these events in a purpose of xenogeneic organ transplantation.
The processing and presentation of lipids and glycolipids to the immune system
Vartabedian, Vincent F.; Savage, Paul B.; Teyton, Luc
2016-01-01
Summary The recognition of CD1-lipid complexes by T cells was discovered twenty years ago and has since been an emerging and expanding field of investigation. Unlike protein antigens, which are presented on MHC class I and II molecules, lipids can only be presented by CD1 molecules, a unique family of MHC-like proteins whose singularity is a hydrophobic antigen binding groove. The processing and loading of lipid antigens inside this groove of CD1 molecules require localization to late endosomal and lysosomal subcellular compartments and their acidic pHs. This particular environment provides the necessary glycolytic enzymes and lipases that process lipid and glycolipid antigens, as well as a set of lipid transfer proteins that load the final version of the antigen inside the groove of CD1. The overall sequence of events needed for efficient presentation of lipid antigens is now understood and presented in this review. However, a large number of important details have been elusive. This elusiveness is linked to the inherent technical difficulties of studying lipids and the lipid-protein interface in vitro and in vivo. Here, we will expose some of those limitations and describe new approaches to address them during the characterization of lipids and glycolipids antigen presentation. PMID:27319346
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douat-Casassus, Celine; Borbulevych, Oleg; Tarbe, Marion
2010-10-07
There is growing interest in using tumor associated antigens presented by class I major histocompatibility complex (MHC-I) proteins as cancer vaccines. As native peptides are poorly stable in biological fluids, researchers have sought to engineer synthetic peptidomimetics with greater biostability. Here, we demonstrate that antigenic peptidomimetics of the Melan-A/MART-1{sub 26(27L)-35} melanoma antigen adopt strikingly different conformations when bound to MHC-I, highlighting the degeneracy of T cell recognition and revealing the challenges associated with mimicking native peptide conformation.
Spectrum of antibody profiles in tuberculous elephants, cervids, and cattle.
Lyashchenko, Konstantin P; Gortázar, Christian; Miller, Michele A; Waters, W Ray
2018-02-01
Using multi-antigen print immunoassay and DPP ® VetTB Assay approved in the United States for testing captive cervids and elephants, we analyzed antibody recognition of MPB83 and CFP10/ESAT-6 antigens in Asian elephants (Elephas maximus) infected with Mycobacterium tuberculosis and in white-tailed deer (Odocoileus virginianus), fallow deer (Dama dama), elk (Cervus elaphus), and cattle (Bos taurus) infected with Mycobacterium bovis. Serum IgG reactivity to MPB83 was found in the vast majority of tuberculous cattle and cervid species among which white-tailed deer and elk also showed significant CFP10/ESAT-6 recognition rates with added serodiagnostic value. In contrast, the infected elephants developed antibody responses mainly to CFP10/ESAT-6 with MPB83 reactivity being relatively low. The findings demonstrate distinct patterns of predominant antigen recognition by different animal hosts in tuberculosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Conjugate-like immunogens produced as protein capsular matrix vaccines.
Thanawastien, Ann; Cartee, Robert T; Griffin, Thomas J; Killeen, Kevin P; Mekalanos, John J
2015-03-10
Capsular polysaccharides are the primary antigenic components involved in protective immunity against encapsulated bacterial pathogens. Although immunization of adolescents and adults with polysaccharide antigens has reduced pathogen disease burden, pure polysaccharide vaccines have proved ineffective at conferring protective immunity to infants and the elderly, age cohorts that are deficient in their adaptive immune responses to such antigens. However, T-cell-independent polysaccharide antigens can be converted into more potent immunogens by chemically coupling to a "carrier protein" antigen. Such "conjugate vaccines" efficiently induce antibody avidity maturation, isotype switching, and immunological memory in immunized neonates. These immune responses have been attributed to T-cell recognition of peptides derived from the coupled carrier protein. The covalent attachment of polysaccharide antigens to the carrier protein is thought to be imperative to the immunological properties of conjugate vaccines. Here we provide evidence that covalent attachment to carrier proteins is not required for conversion of T-independent antigens into T-dependent immunogens. Simple entrapment of polysaccharides or a d-amino acid polymer antigen in a cross-linked protein matrix was shown to be sufficient to produce potent immunogens that possess the key characteristics of conventional conjugate vaccines. The versatility and ease of manufacture of these antigen preparations, termed protein capsular matrix vaccines (PCMVs), will likely provide improvements in the manufacture of vaccines designed to protect against encapsulated microorganisms. This in turn could improve the availability of such vaccines to the developing world, which has shown only a limited capacity to afford the cost of conventional conjugate vaccines.
Bum-Erdene, Khuchtumur; Leffler, Hakon; Nilsson, Ulf J; Blanchard, Helen
2015-09-01
Human galectin-4 is a lectin that is expressed mainly in the gastrointestinal tract and exhibits metastasis-promoting roles in some cancers. Its tandem-repeat nature exhibits two distinct carbohydrate recognition domains allowing crosslinking by simultaneous binding to sulfated and non-sulfated (but not sialylated) glycosphingolipids and glycoproteins, facilitating stabilization of lipid rafts. Critically, galectin-4 exerts favourable or unfavourable effects depending upon the cancer. Here we report the first X-ray crystallographic structural information on human galectin-4, specifically the C-terminal carbohydrate recognition domain of human (galectin-4C) in complex with lactose, lactose-3'-sulfate, 2'-fucosyllactose, lacto-N-tetraose and lacto-N-neotetraose. These structures enable elucidation of galectin-4C binding fine-specificity towards sulfated and non-sulfated lacto- and neolacto-series sphingolipids as well as to human blood group antigens. Analysis of the lactose-3'-sulfate complex structure shows that galectin-4C does not recognize the sulfate group using any specific amino acid, but binds the ligand nonetheless. Complex structures with lacto-N-tetraose and lacto-N-neotetraose displayed differences in binding interactions exhibited by the non-reducing-end galactose. That of lacto-N-tetraose points outward from the protein surface whereas that of lacto-N-neotetraose interacts directly with the protein. Recognition patterns of human galectin-4C towards lacto- and neolacto-series glycosphingolipids are similar to those of human galectin-3; however, detailed scrutiny revealed differences stemming from the extended binding site that offer distinction in ligand profiles of these two galectins. Structural characterization of the complex with 2'-fucosyllactose, a carbohydrate with similarity to the H antigen, and molecular dynamics studies highlight structural features that allow specific recognition of A and B antigens, whilst a lack of interaction with the 2'-fucose of blood group antigens was revealed. 4YLZ, 4YM0, 4YM1, 4YM2, 4YM3. © 2015 FEBS.
Probing the Energetics of Antigen-Antibody Recognition by Titration Microcalorimetry
Jelesarov; Leder; Bosshard
1996-06-01
Our understanding of the energetics that govern antigen-antibody recognition lags behind the increasingly rapid accumulation of structural information on antigen-antibody complexes. Thanks to the development of highly sensitive microcalorimeters, the thermodynamic parameters of antigen-antibody interactions can now be measured with precision and using only nanomole quantities of protein. The method of choice is isothermal titration calorimetry, in which a solution of the antibody (or antigen) is titrated with small aliquots of the antigen (or antibody) and the heat change accompanying the formation of the antigen-antibody complex is measured with a sensitivity as high as 0.1 μcal s-1. The free energy of binding (DeltaG), the binding enthalpy (DeltaH), and the binding entropy (DeltaS) are usually obtained from a single experiment, and no spectroscopic or radioactive label must be introduced into the antigen or antibody. The often large and negative change in heat capacity (DeltaCp) accompanying the formation of an antigen-antibody complex is obtained from DeltaH measured at different temperatures. The basic theory and the principle of the measurements are reviewed and illustrated by examples. The thermodynamic parameters relate to the dynamic physical forces that govern the association of the freely moving antigen and antibody into a well-structured and unique complex. This information complements the static picture of the antigen-antibody complex that results from X-ray diffraction analysis. Attempts to correlate dynamic and static aspects are discussed briefly.
Li, Hui-Shan; Singh, Bijay; Park, Tae-Eun; Hong, Zhong-Shan; Kang, Sang-Kee; Cho, Chong-Su; Choi, Yun-Jaie
2015-12-01
Mucosal vaccination of protein as an antigen requires appropriate delivery or adjuvant systems to deliver antigen to mucosal immune cells efficiently and generate valid immune responses. For successful nasal immunization, the obstacles imposed by the normal process of mucociliary clearance which limits residence time of applied antigens and low antigen delivery to antigen presenting cells (APCs) in nasal associated lymphoid tissue (NALT) need to be overcome for the efficient vaccination. Here, we prepared mucoadhesive and mannan-decorated thiolated Eudragit microspheres (Man-TEM) as a nasal vaccine carrier to overcome the limitations. Mucoadhesive thiolated Eudragit (TE) were decorated with mannan for targeting mannose receptors (MR) in antigen presenting cells (APCs) to obtain efficient immune responses. The potential adjuvant ability of Man-TEM for intranasal immunization was confirmed by in vitro and in vivo experiments. In mechanistic study using APCs in vitro, we obtained that Man-TEM enhanced the receptor-mediated endocytosis by stimulating the MR receptors of APCs. The nasal vaccination of OVA-loaded Man-TEM in mice showed higher levels of serum IgG and mucosal sIgA than the soluble OVA group due to the specific recognition of MR of APCs by the mannan in the Man-TEM. These results suggest that mucoadhesive and Man-TEM may be a promising candidate for nasal vaccine delivery system to elicit systemic and mucosal immunity. Copyright © 2015 Elsevier B.V. All rights reserved.
Erb, P; Ramila, G; Sklenar, I; Kennedy, M; Sunshine, G H
1985-05-01
Dendritic cells and macrophages obtained from spleen and peritoneal exudate were tested as accessory cells for the activation of lymphokine production by T cells, for supporting T-B cooperation and for the induction of antigen-specific T helper cells. Dendritic cells as well as macrophages were able to activate T cells for interleukin-2 secretion and functioned as accessory cells in T-B cooperation, but only macrophages induced T helper cells, which cooperate with B cells by a linked recognition interaction, to soluble antigens. Dendritic cell- and antigen-activated T cells also did not help B cells in the presence of Con A supernatants which contained various T cell- and B cell-stimulatory factors. The failure of dendritic cells to differentiate memory into functional T helper cells, but their efficient accessory cell function in T-B cooperation, where functional T helper cells are already present, can be best explained by a differential accessory cell requirement for T helper cell activation dependent on the differentiation stage of the T helper cell.
Gómez-Mateos, Magdalena; Valero-López, Adela; de la Rubia-Nieto, Teresa; Romero-López, María Del Carmen; Díaz-Sáez, Victoriano
2014-10-01
Anisakis spp., during parasitism, release excretory-secretory antigens that, in contact with the human immune system, can trigger a hypersensitivity response mediated by IgE, causing various allergic symptoms. To evaluate the IgE response in Wistar rats after infection with L3 larvae of the parasite Anisakis spp. Some determining factors involved in the technique have been improved in this work, such as: the concentration of polyacrylamide used in the preparation of the gels, the antigen concentration used, and the temperature required for denaturation of proteins. Immune responses (Ag-Ab) observed by the immunoblotting technique showed a greater intensity with serum obtained after reinfection, which have recognized proteins that may correspond to the major antigen Ani s 1 and other polypeptides of interest in the diagnosis of human anisakiasis. This paper concludes that immunoblotting is a useful technique to detect IgE antibodies against Anisakis proteins. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
NASA Astrophysics Data System (ADS)
Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan
2018-05-01
The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.
The molecular determinants of CD8 co-receptor function.
Cole, David K; Laugel, Bruno; Clement, Mathew; Price, David A; Wooldridge, Linda; Sewell, Andrew K
2012-10-01
CD8(+) T cells respond to signals mediated through a specific interaction between the T-cell receptor (TCR) and a composite antigen in the form of an epitopic peptide bound between the polymorphic α1 and α2 helices of an MHC class I (MHCI) molecule. The CD8 glycoprotein 'co-receives' antigen by binding to an invariant region of the MHCI molecule and can enhance ligand recognition by up to 1 million-fold. In recent years, a number of structural and biophysical investigations have shed light on the role of the CD8 co-receptor during T-cell antigen recognition. Here, we provide a collated resource for these data, and discuss how the structural and biophysical parameters governing CD8 co-receptor function further our understanding of T-cell cross-reactivity and the productive engagement of low-affinity antigenic ligands. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-04-10
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.
Koel, Björn F.; van der Vliet, Stefan; Burke, David F.; Bestebroer, Theo M.; Bharoto, Eny E.; Yasa, I. Wayan W.; Herliana, Inna; Laksono, Brigitta M.; Xu, Kemin; Skepner, Eugene; Russell, Colin A.; Rimmelzwaan, Guus F.; Perez, Daniel R.; Osterhaus, Albert D. M. E.; Smith, Derek J.; Prajitno, Teguh Y.
2014-01-01
ABSTRACT Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are genetically highly variable and have diversified into multiple phylogenetic clades over the past decade. Antigenic drift is a well-studied phenomenon for seasonal human influenza viruses, but much less is known about the antigenic evolution of HPAI H5N1 viruses that circulate in poultry. In this study, we focused on HPAI H5N1 viruses that are enzootic to Indonesia. We selected representative viruses from genetically distinct lineages that are currently circulating and determined their antigenic properties by hemagglutination inhibition assays. At least six antigenic variants have circulated between 2003, when H5N1 clade 2.1 viruses were first detected in Indonesia, and 2011. During this period, multiple antigenic variants cocirculated in the same geographic regions. Mutant viruses were constructed by site-directed mutagenesis to represent each of the circulating antigenic variants, revealing that antigenic differences between clade 2.1 viruses were due to only one or very few amino acid substitutions immediately adjacent to the receptor binding site. Antigenic variants of H5N1 virus evaded recognition by both ferret and chicken antibodies. The molecular basis for antigenic change in clade 2.1 viruses closely resembled that of seasonal human influenza viruses, indicating that the hemagglutinin of influenza viruses from different hosts and subtypes may be similarly restricted to evade antibody recognition. PMID:24917596
Spierings, Eric; Brickner, Anthony G; Caldwell, Jennifer A; Zegveld, Suzanne; Tatsis, Nia; Blokland, Els; Pool, Jos; Pierce, Richard A; Mollah, Sahana; Shabanowitz, Jeffrey; Eisenlohr, Laurence C; van Veelen, Peter; Ossendorp, Ferry; Hunt, Donald F; Goulmy, Els; Engelhard, Victor H
2003-07-15
Minor histocompatibility (H) antigens crucially affect the outcome of human leukocyte antigen (HLA)-identical allogeneic stem cell transplantation (SCT). To understand the basis of alloimmune responses against minor H antigens, identification of minor H peptides and their antigenicity-determining mechanisms is essential. Here we report the identification of HA-3 and its encoding gene. The HA-3 peptide, VTEPGTAQY (HA-3T), is encoded by the lymphoid blast crisis (Lbc) oncogene. We thus show for the first time that a leukemia-associated oncogene can give rise to immunogenic T-cell epitopes that may have participated in antihost and antileukemic alloimmune responses. Genotypic analysis of HA-3- individuals revealed the allelic counterpart VMEPGTAQY (HA-3M). Despite the lack of T-cell recognition of HA-3- cells, the Thr-->Met substitution had only a modest effect on peptide binding to HLA-A1 and a minimal impact on recognition by T cells when added exogenously to target cells. This substitution did not influence transporter associated with antigen processing (TAP) transport, but, in contrast to the HA-3T peptide, HA-3M is destroyed by proteasome-mediated digestion. Thus, the immunogenicity of minor H antigens can result from proteasome-mediated destruction of the negative allelic peptide.
CD1c presentation of synthetic glycolipid antigens with foreign alkyl branching motifs
de Jong, Annemieke; Arce, Eva Casas; Cheng, Tan-Yun; van Summeren, Ruben P.; Feringa, Ben L.; Dudkin, Vadim; Crich, David; Matsunaga, Isamu; Minnaard, Adriaan J.; Moody, D. Branch
2009-01-01
Summary Human CD1c is a protein that activates αβ T cells by presenting self antigens, synthetic mannosyl phosphodolichols and mycobacterial mannosyl phosphopolyketides. To determine which molecular structures of antigens mediate a T cell response, we measured activation by structurally divergent M. tuberculosis mannosyl-β1-phosphomycoketides as well as by synthetic analogs produced by two methods that yield either stereorandom or stereospecific methyl branching patterns. T cell responses required both a phosphate and a β-linked mannose unit, and showed preference for C30–34 lipid units with methyl branches in the S-configuration. Thus, in all cases T cell responses were strongest for synthetic compounds that mimicked the natural branched lipids produced by mycobacterial polyketide synthase 12. Incorporation of methylmalonate to form branched lipids is a common bacterial lipid synthesis pathway that is absent in vertebrates, so the preferential recognition of branched lipids may represent a new type of lipid-based pathogen associated molecular pattern (PAMP). PMID:18022562
Virus-specific CD4+ memory phenotype T cells are abundant in unexposed adults
Su, Laura F.; Kidd, Brian A.; Han, Arnold; Kotzin, Jonathan J.; Davis, Mark M.
2013-01-01
While T cell memory is generally thought to require direct antigen exposure, we find an abundance of memory phenotype cells (20–90%, averaging over 50%) of CD4+ T cells specific for viral antigens in adults that have never been infected. These cells express the appropriate memory markers and genes, rapidly produce cytokines, and have clonally expanded. This contrasts with newborns where the same T cell receptor (TCR) specificities are almost entirely naïve, which may explain the vulnerability of young children to infections. One mechanism for this phenomenon is TCR cross-reactivity to environmental antigens and in support of this we find extensive cross-recognition by HIV-1 and influenza-reactive T lymphocytes to other microbial peptides and the expansion of one of these following influenza vaccination. Thus the presence of these memory phenotype T cells has significant implications for immunity to novel pathogens, child and adult health, and the influence of pathogen-rich versus hygienic environments. PMID:23395677
Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer
Cartellieri, Marc; Bachmann, Michael; Feldmann, Anja; Bippes, Claudia; Stamova, Slava; Wehner, Rebekka; Temme, Achim; Schmitz, Marc
2010-01-01
CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs). First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells. PMID:20467460
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogate, N.; Yamabe, Toshio; Verma, L.
1996-04-01
Lack of major histocompatibility class I antigens on neurons has been implicated as a possible mechanism for viral persistence in the brain since these antigens are required for cytotoxic T-lymphocyte recognition of infected cells. In subacute sclerosing panencephalitis (SSPE), measles virus (MV) persists in neurons, resulting in a fatal chronic infection. MHC class I mRNA expression was examined in formalin-fixed brain tissue from 6 SSPE patients by in situ hybridization. In addition MHC class I protein expression in MV-infected neurons was examined in experimental Subacute Measles Encephalitis (SME) by double immunohistochemistry. MHC class I mRNA expression was found to bemore » upregulated in SSPE tissues studied, and in 5 out of 6 cases the expression was definitively seen on neurons. The percentage of neurons expressing MHC class I mRNA ranged between 20 to 84% in infected areas. There was no correlation between the degree of infection and expression of MHC class I molecules on neurons. Importantly, the number of neurons co-expressing MHC class I and MV antigens was markedly low, varying between 2 to 8%. Similar results were obtained in SME where 20 to 30% of the neurons expressed MHC class I but < 8% co-expressed MHC class I and MV antigens. Perivascular infiltrating cells in the infected regions in SME expressed IFN{gamma} immunoreactivity. The results suggest that MV may not be directly involved in the induction of MHC class I on neurons and that cytokines such as IFN{gamma} may play an important role. Furthermore, the paucity of neurons co-expressing MHC class I and MV antigens in SSPE and SME suggests that such cells are either rapidly cleared by cytotoxic T lymphocytes (CTL), or, alternatively, lack of co-expression of MHC class I on MV infected neurons favors MV persistence in these cells by escaping CTL recognition. 33 refs., 3 figs., 3 tabs.« less
Carbohydrates and T cells: A sweet twosome
Avci, Fikri Y.; Li, Xiangming; Tsuji, Moriya; Kasper, Dennis L.
2013-01-01
Carbohydrates as T cell-activating antigens have been generating significant interest. For many years, carbohydrates were thought of as T-independent antigens, however, more recent research had demonstrated that mono- or oligosaccharides glycosidically-linked to peptides can be recognized by T cells. T cell recognition of these glycopeptides depends on the structure of both peptide and glycan portions of the antigen. Subsequently, it was discovered that natural killer T cells recognized glycolipids when presented by the antigen presenting molecule CD1d. A transformative insight into glycan-recognition by T cells occurred when zwitterionic polysaccharides were discovered to bind to and be presented by MHCII to CD4+ T cells. Based on this latter observation, the role that carbohydrate epitopes generated from glycoconjugate vaccines had in activating helper T cells was explored and it was found that these epitopes are presented to specific carbohydrate recognizing T cells through a unique mechanism. Here we review the key interactions between carbohydrate antigens and the adaptive immune system at the molecular, cellular and systems levels exploring the significant biological implications in health and disease. PMID:23757291
Defining protein electrostatic recognition processes
NASA Astrophysics Data System (ADS)
Getzoff, Elizabeth D.; Roberts, Victoria A.
The objective is to elucidate the nature of electrostatic forces controlling protein recognition processes by using a tightly coupled computational and interactive computer graphics approach. The TURNIP program was developed to determine the most favorable precollision orientations for two molecules by systematic search of all orientations and evaluation of the resulting electrostatic interactions. TURNIP was applied to the transient interaction between two electron transfer metalloproteins, plastocyanin and cytochrome c. The results suggest that the productive electron-transfer complex involves interaction of the positive region of cytochrome c with the negative patch of plastocyanin, consistent with experimental data. Application of TURNIP to the formation of the stable complex between the HyHEL-5 antibody and its protein antigen lysozyme showed that long-distance electrostatic forces guide lysozyme toward the HyHEL-5 binding site, but do not fine tune its orientation. Determination of docked antigen/antibody complexes requires including steric as well as electrostatic interactions, as was done for the U10 mutant of the anti-phosphorylcholine antibody S107. The graphics program Flex, a convenient desktop workstation program for visualizing molecular dynamics and normal mode motions, was enhanced. Flex now has a user interface and was rewritten to use standard graphics libraries, so as to run on most desktop workstations.
Anandasabapathy, Niroshana; Victora, Gabriel D.; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L.; Nussenzweig, Michel C.; Steinman, Ralph M.
2011-01-01
Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5–7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia. PMID:21788405
Anandasabapathy, Niroshana; Victora, Gabriel D; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L; Nussenzweig, Michel C; Steinman, Ralph M; Liu, Kang
2011-08-01
Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5-7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia.
Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P
1985-01-01
Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-01-01
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088
Diagnostic aptitude of West Nile virus-like particles expressed in insect cells.
Rebollo, Belén; Sarraseca, Javier; Rodríguez, Mª José; Sanz, Antonio; Jiménez-Clavero, Miguel Ángel; Venteo, Ángel
2018-02-10
West Nile virus is a globally spread zoonotic arbovirus. The laboratory diagnosis of WNV infection relies on virus identification by RT-PCR or on specific antibody detection by serological tests, such as ELISA or virus-neutralization. These methods usually require a preparation of the whole virus as antigen, entailing biosafety issues and therefore requiring BSL-3 facilities. For this reason, recombinant antigenic structures enabling effective antibody recognition comparable to that of the native virions, would be advantageous as diagnostic reagents. WNV virions are enveloped spherical particles made up of 3 structural proteins (C, capsid; M, membrane and E, envelope) enclosing the viral RNA. This study describes the co-expression of these 3 proteins yielding non-infectious virus-like particles (VLPs) and the results of the initial assessment of these VLPs, used instead of the whole virus, that were shown to perform correctly in two different ELISAs for WNV diagnosis. Copyright © 2018. Published by Elsevier Inc.
Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke; Saini, Sunil Kumar; Ramskov, Sofie; Donia, Marco; Such, Lina; Furness, Andrew J S; McGranahan, Nicholas; Rosenthal, Rachel; Straten, Per Thor; Szallasi, Zoltan; Svane, Inge Marie; Swanton, Charles; Quezada, Sergio A; Jakobsen, Søren Nyboe; Eklund, Aron Charles; Hadrup, Sine Reker
2016-10-01
Identification of the peptides recognized by individual T cells is important for understanding and treating immune-related diseases. Current cytometry-based approaches are limited to the simultaneous screening of 10-100 distinct T-cell specificities in one sample. Here we use peptide-major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer. Barcode-labeled pMHC multimers enable the combination of functional T-cell analysis with large-scale epitope recognition profiling for the characterization of T-cell recognition in various diseases, including in small clinical samples.
Synthetic peptides for the immunodiagnosis of hepatitis A virus infection.
Gauna, A; Losada, S; Lorenzo, M; Bermúdez, H; Toledo, M; Pérez, H; Chacón, E; Noya, O
2015-12-01
VP1, VP2 and VP3 molecules of hepatitis A virus are exposed capsid proteins that have shown to be antigenic and are used for diagnosis in recombinant-antigen commercial kits. In this study, we developed a sequence analysis in order to predict diagnostic peptide epitopes, followed by their spot synthesis on functionalized cellulose paper (Pepscan). This paper with synthetic peptides was tested against a sera pool of hepatitis A patients. Two peptide sequences, that have shown an antigenic recognition, were selected for greater scale synthesis on resin. A dimeric form of one of these peptides (IMT-1996), located in the C-Terminus region of protein VP1, was antigenic with a recognition frequency of 87-100% of anti-IgG antibodies and 100% of anti-IgM antibodies employing the immunological assays MABA and ELISA. We propose peptide IMT-1996, with less than twenty residues, as a cheaper alternative for prevalence studies and diagnosis of hepatitis A infection. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes.
Kronenberg-Versteeg, Deborah; Eichmann, Martin; Russell, Mark A; de Ru, Arnoud; Hehn, Beate; Yusuf, Norkhairin; van Veelen, Peter A; Richardson, Sarah J; Morgan, Noel G; Lemberg, Marius K; Peakman, Mark
2018-04-01
The signal peptide region of preproinsulin (PPI) contains epitopes targeted by HLA-A-restricted (HLA-A0201, A2402) cytotoxic T cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended the discovery of the PPI epitope to disease-associated HLA-B*1801 and HLA-B*3906 (risk) and HLA-A*1101 and HLA-B*3801 (protective) alleles, revealing that four of six alleles present epitopes derived from the signal peptide region. During cotranslational translocation of PPI, its signal peptide is cleaved and retained within the endoplasmic reticulum (ER) membrane, implying it is processed for immune recognition outside of the canonical proteasome-directed pathway. Using in vitro translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells, we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are transporter associated with antigen processing (TAP), ER-luminal epitopes, which are TAP independent, each presented by different HLA class I molecules and N-terminal trimmed by ER aminopeptidase 1 for optimal presentation. In vivo, TAP expression is significantly upregulated and correlated with HLA class I hyperexpression in insulin-containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are processed by SPP and loaded for HLA-guided immune recognition via pathways that are enhanced during disease pathogenesis. © 2018 by the American Diabetes Association.
Linnemann, Carsten; van Buuren, Marit M; Bies, Laura; Verdegaal, Els M E; Schotte, Remko; Calis, Jorg J A; Behjati, Sam; Velds, Arno; Hilkmann, Henk; Atmioui, Dris El; Visser, Marten; Stratton, Michael R; Haanen, John B A G; Spits, Hergen; van der Burg, Sjoerd H; Schumacher, Ton N M
2015-01-01
Tumor-specific neo-antigens that arise as a consequence of mutations are thought to be important for the therapeutic efficacy of cancer immunotherapies. Accumulating evidence suggests that neo-antigens may be commonly recognized by intratumoral CD8+ T cells, but it is unclear whether neo-antigen-specific CD4+ T cells also frequently reside within human tumors. In view of the accepted role of tumor-specific CD4+ T-cell responses in tumor control, we addressed whether neo-antigen-specific CD4+ T-cell reactivity is a common property in human melanoma.
Zarling, Angela L.; Willcox, Carrie R.; Shabanowitz, Jeffrey; Cummings, Kara L.; Hunt, Donald F.; Cobbold, Mark; Engelhard, Victor H.; Willcox, Benjamin E.
2017-01-01
Dysregulated post-translational modification provides a source of altered self-antigens that can stimulate immune responses in autoimmunity, inflammation, and cancer. In recent years, phosphorylated peptides have emerged as a group of tumour-associated antigens presented by MHC molecules and recognised by T cells, and represent promising candidates for cancer immunotherapy. However, the impact of phosphorylation on the antigenic identity of phosphopeptide epitopes is unclear. Here we examined this by determining structures of MHC-bound phosphopeptides bearing canonical position 4-phosphorylations in the presence and absence of their phosphate moiety, and examining phosphopeptide recognition by the T cell receptor (TCR). Strikingly, two peptides exhibited major conformational changes upon phosphorylation, involving a similar molecular mechanism, which focussed changes on the central peptide region most critical for T cell recognition. In contrast, a third epitope displayed little conformational alteration upon phosphorylation. In addition, binding studies demonstrated TCR interaction with an MHC-bound phosphopeptide was both epitope-specific and absolutely dependent upon phosphorylation status. These results highlight the critical influence of phosphorylation on the antigenic identity of naturally processed class I MHC epitopes. In doing so they provide a molecular framework for understanding phosphopeptide-specific immune responses, and have implications for the development of phosphopeptide antigen-specific cancer immunotherapy approaches. PMID:28903331
Shurin, Michael R.; Potapovich, Alla I.; Tyurina, Yulia Y.; Tourkova, Irina L.; Shurin, Galina V.; Kagan, Valerian E.
2014-01-01
Dendritic cells (DC) loaded with tumor antigens from apoptotic/necrotic tumor cells are commonly used as vaccines for cancer therapy. However, the use of dead tumor cells may cause both tolerance and immunity, making the effect of vaccination unpredictable. To deliver live tumor “cargoes” into DC, we developed a new approach based on the “labeling” of tumors with a phospholipid “eat-me” signal, phosphatidylserine. Expression of phosphatidylserine on live tumor cells mediated their recognition and endocytosis by DC resulting in the presentation of tumor antigens to antigen-specific T cells. In mice, topical application of phosphatidylserine-containing ointment over melanoma induced tumor-specific CTL, local and systemic antitumor immunity, and inhibited tumor growth. Thus, labeling of tumors with phosphatidylserine is a promising strategy for cancer immunotherapy. PMID:19276376
Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa.
Rapicavoli, Jeannette N; Blanco-Ulate, Barbara; Muszyński, Artur; Figueroa-Balderas, Rosa; Morales-Cruz, Abraham; Azadi, Parastoo; Dobruchowska, Justyna M; Castro, Claudia; Cantu, Dario; Roper, M Caroline
2018-01-26
Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.
Antigen recognition in the islets changes with progression of autoimmune islet infiltration
Lindsay, Robin S.; Corbin, Kaitlin; Mahne, Ashley; Levitt, Bonnie E.; Gebert, Matthew J.; Wigton, Eric J.; Bradley, Brenda J.; Haskins, Kathryn; Jacobelli, Jordan; Tang, Qizhi; Krummel, Matthew F.; Friedman, Rachel S.
2014-01-01
In type 1 diabetes, the pancreatic islets are an important site for therapeutic intervention since immune infiltration of the islets is well established at diagnosis. Therefore, understanding the events that underlie the continued progression of the autoimmune response and islet destruction is critical. Islet infiltration and destruction is an asynchronous process, making it important to analyze the disease process on a single islet basis. To understand how T cell stimulation evolves through the process of islet infiltration we analyzed the dynamics of T cell movement and interactions within individual islets of spontaneously autoimmune non-obese diabetic (NOD) mice. Using both intra-vital and explanted 2-photon islet imaging, we defined a correlation between increased islet infiltration and increased T cell motility. Early T cell arrest was antigen dependent and due, at least in part, to antigen recognition through sustained interactions with CD11c+ antigen presenting cells (APCs). As islet infiltration progressed, T cell motility became antigen-independent, with a loss of T cell arrest and sustained interactions with CD11c+ APCs. These studies suggest that the autoimmune T cell response in the islets may be temporarily dampened during the course of islet infiltration and disease progression. PMID:25505281
Recognition of Typhus Group Rickettsia-Infected Targets by Human Lymphokine-Activated Killer Cells
1988-09-01
rick- Similar problems in detection of antigens of Theileria parva ettsia-specific cell surface antigens by performing polyacryl- (7) or influenza virus...infected with the protozoan parasite Theileria parva: workers in our laboratory are now in the process of cloning parasite strain specificity and class I
An autologous dendritic cell canine mammary tumor hybrid-cell fusion vaccine.
Bird, R Curtis; Deinnocentes, Patricia; Church Bird, Allison E; van Ginkel, Frederik W; Lindquist, Joni; Smith, Bruce F
2011-01-01
Mammary cancer is among the most prevalent canine tumors and frequently resulting in death due to metastatic disease that is highly homologous to human breast cancer. Most canine tumors fail to raise effective immune reactions yet, some spontaneous remissions do occur. Hybrid canine dendritic cell-tumor cell fusion vaccines were designed to enhance antigen presentation and tumor immune recognition. Peripheral blood-derived autologous dendritic cell enriched populations were isolated from dogs based on CD11c(+) expression and fused with canine mammary tumor (CMT) cells for vaccination of laboratory Beagles. These hybrid cells were injected into popliteal lymph nodes of normal dogs, guided by ultrasound, and included CpG-oligonucleotide adjuvants. Three rounds of vaccination were delivered. Significant IgG responses were observed in all vaccinated dogs compared to vehicle-injected controls. Canine IgG antibodies recognized shared CMT antigens as was demonstrated by IgG-recognition of three unrelated/independently derived CMT cell lines, and recognition of freshly isolated, unrelated, primary biopsy-derived CMT cells. A bias toward an IgG2 isotype response was observed after two vaccinations in most dogs. Neither significant cytotoxic T cell responses were detected, nor adverse or side-effects due to vaccination or due to the induced immune responses noted. These data provide proof-of-principle for this cancer vaccine strategy and demonstrate the presence of shared CMT antigens that promote immune recognition of mammary cancer.
Cruz-Gallardo, Isabel; Aroca, Ángeles; Persson, Cecilia; Karlsson, B. Göran; Díaz-Moreno, Irene
2013-01-01
T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms. PMID:23902765
Hwang, Joyce K.; Wang, Chong; Du, Zhou; Meyers, Robin M.; Kepler, Thomas B.; Neuberg, Donna; Kwong, Peter D.; Mascola, John R.; Joyce, M. Gordon; Bonsignori, Mattia; Haynes, Barton F.; Yeap, Leng-Siew; Alt, Frederick W.
2017-01-01
Variable regions of Ig chains provide the antigen recognition portion of B-cell receptors and derivative antibodies. Ig heavy-chain variable region exons are assembled developmentally from V, D, J gene segments. Each variable region contains three antigen-contacting complementarity-determining regions (CDRs), with CDR1 and CDR2 encoded by the V segment and CDR3 encoded by the V(D)J junction region. Antigen-stimulated germinal center (GC) B cells undergo somatic hypermutation (SHM) of V(D)J exons followed by selection for SHMs that increase antigen-binding affinity. Some HIV-1–infected human subjects develop broadly neutralizing antibodies (bnAbs), such as the potent VRC01-class bnAbs, that neutralize diverse HIV-1 strains. Mature VRC01-class bnAbs, including VRC-PG04, accumulate very high SHM levels, a property that hinders development of vaccine strategies to elicit them. Because many VRC01-class bnAb SHMs are not required for broad neutralization, high overall SHM may be required to achieve certain functional SHMs. To elucidate such requirements, we used a V(D)J passenger allele system to assay, in mouse GC B cells, sequence-intrinsic SHM-targeting rates of nucleotides across substrates representing maturation stages of human VRC-PG04. We identify rate-limiting SHM positions for VRC-PG04 maturation, as well as SHM hotspots and intrinsically frequent deletions associated with SHM. We find that mature VRC-PG04 has low SHM capability due to hotspot saturation but also demonstrate that generation of new SHM hotspots and saturation of existing hotspot regions (e.g., CDR3) does not majorly influence intrinsic SHM in unmutated portions of VRC-PG04 progenitor sequences. We discuss implications of our findings for bnAb affinity maturation mechanisms. PMID:28747530
Ohyama, Kaname; Yoshimi, Haruka; Aibara, Nozomi; Nakamura, Yoichi; Miyata, Yasuyoshi; Sakai, Hideki; Fujita, Fumihiko; Imaizumi, Yoshitaka; Chauhan, Anil K; Kishikawa, Naoya; Kuroda, Naotaka
2017-01-15
Cancer immunotherapies such as antibodies targeting T cell checkpoints, or adaptive tumor-infiltrating lymphocyte (TIL) transfer, have been developed to boost the endogenous immune response against human malignancies. However, activation of T cells by such antibodies can lead to the risk of autoimmune diseases. Also, the selection of tumor-reactive T cells for TIL relies on information regarding mutated antigens in tumors and does not reflect other factors involved in protein antigenicity. It is therefore essential to engineer therapeutic interventions by which T cell reactivity against tumor cells is selectively enhanced (i.e., "focused cancer immunotherapy") based on tumor antigens that are specifically expressed in the tumor of a certain cancer and in many patients with this cancer. Immune complexes (ICs) are the direct and stable products of immunological recognition by humoral immunity. Here, we searched for tumor-specific IC antigens in each of five cancers (lung (n = 28), colon (n = 20), bladder (n = 20), renal cell (n = 15) and malignant lymphoma (n = 9)), by using immune complexome analysis that comprehensively identifies and profiles the constituent antigens in ICs. This analysis indicated that gelsolin and inter-alpha-trypsin inhibitor heavy chains were specifically and frequently detected (at a frequency higher than 80%), and that phosphoproteins (VENTX, VCIP135) were also specifically present in the ICs of lung cancer patients. Immune complexome analysis successfully identified several tumor-specific IC antigens with high detection frequency in lung cancer patients. These specific antigens are required to validate the clinical benefit by further analysis using a large number of patients. © 2016 UICC.
Brigl, Manfred; Tatituri, Raju V V; Watts, Gerald F M; Bhowruth, Veemal; Leadbetter, Elizabeth A; Barton, Nathaniel; Cohen, Nadia R; Hsu, Fong-Fu; Besra, Gurdyal S; Brenner, Michael B
2011-06-06
Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.
Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells
Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E.; Wang, Rong-Fu; Wang, Helen Y.
2015-01-01
Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8+ T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4+ T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4+ T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4+ Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4+ T cell-mediated immunotherapy in melanoma. PMID:25993655
Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells.
Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E; Wang, Rong-Fu; Wang, Helen Y
2015-01-01
Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8(+) T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4(+) T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4(+) T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4(+) Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4(+) T cell-mediated immunotherapy in melanoma.
Thiel, U; Pirson, S; Müller-Spahn, C; Conrad, H; Busch, D H; Bernhard, H; Burdach, S; Richter, G H S
2011-01-01
Background: The development of a successful immunotherapy is hampered by an ineffective T-cell repertoire against tumour antigens and the inability of the patient's immune system to overcome tolerance-inducing mechanisms. Here, we test the specific recognition and lytical potential of allo-restricted CD8+ T cells against Ewing tumour (ET) associated antigens Enhancer of Zeste, Drosophila Homolog 2 (EZH2), and Chondromodulin-I (CHM1) identified through previous microarray analysis. Methods: Following repetitive CHM1319 (VIMPCSWWV) and EZH2666 (YMCSFLFNL) peptide-driven stimulations with HLA-A*0201+ dendritic cells (DC), allo-restricted HLA-A*0201− CD8+ T cells were stained with HLA-A*0201/peptide multimers, sorted and expanded by limiting dilution. Results: Expanded T cells specifically recognised peptide-pulsed target cells or antigen-transfected cells in the context of HLA-A*0201 and killed HLA-A*0201+ ET lines expressing the antigen while HLA-A*0201– ET lines were not affected. Furthermore, adoptively transferred T cells caused significant ET growth delay in Rag2−/−γC−/− mice. Within this context, we identified the CHM1319 peptide as a new candidate target antigen for ET immunotherapy. Conclusion: These results clearly identify the ET-derived antigens, EZH2666 and CHM1319, as suitable targets for protective allo-restricted human CD8+ T-cell responses against non-immunogenic ET and may benefit new therapeutic strategies in ET patients treated with allogeneic stem cell transplantation. PMID:21407224
Dolimbek, Behzod Z; Steward, Lance E; Aoki, K Roger; Atassi, M Zouhair
2011-06-01
The continuous regions on botulinum neurotoxin A (BoNT/A) light (L) chain recognized by anti-toxin antibodies (Abs) from mouse, horse and chicken have been mapped. We synthesized a panel of thirty-two 19-residue peptides that overlapped consecutively by 5 residues and encompassed the entire L chain (residues 1-453). Mouse Abs recognized 5 major antigenic regions on the L chain, horse Abs recognized 9 while chicken Abs recognized 8 major antigenic regions. Overall, however, the three host species recognized, to some extent, similar, but not identical, peptides and the levels of Abs directed against a given region varied with the immunized host. Differences in the MHC of the host caused variation in levels of Ab recognition and some epitopes showed right or left frame-shifts among the species. Selected region(s) were also uniquely recognized by one species (e.g., peptide L1 by horse Abs). Mapping of the L chain antigenic regions and the previous localization of the regions on the H chain with the same antisera, has permitted description of the complete antigenic structure of BoNT/A. The locations in the 3-dimensional structure of the antigenic regions of the entire toxin are shown for mouse Abs. In the 3-D structure, the antigenic regions are on the surface of the toxin and when antibodies are bound the enzymatic activity of the light chain is obstructed. Copyright © 2010 Elsevier GmbH. All rights reserved.
Hoffmann, Michele M.; Molina-Mendiola, Carlos; Nelson, Alfreda D.; Parks, Christopher A.; Reyes, Edwin E.; Hansen, Michael J.; Rajagopalan, Govindarajan; Pease, Larry R.; Schrum, Adam G.; Gil, Diana
2015-01-01
Adaptive immunity is mediated by antigen receptors that can induce weak or strong immune responses depending on the nature of the antigen that is bound. In T lymphocytes, antigen recognition triggers signal transduction by clustering T cell receptor (TCR)/CD3 multiprotein complexes. In addition, it hypothesized that biophysical changes induced in TCR/CD3 that accompany receptor engagement may contribute to signal intensity. Nonclustering monovalent TCR/CD3 engagement is functionally inert despite the fact that it may induce changes in conformational arrangement or in the flexibility of receptor subunits. We report that the intrinsically inert monovalent engagement of TCR/CD3 can specifically enhance physiologic T cell responses to weak antigens in vitro and in vivo without stimulating antigen-unengaged T cells and without interrupting T cell responses to strong antigens, an effect that we term as “co-potentiation.” We identified Mono-7D6-Fab, which biophysically altered TCR/CD3 when bound and functionally enhanced immune reactivity to several weak antigens in vitro, including a gp100-derived peptide associated with melanoma. In vivo, Mono-7D6-Fab induced T cell antigen–dependent therapeutic responses against melanoma lung metastases, an effect that synergized with other anti-melanoma immunotherapies to significantly improve outcome and survival. We conclude that Mono-7D6-Fab directly co-potentiated TCR/CD3 engagement by weak antigens and that such concept can be translated into an immunotherapeutic design. The co-potentiation principle may be applicable to other receptors that could be regulated by otherwise inert compounds whose latent potency is only invoked in concert with specific physiologic ligands. PMID:26601285
Understanding the Biology of Antigen Cross-Presentation for the Design of Vaccines Against Cancer
Fehres, Cynthia M.; Unger, Wendy W. J.; Garcia-Vallejo, Juan J.; van Kooyk, Yvette
2014-01-01
Antigen cross-presentation, the process in which exogenous antigens are presented on MHC class I molecules, is crucial for the generation of effector CD8+ T cell responses. Although multiple cell types are being described to be able to cross-present antigens, in vivo this task is mainly carried out by certain subsets of dendritic cells (DCs). Aspects such as the internalization route, the pathway of endocytic trafficking, and the simultaneous activation through pattern-recognition receptors have a determining influence in how antigens are handled for cross-presentation by DCs. In this review, we will summarize new insights in factors that affect antigen cross-presentation of human DC subsets, and we will discuss the possibilities to exploit antigen cross-presentation for immunotherapy against cancer. PMID:24782858
Modeling antigen-antibody nanoparticle bioconjugates and their polymorphs
NASA Astrophysics Data System (ADS)
Desgranges, Caroline; Delhommelle, Jerome
2018-03-01
The integration of nanomaterials with biomolecules has recently led to the development of new ways of designing biosensors, and through their assembly, to new hybrid structures for novel and exciting applications. In this work, we develop a coarse-grained model for nanoparticles grafted with antibody molecules and their binding with antigens. In particular, we isolate two possible states for antigen-antibody pairs during the binding process, termed as recognition and anchoring states. Using molecular simulation, we calculate the thermodynamic and structural features of three possible crystal structures or polymorphs, the body-centered cubic, simple cubic, and face-centered cubic phases, and of the melt. This leads us to determine the domain of stability of the three solid phases. In particular, the role played by the switching process between anchoring and recognition states during melting is identified, shedding light on the complex microscopic mechanisms in these systems.
USDA-ARS?s Scientific Manuscript database
Influenza A virus (IAV) of the H3 subtype is an important pathogen that affects both humans and swine. The main intervention strategy for preventing infection is vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA). However, due to antigenic drift, vaccin...
Structure of a protective epitope of group B Streptococcus type III capsular polysaccharide.
Carboni, Filippo; Adamo, Roberto; Fabbrini, Monica; De Ricco, Riccardo; Cattaneo, Vittorio; Brogioni, Barbara; Veggi, Daniele; Pinto, Vittoria; Passalacqua, Irene; Oldrini, Davide; Rappuoli, Rino; Malito, Enrico; Margarit, Immaculada Y Ros; Berti, Francesco
2017-05-09
Despite substantial progress in the prevention of group B Streptococcus (GBS) disease with the introduction of intrapartum antibiotic prophylaxis, this pathogen remains a leading cause of neonatal infection. Capsular polysaccharide conjugate vaccines have been tested in phase I/II clinical studies, showing promise for further development. Mapping of epitopes recognized by protective antibodies is crucial for understanding the mechanism of action of vaccines and for enabling antigen design. In this study, we report the structure of the epitope recognized by a monoclonal antibody with opsonophagocytic activity and representative of the protective response against type III GBS polysaccharide. The structure and the atomic-level interactions were determined by saturation transfer difference (STD)-NMR and X-ray crystallography using oligosaccharides obtained by synthetic and depolymerization procedures. The GBS PSIII epitope is made by six sugars. Four of them derive from two adjacent repeating units of the PSIII backbone and two of them from the branched galactose-sialic acid disaccharide contained in this sequence. The sialic acid residue establishes direct binding interactions with the functional antibody. The crystal structure provides insight into the molecular basis of antibody-carbohydrate interactions and confirms that the conformational epitope is not required for antigen recognition. Understanding the structural basis of immune recognition of capsular polysaccharide epitopes can aid in the design of novel glycoconjugate vaccines.
Agglutination Assays of the Plasmodium falciparum-Infected Erythrocyte.
Tan, Joshua; Bull, Peter C
2015-01-01
The agglutination assay is used to determine the ability of antibodies to recognize parasite variant antigens on the surface of Plasmodium falciparum-infected erythrocytes. In this technique, infected erythrocytes are selectively labelled with a DNA-binding fluorescent dye and mixed with antibodies of interest to allow antibody-surface antigen binding. Recognition of surface antigens by the antibodies can result in the formation of agglutinates containing multiple parasite-infected erythrocytes. These can be viewed and quantified using a fluorescence microscope.
Humoral and Cellular Response in Humans After Immunization with Influenza Vaccine
Ruben, Frederick L.; Jackson, George G.; Gotoff, Samuel P.
1973-01-01
The peripheral blood lymphocyte response and hemagglutination inhibition antibody titers were measured in nine adults before and after immunization with a killed split influenza virus vaccine. Cord blood lymphocytes were tested with the influenza antigen to exclude a nonspecific mitogenic effect. All of the subjects demonstrated preexisting antibody titers and antigen recognition by lymphocytes prior to immunization. The in vitro lymphocyte response after vaccination parallels the humoral antibody response to influenza antigen. PMID:4762112
1995-01-01
A class of molecules that is expressed on antigen presenting cells, exemplified by CD80 (B7), has been found to provide a necessary costimulatory signal for T cell activation and proliferation. CD28 and CTLA4 are the B7 counterreceptors and are expressed on the majority of human CD4+ T cells and many CD8+ T cells. The signal these molecules mediate is distinguished from other costimulatory signals by the finding that T cell recognition of antigen results in a prolonged state of T cell unresponsiveness or anergy, unless these costimulatory molecules are engaged. However, nearly half of the CD8+ and CD4-CD8- T cells lack CD28, and the costimulatory signals required for the activation of such cells are unknown. To understand the pathways of activation used by CD28- T cells, we have examined the costimulatory requirements of antigen-specific CD4-CD8- TCR(+)-alpha/beta circulating T cells that lack the expression of CD28. We have characterized two T cell lines, DN1 and DN6, that recognize a mycobacterial antigen, and are restricted not by major histocompatibility complex class I or II, but by CD1b or CD1c, two members of a family of major histocompatibility complex-related molecules that have been recently implicated in a distinct pathway for antigen presentation. Comparison of antigen-specific cytolytic responses of the DN1 and DN6 T cell lines against antigen-pulsed CD1+ monocytes or CD1+ B lymphoblastoid cell lines (B-LCL) demonstrated that these T cells recognized antigen presented by both types of cells. However, T cell proliferation occurred only when antigen was presented by CD1+ monocytes, indicating that the CD1+ monocytes expressed a costimulatory molecule that the B- LCL transfectants lacked. This hypothesis was confirmed by demonstrating that the T cells became anergic when incubated with the CD1(+)-transfected B-LCL in the presence of antigen, but not in the absence of antigen. The required costimulatory signal occurred by a CD28-independent mechanism since both the CD1+ monocytes and CD1+ B-LCL transfectants expressed B7-1 and B7-2, and DN1 and DN6 lacked surface expression of CD28. We propose that these data define a previously unrecognized pathway of costimulation for T cells distinct from that involving CD28 and its counterreceptors. We suggest that this B7- independent pathway plays a crucial role in the activation and maintenance of tolerance of at least a subset of CD28- T cells. PMID:7500046
Konkel, Joanne E; Frommer, Friederike; Leech, Melanie D; Yagita, Hideo; Waisman, Ari; Anderton, Stephen M
2010-01-01
The ultimate outcome of T-cell recognition of peptide–major histocompatibility complex (MHC) complexes is determined by the molecular context in which antigen presentation is provided. The paradigm is that, after exposure to peptides presented by steady-state dendritic cells (DCs), inhibitory signals dominate, leading to the deletion and/or functional inactivation of antigen-reactive T cells. This has been utilized in a variety of models providing peptide antigen in soluble form in the absence of adjuvant. A co-inhibitory molecule of considerable current interest is PD-1. Here we show that there is the opportunity for the PD-1/PD-L1 interaction to function in inhibiting the T-cell response during tolerance induction. Using traceable CD4+ T-cell receptor (TCR) transgenic cells, together with a blocking antibody to disrupt PD-1 signalling, we explored the roles of PD-1 in the induction of tolerance versus a productive immune response. Intact PD-1 signalling played a role in limiting the extent of CD4+ T-cell accumulation in response to an immunogenic stimulus. However, PD-1 signalling was not required for either the induction, or the maintenance, of peptide-induced tolerance; a conclusion underlined by successful tolerance induction in TCR transgenic cells genetically deficient for PD-1. These observations contrast with the reported requirement for PD-1 signals in CD8+ T-cell tolerance. PMID:20113370
1992-01-01
Cytotoxic T lymphocytes (CTL) recognize short antigenic peptides associated with cell surface class I major histocompatibility complex (MHC) molecules. This association presumably occurs between newly synthesized class I MHC molecules and peptide fragments in a pre-Golgi compartment. Little is known about the factors that regulate the formation of these antigenic peptide fragments within the cell. To examine the role of residues within a core epitope and in the flanking sequences for the generation and presentation of the newly synthesized peptide fragment recognized by CD8+ CTL, we have mutagenized the coding sequence for the CTL epitope spanning residues 202-221 in the influenza A/Japan/57 hemagglutinin (HA). In this study over 60 substitution mutations in the epitope were tested for their effects on target cell sensitization using a cytoplasmic viral expression system. The HA202- 221 site contains two overlapping subsites defined by CTL clones 11-1 and 40-2. Mutations in HA residues 204-213 or residues 210-219 often abolished target cell lysis by CTL clones 11-1 and 40-2, respectively. Although residues outside the core epitope did not usually affect the ability to be lysed by CTL clones, substitution of a Gly residue for Val-214 abolished lysis by clone 11-1. These data suggest that residues within a site that affect MHC binding and T cell receptor recognition appear to play the predominant role in dictating the formation of the antigenic complex recognized by CD8+ CTL, and therefore the antigenicity of the protein antigen presented to CD8+ T cells. Most alterations in residues flanking the endogenously expressed epitope do not appreciably affect the generation and recognition of the site. PMID:1383384
Venteo, A; Rebollo, B; Sarraseca, J; Rodriguez, M J; Sanz, A
2012-04-01
Precise and rapid detection of porcine reproductive respiratory syndrome virus (PRRSV) infection in swine farms is critical. Improvement of control procedures, such as testing incoming gilt and surveillance of seronegative herds requires more rapid and sensitive methods. However, standard serological techniques detect mainly IgG antibodies. A double recognition enzyme-linked immunosorbent assay (DR-ELISA) was developed for detection of antibodies specific to European PRRSV. This new assay can recognize both IgM and IgG antibodies to PRSSV which might be useful for detecting in routine surveillance assays pigs that are in the very early stages of infection and missed by conventional assays detecting only IgG antibodies. DR-ELISA is based on the double recognition of antigen by antibody. In this study, the recombinant nucleocapsid protein (N) of PRRSV was used both as the coating and the enzyme-conjugated antigen. To evaluate the sensitivity of the assay at early stages of the infection, sera from 69 pigs infected with PRRSV were collected during successive days post infection (pi) and tested. While standard methods showed low sensitivity rates before day 14 pi, DR-ELISA detected 88.4% seropositive samples at day 7 showing greater sensitivity at early stages of the infection. Further studies were carried out to assess the efficiency of the new assay, and the results showed DR-ELISA to be a sensitive and accurate method for early diagnosis of EU-PRRSV infection. Copyright © 2012 Elsevier B.V. All rights reserved.
Why do proteases mess up with antigen presentation by re-shuffling antigen sequences?
Liepe, Juliane; Ovaa, Huib; Mishto, Michele
2018-04-30
The sequence of a large number of MHC-presented epitopes is not present as such in the original antigen because it has been re-shuffled by the proteasome or other proteases. Why do proteases throw a spanner in the works of our model of antigen tagging and immune recognition? We describe in this review what we know about the immunological relevance of post-translationally spliced epitopes and why proteases seem to have a second (dark) personality, which is keen to create new peptide bonds. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
CD1d expression by hepatocytes is a main restriction element for intrahepatic T-cell recognition.
Agrati, C; Martini, F; Nisii, C; Oliva, A; D'Offizi, G; Narciso, P; Nardacci, R; Piacentini, M; Dieli, F; Pucillo, L P; Poccia, F
2005-01-01
The liver has specific mechanisms to protect itself from infectious agents and to avoid autoimmunity, indicating an important role of the hepatic tissues in antigen presentation and tolerance induction. Since intrahepatic lymphocytes may contribute to the innate immunity and to the liver pathology, it is of interest to analyze the expression of antigen presenting molecules and of the related T cell recognition in liver, and how these change in relation to different diseases. We analyzed the expression of MHC class I, and of CD1-a, -b, -c, and -d proteins on liver tissues from patients with different hepatic diseases. Moreover, in the same patients we studied the intrahepatic and peripheral NKT cell recognition of alpha-galactosyl ceramide antigen in the context of CD1d. Unlike in other tissues, classical MHC class I molecules were poorly expressed in the hepatic compartment, suggesting that inflamed hepatocytes may trigger weak MHC-restricted T cell responses. Nevertheless, we observed a prevalent expression of HLA class I-like CD1d isoform on the hepatocyte surface, indicating that CD1d is the main restriction element in the liver. In patients with viral hepatitis, the intrahepatic CD1d expression parallels the recruitment of CD56+Valpha24Vbeta11+ NKT cells in the liver which recognize CD1d presenting glycolipids such as alpha-galactosyl ceramide, suggesting that the intrahepatic T cell immunity may focus on glycolipid antigens.
Legey, Ana Paula; Pinho, Ana Paula; Xavier, Samanta C C; Marchevsky, Renato; Carreira, João Carlos; Leon, Leonor L; Jansen, Ana Maria
2003-01-01
Philander frenata and Didelphis marsupialis harbor parasitism by Trypanosoma cruzi without developing any apparent disease and on the contrary to D. marsupialis, P. frenata maintains parasitism by T. cruzi II subpopulations. Here we compared the humoral immune response of the two didelphids naturally and experimentally infected with T. cruzi II group, employing SDS-PAGE/Western blot techniques and by an Indirect immunofluorescence assay. We also studied the histopathological pattern of naturally and experimentally infected P. frenata with T. cruzi. P. frenata sera recognized more antigens than D. marsupialis, and the recognition pattern did not show any change over the course of the follow up of both didelphid species. Polypeptides of 66 and 90kDa were the most prominent antigens recognized by both species in the soluble and enriched membrane fractions. P. frenata recognized intensely also a 45kDa antigen. Our findings indicate that: 1) there were no quantitative or qualitative differences in the patent or subpatent phases in the recognition pattern of P. frenata; 2) the significant differences in the recognition pattern of parasitic antigens by P. frenata and D. marsupialis sera suggest that they probably "learned" to live in harmony with T. cruzi by different strategies; 3) although P. frenata do not display apparent disease, tissular lesions tended to be more severe than has been described in D. marsupialis; and 4) Both didelphids probably acquired infection by T. cruzi after their evolutionary divergence.
Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis
Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc
2001-01-01
Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281
αβ T cell receptors as predictors of health and disease
Attaf, Meriem; Huseby, Eric; Sewell, Andrew K
2015-01-01
The diversity of antigen receptors and the specificity it underlies are the hallmarks of the cellular arm of the adaptive immune system. T and B lymphocytes are indeed truly unique in their ability to generate receptors capable of recognizing virtually any pathogen. It has been known for several decades that T lymphocytes recognize short peptides derived from degraded proteins presented by major histocompatibility complex (MHC) molecules at the cell surface. Interaction between peptide-MHC (pMHC) and the T cell receptor (TCR) is central to both thymic selection and peripheral antigen recognition. It is widely assumed that TCR diversity is required, or at least highly desirable, to provide sufficient immune coverage. However, a number of immune responses are associated with the selection of predictable, narrow, or skewed repertoires and public TCR chains. Here, we summarize the current knowledge on the formation of the TCR repertoire and its maintenance in health and disease. We also outline the various molecular mechanisms that govern the composition of the pre-selection, naive and antigen-specific TCR repertoires. Finally, we suggest that with the development of high-throughput sequencing, common TCR ‘signatures' raised against specific antigens could provide important diagnostic biomarkers and surrogate predictors of disease onset, progression and outcome. PMID:25619506
Walmsley, A M; Alvarez, M L; Jin, Y; Kirk, D D; Lee, S M; Pinkhasov, J; Rigano, M M; Arntzen, C J; Mason, H S
2003-06-01
Epitopes often require co-delivery with an adjuvant or targeting protein to enable recognition by the immune system. This paper reports the ability of transgenic tomato plants to express a fusion protein consisting of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) and an immunocontraceptive epitope. The fusion protein was found to assemble into pentamers, as evidenced by its ability to bind to gangliosides, and had an average expression level of 37.8 microg g(-1) in freeze-dried transgenic tissues. Processing of selected transgenic fruit resulted in a 16-fold increase in concentration of the antigen with minimal loss in detectable antigen. The species-specific nature of this epitope was shown by the inability of antibodies raised against non-target species to detect the LTB fusion protein. The immunocontraceptive ability of this vaccine will be tested in future pilot mice studies.
In silico design of smart binders to anthrax PA
NASA Astrophysics Data System (ADS)
Sellers, Michael; Hurley, Margaret M.
2012-06-01
The development of smart peptide binders requires an understanding of the fundamental mechanisms of recognition which has remained an elusive grail of the research community for decades. Recent advances in automated discovery and synthetic library science provide a wealth of information to probe fundamental details of binding and facilitate the development of improved models for a priori prediction of affinity and specificity. Here we present the modeling portion of an iterative experimental/computational study to produce high affinity peptide binders to the Protective Antigen (PA) of Bacillus anthracis. The result is a general usage, HPC-oriented, python-based toolkit based upon powerful third-party freeware, which is designed to provide a better understanding of peptide-protein interactions and ultimately predict and measure new smart peptide binder candidates. We present an improved simulation protocol with flexible peptide docking to the Anthrax Protective Antigen, reported within the context of experimental data presented in a companion work.
Akiba, Hiroki; Tsumoto, Kouhei
2015-07-01
Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Murad, K L; Mahany, K L; Brugnara, C; Kuypers, F A; Eaton, J W; Scott, M D
1999-03-15
We previously showed that the covalent modification of the red blood cell (RBC) surface with methoxypoly(ethylene glycol) [mPEG; MW approximately 5 kD] could significantly attenuate the immunologic recognition of surface antigens. However, to make these antigenically silent RBC a clinically viable option, the mPEG-modified RBC must maintain normal cellular structure and functions. To this end, mPEG-derivatization was found to have no significant detrimental effects on RBC structure or function at concentrations that effectively blocked antigenic recognition of a variety of RBC antigens. Importantly, RBC lysis, morphology, and hemoglobin oxidation state were unaffected by mPEG-modification. Furthermore, as shown by functional studies of Band 3, a major site of modification, PEG-binding does not affect protein function, as evidenced by normal SO4- flux. Similarly, Na+ and K+ homeostasis were unaffected. The functional aspects of the mPEG-modified RBC were also maintained, as evidenced by normal oxygen binding and cellular deformability. Perhaps most importantly, mPEG-derivatized mouse RBC showed normal in vivo survival ( approximately 50 days) with no sensitization after repeated transfusions. These data further support the hypothesis that the covalent attachment of nonimmunogenic materials (eg, mPEG) to intact RBC may have significant application in transfusion medicine, especially for the chronically transfused and/or allosensitized patient.
Suppression of lethal autoimmunity by regulatory T cells with a single TCR specificity
Hemmers, Saskia; Schizas, Michail; Faire, Mehlika B.; Konopacki, Catherine; Schmidt-Supprian, Marc; Germain, Ronald N.
2017-01-01
The regulatory T cell (T reg cell) T cell receptor (TCR) repertoire is highly diverse and skewed toward recognition of self-antigens. TCR expression by T reg cells is continuously required for maintenance of immune tolerance and for a major part of their characteristic gene expression signature; however, it remains unknown to what degree diverse TCR-mediated interactions with cognate self-antigens are required for these processes. In this study, by experimentally switching the T reg cell TCR repertoire to a single T reg cell TCR, we demonstrate that T reg cell function and gene expression can be partially uncoupled from TCR diversity. An induced switch of the T reg cell TCR repertoire to a random repertoire also preserved, albeit to a limited degree, the ability to suppress lymphadenopathy and T helper cell type 2 activation. At the same time, these perturbations of the T reg cell TCR repertoire led to marked immune cell activation, tissue inflammation, and an ultimately severe autoimmunity, indicating the importance of diversity and specificity for optimal T reg cell function. PMID:28130403
2005-01-01
Summary: Living systems operate under interactive selective pressures. Populations have the ability to anticipate the future by generating a repertoire of elements that cope with new selective pressures. If the repertoire of such elements were transcendental, natural selection could not operate because any one of them would be too rare. This is the problem that vertebrates faced in order to deal with a vast number of pathogens. The solution was to invent an immune system that underwent somatic evolution. This required a random repertoire that was generated somatically and divided the antigenic universe into combinatorials of determinants. As a result, it became virtually impossible for pathogens to escape recognition but the functioning of such a repertoire required two new regulatory mechanisms: 1) a somatic discriminator between Not-To-Be-Ridded (‘Self’) and To-Be-Ridded (‘Non-self’) antigens, and 2) a way to optimize the magnitude and choice of the class of the effector response. The principles governing this dual regulation are analyzed in the light of natural selection. PMID:12190919
NASA Astrophysics Data System (ADS)
Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.
2014-01-01
Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.
Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.
Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S
2001-01-01
The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Nonclassical T Cells and Their Antigens in Tuberculosis
De Libero, Gennaro; Singhal, Amit; Lepore, Marco; Mori, Lucia
2014-01-01
T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I–related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response. PMID:25059739
The role of pattern recognition receptors in lung sarcoidosis.
Mortaz, Esmaeil; Adcock, Ian M; Abedini, Atefhe; Kiani, Arda; Kazempour-Dizaji, Mehdi; Movassaghi, Masoud; Garssen, Johan
2017-08-05
Sarcoidosis is a granulomatous disorder of unknown etiology. Infection, genetic factors, autoimmunity and an aberrant innate immune system have been explored as potential causes of sarcoidosis. The etiology of sarcoidosis remains unknown, and it is thought that it might be caused by an infectious agent in a genetically predisposed, susceptible host. Inflammation results from recognition of evolutionarily conserved structures of pathogens (Pathogen-associated molecular patterns, PAMPs) and/or from reaction to tissue damage associated patterns (DAMPs) through recognition by a limited number of germ line-encoded pattern recognition receptors (PRRs). Due to the similar clinical and histopathological picture of sarcoidosis and tuberculosis, Mycobacterium tuberculosis antigens such early secreted antigen (ESAT-6), heat shock proteins (Mtb-HSP), catalase-peroxidase (katG) enzyme and superoxide dismutase A peptide (sodA) have been often considered as factors in the etiopathogenesis of sarcoidosis. Potential non-TB-associated PAMPs include lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria, peptidoglycan, lipoteichoic acid, bacterial DNA, viral DNA/RNA, chitin, flagellin, leucine-rich repeats (LRR), mannans in the yeast cell wall, and microbial HSPs. Furthermore, exogenous non-organic antigens such as metals, silica, pigments with/without aluminum in tattoos, pesticides, and pollen have been evoked as potential causes of sarcoidosis. Exposure of the airways to diverse infectious and non-infectious agents may be important in the pathogenesis of sarcoidosis. The current review provides and update on the role of PPRs and DAMPs in the pathogenesis of sarcoidsis. Copyright © 2017 Elsevier B.V. All rights reserved.
Computational modeling of carbohydrate recognition in protein complex
NASA Astrophysics Data System (ADS)
Ishida, Toyokazu
2017-11-01
To understand the mechanistic principle of carbohydrate recognition in proteins, we propose a systematic computational modeling strategy to identify complex carbohydrate chain onto the reduced 2D free energy surface (2D-FES), determined by MD sampling combined with QM/MM energy corrections. In this article, we first report a detailed atomistic simulation study of the norovirus capsid proteins with carbohydrate antigens based on ab initio QM/MM combined with MD-FEP simulations. The present result clearly shows that the binding geometries of complex carbohydrate antigen are determined not by one single, rigid carbohydrate structure, but rather by the sum of averaged conformations mapped onto the minimum free energy region of QM/MM 2D-FES.
C-type lectins: their network and roles in pathogen recognition and immunity.
Mayer, Sabine; Raulf, Marie-Kristin; Lepenies, Bernd
2017-02-01
C-type lectins (CTLs) represent the most complex family of animal/human lectins that comprises 17 different groups. During evolution, CTLs have developed by diversification to cover a broad range of glycan ligands. However, ligand binding by CTLs is not necessarily restricted to glycans as some CTLs also bind to proteins, lipids, inorganic molecules, or ice crystals. CTLs share a common fold that harbors a Ca 2+ for contact to the sugar and about 18 invariant residues in a phylogenetically conserved pattern. In vertebrates, CTLs have numerous functions, including serum glycoprotein homeostasis, pathogen sensing, and the initiation of immune responses. Myeloid CTLs in innate immunity are mainly expressed by antigen-presenting cells and play a prominent role in the recognition of a variety of pathogens such as fungi, bacteria, viruses, and parasites. However, myeloid CTLs such as the macrophage inducible CTL (Mincle) or Clec-9a may also bind to self-antigens and thus contribute to immune homeostasis. While some CTLs induce pro-inflammatory responses and thereby lead to activation of adaptive immune responses, other CTLs act as inhibitory receptors and dampen cellular functions. Since CTLs are key players in pathogen recognition and innate immunity, targeting CTLs may be a promising strategy for cell-specific delivery of drugs or vaccine antigens and to modulate immune responses.
Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design
Kong, Leopold; Sattentau, Quentin J
2012-01-01
Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today’s rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. PMID:23227445
Commins, Scott P
2015-01-01
Complex carbohydrates are effective inducers of Th2 responses, and carbohydrate antigens can stimulate the production of glycan-specific antibodies. In instances where the antigen exposure occurs through the skin, the resulting antibody production can contain IgE class antibody. The glycan-stimulated IgE may be non-specific but may also be antigen specific. This review focuses on the production of cross-reactive carbohydrate determinants, the recently identified IgE antibody response to a mammalian oligosaccharide epitope, galactose-alpha-1,3-galactose (alpha-gal), as well as discusses practical implications of carbohydrates in allergy. In addition, the biological effects of carbohydrate antigens are reviewed in setting of receptors and host recognition.
Methods for quantifying T cell receptor binding affinities and thermodynamics
Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.
2013-01-01
αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868
The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD
NASA Astrophysics Data System (ADS)
Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.
2015-08-01
Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.
Culshaw, Abigail; Ladell, Kristin; Gras, Stephanie; McLaren, James E; Miners, Kelly L; Farenc, Carine; van den Heuvel, Heleen; Gostick, Emma; Dejnirattisai, Wanwisa; Wangteeraprasert, Apirath; Duangchinda, Thaneeya; Chotiyarnwong, Pojchong; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Dong, Tao; Rossjohn, Jamie; Mongkolsapaya, Juthathip; Price, David A; Screaton, Gavin R
2017-11-01
Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8 + T cell populations specific for variants of the nonstructural protein epitope NS3 133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3 133 -DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2 + TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2 + TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.
NASA Astrophysics Data System (ADS)
Salehi, Mohammad; Schneider, Lilli; Ströbel, Philipp; Marx, Alexander; Packeisen, Jens; Schlücker, Sebastian
2014-01-01
SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates.SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05890e
Hillen, Nina; Mester, Gabor; Lemmel, Claudia; Weinzierl, Andreas O; Müller, Margret; Wernet, Dorothee; Hennenlotter, Jörg; Stenzl, Arnulf; Rammensee, Hans-Georg; Stevanović, Stefan
2008-11-01
Human leukocyte antigens (HLA) have long been grouped into supertypes to facilitate peptide-based immunotherapy. Analysis of several hundreds of peptides presented by all nine antigens of the HLA-B44 supertype (HLA-B*18, B*37, B*40, B*41, B*44, B*45, B*47, B*49 and B*50) revealed unique peptide motifs for each of them. Taking all supertype members into consideration only 25 out of 670 natural ligands were found on more than one HLA molecule. Further direct comparisons by two mass spectrometric methods--isotope labeling as well as a label-free approach--consistently demonstrated only minute overlaps of below 3% between the ligandomes of different HLA antigens. In addition, T cell reactions of healthy donors against immunodominant HLA-B*44 and HLA-B*40 epitopes from EBV lacked promiscuous T-cell recognition within the HLA-B44 supertype. Taken together, these results challenge the common paradigm of broadly presented epitopes within this supertype.
Haynes, Nicole M; Trapani, Joseph A; Teng, Michèle W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K
2002-11-01
Tumor cells are usually weakly immunogenic as they largely express self-antigens and can down-regulate major histocompatability complex/peptide molecules and critical costimulatory ligands. The challenge for immunotherapies has been to provide vigorous immune effector cells that circumvent these tumor escape mechanisms and eradicate established tumors. One promising approach is to engineer T cells with single-chain antibody receptors, and since T cells require 2 distinct signals for optimal activation, we have compared the therapeutic efficacy of erbB2-reactive chimeric receptors that contain either T-cell receptor zeta (TCR-zeta) or CD28/TCR-zeta signaling domains. We have demonstrated that primary mouse CD8(+) T lymphocytes expressing the single-chain Fv (scFv)-CD28-zeta receptor have a greater capacity to secrete Tc1 cytokines, induce T-cell proliferation, and inhibit established tumor growth and metastases in vivo. The suppression of established tumor burden by cytotoxic T cells expressing the CD28/TCR-zeta chimera was critically dependent upon their interferon gamma (IFN-gamma) secretion. Our study has illustrated the practical advantage of engineering a T-cell signaling complex that codelivers CD28 activation, dependent only upon the tumor's expression of the appropriate tumor associated antigen.
Novo, Pedro; Prazeres, Duarte Miguel França; Chu, Virginia; Conde, João Pedro
2011-12-07
Microfluidic technology has the potential to decrease the time of analysis and the quantity of sample and reactants required in immunoassays, together with the potential of achieving high sensitivity, multiplexing, and portability. A lab-on-a-chip system was developed and optimized using optical and fluorescence microscopy. Primary antibodies are adsorbed onto the walls of a PDMS-based microchannel via microspotting. This probe antibody is then recognised using secondary FITC or HRP labelled antibodies responsible for providing fluorescence or chemiluminescent and colorimetric signals, respectively. The system incorporated a micron-sized thin-film hydrogenated amorphous silicon photodiode microfabricated on a glass substrate. The primary antibody spots in the PDMS-based microfluidic were precisely aligned with the photodiodes for the direct detection of the antibody-antigen molecular recognition reactions using chemiluminescence and colorimetry. The immunoassay takes ~30 min from assay to the integrated detection. The conditions for probe antibody microspotting and for the flow-through ELISA analysis in the microfluidic format with integrated detection were defined using antibody solutions with concentrations in the nM-μM range. Sequential colorimetric or chemiluminescence detection of specific antibody-antigen molecular recognition was quantitatively detected using the photodiode. Primary antibody surface densities down to 0.182 pmol cm(-2) were detected. Multiplex detection using different microspotted primary antibodies was demonstrated.
Chang, Y. Paul; Xu, Meng; Machado, Ana Carolina Dantas; Yu, Xian Jessica; Rohs, Remo; Chen, Xiaojiang S.
2013-01-01
SUMMARY The DNA tumor virus Simian virus 40 (SV40) is a model system for studying eukaryotic replication. SV40 large tumor antigen (LTag) is the initiator/helicase that is essential for genome replication. LTag recognizes and assembles at the viral replication origin. We determined the structure of two multidomain LTag subunits bound to origin DNA. The structure reveals that the origin binding domains (OBDs) and Zn and AAA+ domains are involved in origin recognition and assembly. Notably, the OBDs recognize the origin in an unexpected manner. The histidine residues of the AAA+ domains insert into a narrow minor groove region with enhanced negative electrostatic potential. Computational analysis indicates that this region is intrinsically narrow, demonstrating the role of DNA shape readout in origin recognition. Our results provide important insights into the assembly of the LTag initiator/ helicase at the replication origin and suggest that histidine contacts with the minor groove serve as a mechanism of DNA shape readout. PMID:23545501
Recognition Using Biospecific Interaction Analysis
1991-08-01
U.S. Army Chemical Research, Development and Engineering Center, ATTN: SMCCR- SPS -T, Aberdeen Proving Ground, MD 21010-5423. However, the Defense...17 4. Capture of mAb 8A3 and Challenge with Entamoeba histolytica Pathogenic (P2) and Nonpathogenic (NP2) Antigenic Preparations...18 5. Capture of mAb 8A3 and Challenge with Entamoeba histolytica Pathogenic Antigen (P2) at a Minimal Dilution... 19 6
Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing
1983-01-01
We examined the ability of a set of cloned chicken ovalbumin (cOVA)- specific, Id-restricted, T cell hybridomas to produce interleukin-2 in response to cOVA presented by the Ia+ B cell lymphoma line, A20-2J. Although viable A20-2J cells presented native, denatured, and fragmented cOVA more or less equally well, A20-2J cells that were glutaraldehyde-fixed could present only enzymatically or chemically fragmented cOVA. These results suggest that antigen fragmentation may be both necessary and sufficient to define accessory cell processing of soluble antigens so that they may be recognized in association with I- region molecules by T cells. PMID:6193218
Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses
Neher, Richard A.; Bedford, Trevor; Daniels, Rodney S.; Shraiman, Boris I.
2016-01-01
Human seasonal influenza viruses evolve rapidly, enabling the virus population to evade immunity and reinfect previously infected individuals. Antigenic properties are largely determined by the surface glycoprotein hemagglutinin (HA), and amino acid substitutions at exposed epitope sites in HA mediate loss of recognition by antibodies. Here, we show that antigenic differences measured through serological assay data are well described by a sum of antigenic changes along the path connecting viruses in a phylogenetic tree. This mapping onto the tree allows prediction of antigenicity from HA sequence data alone. The mapping can further be used to make predictions about the makeup of the future A(H3N2) seasonal influenza virus population, and we compare predictions between models with serological and sequence data. To make timely model output readily available, we developed a web browser-based application that visualizes antigenic data on a continuously updated phylogeny. PMID:26951657
Identification of the antigenic determinants of factors 8, 9, and 34 of genus Candida.
Kobayashi, H; Oyamada, H; Suzuki, A; Shibata, N; Suzuki, S; Okawa, Y
1996-10-21
We investigated the antigenic determinants of factors 8, 9, and 34 of the genus Candida among pathogenic yeasts by enzyme-linked immunosorbent assay (ELISA) using mannans of Saccharomyces cerevisiae wild type and mutant types, mnn 1-mnn 4 and mnn 2. Results of ELISA including antisera against the antigenic factors of genus Candida (Candida Check, latron; FAbs) indicated that these three types of mannan distinctly react with FAbs 34, 8 and 9, respectively. To identify the recognition sites of these FAbs, we compared the ability of various oligosaccharides to inhibit the binding of the mannans to FAbs. The results indicated that FAb 34 preferentially recognizes linear side chains containing a non-reducing terminal alpha-1,3-linked mannose residue, Man(alpha)1 --> 3Man(alpha)1 --> (2Man(alpha)1 --> )n(2Man) (n > or = 0), and that one of the recognition sites of FAb 9 is linear alpha-1,6-linked oligomannosyl series, Man(alpha)1 --> (6Man(alpha)1 --> )n(6Man) (n > or = 2). On the other hand, the recognition site of FAb 8 apparently consisted of two alpha-1,2-linked oligomannosyl side chains and an alpha-1,6-linked mannose residue that originated from the mannan backbone, Man(alpha)1 --> 2Man(alpha)1 --> 2(Man(alpha)1 -->2Man(alpha)1 --> 6)Man.
Different subsets of natural killer T cells may vary in their roles in health and disease
Kumar, Vipin; Delovitch, Terry L
2014-01-01
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid–CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes. PMID:24428389
Duong, Ellen; Bracho-Sanchez, Edith; Rucevic, Marijana; Liebesny, Paul H.; Xu, Yang; Shimada, Mariko; Ghebremichael, Musie; Kavanagh, Daniel G.; Le Gall, Sylvie
2014-01-01
Dendritic cells (DCs), macrophages (MPs) and monocytes are permissive to HIV. Whether they similarly process and present HIV epitopes to HIV-specific CD8 T cells is unknown despite the critical role of peptide processing and presentation for recognition and clearance of infected cells. Cytosolic peptidases degrade endogenous proteins originating from self or pathogens, exogenous antigens preprocessed in endolysosomes, thus shaping the peptidome available for endoplasmic reticulum (ER) translocation, trimming and MHC-I presentation. Here we compared the capacity of DCs, MPs and monocyte cytosolic extracts to produce epitope precursors and epitopes. We showed differences in the proteolytic activities and expression levels of cytosolic proteases between monocyte-derived DCs and MPs and upon maturation with LPS, R848 and CL097, with mature MPs having the highest activities. Using cytosol as a source of proteases to degrade epitope-containing HIV peptides, we showed by mass spectrometry that the degradation patterns of long peptides and the kinetics and amount of antigenic peptides produced differed among DCs, MPs and monocytes. Additionally, variable intracellular stability of HIV peptides prior to loading onto MHC may accentuate the differences in epitope availability for presentation by MHC-I between these subsets. Differences in peptide degradation led to 2- to 25-fold differences in the CTL responses elicited by the degradation peptides generated in DCs, MPs and monocytes. Differences in antigen processing activities between these subsets might lead to variations in the timing and efficiency of recognition of HIV-infected cells by CTLs and contribute to the unequal capacity of HIV-specific CTLs to control viral load. PMID:25230751
Rare Event Simulation for T-cell Activation
NASA Astrophysics Data System (ADS)
Lipsmeier, Florian; Baake, Ellen
2009-02-01
The problem of statistical recognition is considered, as it arises in immunobiology, namely, the discrimination of foreign antigens against a background of the body's own molecules. The precise mechanism of this foreign-self-distinction, though one of the major tasks of the immune system, continues to be a fundamental puzzle. Recent progress has been made by van den Berg, Rand, and Burroughs (J. Theor. Biol. 209:465-486, 2001), who modelled the probabilistic nature of the interaction between the relevant cell types, namely, T-cells and antigen-presenting cells (APCs). Here, the stochasticity is due to the random sample of antigens present on the surface of every APC, and to the random receptor type that characterises individual T-cells. It has been shown previously (van den Berg et al. in J. Theor. Biol. 209:465-486, 2001; Zint et al. in J. Math. Biol. 57:841-861, 2008) that this model, though highly idealised, is capable of reproducing important aspects of the recognition phenomenon, and of explaining them on the basis of stochastic rare events. These results were obtained with the help of a refined large deviation theorem and were thus asymptotic in nature. Simulations have, so far, been restricted to the straightforward simple sampling approach, which does not allow for sample sizes large enough to address more detailed questions. Building on the available large deviation results, we develop an importance sampling technique that allows for a convenient exploration of the relevant tail events by means of simulation. With its help, we investigate the mechanism of statistical recognition in some depth. In particular, we illustrate how a foreign antigen can stand out against the self background if it is present in sufficiently many copies, although no a priori difference between self and nonself is built into the model.
Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I
2017-11-01
T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.
Direct electrical control of IgG conformation and functional activity at surfaces
NASA Astrophysics Data System (ADS)
Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo
2016-11-01
We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.
Oszvald, Maria; Kang, Tae-Jin; Tomoskozi, Sandor; Tamas, Cecilia; Tamas, Laszlo; Kim, Tae-Geum; Yang, Moon-Sik
2007-03-01
Epitopes often require co-delivery with adjuvant and targeting proteins to enable recognition by the immune system, and this approach may also increase the efficacy of the antigen. In this study, we assess and describe the ability of transgenic rice plants to express a fusion protein consisting of the B-subunit of the Escherichia coli heat-labile enterotoxin (LTB) and a synthetic core-neutralizing epitope (COE) of porcine epidemic diarrhea virus (PEDV), inducing an enteric disease that is seen most predominantly in piglets. Both components of the fusion proteins were detected with Western blot analysis. The fusion protein was determined to assemble into pentamers, as was evidenced by its ability to bind to GM1 gangliosides, and evidenced an average level of expression in a transgenic rice endosperm. This indicates that the expression system of the plant is capable of generating a sizable amount of antigen, possibly allowing for the successful development of an edible vaccine.
Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas
2014-01-01
In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe discovery of non-peptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used for discovery of other classes of antigen surrogates. PMID:25467125
2013-01-01
Toxoplasma gondii is a parasitic protozoan which is the cause of toxoplasmosis. Although human toxoplasmosis in healthy adults is usually asymptomatic, serious disease can occur in the case of congenital infections and immunocompromised individuals. Furthermore, despite the exact recognition of its etiology, it still presents a diagnostic problem. Diagnosis of toxoplasmosis is mainly based on the results of serological tests detecting anti-T. gondii-specific antibodies in the patient's serum sample. The specificities and sensitivities of serology tests depend mostly on the diagnostic antigen(s) used. Most of the commercial serological kits currently available are based on Toxoplasma lysate antigens (TLAs). In recent years, many studies showed that recombinant antigenic proteins of T. gondii may be an alternative source of antigens which are very useful for the serodiagnosis of toxoplasmosis. This article presents a review of current studies on the application and usefulness of different T. gondii recombinant antigens in serological tests for the diagnosis of human toxoplasmosis. PMID:23784855
Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas
2014-12-18
In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe nonpeptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used to identify other classes of antigen surrogates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fine-tuning the CAR spacer improves T-cell potency
Watanabe, Norihiro; Bajgain, Pradip; Sukumaran, Sujita; Ansari, Salma; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Leen, Ann M.; Vera, Juan F.
2016-01-01
ABSTRACT The adoptive transfer of genetically engineered T cells expressing chimeric antigen receptors (CARs) has emerged as a transformative cancer therapy with curative potential, precipitating a wave of preclinical and clinical studies in academic centers and the private sector. Indeed, significant effort has been devoted to improving clinical benefit by incorporating accessory genes/CAR endodomains designed to enhance cellular migration, promote in vivo expansion/persistence or enhance safety by genetic programming to enable the recognition of a tumor signature. However, our efforts centered on exploring whether CAR T-cell potency could be enhanced by modifying pre-existing CAR components. We now demonstrate how molecular refinements to the CAR spacer can impact multiple biological processes including tonic signaling, cell aging, tumor localization, and antigen recognition, culminating in superior in vivo antitumor activity. PMID:28180032
An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy.
Bonam, Srinivasa Reddy; Partidos, Charalambos D; Halmuthur, Sampath Kumar M; Muller, Sylviane
2017-09-01
Adjuvants incorporated in prophylactic and/or therapeutic vaccine formulations impact vaccine efficacy by enhancing, modulating, and/or prolonging the immune response. In addition, they reduce antigen concentration and the number of immunizations required for protective efficacy, therefore contributing to making vaccines more cost effective. Our better understanding of the molecular mechanisms of immune recognition and protection has led research efforts to develop new adjuvants that are currently at various stages of development or clinical evaluation. In this review, we focus mainly on several of these promising adjuvants, and summarize recent work conducted in various laboratories to develop novel lipid-containing adjuvants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lopez, Jodie; Bittame, Amina; Massera, Céline; Vasseur, Virginie; Effantin, Grégory; Valat, Anne; Buaillon, Célia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-François; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas
2015-12-15
Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Sasaki, Takanori; Kanaseki, Takayuki; Shionoya, Yosuke; Tokita, Serina; Miyamoto, Sho; Saka, Eri; Kochin, Vitaly; Takasawa, Akira; Hirohashi, Yoshihiko; Tamura, Yasuaki; Miyazaki, Akihiro; Torigoe, Toshihiko; Hiratsuka, Hiroyoshi; Sato, Noriyuki
2016-04-01
Hypoxia and glucose deprivation are often observed in the microenvironment surrounding solid tumors in vivo. However, how they interfere with MHC class I antigen processing and CD8(+) T-cell responses remains unclear. In this study, we analyzed the production of antigenic peptides presented by classical MHC class I in mice, and showed that it is quantitatively decreased in the cells exposed to either hypoxia or glucose deprivation. In addition, we unexpectedly found increased surface expression of HLA-E in human and Qa-1 in mouse tumor cells exposed to combined oxygen and glucose deprivation. The induced Qa-1 on the stressed tumor model interacted with an inhibitory NKG2/CD94 receptor on activated CD8(+) T cells and attenuated their specific response to the antigen. Our results thus suggest that microenvironmental stresses modulate not only classical but also nonclassical MHC class I presentation, and confer the stressed cells the capability to escape from the CD8(+) T-cell recognition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantitative Expression and Immunogenicity of MAGE-3 and -6 in Upper Aerodigestive Tract Cancer
Andrade Filho, Pedro A.; López-Albaitero, Andrés; Xi, Liqiang; Gooding, William; Godfrey, Tony; Ferris, Robert L.
2009-01-01
The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aero-digestive tract (UADT) tumor cells and its association with T cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using western blot. HLA-A*0201:MAGE-3(271–279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. Based on MAGE-3/6 expression we could identify 31 (47%) of the 65 UADT tumors which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, two MAGE-3/6 mRNAhigh SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6 specific knockdown. RNAi–transfected cells showed that MAGE expression, and MAGE-CTL recognition, were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials. PMID:19610063
Quantitative expression and immunogenicity of MAGE-3 and -6 in upper aerodigestive tract cancer.
Filho, Pedro A Andrade; López-Albaitero, Andrés; Xi, Liqiang; Gooding, William; Godfrey, Tony; Ferris, Robert L
2009-10-15
The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aerodigestive tract (UADT) tumor cells and its association with T-cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE-specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+ squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using Western blot. HLA-A*0201:MAGE-3- (271-279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. On the basis of the MAGE-3/6 expression, we could identify 31 (47%) of the 65 UADT tumors, which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, 2 MAGE-3/6 mRNA(high) SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6-specific knockdown. RNAi-transfected cells showed that MAGE expression and MAGE-CTL recognition were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR-based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials.
Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody.
Shanker, Sreejesh; Czakó, Rita; Sapparapu, Gopal; Alvarado, Gabriela; Viskovska, Maria; Sankaran, Banumathi; Atmar, Robert L; Crowe, James E; Estes, Mary K; Prasad, B V Venkataram
2016-10-04
Human noroviruses (HuNoVs) cause sporadic and epidemic gastroenteritis worldwide. They are classified into two major genogroups (GI and GII), with each genogroup further divided into multiple genotypes. Susceptibility to these viruses is influenced by genetically determined histo-blood group antigen (HBGA) expression. HBGAs function as cell attachment factors by binding to a surface-exposed region in the protruding (P) domain of the capsid protein. Sequence variations in this region that result in differential HBGA binding patterns and antigenicity are suggested to form a basis for strain diversification. Recent studies show that serum antibodies that block HBGA binding correlate with protection against illness. Although genogroup-dependent variation in HBGA binding specificity is structurally well characterized, an understanding of how antibodies block HBGA binding and how genotypic variations affect such blockade is lacking. Our crystallographic studies of the GI.1 P domain in complex with the Fab fragment of a human IgA monoclonal antibody (IgA 5I2) with HBGA blocking activity show that the antibody recognizes a conformational epitope formed by two surface-exposed loop clusters in the P domain. The antibody engulfs the HBGA binding site but does not affect its structural integrity. An unusual feature of the antigen recognition by IgA 5I2 is the predominant involvement of the CDR light chain 1 in contrast to the commonly observed CDR heavy chain 3, providing a unique perspective into antibody diversity in antigen recognition. Identification of the antigenic site in the P domain shows how genotypic variations might allow escape from antibody neutralization and exemplifies the interplay between antigenicity and HBGA specificity in HuNoV evolution.
1986-01-01
The UV-induced, C3H fibrosarcoma, 1591, expresses at least three unique MHC class I antigens not found on normal C3H tissue. Here we report the complete DNA sequence of the three novel class I genes encoding these molecules, and describe in detail the recognition of the individual products by tumor-reactive and allospecific CTL. Remarkably, although C3H does not appear to express H-2L locus information, this C3H tumor expresses two distinct antigens, termed A149 and A166, which are extremely homologous to each other and to the H-2Ld antigen from BALB/c. The gene encoding the third novel class I antigen from 1591, A216, is quite homologous to H-2Kk) throughout its 3' end. Since all three of these genes account for polymorphic restriction fragments not found in C3H, it is likely that they were derived by recombination from the endogenous class I genes of C3H. The DNA sequence homology of A149, A166, and H-2Ld is especially significant given the functional conservation observed between the products of these genes. Limited sequence substitutions appear to correlate with some of the discrete serological differences observed between these molecules. In addition, both A149 and A166 crossreact, but to differing extents, with H-2Ld at the level of T cell recognition. Our results are consistent with the view that CTL recognize complex conformational determinants on class I molecules, but extend previous observations by comparing a set of antigens with discrete and overlapping structural and functional differences. PMID:3489061
Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins.
Mousa, Jarrod J; Binshtein, Elad; Human, Stacey; Fong, Rachel H; Alvarado, Gabriela; Doranz, Benjamin J; Moore, Martin L; Ohi, Melanie D; Crowe, James E
2018-02-01
Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.
1996-01-01
The importance of cytotoxic T lymphocytes (CTLs) in the immunosurveillance of Epstein-Barr virus (EBV)-infected B cells is firmly established, and the viral antigens of CTL recognition in latent infection are well defined. The epitopes targeted by CTLs during primary infection have not been identified, however, and there is only limited information about T cell receptor (TCR) selection. In the present report, we have monitored the development of memory TCR-beta clonotypes selected in response to natural EBV infection in a longitudinal study of an HLA-B8+ individual with acute infectious mononucleosis (IM). By stimulating peripheral blood lymphocytes with HLA-B8+ EBV-transformed B lymphoblastoid cells, the primary virus- specific CTL response was shown to include specificities for two HLA-B8- restricted antigenic determinants, FLRGRAYGL and QAKWRLQTL, which are encoded within the latent EBV nuclear antigen EBNA-3. TCR-beta sequence analysis of CTL clones specific for each epitope showed polyclonal TCR- beta repertoire selection, with structural restrictions on recognition that indicated antigen-driven selection. Furthermore, longitudinal repertoire analysis revealed long-term preservation of a multiclonal effector response throughout convalescence, with the reemergence of distinct memory T cell clonotypes sharing similar structural restrictions. Tracking the progression of specific TCR-beta clonotypes and antigen-specific TCR-V beta family gene expression in the peripheral repertoire ex vivo using semiquantitative PCR strongly suggested that selective TCR-beta expansions were present at the clonotype level, but not at the TCR-V beta family level. Overall, in this first analysis of antigen-specific TCR development in IM, a picture of polyclonal TCR stimulation is apparent. This diversity may be especially important in the establishment of an effective CTL control during acute EBV infection and in recovery from disease. PMID:8920869
The Role of Progesterone in the Feto-Maternal Immunological Crosstalk.
Szekeres-Bartho, Julia
2018-06-27
This review aims to provide a brief historical overview of the feto-maternal immunological relationship, which profoundly influences the outcome of pregnancy. The initial question posed in the nineteen fifties by Medawar, was based on the assumption that the maternal immune system recognizes the fetus as an allograft. Indeed, based on the association between HLA-matching and spontaneous miscarriage, it became obvious that immunological recognition of pregnancy is required for a successful gestation. The restricted expression of polymorphic HLA antigens on the trophoblast, together with the presence of non-polymorphic MHC products excludes recognition by both T and NK cells of trophoblast presented antigens, however, T cells, which constitute the majority of decidual T cells are likely candidates. Indeed, a high number of activated, progesterone receptor-expressing T cells are present in peripheral blood of healthy pregnant women, and in the presence of progesterone, these cells secrete an immunomodulatory protein called Progesterone-induced Blocking Factor or PIBF. As early as in the peri-implantation period, the embryo communicates with the maternal immune system via PIBF containing extracellular vesicles. PIBF contributes to the dominance of Th2-type reactivity characterising normal pregnancy, by inducing increased production of Th2 cytokines. The high expression of this molecule in the decidua might be one of the reasons for the low cytotoxic activity of decidual NK cells. ©2018The Author(s). Published by S. Karger AG, Basel.
Liang, Chunyang; Xiong, Ke; Szulwach, Keith E.; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I.; Liu, Qinghua
2013-01-01
MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ∼70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ∼21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3′ UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules. PMID:23129761
Liang, Chunyang; Xiong, Ke; Szulwach, Keith E; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I; Liu, Qinghua
2013-01-04
MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ~70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ~21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3' UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules.
Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia
2014-10-15
Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.
Label-Free Aptasensors for the Detection of Mycotoxins
Rhouati, Amina; Catanante, Gaelle; Nunes, Gilvanda; Hayat, Akhtar; Marty, Jean-Louis
2016-01-01
Various methodologies have been reported in the literature for the qualitative and quantitative monitoring of mycotoxins in food and feed samples. Based on their enhanced specificity, selectivity and versatility, bio-affinity assays have inspired many researchers to develop sensors by exploring bio-recognition phenomena. However, a significant problem in the fabrication of these devices is that most of the biomolecules do not generate an easily measurable signal upon binding to the target analytes, and signal-generating labels are required to perform the measurements. In this context, aptamers have been emerged as a potential and attractive bio-recognition element to design label-free aptasensors for various target analytes. Contrary to other bioreceptor-based approaches, the aptamer-based assays rely on antigen binding-induced conformational changes or oligomerization states rather than binding-assisted changes in adsorbed mass or charge. This review will focus on current designs in label-free conformational switchable design strategies, with a particular focus on applications in the detection of mycotoxins. PMID:27999353
[Roles of sialic acids in sperm maturation and capacitation and sperm-egg recognition].
Feng, Ying; Wang, Lin; Wu, Yi-Lun; Liu, Hong-Hua; Ma, Fang
2016-10-01
Sialic acids are a subset of nine-carbon alpha-keto aldonic acids involved in various biological functions. Sialic acid on the sperm surface is closely related to sperm maturation and capacitation and sperm-egg recognition, which makes sperm negatively charged to avoid accumulation and covers some antigenic determinants there to increase the survival rate of sperm in the female reproductive tract. The loss of sialic acids is an important factor mediating sperm capacitation. Moreover, the sialic acid at the extremity of the protein polymer is involved in signal identification in sperm-egg recognition. Here, we review the current understanding of sialic acids in sperm maturation and capacitation and sperm-egg recognition.
Moving beyond HLA: a review of nHLA antibodies in organ transplantation.
Sigdel, Tara K; Sarwal, Minnie M
2013-11-01
Given the finite graft life expectancy of HLA identical organ transplants and the recognition of humoral graft injury in the absence of donor directed anti-HLA antibodies, the clinical impact of antibodies against non-HLA (nHLA) antigens in transplant injury is being increasingly recognized. The recognition of the impact of nHLA antigen discrepancies between donor and recipient on transplant outcomes is timely given the advances in rapid and lower cost sequencing methods that can soon provide complete maps of all recipient and donor HLA and nHLA mismatch data. In this review, we present a summary of recent reports evaluating the role of nHLA antibodies and their relevance to the field of organ transplantation. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Different subsets of natural killer T cells may vary in their roles in health and disease.
Kumar, Vipin; Delovitch, Terry L
2014-07-01
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid-CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes. © 2014 John Wiley & Sons Ltd.
Di, Shengmeng; Li, Zonghai
2016-04-01
Chimeric antigen receptors (CARs) are artificial recombinant receptors that generally combine the antigen-recognition domain of a monoclonal antibody with T cell activation domains. Recent years have seen great success in clinical trials employing CD19-specific CAR-T cell therapy for B cell leukemia. Nevertheless, solid tumors remain a major challenge for CAR-T cell therapy. This review summarizes the preclinical and clinical studies on the treatment of solid tumors with CAR-T cells. The major hurdles for the success of CAR-T and the novel strategies to address these hurdles have also been described and discussed.
Toward a Network Model of MHC Class II-Restricted Antigen Processing
Miller, Michael A.; Ganesan, Asha Purnima V.; Eisenlohr, Laurence C.
2013-01-01
The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen processing depicts a straightforward, linear pathway: internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4+ T cells (TCD4+). Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell. PMID:24379819
Pathogen-Sensing and Regulatory T Cells: Integrated Regulators of Immune Responses
Grossman, Zvi; Paul, William E.
2014-01-01
We present the concept that pathogen-sensing and Tregs mutually regulate immune responses to conventional and tumor antigens through countervailing effects on dendritic cells. Normally, conventional CD4 T cells recognizing their cognate antigen-presented by a dendritic cell will respond only if the dendritic cell also receives a signal through its pathogen-sensing/ danger / adjuvant recognition systems (the pathogen-sensing triad). However, if Tregs capable of interacting with the same DC are absent, dendritic cells are competent to present antigens, both foreign and self, even without the stimulation provided by the pathogen-sensing triad. Tregs recognizing an antigen presented by the DC that is also presenting antigen to a conventional CD4 T cell will prevent such responses but a signal delivered by a member of the pathogen-sensing traid will overcome the Tregs’inhibitory action and will allow responses to go forward. These considerations take on special meaning for responses to “weak antigens” such as many of the antigens displayed by spontaneous human tumors. PMID:24894087
Carbohydrates as T-cell antigens with implications in health and disease.
Sun, Lina; Middleton, Dustin R; Wantuch, Paeton L; Ozdilek, Ahmet; Avci, Fikri Y
2016-10-01
Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Antibody Recognition of the Dengue Virus Proteome and Implications for Development of Vaccines
2011-04-01
Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic detenninants of dengue 2 virus. J. Infect. Dis. 194:790-794. 3... reactiv - ity against other DENV serotypes (1, 35). In contrast to DF, dengue hemorrhagic fever (DHF) is an infrequent but far more serious consequence of...recipients of the tetrava- lent DENV vaccine or from dengue cases owing to antibody cross- reactivity among serotypes (29). Furthermore, as results from
Tejada, Margarita; Olivares, Fabiola; de las Heras, Cristina; Careche, Mercedes; Solas, María Teresa; García, María Luisa; Fernandez, Agustín; Mendizábal, Angel; Navas, Alfonso; Rodríguez-Mahillo, Ana Isabel; González-Muñoz, Miguel
2015-03-30
Some technological and food processing treatments applied to parasitized fish kill the Anisakis larvae and prevent infection and sensitization of consumers. However, residual allergenic activity of parasite allergens has been shown. The aim here was to study the effect of different heat treatments used in the fish canning processing industry on the antigen recognition of Anisakis L3. Bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) were experimentally infected with live L3 Anisakis. After 48 h at 5 ± 1 °C, brine was added to the muscle, which was then canned raw (live larvae) or heated (90 °C, 30 min) (dead larvae) and treated at 113 °C for 60 min or at 115 °C for 90 min. Anisakis antigens and Ani s 4 were detected with anti-crude extract and anti-Ani s 4 antisera respectively. Ani s 4 decreased in all lots, but the muscle retained part of the allergenicity irrespective of the canning method, as observed by immunohistochemistry. Dot blot analysis showed a high loss of Ani s 4 recognition after canning, but residual antigenicity was present. The results indicate that heat treatment for sterilization under the conditions studied produces a decrease in Ani s 4 and suggest a potential exposure risk for Anisakis-sensitized patients. © 2014 Society of Chemical Industry.
Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin
2015-01-01
ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8+ T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4+ T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways. PMID:26468525
Quinn, Laura L; Williams, Luke R; White, Claire; Forrest, Calum; Zuo, Jianmin; Rowe, Martin
2016-01-01
The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8(+) cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8(+) cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8(+) cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4(+) cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8(+) and CD4(+) T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8(+) T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8(+) T cells specific for early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8(+) T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4(+) T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A New Intrusion Detection Method Based on Antibody Concentration
NASA Astrophysics Data System (ADS)
Zeng, Jie; Li, Tao; Li, Guiyang; Li, Haibo
Antibody is one kind of protein that fights against the harmful antigen in human immune system. In modern medical examination, the health status of a human body can be diagnosed by detecting the intrusion intensity of a specific antigen and the concentration indicator of corresponding antibody from human body’s serum. In this paper, inspired by the principle of antigen-antibody reactions, we present a New Intrusion Detection Method Based on Antibody Concentration (NIDMBAC) to reduce false alarm rate without affecting detection rate. In our proposed method, the basic definitions of self, nonself, antigen and detector in the intrusion detection domain are given. Then, according to the antigen intrusion intensity, the change of antibody number is recorded from the process of clone proliferation for detectors based on the antigen classified recognition. Finally, building upon the above works, a probabilistic calculation method for the intrusion alarm production, which is based on the correlation between the antigen intrusion intensity and the antibody concen-tration, is proposed. Our theoretical analysis and experimental results show that our proposed method has a better performance than traditional methods.
Specific recognition of hydatid cyst antigens by serum IgG, IgE, and IgA using western blot.
Sbihi, Y; Janssen, D; Osuna, A
1997-01-01
Diagnosis of hydatid disease in humans relies on the detection of specific antibodies against antigens of the metacestode from Echinococcus granulosus. The specificity and sensitivity of current immunological techniques based on specific serum IgG rely on the way antigens are purified. We used Western immunoblotting to detect specific IgG, IgE, and IgA antibodies in serum from patients with hydatid disease using either crude antigen preparations (total hydatid fluid), purified fractions enriched in Antigens 5 and B, and glycoproteins from hydatid fluid. Depending on whether crude HF or purified antigen fractions were used, IgG and IgE recognized specifically low-to-medium MW bands between 12 and 42 kDa. IgA recognized specifically 110 kDa band in crude hydatid fluid and in the glycoprotein fraction of hydatid fluid, and a 42 kDa band in all antigen samples used. Besides the advantage of detecting specific IgA in crude hydatid fluid, these results offer the possibility of simplifying future immunological tests if specific secretory IgA can be similarly detected.
Specific T-cell activation in an unspecific T-cell repertoire.
Van Den Berg, Hugo A; Molina-París, Carmen; Sewell, Andrew K
2011-01-01
T-cells are a vital type of white blood cell that circulate around our bodies, scanning for cellular abnormalities and infections. They recognise disease-associated antigens via a surface receptor called the T-cell antigen receptor (TCR). If there were a specific TCR for every single antigen, no mammal could possibly contain all the T-cells it needs. This is clearly absurd and suggests that T-cell recognition must, to the contrary, be highly degenerate. Yet highly promiscuous TCRs would appear to be equally impossible: they are bound to recognise self as well as non-self antigens. We review how contributions from mathematical analysis have helped to resolve the paradox of the promiscuous TCR. Combined experimental and theoretical work shows that TCR degeneracy is essentially dynamical in nature, and that the T-cell can differentially adjust its functional sensitivity to the salient epitope, "tuning up" sensitivity to the antigen associated with disease and "tuning down" sensitivity to antigens associated with healthy conditions. This paradigm of continual modulation affords the TCR repertoire, despite its limited numerical diversity, the flexibility to respond to almost any antigenic challenge while avoiding autoimmunity.
Development of solid - based paper strips for rapid diagnosis of Pseudorabies infection.
Joon Tam, Yew; Mohd Lila, Mohd Azmi; Bahaman, Abdul Rani
2004-12-01
Pseudorabies (Aujeszky's disease) is an economically significant disease of swine known to cause central nervous disorders, respiratory disease, reproductive failure and mortality in infected pigs. In attempts to eradicate the disease from becoming endemic, early detection is important to prevent further economic losses and to allow for detection and removal of infected pigs in domestic herds. Thus, a rapid and sensitive technique is necessary for the detection of the virus. For rapid and simple examination, an immuno - chromatographic lateral - flow assay system based on immunologic recognition of specific pseudorabies virus antigen was developed by utilising, as signal generator, colloidal gold conjugated to secondary antibody to detect primary or sample antibody in the sera of pseudorabies infected animals. The pseudorabies virus used as a capture antigen in the test strip was first cultivated in VERO cell culture and then purified by sucrose gradient separation to produce the viral protein concentration of 3.8 mg/ml. The standard pseudorabies antigens reacted well with the hyperimmune serum (HIS). The antibody detection system is basically composed of colloidal gold - labelled antibodies fixed on a conjugate pad, and the complementary pseudorabies antigen immobilised onto a nitrocellulose membrane forming capture zone. If the target antibody is present in a specimen, the colloidal gold-labelled antibody will form a complex with the antibody sample. Subsequently, the formed complex will migrate to the capture zone and is then bound to the solid phase via antigen - antibody interaction. As a result, a signal marker is generated by the accumulation of colloidal gold for detection confirmation. The results obtained demonstrated that the optimum combination of pseudorabies antigen needed as the capture reagent and gold conjugate as secondary antibody recognition marker was at a concentration of 0.38mg/ml and at 1:10 dilution factor respectively. The sensitivity of the solid - based test strip towards pseudorabies antibodies was high with a detection limit of 1 to 10,000 - dilution factor. The specificity of the assay was 100% with no cross - reaction being observed with other sera or antibodies. Accurate reading time needed for confirmation of the assay can be completed in 5 min with a whole blood sample of 25 microl. The colloidal gold - labelled antibody is stable at room temperature for 6 months or more (data not shown). Findings from this study indicated that the solid - based test strip assay system provided high sensitivity and specificity for the detection of pseudorabies at low levels of antibody concentration. The assay was rapid, simple, cheap, and does not require any sophisticated equipment. Thus, the solid based test strip will be a useful serological screening technique or for rapid diagnosis of an infectious disease in target populations of animals characterised by heterogeneous antibody responses.
TCRmodel: high resolution modeling of T cell receptors from sequence.
Gowthaman, Ragul; Pierce, Brian G
2018-05-22
T cell receptors (TCRs), along with antibodies, are responsible for specific antigen recognition in the adaptive immune response, and millions of unique TCRs are estimated to be present in each individual. Understanding the structural basis of TCR targeting has implications in vaccine design, autoimmunity, as well as T cell therapies for cancer. Given advances in deep sequencing leading to immune repertoire-level TCR sequence data, fast and accurate modeling methods are needed to elucidate shared and unique 3D structural features of these molecules which lead to their antigen targeting and cross-reactivity. We developed a new algorithm in the program Rosetta to model TCRs from sequence, and implemented this functionality in a web server, TCRmodel. This web server provides an easy to use interface, and models are generated quickly that users can investigate in the browser and download. Benchmarking of this method using a set of nonredundant recently released TCR crystal structures shows that models are accurate and compare favorably to models from another available modeling method. This server enables the community to obtain insights into TCRs of interest, and can be combined with methods to model and design TCR recognition of antigens. The TCRmodel server is available at: http://tcrmodel.ibbr.umd.edu/.
Langenhorst, Daniela; Tabares, Paula; Gulde, Tobias; Becklund, Bryan R; Berr, Susanne; Surh, Charles D; Beyersdorf, Niklas; Hünig, Thomas
2017-01-01
In rodents, low doses of CD28-specific superagonistic monoclonal antibodies (CD28 superagonists, CD28SA) selectively activate regulatory T cells (Treg). This observation has recently been extended to humans, suggesting an option for the treatment of autoimmune and inflammatory diseases. However, a mechanistic explanation for this phenomenon is still lacking. Given that CD28SA amplify T cell receptor (TCR) signals, we tested the hypothesis that the weak tonic TCR signals received by conventional CD4 + T cells (Tconv) in the absence of cognate antigen require more CD28 signaling input for full activation than the stronger TCR signals received by self-reactive Treg. We report that in vitro , the response of mouse Treg and Tconv to CD28SA strongly depends on MHC class II expression by antigen-presenting cells. To separate the effect of tonic TCR signals from self-peptide recognition, we compared the response of wild-type Treg and Tconv to low and high CD28SA doses upon transfer into wild-type or H-2M knockout mice, which lack a self-peptide repertoire. We found that the superior response of Treg to low CD28SA doses was lost in the absence of self-peptide presentation. We also tested if potentially pathogenic autoreactive Tconv would benefit from self-recognition-induced sensitivity to CD28SA stimulation by transferring TCR transgenic OVA-specific Tconv into OVA-expressing mice and found that low-dose CD28SA application inhibited, rather than supported, their expansion, presumably due to the massive concomitant activation of Treg. Finally, we report that also in the in vitro response of human peripheral blood mononuclear cells to CD28SA, HLA II blockade interferes with the expansion of Treg by low-dose CD28SA stimulation. These results provide a rational basis for the further development of low-dose CD28SA therapy for the improvement of Treg activity.
Epitope mapping: the first step in developing epitope-based vaccines.
Gershoni, Jonathan M; Roitburd-Berman, Anna; Siman-Tov, Dror D; Tarnovitski Freund, Natalia; Weiss, Yael
2007-01-01
Antibodies are an effective line of defense in preventing infectious diseases. Highly potent neutralizing antibodies can intercept a virus before it attaches to its target cell and, thus, inactivate it. This ability is based on the antibodies' specific recognition of epitopes, the sites of the antigen to which antibodies bind. Thus, understanding the antibody/epitope interaction provides a basis for the rational design of preventive vaccines. It is assumed that immunization with the precise epitope, corresponding to an effective neutralizing antibody, would elicit the generation of similarly potent antibodies in the vaccinee. Such a vaccine would be a 'B-cell epitope-based vaccine', the implementation of which requires the ability to backtrack from a desired antibody to its corresponding epitope. In this article we discuss a range of methods that enable epitope discovery based on a specific antibody. Such a reversed immunological approach is the first step in the rational design of an epitope-based vaccine. Undoubtedly, the gold standard for epitope definition is x-ray analyses of crystals of antigen:antibody complexes. This method provides atomic resolution of the epitope; however, it is not readily applicable to many antigens and antibodies, and requires a very high degree of sophistication and expertise. Most other methods rely on the ability to monitor the binding of the antibody to antigen fragments or mutated variations. In mutagenesis of the antigen, loss of binding due to point modification of an amino acid residue is often considered an indication of an epitope component. In addition, computational combinatorial methods for epitope mapping are also useful. These methods rely on the ability of the antibody of interest to affinity isolate specific short peptides from combinatorial phage display peptide libraries. The peptides are then regarded as leads for the definition of the epitope corresponding to the antibody used to screen the peptide library. For epitope mapping, computational algorithms have been developed, such as Mapitope, which has recently been found to be effective in mapping conformational discontinuous epitopes. The pros and cons of various approaches towards epitope mapping are also discussed.
2013-03-11
are derived from the combination of three polypeptides, namely the Protective antigen (PA, 83 kDa), the edema factor (EF, 89 kDa), and the lethal...p38MAPK-dependent pathways. The T-cell receptors and CD3-mediated antigenic recognition processes are possibly restrained, and the expression of CD79...NY), using a VersArray microarrayer ( Bio -Rad, CA). Arrays were post- processed using UV-cross linking at 1200 mJ/cm2, followed by baking for 4 hrs
NASA Astrophysics Data System (ADS)
Li, Yizhou; De Luca, Roberto; Cazzamalli, Samuele; Pretto, Francesca; Bajic, Davor; Scheuermann, Jörg; Neri, Dario
2018-03-01
In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody-antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.
Kulik, Liudmila; Fleming, Sherry D.; Moratz, Chantal; Reuter, Jason W.; Novikov, Aleksey; Chen, Kuan; Andrews, Kathy A.; Markaryan, Adam; Quigg, Richard J.; Silverman, Gregg J.; Tsokos, George C.; Holers, V. Michael
2010-01-01
Intestinal ischemia-reperfusion (IR)3 injury is initiated when natural IgM antibodies recognize neo-epitopes that are revealed on ischemic cells. The target molecules and mechanisms whereby these neo-epitopes become accessible to recognition are not well understood. Proposing that isolated intestinal epithelial cells (IEC) may carry IR-related neo-epitopes, we used in vitro IEC binding assays to screen hybridomas created from B cells of unmanipulated wild type C57BL/6 mice. We identified a novel IgM monoclonal antibody (mAb B4) that reacted with the surface of IEC by flow cytometric analysis and was alone capable of causing complement activation, neutrophil recruitment and intestinal injury in otherwise IR-resistant Rag1−/− mice. Monoclonal Ab B4 was found to specifically recognize mouse annexin IV. Pre-injection of recombinant annexin IV blocked IR injury in wild type C57BL/6 mice, demonstrating the requirement for recognition of this protein in order to develop IR injury in the context of a complex natural antibody repertoire. Humans were also found to exhibit IgM natural antibodies that recognize annexin IV. These data in toto identify annexin IV as a key ischemia-related target antigen that is recognized by natural Abs in a pathologic process required in vivo to develop intestinal IR injury. PMID:19380783
B-cell acquisition of antigen: Sensing the surface.
Knight, Andrew M
2015-06-01
B-cell antigen receptor (BCR) recognition and acquisition of antigen by B cells is the essential first step in the generation of effective antibody responses. As B-cell-mediated antigen presentation is also believed to play a significant role in the activation of CD4(+) Th-cell responses, considerable effort has focused on clarifying the nature of antigen/BCR interactions. Following earlier descriptions of interactions of soluble antigens with the BCR, it is now clear that B cells also recognize, physically extract and present antigens that are tethered to, or integral components of, the surfaces or extracellular matrix of other cells. In this issue of the European Journal of Immunology, Zeng et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] examine how the physical property or "stiffness" of the surface displaying antigens to B cells influences the B-cell response. This commentary reports that antigen tethered on "less stiff" surfaces induces increased B-cell activation and antibody responses. I then infer how "sensing the surface" by B cells may represent a new component of the immune system's ability to detect "damage," and how this understanding may influence approaches to clinical therapies where immune activity is either unwanted or desired. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Autoantibodies in Paraneoplastic Neurological Syndrome].
Kawachi, Izumi
2018-04-01
Paraneoplastic neurological syndromes (PNS) are caused by immune responses against neuronal antigens expressed by the tumor. Based on the immunological pathomechanisms and responsiveness of treatments, onconeuronal antibodies are divided into two categories: 1) antibodies against neural intracellular antigens and 2) antibodies against neuronal surface or synaptic antigens. The recent discovery of onconeuronal antibodies have radically changed concepts of CNS autoimmunity, including PNS. The recognition of PNS provides a foundation for the early detection of underlying tumors and initiations of prompt treatments, which can result in substantial improvement. We here review the characteristic onconeuronal antibodies, including anti-Hu, anti-Ma2, and anti-N-methyl-D-aspartate receptor, and discuss the algorithm for the diagnosis of PNS.
Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A; Admon, Arie; López, Daniel
2016-06-01
Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Warrington, Richard
2012-01-01
Allergic drug reactions occur when a drug, usually a low molecular weight molecule, has the ability to stimulate an immune response. This can be done in one of two ways. The first is by binding covalently to a self-protein, to produce a haptenated molecule that can be processed and presented to the adaptive immune system to induce an immune response. Sometimes the drug itself cannot do this but a reactive breakdown product of the drug is able to bind covalently to the requisite self-protein or peptide. The second way in which drugs can stimulate an immune response is by binding non-covalently to antigen presenting or antigen recognition molecules such as the major histocompatibility complex (MHC) or the T cell receptor. This is known as the p-I or pharmacological interaction hypothesis. The drug binding in this situation is reversible and stimulation of the response may occur on first exposure, not requiring previous sensitization. There is probably a dependence on the presence of certain MHC alleles and T cell receptor structures for this type of reaction to occur. PMID:22922763
Bensing, Barbara A; Khedri, Zahra; Deng, Lingquan; Yu, Hai; Prakobphol, Akraporn; Fisher, Susan J; Chen, Xi; Iverson, Tina M; Varki, Ajit; Sullam, Paul M
2016-11-01
Serine-rich repeat glycoproteins are adhesins expressed by commensal and pathogenic Gram-positive bacteria. A subset of these adhesins, expressed by oral streptococci, binds sialylated glycans decorating human salivary mucin MG2/MUC7, and platelet glycoprotein GPIb. Specific sialoglycan targets were previously identified for the ligand-binding regions (BRs) of GspB and Hsa, two serine-rich repeat glycoproteins expressed by Streptococcus gordonii While GspB selectively binds sialyl-T antigen, Hsa displays broader specificity. Here we examine the binding properties of four additional BRs from Streptococcus sanguinis or Streptococcus mitis and characterize the molecular determinants of ligand selectivity and affinity. Each BR has two domains that are essential for sialoglycan binding by GspB. One domain is structurally similar to the glycan-binding module of mammalian Siglecs (sialic acid-binding immunoglobulin-like lectins), including an arginine residue that is critical for glycan recognition, and that resides within a novel, conserved YTRY motif. Despite low sequence similarity to GspB, one of the BRs selectively binds sialyl-T antigen. Although the other three BRs are highly similar to Hsa, each displayed a unique ligand repertoire, including differential recognition of sialyl Lewis antigens and sulfated glycans. These differences in glycan selectivity were closely associated with differential binding to salivary and platelet glycoproteins. Specificity of sialoglycan adherence is likely an evolving trait that may influence the propensity of streptococci expressing Siglec-like adhesins to cause infective endocarditis. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Leibowitz, Michael S.; Filho, Pedro A. Andrade; Ferrone, Soldano; Ferris, Robert L.
2012-01-01
Squamous cell carcinoma of the head and neck (SCCHN) cells can escape recognition by tumor antigen (TA)-specific cytotoxic T lymphocytes (CTL) by downregulation of antigen processing machinery (APM) components, such as the transporter associated with antigen processing (TAP)-1/2 heterodimer. APM component upregulation by interferon gamma (IFN-γ) restores SCCHN cell recognition and susceptibility to lysis by CTL, but the mechanism underlying TAP1/2 downregulation in SCCHN cells is not known. Because IFN-γ activates signal transducer and activator of transcription (STAT)-1, we investigated phosphorylated (p)-STAT1 as a mediator of low basal TAP1/2 expression in SCCHN cells. SCCHN cells were found to express basal total STAT1 but low to undetectable levels of activated STAT1. The association of increased pSTAT1 levels and APM components likely reflects a cause–effect relationship, since STAT1 knockdown significantly reduced both IFN-γ-mediated APM component expression and TA-specific CTL recognition of IFN-γ-treated SCCHN cells. On the other hand, since oncogenic pSTAT3 is overexpressed in SCCHN cells and was found to heterodimerize with pSTAT1, we also tested whether pSTAT3 and pSTAT1:pSTAT3 heterodimers inhibited IFN-γ-induced STAT1 activation and APM component expression. First, STAT3 activation or depletion did not affect basal or IFN-γ-induced expression of pSTAT1 and APM components or recognition of SCCHN cells by TA-specific CTL. Second, pSTAT1:pSTAT3 heterodimers did not interfere with IFN-γ-induced STAT1 binding to the TAP1 promoter or APM protein expression. These findings demonstrate that APM component downregulation is regulated primarily by an IFN-γ-pSTAT1-mediated signaling pathway, independent of oncogenic STAT3 overexpression in SCCHN cells. PMID:21207025
García-Guerrero, Estefanía; Pérez-Simón, José Antonio; Sánchez-Abarca, Luis Ignacio; Díaz-Moreno, Irene; De la Rosa, Miguel A; Díaz-Quintana, Antonio
2016-01-01
Generating the immune response requires the discrimination of peptides presented by the human leukocyte antigen complex (HLA) through the T-cell receptor (TCR). However, how a single amino acid substitution in the antigen bonded to HLA affects the response of T cells remains uncertain. Hence, we used molecular dynamics computations to analyze the molecular interactions between peptides, HLA and TCR. We compared immunologically reactive complexes with non-reactive and weakly reactive complexes. MD trajectories were produced to simulate the behavior of isolated components of the various p-HLA-TCR complexes. Analysis of the fluctuations showed that p-HLA binding barely restrains TCR motions, and mainly affects the CDR3 loops. Conversely, inactive p-HLA complexes displayed significant drop in their dynamics when compared with its free versus ternary forms (p-HLA-TCR). In agreement, the free non-reactive p-HLA complexes showed a lower amount of salt bridges than the responsive ones. This resulted in differences between the electrostatic potentials of reactive and inactive p-HLA species and larger vibrational entropies in non-elicitor complexes. Analysis of the ternary p-HLA-TCR complexes also revealed a larger number of salt bridges in the responsive complexes. To summarize, our computations indicate that the affinity of each p-HLA complex towards TCR is intimately linked to both, the dynamics of its free species and its ability to form specific intermolecular salt-bridges in the ternary complexes. Of outstanding interest is the emerging concept of antigen reactivity involving its interplay with the HLA head sidechain dynamics by rearranging its salt-bridges.
Variability and repertoire size of T-cell receptor V alpha gene segments.
Becker, D M; Pattern, P; Chien, Y; Yokota, T; Eshhar, Z; Giedlin, M; Gascoigne, N R; Goodnow, C; Wolf, R; Arai, K
The immune system of higher organisms is composed largely of two distinct cell types, B lymphocytes and T lymphocytes, each of which is independently capable of recognizing an enormous number of distinct entities through their antigen receptors; surface immunoglobulin in the case of the former, and the T-cell receptor (TCR) in the case of the latter. In both cell types, the genes encoding the antigen receptors consist of multiple gene segments which recombine during maturation to produce many possible peptides. One striking difference between B- and T-cell recognition that has not yet been resolved by the structural data is the fact that T cells generally require a major histocompatibility determinant together with an antigen whereas, in most cases, antibodies recognize antigen alone. Recently, we and others have found that a series of TCR V beta gene sequences show conservation of many of the same residues that are conserved between heavy- and light-chain immunoglobulin V regions, and these V beta sequences are predicted to have an immunoglobulin-like secondary structure. To extend these studies, we have isolated and sequenced eight additional alpha-chain complementary cDNA clones and compared them with published sequences. Analyses of these sequences, reported here, indicate that V alpha regions have many of the characteristics of V beta gene segments but differ in that they almost always occur as cross-hybridizing gene families. We conclude that there may be very different selective pressures operating on V alpha and V beta sequences and that the V alpha repertoire may be considerably larger than that of V beta.
Martínez-Sernández, Victoria; Perteguer, María J; Hernández-González, Ana; Mezo, Mercedes; González-Warleta, Marta; Orbegozo-Medina, Ricardo A; Romarís, Fernanda; Paniagua, Esperanza; Gárate, Teresa; Ubeira, Florencio M
2018-05-01
Infections caused by Fasciola hepatica are of great importance in the veterinary field, as they cause important economic losses to livestock producers. Serodiagnostic methods, typically ELISA (with either native or recombinant antigens), are often used for early diagnosis. The use of native antigens, as in the MM3-SERO ELISA (commercialized as BIO K 211, BIO-X Diagnostics), continues to be beneficial in terms of sensitivity and specificity; however, there is interest in developing ELISA tests based on recombinant antigens to avoid the need to culture parasites. Of the antigens secreted by adult flukes, recombinant procathepsin L1 (rFhpCL1) is the most commonly tested in ELISA to date. However, although adult flukes produce three different clades of CLs (FhCL1, FhCL2, and FhCL5), to our knowledge, the diagnostic value of recombinant FhCL2 and FhCL5 has not yet been investigated. In the present study, we developed and tested three indirect ELISAs using rFhpCL1, rFhpCL2, and rFhpCL5 and evaluated their recognition by sera from sheep and cattle naturally infected with F. hepatica. Although the overall antibody response to these three rFhpCLs was similar, some animals displayed preferential recognition for particular rFhpCLs. Moreover, for cattle sera, the highest sensitivity was obtained using rFhpCL2 (97%), being equal for both rFhpCL1 and rFhpCL5 (87.9%), after adjusting cut-offs for maximum specificity. By contrast, for sheep sera, the sensitivity was 100% for the three rFhpCLs. Finally, the presence of truncated and/or partially unfolded molecules in antigen preparations is postulated as a possible source of cross-reactivity.
Elevation of c-MYC Disrupts HLA Class II-mediated Immune Recognition of Human B-cell Tumors1
God, Jason M.; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W.; Stuart, Robert K.; Blum, Janice S.; Haque, Azizul
2014-01-01
Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B-cell lymphomas. While many of c-MYC’s functions have been elucidated, its effect on the presentation of antigen (Ag) through the HLA class II pathway has not previously been reported. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report here that increased c-MYC expression has a negative effect on the ability of B-cell lymphomas to functionally present Ags/peptides to CD4+ T cells. This defect was associated with alterations in the expression of distinct co-factors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt’s lymphoma (BL) tumors and transformed cells, we show that compared to B-lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation which contribute to the immunoevasive properties of BL tumors. PMID:25595783
The CD1 family: serving lipid antigens to T cells since the Mesozoic era.
Zajonc, Dirk M
2016-08-01
Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).
The CD1 family: serving lipid antigens to T cells since the Mesozoic era
Zajonc, Dirk M.
2016-01-01
Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs). PMID:27368414
Petrov, Artem; Arzhanik, Vladimir; Makarov, Gennady; Koliasnikov, Oleg
2016-08-01
Antibodies are the family of proteins, which are responsible for antigen recognition. The computational modeling of interaction between an antigen and an antibody is very important when crystallographic structure is unavailable. In this research, we have discovered the correlation between the amino acid sequence of antibody and its specific binding characteristics on the example of the novel conservative binding motif, which consists of four residues: Arg H52, Tyr H33, Thr H59, and Glu H61. These residues are specifically oriented in the binding site and interact with each other in a specific manner. The residues of the binding motif are involved in interaction strictly with negatively charged groups of antigens, and form a binding complex. Mechanism of interaction and characteristics of the complex were also discovered. The results of this research can be used to increase the accuracy of computational antibody-antigen interaction modeling and for post-modeling quality control of the modeled structures.
Tuning B cell responses to antigens by cell polarity and membrane trafficking.
Del Valle Batalla, Felipe; Lennon-Dumenil, Ana-María; Yuseff, María-Isabel
2018-06-20
The capacity of B lymphocytes to produce specific antibodies, particularly broadly neutralizing antibodies that provide immunity to viral pathogens has positioned them as valuable therapeutic targets for immunomodulation. To become competent as antibody secreting cells, B cells undergo a series of activation steps, which are triggered by the recognition of antigens frequently displayed on the surface of other presenting cells. Such antigens elicit the formation of an immune synapse (IS), where local cytoskeleton rearrangements coupled to mechanical forces and membrane trafficking orchestrate the extraction and processing of antigens in B cells. In this review, we discuss the molecular mechanisms that regulate polarized membrane trafficking and mechanical properties of the immune synapse, as well as the potential extracellular cues from the environment, which may impact the ability of B cells to sense and acquire antigens at the immune synapse. An integrated view of the diverse cellular mechanisms that shape the immune synapse will provide a better understanding on how B cells are efficiently activated. Copyright © 2018 Elsevier Ltd. All rights reserved.
van der Ploeg, Kattria; Chang, Chiwen; Ivarsson, Martin A.; Moffett, Ashley; Wills, Mark R.; Trowsdale, John
2017-01-01
The interaction of inhibitory killer cell Ig-like receptors (KIRs) with human leukocyte antigen (HLA) class I molecules has been characterized in detail. By contrast, activating members of the KIR family, although closely related to inhibitory KIRs, appear to interact weakly, if at all, with HLA class I. KIR2DS1 is the best studied activating KIR and it interacts with C2 group HLA-C (C2-HLA-C) in some assays, but not as strongly as KIR2DL1. We used a mouse 2B4 cell reporter system, which carries NFAT-green fluorescent protein with KIR2DS1 and a modified DAP12 adaptor protein. KIR2DS1 reporter cells were not activated upon coculture with 721.221 cells transfected with different HLA-C molecules, or with interferon-γ stimulated primary dermal fibroblasts. However, KIR2DS1 reporter cells and KIR2DS1+ primary natural killer (NK) cells were activated by C2-HLA-C homozygous human fetal foreskin fibroblasts (HFFFs) but only after infection with specific clones of a clinical strain of human cytomegalovirus (HCMV). Active viral gene expression was required for activation of both cell types. Primary NKG2A−KIR2DS1+ NK cell subsets degranulated after coculture with HCMV-infected HFFFs. The W6/32 antibody to HLA class I blocked the KIR2DS1 reporter cell interaction with its ligand on HCMV-infected HFFFs but did not block interaction with KIR2DL1. This implies a differential recognition of HLA-C by KIR2DL1 and KIR2DS1. The data suggest that modulation of HLA-C by HCMV is required for a potent KIR2DS1-mediated NK cell activation. PMID:28424684
Dagenais, P; Desprez, B; Albert, J; Escher, E
1994-10-01
Direct adsorption of small peptide antigens to unaltered, commercially available polystyrene surfaces may be too weak to permit suitable assay by ELISA. We therefore developed a simple method for the covalent attachment of small, potentially single epitope antigens to polystyrene surfaces. Chemical activation of polystyrene plates with carbodiimide considerably improves the total and covalent attachment of radioactive octapeptides. The covalent attachment was demonstrated by washing with hot detergent. A 3.5 Mrad gamma-irradiation of plates also increases total binding, particularly in combination with chemical activation. The covalent attachment presumably occurs through formation and chemical activation of carboxylate functions on the polystyrene surface which form amide bonds with peptides. ELISA test was performed with CGRP and successive smaller CGRP fragments. Covalent attachment of C-terminal peptide fragments as detection antigens allows optimal recognition and sensitivity even for hexapeptides, while decapeptide antigens were already poorly recognized using a conventional antigen plating technique. Repetitive detergent washes and/or prolonged storage of plates with covalently bound antigens did not reduce their ELISA sensitivity. The method with storage and reutilization capacities that we present here will be useful for the development of preplated antibody screening test.
Conrad, Cheyenne C; Gilroyed, Brandon H; McAllister, Tim A; Reuter, Tim
2012-10-01
Non-O157 Shiga toxin producing Escherichia coli (STEC) are gaining recognition as human pathogens, but no standardized method exists to identify them. Sequence analysis revealed that STEC can be classified on the base of variable O antigen regions into different O serotypes. Polymerase chain reaction is a powerful technique for thorough screening and complex diagnosis for these pathogens, but requires a positive control to verify qualitative and/or quantitative DNA-fragment amplification. Due to the pathogenic nature of STEC, controls are not readily available and cell culturing of STEC reference strains requires biosafety conditions of level 2 or higher. In order to bypass this limitation, controls of stacked O-type specific DNA-fragments coding for primer recognition sites were designed to screen for nine STEC serotypes frequently associated with human infection. The synthetic controls were amplified by PCR, cloned into a plasmid vector and transferred into bacteria host cells. Plasmids amplified by bacterial expression were purified, serially diluted and tested as standards for real-time PCR using SYBR Green and TaqMan assays. Utility of synthetic DNA controls was demonstrated in conventional and real-time PCR assays and validated with DNA from natural STEC strains. Copyright © 2012 Elsevier B.V. All rights reserved.
Fink, Annette; Büttner, Julia K; Thomas, Doris; Holtappels, Rafaela; Reddehase, Matthias J; Lemmermann, Niels A W
2014-02-14
Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I) glycoproteins, are often identified by "reverse immunology", a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs) based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype) mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E) phase protein, the m164 epitope is presented already during the Immediate Early (IE) phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.
'Order from disorder sprung': recognition and regulation in the immune system
NASA Astrophysics Data System (ADS)
Mak, Tak W.
2003-06-01
Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen threat is resolved. Once Paradise has been regained, memory cells remain in the body to sharply reduce the impact of a second exposure to a pathogen. Vaccination programs take advantage of this capacity of the human immune system for immunological memory, sparing millions the suffering associated with disease scourges. Thus does the order of the immune response spring from the disorder of pathogen attacks, and thus is Paradise preserved.
'Order from disorder sprung': recognition and regulation in the immune system.
Mak, Tak W
2003-06-15
Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen threat is resolved. Once Paradise has been regained, memory cells remain in the body to sharply reduce the impact of a second exposure to a pathogen. Vaccination programs take advantage of this capacity of the human immune system for immunological memory, sparing millions the suffering associated with disease scourges. Thus does the order of the immune response spring from the disorder of pathogen attacks, and thus is Paradise preserved.
Optical fiber-based biosensors.
Monk, David J; Walt, David R
2004-08-01
This review outlines optical fiber-based biosensor research from January 2001 through September 2003 and was written to complement the previous review in this journal by Marazuela and Moreno-Bondi. Optical fiber-based biosensors combine the use of a biological recognition element with an optical fiber or optical fiber bundle. They are classified by the nature of the biological recognition element used for sensing: enzyme, antibody/antigen (immunoassay), nucleic acid, whole cell, and biomimetic, and may be used for a variety of analytes ranging from metals and chemicals to physiological materials.
Liang, Li; Leng, Diana; Burk, Chad; Nakajima-Sasaki, Rie; Kayala, Matthew A.; Atluri, Vidya L.; Pablo, Jozelyn; Unal, Berkay; Ficht, Thomas A.; Gotuzzo, Eduardo; Saito, Mayuko; Morrow, W. John W.; Liang, Xiaowu; Baldi, Pierre; Gilman, Robert H.; Vinetz, Joseph M.; Tsolis, Renée M.; Felgner, Philip L.
2010-01-01
Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host. PMID:20454614
Yuan, Hsiang-Yu; Koelle, Katia
2013-01-01
The most salient feature of influenza evolution in humans is its antigenic drift. This process is characterized by structural changes in the virus's B-cell epitopes and ultimately results in the ability of the virus to evade immune recognition and thereby reinfect previously infected hosts. Until recently, amino acid substitutions in epitope regions of the viral haemagglutinin were thought to be positively selected for their ability to reduce antibody binding and therefore were thought to be responsible for driving antigenic drift. However, a recent hypothesis put forward by Hensley and co-workers posits that cellular receptor binding avidity is the dominant phenotype under selection, with antigenic drift being a side effect of these binding avidity changes. Here, we present a mathematical formulation of this new antigenic drift model and use it to show how rates of antigenic drift depend on epidemiological parameters. We further use the model to evaluate how two different vaccination strategies can impact antigenic drift rates and ultimately disease incidence levels. Finally, we discuss the assumptions present in the model formulation, predictions of the model, and future work that needs to be done to determine the consistency of this hypothesis with known patterns of influenza's genetic and antigenic evolution. PMID:23382426
Induction of hapten-specific tolerance of human CD8+ urushiol (poison ivy)-reactive T lymphocytes.
Kalish, R S; Wood, J A
1997-03-01
The interaction of CD28 with B7 molecules (CD80 or CD86) is an essential second signal for both the activation of CD4+ T cells through the T-cell receptor and the prevention of anergy. We studied the requirement of hapten-specific human CD8+ cells for CD28 co-stimulation in recognition of hapten, and anergy induction. Urushiol, the immunogenic hapten of poison ivy (Toxicodendron radicans), elicits a predominantly CD8+ T-cell response. Autologous PBMC were pre-incubated with urushiol prior to fixation by paraformaldehyde. Fixed antigen-presenting cells were unable to present urushiol to human CD8+ urushiol-specific T cells. Addition of anti-CD28, however, overcame this antigen-presenting defect, enabling CD8+ cells to proliferate. Fixation of antigen-presenting cells prevents upregulation of B7, and addition of anti-CD28 substitutes for this signal. Proliferation of CD8+ T cells in response to urushiol was blocked by CTLA4Ig, a recombinant fusion protein that blocks CD28/B7 interactions. Preincubation of urushiol-specific CD8+ cells with fixed PBMC + urushiol for 7 d induced anergy. Anergic CD8+ cells were viable and able to proliferate in response to IL-2, but not in response to urushiol. Induction of anergy required the presence of urushiol, and pre-incubation with irradiated PBMC + urushiol did not have this effect. It is proposed that anergy was induced by presentation of urushiol by fixed PBMC, in the absence of adequate co-stimulation signals. Induction of anergy by blocking of co-stimulation could potentially induce clinical hyposensitization to haptens.
DISTINCT ANTIBODY SPECIES: STRUCTURAL DIFFERENCES CREATING THERAPEUTIC OPPORTUNITIES
Muyldermans, Serge; Smider, Vaughn V.
2016-01-01
Antibodies have been a remarkably successful class of molecules for binding a large number of antigens in therapeutic, diagnostic, and research applications. Typical antibodies derived from mouse or human sources use the surface formed by complementarity determining regions (CDRs) on the variable regions of the heavy chain/light chain heterodimer, which typically forms a relatively flat binding surface. Alternative species, particularly camelids and bovines, provide a unique paradigm for antigen recognition through novel domains which form the antigen binding paratope. For camelids, heavy chain antibodies bind antigen with only a single heavy chain variable region, in the absence of light chains. In bovines, ultralong CDR-H3 regions form an independently folding minidomain, which protrudes from the surface of the antibody and is diverse in both its sequence and disulfide patterns. The atypical paratopes of camelids and bovines potentially provide the ability to interact with different epitopes, particularly recessed or concave surfaces, compared to traditional antibodies. PMID:26922135
Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.
2008-01-01
Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698
Remote control of therapeutic T cells through a small molecule-gated chimeric receptor
Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.
2016-01-01
There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231
Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.
Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A
2015-10-16
There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.
Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules
NASA Technical Reports Server (NTRS)
Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.
1994-01-01
Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.
The biochemical properties of antibodies and their fragments
USDA-ARS?s Scientific Manuscript database
Immunoglobulins (Ig) or antibodies are a powerful molecular recognition tools that can be used to identify minute quantities of a given target analyte. Their antigen binding properties define both the sensitivity and selectivity of an immunoassay. Understanding the biochemical properties of this c...
Bauer, William J.; Heath, Jason; Jenkins, Jermaine L.; Kielkopf, Clara L.
2012-01-01
T-cell intracellular antigen-1 (TIA-1) regulates developmental and stress-responsive pathways through distinct activities at the levels of alternative pre-mRNA splicing and mRNA translation. The TIA-1 polypeptide contains three RNA recognition motifs (RRMs). The central RRM2 and C-terminal RRM3 associate with cellular mRNAs. The N-terminal RRM1 enhances interactions of a C-terminal Q-rich domain of TIA-1 with the U1-C splicing factor, despite linear separation of the domains in the TIA-1 sequence. Given the expanded functional repertoire of the RRM family, it was unknown whether TIA-1 RRM1 contributes to RNA binding as well as documented protein interactions. To address this question, we used isothermal titration calorimetry and small-angle X-ray scattering (SAXS) to dissect the roles of the TIA-1 RRMs in RNA recognition. Notably, the fas RNA exhibited two binding sites with indistinguishable affinities for TIA-1. Analyses of TIA-1 variants established that RRM1 was dispensable for binding AU-rich fas sites, yet all three RRMs were required to bind a polyU RNA with high affinity. SAXS analyses demonstrated a `V' shape for a TIA-1 construct comprising the three RRMs, and revealed that its dimensions became more compact in the RNA-bound state. The sequence-selective involvement of TIA-1 RRM1 in RNA recognition suggests a possible role for RNA sequences in regulating the distinct functions of TIA-1. Further implications for U1-C recruitment by the adjacent TIA-1 binding sites of the fas pre-mRNA and the bent TIA-1 shape, which organizes the N- and C-termini on the same side of the protein, are discussed. PMID:22154808
Jensen, Anja T R; Zornig, Hanne D; Buhmann, Caecilie; Salanti, Ali; Koram, Kwadwo A; Riley, Eleanor M; Theander, Thor G; Hviid, Lars; Staalsoe, Trine
2003-07-01
Gender-specific and parity-dependent acquired antibody recognition is characteristic of variant surface antigens (VSA) expressed by chondroitin sulfate A (CSA)-adherent Plasmodium falciparum involved in pregnancy-associated malaria (PAM). However, antibody recognition of recombinant products of a specific VSA gene (2O2var1) implicated in PAM and transcribed by a CSA-adhering parasite line did not have these characteristics. Furthermore, we could not demonstrate preferential transcription of 2O2var1 in the CSA-adhering line versus the unselected, parental isolate. Our data call for circumspection regarding the molecular identity of the parasite ligand mediating adhesion to CSA in PAM.
Clingan, Jonathan M.; Matloubian, Mehrdad
2013-01-01
The importance for activation of innate immunity by pattern recognition receptors in forming an effective adaptive immune response is well known. Toll-like receptors (TLRs) have been demonstrated to be critical for antibody responses to a variety of immunizations. In particular, recent evidence suggests that B cell-intrinsic TLR signaling is required for optimal responses to virus-like antigens, but mechanisms by which TLR signaling impacts antibody responses during infection in vivo is unclear. In the present study, we demonstrate that deficiency of TLR7 in B cells alone is sufficient to significantly impact antibody responses in mice during chronic viral infection. This effect was independent of T follicular helper cells, and resulted in a loss of plasma cells generated later, but not early, in the response. The defect in plasma cell formation appeared to be secondary to a qualitative effect of TLR signaling on the germinal center (GC) B cell response. GC B cells in TLR7-deficient mice proliferated to a lesser extent and had a greater proportion of cells with phenotypic characteristics of light zone, relative to dark zone GC B cells. These results suggest that B cell-intrinsic TLR signaling in vivo likely affects plasma cell output by altered selection of antigen-specific B cells in the germinal center. PMID:23761632
Inflammatory bowel disease: cause and immunobiology.
Baumgart, Daniel C; Carding, Simon R
2007-05-12
Crohn's disease and ulcerative colitis are idiopathic inflammatory bowel disorders. In this paper, we discuss how environmental factors (eg, geography, cigarette smoking, sanitation and hygiene), infectious microbes, ethnic origin, genetic susceptibility, and a dysregulated immune system can result in mucosal inflammation. After describing the symbiotic interaction of the commensal microbiota with the host, oral tolerance, epithelial barrier function, antigen recognition, and immunoregulation by the innate and adaptive immune system, we examine the initiating and perpetuating events of mucosal inflammation. We pay special attention to pattern-recognition receptors, such as toll-like receptors and nucleotide-binding-oligomerisation-domains (NOD), NOD-like receptors and their mutual interaction on epithelial cells and antigen-presenting cells. We also discuss the important role of dendritic cells in directing tolerance and immunity by modulation of subpopulations of effector T cells, regulatory T cells, Th17 cells, natural killer T cells, natural killer cells, and monocyte-macrophages in mucosal inflammation. Implications for novel therapies, which are discussed in detail in the second paper in this Series, are covered briefly.
Mariconti, Mara; Bazzocchi, Chiara; Tamarozzi, Francesca; Meroni, Valeria; Genco, Francesca; Maserati, Roberta; Brunetti, Enrico
2014-01-01
The diagnosis of hepatic cystic echinococcosis is based on ultrasonography and confirmed by serology. However, no biological marker of cyst viability is currently available implying years-long patient follow-up, which is not always feasible in endemic areas. We characterized the performance of an immunoblotting test based on human hydatid cyst fluid with particular regard to its ability to distinguish between cyst stages. Sera from patients with cysts in different stages showed distinctive band pattern recognition. Most importantly, the test discriminated in 80% of cases CE3a from CE3b transitional cysts, known to have different viability profiles. Interestingly, we observed a rapid change in band pattern recognition of sera from one patient at time points when his cyst passed from active to transitional to inactive stages. Further identification of different antigens expressed by different cyst stages will support the development of diagnostic tools that could early define cyst viability, to guide clinical decision making, and shorten patient follow-up.
Dingjan, Tamir; Spendlove, Ian; Durrant, Lindy G; Scott, Andrew M; Yuriev, Elizabeth; Ramsland, Paul A
2015-10-01
Monoclonal antibodies represent the most successful class of biopharmaceuticals for the treatment of cancer. Mechanisms of action of therapeutic antibodies are very diverse and reflect their ability to engage in antibody-dependent effector mechanisms, internalize to deliver cytotoxic payloads, and display direct effects on cells by lysis or by modulating the biological pathways of their target antigens. Importantly, one of the universal changes in cancer is glycosylation and carbohydrate-binding antibodies can be produced to selectively recognize tumor cells over normal tissues. A promising group of cell surface antibody targets consists of carbohydrates presented as glycolipids or glycoproteins. In this review, we outline the basic principles of antibody-based targeting of carbohydrate antigens in cancer. We also present a detailed structural view of antibody recognition and the conformational properties of a series of related tissue-blood group (Lewis) carbohydrates that are being pursued as potential targets of cancer immunotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.
2015-01-01
Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164
Anisakis haemoglobin is a main antigen inducing strong and prolonged immunoreactions in rats.
Abe, Niichiro; Teramoto, Isao
2017-07-01
Anisakis simplex larvae are well known to cause gastrointestinal and allergic manifestations after ingestion of parasitized raw or undercooked seafood. The antibody recognition dynamics against the components of Anisakis larval antigen after primary and re-infection with Anisakis live larvae remain unclear. For this study, immunoblot analyses of serum IgG, IgE, and IgM against Anisakis larval somatic extract were performed in rats that had been orally inoculated with A. simplex live larvae. Multiple antigen fractions were recognized after primary infection. Their reaction was enhanced after re-infection. Antibody recognition was observed for 12 weeks after re-infection. The fraction of approximately 35 kDa contained a main antigen that induced strong and prolonged immunoreactions in IgG and IgE. The antibody reaction to this fraction appeared to be enhanced after inoculation of larval homogenates. This fraction was heat tolerant with boiling for 30 min. The fraction was spotted by immunoblotting after two-dimensional electrophoresis and was identified as Anisakis haemoglobin (Ani s 13) using mass spectrometry analysis. The amino acid sequences of haemoglobin mRNAs from two A. simplex sensu stricto and one Anisakis pegreffii were identified by RACE-PCR. They differed from those of two isolates of Pseudoterranova decipiens and A. pegreffii. Results of this study show that Anisakis haemoglobin, which is known to be a major allergen of A. simplex, induces strong and prolonged immunoreaction in rats. This report is the first to show the amino acid sequence variation of Anisakis haemoglobin mRNA between A. simplex sensu stricto and A. pegreffii.
Nguyen, Thao; Hatfield, Stephen M.; Ohta, Akio; Sitkovsky, Michail V.
2017-01-01
Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME. PMID:29155844
Selective Blockade of Human Natural Killer Cells by a Monoclonal Antibody
NASA Astrophysics Data System (ADS)
Newman, Walter
1982-06-01
A murine monoclonal antibody, 13.1, which blocks human natural killer (NK) cell-mediated lysis, has been developed. Hybridoma 13.1 was derived by fusion of NS-1 cells with spleen cells from mice immunized with an enriched population of NK cells. Supernatants of growing hybridomas were screened for their ability to block NK cell-mediated lysis of K562 targets. Antibody 13.1 is an IgG1 with a single light chain type and it does not fix complement. The 13.1 antigen is expressed on all peripheral blood mononuclear cells, with an antigen density approximately 1/30th that of HLA antigen heavy chain. Pretreatment and washing experiments revealed that inhibition of cytotoxicity occurred at the effector cell level only. Significant blocking was achieved with nanogram quantities of antibody and was not due to toxic effects on NK cells. Likewise, controls with other antibodies of the same subclass demonstrated that blocking was not a consequence of mere binding to NK cells. When a panel of 17 NK cell-susceptible targets was tested, the lysis of only 5 of these was blocked, namely K562, HL-60, KG-1, Daudi, and HEL, a human erythroleukemic cell line. The lysis of 12 human B cell and T cell line targets was not inhibited. In addition to the demonstration that the 13.1 antigen is a crucial cell surface structure involved in NK lysis, a heterogeneity of target cell recognition has been revealed that argues for the proposition that individual NK cells have multiple recognitive capabilities.
NASA Astrophysics Data System (ADS)
Meng, Zhongji; Song, Ruihua; Chen, Yue; Zhu, Yang; Tian, Yanhui; Li, Ding; Cui, Daxiang
2013-03-01
A method for quickly screening and identifying dominant B cell epitopes was developed using hepatitis B virus (HBV) surface antigen as a target. Eleven amino acid fragments from HBV surface antigen were synthesized by 9-fluorenylmethoxy carbonyl solid-phase peptide synthesis strategy, and then CdTe quantum dots were used to label the N-terminals of all peptides. After optimizing the factors for fluorescence polarization (FP) immunoassay, the antigenicities of synthetic peptides were determined by analyzing the recognition and combination of peptides and standard antibody samples. The results of FP assays confirmed that 10 of 11 synthetic peptides have distinct antigenicities. In order to screen dominant antigenic peptides, the FP assays were carried out to investigate the antibodies against the 10 synthetic peptides of HBV surface antigen respectively in 159 samples of anti-HBV surface antigen-positive antiserum. The results showed that 3 of the 10 antigenic peptides may be immunodominant because the antibodies against them existed more widely among the samples and their antibody titers were higher than those of other peptides. Using three dominant antigenic peptides, 293 serum samples were detected for HBV infection by FP assays; the results showed that the antibody-positive ratio was 51.9% and the sensitivity and specificity were 84.3% and 98.2%, respectively. In conclusion, a quantum dot-based FP assay is a very simple, rapid, and convenient method for determining immunodominant antigenic peptides and has great potential in applications such as epitope mapping, vaccine designing, or clinical disease diagnosis in the future.
Ferrara, Giovanni; Valentini, Davide; Rao, Martin; Wahlström, Jan; Grunewald, Johan; Larsson, Lars-Olof; Brighenti, Susanna; Dodoo, Ernest; Zumla, Alimuddin; Maeurer, Markus
2017-03-01
Sarcoidosis is considered an idiopathic granulomatous disease, although similar immunological and clinical features with tuberculosis (TB) suggest mycobacterial involvement in its pathogenesis. High-content peptide microarrays (HCPM) may help to decipher mycobacteria-specific antibody reactivity in sarcoidosis. Serum samples from patients with sarcoidosis, Löfgren's syndrome, and TB, as well as from healthy individuals (12/group), were tested on HCPM containing 5964 individual peptides spanning 154 Mycobacterium tuberculosis proteins displayed as 15-amino acid stretches. Inclusion/exclusion and significance analyses were performed according to published methods. Each study group recognized 68-78% M. tuberculosis peptides at least once. M. tuberculosis epitope recognition by sarcoidosis patient sera was 42.7%, and by TB patient sera was 39.1%. Seven and 16 peptides were recognized in 9/12 (75%) and 8/12 (67%) sarcoidosis patient sera but not in TB patient sera, respectively. Nine (75%) and eight (67%) out of twelve TB patient sera, respectively recognized M. tuberculosis peptides that were not recognized in sarcoidosis patient sera. Specific IgG recognition patterns for M. tuberculosis antigens in sarcoidosis patients re-affirm mycobacterial involvement in sarcoidosis, providing biologically relevant targets for future studies pertaining to diagnostics and immunotherapy. Copyright © 2017. Published by Elsevier Ltd.
Kamath, Arati B.; Wang, Lisheng; Das, Hiranmoy; Li, Lin; Reinhold, Vernon N.; Bukowski, Jack F.
2003-01-01
Human γδ T cells mediate innate immunity to microbes via T cell receptor-dependent recognition of unprocessed antigens with conserved molecular patterns. These nonpeptide alkylamine antigens are shared by tumor cells, bacteria, parasites, and fungi but also by edible plant products such as tea, apples, mushrooms, and wine. Here we show that priming of γδ T cells with alkylamine antigens in vitro results in a memory response to these antigens. Such priming results also in a nonmemory response to whole bacteria and to lipopolysaccharide, characterized by IL-12-dependent secretion of IFN-γ by γδ T cells and by γδ T cell proliferation. Drinking tea, which contains l-theanine, a precursor of the nonpeptide antigen ethylamine, primed peripheral blood γδ T cells to mediate a memory response on reexposure to ethylamine and to secrete IFN-γ in response to bacteria. This unique combination of innate immune response and immunologic memory shows that γδ T cells can function as a bridge between innate and acquired immunity. In addition, these data provide an explanation for the health benefits of tea. PMID:12719524
Vulliez-Le Normand, B; Saul, F A; Phalipon, A; Bélot, F; Guerreiro, C; Mulard, L A; Bentley, G A
2008-07-22
The anti-LPS IgG mAb F22-4, raised against Shigella flexneri serotype 2a bacteria, protects against homologous, but not heterologous, challenge in an experimental animal model. We report the crystal structures of complexes formed between Fab F22-4 and two synthetic oligosaccharides, a decasaccharide and a pentadecasaccharide that were previously shown to be both immunogenic and antigenic mimics of the S. flexneri serotype 2a O-antigen. F22-4 binds to an epitope contained within two consecutive 2a serotype pentasaccharide repeat units (RU). Six sugar residues from a contiguous nine-residue segment make direct contacts with the antibody, including the nonreducing rhamnose and both branching glucosyl residues from the two RUs. The glucosyl residue, whose position of attachment to the tetrasaccharide backbone of the RU defines the serotype 2a O-antigen, is critical for recognition by F22-4. Although the complete decasaccharide is visible in the electron density maps, the last four pentadecasaccharide residues from the reducing end, which do not contact the antibody, could not be traced. Although considerable mobility in the free oligosaccharides can thus be expected, the conformational similarity between the individual RUs, both within and between the two complexes, suggests that short-range transient ordering to a helical conformation might occur in solution. Although the observed epitope includes the terminal nonreducing residue, binding to internal epitopes within the polysaccharide chain is not precluded. Our results have implications for vaccine development because they suggest that a minimum of two RUs of synthetic serotype 2a oligosaccharide is required for optimal mimicry of O-Ag epitopes.
Vulliez-Le Normand, B.; Saul, F. A.; Phalipon, A.; Bélot, F.; Guerreiro, C.; Mulard, L. A.; Bentley, G. A.
2008-01-01
The anti-LPS IgG mAb F22-4, raised against Shigella flexneri serotype 2a bacteria, protects against homologous, but not heterologous, challenge in an experimental animal model. We report the crystal structures of complexes formed between Fab F22-4 and two synthetic oligosaccharides, a decasaccharide and a pentadecasaccharide that were previously shown to be both immunogenic and antigenic mimics of the S. flexneri serotype 2a O-antigen. F22-4 binds to an epitope contained within two consecutive 2a serotype pentasaccharide repeat units (RU). Six sugar residues from a contiguous nine-residue segment make direct contacts with the antibody, including the nonreducing rhamnose and both branching glucosyl residues from the two RUs. The glucosyl residue, whose position of attachment to the tetrasaccharide backbone of the RU defines the serotype 2a O-antigen, is critical for recognition by F22-4. Although the complete decasaccharide is visible in the electron density maps, the last four pentadecasaccharide residues from the reducing end, which do not contact the antibody, could not be traced. Although considerable mobility in the free oligosaccharides can thus be expected, the conformational similarity between the individual RUs, both within and between the two complexes, suggests that short-range transient ordering to a helical conformation might occur in solution. Although the observed epitope includes the terminal nonreducing residue, binding to internal epitopes within the polysaccharide chain is not precluded. Our results have implications for vaccine development because they suggest that a minimum of two RUs of synthetic serotype 2a oligosaccharide is required for optimal mimicry of O-Ag epitopes. PMID:18621718
Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne
2014-01-01
CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871
Leisegang, Matthias; Engels, Boris; Schreiber, Karin; Yew, Poh Yin; Kiyotani, Kazuma; Idel, Christian; Arina, Ainhoa; Duraiswamy, Jaikumar; Weichselbaum, Ralph R; Uckert, Wolfgang; Nakamura, Yusuke; Schreiber, Hans
2016-06-01
Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602. ©2015 American Association for Cancer Research.
Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John
2009-12-30
In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi
Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances themore » flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.« less
AIRBORNE CONTACT DERMATITIS – CURRENT PERSPECTIVES IN ETIOPATHOGENESIS AND MANAGEMENT
Handa, Sanjeev; De, Dipankar; Mahajan, Rahul
2011-01-01
The increasing recognition of occupational origin of airborne contact dermatitis has brought the focus on the variety of irritants, which can present with this typical morphological picture. At the same time, airborne allergic contact dermatitis secondary to plant antigens, especially to Compositae family, continues to be rampant in many parts of the world, especially in the Indian subcontinent. The recognition of the contactant may be difficult to ascertain and the treatment may be even more difficult. The present review focuses on the epidemiological, clinical and therapeutic issues in airborne contact dermatitis. PMID:22345774
Vallejo, Abbe N.; Miller, Norman W.
1991-01-01
This work was undertaken to investigate whether or not antigen processing and presentation are important in channel catfish in vitro secondary immune responses elicited with structurally defined proteins, namely, pigeon heart cytochrome C (pCytC), hen egg lysozyme, and horse myoglobin. The use of in vitro antigen-pulsed and fixed B cells or monocytes as antigen presenting cells (APC) resulted in autologous peripheral blood leukocytes (PBL) responding with vigorous proliferation and antibody production in vitro. In addition, several long-term catfish monocyte lines have been found to function as efficient APC with autologous but not allogeneic responders. Subsequent separation of the responding PBL into sIg- (T-cell-enriched) and B (sIg+) cell subsets showed that both underwent proliferative responses to antigen-pulsed and fixed APC. Moreover, allogeneic cells used as APC were found to induce only strong mixed leukocyte reactions without specific in vitro antibody production. Initial attempts at identifying the immunogenic region(s) of the protein antigens for catfish indicated there are two such regions for pCytC, namely, peptides 66-80 and 81-104. PMID:1668258
Array biosensor: recent developments
NASA Astrophysics Data System (ADS)
Golden, Joel P.; Rowe-Taitt, Chris A.; Feldstein, Mark J.; Ligler, Frances S.
1999-05-01
A fluorescence-based immunosensor has been developed for simultaneous analyses of multiple samples for 1 to 6 different antigens. A patterned array of recognition antibodies immobilized on the surface of a planar waveguide is used to 'capture' analyte present in samples. Bound analyte is then quantified by means of fluorescent detector molecules. Upon excitation of the fluorescent label by a small diode laser, a CCD camera detects the pattern of fluorescent antigen:antibody complexes on the sensor surface. Image analysis software correlates the position of fluorescent signals with the identity of the analyte. A new design for a fluidics distribution system is shown, as well as results from assays for physiologically relevant concentrations of staphylococcal enterotoxin B (SEB), F1 antigen from Yersinia pestis, and D- dimer, a marker of sepsis and thrombotic disorders.
The many sounds of T lymphocyte silence.
Melero, Ignacio; Arina, Ainhoa; Chen, Lieping
2005-01-01
It is not unusual for antigens and potentially responsive T cells to co-exist in the same organism while these T cells remain silent and do not mount life-threatening immune responses. A rich array of mechanisms has been proposed to explain these observations. T cell silencing is controlled in multiple levels. Initially, dendritic cells and regulatory T cells appear to play critical roles. In addition, T cell immunity is tightly regulated by a molecular network of cytokines and cell receptor interactions by the opposed surfaces of antigen-presenting cells and T cells. Recognition of a specific antigen is therefore shaped and tuned by co-stimulatory and co-inhibitory receptor-ligand pairs. At last, immunologists are beginning to exploit the rules governing these assorted sounds of T cell silence.
Immunogenicity of the irradiated Schistosoma mansoni schistosomula vaccine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othman, M.I.
1986-01-01
This work was initiated to investigate the immunogenicity of the irradiated schistosomula vaccine with respect to its: ability to protect against challenge infection; ability to induce antibody responses in Western blot (WB) assay; and the antibodies' ability to kill the parasites; ultrastructural changes of the vaccine organism's tegument; antibody binding to their surface in immunofluorescence (IFA) and immunoelectron microscopic (IEM) assays and surface antigen recognition with different sera in WB. Irradiated schistosomula, freshly prepared or cultured up to 48 hours, were able to induce significant levels of protection (27%-67%). however, irradiated cercariae offered greater protection (52%-72%). Vaccination of mice withmore » irradiated schistosomula, led to higher antibody responses to adult freeze-thaw (AFT) and schistosomula membrane extract (SME) antigens with respect to to time and number of recognized antigens.« less
Structure and immune recognition of trimeric pre-fusion HIV-1 Env
Pancera, Marie; Zhou, Tongqing; Druz, Aliaksandr; ...
2014-10-08
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed formore » fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. In conclusion, N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.« less
Structure and immune recognition of trimeric pre-fusion HIV-1 Env
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pancera, Marie; Zhou, Tongqing; Druz, Aliaksandr
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed formore » fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. In conclusion, N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.« less
Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy.
Padovan, E; Bauer, T; Tongio, M M; Kalbacher, H; Weltzien, H U
1997-06-01
Although hapten immune responses have been intensively studied in the mouse, very little is known about hapten determinants involved in human allergic reactions. Penicillins, as chemically reactive compounds of low molecular weight, constitute typical examples of hapten allergens for humans. Penicillins become immunogenic only after covalent binding to carrier proteins and in this form frequently induced IgE-mediated allergic reactions in patients subjected to antibiotic treatment. However, our previous data strongly indicated that penicillins also form part of the epitopes contacting the antigen receptors of beta lactam-specific T cells in allergic individuals. We have therefore investigated the molecular constraints involved in the T cell immune response to penicillin G (Pen G). Designer peptides containing a DRB1*0401-binding motif and covalently modified with Pen G via a lysine epsilon-amino group were found to induce proliferation of Pen G-specific T cell clones. A precise positioning of the hapten molecule on the peptide backbone was required for optimal T cell recognition. Furthermore, we extended these observations from our designer peptides to show that a peptide sequence derived from a natural DRB1*1101-binding peptide modified in vitro with Pen G, also acquired antigenic properties. Our data for the first time provide insight into the manner in which allergenic haptens are recognized by human T cells involved in allergic reactions to drugs and suggest possible mechanisms leading to the onset of these adverse immune responses.
Toxicities of chimeric antigen receptor T cells: recognition and management
Brudno, Jennifer N.
2016-01-01
Chimeric antigen receptor (CAR) T cells can produce durable remissions in hematologic malignancies that are not responsive to standard therapies. Yet the use of CAR T cells is limited by potentially severe toxicities. Early case reports of unexpected organ damage and deaths following CAR T-cell therapy first highlighted the possible dangers of this new treatment. CAR T cells can potentially damage normal tissues by specifically targeting a tumor-associated antigen that is also expressed on those tissues. Cytokine release syndrome (CRS), a systemic inflammatory response caused by cytokines released by infused CAR T cells can lead to widespread reversible organ dysfunction. CRS is the most common type of toxicity caused by CAR T cells. Neurologic toxicity due to CAR T cells might in some cases have a different pathophysiology than CRS and requires different management. Aggressive supportive care is necessary for all patients experiencing CAR T-cell toxicities, with early intervention for hypotension and treatment of concurrent infections being essential. Interleukin-6 receptor blockade with tocilizumab remains the mainstay pharmacologic therapy for CRS, though indications for administration vary among centers. Corticosteroids should be reserved for neurologic toxicities and CRS not responsive to tocilizumab. Pharmacologic management is complicated by the risk of immunosuppressive therapy abrogating the antimalignancy activity of the CAR T cells. This review describes the toxicities caused by CAR T cells and reviews the published approaches used to manage toxicities. We present guidelines for treating patients experiencing CRS and other adverse events following CAR T-cell therapy. PMID:27207799
HIV-1 Tat-based vaccines: from basic science to clinical trials.
Fanales-Belasio, Emanuele; Cafaro, Aurelio; Cara, Andrea; Negri, Donatella R M; Fiorelli, Valeria; Butto, Stefano; Moretti, Sonia; Maggiorella, Maria Teresa; Baroncelli, Silvia; Michelini, Zuleika; Tripiciano, Antonella; Sernicola, Leonardo; Scoglio, Arianna; Borsetti, Alessandra; Ridolfi, Barbara; Bona, Roberta; Ten Haaft, Peter; Macchia, Iole; Leone, Pasqualina; Pavone-Cossut, Maria Rosaria; Nappi, Filomena; Vardas, Eftyhia; Magnani, Mauro; Laguardia, Elena; Caputo, Antonella; Titti, Fausto; Ensoli, Barbara
2002-09-01
Vaccination against human immunodeficiency virus (HIV)-1 infection requires candidate antigen(s) (Ag) capable of inducing an effective, broad, and long-lasting immune response against HIV-1 despite mutation events leading to differences in virus clades. The HIV-1 Tat protein is more conserved than envelope proteins, is essential in the virus life cycle and is expressed very early upon virus entry. In addition, both humoral and cellular responses to Tat have been reported to correlate with a delayed progression to disease in both humans and monkeys. This suggested that Tat is an optimal target for vaccine development aimed at controlling virus replication and blocking disease onset. Here are reviewed the results of our studies including the effects of the Tat protein on monocyte-derived dendritic cells (MDDCs) that are key antigen-presenting cells (APCs), and the results from vaccination trials with both the Tat protein or tat DNA in monkeys. We provide evidence that the HIV-1 Tat protein is very efficiently taken up by MDDCs and promotes T helper (Th)-1 type immune responses against itself as well as other Ag. In addition, a Tat-based vaccine elicits an immune response capable of controlling primary infection of monkeys with the pathogenic SHIV89.6P at its early stages allowing the containment of virus spread. Based on these results and on data of Tat conservation and immune cross-recognition in field isolates from different clades, phase I clinical trials are being initiated in Italy for both preventive and therapeutic vaccination.
Lubkowski, Jacek; Durbin, Sarah V; Silva, Mariana C C; Farnsworth, David; Gildersleeve, Jeffrey C; Oliva, Maria Luiza V; Wlodawer, Alexander
2017-02-01
Lectins have been used at length for basic research and clinical applications. New insights into the molecular recognition properties enhance our basic understanding of carbohydrate-protein interactions and aid in the design/development of new lectins. In this study, we used a combination of cell-based assays, glycan microarrays, and X-ray crystallography to evaluate the structure and function of the recombinant Bauhinia forficata lectin (BfL). The lectin was shown to be cytostatic for several cancer cell lines included in the NCI-60 panel; in particular, it inhibited growth of melanoma cancer cells (LOX IMVI) by over 95%. BfL is dimeric in solution and highly specific for binding of oligosaccharides and glycopeptides with terminal N-acetylgalactosamine (GalNAc). BfL was found to have especially strong binding (apparent K d = 0.5-1.0 nm) to the tumor-associated Tn antigen. High-resolution crystal structures were determined for the ligand-free lectin, as well as for its complexes with three Tn glycopeptides, globotetraose, and the blood group A antigen. Extensive analysis of the eight crystal structures and comparison to structures of related lectins revealed several unique features of GalNAc recognition. Of special note, the carboxylate group of Glu126, lining the glycan-binding pocket, forms H-bonds with both the N-acetyl of GalNAc and the peptide amido group of Tn antigens. Stabilization provided by Glu126 is described here for the first time for any GalNAc-specific lectin. Taken together, the results provide new insights into the molecular recognition of carbohydrates and provide a structural understanding that will enable rational engineering of BfL for a variety of applications. Structural data are available in the PDB under the accession numbers 5T50, 5T52, 5T55, 5T54, 5T5L, 5T5J, 5T5P, and 5T5O. © 2016 Federation of European Biochemical Societies.
Sullivan, Christopher S.; Tremblay, James D.; Fewell, Sheara W.; Lewis, John A.; Brodsky, Jeffrey L.; Pipas, James M.
2000-01-01
The J domain of simian virus 40 (SV40) large T antigen is required for efficient DNA replication and transformation. Despite previous reports demonstrating the promiscuity of J domains in heterologous systems, results presented here show the requirement for specific J-domain sequences in SV40 large-T-antigen-mediated activities. In particular, chimeric-T-antigen constructs in which the SV40 T-antigen J domain was replaced with that from the yeast Ydj1p or Escherichia coli DnaJ proteins failed to replicate in BSC40 cells and did not transform REF52 cells. However, T antigen containing the JC virus J domain was functional in these assays, although it was less efficient than the wild type. The inability of some large-T-antigen chimeras to promote DNA replication and elicit cellular transformation was not due to a failure to interact with hsc70, since a nonfunctional chimera, containing the DnaJ J domain, bound hsc70. However, this nonfunctional chimeric T antigen was reduced in its ability to stimulate hsc70 ATPase activity and unable to liberate E2F from p130, indicating that transcriptional activation of factors required for cell growth and DNA replication may be compromised. Our data suggest that the T-antigen J domain harbors species-specific elements required for viral activities in vivo. PMID:10891510
Nithichanon, Arnone; Rinchai, Darawan; Buddhisa, Surachat; Saenmuang, Pornpun; Kewcharoenwong, Chidchamai; Kessler, Bianca; Khaenam, Prasong; Chetchotisakd, Ploenchan; Maillere, Bernard; Robinson, John; Reynolds, Catherine J.; Boyton, Rosemary J.; Altmann, Daniel M.; Lertmemongkolchai, Ganjana
2018-01-01
Burkholderia pseudomallei (Bp) is an environmental bacterial pathogen that causes potentially lethal sepsis in susceptible individuals and is considered a Category B, Tier-1 biothreat agent. As such, it is crucial to gain an improved understanding of protective immunity and potential vaccine candidates. The nature of immune correlates dictating why most exposed individuals in endemic regions undergo asymptomatic seroconversion while others succumb to life-threatening sepsis is largely uncharted. Bp seroreactive, immunogenic proteins have previously been identified by antigen microarray. We here set out to conduct an analysis of T-cell recognition of the Bp immunome using serodominant antigens represented in the original antigen microarray, examining immune correlates of disease in healthy seropositive individuals and those with acute disease or in convalescence. By screening a library of 739 overlapping peptides representing the sequences of 20 different Bp antigens, we aimed to define immune correlates of protection at the level of immunoprevalent T-cell epitopes. Responses to a large number of epitopes were common in healthy seropositive individuals: we found remarkably broad responsiveness to Bp epitopes, with 235 of 739 peptides recognized by ≥80% of all tested donors. The cumulative response to Bp epitopes in healthy, seropositive, donors from this endemic region were of the order of thousands of spot forming cells per million cells, making Bp recognition a significant component of the T-cell repertoire. Noteworthy among our findings, analysis revealed 10 highly immunoprevalent T-cell epitopes, able to induce Bp-specific IFNγ responses that were high in responding T-cell frequency within the repertoire, and also common across individuals with different human leukocyte antigen types. Acute melioidosis patients showed poor T-cell responses to the immunoprevalent epitopes, but acquired responsiveness following recovery from infection. Our findings suggest that a large repertoire of CD4 T cells, high in frequency and with broad coverage of antigens and epitopes, is important in controlling Bp infection. This offers an attractive potential strategy for subunit or epitope-based vaccines. PMID:29616023
Gauthier, Charles; Chassagne, Pierre; Theillet, François-Xavier; Guerreiro, Catherine; Thouron, Françoise; Nato, Farida; Delepierre, Muriel; Sansonetti, Philippe J; Phalipon, Armelle; Mulard, Laurence A
2014-06-28
Synthetic functional mimics of the O-antigen from Shigella flexneri 2a are seen as promising vaccine components against endemic shigellosis. Herein, the influence of the polysaccharide non-stoichiometric di-O-acetylation on antigenicity is addressed for the first time. Three decasaccharides, representing relevant internal mono- and di-O-acetylation profiles of the O-antigen, were synthesized from a pivotal protected decasaccharide designed to tailor late stage site-selective O-acetylation. The latter was obtained via a convergent route involving the imidate glycosylation chemistry. Binding studies to five protective mIgGs showed that none of the acetates adds significantly to broad antibody recognition. Yet, one of the five antibodies had a unique pattern of binding. With IC50 in the micromolar to submicromolar range mIgG F22-4 exemplifies a remarkable tight binding antibody against diversely O-acetylated and non-O-acetylated fragments of a neutral polysaccharide of medical importance.
Yanaka, Saeko; Ueno, Takamasa; Shi, Yi; Qi, Jianxun; Gao, George F.; Tsumoto, Kouhei; Sugase, Kenji
2014-01-01
In immune-mediated control of pathogens, human leukocyte antigen (HLA) class I presents various antigenic peptides to CD8+ T-cells. Long-lived peptide presentation is important for efficient antigen-specific T-cell activation. Presentation time depends on the peptide sequence and the stability of the peptide-HLA complex (pHLA). However, the determinant of peptide-dependent pHLA stability remains elusive. Here, to reveal the pHLA stabilization mechanism, we examined the crystal structures of an HLA class I allomorph in complex with HIV-derived peptides and evaluated site-specific conformational fluctuations using NMR. Although the crystal structures of various pHLAs were almost identical independent of the peptides, fluctuation analyses identified a peptide-dependent minor state that would be more tightly packed toward the peptide. The minor population correlated well with the thermostability and cell surface presentation of pHLA, indicating that this newly identified minor state is important for stabilizing the pHLA and facilitating T-cell recognition. PMID:25028510
Evolution of Alternative Adaptive Immune Systems in Vertebrates.
Boehm, Thomas; Hirano, Masayuki; Holland, Stephen J; Das, Sabyasachi; Schorpp, Michael; Cooper, Max D
2018-04-26
Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.
Krivitsky, Vadim; Zverzhinetsky, Marina; Patolsky, Fernando
2016-10-12
The detection of biomolecules is critical for a wide spectrum of applications in life sciences and medical diagnosis. Nonetheless, biosamples are highly complex solutions, which contain an enormous variety of biomolecules, cells, and chemical species. Consequently, the intrinsic chemical complexity of biosamples results in a significant analytical background noise and poses an immense challenge to any analytical measurement, especially when applied without prior efficient separation and purification steps. Here, we demonstrate the application of antigen-dissociation regime, from antibody-modified Si-nanowire sensors, as a simple and effective direct sensing mechanism of biomarkers of interest in complex biosamples, such as serum and untreated blood, which does not require ex situ time-consuming biosample manipulation steps, such as centrifugation, filtering, preconcentration, and desalting, thus overcoming the detrimental Debye screening limitation of nanowire-based biosensors. We found that two key parameters control the capability to perform quantitative biomarkers analysis in biosamples: (i) the affinity strength (k off rate) of the antibody-antigen recognition pair, which dictates the time length of the high-affinity slow dissociation subregime, and (ii) the "flow rate" applied during the solution exchange dissociation step, which controls the time width of the low-affinity fast-dissociation subregime. Undoubtedly, this is the simplest and most convenient approach for the SiNW FET-based detection of antigens in complex untreated biosamples. The lack of ex situ biosample manipulation time-consuming processes enhances the portability of the sensing platform and reduces to minimum the required volume of tested sample, as it allows the direct detection of untreated biosamples (5-10 μL blood or serum), while readily reducing the detection cycle duration to less than 5 min, factors of great importance in near-future point-of-care medical applications. We believe this is the first ever reported demonstration on the real-time, direct label-free sensing of biomarkers from untreated blood samples, using SiNW-based FET devices, while not compromising the ultrasensitive sensing capabilities inherent to these devices.
Comprehensive definition of human immunodominant CD8 antigens in tuberculosis.
Lewinsohn, Deborah A; Swarbrick, Gwendolyn M; Park, Byung; Cansler, Meghan E; Null, Megan D; Toren, Katelynne G; Baseke, Joy; Zalwango, Sarah; Mayanja-Kizza, Harriet; Malone, LaShaunda L; Nyendak, Melissa; Wu, Guanming; Guinn, Kristi; McWeeney, Shannon; Mori, Tomi; Chervenak, Keith A; Sherman, David R; Boom, W Henry; Lewinsohn, David M
2017-01-01
Despite widespread use of the Bacillus Calmette-Guerin vaccine, tuberculosis, caused by infection with Mycobacterium tuberculosis , remains a leading cause of morbidity and mortality worldwide. As CD8 + T cells are critical to tuberculosis host defense and a phase 2b vaccine trial of modified vaccinia Ankara expressing Ag85a that failed to demonstrate efficacy, also failed to induce a CD8 + T cell response, an effective tuberculosis vaccine may need to induce CD8 + T cells. However, little is known about CD8, as compared to CD4, antigens in tuberculosis. Herein, we report the results of the first ever HLA allele independent genome-wide CD8 antigen discovery program. Using CD8 + T cells derived from humans with latent tuberculosis infection or tuberculosis and an interferon-γ ELISPOT assay, we screened a synthetic peptide library representing 10% of the Mycobacterium tuberculosis proteome, selected to be enriched for Mycobacterium tuberculosis antigens. We defined a set of immunodominant CD8 antigens including part or all of 74 Mycobacterium tuberculosis proteins, only 16 of which are previously known CD8 antigens. Immunogenicity was associated with the degree of expression of mRNA and protein. Immunodominant antigens were enriched in cell wall proteins with preferential recognition of Esx protein family members, and within proteins comprising the Mycobacterium tuberculosis secretome. A validation study of immunodominant antigens demonstrated that these antigens were strongly recognized in Mycobacterium tuberculosis -infected individuals from a tuberculosis endemic region in Africa. The tuberculosis vaccine field will likely benefit from this greatly increased known repertoire of CD8 immunodominant antigens and definition of properties of Mycobacterium tuberculosis proteins important for CD8 antigenicity.
Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA.
McCluskie, M J; Krieg, A M
2006-01-01
The adaptive immune system-with its remarkable ability to generate antigen-specific antibodies and T lymphocytes against pathogens never before "seen" by an organism-is one of the marvels of evolution. However, to generate these responses, the adaptive immune system requires activation by the innate immune system. Toll-like receptors (TLRs) are perhaps the best-understood family of innate immune receptors for detecting infections and stimulating adaptive immune responses. TLR9 appears to have evolved to recognize infections by a subtle structural difference between eukaryotic and prokaryotic/viral DNA; only the former frequently methylates CpG dinucleotides. Used as vaccine adjuvants, synthetic oligodeoxynucleotide (ODN) ligands for TLR9--CpG ODN--greatly enhance the speed and strength of the immune responses to vaccination.
Role of immune system in tumor progression and carcinogenesis.
Upadhyay, Shishir; Sharma, Nidhi; Gupta, Kunj Bihari; Dhiman, Monisha
2018-07-01
Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. © 2018 Wiley Periodicals, Inc.
Normal and abnormal secretion by haemopoietic cells
STINCHCOMBE, JANE C; GRIFFITHS, GILLIAN M
2001-01-01
The secretory lysosomes found in haemopoietic cells provide a very efficient mechanism for delivering the effector proteins of many immune cells in response to antigen recognition. Although secretion shows some similarities to the secretion of specialized granules in other secretory cell types, some aspects of secretory lysosome release appear to be unique to melanocytes and cells of the haemopoietic lineage. Mast cells and platelets have provided excellent models for studying secretion, but recent advances in characterizing the immunological synapse allow a very fine dissection of the secretory process in T lymphocytes. These studies show that secretory lysosomes are secreted from the centre of the talin ring at the synapse. Proper secretion requires a series of Rab and cytoskeletal elements which play critical roles in the specialized secretion of lysosomes in haemopoietic cells. PMID:11380687
Antibody modeling using the prediction of immunoglobulin structure (PIGS) web server [corrected].
Marcatili, Paolo; Olimpieri, Pier Paolo; Chailyan, Anna; Tramontano, Anna
2014-12-01
Antibodies (or immunoglobulins) are crucial for defending organisms from pathogens, but they are also key players in many medical, diagnostic and biotechnological applications. The ability to predict their structure and the specific residues involved in antigen recognition has several useful applications in all of these areas. Over the years, we have developed or collaborated in developing a strategy that enables researchers to predict the 3D structure of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (∼10 min on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody loops and on our understanding of the way light and heavy chains pack together.
Ramaswami, Bala; Popescu, Iulia; Macedo, Camila; Luo, Chunqing; Shapiro, Ron; Metes, Diana; Chalasani, Geetha; Randhawa, Parmjeet S.
2011-01-01
BK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+ T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+ T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols. PMID:21367979
Ramaswami, Bala; Popescu, Iulia; Macedo, Camila; Luo, Chunqing; Shapiro, Ron; Metes, Diana; Chalasani, Geetha; Randhawa, Parmjeet S
2011-05-01
BK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4(+) T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4(+) T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.
Eberle, R; Russell, R G; Rouse, B T
1981-01-01
In this communication, we examine the specificity of anti-herpes simplex virus (HSV) cytotoxic T lymphocytes (CTL). Serological studies of the two related HSV serotypes (HSV-1 and HSV-2) have revealed both type-specific and cross-reactive antigenic determinants in the viral envelope and on the surface of infected cells. By analysis of cytotoxicity of CTL, generated in vitro by restimulation of splenocytes from mice primed with one or the other HSV serotype, the recognition of both type-specific and cross-reactive determinants on infected target cells by anti-HSV CTL was detectable. Thus, effector cells generated by priming and restimulating with the same virus recognized both type-specific and cross-reactive determinants on target cells infected with the homologous virus, but only cross-reactive determinants on target cells infected with the heterologous HSV serotype. CTL generated by restimulation with the heterologous virus were capable of recognizing only the cross-reactive determinants on either HSV-1- or HSV-2-infected target cells. These results indicate that two subpopulations of CTL exist in a population of anti-HSV immune spleen cells--those which recognize type-specific determinants and those specific for cross-reactive antigenic determinants present on the surface of HSV infected cells. The type-specific subset of anti-HSV CTL was shown to recognize the gC glycoprotein of HSV-1 infected target cells. In addition to the gC glycoprotein, at least one other type-specific surface antigen was also recognized by anti-HSV CTL in addition to the cross-reactive determinants recognized by anti-HSV CTL. PMID:6277790
Wels, Winfried; Biburger, Markus; Müller, Tina; Dälken, Benjamin; Giesübel, Ulrike; Tonn, Torsten; Uherek, Christoph
2004-03-01
Over the past years, monoclonal antibodies have attracted enormous interest as targeted therapeutics, and a number of such reagents are in clinical use. However, responses could not be achieved in all patients with tumors expressing high levels of the respective target antigens, suggesting that other factors such as limited recruitment of endogenous immune effector mechanisms can also influence treatment outcome. This justifies the search for alternative, potentially more effective reagents. Antibody-toxins and cytolytic effector cells genetically modified to carry antibody-based receptors on the surface, represent such tailor-made targeting vehicles with the potential of improved tumor localization and enhanced efficacy. In this way, advances in recombinant antibody technology have made it possible to circumvent problems inherent in chemical coupling of antibodies and toxins, and have allowed construction via gene fusion of recombinant molecules which combine antibody-mediated recognition of tumor cells with specific delivery of potent protein toxins of bacterial or plant origin. Likewise, recombinant antibody fragments provide the basis for the construction of chimeric antigen receptors that, upon expression in cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells, link antibody-mediated recognition of tumor antigens with these effector cells' potent cytolytic activities, thereby making them promising cellular therapeutics for adoptive cancer therapy. Here, general principles for the derivation of cytotoxic proteins and effector cells with antibody-dependent tumor specificity are summarized, and current strategies to employ these molecules and cells for directed cancer therapy are discussed, focusing mainly on the tumor-associated antigens epidermal growth factor receptor (EGFR) and the closely related ErbB2 (HER2) as targets.
Mpakali, Anastasia; Giastas, Petros; Mathioudakis, Nikolas; Mavridis, Irene M; Saridakis, Emmanuel; Stratikos, Efstratios
2015-10-23
Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Cram, Erik D.; Simmons, Ryan S.; Palmer, Amy L.; Hildebrand, William H.; Rockey, Daniel D.
2015-01-01
The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8+ cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8+ T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8+ killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. PMID:26597986
Calcedo, Roberto; Ramirez-Garcia, Andoni; Abad, Ana; Rementeria, Aitor; Pontón, José; Hernando, Fernando Luis
2012-01-01
Candida albicans is an opportunistic dimorphic fungus commonly present in the human oral cavity that causes infections in immunocompromised patients. The antigen variability, influenced by growth conditions, is a pathogenicity factor. To determine the effect of nutritional and heat stress on the antigen expression of C. albicans, and to identify major antigens recognized by human salivary secretory immunoglobulin A (sIgA). Under various different nutritional conditions, heat shock was induced in C. albicans cells in stationary and exponential growth phases. The expression of protein determinants of C. albicans was assessed by Western blot analysis against human saliva. The antigens were purified and characterized by two-dimensional electrophoresis and identified by protein microsequencing. Five antigens recognized by salivary IgA were characterized as mannoproteins due to their reactivity with concanavalin A. They did not show reactivity with anti-heat shock protein monoclonal antibodies. Two of them (42 and 36 kDa) were found to be regulated by heat shock and by nutritional stress and they were identified as phosphoglycerate kinase and fructose bisphosphate aldolase, respectively. These glycolytic enzymes are major antigens of C. albicans, and their differential expression and recognition by the mucosal immune response system could be involved in protection against oral infection. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
2013-01-01
Background Antibodies have an essential role in the acquired immune response against blood stage P. falciparum infection. Although several antigens have been identified as important antibody targets, it is still elusive which antigens have to be recognized for clinical protection. Herein, we analyzed antibodies from plasmas from symptomatic or asymptomatic individuals living in the same geographic area in the Western Amazon, measuring their recognition of multiple merozoite antigens. Methods Specific fragments of genes encoding merozoite proteins AMA1 and members of MSP and EBL families from circulating P. falciparum field isolates present in asymptomatic and symptomatic patients were amplified by PCR. After cloning and expression of different versions of the antigens as recombinant GST-fusion peptides, we tested the reactivity of patients’ plasmas by ELISA and the presence of IgG subclasses in the most reactive plasmas. Results 11 out of 24 recombinant antigens were recognized by plasmas from either symptomatic or asymptomatic infections. Antibodies to MSP9 (X2DF=1 = 9.26/p = 0.0047) and MSP5 (X2DF=1 = 8.29/p = 0.0069) were more prevalent in asymptomatic individuals whereas the opposite was observed for MSP1 block 2-MAD20 (X2DF=1 = 6.41/p = 0.0206, Fisher’s exact test). Plasmas from asymptomatic individuals reacted more intensely against MSP4 (U = 210.5, p < 0.03), MSP5 (U = 212, p < 0.004), MSP9 (U = 189.5, p < 0.002) and EBA175 (U = 197, p < 0.014, Mann-Whitney’s U test). IgG1 and IgG3 were predominant for all antigens, but some patients also presented with IgG2 and IgG4. The recognition of MSP5 (OR = 0.112, IC95% = 0.021-0.585) and MSP9 (OR = 0.125, IC95% = 0.030-0.529, cross tab analysis) predicted 8.9 and 8 times less chances, respectively, to present symptoms. Higher antibody levels against MSP5 and EBA175 were associated by odds ratios of 9.4 (IC95% = 1.29-69.25) and 5.7 (IC95% = 1.12-29.62, logistic regression), respectively, with an asymptomatic status. Conclusions Merozoite antigens were targets of cytophilic antibodies and antibodies against MSP5, MSP9 and EBA175 were independently associated with decreased symptoms. PMID:24373342
GENETIC CONTROL OF THE IMMUNE RESPONSE
Lonai, Peter; McDevitt, Hugh O.
1974-01-01
In vitro antigen-induced tritiated thymidine uptake has been used to study the response of sensitized lymphocytes to (T,G)-A--L, (H,G)-A--L, and (Phe,G)-A--L in responder and nonresponder strains of mice. The reaction is T-cell and macrophage dependent. Highly purified T cells (91% Thy 1.2 positive) are also responsive, suggesting that this in vitro lymphocyte transformation system is not B-cell dependent. Lymphocytes from high and low responder mice stimulated in vitro react as responders and nonresponders in a pattern identical to that seen with in vivo immunization. Stimulation occurs only if soluble antigen is added at physiological temperatures; antigen exposure at 4°C followed by washing and incubation at 37°C fails to induce lymphocyte transformation. Stimulation is specific for the immunizing antigen and does not exhibit the serologic cross-reactivity which is characteristic of these three antigens and their respective antisera. The reaction can be inhibited by anti-H-2 sera but not by anti-immunoglobulin sera. The anti-immunoglobulin sera did, however, inhibit lipopolysaccharide or pokeweed mitogen stimulation. These results suggest that the Ir-1A gene(s) are expressed in T cells, and that there are fundamental physiologic differences between T- and B-cell antigen recognition. PMID:4547782
Cerruti, Fulvia; Martano, Marina; Petterino, Claudio; Bollo, Enrico; Morello, Emanuela; Bruno, Renato; Buracco, Paolo; Cascio, Paolo
2007-01-01
In human tumors, changes in the surface expression and/or function of major histocompatibility complex (MHC) class I antigens are frequently found and may provide malignant cells with a mechanism to escape control of the immune system. This altered human lymphocyte antigen (HLA) class I phenotype can be caused by either structural alterations or dysregulation of genes encoding subunits of HLA class I antigens and/or components of the MHC class I antigen-processing machinery (APM). Herein we analyze the expression of several proteins involved in the generation of MHC class I epitopes in feline injection site sarcoma, a spontaneously occurring tumor in cats that is an informativemodel for the study of tumor biology in other species, including humans. Eighteen surgically removed primary fibrosarcoma lesions were analyzed, and an enhanced expression of two catalytic subunits of immunoproteasomes, PA28 and leucine aminopeptidase, was found in tumors compared to matched normal tissues. As a functional counterpart of these changes in protein levels, proteasomal activities were increased in tissue extracts from fibrosarcomas. Taken together, these results suggest that alterations in the APM system may account for reduced processing of selected tumor antigens and may potentially provide neoplastic fibroblasts with a mechanism for escape from T-cell recognition and destruction. PMID:18030364
Cerruti, Fulvia; Martano, Marina; Petterino, Claudio; Bollo, Enrico; Morello, Emanuela; Bruno, Renato; Buracco, Paolo; Cascio, Paolo
2007-11-01
In human tumors, changes in the surface expression and/or function of major histocompatibility complex (MHC) class I antigens are frequently found and may provide malignant cells with a mechanism to escape control of the immune system. This altered human lymphocyte antigen (HLA) class I phenotype can be caused by either structural alterations or dysregulation of genes encoding subunits of HLA class I antigens and/or components of the MHC class I antigen-processing machinery (APM). Herein we analyze the expression of several proteins involved in the generation of MHC class I epitopes in feline injection site sarcoma, a spontaneously occurring tumor in cats that is an informative model for the study of tumor biology in other species, including humans. Eighteen surgically removed primary fibrosarcoma lesions were analyzed, and an enhanced expression of two catalytic subunits of immunoproteasomes, PA28 and leucine aminopeptidase, was found in tumors compared to matched normal tissues. As a functional counterpart of these changes in protein levels, proteasomal activities were increased in tissue extracts from fibrosarcomas. Taken together, these results suggest that alterations in the APM system may account for reduced processing of selected tumor antigens and may potentially provide neoplastic fibroblasts with a mechanism for escape from T-cell recognition and destruction.
Allegra, Alessandro; Innao, Vanessa; Gerace, Demetrio; Vaddinelli, Doriana; Musolino, Caterina
2016-11-01
Hematological malignancies frequently express cancer-associated antigens that are shared with normal cells. Such tumor cells elude the host immune system because several T cells targeted against self-antigens are removed during thymic development, and those that persist are eliminated by a regulatory population of T cells. Chimeric antigen receptor-modified T cells (CAR-Ts) have emerged as a novel modality for tumor immunotherapy due to their powerful efficacy against tumor cells. These cells are created by transducing genes-coding fusion proteins of tumor antigen-recognition single-chain Fv connected to the intracellular signaling domains of T cell receptors, and are classed as first-, second- and third-generation, differing on the intracellular signaling domain number of T cell receptors. CAR-T treatment has emerged as a promising approach for patients with hematological malignancies, and there are several works reporting clinical trials of the use of CAR-modified T-cells in acute lymphoblastic leukemia, chronic lymphoblastic leukemia, multiple myeloma, lymphoma, and in acute myeloid leukemia by targeting different antigens. This review reports the history of adoptive immunotherapy using CAR-Ts, the CAR-T manufacturing process, and T cell therapies in development for hematological malignancies. Copyright © 2016 Elsevier Inc. All rights reserved.
Gastrointestinal dysfunction in idiopathic Parkinsonism: A narrative review
Salari, Mehri; Fayyazi, Emad; Mirmosayyeb, Omid
2016-01-01
Currently, gastrointestinal (GI) dysfunctions in Parkinson's disease (PD) are well-recognized problems and are known to be the initial symptoms in the pathological process that eventually results in PD. Many types of PD-associated GI dysfunctions have been identified, including weight loss, nausea, hypersalivation, dysphagia, dyspepsia, abdominal pain, intestinal pseudo-obstruction, constipation, defecatory dysfunction, and small intestinal bacterial overgrowth. These symptoms can influence on other PD symptoms and are the second most significant predictor of the quality of life of these patients. Recognition of GI symptoms requires vigilance on the part of clinicians. Health-care providers should routinely ask direct questions about GI symptoms during office visits so that efforts can be directed at appropriate management of these distressing manifestations. Multiple system atrophy (MSA) and progressive supranuclear palsy are two forms of neurodegenerative Parkinsonism. Symptoms of autonomic dysfunctions such as GI dysfunction are common in patients with parkinsonian disorders. Despite recent progress in the recognition of GI dysfunctions, there are a few reviews on the management of GI dysfunction and GI symptoms in idiopathic Parkinsonism. In this review, the clinical presentation, pathophysiology, and treatment of each GI symptom in PD, MSA, and prostate-specific antigen will be discussed. PMID:28331512
Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Sagaseta, Jacinto; Sibener, Leah V.; Kung, Jennifer E.
2014-10-02
Invariant Natural Killer T (iNKT) cells use highly restricted {alpha}{beta} T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted {alpha}1 helix resulting in an open A pocket. Binding of the iNKT TCR requires a 7-{angstrom} displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint onmore » CD1d-LPC is anchored by the conserved positioning of the CDR3{alpha} loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3{beta} and J{beta} segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.« less
Role of alveolar epithelial early growth response-1 (Egr-1) in CD8+ T cell-mediated lung injury.
Ramana, Chilakamarti V; Cheng, Guang-Shing; Kumar, Aseem; Kwon, Hyung-Joo; Enelow, Richard I
2009-12-01
Influenza infection of the distal airways results in severe lung injury, a considerable portion of which is immunopathologic and attributable to the host responses. We have used a mouse model to specifically investigate the role of antiviral CD8(+) T cells in this injury, and have found that the critical effector molecule is TNF-alpha expressed by the T cells upon antigen recognition. Interestingly, the immunopathology which ensues is characterized by significant accumulation of host inflammatory cells, recruited by chemokines expressed by the target alveolar epithelial cells. In this study we analyzed the mechanisms involved in the induction of epithelial chemokine expression triggered by antigen-specific CD8(+) T cell recognition, and demonstrate that the early growth response-1 (Egr-1) transcription factor is rapidly induced in epithelial cells, both in vitro and ex vivo, and that this is a critical regulator of a host of inflammatory chemokines. Genetic deficiency of Egr-1 significantly abrogates both the chemokine expression and the immunopathologic injury associated with T cell recognition, and it directly regulates transcriptional activity of a model CXC chemokine, MIP-2. We further demonstrate that Egr-1 induction is triggered by TNF-alpha-dependent ERK activation, and inhibition of this pathway ablates Egr-1 expression. These findings suggest that Egr-1 may represent an important target in mitigating the immunopathology of severe influenza infection.
Role of alveolar epithelial Early growth response-1 (Egr-1) in CD8+ T Cell mediated Lung Injury
Ramana, Chilakamarti V.; Cheng, Guang-Shing; Kumar, Aseem; Kwon, Hyung- Joo; Enelow, Richard I.
2009-01-01
Influenza infection of the distal airways results in severe lung injury, a considerable portion of which is immunopathologic and attributable to the host responses. We have used a mouse model to specifically investigate the role of antiviral CD8+ T cells in this injury, and have found that the critical effector molecule is TNF-α expressed by the T cells upon antigen recognition. Interestingly, the immunopathology which ensues is characterized by significant accumulation of host inflammatory cells, recruited by chemokines expressed by the target alveolar epithelial cells. In this study we analyzed the mechanisms involved in the induction of epithelial chemokine expression triggered by antigen-specific CD8+ T cell recognition, and demonstrate that the Early growth response-1 (Egr-1) transcription factor is rapidly induced in epithelial cells, both in vitro and ex vivo, and that this is a critical regulator of a host of inflammatory chemokines. Genetic deficiency of Egr-1 significantly abrogates both the chemokine expression and the immunopathologic injury associated with T cell recognition, and it directly regulates transcriptional activity of a model CXC chemokine, MIP-2. We further demonstrate that Egr-1 induction is triggered by TNF-α– dependent ERK activation, and inhibition of this pathway ablates Egr-1 expression. These findings suggest that Egr-1 may represent an important target in mitigating the immunopathology of severe influenza infection. PMID:19786304
NASA Astrophysics Data System (ADS)
Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren
1996-03-01
Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.
Aryl Hydrocarbon Receptor Promotes RORγt+ ILCs and Controls Intestinal Immunity and Inflammation
Qiu, Ju; Zhou, Liang
2013-01-01
Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptors (RORγt)+ ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt+ ILCs (e.g., lymphoid tissue inducer-LTi cells) are required for lymphoid organogenesis. In adult mice, RORγt+ ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt+ ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt+ ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells (APCs). In this review, we will focus on the development and function of RORγt+ ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. Better understanding the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases. PMID:23975386
Geng, Shuang; Yu, Yang; Kang, Youmin; Pavlakis, George; Jin, Huali; Li, Jinyao; Hu, Yanxin; Hu, Weibin; Wang, Shuang; Wang, Bin
2011-05-05
We previously showed that co-immunization with a protein antigen and a DNA vaccine coding for the same antigen induces CD40 low IL-10 high tolerogenic DCs, which in turn stimulates the expansion of antigen-specific CD4+CD25-Foxp3+ regulatory T cells (CD25- iTreg). However, it was unclear how to choose the antigen sequence to maximize tolerogenic antigen presentation and, consequently, CD25- iTreg induction. In the present study, we demonstrated the requirement of highly antigenic epitopes for CD25- iTreg induction. Firstly, we showed that the induction of CD25- iTreg by tolerogenic DC can be blocked by anti-MHC-II antibody. Next, both the number and the suppressive activity of CD25- iTreg correlated positively with the overt antigenicity of an epitope to activate T cells. Finally, in a mouse model of dermatitis, highly antigenic epitopes derived from a flea allergen not only induced more CD25- iTreg, but also more effectively prevented allergenic reaction to the allergen than did weakly antigenic epitopes. Our data thus indicate that efficient induction of CD25- iTreg requires highly antigenic peptide epitopes. This finding suggests that highly antigenic epitopes should be used for efficient induction of CD25- iTreg for clinical applications such as flea allergic dermatitis.
Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis
Liu, Xuan
2017-01-01
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis. PMID:29207528
TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy
Grada, Zakaria; Hegde, Meenakshi; Byrd, Tiara; Shaffer, Donald R; Ghazi, Alexia; Brawley, Vita S; Corder, Amanda; Schönfeld, Kurt; Koch, Joachim; Dotti, Gianpietro; Heslop, Helen E; Gottschalk, Stephen; Wels, Winfried S; Baker, Matthew L; Ahmed, Nabil
2013-01-01
Targeted T cells are emerging as effective non-toxic therapies for cancer. Multiple elements, however, contribute to the overall pathogenesis of cancer through both distinct and redundant mechanisms. Hence, targeting multiple cancer-specific markers simultaneously could result in better therapeutic efficacy. We created a functional chimeric antigen receptor—the TanCAR, a novel artificial molecule that mediates bispecific activation and targeting of T cells. We demonstrate the feasibility of cumulative integration of structure and docking simulation data using computational tools to interrogate the design and predict the functionality of such a complex bispecific molecule. Our prototype TanCAR induced distinct T cell reactivity against each of two tumor restricted antigens, and produced synergistic enhancement of effector functions when both antigens were simultaneously encountered. Furthermore, the TanCAR preserved the cytolytic ability of T cells upon loss of one of the target molecules and better controlled established experimental tumors by recognition of both targets in an animal disease model. This proof-of-concept approach can be used to increase the specificity of effector cells for malignant versus normal target cells, to offset antigen escape or to allow for targeting the tumor and its microenvironment. PMID:23839099
Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis.
Liu, Xuan; Jiang, Hui
2017-12-04
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.
NASA Astrophysics Data System (ADS)
Marañón, Concepción; Desoutter, Jean-François; Hoeffel, Guillaume; Cohen, William; Hanau, Daniel; Hosmalin, Anne
2004-04-01
A better understanding of the antigen presentation pathways that lead to CD8+ T cell recognition of HIV epitopes in vivo is needed to achieve better immune control of HIV replication. Here, we show that cross-presentation of very small amounts of HIV proteins from apoptotic infected CD4+ T lymphocytes by dendritic cells to CD8+ T cells is much more efficient than other known HIV presentation pathways, i.e., direct presentation of infectious virus or cross-presentation of defective virus. Unexpectedly, dendritic cells also take up actively antigens into endosomes from live infected CD4+ T lymphocytes and cross-present them as efficiently as antigens derived from apoptotic infected cells. Moreover, live infected CD4+ T cells costimulate cross-presenting dendritic cells in the process. Therefore, dendritic cells can present very small amounts of viral proteins from infected T cells either after apoptosis, which is frequent during HIV infection, or not. Thus, if HIV expression is transiently induced while costimulation is enhanced (for instance after IL-2 and IFN immune therapy), this HIV antigen presentation pathway could be exploited to eradicate latently infected reservoirs, which are poorly recognized by patients' immune systems.
Influence of High Hydrostatic Pressure on Epitope Mapping of Tobacco Mosaic Virus Coat Protein
Bonafe, Carlos Francisco Sampaio; Arns, Clarice Weis
2014-01-01
Abstract In this study, we investigated the effect of high hydrostatic pressure (HHP) on tobacco mosaic virus (TMV), a model virus in immunology and one of the most studied viruses to date. Exposure to HHP significantly altered the recognition epitopes when compared to sera from mice immunized with native virus. These alterations were studied further by combining HHP with urea or low temperature and then inoculating the altered virions into Balb-C mice. The antibody titers and cross-reactivity of the resulting sera were determined by ELISA. The antigenicity of the viral particles was maintained, as assessed by using polyclonal antibodies against native virus. The antigenicity of canonical epitopes was maintained, although binding intensities varied among the treatments. The patterns of recognition determined by epitope mapping were cross checked with the prediction algorithms for the TMVcp amino acid sequence to infer which alterations had occurred. These findings suggest that different cleavage sites were exposed after the treatments and this was confirmed by epitope mapping using sera from mice immunized with virus previously exposed to HHP. PMID:24605789
Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma
Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M.; Blokland, Nina J.G.; van Noesel, Max M.; Molenaar, Jan J.; Heemskerk, Mirjam H.M.
2015-01-01
Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20–40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses. PMID:26452036
Bouvier, M; Wiley, D C
1996-01-01
Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides. Images Fig. 2 Fig. 4 PMID:8643447
Ranganathan, Anupama; Paradise, Grace A.; Hansen, Chad A.; McCoy, Mark R.; Gee, Shirley J.; Zhong, Ping; Chang, Dan; Hammock, Bruce D.
2013-01-01
Hesperetin dihydrochalcone 4′-glucoside, 1 and phloretin 4′-glucoside, 2 belong to a family of dihydrochalcone glycosides that exhibit flavorant properties. We have developed a competitive, indirect homologous ELISA for the detection of targets 1 and 2 in fermentation media. Immunogen and coating antigen were prepared by conjugating hapten, 4-(3-oxo-3-(2,6-dihydroxy-4-glucoside phenyl)propyl) benzoic acid to thyroglobulin and bovine serum albumin, respectively. Antibodies raised in rabbits M6122, M6123 and M6124 and the coating antigen were screened and characterized to determine their optimum concentrations. The optimized ELISA, developed with antibody M6122, gave IC50 values of 27.8 and 21.8 ng/mL for 1 and 2, respectively. Selectivity of the assay was assessed by measuring cross-reactivity of antibody M6122 to related congeners such as aglycones and the 2′-glycosides of hesperetin dihydrochalcone, 5 and phloretin, 6. Antibody M6122 showed very low recognition of 5 and virtually no recognition of the aglycones and 6. PMID:23767873
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiraiwa, Akikazu; Yamanaka, Katsuo; Kwok, W.W.
Although HLA genes have been shown to be associated with certain diseases, the basis for this association is unknown. Recent studies, however, have documented patterns of nucleotide sequence variation among some HLA genes associated with a particular disease. For rheumatoid arthritis, HLA genes in most patients have a shared nucleotide sequence encoding a key structural element of an HLA class II polypeptide; this sequence element is critical for the interaction of the HLA molecule with antigenic peptides and with responding T cells, suggestive of a direct role for this sequence element in disease susceptibility. The authors describe the serological andmore » cellular immunologic characteristics encoded by this rheumatoid arthritis-associated sequence element. Site-directed mutagenesis of the DRB1 gene was used to define amino acids critical for antibody and T-cell recognition of this structural element, focusing on residues that distinguish the rheumatoid arthritis-associated alleles Dw4 and Dw14 from a closely related allele, Dw10, not associated with disease. Both the gain and loss of rheumatoid arthritis-associated epitopes were highly dependent on three residues within a discrete domain of the HLA-DR molecule. Recognition was most strongly influenced by the following amino acids (in order): 70 > 71 > 67. Some alloreactive T-cell clones were also influenced by amino acid variation in portions of the DR molecule lying outside the shared sequence element.« less
NASA Astrophysics Data System (ADS)
Huang, Yiming
Surface-enhanced Raman scattering (SERS) has been developed over forty years with a wide variety of applications. Signals enhanced from single molecule absorbed on the surface of metallic nanoparticles can be up to 14-order-of-magnitude. This is due to the resonance between the optical field and surface plasmon of the metal substrate. Nanoshells have been chosen as substrates since they do not need to pre-aggregate due to their tunable optical property. We developed Raman imaging system by incorporating functionalized nanoshells, cells and SERS. Nanoshells have been coated with different self-assembled monolayers containing poly(ethylene glycol) (PEG) molecules. Probes have been designed by coating nanoshells with Raman active PEG molecules and delivered into macrophage cells. The imaging technique requires less preparation and provides the information of nanoshells in semi-quantitative way in vitro. We developed half-sandwich bioassay by detecting low volume of antigens on nitrocellulose membrane, detected by SERS. Antibodies were grafted to the surface of nanoshells and were conjugated to the antigens on the nitrocellulose membrane for detection. Raman active PEGs were conjugated onto the metal substrate for recognition and quantification. The benefits of this assay are that it is faster, easier to execute and requires less volume of antigen to conjugate onto the substrate. We also developed reactive oxygen species (ROS) sensors by incubating PEGs and either 4-nitrobenzenethiol (4-NBT) or 4-mercaptophenol (4-MP) on the surface of nanoshells. By analyzing the changes of SERS spectrum, the production of hydroxyl radicals produced in the Fenton reaction can be tracked in low concentrations. The sensors were designed to track ROS production within cells when they are under oxidative stress. The methods developed in this thesis are versatile, and can be broadly applied to the study of different subtracts, such as gold colloid.
Sherwood, Laura J.; Hayhurst, Andrew
2013-01-01
Background Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism. Methods and Findings In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections. Conclusions The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent driven antigen sandwich assays for the Ebolavirus genus. PMID:23577211
Thielges, Megan C; Zimmermann, Jörg; Yu, Wayne; Oda, Masayuki; Romesberg, Floyd E
2008-07-08
The production of antibodies that selectively bind virtually any foreign compound is the hallmark of the immune system. While much is understood about how sequence diversity contributes to this remarkable feat of molecular recognition, little is known about how sequence diversity impacts antibody dynamics, which is also expected to contribute to molecular recognition. Toward this goal, we examined a panel of antibodies elicited to the chromophoric antigen fluorescein. On the basis of isothermal titration calorimetry, we selected six antibodies that bind fluorescein with diverse binding entropies, suggestive of varying contributions of dynamics to molecular recognition. Sequencing revealed that two pairs of antibodies employ homologous heavy chains that were derived from common germline genes, while the other two heavy chains and all six of the light chains were derived from different germline genes and are not homologous. Interestingly, more than half of all the somatic mutations acquired during affinity maturation among the six antibodies are located in positions unlikely to contact fluorescein directly. To quantify and compare the dynamics of the antibody-fluorescein complexes, three-pulse photon echo peak shift and transient grating spectroscopy were employed. All of the antibodies exhibited motions on three distinct time scales, ultrafast motions on the <100 fs time scale, diffusive motions on the picosecond time scale, and motions that occur on time scales longer than nanoseconds and thus appear static. However, the exact frequency of the picosecond time scale motion and the relative contribution of the different motions vary significantly among the antibody-chromophore complexes, revealing a high level of dynamic diversity. Using a hierarchical model, we relate the data to features of the antibodies' energy landscapes as well as their flexibility in terms of elasticity and plasticity. In all, the data provide a consistent picture of antibody flexibility, which interestingly appears to be correlated with binding entropy as well as with germline gene use and the mutations introduced during affinity maturation. The data also provide a gauge of the dynamic diversity of the antibody repertoire and suggest that this diversity might contribute to molecular recognition by facilitating the recognition of the broadest range of foreign molecules.
Fiege, Brigitte; Leuthold, Mila; Parra, Francisco; Dalton, Kevin P; Meloncelli, Peter J; Lowary, Todd L; Peters, Thomas
2017-10-01
Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be critical for the infection process. Therefore, we have determined binding epitopes of synthetic type 1 to 6 blood group A- and B-tetrasaccharides binding to GII.4 human Norovirus virus like particles (VLPs) using STD NMR experiments. So far, little information is available from crystal structure analysis studies on the interactions of the reducing-end sugars with the protruding domain (P-domain) of the viral coat protein VP1. Here, we show that the reducing-end sugars make notable contacts with the protein surface. The type of glycosidic linkage, and the identity of the sugar at the reducing end modulate HBGA recognition. Most strikingly, type 2 structures yield only very poor saturation transfer indicating impeded binding. This observation is in accordance with previous mass spectrometry based affinity measurements, and can be understood based on recent crystal structure data of a complex of highly homologous GII.4 P-dimers with H-type 2 trisaccharide where the N-acetyl group of the reducing N-acetyl glucosamine residue points towards a loop comprising amino acids Q390 to H395. We suggest that in our case, binding of type 2 A- and B-tetrasaccharides leads to steric conflicts with this loop. In order to identify factors determining L-Fuc recognition, we also synthesized GII.4 VLPs with point mutations D391A and H395A. Prior studies had suggested that these residues, located in a second shell around the L-Fuc binding site, assist L-Fuc binding. STD NMR experiments with L-Fuc and B-trisaccharide in the presence of wild type and mutant VLPs yield virtually identical binding epitopes suggesting that these two mutations do not significantly alter HBGA recognition. Our study emphasizes that recognition of α-(1→2)-linked L-Fuc residues is a conserved feature of GII.4 noroviruses. However, structural variation of the HBGA core structures clearly modulates molecular recognition depending on the genotype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.
Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of keymore » binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.« less
Antigenic Variation and Immune Escape in the MTBC
2017-01-01
Microbes that infect other organisms encounter host immune responses, and must overcome or evade innate and adaptive immune responses to successfully establish infection. Highly successful microbial pathogens, including M. tuberculosis, are able to evade adaptive immune responses (mediated by antibodies and/or T lymphocytes) and thereby establish long-term chronic infection. One mechanism that diverse pathogens use to evade adaptive immunity is antigenic variation, in which structural variants emerge that alter recognition by established immune responses and allow those pathogens to persist and/or to infect previously-immune hosts. Despite the wide use of antigenic variation by diverse pathogens, this mechanism appears to be infrequent in M. tuberculosis, as indicated by findings that known and predicted human T cell epitopes in this organism are highly conserved, although there are exceptions. These findings have implications for diagnostic tests that are based on measuring host immune responses, and for vaccine design and development. PMID:29116635
Long-term adaptation of the influenza A virus by escaping cytotoxic T-cell recognition
NASA Astrophysics Data System (ADS)
Woolthuis, Rutger G.; van Dorp, Christiaan H.; Keşmir, Can; de Boer, Rob J.; van Boven, Michiel
2016-09-01
The evolutionary adaptation of the influenza A virus (IAV) to human antibodies is well characterised. Much less is known about the long-term evolution of cytotoxic T lymphocyte (CTL) epitopes, which are important antigens for clearance of infection. We construct an antigenic map of IAVs of all human subtypes using a compendium of 142 confirmed CTL epitopes, and show that IAV evolved gradually in the period 1932-2015, with infrequent antigenic jumps in the H3N2 subtype. Intriguingly, the number of CTL epitopes per virus decreases with more than one epitope per three years in the H3N2 subtype (from 84 epitopes per virus in 1968 to 64 in 2015), mostly attributed to the loss of HLA-B epitopes. We confirm these observations with epitope predictions. Our findings indicate that selection pressures imposed by CTL immunity shape the long-term evolution of IAV.
Marks, Benjamin R.; Nowyhed, Heba N.; Choi, Jin-Young; Poholek, Amanda C.; Odegard, Jared M.; Flavell, Richard A.; Craft, Joe
2009-01-01
Interleukin 17 (IL-17)-producing CD4+ T (TH-17) cells share a developmental relationship with FoxP3+ regulatory T (Treg) cells. Here we show that a TH-17 population differentiates within the thymus in a manner influenced by self-antigen recognition, and by the cytokines IL-6 and transforming growth factor (TGF)-β. Like previously described TH-17 cells, TH-17 cells that develop in the thymus expressed the orphan nuclear receptor RORγt and the IL-23 receptor. These cells also expressed α4β1 integrins and the chemokine receptor CCR6, and were recruited to the lung, gut, and liver. In the liver these cells secreted IL-22 in response to self-antigen and mediated host protection during inflammation. Thus, TH-17 cells, like Treg cells, can be selected by self-antigens in the thymus. PMID:19734905
Dynamically correlated mutations drive human Influenza A evolution.
Tria, F; Pompei, S; Loreto, V
2013-01-01
Human Influenza A virus undergoes recurrent changes in the hemagglutinin (HA) surface protein, primarily involved in the human antibody recognition. Relevant antigenic changes, enabling the virus to evade host immune response, have been recognized to occur in parallel to multiple mutations at antigenic sites in HA. Yet, the role of correlated mutations (epistasis) in driving the molecular evolution of the virus still represents a challenging puzzle. Further, though circulation at a global geographic level is key for the survival of Influenza A, its role in shaping the viral phylodynamics remains largely unexplored. Here we show, through a sequence based epidemiological model, that epistatic effects between amino acids substitutions, coupled with a reservoir that mimics worldwide circulating viruses, are key determinants that drive human Influenza A evolution. Our approach explains all the up-to-date observations characterizing the evolution of H3N2 subtype, including phylogenetic properties, nucleotide fixation patterns, and composition of antigenic clusters.
Górska, Sabina; Buda, Barbara; Brzozowska, Ewa; Schwarzer, Martin; Srutkova, Dagmar; Kozakova, Hana; Gamian, Andrzej
2016-02-09
The genus Lactobacillus belongs to a large heterogeneous group of low G + C Gram-positive anaerobic bacteria, which are frequently used as probiotics. The health-beneficial effects, in particular the immunomodulation effect, of probiotics depend on the strain and dose used. Strain variations may be related to diversity of the cell surface architecture of bacteria and the ability to express specific antigens or secrete compounds. The use of Lactobacillus as probiotic requires a comprehensive understanding of its effect on host immune system. To evaluate the potential immunoreactive properties of proteins isolated from four Lactobacillus strains: L. johnsonii 142 and L. johnsonii 151, L. rhamnosus LOCK 0900 and L. casei LOCK 0919, the polyclonal sera obtained from mouse and human have been tested as well as with sera from rabbits immunized with whole lactobacilli cells. The reactivity of isolated proteins detected by SDS-PAGE and Western blotting was heterogeneous and varied between different serum samples. The proteins with the highest immunoreactivity were isolated, purified and sequenced, in particular the fractions were identified as phosphoglycerate kinase (L. johnsonii 142), glyceraldehyde 3-phosphate dehydrogenase (L. johnosnii 142, L. rhamnosus LOCK 0900), hypothetic protein JDM1_1307 (L. johnsonii 151) and fructose/tagatose-bisphosphate-aldolase (L. casei LOCK 0919). The different prevalence of reactions against tested antigens in rabbit, mouse and human sera may indicate significant differences in immune system and commensal cross-talk in these groups. The identification of immunoreactive lactobacilli proteins opens the possibility to use them as an antigens for development of vaccines.
Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin
2016-01-01
Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.
Heatley, Susan L.; Pietra, Gabriella; Lin, Jie; Widjaja, Jacqueline M. L.; Harpur, Christopher M.; Lester, Sue; Rossjohn, Jamie; Szer, Jeff; Schwarer, Anthony; Bradstock, Kenneth; Bardy, Peter G.; Mingari, Maria Cristina; Moretta, Lorenzo; Sullivan, Lucy C.; Brooks, Andrew G.
2013-01-01
Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a “mimic” of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a “polymorphic hot spot” within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors. PMID:23335510
Heatley, Susan L; Pietra, Gabriella; Lin, Jie; Widjaja, Jacqueline M L; Harpur, Christopher M; Lester, Sue; Rossjohn, Jamie; Szer, Jeff; Schwarer, Anthony; Bradstock, Kenneth; Bardy, Peter G; Mingari, Maria Cristina; Moretta, Lorenzo; Sullivan, Lucy C; Brooks, Andrew G
2013-03-22
Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a "mimic" of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a "polymorphic hot spot" within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samanta, Dibyendu; Guo, Haisu; Rubinstein, Rotem
In addition to antigen-specific stimulation of T cell receptor (TCR) by a peptide-MHC complex, the functional outcome of TCR engagement is regulated by antigen-independent costimulatory signals. Costimulatory signals are provided by an array of interactions involving activating and inhibitory receptors expressed on T cells and their cognate ligands on antigen presenting cells. T cell immunoglobulin and ITIM domain (TIGIT), a recently identified immune receptor expressed on T and NK cells, upon interaction with either of its two ligands, nectin-2 or poliovirus receptor (PVR), inhibits activation of T and NK cells. Here we report the crystal structure of the human TIGITmore » ectodomain, which exhibits the classic two-layer β-sandwich topology observed in other immunoglobulin super family (IgSF) members. Biophysical studies indicate that TIGIT is monomeric in solution but can form a dimer at high concentrations, consistent with the observation of a canonical immunoglobulin-like dimer interface in the crystalline state. Based on existing structural data, we present a model of the TIGIT:nectin-2 complex and utilized complementary biochemical studies to map the nectin-binding interface on TIGIT. Our data provide important structural and biochemical determinants responsible for the recognition of nectin-2 by TIGIT. Defining the TIGIT:nectin-2 binding interface provides the basis for rational manipulation of this molecular interaction for the development of immunotherapeutic reagents in autoimmunity and cancer.« less
Tiwari, Dileep; Haque, Shafiul; Tiwari, Ram P; Jawed, Arshad; Govender, Thavendran; Kruger, Hendrik G
2017-04-01
A rapid and efficient diagnostic test was developed for the detection of Mycobacterium tuberculosis antigens in serum samples of active tuberculosis (TB) and extrapulmonary TB patients via a liposomal agglutination-based method. A rapid card test has been developed to facilitate the recognition of high-affinity binding rabbit raised purified culture filtrate protein antibodies coupled on the surface of activated liposomal preparation. In the presence of TB antigens, the polyclonal antibodies bound to the liposomal particles demonstrate a visible agglutination reaction. The developed assay was simple, rapid, reliable, sensitive, and specific as a diagnostic test for the detection of antigens in serum samples of clinically confirmed cases of TB within 4-5 minutes' duration. The test was evaluated at different hospitals, medical colleges, and pathology centers, and involved 1483 participants. This investigation was conducted to detect the presence of these antigens during the period of active growth of the microorganism in serum samples for pulmonary TB and processed tissue biopsy for other extrapulmonary TB. Results obtained using this test were compared with acid-fast bacilli smear and culture results. Our study demonstrated that the newly developed liposome tuberculosis antigen card test detected antigens in our study population with approximately 97.48% sensitivity and 95.79% specificity. This is the first study to report the liposomal encapsulation of culture filtrate proteins from M. tuberculosis for diagnostic application. Copyright © 2015. Published by Elsevier B.V.
Macho-Fernandez, Elodie; Brigl, Manfred
2015-01-01
Natural killer T (NKT) cells comprise a family of specialized T cells that recognize lipid antigens presented by CD1d. Based on their T cell receptor (TCR) usage and antigen specificities, CD1d-restricted NKT cells have been divided into two main subsets: type I NKT cells that use a canonical invariant TCR α-chain and recognize α-galactosylceramide (α-GalCer), and type II NKT cells that use a more diverse αβ TCR repertoire and do not recognize α-GalCer. In addition, α-GalCer-reactive NKT cells that use non-canonical αβ TCRs and CD1d-restricted T cells that use γδ or δ/αβ TCRs have recently been identified, revealing further diversity among CD1d-restricted T cells. Importantly, in addition to their distinct antigen specificities, functional differences are beginning to emerge between the different members of the CD1d-restricted T cell family. In this review, while using type I NKT cells as comparison, we will focus on type II NKT cells and the other non-invariant CD1d-restricted T cell subsets, and discuss our current understanding of the antigens they recognize, the formation of stimulatory CD1d/antigen complexes, the modes of TCR-mediated antigen recognition, and the mechanisms and consequences of their activation that underlie their function in antimicrobial responses, anti-tumor immunity, and autoimmunity. PMID:26284062
Diagnostic Markers of Ovarian Cancer by High-Throughput Antigen Cloning and Detection on Arrays
Chatterjee, Madhumita; Mohapatra, Saroj; Ionan, Alexei; Bawa, Gagandeep; Ali-Fehmi, Rouba; Wang, Xiaoju; Nowak, James; Ye, Bin; Nahhas, Fatimah A.; Lu, Karen; Witkin, Steven S.; Fishman, David; Munkarah, Adnan; Morris, Robert; Levin, Nancy K.; Shirley, Natalie N.; Tromp, Gerard; Abrams, Judith; Draghici, Sorin; Tainsky, Michael A.
2008-01-01
A noninvasive screening test would significantly facilitate early detection of epithelial ovarian cancer. This study used a combination of high-throughput selection and array-based serologic detection of many antigens indicative of the presence of cancer, thereby using the immune system as a biosensor. This high-throughput selection involved biopanning of an ovarian cancer phage display library using serum immunoglobulins from an ovarian cancer patient as bait. Protein macroarrays containing 480 of these selected antigen clones revealed 65 clones that interacted with immunoglobulins in sera from 32 ovarian cancer patients but not with sera from 25 healthy women or 14 patients having other benign or malignant gynecologic diseases. Sequence analysis data of these 65 clones revealed 62 different antigens. Among the markers, we identified some known antigens, including RCAS1, signal recognition protein-19, AHNAK-related sequence, nuclear autoantogenic sperm protein, Nijmegen breakage syndrome 1 (Nibrin), ribosomal protein L4, Homo sapiens KIAA0419 gene product, eukaryotic initiation factor 5A, and casein kinase II, as well as many previously uncharacterized antigenic gene products. Using these 65 antigens on protein microarrays, we trained neural networks on two-color fluorescent detection of serum IgG binding and found an average sensitivity and specificity of 55% and 98%, respectively. In addition, the top 6 of the most specific clones resulted in an average sensitivity and specificity of 32% and 94%, respectively. This global approach to antigenic profiling, epitomics, has applications to cancer and autoimmune diseases for diagnostic and therapeutic studies. Further work with larger panels of antigens should provide a comprehensive set of markers with sufficient sensitivity and specificity suitable for clinical testing in high-risk populations. PMID:16424057
Kintz, Erica; Heiss, Christian; Black, Ian; ...
2017-02-06
Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintz, Erica; Heiss, Christian; Black, Ian
Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less
Usui, Daiki; Inaba, Satomi; Kamatari, Yuji O; Ishiguro, Naotaka; Oda, Masayuki
2017-09-02
The monoclonal antibody, G2, specifically binds to the immunogen peptide derived from the chicken prion protein, Pep18mer, and two chicken proteins derived peptides, Pep8 and Pep395; G2 binds with equal affinity to Pep18mer. The amino acid sequences of the three peptides are completely different, and so the recognition mechanism of G2 is unique and interesting. We generated a single-chain Fv (scFv) antibody of G2, and demonstrated its correct folding with an antigen binding function similar to intact G2 antibody. We also generated a Pro containing mutant of G2 scFv at residue 95 of the light chain, and analyzed its antigen binding using a surface plasmon biosensor. The mutant lost its binding ability to Pep18mer, but remained those to Pep8 and Pep395. The results clearly indicate residue 95 as being critical for multispecific antigen binding of G2 at the site generated from the junctional diversity introduced at the joints between the V and J gene segments. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhou, Xu; Yang, Long; Tan, Xiaoping; Zhao, Genfu; Xie, Xiaoguang; Du, Guanben
2018-07-30
Prostate specific antigen (PSA) is the most significant biomarker for the screening of prostate cancer in human serum. However, most methods for the detection of PSA often require major laboratories, precisely analytical instruments and complicated operations. Currently, the design and development of satisfying electrochemical biosensors based on biomimetic materials (e.g. synthetic receptors) and nanotechnology is highly desired. Thus, we focused on the combination of molecular recognition and versatile nanomaterials in electrochemical devices for advancing their analytical performance and robustness. Herein, by using the present prepared multifunctional hydroxyl pillar[5]arene@gold nanoparticles@graphitic carbon nitride (HP5@AuNPs@g-C 3 N 4 ) hybrid nanomaterial as robust biomimetic element, a high-performance electrochemical immunosensor for detection of PSA was constructed. The as-prepared immunosensor, with typically competitive advantages of low cost, simple preparation and fast detection, exhibited remarkable robustness, ultra-sensitivity, excellent selectivity and reproducibility. The limit of detection (LOD) and linear range were 0.12 pg mL -1 (S/N = 3) and 0.0005-10.00 ng mL -1 , respectively. The satisfying results provide a promising approach for clinical detection of PSA in human serum. Copyright © 2018 Elsevier B.V. All rights reserved.
Havens, Courtney G.; Shobnam, Nadia; Guarino, Estrella; Centore, Richard C.; Zou, Lee; Kearsey, Stephen E.; Walter, Johannes C.
2012-01-01
The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4Cdt2) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4Cdt2 substrates contain a “PIP degron,” which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4Cdt2 for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4Cdt2 substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4Cdt2 recruitment to chromatin. Our data show that the interaction of CRL4Cdt2 with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions. PMID:22303007
Kelderman, Sander; Heemskerk, Bianca; Fanchi, Lorenzo; Philips, Daisy; Toebes, Mireille; Kvistborg, Pia; van Buuren, Marit M; van Rooij, Nienke; Michels, Samira; Germeroth, Lothar; Haanen, John B A G; Schumacher, N M
2016-06-01
Tumor infiltrating lymphocyte (TIL) therapy has shown objective clinical response rates of 50% in stage IV melanoma patients in a number of clinical trials. Nevertheless, the majority of patients progress either directly upon therapy or after an initial period of tumor control. Recent data have shown that most TIL products that are used for therapy contain only low frequencies of T cells reactive against known melanoma-associated epitopes. Because of this, the development of a technology to create T-cell products that are enriched for reactivity against defined melanoma-associated antigens would seem valuable, both to evaluate the tumoricidal potential of T cells directed against different antigen classes and to potentially increase response rates. Here, we developed and validated a conditional MHC streptamer-based platform for the creation of TIL products with defined antigen reactivities. We have used this platform to successfully enrich both high-frequency (≥1%) and low-frequency (<1%) tumor-specific CD8(+) T-cell populations, and thereby created T-cell products with enhanced tumor recognition potential. Collectively, these data demonstrate that selection of antigen-specific T-cell populations can be used to create defined T-cell products for clinical use. This strategy thus forms a highly flexible platform for the development of antigen-specific cell products for personalized cancer immunotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salotra, P.; Sreenivas, G.; Nasim, A. A.; Subba Raju, B. V.; Ramesh, V.
2002-01-01
The diagnosis of post-kala-azar dermal leishmaniasis (PKDL), a dermatosis that provides the only known reservoir for the parasite Leishmania donovani in India, remains a problem. Timely recognition and treatment of PKDL would contribute significantly to the control of kala-azar. We evaluated here the potential of the enzyme-linked immunosorbent assay (ELISA) as a diagnostic tool for PKDL. Antigen prepared from promastigotes and axenic amastigotes with parasite isolates that were derived from skin lesions of a PKDL patient gave sensitivities of 86.36 and 92%, respectively, in the 88 PKDL cases examined. The specificity of the ELISA test was examined by testing groups of patients with other skin disorders (leprosy and vitiligo) or coendemic infections (malaria and tuberculosis), as well as healthy controls from areas where this disease is endemic or is not endemic. A false-positive reaction was obtained in 14 of 144 (9.8%) of the controls with the promastigote antigen and in 14 of 145 (9.7%) of the controls with the amastigote antigen. Evaluation of the serodiagnostic potential of recombinant k39 by ELISA revealed a higher sensitivity (94.5%) and specificity (93.7%) compared to the other two antigens used. The data demonstrate that ELISA with crude or recombinant antigen k39 provides a relatively simple and less-invasive test for the reliable diagnosis of PKDL. PMID:11874880
Lagisetty, Kiran H.; Tran, Eric; Zheng, Zhili; Gattinoni, Luca; Yu, Zhiya; Burns, William R.; Miermont, Anne M.; Teper, Yaroslav; Rudloff, Udo; Restifo, Nicholas P.; Feldman, Steven A.; Rosenberg, Steven A.; Morgan, Richard A.
2014-01-01
Abstract Despite advances in the understanding of its molecular pathophysiology, pancreatic cancer remains largely incurable, highlighting the need for novel therapies. We developed a chimeric antigen receptor (CAR) specific for prostate stem cell antigen (PSCA), a glycoprotein that is overexpressed in pancreatic cancer starting at early stages of malignant transformation. To optimize the CAR design, we used antigen-recognition domains derived from mouse or human antibodies, and intracellular signaling domains containing one or two T cell costimulatory elements, in addition to CD3zeta. Comparing multiple constructs established that the CAR based on human monoclonal antibody Ha1-4.117 had the greatest reactivity in vitro. To further analyze this CAR, we developed a human pancreatic cancer xenograft model and adoptively transferred CAR-engineered T cells into animals with established tumors. CAR-engineered human lymphocytes induced significant antitumor activity, and unlike what has been described for other CARs, a second-generation CAR (containing CD28 cosignaling domain) induced a more potent antitumor effect than a third-generation CAR (containing CD28 and 41BB cosignaling domains). While our results provide evidence to support PSCA as a target antigen for CAR-based immunotherapy of pancreatic cancer, the expression of PSCA on selected normal tissues could be a source of limiting toxicity. PMID:24694017
USDA-ARS?s Scientific Manuscript database
Glioblastoma multiforme (GBM) remains frustratingly impervious to any existing therapy. We have previously shown that GBM is sensitive to recognition and lysis by ex vivo activated gamma delta T cells, a minor subset of lymphocytes that innately recognize autologous stress-associated target antigens...
USDA-ARS?s Scientific Manuscript database
CD5 is a cell surface molecule involved in antigen recognition and is present on all T lymphocytes and a subset of B lymphocytes. The purpose of this study was to examine CD5+ expression on peripheral blood B cells from healthy, noninfected cattle and cattle with subclinical and clinical paratubercu...
USDA-ARS?s Scientific Manuscript database
Promoting effective immunity to Mycobacterium tuberculosis complex pathogens is a challenge that is of interest to the fields of human and veterinary medicine alike. We report that gamma delta T cells from virulent Mycobacterium bovis-infected cattle respond specifically and directly to complex, pro...
Innate Immune sensing of DNA viruses
Rathinam, Vijay A. K.; Fitzgerald, Katherine A.
2011-01-01
DNA viruses are a significant contributor to human morbidity and mortality. The immune system protects against viral infections through coordinated innate and adaptive immune responses. While the antigen-specific adaptive mechanisms have been extensively studied, the critical contributions of innate immunity to anti-viral defenses have only been revealed in the very recent past. Central to these anti-viral defenses is the recognition of viral pathogens by a diverse set of germ-line encoded receptors that survey nearly all cellular compartments for the presence of pathogens. In this review, we discuss the recent advances in the innate immune sensing of DNA viruses and focus on the recognition mechanisms involved. PMID:21334037
The interaction of antibodies with lipid membranes unraveled by fluorescence methodologies
NASA Astrophysics Data System (ADS)
Figueira, Tiago N.; Veiga, Ana Salomé; Castanho, Miguel A. R. B.
2014-12-01
The interest and investment in antibody therapies has reached an overwhelming scale in the last decade. Yet, little concern has been noticed among the scientific community to unravel important interactions of antibodies with biological structures other than their respective epitopes. Lipid membranes are particularly relevant in this regard as they set the stage for protein-protein recognition, a concept potentially inclusive of antibody-antigen recognition. Fluorescence techniques allow experimental monitoring of protein partition between aqueous and lipid phases, deciphering events of adsorption, insertion and diffusion. This review focuses on the available fluorescence spectroscopy methodologies directed to the study of antibody-membrane interactions.
NASA Technical Reports Server (NTRS)
Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.
1985-01-01
Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.
FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes
Brackertz, B; Conrad, H; Daniel, J; Kast, B; Krönig, H; Busch, D H; Adamski, J; Peschel, C; Bernhard, H
2011-01-01
The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD+ myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. Antigens, such as PR-3, RHAMM, Survivin, WT-1 and PRAME, were upregulated by constitutively active FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL). Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin and an AML-directed CTL clone recognized AML cell lines and primary AML blasts expressing FLT3-ITD, as well as FLT3-WT+ myeloid dendritic cells in the presence of FL. Downregulation of FLT3 led to the abolishment of CTL recognition. Comparing our findings concerning LAA upregulation by the FLT3 kinase with those already made for the Bcr-Abl kinase, we found analogies in the LAA expression pattern. Antigens upregulated by both FLT3 and Bcr-Abl may be promising targets for the development of immunotherapeutical approaches against myeloid leukemia of different origin. PMID:22829124
Qiu, Ju; Zhou, Liang
2013-11-01
Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptor (RORγt)⁺ group 3 ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt⁺ group 3 ILCs (e.g., lymphoid tissue inducer cells) are required for lymphoid organogenesis. In adult mice, RORγt⁺ group 3 ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt⁺ group 3 ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt⁺ group 3 ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells. In this review, we will focus on the development and function of RORγt⁺ group 3 ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. A better understanding of the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases.
Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G
2016-11-01
Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.
NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability
Sommermeyer, Daniel; Conrad, Heinke; Krönig, Holger; Gelfort, Haike; Bernhard, Helga; Uckert, Wolfgang
2013-01-01
The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy. PMID:22907642
USDA-ARS?s Scientific Manuscript database
Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled, up to 95% of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a l...
Wang, DunCheng; Kyluik, Dana L; Murad, Kari L; Toyofuku, Wendy M; Scott, Mark D
2011-07-01
Developing a practical means of reducing alloimmunization in chronically transfused patients would be of significant clinical benefit. Immunocamouflaging red blood cells (RBCs) by membrane grafting of methoxypoly(ethylene glycol) (mPEG) may reduce the risk of allo-immunization. The results of this study showed that antibody recognition of non-ABO antigens was significantly reduced in an mPEG-dose- and polymer size-dependent manner, with higher molecular weight mPEGs providing better immunoprotection. Furthermore, in vivo immunogenicity was significantly reduced in mice serially transfused with mPEG-modified xenogeneic (sheep; sRBCs), allogeneic (C57Bl/6), or syngeneic (Balb/c) RBCs. Following a primary transfusion of sRBCs, mice receiving mPEG-sRBCs showed a >90% reduction in anti-sRBC IgG antibody levels. After two transfusions, mice receiving mPEG-sRBCs showed reductions of >80% in anti-sRBC IgG levels. Importantly, mPEG-modified autologous cells did not induce neoantigens or an immune (IgG or IgM) response. These data suggest that the global immunocamouflage of RBCs by polymer grafting may provide a safe and cost-effective means of reducing the risk of alloimmunization.
Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer
Marrero, Idania; Ware, Randle; Kumar, Vipin
2015-01-01
Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer. PMID:26136748
Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor
NASA Astrophysics Data System (ADS)
Kumar, Amit; Delogu, Francesco
2017-02-01
The present work focuses on the dynamical aspects of cross-reactivity between myelin based protein (MBP) self-peptide and two microbial peptides (UL15, PMM) for Hy.1B11 T-cell receptor (TCR). This same TCR was isolated from a patient suffering from multiple sclerosis (MS). The study aims at highlighting the chemical interactions underlying recognition mechanisms between TCR and the peptides presented by Major Histocompatibility Complex (MHC) proteins, which form a crucial component in adaptive immune response against foreign antigens. Since the ability of a TCR to recognize different peptide antigens presented by MHC depends on its cross-reactivity, we used molecular dynamics methods to obtain atomistic detail on TCR-peptide-MHC complexes. Our results show how the dynamical basis of Hy.1B11 TCR’s cross-reactivity is rooted in a similar bridging interaction pattern across the TCR-peptide-MHC interface. Our simulations confirm the importance of TCR CDR3α E98 residue interaction with MHC and a predominant role of P6 peptide residue in MHC binding affinity. Altogether, our study provides energetic and dynamical insights into factors governing peptide recognition by the cross-reactive Hy.1B11 TCR, found in MS patient.
Wang, Jing; Tang, Shan; Wan, Zhengpeng; Gao, Yiren; Cao, Yiyun; Yi, Junyang; Si, Yanyan; Zhang, Haowen; Liu, Lei; Liu, Wanli
2016-01-01
Antigen binding to the B-cell receptor (BCR) induces several responses, resulting in B-cell activation, proliferation, and differentiation. However, it has been difficult to study these responses due to their dynamic, fast, and transient nature. Here, we attempted to solve this problem by developing a controllable trigger point for BCR and antigen recognition through the construction of a photoactivatable antigen, caged 4-hydroxy-3-nitrophenyl acetyl (caged-NP). This photoactivatable antigen system in combination with live cell and single molecule imaging techniques enabled us to illuminate the previously unidentified B-cell probing termination behaviors and the precise BCR sorting mechanisms during B-cell activation. B cells in contact with caged-NP exhibited probing behaviors as defined by the unceasing extension of membrane pseudopods in random directions. Further analyses showed that such probing behaviors are cell intrinsic with strict dependence on F-actin remodeling but not on tonic BCR signaling. B-cell probing behaviors were terminated within 4 s after photoactivation, suggesting that this response was sensitive and specific to BCR engagement. The termination of B-cell probing was concomitant with the accumulation response of the BCRs into the BCR microclusters. We also determined the Brownian diffusion coefficient of BCRs from the same B cells before and after BCR engagement. The analysis of temporally segregated single molecule images of both BCR and major histocompatibility complex class I (MHC-I) demonstrated that antigen binding induced trapping of BCRs into the BCR microclusters is a fundamental mechanism for B cells to acquire antigens. PMID:26764382
Relationship between natural and heme-mediated antibody polyreactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadzhieva, Maya; Vassilev, Tchavdar; Bayry, Jagadeesh
Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivitymore » of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.« less
Doña, Vanina; Urrutia, Mariela; Bayardo, Mariela; Alzogaray, Vanina; Goldbaum, Fernando Alberto; Chirdo, Fernando G
2010-01-27
Food intended for celiac patients' consumption must be analyzed for the presence of toxic prolamins using high detectability tests. Though 60% ethanol is the most commonly used solvent for prolamins extraction, 2-mercaptoethanol (2-ME) and guanidinium chloride (GuHCl) can be added to increase protein recovery. However, ethanol and denaturing agents interfere with antigen recognition when conventional antibodies are used. In the present work, a new method for gliadins quantification is shown. The method is based on the selection of llama single domain antibody fragments able to operate under denaturing conditions. Six out of 28 VHH-phages obtained retained their binding capacity in 15% ethanol. Selected clones presented a long CDR3 region containing two additional cysteines that could be responsible for the higher stability. One of the clones (named VHH26) was fully operative in the presence of 15% ethanol, 0.5% 2-ME, and 0.5 M GuHCl. Capture ELISA using VHH26 was able to detect gliadins in samples shown as negatives by conventional ELISA. Therefore, this new strategy appears as an excellent platform for quantitative determination of proteins or any other immunogenic compound, in the presence of denaturing agents, when specific recognition units with high stability are required.
Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B
2014-11-01
Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bull, Tim J; Gilbert, Sarah C; Sridhar, Saranya; Linedale, Richard; Dierkes, Nicola; Sidi-Boumedine, Karim; Hermon-Taylor, John
2007-11-28
Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly immunogenic without adverse effect in mice and both attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection and conferred protection against subsequent challenge. Further studies of the present vaccine in naturally infected animals and humans are indicated.
A Triad of Molecular Regions Contribute to the Formation of Two Distinct MHC Class II Conformers
Drake, Lisa A.; Drake, James R.
2016-01-01
MHC class II molecules present antigen-derived peptides to CD4 T cells to drive the adaptive immune response. Previous work has established that class II αβ dimers can adopt two distinct conformations, driven by the differential pairing of transmembrane domain GxxxG dimerization motifs. These class II conformers differ in their ability to be loaded with antigen-derived peptide and to effectively engage CD4 T cells. Motif 1 (M1) paired I-Ak class II molecules are efficiently loaded with peptides derived from the processing of B cell receptor-bound antigen, have unique B cell signaling properties and high T cell stimulation activity. The 11-5.2 mAb selectively binds M1 paired I-Ak class II molecules. However, the molecular determinants of 11-5.2 binding are currently unclear. Here, we report the ability of a human class II transmembrane domain to drive both M1 and M2 class II conformer formation. Protease sensitivity analysis further strengthens the idea that there are conformational differences between the extracellular domains of M1 and M2 paired class II. Finally, MHC class II chain alignments and site directed mutagenesis reveals a triad of molecular regions that contributes to 11-5.2 mAb binding. In addition to transmembrane GxxxG motif domain pairing, 11-5.2 binding is influenced directly by α chain residue Glu-71 and indirectly by the region around the inter-chain salt bridge formed by α chain Arg-52 and β chain Glu-86. These findings provide insight into the complexity of 11-5.2 mAb recognition of the M1 paired I-Ak class II conformer and further highlight the molecular heterogeneity of peptide-MHC class II complexes that drive T cell antigen recognition. PMID:27148821
Watanabe, Masashi; Fujihara, Chiharu; Radtke, Andrea J; Chiang, Y Jeffrey; Bhatia, Sumeena; Germain, Ronald N; Hodes, Richard J
2017-09-04
T cell-dependent germinal center (GC) responses require coordinated interactions of T cells with two antigen-presenting cell (APC) populations, B cells and dendritic cells (DCs), in the presence of B7- and CD40-dependent co-stimulatory pathways. Contrary to the prevailing paradigm, we found unique cellular requirements for B7 and CD40 expression in primary GC responses to vaccine immunization with protein antigen and adjuvant: B7 was required on DCs but was not required on B cells, whereas CD40 was required on B cells but not on DCs in the generation of antigen-specific follicular helper T cells, antigen-specific GC B cells, and high-affinity class-switched antibody production. There was, in fact, no requirement for coexpression of B7 and CD40 on the same cell in these responses. Our findings support a substantially revised model for co-stimulatory function in the primary GC response, with crucial and distinct contributions of B7- and CD40-dependent pathways expressed by different APC populations and with important implications for understanding how to optimize vaccine responses or limit autoimmunity. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Molecularly Imprinted Nanomaterials for Sensor Applications
Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof
2013-01-01
Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356
mTORC2 regulates multiple aspects of NKT-cell development and function
Sklarz, Tammarah; Guan, Peng; Gohil, Mercy; Cotton, Renee M.; Ge, Moyar Q.; Haczku, Angela; Das, Rupali; Jordan, Martha S.
2017-01-01
Invariant NKT (iNKT) cells bridge innate and adaptive immunity by rapidly secreting cytokines and lysing targets following TCR recognition of lipid antigens. Based on their ability to secrete IFN-γ, IL-4 and IL-17A, iNKT-cells are classified as NKT-1, NKT-2 and NKT-17 subsets, respectively. The molecular pathways regulating iNKT-cell fate are not fully defined. Recent studies implicate Rictor, a required component of mTORC2, in the development of select iNKT-cell subsets, however these reports are conflicting. To resolve these questions, we used Rictorfl/fl CD4cre+ mice and found that Rictor is required for NKT-17 cell development and normal iNKT-cell cytolytic function. Conversely, Rictor is not absolutely required for IL-4 and IFN-γ production as peripheral iNKT-cells make copious amounts of these cytokines. Overall iNKT-cell numbers are dramatically reduced in the absence of Rictor. We provide data indicating Rictor regulates cell survival as well as proliferation of developing and mature iNKT-cells. Thus, mTORC2 regulates multiple aspects of iNKT-cell development and function. PMID:28078715
Deciphering complex patterns of class-I HLA-peptide cross-reactivity via hierarchical grouping.
Mukherjee, Sumanta; Warwicker, Jim; Chandra, Nagasuma
2015-07-01
T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.
Venter, P. Arno; Dirksen, Anouk; Thomas, Diane; Manchester, Marianne; Dawson, Philip E.; Schneemann, Anette
2011-01-01
Multivalent display of heterologous proteins on viral nanoparticles forms a basis for numerous applications in nanotechnology, including vaccine development, targeted therapeutic delivery and tissue-specific bio-imaging. In many instances, precise placement of proteins is required for optimal functioning of the supramolecular assemblies, but orientation- and site-specific coupling of proteins to viral scaffolds remains a significant technical challenge. We have developed two strategies that allow for controlled attachment of a variety of proteins on viral particles using covalent and noncovalent principles. In one strategy, an interaction between domain 4 of anthrax protective antigen and its receptor was used to display multiple copies of a target protein on virus-like particles. In the other, expressed protein ligation and aniline-catalyzed oximation was used to covalently display a model protein. The latter strategy, in particular, yielded nanoparticles that induced potent immune responses to the coupled protein, suggesting potential applications in vaccine development. PMID:21545187
Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William
2005-01-01
Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.
Crittenden, Marka R.; Baird, Jason; Friedman, David; Savage, Talicia; Uhde, Lauren; Alice, Alejandro; Cottam, Benjamin; Young, Kristina; Newell, Pippa; Nguyen, Cynthia; Bambina, Shelly; Kramer, Gwen; Akporiaye, Emmanuel; Malecka, Anna; Jackson, Andrew; Gough, Michael J.
2016-01-01
Radiation therapy provides a means to kill large numbers of cancer cells in a controlled location resulting in the release of tumor-specific antigens and endogenous adjuvants. However, by activating pathways involved in apoptotic cell recognition and phagocytosis, irradiated cancer cells engender suppressive phenotypes in macrophages. We demonstrate that the macrophage-specific phagocytic receptor, Mertk is upregulated in macrophages in the tumor following radiation therapy. Ligation of Mertk on macrophages results in anti-inflammatory cytokine responses via NF-kB p50 upregulation, which in turn limits tumor control following radiation therapy. We demonstrate that in immunogenic tumors, loss of Mertk is sufficient to permit tumor cure following radiation therapy. However, in poorly immunogenic tumors, TGFb inhibition is also required to result in tumor cure following radiation therapy. These data demonstrate that Mertk is a highly specific target whose absence permits tumor control in combination with radiation therapy. PMID:27602953
Updates on Aspergillus, Pneumocystis and other opportunistic pulmonary mycoses.
Curbelo, Jose; Galván, Jose María; Aspa, Javier
2015-12-01
Mycoses are serious diseases with potentially fatal outcome. The introduction of immunosuppressive treatments and life support techniques has led to a growing prevalence of different degrees of immunosuppression. Compromised immune response is the primary risk factor for the development of opportunistic mycoses. Early diagnosis and treatment are crucial for improving prognosis. However, isolation in cultures or identification using antigen detection techniques cannot distinguish between colonization and invasive infection, and the clinical status of the patient often prevents biopsy sampling. Clinicians thus find themselves in an uncertain position, requiring them to quickly recognize clinical and radiological signs and interpret microbiological results in context. The aim of this review is to provide a general overview of the profile of patients susceptible to these infections, the role of the immune system and, in more detail, the major diagnostic developments that have gained most acceptance and recognition among the scientific community. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.
Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin.
Cui, Gaofeng; Botuyan, Maria Victoria; Mer, Georges
2018-05-18
REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.
2011-01-01
Background There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG) required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion). As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV), spring carp viremia virus (SVCV), hirame rhabdovirus (HIRRV) and snakehead rhabdovirus (SHRV). Findings Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465) gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs) and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss) was demonstrated. Conclusions Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies. PMID:21693048
Encinas, Paloma; Gomez-Sebastian, Silvia; Nunez, Maria Carmen; Gomez-Casado, Eduardo; Escribano, Jose M; Estepa, Amparo; Coll, Julio
2011-06-21
There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG) required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion). As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV), spring carp viremia virus (SVCV), hirame rhabdovirus (HIRRV) and snakehead rhabdovirus (SHRV). Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465) gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs) and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss) was demonstrated. Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies.
Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition
Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily
2016-01-01
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040
Ou-Yang, P; Chiang, B L; Hwang, L H; Chen, Y G; Yang, P M; Chi, W K; Chen, P J; Chen, D S
1999-04-01
The nonstructural (NS3) region protein of hepatitis C virus (HCV) possesses major B-cell epitopes that induce antibodies after infection. To elucidate further the characteristics of these B cells and their role in the immune regulation of HCV infection, T9 (portion of NS3 region, amino acids [a.a.] 1188-1493)-specific monoclonal antibodies were derived and mapped for B-cell antigenic determinants with recombinant proteins. A total of 10 T9-specific hybridomas were generated and tested for B-cell antigenic determinants. To analyze the B-cell antigenic determinants, eight recombinant proteins including NS3-e (a.a. 1175-1334), NS3-a' (a.a. 1175-1250), NS3-a (a.a. 1251-1334), NS3-b (a.a. 1323-1412), NS3-c (a.a. 1407-1499), NS3-a/b (a.a. 1251-1412), NS3-bc (a.a. 1323-1499), and NS3-abc (a.a. 1251-1499) encoded by NS3-region internal clones were expressed and tested for immunoblotting. The data suggested IgG hybridomas recognized NS3-a, NS3-a', or NS3-b protein by immunoblotting. By contrast, the NS3-e protein bears the major antigenic determinant recognized by human sera. Half of the hybridomas were found to react with protein NS3-a', which is not a major B-cell antigenic determinant in humans. These data suggested that conformational epitopes in vivo may be important for B-cell recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, M.; Whitworth, G; El Warry, N
2009-01-01
The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in themore » other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.« less
ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo
Zedler, Ulrike; Stäber, Manuela; Perdomo, Carolina; Dorhoi, Anca
2016-01-01
IFN-γ is a critical mediator of host defense against Mycobacterium tuberculosis (Mtb) infection. Antigen-specific CD4+ T cells have long been regarded as the main producer of IFN-γ in tuberculosis (TB), and CD4+ T cell immunity is the main target of current TB vaccine candidates. However, given the recent failures of such a TB vaccine candidate in clinical trials, strategies to harness CD4-independent mechanisms of protection should be included in future vaccine design. Here, we have reported that noncognate IFN-γ production by Mtb antigen–independent memory CD8+ T cells and NK cells is protective during Mtb infection and evaluated the mechanistic regulation of IFN-γ production by these cells in vivo. Transfer of arenavirus- or protein-specific CD8+ T cells or NK cells reduced the mortality and morbidity rates of mice highly susceptible to TB in an IFN-γ–dependent manner. Secretion of IFN-γ by these cell populations required IL-18, sensing of mycobacterial viability, Mtb protein 6-kDa early secretory antigenic target–mediated (ESAT-6–mediated) cytosolic contact, and activation of NLR family pyrin domain–containing protein 3 (NLRP3) inflammasomes in CD11c+ cell subsets. Neutralization of IL-18 abrogated protection in susceptible recipient mice that had received noncognate cells. Moreover, improved Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine–induced protection was lost in the absence of ESAT-6–dependent cytosolic contact. Our findings provide a comprehensive mechanistic framework for antigen-independent IFN-γ secretion in response to Mtb with critical implications for future intervention strategies against TB. PMID:27111234
Vγ9Vδ2 T cell activation by strongly agonistic nucleotidic phosphoantigens.
Moulin, Morgane; Alguacil, Javier; Gu, Siyi; Mehtougui, Asmaa; Adams, Erin J; Peyrottes, Suzanne; Champagne, Eric
2017-12-01
Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.
Magnusson, Sofia E; Altenburg, Arwen F; Bengtsson, Karin Lövgren; Bosman, Fons; de Vries, Rory D; Rimmelzwaan, Guus F; Stertman, Linda
2018-04-01
Influenza viruses continuously circulate in the human population and escape recognition by virus neutralizing antibodies induced by prior infection or vaccination through accumulation of mutations in the surface proteins hemagglutinin (HA) and neuraminidase (NA). Various strategies to develop a vaccine that provides broad protection against different influenza A viruses are under investigation, including use of recombinant (r) viral vectors and adjuvants. The replication-deficient modified vaccinia virus Ankara (MVA) is a promising vaccine vector that efficiently induces B and T cell responses specific for the antigen of interest. It is assumed that live vaccine vectors do not require an adjuvant to be immunogenic as the vector already mediates recruitment and activation of immune cells. To address this topic, BALB/c mice were vaccinated with either protein- or rMVA-based HA influenza vaccines, formulated with or without the saponin-based Matrix-M™ adjuvant. Co-formulation with Matrix-M significantly increased HA vaccine immunogenicity, resulting in antigen-specific humoral and cellular immune responses comparable to those induced by unadjuvanted rMVA-HA. Of special interest, rMVA-HA immunogenicity was also enhanced by addition of Matrix-M, demonstrated by enhanced HA inhibition antibody titres and cellular immune responses. Matrix-M added to either protein- or rMVA-based HA vaccines mediated recruitment and activation of antigen-presenting cells and lymphocytes to the draining lymph node 24 and 48 h post-vaccination. Taken together, these results suggest that adjuvants can be used not only with protein-based vaccines but also in combination with rMVA to increase vaccine immunogenicity, which may be a step forward to generate new and more effective influenza vaccines.
[Protective immunity against Mycobacterium tuberculosis].
Kawamura, Ikuo
2006-11-01
Mycobacterium tuberculosis (MTB) is a facultative intracellular pathogen with which over a billion people have been infected and 3 million people die annually. The bacterium induces vigorous immune responses, yet evades host immunity, persisting within phagosomes of the infected macrophages. Thus, it is necessary to delineate that the virulence-related intracellular survival mechanism and the host immune responses to eradicate M. tuberculosis on the molecular basis. In this regard, recent findings clearly indicated that Toll-like receptors (TLRs) play an essential role in the recognition of MTB components by macrophages and dendritic cells, resulting in not only activation of innate immunity but also development of antigen-specific adaptive immunity. It has been also reported that induction of early death of the infected cells may be one of the strategy of host defense against MTB because macrophages go into apoptosis upon infection with MTB, resulting in suppression of the intracellular replication. Furthermore, recent report has shown that autophagy is induced by IFN-gamma and suppress intracellular survival of mycobacteria, suggesting that activation of autophagy pathway is required to overcome phagosome maturation arrest induced by MTB. In addition, it is known that IFN-gamma plays an important role in protection. The cytokine that is produced from NK cells and dendritic cells at the early period of infection strongly induces not only macrophage activation but also development of antigen-specific IFN-gamma-producing CD4+T cells. Since antigen-specific CD8+ T cells and CD1-restricted T cells are also reported to contribute to the protective immunity, cooperation of these T cells is essential for the host resistance. In this paper, I am going to summarize the recent progress of the understanding of protective immunity against MTB.
Wijdicks, Eelco F M; Klein, Christopher J
2017-03-01
Guillain-Barré syndrome is an acute inflammatory immune-mediated polyradiculoneuropathy presenting typically with tingling, progressive weakness, and pain. Variants and formes frustes may complicate recognition. The best known variant is the sensory ataxic form of Miller Fisher syndrome, which also affects the oculomotor nerves and the brain stem. Divergent pathologic mechanisms lead to demyelinating, axonal, or mixed demyelinating-axonal damage. In the demyelinating form, yet to be identified antigens are inferred by complement activation, myelin destruction, and macrophage-activated cleanup. In the axonal and Miller Fisher variants, gangliosides (GM1, GD1a, GQ1b) are targeted by immunoglobulins and share antigenic epitopes with some bacterial and viral antigens. Campylobacter jejuni infection is associated with an axonal-onset variant; affected patients commonly experience more rapid deterioration. Many other antecedent infectious agents have been recognized including the most recently identified, Zika virus. Supportive care remains the mainstay of therapy. Plasma exchange or intravenous immunoglobin hastens recovery. Combination immunotherapy is not more effective, and the efficacy of prolonged immunotherapy is unproven. One in 3 patients will have deterioration severe enough to require prolonged intensive care monitoring or mechanical ventilation. Full recovery is often seen; most patients regain ambulation, even in severe cases, but disability remains in up to 10% and perhaps more. Numerous challenges remain including early identification and control of infectious triggers, improved access of modern neurointensive care worldwide, and translating our understanding of pathogenesis into meaningful preventive or assistive therapies. This review provides a historical perspective at the centenary of the first description of the syndrome, insights into its pathogenesis, triage, initial immunotherapy, and management in the intensive care unit. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chotiyarnwong, Pojchong; Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University; Stewart-Jones, Guillaume B.
Crystals of an MHC class I molecule bound to naturally occurring peptide variants from the dengue virus NS3 protein contained high levels of solvent and required optimization of cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process facilitated by the use of a free-mounting system. T-cell recognition of the antigenic peptides presented by MHC class I molecules normally triggers protective immune responses, but can result in immune enhancement of disease. Cross-reactive T-cell responses may underlie immunopathology in dengue haemorrhagic fever. To analyze these effects at the molecular level, the functional MHC class I molecule HLA-A*1101more » was crystallized bound to six naturally occurring peptide variants from the dengue virus NS3 protein. The crystals contained high levels of solvent and required optimization of the cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process that was facilitated by the use of a free-mounting system.« less
Srivastava, Pragya; Paluch, Benjamin E.; Matsuzaki, Junko; James, Smitha R.; Collamat-Lai, Golda; Blagitko-Dorfs, Nadja; Ford, Laurie Ann; Naqash, Rafeh; Lübbert, Michael; Karpf, Adam R.; Nemeth, Michael J.; Griffiths, Elizabeth A.
2016-01-01
Cancer testis antigens (CTAs) are promising cancer associated antigens in solid tumors, but in acute myeloid leukemia, dense promoter methylation silences their expression. Leukemia cell lines exposed to HMAs induce expression of CTAs. We hypothesized that AML patients treated with standard of care decitabine (20mg/m2 per day for 10 days) would demonstrate induced expression of CTAs. Peripheral blood blasts serially isolated from AML patients treated with decitabine were evaluated for CTA gene expression and demethylation. Induction of NY-ESO-1 and MAGEA3/A6, were observed following decitabine. Re-expression of NY-ESO-1 and MAGEA3/A6 was associated with both promoter specific and global (LINE-1) hypomethylation. NY-ESO-1 and MAGEA3/A6 mRNA levels were increased irrespective of clinical response, suggesting that these antigens might be applicable even in patients who are not responsive to HMA therapy. Circulating blasts harvested after decitabine demonstrate induced NY-ESO-1 expression sufficient to activate NY-ESO-1 specific CD8+ T-cells. Induction of CTA expression sufficient for recognition by T-cells occurs in AML patients receiving decitabine. Vaccination against NY-ESO-1 in this patient population is feasible. PMID:26883197
Smith, Mason R; Tolbert, Stephanie V; Wen, Fei
2018-05-07
Tuning antigen presentation to T cells is a critical step in investigating key aspects of T cell activation. However, existing technologies have limited ability to control the spatial and stoichiometric organization of T cell ligands on 3D surfaces. Here, we developed an artificial antigen presentation platform based on protein-scaffold directed assembly that allows fine control over the spatial and stoichiometric organization of T cell ligands on a 3D yeast-cell surface. Using this system, we observed that the T cell activation threshold on a 3D surface is independent of peptide-major histocompatibility complex (pMHC) valency, but instead determined by the overall pMHC surface density. When intercellular adhesion molecule 1 (ICAM-1) was co-assembled with pMHC, it enhanced antigen recognition sensitivity by 6-fold. Further, T cells responded with different magnitudes to varying ratios of pMHC and ICAM-1 and exhibited a maximum response at a ratio of 15% pMHC and 85% ICAM-1, introducing an additional parameter for tuning T cell activation. This protein-scaffold directed assembly technology is readily transferrable to acellular surfaces for translational research as well as large-scale T-cell manufacturing.
Ito, Masaki; Hayashi, Kazumi; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka
2017-01-01
Adjuvants are indispensable for achieving a sufficient immune response from vaccinations. From a functional viewpoint, adjuvants are classified into two categories: "physical adjuvants" increase the efficacy of antigen presentation by antigen-presenting cells (APC) and "signal adjuvants" induce the maturation of APC. Our previous study has demonstrated that a physical adjuvant can be encrypted into proteinous antigens by creating artificial proteins from combinatorial assemblages of epitope peptides and those peptide sequences having propensities to form certain protein structures (motif programming). However, the artificial antigens still require a signal adjuvant to maturate the APC; for example, co-administration of the Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) was required to induce an in vivo immunoreaction. In this study, we further modified the previous artificial antigens by appending the peptide motifs, which have been reported to have agonistic activity for TLR4, to create "adjuvant-free" antigens. The created antigens with triple TLR4 agonistic motifs in their C-terminus have activated NF-κB signaling pathways through TLR4. These proteins also induced the production of the inflammatory cytokine TNF-α, and the expression of the co-stimulatory molecule CD40 in APC, supporting the maturation of APC in vitro. Unexpectedly, these signal adjuvant-encrypted proteins have lost their ability to be physical adjuvants because they did not induce cytotoxic T lymphocytes (CTL) in vivo, while the parental proteins induced CTL. These results confirmed that the manifestation of a motif's function is context-dependent and simple addition does not always work for motif-programing. Further optimization of the molecular context of the TLR4 agonistic motifs in antigens should be required to create adjuvant-free antigens.
Hayashi, Kazumi; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka
2017-01-01
Adjuvants are indispensable for achieving a sufficient immune response from vaccinations. From a functional viewpoint, adjuvants are classified into two categories: “physical adjuvants” increase the efficacy of antigen presentation by antigen-presenting cells (APC) and “signal adjuvants” induce the maturation of APC. Our previous study has demonstrated that a physical adjuvant can be encrypted into proteinous antigens by creating artificial proteins from combinatorial assemblages of epitope peptides and those peptide sequences having propensities to form certain protein structures (motif programming). However, the artificial antigens still require a signal adjuvant to maturate the APC; for example, co-administration of the Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) was required to induce an in vivo immunoreaction. In this study, we further modified the previous artificial antigens by appending the peptide motifs, which have been reported to have agonistic activity for TLR4, to create “adjuvant-free” antigens. The created antigens with triple TLR4 agonistic motifs in their C-terminus have activated NF-κB signaling pathways through TLR4. These proteins also induced the production of the inflammatory cytokine TNF-α, and the expression of the co-stimulatory molecule CD40 in APC, supporting the maturation of APC in vitro. Unexpectedly, these signal adjuvant-encrypted proteins have lost their ability to be physical adjuvants because they did not induce cytotoxic T lymphocytes (CTL) in vivo, while the parental proteins induced CTL. These results confirmed that the manifestation of a motif’s function is context-dependent and simple addition does not always work for motif-programing. Further optimization of the molecular context of the TLR4 agonistic motifs in antigens should be required to create adjuvant-free antigens. PMID:29190754
CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity.
Pereira, Catia S; Macedo, M Fatima
2016-01-01
Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes.
Effects of Experimental Sarcocystis neurona-Induced Infection on Immunity in an Equine Model
Lewis, S. Rochelle; Ellison, Siobhan P.; Dascanio, John J.; Lindsay, David S.; Gogal, Robert M.; Werre, Stephen R.; Surendran, Naveen; Breen, Meghan E.; Heid, Bettina M.; Andrews, Frank M.; Buechner-Maxwell, Virginia A.; Witonsky, Sharon G.
2014-01-01
Sarcocystis neurona is the most common cause of Equine Protozoal Myeloencephalitis (EPM), affecting 0.5–1% horses in the United States during their lifetimes. The objective of this study was to evaluate the equine immune responses in an experimentally induced Sarcocystis neurona infection model. Neurologic parameters were recorded prior to and throughout the 70-day study by blinded investigators. Recombinant SnSAG1 ELISA for serum and CSF were used to confirm and track disease progression. All experimentally infected horses displayed neurologic signs after infection. Neutrophils, monocytes, and lymphocytes from infected horses displayed significantly delayed apoptosis at some time points. Cell proliferation was significantly increased in S. neurona-infected horses when stimulated nonspecifically with PMA/I but significantly decreased when stimulated with S. neurona compared to controls. Collectively, our results suggest that horses experimentally infected with S. neurona manifest impaired antigen specific response to S. neurona, which could be a function of altered antigen presentation, lack of antigen recognition, or both. PMID:26464923
Effects of Experimental Sarcocystis neurona-Induced Infection on Immunity in an Equine Model.
Lewis, S Rochelle; Ellison, Siobhan P; Dascanio, John J; Lindsay, David S; Gogal, Robert M; Werre, Stephen R; Surendran, Naveen; Breen, Meghan E; Heid, Bettina M; Andrews, Frank M; Buechner-Maxwell, Virginia A; Witonsky, Sharon G
2014-01-01
Sarcocystis neurona is the most common cause of Equine Protozoal Myeloencephalitis (EPM), affecting 0.5-1% horses in the United States during their lifetimes. The objective of this study was to evaluate the equine immune responses in an experimentally induced Sarcocystis neurona infection model. Neurologic parameters were recorded prior to and throughout the 70-day study by blinded investigators. Recombinant SnSAG1 ELISA for serum and CSF were used to confirm and track disease progression. All experimentally infected horses displayed neurologic signs after infection. Neutrophils, monocytes, and lymphocytes from infected horses displayed significantly delayed apoptosis at some time points. Cell proliferation was significantly increased in S. neurona-infected horses when stimulated nonspecifically with PMA/I but significantly decreased when stimulated with S. neurona compared to controls. Collectively, our results suggest that horses experimentally infected with S. neurona manifest impaired antigen specific response to S. neurona, which could be a function of altered antigen presentation, lack of antigen recognition, or both.
Soares, Helena; Lasserre, Rémi; Alcover, Andrés
2013-11-01
Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Human intraepithelial lymphocytes.
Mayassi, Toufic; Jabri, Bana
2018-04-20
The location of intraepithelial lymphocytes (IEL) between epithelial cells, their effector memory, cytolytic and inflammatory phenotype positions them to kill infected epithelial cells and protect the intestine against pathogens. Human TCRαβ + CD8αβ + IEL have the dual capacity to recognize modified self via natural killer (NK) receptors (autoreactivity) as well as foreign antigen via the T cell receptor (TCR), which is accomplished in mouse by two cell subsets, the naturally occurring TCRαβ + CD8αα + and adaptively induced TCRαβ + CD8αβ + IEL subsets, respectively. The private/oligoclonal nature of the TCR repertoire of both human and mouse IEL suggests local environmental factors dictate the specificity of IEL responses. The line between sensing of foreign antigens and autoreactivity is blurred for IEL in celiac disease, where recognition of stress ligands by induced activating NK receptors in conjunction with inflammatory signals such as IL-15 can result in low-affinity TCR/non-cognate antigen and NK receptor/stress ligand interactions triggering destruction of intestinal epithelial cells.
T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids.
Wun, Kwok S; Reijneveld, Josephine F; Cheng, Tan-Yun; Ladell, Kristin; Uldrich, Adam P; Le Nours, Jérôme; Miners, Kelly L; McLaren, James E; Grant, Emma J; Haigh, Oscar L; Watkins, Thomas S; Suliman, Sara; Iwany, Sarah; Jimenez, Judith; Calderon, Roger; Tamara, Kattya L; Leon, Segundo R; Murray, Megan B; Mayfield, Jacob A; Altman, John D; Purcell, Anthony W; Miles, John J; Godfrey, Dale I; Gras, Stephanie; Price, David A; Van Rhijn, Ildiko; Moody, D Branch; Rossjohn, Jamie
2018-04-01
The hallmark function of αβ T cell antigen receptors (TCRs) involves the highly specific co-recognition of a major histocompatibility complex molecule and its carried peptide. However, the molecular basis of the interactions of TCRs with the lipid antigen-presenting molecule CD1c is unknown. We identified frequent staining of human T cells with CD1c tetramers across numerous subjects. Whereas TCRs typically show high specificity for antigen, both tetramer binding and autoreactivity occurred with CD1c in complex with numerous, chemically diverse self lipids. Such extreme polyspecificity was attributable to binding of the TCR over the closed surface of CD1c, with the TCR covering the portal where lipids normally protrude. The TCR essentially failed to contact lipids because they were fully seated within CD1c. These data demonstrate the sequestration of lipids within CD1c as a mechanism of autoreactivity and point to small lipid size as a determinant of autoreactive T cell responses.
Immunomodulatory Effects of dsRNA and Its Potential as Vaccine Adjuvant
Jin, Bo; Sun, Tao; Yu, Xiao-Hong; Liu, Chao-Qun; Yang, Ying-Xiang; Lu, Ping; Fu, Shan-Feng; Qiu, Hui-Bin; Yeo, Anthony E. T.
2010-01-01
dsRNA can be detected by pattern recognition receptors, for example, TLR3, MDA-5, NLRP3 to induce proinflammatory cytokines responsible for innate/adaptive immunity. Recognized by endosomal TLR3 in myeloid DCs (mDCs), dsRNA can activate mDCs into mature antigen presenting cells (mAPCs) which in turn present antigen epitopes with MHC-I molecules to naïve T cells. Coadministration of protein and synthetic dsRNA analogues can elicit an antigen-specific Th1-polarized immune response which stimulates the CD8+ CTL response and possibly dampen Th17 response. Synthetic dsRNA analogues have been tested as vaccine adjuvant against viral infections in animal models. However, a dsRNA receptor, TLR3 can be expressed in tumor cells while other members of TLR family, for example, TLR4 and TLR2 have been shown to promote tumor progression, metastasis, and chemoresistance. Thus, the promising potential of dsRNA analogues as a tumor therapeutic vaccine adjuvant should be evaluated cautiously. PMID:20671921
Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen.
Rollenske, Tim; Szijarto, Valeria; Lukasiewicz, Jolanta; Guachalla, Luis M; Stojkovic, Katarina; Hartl, Katharina; Stulik, Lukas; Kocher, Simone; Lasitschka, Felix; Al-Saeedi, Mohammed; Schröder-Braunstein, Jutta; von Frankenberg, Moritz; Gaebelein, Gereon; Hoffmann, Peter; Klein, Sabrina; Heeg, Klaus; Nagy, Eszter; Nagy, Gabor; Wardemann, Hedda
2018-06-01
Humoral immune responses to microbial polysaccharide surface antigens can prevent bacterial infection but are typically strain specific and fail to mediate broad protection against different serotypes. Here we describe a panel of affinity-matured monoclonal human antibodies from peripheral blood immunoglobulin M-positive (IgM + ) and IgA + memory B cells and clonally related intestinal plasmablasts, directed against the lipopolysaccharide (LPS) O-antigen of Klebsiella pneumoniae, an opportunistic pathogen and major cause of antibiotic-resistant nosocomial infections. The antibodies showed distinct patterns of in vivo cross-specificity and protection against different clinically relevant K. pneumoniae serotypes. However, cross-specificity was not limited to K. pneumoniae, as K. pneumoniae-specific antibodies recognized diverse intestinal microbes and neutralized not only K. pneumoniae LPS but also non-K. pneumoniae LPS. Our data suggest that the recognition of minimal glycan epitopes abundantly expressed on microbial surfaces might serve as an efficient humoral immunological mechanism to control invading pathogens and the large diversity of the human microbiota with a limited set of cross-specific antibodies.
Sciammas, Roger; Li, Ying; Warmflash, Aryeh; Song, Yiqiang; Dinner, Aaron R; Singh, Harinder
2011-01-01
The B-lymphocyte lineage is a leading system for analyzing gene regulatory networks (GRNs) that orchestrate distinct cell fate transitions. Upon antigen recognition, B cells can diversify their immunoglobulin (Ig) repertoire via somatic hypermutation (SHM) and/or class switch DNA recombination (CSR) before differentiating into antibody-secreting plasma cells. We construct a mathematical model for a GRN underlying this developmental dynamic. The intensity of signaling through the Ig receptor is shown to control the bimodal expression of a pivotal transcription factor, IRF-4, which dictates B cell fate outcomes. Computational modeling coupled with experimental analysis supports a model of ‘kinetic control', in which B cell developmental trajectories pass through an obligate transient state of variable duration that promotes diversification of the antibody repertoire by SHM/CSR in direct response to antigens. More generally, this network motif could be used to translate a morphogen gradient into developmental inductive events of varying time, thereby enabling the specification of distinct cell fates. PMID:21613984
Conformational Plasticity in Broadly Neutralizing HIV-1 Antibodies Triggers Polyreactivity.
Prigent, Julie; Jarossay, Annaëlle; Planchais, Cyril; Eden, Caroline; Dufloo, Jérémy; Kök, Ayrin; Lorin, Valérie; Vratskikh, Oxana; Couderc, Thérèse; Bruel, Timothée; Schwartz, Olivier; Seaman, Michael S; Ohlenschläger, Oliver; Dimitrov, Jordan D; Mouquet, Hugo
2018-05-29
Human high-affinity antibodies to pathogens often recognize unrelated ligands. The molecular origin and the role of this polyreactivity are largely unknown. Here, we report that HIV-1 broadly neutralizing antibodies (bNAbs) are frequently polyreactive, cross-reacting with non-HIV-1 molecules, including self-antigens. Mutating bNAb genes to increase HIV-1 binding and neutralization also results in de novo polyreactivity. Unliganded paratopes of polyreactive bNAbs with improved HIV-1 neutralization exhibit a conformational flexibility, which contributes to enhanced affinity of bNAbs to various HIV-1 envelope glycoproteins and non-HIV antigens. Binding adaptation of polyreactive bNAbs to the divergent ligands mainly involves hydrophophic interactions. Plasticity of bNAbs' paratopes may, therefore, facilitate accommodating divergent viral variants, but it simultaneously triggers promiscuous binding to non-HIV-1 antigens. Thus, a certain level of polyreactivity can be a mark of adaptable antibodies displaying optimal pathogens' recognition. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Utility of HLA Antibody Testing in Kidney Transplantation
Konvalinka, Ana
2015-01-01
HLA antigens are polymorphic proteins expressed on donor kidney allograft endothelium and are critical targets for recipient immune recognition. HLA antibodies are risk factors for acute and chronic rejection and allograft loss. Solid-phase immunoassays for HLA antibody detection represent a major advance in sensitivity and specificity over cell-based methods and are widely used in organ allocation and pretransplant risk assessment. Post-transplant, development of de novo donor–specific HLA antibodies and/or increase in donor-specific antibodies from pretransplant levels are associated with adverse outcomes. Although single antigen bead assays have allowed sensitive detection of recipient HLA antibodies and their specificities, a number of interpretive considerations must be appreciated to understand test results in clinical and research contexts. This review, which is especially relevant for clinicians caring for transplant patients, discusses the technical aspects of single antigen bead assays, emphasizes their quantitative limitations, and explores the utility of HLA antibody testing in identifying and managing important pre- and post-transplant clinical outcomes. PMID:25804279
From the ECM to the Cytoskeleton and Back: How Integrins Orchestrate T Cell Action
Epler, Jennifer A.; Liu, Rugao
2000-01-01
T lymphocytes constitute a highly dynamic tissue type. During the course of their lives, they travel through a variety of physiological environments and experience a multitude of interactions with extracellular matrix components and other cells. In order to do this, they must receive many environmental cues, and translate these signals into the appropriate biological actions. Particularly dramatic are the cytoskeletal shape changes a T cell must undergo during the processes of leaving the bloodstream, migrating through tissues, and encountering antigen. In this review, we highlight the role of integrins in providing a link between the extracellular environment and cytoskeletal regulation and how these receptors help to orchestrate T cell migration and antigen recognition. PMID:11097209
Targeting nanodisks via a single chain variable antibody--apolipoprotein chimera.
Iovannisci, David M; Beckstead, Jennifer A; Ryan, Robert O
2009-02-06
Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that alpha-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.
Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J
2000-04-01
Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.
Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta
2018-04-14
Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).
Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten
2015-01-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512
CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence.
Petrie, Emma J; Clements, Craig S; Lin, Jie; Sullivan, Lucy C; Johnson, Darryl; Huyton, Trevor; Heroux, Annie; Hoare, Hilary L; Beddoe, Travis; Reid, Hugh H; Wilce, Matthew C J; Brooks, Andrew G; Rossjohn, Jamie
2008-03-17
The recognition of human leukocyte antigen (HLA)-E by the heterodimeric CD94-NKG2 natural killer (NK) receptor family is a central innate mechanism by which NK cells monitor the expression of other HLA molecules, yet the structural basis of this highly specific interaction is unclear. Here, we describe the crystal structure of CD94-NKG2A in complex with HLA-E bound to a peptide derived from the leader sequence of HLA-G. The CD94 subunit dominated the interaction with HLA-E, whereas the NKG2A subunit was more peripheral to the interface. Moreover, the invariant CD94 subunit dominated the peptide-mediated contacts, albeit with poor surface and chemical complementarity. This unusual binding mode was consistent with mutagenesis data at the CD94-NKG2A-HLA-E interface. There were few conformational changes in either CD94-NKG2A or HLA-E upon ligation, and such a "lock and key" interaction is typical of innate receptor-ligand interactions. Nevertheless, the structure also provided insight into how this interaction can be modulated by subtle changes in the peptide ligand or by the pairing of CD94 with other members of the NKG2 family. Differences in the docking strategies used by the NKG2D and CD94-NKG2A receptors provided a basis for understanding the promiscuous nature of ligand recognition by NKG2D compared with the fidelity of the CD94-NKG2 receptors.
CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence
Petrie, Emma J.; Clements, Craig S.; Lin, Jie; Sullivan, Lucy C.; Johnson, Darryl; Huyton, Trevor; Heroux, Annie; Hoare, Hilary L.; Beddoe, Travis; Reid, Hugh H.; Wilce, Matthew C.J.; Brooks, Andrew G.; Rossjohn, Jamie
2008-01-01
The recognition of human leukocyte antigen (HLA)-E by the heterodimeric CD94-NKG2 natural killer (NK) receptor family is a central innate mechanism by which NK cells monitor the expression of other HLA molecules, yet the structural basis of this highly specific interaction is unclear. Here, we describe the crystal structure of CD94-NKG2A in complex with HLA-E bound to a peptide derived from the leader sequence of HLA-G. The CD94 subunit dominated the interaction with HLA-E, whereas the NKG2A subunit was more peripheral to the interface. Moreover, the invariant CD94 subunit dominated the peptide-mediated contacts, albeit with poor surface and chemical complementarity. This unusual binding mode was consistent with mutagenesis data at the CD94-NKG2A–HLA-E interface. There were few conformational changes in either CD94-NKG2A or HLA-E upon ligation, and such a “lock and key” interaction is typical of innate receptor–ligand interactions. Nevertheless, the structure also provided insight into how this interaction can be modulated by subtle changes in the peptide ligand or by the pairing of CD94 with other members of the NKG2 family. Differences in the docking strategies used by the NKG2D and CD94-NKG2A receptors provided a basis for understanding the promiscuous nature of ligand recognition by NKG2D compared with the fidelity of the CD94-NKG2 receptors. PMID:18332182
Wiesner, Darin L; Specht, Charles A; Lee, Chrono K; Smith, Kyle D; Mukaremera, Liliane; Lee, S Thera; Lee, Chun G; Elias, Jack A; Nielsen, Judith N; Boulware, David R; Bohjanen, Paul R; Jenkins, Marc K; Levitz, Stuart M; Nielsen, Kirsten
2015-03-01
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection.
Chlamydia trachomatis infection of the male genital tract: an update.
Mackern-Oberti, Juan Pablo; Motrich, Rubén Darío; Breser, María Laura; Sánchez, Leonardo Rodolfo; Cuffini, Cecilia; Rivero, Virginia Elena
2013-11-01
Chlamydia trachomatis (CT) is the most prevalent cause of sexually transmitted diseases. Although the prevalence of chlamydial infection is similar in men and women, current research and screening are still focused on women, who develop the most severe complications, leaving the study of male genital tract (MGT) infection underrated. Herein, we reviewed the literature on genital CT infection with special focus on the MGT. Data indicate that CT certainly infects different parts of the MGT such as the urethra, seminal vesicles, prostate, epididymis and testis. However, whether or not CT infection has detrimental effects on male fertility is still controversial. The most important features of CT infection are its chronic nature and the presence of a mild inflammation that remains subclinical in most individuals. Chlamydia antigens and pathogen recognition receptors (PRR), expressed on epithelial cells and immune cells from the MGT, have been studied in the last years. Toll-like receptor (TLR) expression has been observed in the testis, epididymis, prostate and vas deferens. It has been demonstrated that recognition of chlamydial antigens is associated with TLR2, TLR4, and possibly, other PRRs. CT recognition by PRRs induces a local production of cytokines/chemokines, which, in turn, provoke chronic inflammation that might evolve in the onset of an autoimmune process in genetically susceptible individuals. Understanding local immune response along the MGT, as well as the crosstalk between resident leukocytes, epithelial, and stromal cells, would be crucial in inducing a protective immunity, thus adding to the design of new therapeutic approaches to a Chlamydia vaccine. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Biofluidic Transport and Molecular Recognition in Polymer Microdevices
2005-04-29
flexible membrane separating the particles and reservoir. B. Using photopolymerizable wires, an electrolysis pump was fabricated on a microdevice. It...Antigen detection was accomplished by grafting the approximate antibody or sensing compound via acrylation and polymerization to the surface. Figure 14...were detected with assay times of approximately 10 minutes. Figure 15 shows detection data for a compound (glucagon) that is impossible to detect by
Development of Medical Technology for Contingency Response to Marrow Toxic Agents
2018-02-28
Radiation Syndrome (also known as Acute Radiation Sickness) ARS Antigen Recognition Site ASBMT American Society for Blood and Marrow Transplantation...Basic Radiation Training, having a physician or Advanced Practitioner complete the REAC/TS training, hosting an AHLS course, conducting an Acute ... Radiation Syndrome Medical Grand rounds session, and having a site assessment conducted. In addition, centers can conduct community outreach and
Development of Medical Technology for Contingency Response to Marrow Toxic Agents
2016-12-28
training, hosting an AHLS course, conducting an Acute Radiation Syndrome Medical Grand rounds session, and having a site assessment conducted. In...System ARD Antigen Recognition Domain ARRA The American Recovery and Reinvestment Act of 2009 ARS Acute Radiation Syndrome (also known as Acute ... acute leukemia and myelodysplastic syndromes . Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow
Immunity by Hydrophobic Appendage Bearing Antigens
2006-07-01
primary disease is important. The importance rests with a better quality of life and decrease medical costs. To reach the immunopreventive level a...with alanine and one of following synthetic amino acids: γ-aminobutyric acid, norvaline, or norleucine. ( Advanced Chemtech, Louisville,KY) The...sufficiently strong to bring TCR together in the appropriate conformation for wild-type Ag recognition. This may have the advantage of extending the life of
Marré, Meghan L.; Piganelli, Jon D.
2017-01-01
Type 1 diabetes (T1D) is an autoimmune disease in which immune-mediated targeting and destruction of insulin-producing pancreatic islet β cells leads to chronic hyperglycemia. There are many β cell proteins that are targeted by autoreactive T cells in their native state. However, recent studies have demonstrated that many β cell proteins are recognized as neo-antigens following posttranslational modification (PTM). Although modified neo-antigens are well-established targets of pathology in other autoimmune diseases, the effects of neo-antigens in T1D progression and the mechanisms by which they are generated are not well understood. We have demonstrated that PTM occurs during endoplasmic reticulum (ER) stress, a process to which β cells are uniquely susceptible due to the high rate of insulin production in response to dynamic glucose sensing. In the context of genetic susceptibility to autoimmunity, presentation of these modified neo-antigens may activate autoreactive T cells and cause pathology. However, inherent β cell ER stress and protein PTM do not cause T1D in every genetically susceptible individual, suggesting the contribution of additional factors. Indeed, many environmental factors, such as viral infection, chemicals, or inflammatory cytokines, are associated with T1D onset, but the mechanisms by which these factors lead to disease onset remain unknown. Since these environmental factors also cause ER stress, exposure to these factors may enhance production of neo-antigens, therefore boosting β cell recognition by autoreactive T cells and exacerbating T1D pathogenesis. Therefore, the combined effects of physiological ER stress and the stress that is induced by environmental factors may lead to breaks in peripheral tolerance, contribute to antigen spread, and hasten disease onset. This Hypothesis and Theory article summarizes what is currently known about ER stress and protein PTM in autoimmune diseases including T1D and proposes a role for environmental factors in breaking immune tolerance to β cell antigens through neo-antigen formation. PMID:29033899
Atassi, M Zouhair; Jankovic, Joseph; Steward, Lance E; Aoki, K Roger; Dolimbek, Behzod Z
2012-01-01
We recently mapped the regions on the heavy (H) chain of botulinum neurotoxin, type B (BoNT/B) recognized by blocking antibodies (Abs) from cervical dystonia (CD) patients who develop immunoresistance during toxin treatment. Since blocking could also be effected by Abs directed against regions on the light (L) chain, we have mapped here the L chain, using the same 30 CD antisera. We synthesized, purified and characterized 32 19-residue L chain peptides that overlapped successively by 5 residues (peptide L32 overlapped with peptide N1 of the H chain by 12 residues). In a given patient, Abs against the L chain seemed less intense than those against H chain. Most sera recognized a limited set of L chain peptides. The levels of Abs against a given region varied with the patient, consistent with immune responses to each epitope being under separate MHC control. The peptides most frequently recognized were: L13, by 30 of 30 antisera (100%); L22, by 23 of 30 (76.67%); L19, by 15 of 30 (50.00%); L26, by 11 of 30 (36.70%); and L14, by 12 of 30 (40.00%). The activity of L14 probably derives from its overlap with L13. The levels of Ab binding decreased in the following order: L13 (residues 169-187), L22 (295-313), L19 (253-271), and L26 (351-369). Peptides L12 (155-173), L18 (239-257), L15 (197-215), L1 (1-19) and L23 (309-327) exhibited very low Ab binding. The remaining peptides had little or no Ab-binding activity. The antigenic regions are analyzed in terms of their three-dimensional locations and the enzyme active site. With the previous localization of the antigenic regions on the BoNT/B H chain, the human Ab recognition of the entire BoNT/B molecule is presented and compared to the recognition of BoNT/A by human blocking Abs. Copyright © 2011. Published by Elsevier GmbH.
Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S
2016-07-01
In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.
PrimaTB STAT-PAK Assay, a Novel, Rapid Lateral-Flow Test for Tuberculosis in Nonhuman Primates▿
Lyashchenko, Konstantin P.; Greenwald, Rena; Esfandiari, Javan; Greenwald, David; Nacy, Carol A.; Gibson, Susan; Didier, Peter J.; Washington, Marc; Szczerba, Peter; Motzel, Sherri; Handt, Larry; Pollock, John M.; McNair, James; Andersen, Peter; Langermans, Jan A. M.; Verreck, Frank; Ervin, Sean; Ervin, Frank; McCombs, Candace
2007-01-01
Tuberculosis (TB) is the most important zoonotic bacterial disease in nonhuman primates (NHP). The current diagnostic method, the intradermal palpebral tuberculin test, has serious shortcomings. We characterized antibody responses in NHP against Mycobacterium tuberculosis to identify immunodominant antigens and develop a rapid serodiagnostic test for TB. A total of 422 NHP were evaluated, including 243 rhesus (Macaca mulatta), 46 cynomolgus (Macaca fascicularis), and 133 African green (Cercopithecus aethiops sabaeus) monkeys at five collaborative centers. Of those, 50 monkeys of the three species were experimentally inoculated with M. tuberculosis. Antibody responses were monitored every 2 to 4 weeks for up to 8 months postinfection by MultiAntigen Print ImmunoAssay with a panel of 12 recombinant antigens. All of the infected monkeys produced antibodies at various levels and with different antigen recognition patterns. ESAT-6 and MPB83 were the most frequently recognized proteins during infection. A combination of selected antigens which detected antibodies in all of the infected monkeys was designed to develop the PrimaTB STAT-PAK assay by lateral-flow technology. Serological evaluation demonstrated high diagnostic sensitivity (90%) and specificity (99%). The highest rate of TB detection was achieved when the skin test was combined with the PrimaTB STAT-PAK kit. This novel immunoassay provides a simple, rapid, and accurate test for TB in NHP. PMID:17652522
Antibody recognition of a unique tumor-specific glycopeptide antigen
Brooks, Cory L.; Schietinger, Andrea; Borisova, Svetlana N.; Kufer, Peter; Okon, Mark; Hirama, Tomoko; MacKenzie, C. Roger; Wang, Lai-Xi; Schreiber, Hans; Evans, Stephen V.
2010-01-01
Aberrant glycosylation and the overexpression of certain carbohydrate moieties is a consistent feature of cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy. One of the most common aberrations in glycosylation patterns is the presentation of a single O-linked N-acetylgalactosamine on a threonine or serine residue known as the “Tn antigen.” Whereas the ubiquitous nature of Tn antigens on cancers has made them a natural focus of vaccine research, such carbohydrate moieties are not always tumor-specific and have been observed on embryonic and nonmalignant adult tissue. Here we report the structural basis of binding of a complex of a monoclonal antibody (237mAb) with a truly tumor-specific glycopeptide containing the Tn antigen. In contrast to glycopeptide-specific antibodies in complex with simple peptides, 237mAb does not recognize a conformational epitope induced in the peptide by sugar substitution. Instead, 237mAb uses a pocket coded by germ-line genes to completely envelope the carbohydrate moiety itself while interacting with the peptide moiety in a shallow groove. Thus, 237mAb achieves its striking tumor specificity, with no observed physiological cross-reactivity to the unglycosylated peptide or the free glycan, by a combination of multiple weak but specific interactions to both the peptide and to the glycan portions of the antigen. PMID:20479270
Chmielewski, Markus; Hombach, Andreas A; Abken, Hinrich
2013-01-01
Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a "tumor-associated antigen" and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer.
Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.
Kochenderfer, James N; Rosenberg, Steven A
2013-05-01
Most B-cell malignancies express CD19, and a majority of patients with B-cell malignancies are not cured by current standard therapies. Chimeric antigen receptors (CARs) are fusion proteins consisting of antigen recognition moieties and T-cell activation domains. T cells can be genetically modified to express CARs, and adoptive transfer of anti-CD19 CAR T cells is now being tested in clinical trials. Effective clinical treatment with anti-CD19 CAR T cells was first reported in 2010 after a patient with advanced-stage lymphoma treated at the NCI experienced a partial remission of lymphoma and long-term eradication of normal B cells. Additional patients have subsequently obtained long-term remissions of advanced-stage B-cell malignancies after infusions of anti-CD19 CAR T cells. Long-term eradication of normal CD19(+) B cells from patients receiving infusions of anti-CD19 CAR T cells demonstrates the potent antigen-specific activity of these T cells. Some patients treated with anti-CD19 CAR T cells have experienced acute adverse effects, which were associated with increased levels of serum inflammatory cytokines. Although anti-CD19 CAR T cells are at an early stage of development, the potent antigen-specific activity observed in patients suggests that infusions of anti-CD19 CAR T cells might become a standard therapy for some B-cell malignancies.
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2011 CFR
2011-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2013 CFR
2013-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2010 CFR
2010-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2014 CFR
2014-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2012 CFR
2012-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence
Wang, Yuge; Kapoor, Pratibha; Parks, Robert; Silva-Sanchez, Aaron; Alam, S. Munir; Verkoczy, Laurent; Liao, Hua-Xin; Zhuang, Yingxin; Burrows, Peter; Levinson, Michael; Elgavish, Ada; Cui, Xiangqin; Haynes, Barton F.; Schroeder, Harry
2015-01-01
Complementarity determining region 3 of the immunoglobulin (Ig) H chain (CDR-H3) lies at the center of the antigen binding site where it often plays a decisive role in antigen recognition and binding. Amino acids encoded by the diversity (DH) gene segment are the main component of CDR-H3. Each DH has the potential to rearrange into one of six DH reading frames (RFs), each of which exhibits a characteristic amino acid hydrophobicity signature that has been conserved among jawed vertebrates by natural selection. A preference for use of RF1 promotes the incorporation of tyrosine into CDR-H3 while suppressing the inclusion of hydrophobic or charged amino acids. To test the hypothesis that these evolutionary constraints on DH sequence influence epitope recognition, we used mice with a single DH that has been altered to preferentially use RF2 or inverted RF1. B cells in these mice produce a CDR-H3 repertoire that is enriched for valine or arginine in place of tyrosine. We serially immunized this panel of mice with gp140 from HIV-1 JR-FL isolate and then used ELISA or peptide microarray to assess antibody binding to key or overlapping HIV-1 envelope epitopes. By ELISA, serum reactivity to key epitopes varied by DH sequence. By microarray, sera with Ig CDR-H3s enriched for arginine bound to linear peptides with a greater range of hydrophobicity, but had a lower intensity of binding than sera containing Ig CDR-H3s enriched for tyrosine or valine. We conclude that patterns of epitope recognition and binding can be heavily influenced by DH germline sequence. This may help explain why antibodies in HIV infected patients must undergo extensive somatic mutation in order to bind to specific viral epitopes and achieve neutralization. PMID:26687685
Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A
2012-07-11
Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explainsmore » how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.« less
NASA Astrophysics Data System (ADS)
Gärtner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Schattschneider, Sebastian; Frank, Rainer; Willems, Andreas
2015-05-01
The diverse human HLA (human leukocyte antigen) system is responsible for antigen presentation and recognition. It is essential for the immune system to maintain a stable defense line, but also is also involved in autoimmunity as well as metabolic disease. HLA-haplotype (HLA-B27), for instance, is associated with inflammatory diseases such as Bechterew's disease. The administration of the HIV drug Abacavir in combination with another HLA-haplotype (HLAB57) is associated with severe hypersensitivity reactions. Accordingly, the HLA status has to be monitored for diagnosis or prior to start of therapy. Along this line, a miniaturized microfluidic platform has been developed allowing performing the complete analytical process from "sample-in" to "answer-out" in a point-of-care environment. The main steps of the analytical cascade inside the integrated system are blood cell lysis and DNA isolation, DNA purification, real-time PCR and quantitative monitoring of the rise of a fluorescent signal appearing during the PCR based sequence amplification. All bio-analytical steps were intended to be performed inside one chip and will be actuated, controlled and monitored by a matching device. This report will show that all required processes are established and tested and all device components work well and interact with the functional modules on the chips in a harmonized fashion.
Goldschmidt, R M; Curtiss, R
1990-07-01
Most members of the Streptococcus mutans group of microorganisms specify a major cell surface-associated protein, SpaA, that is defined by its antigenic properties. The region of the spaA gene from Streptococcus sobrinus 6715 encoding the immunodominant determinant of the major antigenic component (antigen I) of the SpaA protein has recently been characterized. This study examined whether recognition of the immunodominant determinant is independent of the immunized animal host and whether antibodies elicited by the immunodominant determinant cross-react with cell surface proteins from S. mutans of various serotypes. Mouse and rabbit antisera to the undenatured SpaA protein reacted similarly both with the immunodominant determinant and with other antigenic structures of the protein in Western immunoblots with SpaA polypeptides that were specified by spaA gene fragments expressed in recombinant Escherichia coli. This suggests that the antibody responses of inbred and outbred animals were similar. Furthermore, antibodies raised against both the S. sobrinus SpaA immunodominant determinant expressed by recombinant E. coli and the purified protein from S. sobrinus displayed similar strain specificities and protein band profiles towards cells surface proteins from S. mutans of various serotypes in immunodot and Western blot analyses, respectively. This suggests that for S. sobrinus serotype g, the immune response against the SpaA protein is governed by the immunodominant determinant of antigen I. In addition, it indicates that the SpaA protein domain containing the immunodominant determinant overlaps the domain conferring cross-reactivity to cell surface proteins of S. mutans of various serotypes.
James, Scott E.; Greenberg, Philip D.; Jensen, Michael C.; Lin, Yukang; Wang, Jinjuan; Till, Brian G.; Raubitschek, Andrew A.; Forman, Stephen J.; Press, Oliver W.
2008-01-01
We have targeted CD22 as a novel tumor-associated antigen for recognition by human CTL genetically modified to express chimeric T cell receptors (cTCR) recognizing this surface molecule. CD22-specifc cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR+ CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR+ CTL exhibited lower levels of maximum lysis and lower antigen sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of antigen engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope but constructed as a truncated CD22 molecule to approximate the length of a TCR:pMHC complex. The reduced sensitivity of CD22-specific cTCR+ CTL for antigen-induced triggering of effector functions has potential therapeutic applications, as such cells selectively lysed B cell lymphoma lines expressing high levels of CD22 but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength – and consequently antigen sensitivity – can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate antigen density. PMID:18453625
Burns, William R.; Zhao, Yangbing; Frankel, Timothy L.; Hinrichs, Christian S.; Zheng, Zhili; Xu, Hui; Feldman, Steven A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.
2011-01-01
Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express HLA class I antigen restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight-melanoma associated antigen (HMW-MAA), which is highly expressed on over 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody (mAb) 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3ζ activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA expressing cell lines. Furthermore, the receptor functioned in both CD4+ and CD8+ cells, was non-MHC-restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies. PMID:20395199
Streng-Ouwehand, Ingeborg; Ho, Nataschja I; Litjens, Manja; Kalay, Hakan; Boks, Martine Annemarie; Cornelissen, Lenneke AM; Kaur Singh, Satwinder; Saeland, Eirikur; Garcia-Vallejo, Juan J; Ossendorp, Ferry A; Unger, Wendy WJ; van Kooyk, Yvette
2016-01-01
Antigen uptake by dendritic cells and intracellular routing of antigens to specific compartments is regulated by C-type lectin receptors that recognize glycan structures. We show that the modification of Ovalbumin (OVA) with the glycan-structure LewisX (LeX) re-directs OVA to the C-type lectin receptor MGL1. LeX-modification of OVA favored Th1 skewing of CD4+ T cells and enhanced cross-priming of CD8+ T cells. While cross-presentation of native OVA requires high antigen dose and TLR stimuli, LeX modification reduces the required amount 100-fold and obviates its dependence on TLR signaling. The OVA-LeX-induced enhancement of T cell cross-priming is MGL1-dependent as shown by reduced CD8+ effector T cell frequencies in MGL1-deficient mice. Moreover, MGL1-mediated cross-presentation of OVA-LeX neither required TAP-transporters nor Cathepsin-S and was still observed after prolonged intracellular storage of antigen in Rab11+LAMP1+ compartments. We conclude that controlled neo-glycosylation of antigens can crucially influence intracellular routing of antigens, the nature and strength of immune responses and should be considered for optimizing current vaccination strategies. DOI: http://dx.doi.org/10.7554/eLife.11765.001 PMID:26999763
Abente, Eugenio J.; Santos, Jefferson; Lewis, Nicola S.; Gauger, Phillip C.; Stratton, Jered; Skepner, Eugene; Rajao, Daniela S.
2016-01-01
ABSTRACT Influenza A virus (IAV) of the H3 subtype is an important respiratory pathogen that affects both humans and swine. Vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA) is the primary method used to control disease. However, due to antigenic drift, vaccine strains must be periodically updated. Six of the 7 positions previously identified in human seasonal H3 (positions 145, 155, 156, 158, 159, 189, and 193) were also indicated in swine H3 antigenic evolution. To experimentally test the effect on virus antigenicity of these 7 positions, substitutions were introduced into the HA of an isogenic swine lineage virus. We tested the antigenic effect of these introduced substitutions by using hemagglutination inhibition (HI) data with monovalent swine antisera and antigenic cartography to evaluate the antigenic phenotype of the mutant viruses. Combinations of substitutions within the antigenic motif caused significant changes in antigenicity. One virus mutant that varied at only two positions relative to the wild type had a >4-fold reduction in HI titers compared to homologous antisera. Potential changes in pathogenesis and transmission of the double mutant were evaluated in pigs. Although the double mutant had virus shedding titers and transmissibility comparable to those of the wild type, it caused a significantly lower percentage of lung lesions. Elucidating the antigenic effects of specific amino acid substitutions at these sites in swine H3 IAV has important implications for understanding IAV evolution within pigs as well as for improved vaccine development and control strategies in swine. IMPORTANCE A key component of influenza virus evolution is antigenic drift mediated by the accumulation of amino acid substitutions in the hemagglutinin (HA) protein, resulting in escape from prior immunity generated by natural infection or vaccination. Understanding which amino acid positions of the HA contribute to the ability of the virus to avoid prior immunity is important for understanding antigenic evolution and informs vaccine efficacy predictions based on the genetic sequence data from currently circulating strains. Following our previous work characterizing antigenic phenotypes of contemporary wild-type swine H3 influenza viruses, we experimentally validated that substitutions at 6 amino acid positions in the HA protein have major effects on antigenicity. An improved understanding of the antigenic diversity of swine influenza will facilitate a rational approach for selecting more effective vaccine components to control the circulation of influenza in pigs and reduce the potential for zoonotic viruses to emerge. PMID:27384658
Moosic, J P; Sung, E; Nilson, A; Jones, P P; McKean, D J
1982-08-25
The selective solubilization of different murine lymphocyte membrane compartments with several nonionic detergents was used to study the subcellular distribution of two distinct forms of lymphocyte cell recognition structures (Ia antigens). Ia antigens were isolated with a monoclonal anti-Ia immunoadsorbent from murine splenocytes that had been solubilized with four different nonionic detergents. Analyses of the immunoprecipitates indicated that Lubrol WX was selectively solubilizing a subpopulation of Ia consisting of mature highly glycosylated alpha and beta polypeptides which were not associated with Ii polypeptide. A second Ia subpopulation consisting of less glycosylated cytoplasmic precursor alpha and beta polypeptides associated with Ii polypeptide was immunoprecipitated from the Lubrol WX-insoluble material after solubilizing this material with Triton X-100. Comparable results were obtained when HLA-DR antigens were similarly isolated from cultured human lymphoblastoid cells. This selective solubilization phenomenon was not unique to Ia antigens. Only mature highly glycosylated H-2K molecules were immunoprecipitated from the Lubrol WX-soluble material while the less glycosylated precursor H-2K molecules were immunoprecipitated from the Triton X-100-solubilized Lubrol-insoluble material. These data directly demonstrate that the Ii polypeptide is exclusively associated with the intracellular Ia antigen cytoplasmic precursor molecules. These data also indicate that, under the conditions used in these experiments, Lubrol WX does not completely solubilize integral membrane proteins that have previously been shown to be associated with the rough endoplasmic reticulum.
Brooks, Suzanne E; Bonney, Stephanie A; Lee, Cindy; Publicover, Amy; Khan, Ghazala; Smits, Evelien L; Sigurdardottir, Dagmar; Arno, Matthew; Li, Demin; Mills, Ken I; Pulford, Karen; Banham, Alison H; van Tendeloo, Viggo; Mufti, Ghulam J; Rammensee, Hans-Georg; Elliott, Tim J; Orchard, Kim H; Guinn, Barbara-ann
2015-01-01
Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 10(6)). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1(126-134) (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1(950-958) epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.
Barr, Katie; Korchagina, Elena; Ryzhov, Ivan; Bovin, Nicolai; Henry, Stephen
2014-10-01
Monoclonal (MoAb) reagents are routinely used and are usually very reliable for the serologic determination of ABO blood types. However, the fine specificity and cross-reactivity of these reagents are often unknown, particularly against synthetic antigens used in some diagnostic assays. If nonserologic assays or very sensitive techniques other than those specifically prescribed by the manufacturer are used, then there is a risk of incorrect interpretation of results. Forty-seven MoAbs and two polyclonal ABO reagents were tested against red blood cell (RBC) kodecytes prepared with A trisaccharide, A Type 1, A Type 2, A Type 3, A Type 4, B trisaccharide, B Type 1, B Type 2, acquired B trisaccharide, and Le(a) trisaccharide function-spacer-lipid (FSL) constructs. Natural RBCs were tested in parallel. In addition these FSL constructs were printed onto paper with a desktop inkjet printer and used in a novel immunoassay that identifies reactivity through the appearance of alphanumeric characters. Mapping of MoAbs with kodecytes and printed FSL constructs revealed a series of broad recognition patterns. All ABO MoAbs tested were reactive with the RBC dominant Type 2 ABO antigens. Unexpectedly some anti-A reagents were reactive against the B Type 1 antigen, while others were poorly reactive with trisaccharide antigens. All ABO MoAbs detect the RBC dominant Type 2 ABO antigens; however, some reagents may show minor reactivity with inappropriate blood group antigens, which needs to be considered when using these reagents in alternative or highly sensitive analytic systems. © 2014 AABB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Hui; Peng, Ji-Run, E-mail: pengjr@medmail.com.cn; Chen, Peng-Cheng
Highlights: {yields} Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. {yields} An ideal artificial APCs system was successfully prepared in vivo. {yields} Controlled release of IL-2 leads to much more T-cell expansion. {yields} This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparationmore » of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.« less
HLA Amino Acid Polymorphisms and Kidney Allograft Survival
Kamoun, Malek; McCullough, Keith P.; Maiers, Martin; Fernandez Vina, Marcelo A.; Li, Hongzhe; Teal, Valerie; Leichtman, Alan B.; Merion, Robert M.
2017-01-01
Background The association of HLA mismatching with kidney allograft survival has been well established. We examined whether amino acid (AA) mismatches (MMs) at the antigen recognition site of HLA molecules represent independent and incremental risk factors for kidney graft failure (GF) beyond those MMs assessed at the antigenic (2-digit) specificity. Methods Data on 240 024 kidney transplants performed between 1987 and 2009 were obtained from the Scientific Registry of Transplant Recipients. We imputed HLA-A, -B, and -DRB1 alleles and corresponding AA polymorphisms from antigenic specificity through the application of statistical and population genetics inferences. GF risk was evaluated using Cox proportional-hazards regression models adjusted for covariates including patient and donor risk factors and HLA antigen MMs. Results We show that estimated AA MMs at particular positions in the peptide-binding pockets of HLA-DRB1 molecule account for a significant incremental risk that was independent of the well-known association of HLA antigen MMs with graft survival. A statistically significant linear relationship between the estimated number of AA MMs and risk of GF was observed for HLA-DRB1 in deceased donor and living donor transplants. This relationship was strongest during the first 12 months after transplantation (hazard ratio, 1.30 per 15 DRB1 AA MM; P < 0.0001). Conclusions This study shows that independent of the well-known association of HLA antigen (2-digit specificity) MMs with kidney graft survival, estimated AA MMs at peptide-binding sites of the HLA-DRB1 molecule account for an important incremental risk of GF. PMID:28221244
Maglinao, Maha; Eriksson, Magdalena; Schlegel, Mark K; Zimmermann, Stephanie; Johannssen, Timo; Götze, Sebastian; Seeberger, Peter H; Lepenies, Bernd
2014-02-10
Myeloid C-type lectin receptors (CLRs) in innate immunity represent a superfamily of pattern recognition receptors that recognize carbohydrate structures on pathogens and self-antigens. The primary interaction of an antigen-presenting cell and a pathogen shapes the following immune response. Therefore, the identification of CLR ligands that can either enhance or modulate the immune response is of interest. We have developed a screening platform based on glycan arrays to identify immune modulatory carbohydrate ligands of CLRs. A comprehensive library of CLRs was expressed by fusing the extracellular part of each respective CLR, the part containing the carbohydrate-recognition domain (CRD), to the Fc fragment of human IgG1 molecules. CLR-Fc fusion proteins display the CRD in a dimeric form, are properly glycosylated, and can be detected by a secondary antibody with a conjugated fluorophore. Thus, they are valuable tools for high-throughput screening. We were able to identify novel carbohydrate binders of CLRs using the glycan array technology. These CLR-binding carbohydrates were then covalently attached to the model antigen ovalbumin. The ovalbumin neoglycoconjugates were used in a dendritic cell/T cell co-culture assay to stimulate transgenic T cells in vitro. In addition, mice were immunized with these conjugates to analyze the immune modulatory properties of the CLR ligands in vivo. The CLR ligands induced an increased Th1 cytokine production in vitro and modulated the humoral response in vivo. The platform described here allows for the identification of CLR ligands, as well as the evaluation of each ligand's cell-specific targeting and immune modulatory properties. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borbulevych, Oleg Y; Insaidoo, Francis K; Baxter, Tiffany K
2008-09-17
Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning aminomore » acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26-35 decamer, although only the 27-35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26-35 and 27-35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-1{sub 26/27-35}-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27-35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone.« less
Borbulevych, Oleg Y.; Insaidoo, Francis K.; Baxter, Tiffany K.; Powell, Daniel J.; Johnson, Laura A.; Restifo, Nicholas P.; Baker, Brian M.
2007-01-01
Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning amino acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26–35 decamer, although only the 27–35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26–35 and 27–35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-126/27–35-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27–35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone. PMID:17719062
Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D
2015-01-01
The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.
Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd. Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K.; Sharma, Yagya D.
2015-01-01
Background The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Methods Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Results Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Conclusions Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host. PMID:26393350
Baneth, Gad; Barta, John R.; Shkap, Varda; Martin, Donald S.; Macintire, Douglass K.; Vincent-Johnson, Nancy
2000-01-01
Recognition of Hepatozoon canis and Hepatozoon americanum as distinct species was supported by the results of Western immunoblotting of canine anti-H. canis and anti-H. americanum sera against H. canis gamonts. Sequence analysis of 368 bases near the 3′ end of the 18S rRNA gene from each species revealed a pairwise difference of 13.59%. PMID:10699047
Development of Medical Technology for Contingency Response to Marrow Toxic Agents
2016-10-07
Guidelines • Collaborated with REMM.nlm.gov on an update of acute radiation syndrome treatment guidelines • Conducted hospital readiness site assessments... Radiation Training, sending a physician to the REAC/TS training, conducting an Acute Radiation Syndrome Medical Grand rounds session, and having a...Information System ARD Antigen Recognition Domain ARRA The American Recovery and Reinvestment Act of 2009 ARS Acute Radiation Syndrome (also known
Oncolytic Virotherapy as Emerging Immunotherapeutic Modality: Potential of Parvovirus H-1
Moehler, Markus; Goepfert, Katrin; Heinrich, Bernd; Breitbach, Caroline J.; Delic, Maike; Galle, Peter Robert; Rommelaere, Jean
2014-01-01
Human tumors develop multiple strategies to evade recognition and efficient suppression by the immune system. Therefore, a variety of immunotherapeutic strategies have been developed to reactivate and reorganize the human immune system. The recent development of new antibodies against immune check points may help to overcome the immune silencing induced by human tumors. Some of these antibodies have already been approved for treatment of various solid tumor entities. Interestingly, targeting antibodies may be combined with standard chemotherapy or radiation protocols. Furthermore, recent evidence indicates that intratumoral or intravenous injections of replicative oncolytic viruses such as herpes simplex-, pox-, parvo-, or adenoviruses may also reactivate the human immune system. By generating tumor cell lysates in situ, oncolytic viruses overcome cellular tumor resistance mechanisms and induce immunogenic tumor cell death resulting in the recognition of newly released tumor antigens. This is in particular the case of the oncolytic parvovirus H-1 (H-1PV), which is able to kill human tumor cells and stimulate an anti-tumor immune response through increased presentation of tumor-associated antigens, maturation of dendritic cells, and release of pro-inflammatory cytokines. Current research and clinical studies aim to assess the potential of oncolytic virotherapy and its combination with immunotherapeutic agents or conventional treatments to further induce effective antitumoral immune responses. PMID:24822170
Kabingu, Edith; Oseroff, Allan R; Wilding, Gregory E; Gollnick, Sandra O
2009-07-01
Numerous preclinical studies have shown that local photodynamic therapy (PDT) of tumors enhances systemic antitumor immunity. However, other than single-case and anecdotal reports, this phenomenon has not been examined following clinical PDT. To determine whether PDT in a clinical setting enhances systemic recognition of tumor cells, we examined whether PDT of basal cell carcinoma resulted in an increased systemic immune response to Hip1, a tumor antigen associated with basal cell carcinoma. Basal cell carcinoma lesions were either treated with PDT or surgically removed. Blood was collected from patients immediately before or 7 to 10 days following treatment. Peripheral blood leukocytes were isolated from HLA-A2-expressing patients and reactivity to a HLA-A2-restricted Hip1 peptide was measured by INF-gamma ELISpot assay. Immune recognition of Hip1 increased in patients whose basal cell carcinoma lesions were treated with PDT. This increase in reactivity was significantly greater than reactivity observed in patients whose lesions were surgically removed. Patients with superficial lesions exhibited greater enhancement of reactivity compared with patients with nodular lesions. Immune reactivity following PDT was inversely correlated with treatment area and light dose. These findings show for the first time that local tumor PDT can enhance systemic immune responses to tumors in patients, and validate previous preclinical findings.
Adoptive Cell Transfer Therapy
Dudley, Mark E.; Rosenberg, Steven A.
2008-01-01
Adoptive cell transfer therapy has developed into a potent and effective treatment for patients with metastatic melanoma. Current application of this therapy relies on the ex vivo generation of highly active, highly avid tumor-reactive lymphocyte cultures from endogenous tumor infiltrating lymphocytes or on the genetic engineering of cells using antigen receptor genes to express de novo tumor antigen recognition. When anti-tumor lymphocyte cultures are administered to autologous patients with high dose interleukin-2 following a lymphodepleting conditioning regimen, the cells can expand in vivo, traffic to tumor, and mediate tumor regression and durable objective clinical responses. Current investigation seeks to improve the methods for generating and administering the lymphocyte cultures, and future clinical trials aim to improve durable response rates and extend the patient populations that are candidates for treatment. PMID:18083376
Gioffré, A; Echeverría-Valencia, G; Arese, A; Morsella, C; Garbaccio, S; Delgado, F; Zumárraga, M; Paolicchi, F; Cataldi, A; Romano, M I
2009-12-15
Johne's disease or paratuberculosis is widespread in almost all countries and remains difficult to eradicate. Nowadays, diagnosis of Mycobacterium avium subsp. paratuberculosis (MPTB) infection is one of the main concerns. In this work, we evaluated the expression, biochemical properties and antigenicity of the Apa antigen, encoded by the gene annotated as MAP1569, in the MPTB genome. We confirmed its expression in MPTB and its glycosylation by the ConA binding assay. Although the MPTB-Apa is not an immunodominant antigen, MPTB-infected cattle showed a strong humoral response to recombinant Apa by Western blot and ELISA. Milk was also a suitable sample to be tested by ELISA. We comparatively analysed the humoral cross-reactivity to the Apa from MPTB (MPTB-Apa) and the orthologue from Mycobacterium tuberculosis (MT-Apa, identical to that from Mycobacterium bovis) in both infected and control cows. Response of M. bovis- and MPTB-infected animals against MT-Apa was similar (P=0.6985) but the response of the M. bovis-infected ones to MPTB-Apa was differential, being significantly diminished (P<0.0001). Although 6 out 45 animals from MPTB-infected herds responded to MPTB-Apa stimulation in the IFNgamma release assay, we found no significant differences when compared infected herds with non-infected ones (P=0.34). This antigen, in contrast to bovine Purified Protein Derivative (PPDb), was strongly represented in avian PPD (PPDa), as shown by the recognition of BALB/c mice hyperimmune sera against MPTB-Apa by Dot-blot immunoassay. We therefore demonstrated the antigenicity of Apa in MPTB-infected animals and a differential response to the recombinant antigen when compared to M. bovis-infected animals. These traits herein described, added to the usefulness of milk samples to detect IgG anti-Apa, could be important for routine screening in dairy cattle, considering a multiantigenic approach to overcome the lack of immunodominance.
Unmanned Aircraft Systems Sensors
2005-05-01
to development of UAS and UA sensor capabilities UNCLASSIFIED Small UA EO/IR Sensors • EO – Requirement for a facial recognition capability while...UNCLASSIFIED Tactical UA EO/IR Sensors • EO – Requirement for a facial recognition capability while remaining undetected. (NIIRS 8+) • IR – Requirement for...Operational & Theater UA EO/IR Sensors • EO – Requirement for a facial recognition capability while remaining undetected. (NIIRS 8+) • IR – Requirement
Alvarez Hayes, Jimena; Oviedo, Juan Marcos; Valdez, Hugo; Laborde, Juan Martín; Maschi, Fabricio; Ayala, Miguel; Shah, Rohan; Fernandez Lahore, Marcelo; Rodriguez, Maria Eugenia
2017-10-01
Whooping cough, which is caused by Bordetella pertussis and B. parapertussis, is a reemerging disease. New protective antigens are needed to improve the efficacy of current vaccines against both species. Using proteomic tools, it was here found that B. parapertussis expresses a homolog of AfuA, a previously reported new vaccine candidate against B. pertussis. It was found that this homolog, named AfuA Bpp , is expressed during B. parapertussis infection, exposed on the surface of the bacteria and recognized by specific antibodies induced by the recombinant AfuA cloned from B. pertussis (rAfuA). Importantly, the presence of the O-antigen, a molecule that has been found to shield surface antigens on B. parapertussis, showed no influence on antibody recognition of AfuA Bpp on the bacterial surface. The present study further showed that antibodies induced by immunization with the recombinant protein were able to opsonize B. parapertussis and promote bacterial uptake by neutrophils. Finally, it was shown that this antigen confers protection against B. parapertussis infection in a mouse model. Altogether, these results indicate that AfuA is a good vaccine candidate for acellular vaccines protective against both causative agents of whooping cough. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Artificial engineering of secondary lymphoid organs.
Tan, Jonathan K H; Watanabe, Takeshi
2010-01-01
Secondary lymphoid organs such as spleen and lymph nodes are highly organized immune structures essential for the initiation of immune responses. They display distinct B cell and T cell compartments associated with specific stromal follicular dendritic cells and fibroblastic reticular cells, respectively. Interweaved through the parenchyma is a conduit system that distributes small antigens and chemokines directly to B and T cell zones. While most structural aspects between lymph nodes and spleen are common, the entry of lymphocytes, antigen-presenting cells, and antigen into lymphoid tissues is regulated differently, reflecting the specialized functions of each organ in filtering either lymph or blood. The overall organization of lymphoid tissue is vital for effective antigen screening and recognition, and is a feature which artificially constructed lymphoid organoids endeavor to replicate. Synthesis of artificial lymphoid tissues is an emerging field that aims to provide therapeutic application for the treatment of severe infection, cancer, and age-related involution of secondary lymphoid tissues. The development of murine artificial lymphoid tissues has benefited greatly from an understanding of organogenesis of lymphoid organs, which has delineated cellular and molecular elements essential for the recruitment and organization of lymphocytes into lymphoid structures. Here, the field of artificial lymphoid tissue engineering is considered including elements of lymphoid structure and development relevant to organoid synthesis. (c) 2010 Elsevier Inc. All rights reserved.
Seo, Ki-Weon; Kim, Dong-Heon; Kim, Ah Hyun; Yoo, Han-Sang; Lee, Kyung-Yeol; Jang, Yong-Suk
2011-01-01
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. Among the virulence factors of the pathogen, ApxIIA, a bacterial exotoxin, is expressed by many serotypes and presents a plausible target for vaccine development. We characterized the region within ApxIIA that induces a protective immune response against bacterial infection using mouse challenge model. Recombinant proteins spanning the length of ApxIIA were produced and antiserum to the full-length ApxIIA was induced in mice. This antiserum recognized fragments #2, #3 and #5 with high binding specificity, but showed poor recognition for fragments #1 and #4. Of the antisera induced in mice by injection of each fragments, only the antiserum to fragment #4 failed to efficiently recognize the full-length antigen, although the individual antisera recognized their cognate antigens with almost equal efficiency. The protective potency of the immunogenic proteins against a challenge injection of bacteria in vivo correlated well with the antibody titer. Fragment #5 induced the highest level of protective activity, comparable to that by the full-length protein. These results support the use of fragment #5 to produce a vaccine against A. pleuropneumoniae challenge, since the small antigen peptide is easier to handle than is the full-length protein and can be expressed efficiently in heterologous expression systems.
Venet, Sophie; Ravn, Ulla; Buatois, Vanessa; Gueneau, Franck; Calloud, Sébastien; Kosco-Vilbois, Marie; Fischer, Nicolas
2012-01-01
Antibody repertoires are characterized by diversity as they vary not only amongst individuals and post antigen exposure but also differ significantly between vertebrate species. Such plasticity can be exploited to generate human antibody libraries featuring hallmarks of these diverse repertoires. In this study, the focus was to capture CDRH3 sequences, as this region generally accounts for most of the interaction energy with antigen. Sequences from human as well as non-human sources were successfully integrated into human antibody libraries. Next generation sequencing of these libraries proved that the CDRH3 lengths and amino acid composition corresponded to the species of origin. Specific CDRH3 sequences, biased towards the recognition of a model antigen either by immunizing mice or by selecting with phage display, were then integrated into another set of libraries. From these antigen biased libraries, highly potent antibodies were more frequently isolated, indicating that the characteristics of an immune repertoire is transferrable via CDRH3 sequences into a human antibody library. Taken together, these data demonstrate that the properties of naturally or experimentally biased repertoires can be effectively harnessed for the generation of targeted human antibody libraries, substantially increasing the probability of isolating antibodies suitable for therapeutic and diagnostic applications. PMID:22937053
Pyo, Suhkneung; Kang, Chung Hyo; Lee, Chong Ock; Lee, Heung Kyoung; Choi, Sang Un; Park, Chi Hoon
2018-01-01
Gastric cancer is a malignancy that has a high mortality rate. Although progress has been made in the treatment of gastric cancer, many patients experience cancer recurrence and metastasis. Folate receptor 1 (FOLR1) is overexpressed on the cell surface in over one-third of gastric cancer patients, but rarely is expressed in normal tissue. This makes FOLR1 a potential target for chimeric antigen receptor (CAR) T cell immunotherapy, although the function of FOLR1 has not been elucidated. CAR are engineered fusion receptor composed of an antigen recognition region and signaling domains. T cells expressing CAR have specific activation and cytotoxic effects against cancer cells containing the target antigen. In this study, we generated a CAR that targets FOLR1 composed of a single-chain variable fragment (scFv) of FOLR1 antibody and signaling domains consisting of CD28 and CD3ζ. Both FOLR1-CAR KHYG-1, a natural killer cell line, and FOLR1-CAR T cells recognized FOLR1-positive gastric cancer cells in a MHC-independent manner and induced secretion of various cytokines and caused cell death. Conclusively, this is the first study to demonstrate that CAR KHYG-1/T cells targeting FOLR1 are effective against FOLR1-positive gastric cancer cells. PMID:29874279
Mirzaei, Hamid Reza; Mirzaei, Hamed; Lee, Sang Yun; Hadjati, Jamshid; Till, Brian G
2016-10-01
Excitement is growing for therapies that harness the power of patients' immune systems to combat their diseases. One approach to immunotherapy involves engineering patients' own T cells to express a chimeric antigen receptor (CAR) to treat advanced cancers, particularly those refractory to conventional therapeutic agents. Although these engineered immune cells have made remarkable strides in the treatment of patients with certain hematologic malignancies, success with solid tumors has been limited, probably due to immunosuppressive mechanisms in the tumor niche. In nearly all studies to date, T cells bearing αβ receptors have been used to generate CAR T cells. In this review, we highlight biological characteristics of γδ T cells that are distinct from those of αβ T cells, including homing to epithelial and mucosal tissues and unique functions such as direct antigen recognition, lack of alloreactivity, and ability to present antigens. We offer our perspective that these features make γδ T cells promising for use in cellular therapy against several types of solid tumors, including melanoma and gastrointestinal cancers. Engineered γδ T cells should be considered as a new platform for adoptive T cell cancer therapy for mucosal tumors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D.; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C.
2015-01-01
Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity towards B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs (ITAM)-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared to standard first and second generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors. PMID:25941351
Genes Critical for Developing Periodontitis: Lessons from Mouse Models.
de Vries, Teun J; Andreotta, Stefano; Loos, Bruno G; Nicu, Elena A
2017-01-01
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell-cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18 ), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2 ), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf- α receptor, IL-17 receptor, Socs3, Foxo1 ), and proteolytic enzymes (e.g., Mmp8, Plasmin ) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4 , the Ccr1/Ccr5 , the Tnf- α receptor p55 , and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response.
Yu, Hui-Chun; Huang, Kuang-Yung; Lu, Ming-Chi; Huang, Hsien-Lu; Liu, Wei-Ting; Lee, Wen-Chien; Liu, Su-Qin; Huang, Hsien-Bin; Lai, Ning-Sheng
2015-04-13
BH2, a monoclonal antibody prepared against the denatured human leukocytic antigen-B27 heavy chain (HLA-B27 HC), can immunoprecipitate the misfolded HLA-B27 HC complexed with Bip in the endoplasmic reticulum and recognize the homodimerized HLA-B27 HC that is often observed on the cell membrane of patients suffered from ankylosing spondylitis (AS). However, the recognition specificity of BH2 toward the other molecules of HLA-B type and toward the different types of HLA molecules remained uncharacterized. In this study, we carried out the HLA-typing by using the Luminex Technology to characterize the recognition specificity of BH2 and analyzed the binding domain of HLA-B27 HC by BH2. Our results indicated that BH2 preferably binds to molecules of HLA-B and -C rather than HLA-A and the binding site is located within the α2 domain of HLA-B27 HC.
Structural constraints determine the glycosylation of HIV-1 envelope trimers
Pritchard, Laura K.; Vasiljevic, Snezana; Ozorowski, Gabriel; Seabright, Gemma E.; Cupo, Albert; Ringe, Rajesh; Kim, Helen J.; Sanders, Rogier W.; Doores, Katie J.; Burton, Dennis R.; Wilson, Ian A.; Ward, Andrew B.; Moore, John P.; Crispin, Max
2015-01-01
A highly glycosylated, trimeric envelope glycoprotein (Env) mediates HIV-1 cell entry. The high density and heterogeneity of the glycans shield Env from recognition by the immune system but, paradoxically, many potent broadly neutralizing antibodies (bNAbs) recognize epitopes involving this glycan shield. To better understand Env glycosylation and its role in bNAb recognition, we characterized a soluble, cleaved recombinant trimer (BG505 SOSIP.664) that is a close structural and antigenic mimic of native Env. Large, unprocessed oligomannose-type structures (Man8-9GlcNAc2) are notably prevalent on the gp120 components of the trimer, irrespective of the mammalian cell expression system or the bNAb used for affinity-purification. In contrast, gp41 subunits carry more highly processed glycans. The glycans on uncleaved, non-native oligomeric gp140 proteins are also highly processed. A homogeneous, oligomannose-dominated glycan profile is therefore a hallmark of a native Env conformation and a potential Achilles’ heel that can be exploited for bNAb recognition and vaccine design. PMID:26051934
Artificial Immune System for Recognizing Patterns
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance
2005-01-01
A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.
Thakur, Aneesh; Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Rose, Fabrice; Andersen, Peter; Christensen, Dennis; Foged, Camilla
2018-05-31
Liquid vaccine dosage forms have limited stability and require refrigeration during their manufacture, distribution and storage. In contrast, solid vaccine dosage forms, produced by for example spray drying, offer improved storage stability and reduced dependence on cold-chain facilities. This is advantageous for mass immunization campaigns for global public health threats, e.g., tuberculosis (TB), and offers cheaper vaccine distribution. The multistage subunit vaccine antigen H56, which is a fusion protein of the Mycobacterium tuberculosis (Mtb) antigens Ag85B, ESAT-6, and Rv2660, has been shown to confer protective efficacy against active TB before and after Mtb exposure in preclinical models, and it is currently undergoing clinical phase 2a testing. In several studies, including a recent study comparing multiple clinically relevant vaccine adjuvants, the T helper type 1 (Th1)/Th17-inducing adjuvant CAF01 was the most efficacious adjuvant for H56 to stimulate protective immunity against Mtb. With the long-term goal of designing a thermostable and self-administrable dry powder vaccine based on H56 and CAF01 for inhalation, we compared H56 spray-dried with CAF01 with the non-spray-dried H56/CAF01 vaccine with respect to their ability to induce systemic Th1, Th17 and humoral responses after subcutaneous immunization. Here we show that spray drying of the H56/CAF01 vaccine results in preserved antigenic epitope recognition and adjuvant activity of CAF01, and the spray-dried, reconstituted vaccine induces antigen-specific Th1, Th17 and humoral immune responses, which are comparable to those stimulated by the non-spray-dried H56/CAF01 vaccine. In addition, the spray-dried and reconstituted H56/CAF01 vaccine promotes similar polyfunctional CD4 + T-cell responses as the non-spray-dried vaccine. Thus, our study provides proof-of-concept that spray drying of the subunit vaccine H56/CAF01 preserves vaccine-induced humoral and cell-mediated immune responses. These results support our ongoing efforts to develop a thermostable, dry powder-based TB vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.
He, Lu; De Groot, Anne S; Bailey-Kellogg, Chris
2015-11-27
Different types of bacteria face different pressures from the immune system, with those that persist ("hit-and-stay") potentially having to adapt more in order to escape than those prone to short-lived infection ("hit-and-run"), and with commensal bacteria potentially different from both due to additional physical mechanisms for avoiding immune detection. The Janus Immunogenicity Score (JIS) was recently developed to assess the likelihood of T cell recognition of an antigen, using an analysis that considers both binding of a peptide within the antigen by major histocompatability complex (MHC) and recognition of the peptide:MHC complex by cognate T cell receptor (TCR). This score was shown to be predictive of T effector vs. T regulatory or null responses in experimental data, as well as to distinguish viruses representative of the hit-and-stay vs. hit-and-run phenotypes. Here, JIS-based analyses were conducted in order to characterize the extent to which the pressure to avoid T cell recognition is manifested in genomic differences among representative hit-and-run, hit-and-stay, and commensal bacteria. Overall, extracellular proteins were found to have different JIS profiles from cytoplasmic ones. Contrasting the bacterial groups, extracellular proteins were shown to be quite different across the groups, much more so than intracellular proteins. The differences were evident even at the level of corresponding peptides in homologous protein pairs from hit-and-run and hit-and-stay bacteria. The multi-level analysis of patterns of immunogenicity across different groups of bacteria provides a new way to approach questions of bacterial immune camouflage or escape, as well as to approach the selection and optimization of candidates for vaccine design. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wilson, Anthony B; Whittington, Camilla M; Bahr, Angela
2014-12-20
The genes of the major histocompatibility complex (MHC/MH) have attracted considerable scientific interest due to their exceptional levels of variability and important function as part of the adaptive immune system. Despite a large number of studies on MH class II diversity of both model and non-model organisms, most research has focused on patterns of genetic variability at individual loci, failing to capture the functional diversity of the biologically active dimeric molecule. Here, we take a systematic approach to the study of MH variation, analyzing patterns of genetic variation at MH class IIα and IIβ loci of the seahorse, which together form the immunologically active peptide binding cleft of the MH class II molecule. The seahorse carries a minimal class II system, consisting of single copies of both MH class IIα and IIβ, which are physically linked and inherited in a Mendelian fashion. Both genes are ubiquitously expressed and detectible in the brood pouch of male seahorses throughout pregnancy. Genetic variability of the two genes is high, dominated by non-synonymous variation concentrated in their peptide-binding regions. Coding variation outside these regions is negligible, a pattern thought to be driven by intra- and interlocus recombination. Despite the tight physical linkage of MH IIα and IIβ loci, recombination has produced novel composite alleles, increasing functional diversity at sites responsible for antigen recognition. Antigen recognition by the adaptive immune system of the seahorse is enhanced by high variability at both MH class IIα and IIβ loci. Strong positive selection on sites involved in pathogen recognition, coupled with high levels of intra- and interlocus recombination, produce a patchwork pattern of genetic variation driven by genetic hitchhiking. Studies focusing on variation at individual MH loci may unintentionally overlook an important component of ecologically relevant variation.
Ambati, Aditya; Valentini, Davide; Montomoli, Emanuele; Lapini, Guilia; Biuso, Fabrizio; Wenschuh, Holger; Magalhaes, Isabelle; Maeurer, Markus
2015-01-01
A high content peptide microarray containing the entire influenza A virus [A/California/08/2009(H1N1)] proteome and haemagglutinin proteins from 12 other influenza A subtypes, including the haemagglutinin from the [A/South Carolina/1/1918(H1N1)] strain, was used to gauge serum IgG epitope signatures before and after Pandemrix® vaccination or H1N1 infection in a Swedish cohort during the pandemic influenza season 2009. A very narrow pattern of pandemic flu-specific IgG epitope recognition was observed in the serum from individuals who later contracted H1N1 infection. Moreover, the pandemic influenza infection generated IgG reactivity to two adjacent epitopes of the neuraminidase protein. The differential serum IgG recognition was focused on haemagglutinin 1 (H1) and restricted to classical antigenic sites (Cb) in both the vaccinated controls and individuals with flu infections. We further identified a novel epitope VEPGDKITFEATGNL on the Ca antigenic site (251–265) of the pandemic flu haemagglutinin, which was exclusively recognized in serum from individuals with previous vaccinations and never in serum from individuals with H1N1 infection (confirmed by RNA PCR analysis from nasal swabs). This epitope was mapped to the receptor-binding domain of the influenza haemagglutinin and could serve as a correlate of immune protection in the context of pandemic flu. The study shows that unbiased epitope mapping using peptide microarray technology leads to the identification of biologically and clinically relevant target structures. Most significantly an H1N1 infection induced a different footprint of IgG epitope recognition patterns compared with the pandemic H1N1 vaccine. PMID:25639813
Indirectly Recognized HLA-C Mismatches and Their Potential Role in Transplant Outcome
Thus, Kirsten A.; Te Boome, Liane; Kuball, Jürgen; Spierings, Eric
2014-01-01
HLA-C mismatches are clearly associated to alloreactivity after hematopoietic stem-cell transplantation; in a number of large cohorts, HLA-C mismatches are correlated to an increased risk of acute graft-versus-host disease (GVHD) or even impaired survival. While for HLA-A and -B, both antigenic as well as allelic mismatches are associated with an increased risk of acute GVHD, such an increased risk is only observed for antigenic HLA-C mismatches and not for allelic mismatches. These observations raise the question what sets HLA-C apart from HLA-A and -B. The difference may well be related to the reduced levels of cell-surface expression of HLA-C as compared to HLA-A and -B, possibly due to, among other factors, a limited peptide-binding capacity. This limited peptide-binding capacity may retain HLA-C in the ER and enhance degradation of the HLA-C protein. Once degraded, HLA-C-derived peptides can be presented to the immune system via other HLA alleles and are thus available for indirect recognition. Indeed, such HLA-C-derived peptides have previously been eluted from other HLA alleles. We have recently developed an approach to predict indirect recognition of HLA molecules, by establishing the numbers of predicted indirectly recognizable HLA epitopes (PIRCHES). The number of PIRCHES presented on HLA class I and II (PIRCHE-I and -II, respectively), are highly correlated to clinical measures of alloreactivity, such as acute GVHD. In the present “Hypothesis & Theory,” we reviewed the current knowledge on HLA-C mismatches and alloreactivity. Moreover, we speculate about the role of direct and indirect recognition of HLA-C and the consequences for donor selection in HLA-C mismatched stem-cell transplantation. PMID:24860572
Shearer, M H; Bright, R K; Lanford, R E; Kennedy, R C
1993-01-01
In this study, we examined the humoral immune responses and in vivo tumour immunity induced by baculovirus recombinant simian virus 40 (SV40) large tumour antigen (rSV40 T-ag). BALB/c mice immunized with rSV40 T-ag produced antibody responses that recognized SV40 large tumour antigen (T-ag) by ELISA. Analysis of these anti-SV40 T-ag responses indicated that the antibodies recognized epitopes associated with both the carboxy and amino terminus of SV40 T-ag. This pattern of SV40 T-ag epitope recognition was similar to that observed in anti-SV40 T-ag responses induced by inoculation with irradiated SV40-transformed cells. Mice immunized with either rSV40 T-ag or with the inactivated transformed cells were protected from a subsequent in vivo lethal tumour challenge with live SV40-transformed cells. These studies suggest that humoral immune responses induced by rSV40 T-ag are similar in epitope specificity to that induced by inactivated SV40-transformed cells. In addition, recombinant tumour-specific antigens from papovaviruses, such as SV40, can be used to induce tumour immunity which protects from a subsequent lethal tumour challenge. This study may provide insight into the use of recombinant tumour antigens as putative tumour vaccines and in the development of active immunotherapeutic strategies for treating virus-induced cancers. PMID:7679059
Ebstein, Frédéric; Keller, Martin; Paschen, Annette; Walden, Peter; Seeger, Michael; Bürger, Elke; Krüger, Elke; Schadendorf, Dirk; Kloetzel, Peter-M.; Seifert, Ulrike
2016-01-01
Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing. PMID:27143649
Rigid-body Ligand Recognition Drives Cytotoxic T-lymphocyte Antigen 4 (CTLA-4) Receptor Triggering
Yu, Chao; Sonnen, Andreas F.-P.; George, Roger; Dessailly, Benoit H.; Stagg, Loren J.; Evans, Edward J.; Orengo, Christine A.; Stuart, David I.; Ladbury, John E.; Ikemizu, Shinji; Gilbert, Robert J. C.; Davis, Simon J.
2011-01-01
The inhibitory T-cell surface-expressed receptor, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which belongs to the class of cell surface proteins phosphorylated by extrinsic tyrosine kinases that also includes antigen receptors, binds the related ligands, B7-1 and B7-2, expressed on antigen-presenting cells. Conformational changes are commonly invoked to explain ligand-induced “triggering” of this class of receptors. Crystal structures of ligand-bound CTLA-4 have been reported, but not the apo form, precluding analysis of the structural changes accompanying ligand binding. The 1.8-Å resolution structure of an apo human CTLA-4 homodimer emphasizes the shared evolutionary history of the CTLA-4/CD28 subgroup of the immunoglobulin superfamily and the antigen receptors. The ligand-bound and unbound forms of both CTLA-4 and B7-1 are remarkably similar, in marked contrast to B7-2, whose binding to CTLA-4 has elements of induced fit. Isothermal titration calorimetry reveals that ligand binding by CTLA-4 is enthalpically driven and accompanied by unfavorable entropic changes. The similarity of the thermodynamic parameters determined for the interactions of CTLA-4 with B7-1 and B7-2 suggests that the binding is not highly specific, but the conformational changes observed for B7-2 binding suggest some level of selectivity. The new structure establishes that rigid-body ligand interactions are capable of triggering CTLA-4 phosphorylation by extrinsic kinase(s). PMID:21156796
Martin, Brigitte E.; Jia, Kun; Sun, Hailiang; Ye, Jianqiang; Hall, Crystal; Ware, Daphne; Wan, Xiu-Feng
2016-01-01
Identification of antigenic variants is the key to a successful influenza vaccination program. The empirical serological methods to determine influenza antigenic properties require viral propagation. Here a novel quantitative PCR-based antigenic characterization method using polyclonal antibody and proximity ligation assays, or so-called polyPLA, was developed and validated. This method can detect a viral titer that is less than 1000 TCID50/mL. Not only can this method differentiate between different HA subtypes of influenza viruses but also effectively identify antigenic drift events within the same HA subtype of influenza viruses. Applications in H3N2 seasonal influenza data showed that the results from this novel method are consistent with those from the conventional serological assays. This method is not limited to the detection of antigenic variants in influenza but also other pathogens. It has the potential to be applied through a large-scale platform in disease surveillance requiring minimal biosafety and directly using clinical samples. PMID:25546251
Brewitz, Anna; Eickhoff, Sarah; Dähling, Sabrina; Quast, Thomas; Bedoui, Sammy; Kroczek, Richard A; Kurts, Christian; Garbi, Natalio; Barchet, Winfried; Iannacone, Matteo; Klauschen, Frederick; Kolanus, Waldemar; Kaisho, Tsuneyasu; Colonna, Marco; Germain, Ronald N; Kastenmüller, Wolfgang
2017-02-21
Adaptive cellular immunity is initiated by antigen-specific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8 + T cell antigen-driven activation in a CCR5-dependent fashion. Furthermore, activated CD8 + T cells orchestrated the local recruitment of lymph node-resident XCR1 chemokine receptor-expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8 + T cell-mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1 + DCs, thereby optimizing XCR1 + DC maturation and cross-presentation. These data support a model in which CD8 + T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.
2013-06-01
In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.
Yi, Huanfa; Yu, Xiaofei; Guo, Chunqing; Manjili, Masoud H.; Repasky, Elizabeth A.; Wang, Xiang-Yang
2011-01-01
In this study, we report a novel treatment strategy that could potentially be used to improve efficacy of adoptive cell therapy for patients with prostate cancer. We show that female C57BL/6 mice are able to effectively reject two syngeneic prostate tumors (TRAMP-C2 and RM1) in a T cell-dependent manner. The protective antitumor immunity appears to primarily involve T cell responses reactive against general prostate tumor/tissue antigens, rather than simply to male-specific H-Y antigen. For the first time we show that adoptive transfer of lymphocytes from TRAMP-C2-primed or naive female mice effectively control prostate tumor growth in male mice, when combined with host pre-conditioning (i.e., non-myeloablative lymphodepletion) and IL-2 administration. No pathological autoimmune response was observed in the treated tumor-bearing male mice. Our studies provide new insights regarding the immune-mediated recognition of male-specific tissue, such as the prostate, and may offer new immunotherapy treatment strategies for advanced prostate cancer. PMID:21088965
NKT cell subsets as key participants in liver physiology and pathology
Bandyopadhyay, Keya; Marrero, Idania; Kumar, Vipin
2016-01-01
Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance. It is becoming clear that two different subsets of NKT cells—type I and type II—have different modes of antigen recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients. PMID:26972772
CD1a on Langerhans cells controls inflammatory skin diseases
Yongqing, Tang; Kim, Jessica; Hughes, Victoria A.; Nours, Jérôme Le; Marquez, Elsa A.; Purcell, Anthony W.; Wan, Qi; Sugita, Masahiko
2016-01-01
CD1a is a lipid-presenting molecule abundantly expressed on Langerhans cells. However, the in vivo role of CD1a remains unclear, principally because CD1a is lacking in mice. Using CD1a-transgenic mice, we show that the plant-derived lipid urushiol triggers CD1a-dependent skin inflammation, driven by CD4+ T cells producing IL-17 and IL-22. Human subjects with poison ivy dermatitis showed a similar cytokine signature following CD1a-mediated urushiol recognition. Among different urushiol congeners, we identified diunsaturated pentadecylcatechol (C15:2) as the dominant antigen for CD1a-restricted T cells. We determined the crystal structure of the CD1a-urushiol (C15:2) complex, demonstrating the molecular basis of urushiol interaction with the antigen-binding cleft of CD1a. In a mouse model and psoriasis patients, CD1a amplified inflammatory responses mediated by TH17 cells reactive with self lipid antigens. Treatment with blocking antibodies against CD1a alleviated skin inflammation. Thus, we propose CD1a as a potential therapeutic target in inflammatory skin diseases. PMID:27548435
Raman, Marine C C; Rizkallah, Pierre J; Simmons, Ruth; Donnellan, Zoe; Dukes, Joseph; Bossi, Giovanna; Le Provost, Gabrielle S; Todorov, Penio; Baston, Emma; Hickman, Emma; Mahon, Tara; Hassan, Namir; Vuidepot, Annelise; Sami, Malkit; Cole, David K; Jakobsen, Bent K
2016-01-13
Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics.
NASA Astrophysics Data System (ADS)
Das, Gobind; La Rocca, Rosanna; Lakshmikanth, Tadepally; Gentile, Francesco; Tallerico, Rossana; Zambetti, Lia P.; Devitt, J.; Candeloro, Patrizio; de Angelis, Francesco; Carbone, Ennio; di Fabrizio, Enzo
2010-03-01
Human leukocyte antigen (HLA) class I molecules are formed by three immunoglobulin-like domains (α1, α2, and α3) once folded by peptide and β2-microglobulin show the presence of two α-helix streams and one β-sheet limiting the pocket for the antigenic peptide. The loss of HLA class I expression in tumors and virus-infected cells, on one hand, prevents T cell recognition, while on the other hand, it leads to natural killer (NK) cell mediated cytotoxicity. We propose the possibility of using Raman spectroscopy to measure the relative expression of HLA class I molecules at the single-cell level. Raman spectra are recorded for three cell lines (K562, T2, and T3) and monomers (HLA class I folded, unfolded and peptide+β2-microlobulin refolded) using 830 nm laser line. Our data are consistent with the hypothesis that in the Raman spectra, ranging from 1600 to 1800 cm-1, the intensity variation of cells associated with HLA class I molecules could be measured.
Mantegazza, Adriana R.; Guttentag, Susan H.; El-Benna, Jamel; Sasai, Miwa; Iwasaki, Akiko; Shen, Hao; Laufer, Terri M.; Marks, Michael S.
2012-01-01
SUMMARY Effective major histocompatibility complex-II (MHC-II) antigen presentation from phagocytosed particles requires phagosome-intrinsic toll-like receptor (TLR) signaling, but the molecular mechanisms underlying TLR delivery to phagosomes and how signaling regulates antigen presentation are incompletely understood. We show a requirement in dendritic cells (DCs) for adaptor protein-3 (AP-3) in efficient TLR recruitment to phagosomes and MHC-II presentation of antigens internalized by phagocytosis but not receptor-mediated endocytosis. DCs from AP-3-deficient pearl mice elicited impaired CD4+ T cell activation and Th1 effector function to particulate antigen in vitro and to recombinant Listeria monocytogenes infection in vivo. Whereas phagolysosome maturation and peptide:MHC-II complex assembly proceeded normally in pearl DCs, peptide:MHC-II export to the cell surface was impeded. This correlated with reduced TLR4 recruitment and proinflammatory signaling from phagosomes by particulate TLR ligands. We propose that AP-3-dependent TLR delivery from endosomes to phagosomes and subsequent signaling mobilize peptide:MHC-II export from intracellular stores. PMID:22560444
[Cancer immunotherapy. Importance of overcoming immune suppression].
Malvicini, Mariana; Puchulo, Guillermo; Matar, Pablo; Mazzolini, Guillermo
2010-01-01
Increasing evidence indicates that the immune system is involved in the control of tumor progression. Effective antitumor immune response depends on the interaction between several components of the immune system, including antigen-presenting cells and different T cell subsets. However, tumor cells develop a number of mechanisms to escape recognition and elimination by the immune system. In this review we discuss these mechanisms and address possible therapeutic approaches to overcome the immune suppression generated by tumors.
Rapid Diagnosis of Arbovirus and Arenavirus Infections by Immunofluorescence.
1984-12-31
rivers have been tested against Ebola, Lassa and Marburg viruses . Only positives with Ebola virus were found with the monovalent slides. One serum gave...recognition as a disease entity. DIVELOPMK OF THE ELISA TEST FOR CCHF VIRUSES . We have used detected CCHF virus infected cells by ELISA. This system offers...CCHF) virus was developed using infected, formalin-fixed CER cells as antigen. A retrospective serologic survey of equatorial Africa for antibodies
Thiele, Frank; Tao, Sha; Zhang, Yi; Muschaweckh, Andreas; Zollmann, Tina; Protzer, Ulrike; Abele, Rubert
2014-01-01
ABSTRACT CD4+ T lymphocytes play a central role in the immune system and mediate their function after recognition of their respective antigens presented on major histocompatibility complex II (MHCII) molecules on antigen-presenting cells (APCs). Conventionally, phagocytosed antigens are loaded on MHCII for stimulation of CD4+ T cells. Certain epitopes, however, can be processed directly from intracellular antigens and are presented on MHCII (endogenous MHCII presentation). Here we characterized the MHCII antigen presentation pathways that are possibly involved in the immune response upon vaccination with modified vaccinia virus Ankara (MVA), a promising live viral vaccine vector. We established CD4+ T-cell lines specific for MVA-derived epitopes as tools for in vitro analysis of MHCII antigen processing and presentation in MVA-infected APCs. We provide evidence that infected APCs are able to directly transfer endogenous viral proteins into the MHCII pathway to efficiently activate CD4+ T cells. By using knockout mice and chemical inhibitory compounds, we further elucidated the molecular basis, showing that among the various subcellular pathways investigated, proteasomes and autophagy are key players in the endogenous MHCII presentation during MVA infection. Interestingly, although proteasomal processing plays an important role, neither TAP nor LAMP-2 was found to be involved in the peptide transport. Defining the molecular mechanism of MHCII presentation during MVA infection provides a basis for improving MVA-based vaccination strategies by aiming for enhanced CD4+ T-cell activation by directing antigens into the responsible pathways. IMPORTANCE This work contributes significantly to our understanding of the immunogenic properties of pathogens by deciphering antigen processing pathways contributing to efficient activation of antigen-specific CD4+ T cells. We identified autophagosome formation, proteasomal activity, and lysosomal integrity as being crucial for endogenous CD4+ T-cell activation. Since poxvirus vectors such as MVA are already used in clinical trials as recombinant vaccines, the data provide important information for the future design of optimized poxviral vaccines for the study of advanced immunotherapy options. PMID:25520512
Retamal, Miguel; Abed, Yacine; Rhéaume, Chantal; Baz, Mariana; Boivin, Guy
2017-06-01
Influenza A(H1N1)pdm09 virus continues to circulate worldwide without evidence of significant antigenic drift between 2009 and 2016. By using escape mutants, we previously identified six haemagglutinin (HA) changes (T80R, G143E, G158E, N159D, K166E and A198E) that were located within antigenic sites. Combinations of these mutations were introduced into the A(H1N1)pdm09 HA plasmid by mutagenesis. Reassortant 6 : 2 viruses containing both the HA and NA genes of the A(H1N1)pdm09 and the six internal gene segments of A/PR/8/34 were rescued by reverse genetics. In vitro, HA inhibition and microneutralization assays showed that the HA hexa-mutant reassortant virus (RG1) escaped A(H1N1)pdm09 hyper-immune ferret antiserum recognition. C57Black/6 mice that received the vaccine formulated with A/California/07/09 were challenged with 2×104 p.f.u. of either the 6 : 2 wild-type (WT) or RG1 viruses. Reductions in body weight loss, mortality rate and lung viral titre were observed in immunized animals challenged with the 6 : 2 WT virus compared to non-immunized mice. However, immunization did not protect mice challenged with RG1 virus. To further characterize the mutations causing this antigenic change, 11 additional RG viruses whose HA gene contained single or combinations of mutations were evaluated in vitro. Although the RG1 virus was still the least reactive against hyper-immune serum by HAI testing, mutations G158E and N159D within the Sa antigenic site appeared to play the major role in the altered antigenicity of the A(H1N1)pdm09 virus. These results show that the Sa antigenic site contains the most prominent epitopes susceptible to cause an antigenic drift, escaping actual vaccine protection.
Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V
2010-09-01
Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.
Bergström, Joakim J E; Xu, Hui; Heyman, Birgitta
2017-01-01
Specific IgG, passively administered together with particulate antigen, can completely prevent induction of antibody responses to this antigen. The ability of IgG to suppress antibody responses to sheep red blood cells (SRBCs) is intact in mice lacking FcγRs, complement factor 1q, C3, or complement receptors 1 and 2, suggesting that Fc-dependent effector functions are not involved. Two of the most widely discussed explanations for the suppressive effect are increased clearance of IgG-antigen complexes and/or that IgG "hides" the antigen from recognition by specific B cells, so-called epitope masking. The majority of data on how IgG induces suppression was obtained through studies of the effects on IgM-secreting single spleen cells during the first week after immunization. Here, we show that IgG also suppresses antigen-specific extrafollicular antibody-secreting cells, germinal center B-cells, long-lived plasma cells, long-term IgG responses, and induction of memory antibody responses. IgG anti-SRBC reduced the amount of SRBC in the spleens of wild-type, but not of FcγR-deficient mice. However, no correlation between suppression and the amount of SRBC in the spleen was observed, suggesting that increased clearance does not explain IgG-mediated suppression. Instead, we found compelling evidence for epitope masking because IgG anti-NP administered with NP-SRBC suppressed the IgG anti-NP, but not the IgG anti-SRBC response. Vice versa, IgG anti-SRBC administered with NP-SRBC, suppressed only the IgG anti-SRBC response. In conclusion, passively transferred IgG suppressed all measured parameters of an antigen-specific antibody/B cell response and an important mechanism of action is likely to be epitope masking.
Parra, Gabriel I.; Abente, Eugenio J.; Sandoval-Jaime, Carlos; Sosnovtsev, Stanislav V.; Bok, Karin
2012-01-01
Noroviruses are major etiological agents of acute viral gastroenteritis. In 2002, a GII.4 variant (Farmington Hills cluster) spread so rapidly in the human population that it predominated worldwide and displaced previous GII.4 strains. We developed and characterized a panel of six monoclonal antibodies (MAbs) directed against the capsid protein of a Farmington Hills-like GII.4 norovirus strain that was associated with a large hospital outbreak in Maryland in 2004. The six MAbs reacted with high titers against homologous virus-like particles (VLPs) by enzyme-linked immunoassay but did not react with denatured capsid protein in immunoblots. The expression and self-assembly of newly developed genogroup I/II chimeric VLPs showed that five MAbs bound to the GII.4 protruding (P) domain of the capsid protein, while one recognized the GII.4 shell (S) domain. Cross-competition assays and mutational analyses showed evidence for at least three distinct antigenic sites in the P domain and one in the S domain. MAbs that mapped to the P domain but not the S domain were able to block the interaction of VLPs with ABH histo-blood group antigens (HBGA), suggesting that multiple antigenic sites of the P domain are involved in HBGA blocking. Further analysis showed that two MAbs mapped to regions of the capsid that had been associated with the emergence of new GII.4 variants. Taken together, our data map antibody and HBGA carbohydrate binding to proximal regions of the norovirus capsid, showing that evolutionary pressures on the norovirus capsid protein may affect both antigenic and carbohydrate recognition phenotypes. PMID:22532688
Lissina, Anna; Fastenackels, Solène; Inglesias, Maria C; Ladell, Kristin; McLaren, James E; Briceño, Olivia; Gostick, Emma; Papagno, Laura; Autran, Brigitte; Sauce, Delphine; Price, David A; Saez-Cirion, Asier; Appay, Victor
2014-02-20
Although it is established that CD8 T-cell immunity is critical for the control of HIV replication in vivo, the key factors that determine antiviral efficacy are yet to be fully elucidated. Antigen-sensitivity and T-cell receptor (TCR) avidity have been identified as potential determinants of CD8⁺ T-cell efficacy. However, there is no general consensus in this regard because the relationship between these parameters and the control of HIV infection has been established primarily in the context of immunodominant CD8⁺ T-cell responses against the Gag₂₆₃₋₂₇₂ KK10 epitope restricted by human leukocyte antigen (HLA)-B27. To investigate the relationship between antigen-sensitivity, TCR avidity and HIV-suppressive capacity in vitro across epitope specificities and HLA class I restriction elements, we used a variety of techniques to study CD8⁺ T-cell clones specific for Nef₇₃₋₈₂ QK10 and Gag₂₀₋₂₉ RY10, both restricted by HLA-A3, alongside CD8⁺ T-cell clones specific for Gag₂₆₃₋₂₇₂ KK10. For each targeted epitope, the linked parameters of antigen-sensitivity and TCR avidity correlated directly with antiviral efficacy. However, marked differences in HIV-suppressive capacity were observed between epitope specificities, HLA class I restriction elements and viral isolates. Collectively, these data emphasize the central role of the TCR as a determinant of CD8⁺ T-cell efficacy and demonstrate that the complexities of antigen recognition across epitope and HLA class I boundaries can confound simple relationships between TCR engagement and HIV suppression.
Engelmann, B
1993-11-01
The blood group antigen H (blood group O) and fucose-specific lectin Ulex europaeus agglutinin I (UEA1) (10 micrograms/ml) was found to increase the rate constant of Cl- efflux into 100 mM Na+ oxalate media by about 40% in erythrocytes taken from antigen H donors. In 100 mM K+ oxalate, 150 mM Na+ pyruvate and in 150 mM Na+ acetate media the lectin elevated the rate constant of Cl- efflux by 20-50%. The acceleration of Cl- efflux by UEA1 was completely blocked by 10 microM 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) indicating that the effect of the lectin is mediated by the anion exchanger of human erythrocytes (band 3 protein). In antigen A1 erythrocytes no significant stimulation of anion exchange by UEA1 was seen. The activation of Cl- efflux was completely prevented by addition of 1 mM fucose to the medium. These results suggest that the effect of UEA1 is mediated through interaction with the fucose residues of H antigens. Increasing extracellular Ca++ from 0.5 to 5 mM in Na+ pyruvate or Na+ acetate media slightly reduced the acceleration of anion exchange by the lectin. On the other hand, replacing part of extracellular chloride by bicarbonate did not considerably alter the (previously reported) stimulatory effect of UEA1 on red blood cell Ca++ uptake. This suggests that the acceleration of anion exchange and of Ca++ uptake by UEA1, respectively, are mediated by different mechanisms. It is concluded that UEA1 activates anion exchange of human erythrocytes most probably by a direct interaction with H antigens present on extracellular domains of the band 3 protein.
Sabbatino, Francesco; Villani, Vincenzo; Yearley, Jennifer H.; Deshpande, Vikram; Cai, Lei; Konstantinidis, Ioannis T.; Moon, Christina; Nota, Sjoerd; Wang, Yangyang; Al-Sukaini, Ahmad; Zhu, Andrew X.; Goyal, Lipika; Ting, David T.; Bardeesy, Nabeel; Hong, Theodore S.; Castillo, Carlos Fernandez-del; Tanabe, Kenneth K.; Lillemoe, Keith D.; Ferrone, Soldano; Ferrone, Cristina R.
2017-01-01
Purpose More effective therapy is needed for intrahepatic cholangiocarcinoma (ICC). The encouraging clinical results obtained with checkpoint molecule-specific monoclonal antibodies (mAb) have prompted us to investigate whether this type of immunotherapy may be applicable to ICC. The aims of this study were to determine whether (i) patients mount a T-cell immune response to their ICC, (ii) checkpoint molecules are expressed on both T cells and tumor cells, and (iii) tumor cells are susceptible to recognition by cognate T cells. Experimental Design Twenty-seven ICC tumors were analyzed for (i) lymphocyte infiltrate, (ii) HLA class I and HLA class II expression, and (iii) PD-1 and PD-L1 expression by T cells and ICC cells, respectively. The results of this analysis were correlated with the clinicopathologic characteristics of the patients investigated. Results Lymphocyte infiltrates were identified in all tumors. PD-L1 expression and HLA class I antigen expression by ICC cells was observed in 8 and 11, respectively, of the 27 tumors analyzed. HLA class I antigen expression correlated with CD8+ T-cell infiltrate. Furthermore, positive HLA class I antigen expression in combination with negative/rare PD-L1 expression was associated with favorable clinical course of the disease. Conclusions ICC patients are likely to mount a T-cell immune response against their own tumors. Defects in HLA class I antigen expression in combination with PD-L1 expression by ICC cells provide them with an immune escape mechanism. This mechanism justifies the implementation of immunotherapy with checkpoint molecule-specific mAbs in patients bearing ICC tumors without defects in HLA class I antigen expression. PMID:26373575
Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision
Kwon, MiYoung; Legge, Gordon E.
2011-01-01
It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule. PMID:21854800
Evolutionary Convergence and Divergence in NLR Function and Structure.
Meunier, Etienne; Broz, Petr
2017-10-01
The recognition of cellular damage caused by either pathogens or abiotic stress is essential for host defense in all forms of life in the plant and animal kingdoms. The NOD-like receptors (NLRs) represent a large family of multidomain proteins that were initially discovered for their role in host defense in plants and vertebrates. Over recent years the wide distribution of NLRs among metazoans has become apparent and their origins have begun to emerge. Moreover, intense study of NLR function has shown that they play essential roles beyond pathogen recognition - in the regulation of antigen presentation, cell death, inflammation, and even in embryonic development. We summarize here the latest insights into NLR biology and discuss examples of converging and diverging evolution of NLR function and structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Iyaguchi, Daisuke; Yao, Min; Tanaka, Isao; Toyota, Eiko
2009-01-01
Adenylate/uridylate-rich elements (AREs), which are found in the 3′-untranslated region (UTR) of many mRNAs, influence the stability of cytoplasmic mRNA. HuR (human antigen R) binds to AREs and regulates various genes. In order to reveal the RNA-recognition mechanism of HuR protein, an RNA-binding region of human HuR containing two N-terminal RNA-recognition motif domains bound to an 11-base RNA fragment has been crystallized. The crystals belonged to space group P212121, with unit-cell parameters a = 42.4, b = 44.9, c = 91.1 Å. X-ray diffraction data were collected to 1.8 Å resolution. PMID:19255485
HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail
Roeth, Jeremiah F.; Williams, Maya; Kasper, Matthew R.; Filzen, Tracey M.; Collins, Kathleen L.
2004-01-01
To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the μ1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef–MHC-I complex is an important step required for inhibition of antigen presentation by HIV. PMID:15569716
Bagley, Amy D.; Abramowitz, Carolyn S.; Kosson, David S.
2010-01-01
Deficits in emotion processing have been widely reported to be central to psychopathy. However, few prior studies have examined vocal affect recognition in psychopaths, and these studies suffer from significant methodological limitations. Moreover, prior studies have yielded conflicting findings regarding the specificity of psychopaths’ affect recognition deficits. This study examined vocal affect recognition in 107 male inmates under conditions requiring isolated prosodic vs. semantic analysis of affective cues and compared subgroups of offenders identified via cluster analysis on vocal affect recognition. Psychopaths demonstrated deficits in vocal affect recognition under conditions requiring use of semantic cues and conditions requiring use of prosodic cues. Moreover, both primary and secondary psychopaths exhibited relatively similar emotional deficits in the semantic analysis condition compared to nonpsychopathic control participants. This study demonstrates that psychopaths’ vocal affect recognition deficits are not due to methodological limitations of previous studies and provides preliminary evidence that primary and secondary psychopaths exhibit generally similar deficits in vocal affect recognition. PMID:19413412
Break-induced telomere synthesis underlies alternative telomere maintenance
Dilley, Robert L.; Verma, Priyanka; Cho, Nam Woo; Winters, Harrison D.; Wondisford, Anne R.; Greenberg, Roger A.
2017-01-01
Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10–15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC–PCNA–Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance. PMID:27760120
Mechanosensing drives acuity of αβ T-cell recognition
Feng, Yinnian; Brazin, Kristine N.; Kobayashi, Eiji; Mallis, Robert J.; Reinherz, Ellis L.; Lang, Matthew J.
2017-01-01
T lymphocytes use surface αβ T-cell receptors (TCRs) to recognize peptides bound to MHC molecules (pMHCs) on antigen-presenting cells (APCs). How the exquisite specificity of high-avidity T cells is achieved is unknown but essential, given the paucity of foreign pMHC ligands relative to the ubiquitous self-pMHC array on an APC. Using optical traps, we determine physicochemical triggering thresholds based on load and force direction. Strikingly, chemical thresholds in the absence of external load require orders of magnitude higher pMHC numbers than observed physiologically. In contrast, force applied in the shear direction (∼10 pN per TCR molecule) triggers T-cell Ca2+ flux with as few as two pMHC molecules at the interacting surface interface with rapid positional relaxation associated with similarly directed motor-dependent transport via ∼8-nm steps, behaviors inconsistent with serial engagement during initial TCR triggering. These synergistic directional forces generated during cell motility are essential for adaptive T-cell immunity against infectious pathogens and cancers. PMID:28811364
ErbB-targeted CAR T-cell immunotherapy of cancer.
Whilding, Lynsey M; Maher, John
2015-01-01
Chimeric antigen receptor (CAR) based immunotherapy has been under development for the last 25 years and is now a promising new treatment modality in the field of cancer immunotherapy. The approach involves genetically engineering T cells to target malignant cells through expression of a bespoke fusion receptor that couples an HLA-independent antigen recognition domain to one or more intracellular T-cell activating modules. Multiple clinical trials are now underway in several centers to investigate CAR T-cell immunotherapy of diverse hematologic and solid tumor types. The most successful results have been achieved in the treatment of patients with B-cell malignancies, in whom several complete and durable responses have been achieved. This review focuses on the preclinical and clinical development of CAR T-cell immunotherapy of solid cancers, targeted against members of the ErbB family.
Cancer Self-Defense: An Immune Stealth.
Nakajima, Kosei; Nangia-Makker, Pratima; Hogan, Victor; Raz, Avraham
2017-10-15
The hurdles in realizing successful cancer immunotherapy stem from the fact that cancer patients are either refractory to immune response and/or develop resistance. Here, we propose that these phenomena are due, in part, to the deployment/secretion of a "decoy flare," for example, anomalous cancer-associated antigens by the tumor cells. The cancer secretome, which resembles the parent cell make-up, is composed of soluble macromolecules (proteins, glycans, lipids, DNAs, RNAs, etc.) and insoluble vesicles (exosomes), thus hindering cancer detection/recognition by immunotherapeutic agents, resulting in a "cancer-stealth" effect. Immunotherapy, or any treatment that relies on antigens' expression/function, could be improved by the understanding of the properties of the cancer secretome, as its clinical evaluation may change the therapeutic landscape. Cancer Res; 77(20); 5441-4. ©2017 AACR . ©2017 American Association for Cancer Research.
CAR therapy: the CD19 paradigm
Sadelain, Michel
2015-01-01
Twenty-five years after its inception, the genetic engineering of T cells is now a therapeutic modality pursued at an increasing number of medical centers. This immunotherapeutic strategy is predicated on gene transfer technology to instruct T lymphocytes to recognize and reject tumor cells. Chimeric antigen receptors (CARs) are synthetic receptors that mediate antigen recognition, T cell activation, and — in the case of second-generation CARs — costimulation to augment T cell functionality and persistence. We demonstrated over a decade ago that human T cells engineered with a CD19-specific CAR eradicated B cell malignancies in mice. Several phase I clinical trials eventually yielded dramatic results in patients with leukemia or lymphoma, especially acute lymphoblastic leukemia (ALL). This review recounts the milestones of CD19 CAR therapy and summarizes lessons learned from the CD19 paradigm. PMID:26325036
Espinosa, Enrique; Calderas, Tania; Flores-Muciño, Oscar; Pérez-García, Georgina; Vázquez-Camacho, Ana C; Bermúdez-Rattoni, Federico
2004-01-01
New research in conditioned enhancement of antibody response requires a general paradigm effective with different antigens. In this experiment series we applied a one-trial protocol using keyhole limpet hemocyanin immunization as an unconditioned stimulus. Several different conditions were tested. Two different times between conditioning and test trial, two relevant antigen doses and the use of an antigen booster during test trial were investigated. We did not find a conditioned effect in any of the conditions used. In contrast, we found a reliable albeit modest conditioned effect using hen egg lysozyme as unconditioned stimulus. By comparing these and other findings we conclude that the number of conditioning trials is a possible requirement for a more reliable conditioning of antibody response.
Ontogeny and localization of the cells produce IL-2 in healthy animals.
Yamamoto, Mutsumi; Seki, Yoichi; Iwai, Kazuyuki; Ko, Iei; Martin, Alicia; Tsuji, Noriko; Miyagawa, Shuji; Love, Robert B; Iwashima, Makio
2013-03-01
IL-2 is a growth factor for activated T cells and is required for maintenance of naturally arising regulatory T cells (nTregs). Mice defective in IL-2/IL-2 receptor signaling pathways have impaired nTregs and suffer from lymphoproliferative disorders, suggesting that IL-2 is present and functional in healthy animals. However, the cellular source of IL-2 is currently unknown. To determine which cells produce IL-2 in healthy animals, we established mice carrying cre gene knock in at the il-2 locus (termed IL-2(cre)). When IL-2(cre) mice were crossed with EGFP reporter mice, EGFP was exclusively expressed by a fraction of CD4 T cells present in both lymphoid and non-lymphoid tissues. Live imaging of IL-2(cre) mice that carry the luciferase reporter showed concentrated localization of luciferase(+) cells in Peyer's patches. These cells were not observed in new born mice but appeared within 3days after birth. Reduction of antigen receptor repertoire by transgene expression reduced their number, indicating that recognition of environmental antigens is necessary for generation of these IL-2 producers in healthy animals. A substantial fraction of EGFP(+) cells also produce IL-10 and IFN-γ, a characteristic profile of type 1 regulatory T cells (Tr1). The data suggest that a group of Tr1 cells have addition roles in immune homeostasis by producing IL-2 along with other cytokines and help maintaining Tregs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47.
Ahn, K; Meyer, T H; Uebel, S; Sempé, P; Djaballah, H; Yang, Y; Peterson, P A; Früh, K; Tampé, R
1996-01-01
The immediate early protein ICP47 of herpes simplex virus (HSV) inhibits the transporter for antigen processing (TAP)-mediated translocation of antigen-derived peptides across the endoplasmic reticulum (ER) membrane. This interference prevents assembly of peptides with class I MHC molecules in the ER and ultimately recognition of HSV-infected cells by cytotoxic T-lymphocytes, potentially leading to immune evasion of the virus. Here, we demonstrate that recombinant, purified ICP47 containing a hexahistidine tag inhibits peptide import into microsomes of insect cells expressing human TAP, whereas inhibition of peptide transport by murine TAP was much less effective. This finding indicates an intrinsic species-specificity of ICP47 and suggests that no additional proteins interacting specifically with either ICP47 or TAP are required for inhibition of peptide transport. Since neither purified nor induced ICP47 inhibited photocrosslinking of 8-azido-ATP to TAP1 and TAP2 it seems that ICP47 does not prevent ATP from binding to TAP. By contrast, peptide binding was completely blocked by ICP47 as shown both by photoaffinity crosslinking of peptides to TAP and peptide binding to microsomes from TAP-transfected insect cells. Competition experiments indicated that ICP47 binds to human TAP with a higher affinity (50 nM) than peptides whereas the affinity to murine TAP was 100-fold lower. Our data suggest that ICP47 prevents peptides from being translocated by blocking their binding to the substrate-binding site of TAP. Images PMID:8670825
Panyasing, Yaowalak; Kedkovid, Roongtham; Thanawongnuwech, Roongroje; Kittawornrat, Apisit; Ji, Ju; Giménez-Lirola, Luis; Zimmerman, Jeffrey
2018-03-01
Early recognition and rapid elimination of infected animals is key to controlling incursions of classical swine fever virus (CSFV). In this study, the diagnostic characteristics of 10 CSFV assays were evaluated using individual serum (n = 601) and/or oral fluid (n = 1417) samples collected from -14 to 28 days post inoculation (DPI). Serum samples were assayed by virus isolation (VI), 2 commercial antigen-capture enzyme-linked immunosorbent assays (ELISA), virus neutralization (VN), and 3 antibody ELISAs. Both serum and oral fluid samples were tested with 3 commercial real-time reverse transcription-polymerase chain reaction (rRT-PCR) assays. One or more serum samples was positive by VI from DPIs 3 to 21 and by antigen-capture ELISAs from DPIs 6 to 17. VN-positive serum samples were observed at DPIs ≥ 7 and by antibody ELISAs at DPIs ≥ 10. CSFV RNA was detected in serum samples from DPIs 2 to 28 and in oral fluid samples from DPIs 4 to 28. Significant differences in assay performance were detected, but most importantly, no single combination of sample and assay was able to dependably identify CSFV-inoculated pigs throughout the 4-week course of the study. The results show that effective surveillance for CSFV, especially low virulence strains, will require the use of PCR-based assays for the detection of early infections (<14 days) and antibody-based assays, thereafter. Copyright © 2018 Elsevier B.V. All rights reserved.
Little, S F; Leppla, S H; Cora, E
1988-01-01
Thirty-six monoclonal antibodies to the protective antigen protein of Bacillus anthracis exotoxin have been characterized for affinity, antibody subtype, competitive binding to antigenic regions, and ability to neutralize lethal and edema toxin activities. At least 23 antigenic regions were detected on protective antigen by a blocking, enzyme-linked immunosorbent assay. Two clones, 3B6 and 14B7, competed for a single antigenic region and neutralized the activity of both the lethal toxin in vivo (Fisher 344 rat) and the edema toxin in vitro (CHO cells). These two antibodies blocked the binding of 125I-labeled protective antigen to FRL-103 cells. Our results support the proposal that binding of protective antigen to cell receptors is required for expression of toxicity. Images PMID:3384478
NASA Astrophysics Data System (ADS)
Nilsson, Thomy H.
2001-09-01
The psychophysical method of limits was used to measure the distance at which observers could distinguish military vehicles photographed in natural landscapes. Obtained from the TNO-TM Search_2 dataset, these pictures either were rear-projected 35-mm slides or were presented on a computer monitor. Based on the rationale that more difficult vehicle targets would require more visual pathways for recognition, difficult of acquisition was defined in terms of the relative retinal area required for recognition. Relative retinal area was derived from the inverse square of the recognition distance of a particular vehicle relative to the distance of the vehicle that could be seen furthest away. Results are compared with data on the time required to find the vehicles in these pictures. These comparison indicate recognition distance thresholds can be a suitable means of defining standards for the effectiveness of vital graphic information; and the two methods are complementary with respect to distinguishing different degrees of acquisition difficulty, and together may provide a means to measure the total information processing required for recognition.
Marciani, Dante J
2016-06-01
The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines. © 2016 International Society for Neurochemistry.
77 FR 31864 - Prospective Grant of Exclusive License: Development of PANVACTM
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... costimulatory molecule when used individually to optimally activate both CD4+ and CD8+ T cells. When a TRICOM... of an effective T-cell immune response to antigens requires two signals. The first one is antigen... required for cytokine production, proliferation, and other aspects of T-cell activation. The patents and...
Turned on by danger: activation of CD1d-restricted invariant natural killer T cells
Lawson, Victoria
2012-01-01
CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)–antigen–CD1d complex show how docking between CD1d–antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand–CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR–self-antigen–CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity. PMID:22734667
Thammasri, Kanoktip; Rauhamäki, Sanna; Wang, Liping; Filippou, Artemis; Kivovich, Violetta; Marjomäki, Varpu; Naides, Stanley J.; Gilbert, Leona
2013-01-01
Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens. PMID:23776709
Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins.
Giannasca, P J; Boden, J A; Monath, T P
1997-01-01
The nasal cavity of a rodent is lined by an epithelium organized into distinct regional domains responsible for specific physiological functions. Aggregates of nasal lymphoid tissue (NALT) located at the base of the nasal cavity are believed to be sites of induction of mucosal immune responses to airborne antigens. The epithelium overlying NALT contains M cells which are specialized for the transcytosis of immunogens, as demonstrated in other mucosal tissues. We hypothesized that NALT M cells are characterized by distinct glycoconjugate receptors which influence antigen uptake and immune responses to transcytosed antigens. To identify glycoconjugates that may distinguish NALT M cells from other cells of the respiratory epithelium (RE), we performed lectin histochemistry on sections of the hamster nasal cavity with a panel of lectins. Many classes of glycoconjugates were found on epithelial cells in this region. While most lectins bound to sites on both the RE and M cells, probes capable of recognizing alpha-linked galactose were found to label the follicle-associated epithelium (FAE) almost exclusively. By morphological criteria, the FAE contains >90% M cells. To determine if apical glycoconjugates on M cells were accessible from the nasal cavity, an M-cell-selective lectin and a control lectin in parallel were administered intranasally to hamsters. The M-cell-selective lectin was found to specifically target the FAE, while the control lectin did not. Lectin bound to M cells in vivo was efficiently endocytosed, consistent with the role of M cells in antigen transport. Intranasal immunization with lectin-test antigen conjugates without adjuvant stimulated induction of specific serum immunoglobulin G, whereas antigen alone or admixed with lectin did not. The selective recognition of NALT M cells by a lectin in vivo provides a model for microbial adhesin-host cell receptor interactions on M cells and the targeted delivery of immunogens to NALT following intranasal administration. PMID:9317039
Tremblay, Jacqueline M.; Oliveira, Sergio C.; Da’dara, Akram A.; Skelly, Patrick J.
2017-01-01
Schistosomiasis is a major disease of the developing world for which no vaccine has been successfully commercialized. While numerous Schistosoma mansoni worm antigens have been identified that elicit antibody responses during natural infections, little is known as to the identities of the schistosome antigens that are most prominently recognized by antibodies generated through natural infection. Non-reducing western blots probed with serum from schistosome-infected mice, rats and humans on total extracts of larval or adult schistosomes revealed that a small number of antigen bands predominate in all cases. Recognition of each of these major bands was lost when the blots were run under reducing condition. We expressed a rationally selected group of schistosome tegumental membrane antigens in insect host cells, and used the membrane extracts of these cells to unambiguously identify the major antigens recognized by S. mansoni infected mouse, rat and human serum. These results revealed that a limited number of dominant, reduction-sensitive conformational epitopes on five major tegumental surface membrane proteins: SmTsp2, Sm23, Sm29, SmLy6B and SmLy6F, are primary targets of mouse, rat and human S. mansoni infection sera antibodies. We conclude that, Schistosoma mansoni infection of both permissive (mouse) and non-permissive (rat) rodent models, as well as humans, elicit a dominant antibody response recognizing a limited number of conformational epitopes on the same five tegumental membrane proteins. Thus it appears that neither infecting schistosomula nor mature adult schistosomes are substantively impacted by the robust circulating anti-tegumental antibody response they elicit to these antigens. Importantly, our data suggest a need to re-evaluate host immune responses to many schistosome antigens and has important implications regarding schistosome immune evasion mechanisms and schistosomiasis vaccine development. PMID:28095417
NASA Astrophysics Data System (ADS)
Bohari, Mohammad H.; Yu, Xing; Zick, Yehiel; Blanchard, Helen
2016-12-01
Glycosphingolipids are ubiquitous cell surface molecules undertaking fundamental cellular processes. Lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are the representative core structures for lacto- and neolacto-series glycosphingolipids. These glycolipids are the carriers to the blood group antigen and human natural killer antigens mainly found on blood cells, and are also principal components in human milk, contributing to infant health. The β-galactoside recognising galectins mediate various cellular functions of these glycosphingolipids. We report crystallographic structures of the galectin-8 N-terminal domain (galectin-8N) in complex with LNT and LNnT. We reveal the first example in which the non-reducing end of LNT binds to the primary binding site of a galectin, and provide a structure-based rationale for the significant ten-fold difference in binding affinities of galectin-8N toward LNT compared to LNnT, such a magnitude of difference not being observed for any other galectin. In addition, the LNnT complex showed that the unique Arg59 has ability to adopt a new orientation, and comparison of glycerol- and lactose-bound galectin-8N structures reveals a minimum atomic framework for ligand recognition. Overall, these results enhance our understanding of glycosphingolipids interactions with galectin-8N, and highlight a structure-based rationale for its significantly different affinity for components of biologically relevant glycosphingolipids.
Immunosensors for quantifying cyclooxygenase 2 pain biomarkers.
Noah, Naumih M; Mwilu, Samuel K; Sadik, Omowunmi A; Fatah, Alim A; Arcilesi, Richard D
2011-07-15
Cyclooxygenase 2 (COX-2) is a key enzyme in pain biomarkers, inflammation and cancer cell proliferation. Thus biosensors that can quantify pain mediators based on biochemical mechanism are imperative. Biomolecular recognition and affinity of antigenic COX-2 with the antibody were investigated using surface plasmon resonance (SPR) and ultra-sensitive portable capillary (UPAC) fluorescence sensors. Polyclonal goat anti-COX-2 (human) antibodies were covalently immobilized on gold SPR surface and direct recognition for the COX-2 antigen assessed. The UPAC sensor utilized an indirect sandwich design involving covalently attached goat anti-COX-2 as the capture antibody and rabbit anti-COX-2 (human) antibody as the secondary antibody. UPAC fluorescence signals were directly proportional to COX-2 at a linear range of 7.46×10⁻⁴-7.46×10¹ ng/ml with detection limit of 1.02×10⁻⁴ ng/ml. With SPR a linear range was 3.64×10⁻⁴-3.64×10² ng/ml was recorded and a detection limit of 1.35×10⁻⁴ ng/ml. Validation was achieved in simulated blood samples with percent recoveries of 81.39% and 87.23% for SPR and UPAC respectively. The developed sensors have the potential to provide objective characterization of pain biomarkers for clinical diagnoses. Copyright © 2011 Elsevier B.V. All rights reserved.
Kirby, Karen A; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G; Chiang, Leslie A; Pan, Yun; Moran, Jennifer L; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G
2015-01-01
Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target. © FASEB.
Lindell, Kristoffer; Fahlgren, Anna; Hjerde, Erik; Willassen, Nils-Peder; Fällman, Maria; Milton, Debra L.
2012-01-01
Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues. PMID:22662189
Koguchi, Yoshinobu; Gardell, Jennifer L.; Thauland, Timothy J.; Parker, David C.
2011-01-01
CD40L is critically important for the initiation and maintenance of adaptive immune responses. It is generally thought that CD40L expression in CD4+ T cells is regulated transcriptionally and made from new mRNA following antigen recognition. However, recent studies with two-photon microscopy revealed that the majority of cognate interactions between effector CD4+ T cells and APCs are too short for de novo synthesis of CD40L. Given that effector and memory CD4+ T cells store preformed CD40L (pCD40L) in lysosomal compartments and that pCD40L comes to the cell surface within minutes of antigenic stimulation, we and others have proposed that pCD40L might mediate T cell-dependent activation of cognate APCs during brief encounters in vivo. However, it has not been shown that this relatively small amount of pCD40L is sufficient to activate APCs, owing to the difficulty of separating the effects of pCD40L from those of de novo CD40L and other cytokines in vitro. Here we show that pCD40L surface mobilization is resistant to cyclosporine or FK506 treatment, while de novo CD40L and cytokine expression are completely inhibited. These drugs thus provide a tool to dissect the role of pCD40L in APC activation. We find that pCD40L mediates selective activation of cognate but not bystander APCs in vitro and that mobilization of pCD40L does not depend on Rab27a, which is required for mobilization of lytic granules. Therefore, effector CD4+ T cells deliver pCD40L specifically to APCs on the same time scale as the lethal hit of CTLs but with distinct molecular machinery. PMID:21677130
Lemonnier, François A.; Esteban, Mariano
2017-01-01
Background The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. Methodology/Principal findings By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Conclusions/Significance Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins. PMID:29084215
Manzo, Teresa; Sturmheit, Tabea; Basso, Veronica; Petrozziello, Elisabetta; Hess Michelini, Rodrigo; Riba, Michela; Freschi, Massimo; Elia, Angela R; Grioni, Matteo; Curnis, Flavio; Protti, Maria Pia; Schumacher, Ton N; Debets, Reno; Swartz, Melody A; Corti, Angelo; Bellone, Matteo; Mondino, Anna
2017-02-01
Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR. ©2016 American Association for Cancer Research.
Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel
2017-10-01
The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.
Song, De-Gang; Ye, Qunrui; Poussin, Mathilde; Liu, Lin; Figini, Mariangela; Powell, Daniel J.
2015-01-01
Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors in an HLA-independent manner. To date, various CARs have been constructed using mouse single chain antibody variable fragments (scFvs) of high affinity that are immunogenic in humans and have the potential to mediate “on-target” toxicity. Here, we developed and evaluated a fully human CAR comprised of the human C4 folate receptor-alpha (αFR)-specific scFv coupled to intracellular T cell signaling domains. Human T cells transduced to express the C4 CAR specifically secreted proinflammatory cytokine and exerted cytolytic functions when cultured with αFR-expressing tumors in vitro. Adoptive transfer of C4 CAR T cells mediated the regression of large, established human ovarian cancer in a xenogeneic mouse model. Relative to a murine MOv19 scFv-based αFR CAR, C4 CAR T cells mediated comparable cytotoxic tumor activity in vitro and in vivo but had lower affinity for αFR protein and exhibited reduced recognition of normal cells expressing low levels of αFR. Thus, T cells expressing a fully human CAR of intermediate affinity can efficiently kill antigen-expressing tumors in vitro and in vivo and may overcome issues of transgene immunogenicity and “on-target off-tumor” toxicity that plague trials utilizing CARs containing mouse-derived, high affinity scFvs. PMID:26101914
Montero-Barrera, Daniel; Valderrama-Carvajal, Héctor; Terrazas, César A.; Rojas-Hernández, Saúl; Ledesma-Soto, Yadira; Vera-Arias, Laura; Carrasco-Yépez, Maricela; Gómez-García, Lorena; Martínez-Saucedo, Diana; Becerra-Díaz, Mireya; Terrazas, Luis I.
2015-01-01
C-type lectins are multifunctional sugar-binding molecules expressed on dendritic cells (DCs) and macrophages that internalize antigens for processing and presentation. Macrophage galactose-type lectin 1 (MGL1) recognizes glycoconjugates expressing Lewis X structures which contain galactose residues, and it is selectively expressed on immature DCs and macrophages. Helminth parasites contain large amounts of glycosylated components, which play a role in the immune regulation induced by such infections. Macrophages from MGL1−/− mice showed less binding ability toward parasite antigens than their wild-type (WT) counterparts. Exposure of WT macrophages to T. crassiceps antigens triggered tyrosine phosphorylation signaling activity, which was diminished in MGL1−/− macrophages. Following T. crassiceps infection, MGL1−/− mice failed to produce significant levels of inflammatory cytokines early in the infection compared to WT mice. In contrast, MGL1−/− mice developed a Th2-dominant immune response that was associated with significantly higher parasite loads, whereas WT mice were resistant. Flow cytometry and RT-PCR analyses showed overexpression of the mannose receptors, IL-4Rα, PDL2, arginase-1, Ym1, and RELM-α on MGL1−/− macrophages. These studies indicate that MGL1 is involved in T. crassiceps recognition and subsequent innate immune activation and resistance. PMID:25664320
Chmielewski, Markus; Hombach, Andreas A.; Abken, Hinrich
2013-01-01
Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient’s T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a “tumor-associated antigen” and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer. PMID:24273543
Roux, K H; Greenberg, A S; Greene, L; Strelets, L; Avila, D; McKinney, E C; Flajnik, M F
1998-09-29
We recently have identified an antigen receptor in sharks called NAR (new or nurse shark antigen receptor) that is secreted by splenocytes but does not associate with Ig light (L) chains. The NAR variable (V) region undergoes high levels of somatic mutation and is equally divergent from both Ig and T cell receptors (TCR). Here we show by electron microscopy that NAR V regions, unlike those of conventional Ig and TCR, do not form dimers but rather are independent, flexible domains. This unusual feature is analogous to bona fide camelid IgG in which modifications of Ig heavy chain V (VH) sequences prevent dimer formation with L chains. NAR also displays a uniquely flexible constant (C) region. Sequence analysis and modeling show that there are only two types of expressed NAR genes, each having different combinations of noncanonical cysteine (Cys) residues in the V domains that likely form disulfide bonds to stabilize the single antigen-recognition unit. In one NAR class, rearrangement events result in mature genes encoding an even number of Cys (two or four) in complementarity-determining region 3 (CDR3), which is analogous to Cys codon expression in an unusual human diversity (D) segment family. The NAR CDR3 Cys generally are encoded by preferred reading frames of rearranging D segments, providing a clear design for use of preferred reading frame in antigen receptor D regions. These unusual characteristics shared by NAR and unconventional mammalian Ig are most likely the result of convergent evolution at the molecular level.
Selection of cholera toxin specific IgNAR single-domain antibodies from a naïve shark library.
Liu, Jinny L; Anderson, George P; Delehanty, James B; Baumann, Richard; Hayhurst, Andrew; Goldman, Ellen R
2007-03-01
Shark immunoglobulin new antigen receptor (IgNAR, also referred to as NAR) variable domains (Vs) are single-domain antibody (sdAb) fragments containing only two hypervariable loop structures forming 3D topologies for a wide range of antigen recognition and binding. Their small size ( approximately 12kDa) and high solubility, thermostability and binding specificity make IgNARs an exceptional alternative source of engineered antibodies for sensor applications. Here, two new shark NAR V display libraries containing >10(7) unique clones from non-immunized (naïve) adult spiny dogfish (Squalus acanthias) and smooth dogfish (Mustelus canis) sharks were constructed. The most conserved consensus sequences derived from random clone sequence were compared with published nurse shark (Ginglymostoma cirratum) sequences. Cholera toxin (CT) was chosen for panning one of the naïve display libraries due to its severe pathogenicity and commercial availability. Three very similar CT binders were selected and purified soluble monomeric anti-CT sdAbs were characterized using Luminex(100) and traditional ELISA assays. These novel anti-CT sdAbs selected from our newly constructed shark NAR V sdAb library specifically bound to soluble antigen, without cross reacting with other irrelevant antigens. They also showed superior heat stability, exhibiting slow loss of activity over the course of one hour at high temperature (95 degrees C), while conventional antibodies lost all activity in the first 5-10min. The successful isolation of target specific sdAbs from one of our non-biased NAR libraries, demonstrate their ability to provide binders against an unacquainted antigen of interest.
Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo
2016-01-01
Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067
Heinz, Franz X; Stiasny, Karin
2017-03-01
Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization. Copyright © 2017 American Society for Microbiology.
Stiasny, Karin
2017-01-01
SUMMARY Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization. PMID:28179396
Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens.
Mayo, Kristin J; Gonzales, Barbara J; Mason, Hugh S
2006-01-01
This protocol is used to produce stably transformed tobacco (Nicotiana tabacum) NT1 cell lines, using Agrobacterium tumefaciens-mediated DNA delivery of a binary vector containing a gene encoding hepatitis B surface antigen and a gene encoding the kanamycin selection marker. The NT1 cultures, at the appropriate stage of growth, are inoculated with A. tumefaciens containing the binary vector. A 3-day cocultivation period follows, after which the cultures are rinsed and placed on solid selective medium. Transformed colonies ('calli') appear in approximately 4 weeks; they are subcultured until adequate material is obtained for analysis of antigen production. 'Elite' lines are selected based on antigen expression and growth characteristics. The time required for the procedure from preparation of the plant cell materials to callus development is approximately 5 weeks. Growth of selected calli to sufficient quantities for antigen screening may require 4-6 weeks beyond the initial selection. Creation of the plasmid constructs, transformation of the A. tumefaciens line, and ELISA and Bradford assays to assess protein production require additional time.
37 CFR 11.7 - Requirements for registration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Recognition To Practice Before the USPTO Patents, Trademarks, and Other Non-Patent Law § 11.7 Requirements for... technical qualifications, and (D) For aliens, provide proof that recognition is not inconsistent with the... subchapter, and (C) For aliens, provide proof that recognition is not inconsistent with the terms of their...
Kalograiaki, Ioanna; Campanero-Rhodes, María A; Proverbio, Davide; Euba, Begoña; Garmendia, Junkal; Aastrup, Teodor; Solís, Dolores
2018-01-01
Bacterial surfaces are decorated with a diversity of carbohydrate structures that play important roles in the bacteria-host relationships. They may offer protection against host defense mechanisms, elicit strong antigenic responses, or serve as ligands for host receptors, including lectins of the innate immune system. Binding by these lectins may trigger defense responses or, alternatively, promote attachment, thereby enhancing infection. The outcome will depend on the particular bacterial surface landscape, which may substantially differ among species and strains. In this chapter, we describe two novel methods for exploring interactions directly on the bacterial surface, based on the generation of bacterial microarrays and quartz crystal microbalance (QCM) sensor chips. Bacterial microarrays enable profiling of accessible carbohydrate structures and screening of their recognition by host receptors, also providing information on binding avidity, while the QCM approach allows determination of binding affinity and kinetics. In both cases, the chief element is the use of entire bacterial cells, so that recognition of the bacterial glycan epitopes is explored in their natural environment. © 2018 Elsevier Inc. All rights reserved.
RADWAN, FAISAL F. Y.; ZHANG, LIXIA; HOSSAIN, AZIM; DOONAN, BENTLY P.; GOD, JASON; HAQUE, AZIZUL
2015-01-01
Malignant B-cells express measurable levels of HLA class II proteins, but often escape immune recognition by CD4+ T cells. Resveratrol (Resv) has been the focus of numerous investigations due to its potential chemopreventive and anti-cancer effects, but it has never been tested in the regulation of immune components in B-cell tumors. Here, we show for the first time that Resv treatment enhances HLA class II-mediated immune detection of B-cell lymphomas by altering immune components and class II presentation in tumor cells. Resv treatment induced an upregulation of both classical and non-classical HLA class II proteins (DR and DM) in B-lymphoma cells. Resv also altered endolysosomal cathepsins (Cat S, B and D) and a thiol reductase (GILT), increasing HLA class II-mediated antigen (Ag) processing in B-cell lymphomas and their subsequent recognition by CD4+ T cells. Mechanistic study demonstrated that Resv treatment activated the recycling class II pathway of Ag presentation through upregulation of Rab 4B protein expression in B-lymphoma cells. These findings suggest that HLA class II-mediated immune recognition of malignant B-cells can be improved by Resv treatment, thus encouraging its potential use in chemoimmunotherapy of B-cell lymphoma. PMID:21854084
Genes Critical for Developing Periodontitis: Lessons from Mouse Models
de Vries, Teun J.; Andreotta, Stefano; Loos, Bruno G.; Nicu, Elena A.
2017-01-01
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell–cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf-α receptor, IL-17 receptor, Socs3, Foxo1), and proteolytic enzymes (e.g., Mmp8, Plasmin) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4, the Ccr1/Ccr5, the Tnf-α receptor p55, and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response. PMID:29163477
Structural classification of CDR-H3 revisited: a lesson in antibody modeling.
Kuroda, Daisuke; Shirai, Hiroki; Kobori, Masato; Nakamura, Haruki
2008-11-15
Among the six complementarity-determining regions (CDRs) in the variable domains of an antibody, the third CDR of the heavy chain (CDR-H3), which lies in the center of the antigen-binding site, plays a particularly important role in antigen recognition. CDR-H3 shows significant variability in its length, sequence, and structure. Although difficult, model building of this segment is the most critical step in antibody modeling. Since our first proposal of the "H3-rules," which classify CDR-H3 structure based on amino acid sequence, the number of experimentally determined antibody structures has increased. Here, we revise these H3-rules and propose an improved classification scheme for CDR-H3 structure modeling. In addition, we determine the common features of CDR-H3 in antibody drugs as well as discuss the concept of "antibody druggability," which can be applied as an indicator of antibody evaluation during drug discovery.
Enhanced CAR T cell therapy: A novel approach for head and neck cancers.
Wang, Songlin; Zhu, Zhao
2018-05-05
Head and neck cancer that presents in locally advanced stages often results in a bad prognosis with an increased recurrence rate even after curative resections. Radiation therapy is then applied, with multiple side effects, as adjuvant regional therapy. Because of the high rate of recurrence and mortality, new therapies are needed for patients suffering from head and neck malignant tumors.CAR (chimeric antigen receptor) T cell therapy, which was first devised about 25 years ago, causes the killing or apoptosis of target tumor cells through inducing the secretion of cytokines and granzymes by T cells (Cheadle et al., 2014). CARs are comprised of three canonical domains for antigen recognition, T cell activation, and co-stimulation, and are synthetic receptors that reprogram immune cells for therapeutic treatment of multiple tumors (Sadelain, 2017). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
IgGs are made for walking on bacterial and viral surfaces
NASA Astrophysics Data System (ADS)
Preiner, Johannes; Kodera, Noriyuki; Tang, Jilin; Ebner, Andreas; Brameshuber, Mario; Blaas, Dieter; Gelbmann, Nicola; Gruber, Hermann J.; Ando, Toshio; Hinterdorfer, Peter
2014-07-01
Binding of antibodies to their cognate antigens is fundamental for adaptive immunity. Molecular engineering of antibodies for therapeutic and diagnostic purposes emerges to be one of the major technologies in combating many human diseases. Despite its importance, a detailed description of the nanomechanical process of antibody-antigen binding and dissociation on the molecular level is lacking. Here we utilize high-speed atomic force microscopy to examine the dynamics of antibody recognition and uncover a principle; antibodies do not remain stationary on surfaces of regularly spaced epitopes; they rather exhibit ‘bipedal’ stochastic walking. As monovalent Fab fragments do not move, steric strain is identified as the origin of short-lived bivalent binding. Walking antibodies gather in transient clusters that might serve as docking sites for the complement system and/or phagocytes. Our findings could inspire the rational design of antibodies and multivalent receptors to exploit/inhibit steric strain-induced dynamic effects.
Chung, Tai-Chun; Jones, Charles H; Gollakota, Akhila; Kamal Ahmadi, Mahmoud; Rane, Snehal; Zhang, Guojian; Pfeifer, Blaine A
2015-05-04
Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.
Plasmodium knowlesi malaria in a traveller returning from the Philippines to Italy, 2016.
De Canale, Ettore; Sgarabotto, Dino; Marini, Giulia; Menegotto, Nicola; Masiero, Serena; Akkouche, Wassim; Biasolo, Maria Angela; Barzon, Luisa; Palù, Giorgio
2017-10-01
Plasmodium knowlesi is a simian parasite responsible for most human cases of malaria in Malaysian Borneo. A timely recognition of infection is crucial because of the risk of severe disease due to the rapid increase in parasitemia. We report a case of P. knowlesi infection in a traveller who developed fever and thrombocytopenia after returning from the Philippines in 2016. Rapid antigen test was negative, microscopy examination showed parasites similar to Plasmodium malariae, with a parasite count of 10,000 parasites per μL blood, while molecular testing identified P. knowlesi infection. Treatment with atovaquone-proguanil led to resolution of fever and restoration of platelet count in two days. P. knowlesi infection should be suspected in febrile travellers returning from South East Asia. Due to the low sensitivity of rapid antigen tests and the low specificity of microscopy, confirmation by molecular tests is recommended.
Diversity in immunological synapse structure
Thauland, Timothy J; Parker, David C
2010-01-01
Immunological synapses (ISs) are formed at the T cell–antigen-presenting cell (APC) interface during antigen recognition, and play a central role in T-cell activation and in the delivery of effector functions. ISs were originally described as a peripheral ring of adhesion molecules surrounding a central accumulation of T-cell receptor (TCR)–peptide major histocompatibility complex (pMHC) interactions. Although the structure of these ‘classical’ ISs has been the subject of intense study, non-classical ISs have also been observed under a variety of conditions. Multifocal ISs, characterized by adhesion molecules dispersed among numerous small accumulations of TCR–pMHC, and motile ‘immunological kinapses’ have both been described. In this review, we discuss the conditions under which non-classical ISs are formed. Specifically, we explore the profound effect that the phenotypes of both T cells and APCs have on IS structure. We also comment on the role that IS structure may play in T-cell function. PMID:21039474
Label-free protein assay based on a nanomechanical cantilever array
NASA Astrophysics Data System (ADS)
Arntz, Y.; Seelig, J. D.; Lang, H. P.; Zhang, J.; Hunziker, P.; Ramseyer, J. P.; Meyer, E.; Hegner, M.; Gerber, Ch
2003-01-01
We demonstrate continuous label-free detection of two cardiac biomarker proteins (creatin kinase and myoglobin) using an array of microfabricated cantilevers functionalized with covalently anchored anti-creatin kinase and anti-myoglobin antibodies. This method allows biomarker proteins to be detected via measurement of surface stress generated by antigen-antibody molecular recognition. Reference cantilevers are used to eliminate thermal drifts, undesired chemical reactions and turbulences from injections of liquids by calculating differential deflection signals with respect to sensor cantilevers. The sensitivity achieved for myoglobin detection is below 20 µg ml-1. Both myoglobin and creatin kinase could be detected independently using cantilevers functionalized with the corresponding antibodies, in unspecific protein background. This approach permits the use of up to seven different antigen-antibody reactions simultaneously, including an additional thermomechanical and chemical in situ reference. Applications lie in the field of early and rapid diagnosis of acute myocardial infarction.
Chronic bystander infections and immunity to unrelated antigens
Stelekati, Erietta; Wherry, E. John
2012-01-01
Chronic infections with persistent pathogens such as helminths, mycobacteria, Plasmodium and hepatitis viruses affect more than a third of the human population and are associated with increased susceptibility to other pathogens as well as reduced vaccine efficacy. Although these observations suggest an impact of chronic infections in modulating immunity to unrelated antigens, little is known regarding the underlying mechanisms. Here, we summarize evidence of the most prevalent infections affecting immunity to unrelated pathogens and vaccines, and discuss potential mechanisms of how different bystander chronic infections might impact immune responses. We suggest that bystander chronic infections affect different stages of host responses and may impact transmission of other pathogens, recognition and innate immune responses, priming and differentiation of adaptive effector responses, as well as the development and maintenance of immunological memory. Further understanding of the immunological effects of co-infection should provide opportunities to enhance vaccine efficacy and control infectious diseases. PMID:23084915
Evidence for Mycobacteria in Sarcoidosis
Brownell, Isaac; Ramírez-Valle, Francisco; Sanchez, Miguel
2011-01-01
Despite its recognition as a distinct granulomatous disease for over a century, the etiology of sarcoidosis remains to be defined. Since the early 1900s, infectious agents have been suspected in causing sarcoidosis. For much of this time, mycobacteria were considered a likely culprit, yet until recently, the supporting evidence has been tenuous at best. In this review, we evaluate the reported association between mycobacteria and sarcoidosis. Historically, mycobacterial infection has been investigated using histologic stains, cultures of lesional tissue or blood, and identification of bacterial nucleic acids or bacterial antigens. More recently, advances in biochemical, molecular, and immunological methods have produced a more rigorous analysis of the antigenic drivers of sarcoidosis. The result of these efforts indicates that mycobacterial products likely play a role in at least a subset of sarcoidosis cases. This information, coupled with a better understanding of genetic susceptibility to this complex disease, has therapeutic implications. PMID:21659662
Dye-doped silica-based nanoparticles for bioapplications
NASA Astrophysics Data System (ADS)
Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Tan Pham, Minh; Van Nguyen, Thi; Trang Tran, Thu; Chu, Viet Ha; Thuan Tong, Kim; Thuy Tran, Thanh; Le, Thi Thanh Xuan; Brochon, Jean-Claude; Quy Nguyen, Thi; Nhung Hoang, My; Nguyen Duong, Cao; Thuy Nguyen, Thi; Hoang, Anh Tuan; Hoa Nguyen, Phuong
2013-12-01
This paper presents our recent research results on synthesis and bioapplications of dye-doped silica-based nanoparticles. The dye-doped water soluble organically modified silicate (ORMOSIL) nanoparticles (NPs) with the size of 15-100 nm were synthesized by modified Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). Because thousands of fluorescent dye molecules are encapsulated in the silica-based matrix, the dye-doped nanoparticles are extremely bright and photostable. Their surfaces were modified with bovine serum albumin (BSA) and biocompatible chemical reagents. The highly intensive luminescent nanoparticles were combined with specific bacterial and breast cancer antigen antibodies. The antibody-conjugated nanoparticles can identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-antigen interaction and recognition. A highly sensitive breast cancer cell detection has been achieved with the anti-HER2 monoclonal antibody-nanoparticles complex. These results demonstrate the potential to apply these fluorescent nanoparticles in various biodetection systems.
Characterization of MHC-II antigen presentation by B cells and monocytes from older individuals
HL, Clark; R, Banks; L, Jones; TR, Hornick; PA, Higgins; CJ, Burant; DH, Canaday
2012-01-01
In this study we examine the effects of aging on antigen presentation of B cells and monocytes. We compared the antigen presentation function of peripheral blood B cells from young and old subjects using a system that specifically measures the B cell receptor (BCR)-mediated MHC-II antigen presentation. Monocytes were studied as well. Overall the mean magnitude of antigen presentation of soluble antigen and peptide was not different in older and younger subjects for both B cells and monocytes. Older subjects, however, showed increased heterogeneity of BCR-mediated antigen presentation by their B cells. The magnitude and variability of peptide presentation, which does not require uptake and processing, was the same between groups. Presentation by monocytes had similar variability between the older and younger subjects. These data suggest that poor B cell antigen processing, which results in diminished presentation in some older individuals may contribute to poor vaccine responses. PMID:22797466
The selective recognition of antibody IgY for digestive system cancers.
Yang, J; Jin, Z; Yu, Q; Yang, T; Wang, H; Liu, L
1997-01-01
Biological methods for cancer therapies are very important. A small and efficient target carrier is the key component for anti-cancer drugs. In our laboratory, the antibody IgY was extracted from egg yolk of a SPF hen. The SPF hen was immunized with an antigene of P110 protein which was purified from human stomach cancer MGC-803 cells. Results indicated that the antibody IgY can specifically recognize gastrointestinal system cancers. It may become an important carrier for antitumorigenic drugs.
Vaccines for Pseudomonas aeruginosa: a long and winding road.
Priebe, Gregory P; Goldberg, Joanna B
2014-04-01
Despite the recognition of Pseudomonas aeruginosa as an opportunistic pathogen, no vaccine against this bacteria has come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed.