Sample records for require high spatial

  1. A flexible spatiotemporal method for fusing satellite images with different resolutions

    Treesearch

    Xiaolin Zhu; Eileen H. Helmer; Feng Gao; Desheng Liu; Jin Chen; Michael A. Lefsky

    2016-01-01

    Studies of land surface dynamics in heterogeneous landscapes often require remote sensing datawith high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta Fusion (FSDAF) method, to generate synthesized frequent high spatial...

  2. Spatial Abilities of High-School Students in the Perception of Geologic Structures.

    ERIC Educational Resources Information Center

    Kali, Yael; Orion, Nir

    1996-01-01

    Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…

  3. Image Stability Requirements For a Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Bingham, G. E.; Cantwell, G.; Robinson, R. C.; Revercomb, H. E.; Smith, W. L.

    2001-01-01

    A Geostationary Imaging Fourier Transform Spectrometer (GIFTS) has been selected for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. Our paper will discuss one of the key GIFTS measurement requirements, Field of View (FOV) stability, and its impact on required system performance. The GIFTS NMP mission is designed to demonstrate new and emerging sensor and data processing technologies with the goal of making revolutionary improvements in meteorological observational capability and forecasting accuracy. The GIFTS payload is a versatile imaging FTS with programmable spectral resolution and spatial scene selection that allows radiometric accuracy and atmospheric sounding precision to be traded in near real time for area coverage. The GIFTS sensor combines high sensitivity with a massively parallel spatial data collection scheme to allow high spatial resolution measurement of the Earth's atmosphere and rapid broad area coverage. An objective of the GIFTS mission is to demonstrate the advantages of high spatial resolution (4 km ground sample distance - gsd) on temperature and water vapor retrieval by allowing sampling in broken cloud regions. This small gsd, combined with the relatively long scan time required (approximately 10 s) to collect high resolution spectra from geostationary (GEO) orbit, may require extremely good pointing control. This paper discusses the analysis of this requirement.

  4. Detector motion method to increase spatial resolution in photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-03-01

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  5. An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling

    NASA Astrophysics Data System (ADS)

    Wang, Enjiang; Liu, Yang

    2018-01-01

    The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.

  6. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more than two orders of magnitude greater than the best Deformable Mirrors currently made. Even with the increased spatial resolution, the cost of these devices is nearly two orders of magnitude less than the cost of the largest deformable mirror.« less

  7. Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.

    PubMed

    Jung, Phill Gu; Lee, Chi Hoon; Bae, Kong Myeong; Lee, Jae Min; Lee, Sang Min; Lim, Chang Hwy; Yun, Seungman; Kim, Ho Kyung; Ko, Jong Soo

    2010-07-05

    A flexible microdome-grooved Gd(2)O(2)S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.

  8. Requirements on high resolution detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, A.

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  9. Generating High-Temporal and Spatial Resolution TIR Image Data

    NASA Astrophysics Data System (ADS)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  10. Spatial Light Modulator Would Serve As Electronic Iris

    NASA Technical Reports Server (NTRS)

    Gutow, David A.

    1991-01-01

    In proposed technique for controlling brightness of image formed by lens, spatial light modulator serves as segmented, electronically variable aperture. Offers several advantages: spatial light modulator controlled remotely and responds faster than motorized iris or other remotely controlled mechanical iris. Unlike iris, modulator also configured so as not to vary depth of field appreciably. Unlike lead lanthanum zirconate titanate crystal, spatial light modulator does not require high voltage.

  11. Predicting spatial distribution of privet (liguestrum spp.) in South Carolina from MODIS and forest inventory plot data

    Treesearch

    Dumitru Salajanu; Dennis M. Jacobs

    2009-01-01

    Privet's aggressive competitive behavior causes environmental harm to the ecosystem by degrading species diversity and wildlife habitat. Effective control of its spread requires high-quality spatial distribution information. Our...

  12. Contributions of solar wind and micrometeoroids to molecular hydrogen in the lunar exosphere

    NASA Astrophysics Data System (ADS)

    Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.; Pryor, Wayne; Stickle, Angela; Killen, Rosemary M.; Stern, S. Alan

    2017-02-01

    We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50% of the solar wind H+ inventory to be converted to H2 to account for the observations.

  13. Contributions of Solar Wind and Micrometeoroids to Molecular Hydrogen in the Lunar Exosphere

    NASA Technical Reports Server (NTRS)

    Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.; hide

    2016-01-01

    We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50 of the solar wind H+ inventory to be converted to H2 to account for the observations.

  14. Spatial variations of the Sr I 4607 Å scattering polarization peak

    NASA Astrophysics Data System (ADS)

    Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.

    2018-06-01

    Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.

  15. High-dynamic-range scene compression in humans

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2006-02-01

    Single pixel dynamic-range compression alters a particular input value to a unique output value - a look-up table. It is used in chemical and most digital photographic systems having S-shaped transforms to render high-range scenes onto low-range media. Post-receptor neural processing is spatial, as shown by the physiological experiments of Dowling, Barlow, Kuffler, and Hubel & Wiesel. Human vision does not render a particular receptor-quanta catch as a unique response. Instead, because of spatial processing, the response to a particular quanta catch can be any color. Visual response is scene dependent. Stockham proposed an approach to model human range compression using low-spatial frequency filters. Campbell, Ginsberg, Wilson, Watson, Daly and many others have developed spatial-frequency channel models. This paper describes experiments measuring the properties of desirable spatial-frequency filters for a variety of scenes. Given the radiances of each pixel in the scene and the observed appearances of objects in the image, one can calculate the visual mask for that individual image. Here, visual mask is the spatial pattern of changes made by the visual system in processing the input image. It is the spatial signature of human vision. Low-dynamic range images with many white areas need no spatial filtering. High-dynamic-range images with many blacks, or deep shadows, require strong spatial filtering. Sun on the right and shade on the left requires directional filters. These experiments show that variable scene- scenedependent filters are necessary to mimic human vision. Although spatial-frequency filters can model human dependent appearances, the problem still remains that an analysis of the scene is still needed to calculate the scene-dependent strengths of each of the filters for each frequency.

  16. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions

    USDA-ARS?s Scientific Manuscript database

    Studies of land surface dynamics in heterogeneous landscapes often require remote sensing data with high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta ...

  17. BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2017-12-01

    MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.

  18. Classified one-step high-radix signed-digit arithmetic units

    NASA Astrophysics Data System (ADS)

    Cherri, Abdallah K.

    1998-08-01

    High-radix number systems enable higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. A simple one-step fully parallel high-radix signed-digit arithmetic is proposed for parallel optical computing based on new joint spatial encodings. This reduces hardware requirements and improves throughput by reducing the space-bandwidth produce needed. The high-radix signed-digit arithmetic operations are based on classifying the neighboring input digit pairs into various groups to reduce the computation rules. A new joint spatial encoding technique is developed to present both the operands and the computation rules. This technique increases the spatial bandwidth product of the spatial light modulators of the system. An optical implementation of the proposed high-radix signed-digit arithmetic operations is also presented. It is shown that our one-step trinary signed-digit and quaternary signed-digit arithmetic units are much simpler and better than all previously reported high-radix signed-digit techniques.

  19. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  20. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie

    2018-07-01

    A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.

  1. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  2. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  3. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2013-10-01

    Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas. The groundwater level dynamics were not adequately reproduced and the predicted spatial patterns of soil saturation did not correspond to the patterns estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a more complex model. Especially high spatial resolution and very detailed process representations at the boundary between the unsaturated and the saturated zone are expected to be crucial. The data needed for such a detailed model are not generally available. The high computational demand and the complex model setup would require more resources than the direct identification of saturated areas in the field. This severely hampers the practical use of such models despite their usefulness for scientific purposes.

  4. Spatial filters for high-peak-power multistage laser amplifiers.

    PubMed

    Potemkin, A K; Barmashova, T V; Kirsanov, A V; Martyanov, M A; Khazanov, E A; Shaykin, A A

    2007-07-10

    We describe spatial filters used in a Nd:glass laser with an output pulse energy up to 300 J and a pulse duration of 1 ns. This laser is designed for pumping of a chirped-pulse optical parametric amplifier. We present data required to choose the shape and diameter of a spatial filter lens, taking into account aberrations caused by spherical surfaces. Calculation of the optimal pinhole diameter is presented. Design features of the spatial filters and the procedure of their alignment are discussed in detail.

  5. HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.

  6. Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities

    PubMed Central

    Bull, James J.; Christensen, Kelly A.; Scott, Carly; Crandall, Cameron J.; Krone, Stephen M.

    2018-01-01

    Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here. PMID:29382134

  7. Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation

    PubMed Central

    Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong

    2017-01-01

    Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175

  8. Instrument-induced spatial crosstalk deconvolution algorithm

    NASA Technical Reports Server (NTRS)

    Wright, Valerie G.; Evans, Nathan L., Jr.

    1986-01-01

    An algorithm has been developed which reduces the effects of (deconvolves) instrument-induced spatial crosstalk in satellite image data by several orders of magnitude where highly precise radiometry is required. The algorithm is based upon radiance transfer ratios which are defined as the fractional bilateral exchange of energy betwen pixels A and B.

  9. Impact of post-stroke unilateral spatial neglect on goal-directed arm movements: systematic literature review.

    PubMed

    Ogourtsova, Tatiana; Archambault, Philippe; Lamontagne, Anouk

    2015-12-01

    Unilateral spatial neglect (USN), a highly prevalent post-stroke impairment, refers to one's inability to orient or respond to stimuli located in the contralesional visual hemispace. Unilateral spatial neglect has been shown to strongly affect motor performance in functional activities, including non-affected upper extremity (UE) movements. To date, our understanding of the effects of USN on goal-directed UE movements is limited and comparing performance of individuals post-stroke with and without USN is required. To determine, in individuals with stroke, how does the presence of USN, in comparison to the absence of USN, impacts different types of goal-directed movements of the non-affected UE. The present review approach consisted of a comprehensive literature search, an assessment of the quality of the selected studies and qualitative data analysis. A total of 20 studies of moderate to high quality were selected. The USN-specific impairments were found in tasks that required a perceptual, memory-guided or delayed actions, and fewer impairments were found in tasks that required an immediate action to a predefined target. The results indicate that USN contributes to deficits observed in action execution with the non-effected UE that requires greater perceptual demands.

  10. Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF

    NASA Technical Reports Server (NTRS)

    Hill, Peter; Thompson, Patrick

    2012-01-01

    A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes

  11. Spatially Resolved Chemical Imaging for Biosignature Analysis: Terrestrial and Extraterrestrial Examples

    NASA Astrophysics Data System (ADS)

    Bhartia, R.; Wanger, G.; Orphan, V. J.; Fries, M.; Rowe, A. R.; Nealson, K. H.; Abbey, W. J.; DeFlores, L. P.; Beegle, L. W.

    2014-12-01

    Detection of in situ biosignatures on terrestrial and planetary missions is becoming increasingly more important. Missions that target the Earth's deep biosphere, Mars, moons of Jupiter (including Europa), moons of Saturn (Titan and Enceladus), and small bodies such as asteroids or comets require methods that enable detection of materials for both in-situ analysis that preserve context and as a means to select high priority sample for return to Earth. In situ instrumentation for biosignature detection spans a wide range of analytical and spectroscopic methods that capitalize on amino acid distribution, chirality, lipid composition, isotopic fractionation, or textures that persist in the environment. Many of the existing analytical instruments are bulk analysis methods and while highly sensitive, these require sample acquisition and sample processing. However, by combining with triaging spectroscopic methods, biosignatures can be targeted on a surface and preserve spatial context (including mineralogy, textures, and organic distribution). To provide spatially correlated chemical analysis at multiple spatial scales (meters to microns) we have employed a dual spectroscopic approach that capitalizes on high sensitivity deep UV native fluorescence detection and high specificity deep UV Raman analysis.. Recently selected as a payload on the Mars 2020 mission, SHERLOC incorporates these optical methods for potential biosignatures detection on Mars. We present data from both Earth analogs that operate as our only examples known biosignatures and meteorite samples that provide an example of abiotic organic formation, and demonstrate how provenance effects the spatial distribution and composition of organics.

  12. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.

    PubMed

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2013-11-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.

  13. Evaluating an image-fusion algorithm with synthetic-image-generation tools

    NASA Astrophysics Data System (ADS)

    Gross, Harry N.; Schott, John R.

    1996-06-01

    An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.

  14. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  15. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  16. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  17. Combined fabrication technique for high-precision aspheric optical windows

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Song, Ci; Xie, Xuhui

    2016-07-01

    Specifications made on optical components are becoming more and more stringent with the performance improvement of modern optical systems. These strict requirements not only involve low spatial frequency surface accuracy, mid-and-high spatial frequency surface errors, but also surface smoothness and so on. This presentation mainly focuses on the fabrication process for square aspheric window which combines accurate grinding, magnetorheological finishing (MRF) and smoothing polishing (SP). In order to remove the low spatial frequency surface errors and subsurface defects after accurate grinding, the deterministic polishing method MRF with high convergence and stable material removal rate is applied. Then the SP technology with pseudo-random path is adopted to eliminate the mid-and-high spatial frequency surface ripples and high slope errors which is the defect for MRF. Additionally, the coordinate measurement method and interferometry are combined in different phase. Acid-etched method and ion beam figuring (IBF) are also investigated on observing and reducing the subsurface defects. Actual fabrication result indicates that the combined fabrication technique can lead to high machining efficiency on manufaturing the high-precision and high-quality optical aspheric windows.

  18. Lasercom system architecture with reduced complexity

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homayoon (Inventor)

    1994-01-01

    Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention, a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides the means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.

  19. LaserCom System Architecture With Reduced Complexity

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homa-Yoon (Inventor)

    1996-01-01

    Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan; Hill, K. W.; Bitter, M.

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  1. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    DOE PAGES

    Gao, Lan; Hill, K. W.; Bitter, M.; ...

    2016-08-23

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  2. Persistence of canine distemper virus in the Greater Yellowstone ecosystem's carnivore community.

    PubMed

    Almberg, Emily S; Cross, Paul C; Smith, Douglas W

    2010-10-01

    Canine distemper virus (CDV) is an acute, highly immunizing pathogen that should require high densities and large populations of hosts for long-term persistence, yet CDV persists among terrestrial carnivores with small, patchily distributed groups. We used CDV in the Greater Yellowstone ecosystem's (GYE) wolves (Canis lupus) and coyotes (Canis latrans) as a case study for exploring how metapopulation structure, host demographics, and multi-host transmission affect the critical community size and spatial scale required for CDV persistence. We illustrate how host spatial connectivity and demographic turnover interact to affect both local epidemic dynamics, such as the length and variation in inter-epidemic periods, and pathogen persistence using stochastic, spatially explicit susceptible-exposed-infectious-recovered simulation models. Given the apparent absence of other known persistence mechanisms (e.g., a carrier or environmental state, densely populated host, chronic infection, or a vector), we suggest that CDV requires either large spatial scales or multi-host transmission for persistence. Current GYE wolf populations are probably too small to support endemic CDV. Coyotes are a plausible reservoir host, but CDV would still require 50000-100000 individuals for moderate persistence (> 50% over 10 years), which would equate to an area of 1-3 times the size of the GYE (60000-200000 km2). Coyotes, and carnivores in general, are not uniformly distributed; therefore, this is probably a gross underestimate of the spatial scale of CDV persistence. However, the presence of a second competent host species can greatly increase the probability of long-term CDV persistence at much smaller spatial scales. Although no management of CDV is currently recommended for the GYE, wolf managers in the region should expect periodic but unpredictable CDV-related population declines as often as every 2-5 years. Awareness and monitoring of such outbreaks will allow corresponding adjustments in management activities such as regulated public harvest, creating a smooth transition to state wolf management and conservation after > 30 years of being protected by the Endangered Species Act.

  3. Ensembles of adaptive spatial filters increase BCI performance: an online evaluation

    NASA Astrophysics Data System (ADS)

    Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-08-01

    Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI inefficiency to one-fourth in comparison to previous non-adaptive paradigms.

  4. Ensembles of adaptive spatial filters increase BCI performance: an online evaluation.

    PubMed

    Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-08-01

    In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI inefficiency to one-fourth in comparison to previous non-adaptive paradigms.

  5. Satellite image fusion based on principal component analysis and high-pass filtering.

    PubMed

    Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E

    2010-06-01

    This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.

  6. Reducing Sensor Noise in MEG and EEG Recordings Using Oversampled Temporal Projection.

    PubMed

    Larson, Eric; Taulu, Samu

    2018-05-01

    Here, we review the theory of suppression of spatially uncorrelated, sensor-specific noise in electro- and magentoencephalography (EEG and MEG) arrays, and introduce a novel method for suppression. Our method requires only that the signals of interest are spatially oversampled, which is a reasonable assumption for many EEG and MEG systems. Our method is based on a leave-one-out procedure using overlapping temporal windows in a mathematical framework to project spatially uncorrelated noise in the temporal domain. This method, termed "oversampled temporal projection" (OTP), has four advantages over existing methods. First, sparse channel-specific artifacts are suppressed while limiting mixing with other channels, whereas existing linear, time-invariant spatial operators can spread such artifacts to other channels with a spatial distribution which can be mistaken for one produced by an electrophysiological source. Second, OTP minimizes distortion of the spatial configuration of the data. During source localization (e.g., dipole fitting), many spatial methods require corresponding modification of the forward model to avoid bias, while OTP does not. Third, noise suppression factors at the sensor level are maintained during source localization, whereas bias compensation removes the denoising benefit for spatial methods that require such compensation. Fourth, OTP uses a time-window duration parameter to control the tradeoff between noise suppression and adaptation to time-varying sensor characteristics. OTP efficiently optimizes noise suppression performance while controlling for spatial bias of the signal of interest. This is important in applications where sensor noise significantly limits the signal-to-noise ratio, such as high-frequency brain oscillations.

  7. Novel method to sample very high power CO2 lasers: II Continuing Studies

    NASA Astrophysics Data System (ADS)

    Eric, John; Seibert, Daniel B., II; Green, Lawrence I.

    2005-04-01

    For the past 28 years, the Laser Hardened Materials Evaluation Laboratory (LHMEL) at the Wright-Patterson Air Force Base, OH, has worked with CO2 lasers capable of producing continuous energy up to 150 kW. These lasers are used in a number of advanced materials processing applications that require accurate spatial energy measurements of the laser. Conventional non-electronic methods are not satisfactory for determining the spatial energy profile. This paper describes continuing efforts in qualifying the new method in which a continuous, real-time electronic spatial energy profile can be obtained for very high power, (VHP) CO2 lasers.

  8. Exploring the Moon and Mars Using an Orbiting Superconducting Gravity Gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung; Strayer, Donald M.

    2004-01-01

    Gravity measurement is fundamental to understanding the interior structure, dynamics, and evolution of planets. High-resolution gravity maps will also help locating natural resources, including subsurface water, and underground cavities for astronaut habitation on the Moon and Mars. Detecting the second spatial derivative of the potential, a gravity gradiometer mission tends to give the highest spatial resolution and has the advantage of requiring only a single satellite. We discuss gravity missions to the Moon and Mars using an orbiting Superconducting Gravity Gradiometer and discuss the instrument and spacecraft control requirements.

  9. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves.

    PubMed

    Grant, P S; Castles, F; Lei, Q; Wang, Y; Janurudin, J M; Isakov, D; Speller, S; Dancer, C; Grovenor, C R M

    2015-08-28

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture.

  10. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves

    PubMed Central

    Grant, P. S.; Castles, F.; Lei, Q.; Wang, Y.; Janurudin, J. M.; Isakov, D.; Speller, S.; Dancer, C.; Grovenor, C. R. M.

    2015-01-01

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture. PMID:26217051

  11. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce

    PubMed Central

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2016-01-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325

  12. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    NASA Astrophysics Data System (ADS)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS's parallel subsetting capabilities including challenges in the design and implementation of a scientific data subsetter.

  13. The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform

    NASA Astrophysics Data System (ADS)

    Xie, Qingyun

    2016-06-01

    This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.

  14. Super-resolution optical microscopy for studying membrane structure and dynamics.

    PubMed

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  15. Computer Generated Hologram System for Wavefront Measurement System Calibration

    NASA Technical Reports Server (NTRS)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  16. Almeria spatial memory recognition test (ASMRT): Gender differences emerged in a new passive spatial task.

    PubMed

    Tascón, Laura; García-Moreno, Luis Miguel; Cimadevilla, Jose Manuel

    2017-06-09

    Many different human spatial memory tasks were developed in the last two decades. Virtual reality based tasks make possible developing different scenarios and situations to assess spatial orientation but sometimes these tasks are complex for specific populations like children and older-adults. A new spatial task with a very limited technological requirement was developed in this study. It demanded the use of spatial memory for an accurate solution. It also proved to be sensitive to gender differences, with men outperforming women under high specific difficulty levels. Thanks to its simplicity it could be applied as a screening test and is easy to combine with EEG and fMRI studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia.

    PubMed

    Dorji, Passang; Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.

  18. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia

    PubMed Central

    Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059

  19. The Minimal Preprocessing Pipelines for the Human Connectome Project

    PubMed Central

    Glasser, Matthew F.; Sotiropoulos, Stamatios N; Wilson, J Anthony; Coalson, Timothy S; Fischl, Bruce; Andersson, Jesper L; Xu, Junqian; Jbabdi, Saad; Webster, Matthew; Polimeni, Jonathan R; Van Essen, David C; Jenkinson, Mark

    2013-01-01

    The Human Connectome Project (HCP) faces the challenging task of bringing multiple magnetic resonance imaging (MRI) modalities together in a common automated preprocessing framework across a large cohort of subjects. The MRI data acquired by the HCP differ in many ways from data acquired on conventional 3 Tesla scanners and often require newly developed preprocessing methods. We describe the minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space. These pipelines are specially designed to capitalize on the high quality data offered by the HCP. The final standard space makes use of a recently introduced CIFTI file format and the associated grayordinates spatial coordinate system. This allows for combined cortical surface and subcortical volume analyses while reducing the storage and processing requirements for high spatial and temporal resolution data. Here, we provide the minimum image acquisition requirements for the HCP minimal preprocessing pipelines and additional advice for investigators interested in replicating the HCP’s acquisition protocols or using these pipelines. Finally, we discuss some potential future improvements for the pipelines. PMID:23668970

  20. Influence of Scale Effect and Model Performance in Downscaling ASTER Land Surface Temperatures to a Very High Spatial Resolution in an Agricultural Area

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Li, G.; Liu, S.; Zhan, W.; Zhang, X.

    2015-12-01

    At present land surface temperatures (LSTs) can be generated from thermal infrared remote sensing with spatial resolutions from ~100 m to tens of kilometers. However, LSTs with high spatial resolution, e.g. tens of meters, are still lack. The purpose of LST downscaling is to generate LSTs with finer spatial resolutions than their native spatial resolutions. The statistical linear or nonlinear regression models are most frequently used for LST downscaling. The basic assumption of these models is the scale-invariant relationships between LST and its descriptors, which is questioned but rare researches have been reported. In addition, few researches can be found for downscaling satellite LST or TIR data to a high spatial resolution, i.e. better than 100 m or even finer. The lack of LST with high spatial resolution cannot satisfy the requirements of applications such as evapotranspiration mapping at the field scale. By selecting a dynamically developing agricultural oasis as the study area, the aim of this study is to downscale the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LSTs to 15 m, to satisfy the requirement of evapotranspiration mapping at the field scale. Twelve ASTER images from May to September in 2012, covering the entire growth stage of maize, were selected. Four statistical models were evaluated, including one global model, one piecewise model, and two local models. The influence from scale effect in downscaling LST was quantified. The downscaled LSTs are evaluated from accuracy and image quality. Results demonstrate that the influence from scale effect varies according to models and the maize growth stage. Significant influence about -4 K to 6 K existed at the early stage and weaker influence existed in the middle stage. When compared with the ground measured LSTs, the downscaled LSTs resulted from the global and local models yielded higher accuracies and better image qualities than the local models. In addition to the vegetation indices, the surface albedo is an important descriptor for downscaling LST through explaining its spatial variation induced by soil moisture.

  1. Gamma-ray, neutron, and hard X-ray studies and requirements for a high-energy solar physics facility

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Dennis, B. R.; Emslie, A. G.

    1988-01-01

    The requirements for future high-resolution spatial, spectral, and temporal observation of hard X-rays, gamma rays and neutrons from solar flares are discussed in the context of current high-energy flare observations. There is much promise from these observations for achieving a deep understanding of processes of energy release, particle acceleration and particle transport in a complicated environment such as the turbulent and highly magnetized atmosphere of the active sun.

  2. Spatial transcriptomics: paving the way for tissue-level systems biology.

    PubMed

    Moor, Andreas E; Itzkovitz, Shalev

    2017-08-01

    The tissues in our bodies are complex systems composed of diverse cell types that often interact in highly structured repeating anatomical units. External gradients of morphogens, directional blood flow, as well as the secretion and absorption of materials by cells generate distinct microenvironments at different tissue coordinates. Such spatial heterogeneity enables optimized function through division of labor among cells. Unraveling the design principles that govern this spatial division of labor requires techniques to quantify the entire transcriptomes of cells while accounting for their spatial coordinates. In this review we describe how recent advances in spatial transcriptomics open the way for tissue-level systems biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Large Deployable Reflector Science and Technology Workshop. Volume 2: Scientific Rationale and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. (Editor)

    1983-01-01

    The scientific rationale for the large deployable reflector (LDR) and the overall technological requirements are discussed. The main scientific objectives include studies of the origins of planets, stars and galaxies, and of the ultimate fate of the universe. The envisioned studies require a telescope with a diameter of at least 20 m, diffraction-limited to wavelengths as short as 30-50 micron. In addition, light-bucket operation with 1 arcsec spatial resolution in the 2-4 microns wavelength region would be useful in studies of high-redshifted galaxies. Such a telescope would provide a large increase in spectroscopic sensitivity and spatial resolving power compared with existing or planned infrared telescopes.

  4. Daily Access to Sucrose Impairs Aspects of Spatial Memory Tasks Reliant on Pattern Separation and Neural Proliferation in Rats

    ERIC Educational Resources Information Center

    Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick

    2016-01-01

    High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…

  5. Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design.

    PubMed

    Banville, Frederic A; Moreau, Julien; Sarkar, Mitradeep; Besbes, Mondher; Canva, Michael; Charette, Paul G

    2018-04-16

    Surface plasmon resonance imaging (SPRI) is an optical near-field method used for mapping the spatial distribution of chemical/physical perturbations above a metal surface without exogenous labeling. Currently, the majority of SPRI systems are used in microarray biosensing, requiring only modest spatial resolution. There is increasing interest in applying SPRI for label-free near-field imaging of biological cells to study cell/surface interactions. However, the required resolution (sub-µm) greatly exceeds what current systems can deliver. Indeed, the attenuation length of surface plasmon polaritons (SPP) severely limits resolution along one axis, typically to tens of µm. Strategies to date for improving spatial resolution result in a commensurate deterioration in other imaging parameters. Unlike the smooth metal surfaces used in SPRI that support purely propagating surface modes, nanostructured metal surfaces support "hybrid" SPP modes that share attributes from both propagating and localized modes. We show that these hybrid modes are especially well-suited to high-resolution imaging and demonstrate how the nanostructure geometry can be designed to achieve sub-µm resolution while mitigating the imaging parameter trade-off according to an application-specific optimum.

  6. Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging.

    PubMed

    Masson, A; Pedrazzani, M; Benrezzak, S; Tchenio, P; Preat, T; Nutarelli, D

    2014-01-27

    Genetic tools and especially genetically encoded fluorescent reporters have given a special place to optical microscopy in drosophila neurobiology research. In order to monitor neural networks activity, high speed and sensitive techniques, with high spatial resolution are required. Structured illumination microscopies are wide-field approaches with optical sectioning ability. Despite the large progress made with the introduction of the HiLo principle, they did not meet the criteria of speed and/or spatial resolution for drosophila brain imaging. We report on a new implementation that took advantage of micromirror matrix technology to structure the illumination. Thus, we showed that the developed instrument exhibits a spatial resolution close to that of confocal microscopy but it can record physiological responses with a speed improved by more than an order a magnitude.

  7. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source.

    PubMed

    Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh

    2016-04-01

    In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan, E-mail: lgao@pppl.gov; Hill, K. W.; Bitter, M.

    A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ{sub 2} rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p)more » and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  9. Advanced Wavefront Control Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S; Brase, J M; Avicola, K

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In themore » case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.« less

  10. Progress toward accurate high spatial resolution actinide analysis by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.

    2010-12-01

    High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation volume, as well as interferences from fluorescence at a distance from adjacent phases or distinct compositional domains in the same phase. Interference corrections for elements detected during boundary fluorescence are further complicated by X-ray focusing geometry considerations. Additional complications arise from the high current densities required for high spatial resolution and high count precision, such as fluctuations in internal charge distribution and peak shape changes as satellite production efficiency varies from calibration to analysis. No flawless method has yet emerged. Extreme care in interference corrections, especially where multiple and sometime mutual overlaps are present, and maximum care (and precision) in background characterization to account for interferences and curvature (e.g., WDS scan or multipoint regression), are crucial developments. Calibration curves from multiple peak and interference calibration measurements at different concentrations, and iterative software methodologies for incorporating absorption edge effects, and non-linearities in interference corrections due to peak shape changes and off-axis X-ray defocussing during boundary fluorescence at a distance, are directions with significant potential.

  11. Non-iterative double-frame 2D/3D particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Fuchs, Thomas; Hain, Rainer; Kähler, Christian J.

    2017-09-01

    In recent years, the detection of individual particle images and their tracking over time to determine the local flow velocity has become quite popular for planar and volumetric measurements. Particle tracking velocimetry has strong advantages compared to the statistical analysis of an ensemble of particle images by means of cross-correlation approaches, such as particle image velocimetry. Tracking individual particles does not suffer from spatial averaging and therefore bias errors can be avoided. Furthermore, the spatial resolution can be increased up to the sub-pixel level for mean fields. A maximization of the spatial resolution for instantaneous measurements requires high seeding concentrations. However, it is still challenging to track particles at high seeding concentrations, if no time series is available. Tracking methods used under these conditions are typically very complex iterative algorithms, which require expert knowledge due to the large number of adjustable parameters. To overcome these drawbacks, a new non-iterative tracking approach is introduced in this letter, which automatically analyzes the motion of the neighboring particles without requiring to specify any parameters, except for the displacement limits. This makes the algorithm very user friendly and also offers unexperienced users to use and implement particle tracking. In addition, the algorithm enables measurements of high speed flows using standard double-pulse equipment and estimates the flow velocity reliably even at large particle image densities.

  12. Spatial transformation abilities and their relation to later mathematics performance.

    PubMed

    Frick, Andrea

    2018-04-10

    Using a longitudinal approach, this study investigated the relational structure of different spatial transformation skills at kindergarten age, and how these spatial skills relate to children's later mathematics performance. Children were tested at three time points, in kindergarten, first grade, and second grade (N = 119). Exploratory factor analyses revealed two subcomponents of spatial transformation skills: one representing egocentric transformations (mental rotation and spatial scaling), and one representing allocentric transformations (e.g., cross-sectioning, perspective taking). Structural equation modeling suggested that egocentric transformation skills showed their strongest relation to the part of the mathematics test tapping arithmetic operations, whereas allocentric transformations were strongly related to Numeric-Logical and Spatial Functions as well as geometry. The present findings point to a tight connection between early mental transformation skills, particularly the ones requiring a high level of spatial flexibility and a strong sense for spatial magnitudes, and children's mathematics performance at the beginning of their school career.

  13. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments

    NASA Astrophysics Data System (ADS)

    Zakšek, Klemen; Schroedter-Homscheidt, Marion

    Some applications, e.g. from traffic or energy management, require air temperature data in high spatial and temporal resolution at two metres height above the ground ( T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (SEVIRI data aboard the MSG and MODIS data aboard Terra and Aqua satellites). The method consists of two parts. First, a downscaling procedure from the SEVIRI pixel resolution of several kilometres to a one kilometre spatial resolution is performed using a regression analysis between the land surface temperature ( LST) and the normalized differential vegetation index ( NDVI) acquired by the MODIS instrument. Second, the lapse rate between the LST and T2m is removed using an empirical parameterization that requires albedo, down-welling surface short-wave flux, relief characteristics and NDVI data. The method was successfully tested for Slovenia, the French region Franche-Comté and southern Germany for the period from May to December 2005, indicating that the parameterization is valid for Central Europe. This parameterization results in a root mean square deviation RMSD of 2.0 K during the daytime with a bias of -0.01 K and a correlation coefficient of 0.95. This is promising, especially considering the high temporal (30 min) and spatial resolution (1000 m) of the results.

  14. Coherent visualization of spatial data adapted to roles, tasks, and hardware

    NASA Astrophysics Data System (ADS)

    Wagner, Boris; Peinsipp-Byma, Elisabeth

    2012-06-01

    Modern crisis management requires that users with different roles and computer environments have to deal with a high volume of various data from different sources. For this purpose, Fraunhofer IOSB has developed a geographic information system (GIS) which supports the user depending on available data and the task he has to solve. The system provides merging and visualization of spatial data from various civilian and military sources. It supports the most common spatial data standards (OGC, STANAG) as well as some proprietary interfaces, regardless if these are filebased or database-based. To set the visualization rules generic Styled Layer Descriptors (SLDs) are used, which are an Open Geospatial Consortium (OGC) standard. SLDs allow specifying which data are shown, when and how. The defined SLDs consider the users' roles and task requirements. In addition it is possible to use different displays and the visualization also adapts to the individual resolution of the display. Too high or low information density is avoided. Also, our system enables users with different roles to work together simultaneously using the same data base. Every user is provided with the appropriate and coherent spatial data depending on his current task. These so refined spatial data are served via the OGC services Web Map Service (WMS: server-side rendered raster maps), or the Web Map Tile Service - (WMTS: pre-rendered and cached raster maps).

  15. Confocal laser induced fluorescence with comparable spatial localization to the conventional method

    NASA Astrophysics Data System (ADS)

    Thompson, Derek S.; Henriquez, Miguel F.; Scime, Earl E.; Good, Timothy N.

    2017-10-01

    We present measurements of ion velocity distributions obtained by laser induced fluorescence (LIF) using a single viewport in an argon plasma. A patent pending design, which we refer to as the confocal fluorescence telescope, combines large objective lenses with a large central obscuration and a spatial filter to achieve high spatial localization along the laser injection direction. Models of the injection and collection optics of the two assemblies are used to provide a theoretical estimate of the spatial localization of the confocal arrangement, which is taken to be the full width at half maximum of the spatial optical response. The new design achieves approximately 1.4 mm localization at a focal length of 148.7 mm, improving on previously published designs by an order of magnitude and approaching the localization achieved by the conventional method. The confocal method, however, does so without requiring a pair of separated, perpendicular optical paths. The confocal technique therefore eases the two window access requirement of the conventional method, extending the application of LIF to experiments where conventional LIF measurements have been impossible or difficult, or where multiple viewports are scarce.

  16. Functional cardiac magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Brau, Anja Christina Sophie

    2003-07-01

    The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.

  17. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  18. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin

    2016-09-01

    A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.

  19. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.

  20. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 104 simultaneous events can be detected with a spatial resolution of 55 μm, while >103 simultaneous events can be detected with <10 μm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×108 particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10-20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  1. Persistence of canine distemper virus in the Greater Yellowstone Ecosystem's carnivore community

    USGS Publications Warehouse

    Almberg, E.S.; Cross, P.C.; Smith, D.W.

    2010-01-01

    Canine distemper virus (CDV) is an acute, highly immunizing pathogen that should require high densities and large populations of hosts for long-term persistence, yet CDV persists among terrestrial carnivores with small, patchily distributed groups. We used CDV in the Greater Yellowstone ecosystem's (GYE) wolves (Canis lupus) and coyotes (Canis latrans) as a case study for exploring how metapopulation structure, host demographics, and multi-host transmission affect the critical community size and spatial scale required for CDV persistence. We illustrate how host spatial connectivity and demographic turnover interact to affect both local epidemic dynamics, such as the length and variation in inter-epidemic periods, and pathogen persistence using stochastic, spatially explicit susceptible-exposed-infectious-recovered simulation models. Given the apparent absence of other known persistence mechanisms (e.g., a carrier or environmental state, densely populated host, chronic infection, or a vector), we suggest that CDV requires either large spatial scales or multi-host transmission for persistence. Current GYE wolf populations are probably too small to support endemic CDV. Coyotes are a plausible reservoir host, but CDV would still require 50 000-100 000 individuals for moderate persistence (>50% over 10 years), which would equate to an area of 1-3 times the size of the GYE (60000-200000 km2). Coyotes, and carnivores in general, are not uniformly distributed; therefore, this is probably a gross underestimate of the spatial scale of CDV persistence. However, the presence of a second competent host species can greatly increase the probability of long-term CDV persistence at much smaller spatial scales. Although no management of CDV is currently recommended for the GYE, wolf managers in the region should expect periodic but unpredictable CDV-related population declines as often as every 2-5 years. Awareness and monitoring of such outbreaks will allow corresponding adjustments in management activities such as regulated public harvest, creating a smooth transition to state wolf management and conservation after >30 years of being protected by the Endangered Species Act. ?? 2010 by the Ecological Society of America.

  2. Laser system using regenerative amplifier

    DOEpatents

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  3. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  4. Human visual system consistent quality assessment for remote sensing image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Huang, Junyi; Liu, Shuguang; Li, Huali; Zhou, Qiming; Liu, Junchen

    2015-07-01

    Quality assessment for image fusion is essential for remote sensing application. Generally used indices require a high spatial resolution multispectral (MS) image for reference, which is not always readily available. Meanwhile, the fusion quality assessments using these indices may not be consistent with the Human Visual System (HVS). As an attempt to overcome this requirement and inconsistency, this paper proposes an HVS-consistent image fusion quality assessment index at the highest resolution without a reference MS image using Gaussian Scale Space (GSS) technology that could simulate the HVS. The spatial details and spectral information of original and fused images are first separated in GSS, and the qualities are evaluated using the proposed spatial and spectral quality index respectively. The overall quality is determined without a reference MS image by a combination of the proposed two indices. Experimental results on various remote sensing images indicate that the proposed index is more consistent with HVS evaluation compared with other widely used indices that may or may not require reference images.

  5. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.

    PubMed

    Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C

    2018-01-09

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  6. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  7. Effects of spatial coherence in diffraction phase microscopy.

    PubMed

    Edwards, Chris; Bhaduri, Basanta; Nguyen, Tan; Griffin, Benjamin G; Pham, Hoa; Kim, Taewoo; Popescu, Gabriel; Goddard, Lynford L

    2014-03-10

    Quantitative phase imaging systems using white light illumination can exhibit lower noise figures than laser-based systems. However, they can also suffer from object-dependent artifacts, such as halos, which prevent accurate reconstruction of the surface topography. In this work, we show that white light diffraction phase microscopy using a standard halogen lamp can produce accurate height maps of even the most challenging structures provided that there is proper spatial filtering at: 1) the condenser to ensure adequate spatial coherence and 2) the output Fourier plane to produce a uniform reference beam. We explain that these object-dependent artifacts are a high-pass filtering phenomenon, establish design guidelines to reduce the artifacts, and then apply these guidelines to eliminate the halo effect. Since a spatially incoherent source requires significant spatial filtering, the irradiance is lower and proportionally longer exposure times are needed. To circumvent this tradeoff, we demonstrate that a supercontinuum laser, due to its high radiance, can provide accurate measurements with reduced exposure times, allowing for fast dynamic measurements.

  8. Spatial and space-time distribution of Plasmodium vivax and Plasmodium falciparum malaria in China, 2005-2014.

    PubMed

    Hundessa, Samuel H; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Chen, Linping; Zhang, Wenyi; Guo, Yuming

    2016-12-19

    Despite the declining burden of malaria in China, the disease remains a significant public health problem with periodic outbreaks and spatial variation across the country. A better understanding of the spatial and temporal characteristics of malaria is essential for consolidating the disease control and elimination programme. This study aims to understand the spatial and spatiotemporal distribution of Plasmodium vivax and Plasmodium falciparum malaria in China during 2005-2009. Global Moran's I statistics was used to detect a spatial distribution of local P. falciparum and P. vivax malaria at the county level. Spatial and space-time scan statistics were applied to detect spatial and spatiotemporal clusters, respectively. Both P. vivax and P. falciparum malaria showed spatial autocorrelation. The most likely spatial cluster of P. vivax was detected in northern Anhui province between 2005 and 2009, and western Yunnan province between 2010 and 2014. For P. falciparum, the clusters included several counties of western Yunnan province from 2005 to 2011, Guangxi from 2012 to 2013, and Anhui in 2014. The most likely space-time clusters of P. vivax malaria and P. falciparum malaria were detected in northern Anhui province and western Yunnan province, respectively, during 2005-2009. The spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Contrary to P. vivax, the high-risk areas for P. falciparum malaria shifted from the west to the east of China. Further studies are required to examine the spatial changes in risk of malaria transmission and identify the underlying causes of elevated risk in the high-risk areas.

  9. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    PubMed

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  10. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, Ashley G.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 μm) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale.

  11. The Belle-II Depfet Pixel Detector at the Superkekb Flavour Factory

    NASA Astrophysics Data System (ADS)

    Heindl, Stefan

    2012-08-01

    The ongoing upgrade of the asymmetric electron positron collider KEKB also requires extensive detector upgrades to cope with the new design luminosity of 8 · 1035 cm-2 · s-1 · Of critical importance is the new silicon pixel vertex tracker, which will significantly improve the decay vertex resolution, crucial for time dependent CP violation measurements. This new detector will consist of two layers of DEPFET pixel seii8ors very close to the interaction point. These sensors combine both particle detection and amplification of the signal by embedding a field effect transistor into a 75 μm thick fully depleted silicon substrate, providing very high signal to noise ratios and excellent spatial resolution. Using this technology satisfies the given requirements of extremely low material and high radiation tolerance at the new Belle II experiment. The power dissipation due to continuous readout at high rate and spatial constraints also give strict requirements for the mechanical support and cooling of the new detector. We will discuss the overall concept of the pixel vertex tracker, its expected performance and the challenging mechanical integration.

  12. Optimisation of a propagation-based x-ray phase-contrast micro-CT system

    NASA Astrophysics Data System (ADS)

    Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.

    2018-03-01

    Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.

  13. Projected Irrigation Requirement Under Climate Change in Korean Peninsula by Apply Global Hydrologic Model to Local Scale.

    NASA Astrophysics Data System (ADS)

    Yang, B.; Lee, D. K.

    2016-12-01

    Understanding spatial distribution of irrigation requirement is critically important for agricultural water management. However, many studies considering future agricultural water management in Korea assessed irrigation requirement on watershed or administrative district scale, but have not accounted the spatial distribution. Lumped hydrologic model has typically used in Korea for simulating watershed scale irrigation requirement, while distribution hydrologic model can simulate the spatial distribution grid by grid. To overcome this shortcoming, here we applied a grid base global hydrologic model (H08) into local scale to estimate spatial distribution under future irrigation requirement of Korean Peninsula. Korea is one of the world's most densely populated countries, with also high produce and demand of rice which requires higher soil moisture than other crops. Although, most of the precipitation concentrate in particular season and disagree with crop growth season. This precipitation character makes management of agricultural water which is approximately 60% of total water usage critical issue in Korea. Furthermore, under future climate change, the precipitation predicted to be more concentrated and necessary need change of future water management plan. In order to apply global hydrological model into local scale, we selected appropriate major crops under social and local climate condition in Korea to estimate cropping area and yield, and revised the cropping area map more accurately. As a result, future irrigation requirement estimation varies under each projection, however, slightly decreased in most case. The simulation reveals, evapotranspiration increase slightly while effective precipitation also increase to balance the irrigation requirement. This finding suggest practical guideline to decision makers for further agricultural water management plan including future development of water supply plan to resolve water scarcity.

  14. Nyquist-WDM filter shaping with a high-resolution colorless photonic spectral processor.

    PubMed

    Sinefeld, David; Ben-Ezra, Shalva; Marom, Dan M

    2013-09-01

    We employ a spatial-light-modulator-based colorless photonic spectral processor with a spectral addressability of 100 MHz along 100 GHz bandwidth, for multichannel, high-resolution reshaping of Gaussian channel response to square-like shape, compatible with Nyquist WDM requirements.

  15. Discrete distributed strain sensing of intelligent structures

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.; Crawley, Edward F.

    1992-01-01

    Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.

  16. Using spatial analysis to demonstrate the heterogeneity of the cardiovascular drug-prescribing pattern in Taiwan

    PubMed Central

    2011-01-01

    Background Geographic Information Systems (GIS) combined with spatial analytical methods could be helpful in examining patterns of drug use. Little attention has been paid to geographic variation of cardiovascular prescription use in Taiwan. The main objective was to use local spatial association statistics to test whether or not the cardiovascular medication-prescribing pattern is homogenous across 352 townships in Taiwan. Methods The statistical methods used were the global measures of Moran's I and Local Indicators of Spatial Association (LISA). While Moran's I provides information on the overall spatial distribution of the data, LISA provides information on types of spatial association at the local level. LISA statistics can also be used to identify influential locations in spatial association analysis. The major classes of prescription cardiovascular drugs were taken from Taiwan's National Health Insurance Research Database (NHIRD), which has a coverage rate of over 97%. The dosage of each prescription was converted into defined daily doses to measure the consumption of each class of drugs. Data were analyzed with ArcGIS and GeoDa at the township level. Results The LISA statistics showed an unusual use of cardiovascular medications in the southern townships with high local variation. Patterns of drug use also showed more low-low spatial clusters (cold spots) than high-high spatial clusters (hot spots), and those low-low associations were clustered in the rural areas. Conclusions The cardiovascular drug prescribing patterns were heterogeneous across Taiwan. In particular, a clear pattern of north-south disparity exists. Such spatial clustering helps prioritize the target areas that require better education concerning drug use. PMID:21609462

  17. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile.

    PubMed

    Inostroza, Luis; Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making.

  18. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile

    PubMed Central

    Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making. PMID:27606592

  19. Accelerating Pathology Image Data Cross-Comparison on CPU-GPU Hybrid Systems

    PubMed Central

    Wang, Kaibo; Huai, Yin; Lee, Rubao; Wang, Fusheng; Zhang, Xiaodong; Saltz, Joel H.

    2012-01-01

    As an important application of spatial databases in pathology imaging analysis, cross-comparing the spatial boundaries of a huge amount of segmented micro-anatomic objects demands extremely data- and compute-intensive operations, requiring high throughput at an affordable cost. However, the performance of spatial database systems has not been satisfactory since their implementations of spatial operations cannot fully utilize the power of modern parallel hardware. In this paper, we provide a customized software solution that exploits GPUs and multi-core CPUs to accelerate spatial cross-comparison in a cost-effective way. Our solution consists of an efficient GPU algorithm and a pipelined system framework with task migration support. Extensive experiments with real-world data sets demonstrate the effectiveness of our solution, which improves the performance of spatial cross-comparison by over 18 times compared with a parallelized spatial database approach. PMID:23355955

  20. A high-order gas-kinetic Navier-Stokes flow solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Qibing, E-mail: lqb@tsinghua.edu.c; Xu Kun, E-mail: makxu@ust.h; Fu Song, E-mail: fs-dem@tsinghua.edu.c

    2010-09-20

    The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge-Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge-Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to itsmore » spatial and temporal decoupling. Many recently developed high-order methods require a Navier-Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier-Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier-Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.« less

  1. Spatial analysis of under-5 mortality and potential risk factors in the Basse Health and Demographic Surveillance System, the Gambia.

    PubMed

    Quattrochi, John; Jasseh, Momodou; Mackenzie, Grant; Castro, Marcia C

    2015-07-01

    To describe the spatial pattern in under-5 mortality rates in the Basse Health and Demographic Surveillance System (BHDSS) and to test for associations between under-5 deaths and biodemographic and socio-economic risk factors. Using data on child survival from 2007 to 2011 in the BHDSS, we mapped under-5 mortality by km(2) . We tested for spatial clustering of high or low death rates using Kulldorff's spatial scan statistic. Associations between child death and a variety of biodemographic and socio-economic factors were assessed with Cox proportional hazards models, and deviance residuals from the best-fitting model were tested for spatial clustering. The overall death rate among children under 5 was 0.0195 deaths per child-year. We found two spatial clusters of high death rates and one spatial cluster of low death rates; children in the two high clusters died at a rate of 0.0264 and 0.0292 deaths per child-year, while in the low cluster, the rate was 0.0144 deaths per child-year. We also found that children born to Fula mothers experienced, on average, a higher hazard of death, whereas children born in the households in the upper two quintiles of asset ownership experienced, on average, a lower hazard of death. After accounting for the spatial distribution of biodemographic and socio-economic characteristics, we found no residual spatial pattern in child mortality risk. This study demonstrates that significant inequality in under-5 death rates can occur within a relatively small area (1100 km(2) ). Risks of under-5 mortality were associated with mother's ethnicity and household wealth. If high mortality clusters persist, then equity concerns may require additional public health efforts in those areas. © 2015 John Wiley & Sons Ltd.

  2. Escherichia coli sampling reliability at a frequently closed Chicago beach: monitoring and management implications

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.

    2004-01-01

    Monitoring beaches for recreational water quality is becoming more common, but few sampling designs or policy approaches have evaluated the efficacy of monitoring programs. The authors intensively sampled water for E. coli (N=1770) at 63rd Street Beach, Chicago for 6 months in 2000 in order to (1) characterize spatial-temporal trends, (2) determine between and within transect variation, and (3) estimate sample size requirements and determine sampling reliability.E. coli counts were highly variable within and between sampling sites but spatially and diurnally autocorrelated. Variation in counts decreased with water depth and time of day. Required number of samples was high for 70% precision around the critical closure level (i.e., 6 within or 24 between transect replicates). Since spatial replication may be cost prohibitive, composite sampling is an alternative once sources of error have been well defined. The results suggest that beach monitoring programs may be requiring too few samples to fulfill management objectives desired. As the recreational water quality national database is developed, it is important that sampling strategies are empirically derived from a thorough understanding of the sources of variation and the reliability of collected data. Greater monitoring efficacy will yield better policy decisions, risk assessments, programmatic goals, and future usefulness of the information.

  3. Are all types of expertise created equal? Car experts use different spatial frequency scales for subordinate categorization of cars and faces.

    PubMed

    Harel, Assaf; Bentin, Shlomo

    2013-01-01

    A much-debated question in object recognition is whether expertise for faces and expertise for non-face objects utilize common perceptual information. We investigated this issue by assessing the diagnostic information required for different types of expertise. Specifically, we asked whether face categorization and expert car categorization at the subordinate level relies on the same spatial frequency (SF) scales. Fifteen car experts and fifteen novices performed a category verification task with spatially filtered images of faces, cars, and airplanes. Images were categorized based on their basic (e.g. "car") and subordinate level (e.g. "Japanese car") identity. The effect of expertise was not evident when objects were categorized at the basic level. However, when the car experts categorized faces and cars at the subordinate level, the two types of expertise required different kinds of SF information. Subordinate categorization of faces relied on low SFs more than on high SFs, whereas subordinate expert car categorization relied on high SFs more than on low SFs. These findings suggest that expertise in the recognition of objects and faces do not utilize the same type of information. Rather, different types of expertise require different types of diagnostic visual information.

  4. Are All Types of Expertise Created Equal? Car Experts Use Different Spatial Frequency Scales for Subordinate Categorization of Cars and Faces

    PubMed Central

    Harel, Assaf; Bentin, Shlomo

    2013-01-01

    A much-debated question in object recognition is whether expertise for faces and expertise for non-face objects utilize common perceptual information. We investigated this issue by assessing the diagnostic information required for different types of expertise. Specifically, we asked whether face categorization and expert car categorization at the subordinate level relies on the same spatial frequency (SF) scales. Fifteen car experts and fifteen novices performed a category verification task with spatially filtered images of faces, cars, and airplanes. Images were categorized based on their basic (e.g. “car”) and subordinate level (e.g. “Japanese car”) identity. The effect of expertise was not evident when objects were categorized at the basic level. However, when the car experts categorized faces and cars at the subordinate level, the two types of expertise required different kinds of SF information. Subordinate categorization of faces relied on low SFs more than on high SFs, whereas subordinate expert car categorization relied on high SFs more than on low SFs. These findings suggest that expertise in the recognition of objects and faces do not utilize the same type of information. Rather, different types of expertise require different types of diagnostic visual information. PMID:23826188

  5. Regional forest land cover characterisation using medium spatial resolution satellite data

    USGS Publications Warehouse

    Huang, Chengquan; Homer, Collin G.; Yang, Limin; Wulder, Michael A.; Franklin, Steven E.

    2003-01-01

    Increasing demands on forest resources require comprehensive, consistent and up-to-date information on those resources at spatial scales appropriate for management decision-making and for scientific analysis. While such information can be derived using coarse spatial resolution satellite data (e.g. Tucker et al. 1984; Zhu and Evans 1994; Cihlar et al. 1996; Cihlar et al., Chapter 12), many regional applications require more spatial and thematic details than can be derived by using coarse resolution imagery. High spatial resolution satellite data such as IKONOS and Quick Bird images (Aplin et al. 1997), though usable for deriving detailed forest information (Culvenor, Chapter 9), are currently not feasible for wall-to-wall regional applications because of extremely high data cost, huge data volume, and lack of contiguous coverage over large areas. Forest studies over large areas have often been accomplished using data acquired by intermediate spatial resolution sensor systems, including the Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and the Enhanced Thematic Mapper Plus (ETM+) of Landsat, the High Resolution Visible (HRV) of the Systeme Pour l'Observation de la Terre (SPOT), and the Linear Image Self-Scanner (LISS) of the Indian Remote Sensing satellite. These sensor systems are more appropriate for regional applications because they can routinely produce spatially contiguous data over large areas at relatively low cost, and can be used to derive a host of forest attributes (e.g. Cohen et al. 1995; Kimes et al. 1999; Cohen et al. 2001; Huang et al. 2001; Sugumaran 2001). Of the above intermediate spatial resolution satellites, Landsat is perhaps the most widely used in various types of land remote sensing applications, in part because it has provided more extensive spatial and temporal coverage of the globe than any other intermediate resolution satellite. Spatially contiguous Landsat data have been developed for many regions of the globe (e.g. Lunetta and Sturdevant 1993; Fuller et al. 1994b; Skole et al. 1997), and a circa 1990 Landsat image data set covering the entire land area of the globe has also been developed recently (Jones and Smith 2001). An acquisition strategy aimed at acquiring at least one cloud free image per year for the entire land area of the globe has been initiated for Landsat-7 (Arvidson et al. 2001). This will probably ensure the continued dominance of Landsat in the near future.

  6. Online EEG artifact removal for BCI applications by adaptive spatial filtering.

    PubMed

    Guarnieri, Roberto; Marino, Marco; Barban, Federico; Ganzetti, Marco; Mantini, Dante

    2018-06-28

    The performance of brain computer interfaces (BCIs) based on electroencephalography (EEG) data strongly depends on the effective attenuation of artifacts that are mixed in the recordings. To address this problem, we have developed a novel online EEG artifact removal method for BCI applications, which combines blind source separation (BSS) and regression (REG) analysis. The BSS-REG method relies on the availability of a calibration dataset of limited duration for the initialization of a spatial filter using BSS. Online artifact removal is implemented by dynamically adjusting the spatial filter in the actual experiment, based on a linear regression technique. Our results showed that the BSS-REG method is capable of attenuating different kinds of artifacts, including ocular and muscular, while preserving true neural activity. Thanks to its low computational requirements, BSS-REG can be applied to low-density as well as high-density EEG data. We argue that BSS-REG may enable the development of novel BCI applications requiring high-density recordings, such as source-based neurofeedback and closed-loop neuromodulation. © 2018 IOP Publishing Ltd.

  7. Modes of Visual Recognition and Perceptually Relevant Sketch-based Coding for Images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1991-01-01

    A review of visual recognition studies is used to define two levels of information requirements. These two levels are related to two primary subdivisions of the spatial frequency domain of images and reflect two distinct different physical properties of arbitrary scenes. In particular, pathologies in recognition due to cerebral dysfunction point to a more complete split into two major types of processing: high spatial frequency edge based recognition vs. low spatial frequency lightness (and color) based recognition. The former is more central and general while the latter is more specific and is necessary for certain special tasks. The two modes of recognition can also be distinguished on the basis of physical scene properties: the highly localized edges associated with reflectance and sharp topographic transitions vs. smooth topographic undulation. The extreme case of heavily abstracted images is pursued to gain an understanding of the minimal information required to support both modes of recognition. Here the intention is to define the semantic core of transmission. This central core of processing can then be fleshed out with additional image information and coding and rendering techniques.

  8. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    NASA Astrophysics Data System (ADS)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  9. Quantification of optical absorption coefficient from acoustic spectra in the optical diffusive regime using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zijian; Favazza, Christopher; Wang, Lihong V.

    2012-02-01

    Photoacoustic (PA) tomography (PAT) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Multi-wavelength PAT can noninvasively monitor hemoglobin oxygen saturation (sO2) with high sensitivity and fine spatial resolution. However, accurate quantification in PAT requires knowledge of the optical fluence distribution, acoustic wave attenuation, and detection system bandwidth. We propose a method to circumvent this requirement using acoustic spectra of PA signals acquired at two optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560 and 575 nm were quantified with errors of ><5%.

  10. [Value of the space perception test for evaluation of the aptitude for precision work in geodesy].

    PubMed

    Remlein-Mozolewska, G

    1982-01-01

    The visual spatial localization ability of geodesy and cartography - employers and of the pupils trained for the mentioned profession has been examined. The examination has been based on work duration and the time of its performance. A correlation between the localization ability and the precision of the hand - movements required in everyday work has been proven. The better the movement precision, the more efficient the visual spatial localization. The length of work has not been significant. The test concerned appeared to be highly useful in geodesy for qualifying workers for the posts requiring good hands efficiency.

  11. Optical scanner system for high resolution measurement of lubricant distributions on metal strips based on laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Holz, Philipp; Lutz, Christian; Brandenburg, Albrecht

    2017-06-01

    We present a new optical setup, which uses scanning mirrors in combination with laser induced fluorescence to monitor the spatial distribution of lubricant on metal sheets. Current trends in metal processing industry require forming procedures with increasing deformations. Thus a welldefined amount of lubricant is necessary to prevent the material from rupture, to reduce the wearing of the manufacturing tool as well as to prevent problems in post-deforming procedures. Therefore spatial resolved analysis of the thickness of lubricant layers is required. Current systems capture the lubricant distribution by moving sensor heads over the object along a linear axis. However the spatial resolution of these systems is insufficient at high strip speeds, e.g. at press plants. The presented technology uses fast rotating scanner mirrors to deflect a laser beam on the surface. This 405 nm laser light excites the autofluorescence of the investigated lubricants. A coaxial optic collects the fluorescence signal which is then spectrally filtered and recorded using a photomultiplier. From the acquired signal a two dimensional image is reconstructed in real time. This paper presents the sensor setup as well as its characterization. For the calibration of the system reference targets were prepared using an ink jet printer. The presented technology for the first time allows a spatial resolution in the millimetre range at production speed. The presented test system analyses an area of 300 x 300 mm² at a spatial resolution of 1.1 mm in less than 20 seconds. Despite this high speed of the measurement the limit of detection of the system described in this paper is better than 0.05 g/m² for the certified lubricant BAM K-009.

  12. Spatial properties of odd and even low order harmonics generated in gas.

    PubMed

    Lambert, G; Andreev, A; Gautier, J; Giannessi, L; Malka, V; Petralia, A; Sebban, S; Stremoukhov, S; Tissandier, F; Vodungbo, B; Zeitoun, Ph

    2015-01-14

    High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.

  13. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    USDA-ARS?s Scientific Manuscript database

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  14. Real-time dynamics simulation of the Cassini spacecraft using DARTS. Part 1: Functional capabilities and the spatial algebra algorithm

    NASA Technical Reports Server (NTRS)

    Jain, A.; Man, G. K.

    1993-01-01

    This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space Administration's Cassini spacecraft. The spacecraft model consists of a central flexible body with a number of articulated rigid-body appendages. The demanding performance requirements from the spacecraft control system require the use of a high fidelity simulator for control system design and testing. The DARTS algorithm provides a new algorithmic and hardware approach to the solution of this hardware-in-the-loop simulation problem. It is based upon the efficient spatial algebra dynamics for flexible multibody systems. A parallel and vectorized version of this algorithm is implemented on a low-cost, multiprocessor computer to meet the simulation timing requirements.

  15. Left-handers' struggle in a rightward wor(l)d: The relation between horizontal spatial bias and effort in directed movements.

    PubMed

    Suitner, Caterina; Maass, Anne; Bettinsoli, Maria Laura; Carraro, Luciana; Kumar, Serena

    2017-01-01

    Five studies investigated the role of handedness and effort in horizontal spatial bias related to agency (Spatial Agency Bias, SAB). A Pilot Study (n = 33) confirmed the basic assumption that rightward writing requires greater effort from left- than from right-handers. In three studies, Italian students (n = 591 right-handed, n = 115 left-handed) were found to start drawings on the left, proceeding rightward (Study 1a, 1b), and to draw moving objects with a rightward orientation in line with script direction (Study 1c). These spatial asymmetries were displayed stronger by left- than by right-handed primacy school children, arguably due to the greater effort involved in learning how to write in a rightward fashion. Once writing has become fully automatic (high school) right- and left-handed students showed comparable spatial bias (Study 1c). The hypothesized role of effort was tested explicitly in Study 2 in which 99 right-handed adults learned a new (leftward) spatial trajectory through an easy or difficult motor exercise. The habitual rightward bias was reliably reduced, especially among those who performed a difficult task requiring greater effort. Together, findings are largely in line with the body specificity hypothesis (Casasanto, 2011 ) and suggest that spatial asymmetries are learned and unlearned most efficiently through effortful motor exercises.

  16. Visual scanning with or without spatial uncertainty and time-sharing performance

    NASA Technical Reports Server (NTRS)

    Liu, Yili; Wickens, Christopher D.

    1989-01-01

    An experiment is reported that examines the pattern of task interference between visual scanning as a sequential and selective attention process and other concurrent spatial or verbal processing tasks. A distinction is proposed between visual scanning with or without spatial uncertainty regarding the possible differential effects of these two types of scanning on interference with other concurrent processes. The experiment required the subject to perform a simulated primary tracking task, which was time-shared with a secondary spatial or verbal decision task. The relevant information that was needed to perform the decision tasks were displayed with or without spatial uncertainty. The experiment employed a 2 x 2 x 2 design with types of scanning (with or without spatial uncertainty), expected scanning distance (low/high), and codes of concurrent processing (spatial/verbal) as the three experimental factors. The results provide strong evidence that visual scanning as a spatial exploratory activity produces greater task interference with concurrent spatial tasks than with concurrent verbal tasks. Furthermore, spatial uncertainty in visual scanning is identified to be the crucial factor in producing this differential effect.

  17. Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX)

    Treesearch

    Glen E. Liston; Christopher A. Hiemstra; Kelly Elder; Donald W. Cline

    2008-01-01

    The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can...

  18. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty

    PubMed Central

    Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil

    2014-01-01

    We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144

  19. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  20. Application of finite-element methods to dynamic analysis of flexible spatial and co-planar linkage systems, part 2

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1989-01-01

    An approach is described to modeling the flexibility effects in spatial mechanisms and manipulator systems. The method is based on finite element representations of the individual links in the system. However, it should be noted that conventional finite element methods and software packages will not handle the highly nonlinear dynamic behavior of these systems which results form their changing geometry. In order to design high-performance lightweight systems and their control systems, good models of their dynamic behavior which include the effects of flexibility are required.

  1. The four spot time-of-flight laser anemometer

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1985-01-01

    The newly constructed, four-spot anemometer was shown to perform as predicted. The new anemometer's measurement region has the required characteristics: wide acceptance angle and high spatial selectivity to permit measurements in turbulent, hostile environments.

  2. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  3. Swept Field Laser Confocal Microscopy for Enhanced Spatial and Temporal Resolution in Live-Cell Imaging

    PubMed Central

    Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.

    2013-01-01

    Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554

  4. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data.

    PubMed

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R

    2015-09-11

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite's Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds.

  5. Evaluating Sentinel-2 for Lakeshore Habitat Mapping Based on Airborne Hyperspectral Data

    PubMed Central

    Stratoulias, Dimitris; Balzter, Heiko; Sykioti, Olga; Zlinszky, András; Tóth, Viktor R.

    2015-01-01

    Monitoring of lakeshore ecosystems requires fine-scale information to account for the high biodiversity typically encountered in the land-water ecotone. Sentinel-2 is a satellite with high spatial and spectral resolution and improved revisiting frequency and is expected to have significant potential for habitat mapping and classification of complex lakeshore ecosystems. In this context, investigations of the capabilities of Sentinel-2 in regard to the spatial and spectral dimensions are needed to assess its potential and the quality of the expected output. This study presents the first simulation of the high spatial resolution (i.e., 10 m and 20 m) bands of Sentinel-2 for lakeshore mapping, based on the satellite’s Spectral Response Function and hyperspectral airborne data collected over Lake Balaton, Hungary in August 2010. A comparison of supervised classifications of the simulated products is presented and the information loss from spectral aggregation and spatial upscaling in the context of lakeshore vegetation classification is discussed. We conclude that Sentinel-2 imagery has a strong potential for monitoring fine-scale habitats, such as reed beds. PMID:26378538

  6. Surrogate modelling for the prediction of spatial fields based on simultaneous dimensionality reduction of high-dimensional input/output spaces.

    PubMed

    Crevillén-García, D

    2018-04-01

    Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.

  7. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.

  8. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    PubMed

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Development of a Dual-PIV system for high-speed flow applications

    NASA Astrophysics Data System (ADS)

    Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre

    2015-10-01

    A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.

  10. High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh

    2017-10-01

    Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  11. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing.

    PubMed

    Qiao, Pengwei; Lei, Mei; Yang, Sucai; Yang, Jun; Guo, Guanghui; Zhou, Xiaoyong

    2018-06-01

    Spatial interpolation method is the basis of soil heavy metal pollution assessment and remediation. The existing evaluation index for interpolation accuracy did not combine with actual situation. The selection of interpolation methods needs to be based on specific research purposes and research object characteristics. In this paper, As pollution in soils of Beijing was taken as an example. The prediction accuracy of ordinary kriging (OK) and inverse distance weighted (IDW) were evaluated based on the cross validation results and spatial distribution characteristics of influencing factors. The results showed that, under the condition of specific spatial correlation, the cross validation results of OK and IDW for every soil point and the prediction accuracy of spatial distribution trend are similar. But the prediction accuracy of OK for the maximum and minimum is less than IDW, while the number of high pollution areas identified by OK are less than IDW. It is difficult to identify the high pollution areas fully by OK, which shows that the smoothing effect of OK is obvious. In addition, with increasing of the spatial correlation of As concentration, the cross validation error of OK and IDW decreases, and the high pollution area identified by OK is approaching the result of IDW, which can identify the high pollution areas more comprehensively. However, because the semivariogram constructed by OK interpolation method is more subjective and requires larger number of soil samples, IDW is more suitable for spatial prediction of heavy metal pollution in soils.

  12. Longitudinal spatial coherence gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar

    2018-02-01

    We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  13. Improved spatial resolution of luminescence images acquired with a silicon line scanning camera

    NASA Astrophysics Data System (ADS)

    Teal, Anthony; Mitchell, Bernhard; Juhl, Mattias K.

    2018-04-01

    Luminescence imaging is currently being used to provide spatially resolved defect in high volume silicon solar cell production. One option to obtain the high throughput required for on the fly detection is the use a silicon line scan cameras. However, when using a silicon based camera, the spatial resolution is reduced as a result of the weakly absorbed light scattering within the camera's chip. This paper address this issue by applying deconvolution from a measured point spread function. This paper extends the methods for determining the point spread function of a silicon area camera to a line scan camera with charge transfer. The improvement in resolution is quantified in the Fourier domain and in spatial domain on an image of a multicrystalline silicon brick. It is found that light spreading beyond the active sensor area is significant in line scan sensors, but can be corrected for through normalization of the point spread function. The application of this method improves the raw data, allowing effective detection of the spatial resolution of defects in manufacturing.

  14. Modelling the spatial distribution of Fasciola hepatica in dairy cattle in Europe.

    PubMed

    Ducheyne, Els; Charlier, Johannes; Vercruysse, Jozef; Rinaldi, Laura; Biggeri, Annibale; Demeler, Janina; Brandt, Christina; De Waal, Theo; Selemetas, Nikolaos; Höglund, Johan; Kaba, Jaroslaw; Kowalczyk, Slawomir J; Hendrickx, Guy

    2015-03-26

    A harmonized sampling approach in combination with spatial modelling is required to update current knowledge of fasciolosis in dairy cattle in Europe. Within the scope of the EU project GLOWORM, samples from 3,359 randomly selected farms in 849 municipalities in Belgium, Germany, Ireland, Poland and Sweden were collected and their infection status assessed using an indirect bulk tank milk (BTM) enzyme-linked immunosorbent assay (ELISA). Dairy farms were considered exposed when the optical density ratio (ODR) exceeded the 0.3 cut-off. Two ensemble-modelling techniques, Random Forests (RF) and Boosted Regression Trees (BRT), were used to obtain the spatial distribution of the probability of exposure to Fasciola hepatica using remotely sensed environmental variables (1-km spatial resolution) and interpolated values from meteorological stations as predictors. The median ODRs amounted to 0.31, 0.12, 0.54, 0.25 and 0.44 for Belgium, Germany, Ireland, Poland and southern Sweden, respectively. Using the 0.3 threshold, 571 municipalities were categorized as positive and 429 as negative. RF was seen as capable of predicting the spatial distribution of exposure with an area under the receiver operation characteristic (ROC) curve (AUC) of 0.83 (0.96 for BRT). Both models identified rainfall and temperature as the most important factors for probability of exposure. Areas of high and low exposure were identified by both models, with BRT better at discriminating between low-probability and high-probability exposure; this model may therefore be more useful in practise. Given a harmonized sampling strategy, it should be possible to generate robust spatial models for fasciolosis in dairy cattle in Europe to be used as input for temporal models and for the detection of deviations in baseline probability. Further research is required for model output in areas outside the eco-climatic range investigated.

  15. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire Switzerland was used to verify snow distribution patterns at coarser spatial and temporal scale. The ability of the model chain to reproduce current climate conditions in small alpine catchments makes this model combination an outstanding candidate to produce high resolution climate scenarios of snowmelt in small alpine catchments.

  16. Estimating eruption temperature from thermal emission spectra of lava fountain activity in the Erta'Ale (Ethiopia) volcano lava lake: Implications for observing Io's volcanoes

    USGS Publications Warehouse

    Davies, A.G.; Keszthelyi, L.; McEwen, A.S.

    2011-01-01

    We have analysed high-spatial-resolution and high-temporal-resolution temperature measurements of the active lava lake at Erta'Ale volcano, Ethiopia, to derive requirements for measuring eruption temperatures at Io's volcanoes. Lava lakes are particularly attractive targets because they are persistent in activity and large, often with ongoing lava fountain activity that exposes lava at near-eruption temperature. Using infrared thermography, we find that extracting useful temperature estimates from remote-sensing data requires (a) high spatial resolution to isolate lava fountains from adjacent cooler lava and (b) rapid acquisition of multi-color data. Because existing spacecraft data of Io's volcanoes do not meet these criteria, it is particularly important to design future instruments so that they will be able to collect such data. Near-simultaneous data at more than two relatively short wavelengths (shorter than 1 ??m) are needed to constrain eruption temperatures. Resolving parts of the lava lake or fountains that are near the eruption temperature is also essential, and we provide a rough estimate of the required image scale. ?? 2011 by the American Geophysical Union.

  17. A new high resolution permafrost map of Iceland from Earth Observation data

    NASA Astrophysics Data System (ADS)

    Barnie, Talfan; Conway, Susan; Balme, Matt; Graham, Alastair

    2017-04-01

    High resolution maps of permafrost are required for ongoing monitoring of environmental change and the resulting hazards to ecosystems, people and infrastructure. However, permafrost maps are difficult to construct - direct observations require maintaining networks of sensors and boreholes in harsh environments and are thus limited in extent in space and time, and indirect observations require models or assumptions relating the measurements (e.g. weather station air temperature, basal snow temperature) to ground temperature. Operationally produced Land Surface Temperature maps from Earth Observation data can be used to make spatially contiguous estimates of mean annual skin temperature, which has been used a proxy for the presence of permafrost. However these maps are subject to biases due to (i) selective sampling during the day due to limited satellite overpass times, (ii) selective sampling over the year due to seasonally varying cloud cover, (iii) selective sampling of LST only during clearsky conditions, (iv) errors in cloud masking (v) errors in temperature emissivity separation (vi) smoothing over spatial variability. In this study we attempt to compensate for some of these problems using a bayesian modelling approach and high resolution topography-based downscaling.

  18. A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns

    NASA Astrophysics Data System (ADS)

    Ferdous, Nazneen; Bhat, Chandra R.

    2013-01-01

    This paper proposes and estimates a spatial panel ordered-response probit model with temporal autoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst) and accommodates spatial interactions between land owners that lead to spatial spillover effects. In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.

  19. Spatial 3D infrastructure: display-independent software framework, high-speed rendering electronics, and several new displays

    NASA Astrophysics Data System (ADS)

    Chun, Won-Suk; Napoli, Joshua; Cossairt, Oliver S.; Dorval, Rick K.; Hall, Deirdre M.; Purtell, Thomas J., II; Schooler, James F.; Banker, Yigal; Favalora, Gregg E.

    2005-03-01

    We present a software and hardware foundation to enable the rapid adoption of 3-D displays. Different 3-D displays - such as multiplanar, multiview, and electroholographic displays - naturally require different rendering methods. The adoption of these displays in the marketplace will be accelerated by a common software framework. The authors designed the SpatialGL API, a new rendering framework that unifies these display methods under one interface. SpatialGL enables complementary visualization assets to coexist through a uniform infrastructure. Also, SpatialGL supports legacy interfaces such as the OpenGL API. The authors" first implementation of SpatialGL uses multiview and multislice rendering algorithms to exploit the performance of modern graphics processing units (GPUs) to enable real-time visualization of 3-D graphics from medical imaging, oil & gas exploration, and homeland security. At the time of writing, SpatialGL runs on COTS workstations (both Windows and Linux) and on Actuality"s high-performance embedded computational engine that couples an NVIDIA GeForce 6800 Ultra GPU, an AMD Athlon 64 processor, and a proprietary, high-speed, programmable volumetric frame buffer that interfaces to a 1024 x 768 x 3 digital projector. Progress is illustrated using an off-the-shelf multiview display, Actuality"s multiplanar Perspecta Spatial 3D System, and an experimental multiview display. The experimental display is a quasi-holographic view-sequential system that generates aerial imagery measuring 30 mm x 25 mm x 25 mm, providing 198 horizontal views.

  20. Rearranging the lenslet array of the compact passive interference imaging system with high resolution

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Wen, Desheng; Song, Zongxi

    2017-10-01

    With the development of aeronautics and astronautics, higher resolution requirement of the telescope was necessary. However, the increase in resolution of conventional telescope required larger apertures, whose size, weight and power consumption could be prohibitively expensive. This limited the further development of the telescope. This paper introduced a new imaging technology using interference—Compact Passive Interference Imaging Technology with High Resolution, and proposed a rearranging method for the arrangement of the lenslet array to obtain continuously object spatial frequency.

  1. THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS

    EPA Science Inventory

    Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...

  2. Satellite Remote Sensing of Cirrus: An Overview

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick

    1998-01-01

    The determination of cirrus properties over relatively large spatial and temporal scales will, in most instances, require the use of satellite data. Global coverage, at resolutions as high as several meters are attainable with Landsat, while temporal coverage at 1-min intervals is now available with the latest Geostationary Operational Environmental Satellite (GOES) imagers. Cirrus can be analyzed via interpretation of the radiation that they reflect or emit over a wide range of the electromagnetic spectrum. Many of these spectra and high-resolution satellite data can be used to understand certain aspects of cirrus clouds in particular situations. Production of a global climatology of cirrus clouds, however, requires compromises in spatial, temporal, and spectral coverage. This paper summarizes the state of the art and the potential for future passive remote sensing systems for both understanding cirrus formation and acquiring sufficient statistics to constrain and refine weather and climate models.

  3. The chilling truth about the solar chromosphere

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    The notion that much of the solar gas in the low chromosphere is cool is discussed in terms of its validity. The dark CO absorption cores recorded at the extreme limb of the sun are described, including the 3-2 R14 line with a core-brightness temperature of 3620 K. A bifurcation in the plasma energy balance described to explain the high altitude cold gas is reviewed in terms of recent investigations. Spectral simulations of CO are described which examine the range of thermal profiles allowed by CO observations with low spatial resolution and limb darkening. Weak emission shoulders in the K line demonstrate that a cool chromosphere with Ca II emission is feasible, although the cold gas requires a surface coverage of as little as 20 percent to reproduce the limb darkening. To distinguish between the thermal bifurcation notion and the neophotosphere concept, observations of the high spatial resolution spectra of the CO bands are required.

  4. Coupling temporal and spatial gradient information in high-density unstructured Lagrangian measurements

    NASA Astrophysics Data System (ADS)

    Wong, Jaime G.; Rosi, Giuseppe A.; Rouhi, Amirreza; Rival, David E.

    2017-10-01

    Particle tracking velocimetry (PTV) produces high-quality temporal information that is often neglected when computing spatial gradients. A method is presented here to utilize this temporal information in order to improve the estimation of spatial gradients for spatially unstructured Lagrangian data sets. Starting with an initial guess, this method penalizes any gradient estimate where the substantial derivative of vorticity along a pathline is not equal to the local vortex stretching/tilting. Furthermore, given an initial guess, this method can proceed on an individual pathline without any further reference to neighbouring pathlines. The equivalence of the substantial derivative and vortex stretching/tilting is based on the vorticity transport equation, where viscous diffusion is neglected. By minimizing the residual of the vorticity-transport equation, the proposed method is first tested to reduce error and noise on a synthetic Taylor-Green vortex field dissipating in time. Furthermore, when the proposed method is applied to high-density experimental data collected with `Shake-the-Box' PTV, noise within the spatial gradients is significantly reduced. In the particular test case investigated here of an accelerating circular plate captured during a single run, the method acts to delineate the shear layer and vortex core, as well as resolve the Kelvin-Helmholtz instabilities, which were previously unidentifiable without the use of ensemble averaging. The proposed method shows promise for improving PTV measurements that require robust spatial gradients while retaining the unstructured Lagrangian perspective.

  5. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procassini, R.J.

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution ofmore » particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.« less

  6. The CarbonSat candidate mission for imaging greenhouse gases from space: concepts and system requirements

    NASA Astrophysics Data System (ADS)

    Sierk, B.; Caron, J.; Bézy, J.-L.; Löscher, A.; Meijer, Y.; Jurado, P.

    2017-11-01

    CarbonSat is a candidate mission for ESA's Earth Explorer program, currently undergoing industrial feasibility studies. The primary mission objective is the identification and quantification of regional and local sources and sinks of carbon dioxide (CO2) and methane (CH4). The mission also aims at discriminating natural and anthropogenic fluxes. The space-borne instrument will quantify the spatial distribution of CO2 and CH4 by measuring dry air column-averaged mixing ratios with high precision and accuracy (0.5 ppm for CO2 and 5 ppb for CH4). These products are inferred from spectrally resolved measurements of Earth reflectance in three spectral bands in the Near Infrared (747-773 nm) and Short Wave Infrared (1590-1675 nm and 1925-2095 nm), at high and medium spectral resolution (0.1nm, 0.3 nm, and 0.55 nm). Three spatially co-aligned push-broom imaging spectrometers with a swath width <180 km will acquire observations at a spatial resolution of 2 x 3 km2 , reaching global coverage every 12 days above 40 degrees latitude (30 days at the equator). The targeted product accuracy translates into stringent radiometric, spectral and geometric requirements for the instrument. Because of the high sensitivity of the product retrieval to spurious spectral features of the instrument, special emphasis is placed on constraining relative spectral radiometric errors from polarisation sensitivity, diffuser speckles and stray light. A new requirement formulation targets to simultaneously constrain both the amplitude and the correlation of spectral features with the absorption structures of the targeted gases. The requirement performance analysis of the so-called effective spectral radiometric accuracy (ESRA) establishes a traceable link between instrumental artifacts and the impact on the level-2 products (column-averaged mixing ratios). This paper presents the derivation of system requirements from the demanding mission objectives and report preliminary results of the feasibility studies.

  7. Spatial Searching for Solar Physics Data

    NASA Astrophysics Data System (ADS)

    Hourcle, Joseph; Spencer, J. L.; The VSO Team

    2013-07-01

    The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.Abstract (2,250 Maximum Characters): The Virtual Solar Observatory allows searching across many collections of solar physics data, but does not yet allow a researcher to search based on the location and extent of the observation, other than by selecting general categories such as full disk or off limb. High resolution instruments that observe only a portion of the the solar disk require greater specificity than is currently available. We believe that finer-grained spatial searching will allow for improved access to data from existing instruments such as TRACE, XRT and SOT, and well as from upcoming missions such as ATST and IRIS. Our proposed solution should also help scientists to search on the field of view of full-disk images that are out of the Sun-Earth line, such as STEREO/EUVI and obserations from the upcoming Solar Orbiter and Solar Probe Plus missions. We present our current work on cataloging sub field images for spatial searching so that researchers can more easily search for observations of a given feature of interest, with the intent of soliciting information about researcher's requirements and recommendations for further improvements.

  8. Spatial decoupling of light absorption and catalytic activity of Ni-Mo-loaded high-aspect-ratio silicon microwire photocathodes

    NASA Astrophysics Data System (ADS)

    Vijselaar, Wouter; Westerik, Pieter; Veerbeek, Janneke; Tiggelaar, Roald M.; Berenschot, Erwin; Tas, Niels R.; Gardeniers, Han; Huskens, Jurriaan

    2018-03-01

    A solar-driven photoelectrochemical cell provides a promising approach to enable the large-scale conversion and storage of solar energy, but requires the use of Earth-abundant materials. Earth-abundant catalysts for the hydrogen evolution reaction, for example nickel-molybdenum (Ni-Mo), are generally opaque and require high mass loading to obtain high catalytic activity, which in turn leads to parasitic light absorption for the underlying photoabsorber (for example silicon), thus limiting production of hydrogen. Here, we show the fabrication of a highly efficient photocathode by spatially and functionally decoupling light absorption and catalytic activity. Varying the fraction of catalyst coverage over the microwires, and the pitch between the microwires, makes it possible to deconvolute the contributions of catalytic activity and light absorption to the overall device performance. This approach provided a silicon microwire photocathode that exhibited a near-ideal short-circuit photocurrent density of 35.5 mA cm-2, a photovoltage of 495 mV and a fill factor of 62% under AM 1.5G illumination, resulting in an ideal regenerative cell efficiency of 10.8%.

  9. Population coding in sparsely connected networks of noisy neurons.

    PubMed

    Tripp, Bryan P; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.

  10. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.

  11. High Data Rate Satellite Communications for Environmental Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.

    2014-12-01

    Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.

  12. Measurement Sets and Sites Commonly used for Characterizations

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki

    2002-01-01

    Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.

  13. The effects of spatial sampling choices on MR temperature measurements.

    PubMed

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  14. Temporal and spatial resolution required for imaging myocardial function

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Robb, Richard A.

    2004-05-01

    4-D functional analysis of myocardial mechanics is an area of significant interest and research in cardiology and vascular/interventional radiology. Current multidimensional analysis is limited by insufficient temporal resolution of x-ray and magnetic resonance based techniques, but recent improvements in system design holds hope for faster and higher resolution scans to improve images of moving structures allowing more accurate functional studies, such as in the heart. This paper provides a basis for the requisite temporal and spatial resolution for useful imaging during individual segments of the cardiac cycle. Multiple sample rates during systole and diastole are compared to determine an adequate sample frequency to reduce regional myocardial tracking errors. Concurrently, out-of-plane resolution has to be sufficiently high to minimize partial volume effect. Temporal resolution and out-of-plane spatial resolution are related factors that must be considered together. The data used for this study is a DSR dynamic volume image dataset with high temporal and spatial resolution using implanted fiducial markers to track myocardial motion. The results of this study suggest a reduced exposure and scan time for x-ray and magnetic resonance imaging methods, since a lower sample rate during systole is sufficient, whereas the period of rapid filling during diastole requires higher sampling. This could potentially reduce the cost of these procedures and allow higher patient throughput.

  15. Resolution requirements for aero-optical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Ali; Wang Meng; Moin, Parviz

    2008-11-10

    Analytical criteria are developed to estimate the error of aero-optical computations due to inadequate spatial resolution of refractive index fields in high Reynolds number flow simulations. The unresolved turbulence structures are assumed to be locally isotropic and at low turbulent Mach number. Based on the Kolmogorov spectrum for the unresolved structures, the computational error of the optical path length is estimated and linked to the resulting error in the computed far-field optical irradiance. It is shown that in the high Reynolds number limit, for a given geometry and Mach number, the spatial resolution required to capture aero-optics within a pre-specifiedmore » error margin does not scale with Reynolds number. In typical aero-optical applications this resolution requirement is much lower than the resolution required for direct numerical simulation, and therefore, a typical large-eddy simulation can capture the aero-optical effects. The analysis is extended to complex turbulent flow simulations in which non-uniform grid spacings are used to better resolve the local turbulence structures. As a demonstration, the analysis is used to estimate the error of aero-optical computation for an optical beam passing through turbulent wake of flow over a cylinder.« less

  16. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced technologies and more efficient industries. On the other hand, institutional change (i.e., marketization) and innovation (i.e., technological progress) exerted positive impacts on AVEC improvement, as always expected in this and other studies. Finally, the model comparison indicated that SEM was capable of separating spatial effect from the error term of OLS, so as to improve goodness-of-fit and the significance level of individual determinants.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Q; Xie, S

    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutionsmore » for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.« less

  18. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2014-09-01

    Spatially distributed models are popular tools in hydrology claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for inputs of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography and artificial drainage. We translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to observed groundwater levels and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the the groundwater level predictions were not accurate enough to be used for the prediction of saturated areas. Groundwater level dynamics were not adequately reproduced and the predicted spatial saturation patterns did not correspond to those estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a model that better represents processes at the boundary between the unsaturated and the saturated zone. However, data needed for such a more detailed model are not generally available. This severely hampers the practical use of such models despite their usefulness for scientific purposes.

  19. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    NASA Technical Reports Server (NTRS)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with 500 m resolution, and small, but significant, differences were found between peak and nadir river flow periods in terms of optimal resolution and resolvable proportion of variability.

  20. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE PAGES

    Hess, Nancy J.; Pasa-Tolic, Ljiljana; Bailey, Vanessa L.; ...

    2017-04-12

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  1. Random laser illumination: an ideal source for biomedical polarization imaging?

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  2. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  3. Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization.

    PubMed

    Glaser, Joshua I; Zamft, Bradley M; Church, George M; Kording, Konrad P

    2015-01-01

    Current high-resolution imaging techniques require an intact sample that preserves spatial relationships. We here present a novel approach, "puzzle imaging," that allows imaging a spatially scrambled sample. This technique takes many spatially disordered samples, and then pieces them back together using local properties embedded within the sample. We show that puzzle imaging can efficiently produce high-resolution images using dimensionality reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is possible; (2) the physical structure of a neural network can often be recovered based only on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacteria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled images promises to enable imaging based on DNA sequencing of homogenized tissue samples.

  4. Spatial Power Combining Amplifier for Ground and Flight Applications

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross-sections than comparable klystrons and traveling-wave tube counterparts and thus avoid RF breakdown and thermal issues common to vacuum tubes. We present a basic description of the SPCA mechanism and initial results of an S-band (2.4 GHz) 100-W, 45-dB gain SPCA prototype. We also discuss future X-band (8.4 GHz), Ka-band (32 GHz), and W-band (94 GHz) SPCA designs for both radar and communications applications.

  5. Mission Adaptive Uas Capabilities for Earth Science and Resource Assessment

    NASA Astrophysics Data System (ADS)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.; Young, Z.

    2015-04-01

    Unmanned aircraft systems (UAS) are important assets for accessing high risk airspace and incorporate technologies for sensor coordination, onboard processing, tele-communication, unconventional flight control, and ground based monitoring and optimization. These capabilities permit adaptive mission management in the face of complex requirements and chaotic external influences. NASA Ames Research Center has led a number of Earth science remote sensing missions directed at the assessment of natural resources and here we describe two resource mapping problems having mission characteristics requiring a mission adaptive capability extensible to other resource assessment challenges. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This constraint exists when collecting imaging spectroscopy data over vegetation for time series analysis or for the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the signal. Furthermore, the primary flight control imperative to minimize tracking error should compromise with the requirement to minimize aircraft motion artifacts in the spatial measurement distribution. A second example involves mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in recent Earth Science missions including the OCEANIA mission directed at improving the capability for spectral and radiometric reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magnetometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub-surface mapping, including the near-time optimization of these sometimes competing requirements.

  6. Geodata Modeling and Query in Geographic Information Systems

    NASA Technical Reports Server (NTRS)

    Adam, Nabil

    1996-01-01

    Geographic information systems (GIS) deal with collecting, modeling, man- aging, analyzing, and integrating spatial (locational) and non-spatial (attribute) data required for geographic applications. Examples of spatial data are digital maps, administrative boundaries, road networks, and those of non-spatial data are census counts, land elevations and soil characteristics. GIS shares common areas with a number of other disciplines such as computer- aided design, computer cartography, database management, and remote sensing. None of these disciplines however, can by themselves fully meet the requirements of a GIS application. Examples of such requirements include: the ability to use locational data to produce high quality plots, perform complex operations such as network analysis, enable spatial searching and overlay operations, support spatial analysis and modeling, and provide data management functions such as efficient storage, retrieval, and modification of large datasets; independence, integrity, and security of data; and concurrent access to multiple users. It is on the data management issues that we devote our discussions in this monograph. Traditionally, database management technology have been developed for business applications. Such applications require, among other things, capturing the data requirements of high-level business functions and developing machine- level implementations; supporting multiple views of data and yet providing integration that would minimize redundancy and maintain data integrity and security; providing a high-level language for data definition and manipulation; allowing concurrent access to multiple users; and processing user transactions in an efficient manner. The demands on database management systems have been for speed, reliability, efficiency, cost effectiveness, and user-friendliness. Significant progress have been made in all of these areas over the last two decades to the point that many generalized database platforms are now available for developing data intensive applications that run in real-time. While continuous improvement is still being made at a very fast-paced and competitive rate, new application areas such as computer aided design, image processing, VLSI design, and GIS have been identified by many as the next generation of database applications. These new application areas pose serious challenges to the currently available database technology. At the core of these challenges is the nature of data that is manipulated. In traditional database applications, the database objects do not have any spatial dimension, and as such, can be thought of as point data in a multi-dimensional space. For example, each instance of an entity EMPLOYEE will have a unique value corresponding to every attribute such as employee id, employee name, employee address and so on. Thus, every Employee instance can be thought of as a point in a multi-dimensional space where each dimension is represented by an attribute. Furthermore, all operations on such data are one-dimensional. Thus, users may retrieve all entities satisfying one or more constraints. Examples of such constraints include employees with addresses in a certain area code, or salaries within a certain range. Even though constraints can be specified on multiple attributes (dimensions), the search for such data is essentially orthogonal across these dimensions.

  7. Uncooled emissive infrared imagers for CubeSats

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Masini, Paolo

    2014-09-01

    Raytheon's fourth generation uncooled microbolometer array technology with digital output, High Definition (HD) 1920 × 1200 format and 12 μm cell size enables uncooled thermal infrared (TIR) multispectral imagers with the sensitivity and spatial sampling needed for a variety of Earth observation missions in LEO, GEO and HEO. A powerful combination of small detector cell size, fast optics and high sensitivity achieved without cryogenic cooling leads to instruments that are much smaller than current TIR systems, while still offering the capability to meet challenging measurement requirements for Earth observation missions. To consider how this technology could be implemented for Earth observation missions, we extend our previous studies with visible wavelength CubeSat imagers for environmental observations from LEO and examine whether small thermal infrared imagers based on fourth generation uncooled technology could be made small enough to fit onboard a 3U CubeSat and still meet challenging requirements for legacy missions. We found that moderate spatial resolution (~200 m) high sensitivity cloud and surface temperature observations meeting legacy MODIS/VIIRS requirements could be collected successfully with CubeSat-sized imagers but that multiple imagers are needed to cover the full swath for these missions. Higher spatial resolution land imagers are more challenging to fit into the CubeSat form factor, but it may be possible to do so for systems that require roughly 100 m spatial resolution. Regardless of whether it can fit into a CubeSat or not, uncooled land imagers meeting candidate TIR requirements can be implemented with a much smaller instrument than previous imagers. Even though this technology appears to be very promising, more work is needed to qualify this newly available uncooled infrared technology for use in space. If these new devices prove to be as space worthy as the first generation arrays that Raytheon qualified and built into the THEMIS imager still operating successfully onboard Mars Odyssey 2001, new classes of low cost, uncooled TIR Earth instruments will be enabled that are suitable for use as primary and hosted payloads in LEO, GEO and HEO or in constellations of small satellites as small as CubeSats to support Earth science measurement objectives in weather forecasting, land imaging and climate variability and change.

  8. The center of curvature optical assembly for the JWST primary mirror cryogenic optical test: optical verification

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron

    2010-08-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.

  9. low-Cost, High-Performance Alternatives for Target Temperature Monitoring Using the Near-Infrared Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virgo, Mathew; Quigley, Kevin J.; Chemerisov, Sergey

    A process is being developed for commercial production of the medical isotope Mo-99 through a photo-nuclear reaction on a Mo-100 target using a highpower electron accelerator. This process requires temperature monitoring of the window through which a high-current electron beam is transmitted to the target. For this purpose, we evaluated two near infrared technologies: the OMEGA Engineering iR2 pyrometer and the Ocean Optics Maya2000 spectrometer with infrared-enhanced charge-coupled device (CCD) sensor. Measuring in the near infrared spectrum, in contrast to the long-wavelength infrared spectrum, offers a few immediate advantages: (1) ordinary glass or quartz optical elements can be used; (2)more » alignment can be performed without heating the target; and (3) emissivity corrections to temperature are typically less than 10%. If spatial resolution is not required, the infrared pyrometer is attractive because of its accuracy, low cost, and simplicity. If spatial resolution is required, we make recommendations for near-infrared imaging based on our data augmented by calculations« less

  10. Solar vector magnetograph for Max 1991 programs

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Obyrne, J. W.; Harris, T. J.

    1988-01-01

    An instrument for measuring solar magnetic fields is under construction. Key requirements for any solar vector magnetograph are high spatial resolution, high optical throughput, fine spectral selectivity, and ultralow instrumental polarization. An available 25 cm Cassegrain telescope will provide 0.5 arcsec spatial resolution. Spectral selection will be accomplished with a 150 mA filter based on electrically tunable solid Fabry-Perot etalon. Filter and polarization analyzer design concepts for the magnetograph are described in detail. The instrument will be tested at JHU/APL, and then moved to the National Solar Observatory in late 1988. It will be available to support the Max 1991 program.

  11. Spatial surplus production modeling of Atlantic tunas and billfish.

    PubMed

    Carruthers, Thomas R; McAllister, Murdoch K; Taylor, Nathan G

    2011-10-01

    We formulate and simulation-test a spatial surplus production model that provides a basis with which to undertake multispecies, multi-area, stock assessment. Movement between areas is parameterized using a simple gravity model that includes a "residency" parameter that determines the degree of stock mixing among areas. The model is deliberately simple in order to (1) accommodate nontarget species that typically have fewer available data and (2) minimize computational demand to enable simulation evaluation of spatial management strategies. Using this model, we demonstrate that careful consideration of spatial catch and effort data can provide the basis for simple yet reliable spatial stock assessments. If simple spatial dynamics can be assumed, tagging data are not required to reliably estimate spatial distribution and movement. When applied to eight stocks of Atlantic tuna and billfish, the model tracks regional catch data relatively well by approximating local depletions and exchange among high-abundance areas. We use these results to investigate and discuss the implications of using spatially aggregated stock assessment for fisheries in which the distribution of both the population and fishing vary over time.

  12. PtyNAMi: ptychographic nano-analytical microscope at PETRA III: interferometrically tracking positions for 3D x-ray scanning microscopy using a ball-lens retroreflector

    NASA Astrophysics Data System (ADS)

    Schroer, Christian G.; Seyrich, Martin; Kahnt, Maik; Botta, Stephan; Döhrmann, Ralph; Falkenberg, Gerald; Garrevoet, Jan; Lyubomirskiy, Mikhail; Scholz, Maria; Schropp, Andreas; Wittwer, Felix

    2017-09-01

    In recent years, ptychography has revolutionized x-ray microscopy in that it is able to overcome the diffraction limit of x-ray optics, pushing the spatial resolution limit down to a few nanometers. However, due to the weak interaction of x rays with matter, the detection of small features inside a sample requires a high coherent fluence on the sample, a high degree of mechanical stability, and a low background signal from the x-ray microscope. The x-ray scanning microscope PtyNAMi at PETRA III is designed for high-spatial-resolution 3D imaging with high sensitivity. The design concept is presented with a special focus on real-time metrology of the sample position during tomographic scanning microscopy.

  13. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  14. Finite-volume application of high order ENO schemes to multi-dimensional boundary-value problems

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Dorrepaal, J. Mark

    1990-01-01

    The finite volume approach in developing multi-dimensional, high-order accurate essentially non-oscillatory (ENO) schemes is considered. In particular, a two dimensional extension is proposed for the Euler equation of gas dynamics. This requires a spatial reconstruction operator that attains formal high order of accuracy in two dimensions by taking account of cross gradients. Given a set of cell averages in two spatial variables, polynomial interpolation of a two dimensional primitive function is employed in order to extract high-order pointwise values on cell interfaces. These points are appropriately chosen so that correspondingly high-order flux integrals are obtained through each interface by quadrature, at each point having calculated a flux contribution in an upwind fashion. The solution-in-the-small of Riemann's initial value problem (IVP) that is required for this pointwise flux computation is achieved using Roe's approximate Riemann solver. Issues to be considered in this two dimensional extension include the implementation of boundary conditions and application to general curvilinear coordinates. Results of numerical experiments are presented for qualitative and quantitative examination. These results contain the first successful application of ENO schemes to boundary value problems with solid walls.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, M.-L.; Pailloux, F.; Mauchamp, V.

    The understanding of the mechanisms of helium bubble formation and evolution in materials requires the quantitative determination of several key quantities such as the helium density in the bubbles. Helium nanobubbles of about 16 nm in diameter were created in silicon by helium implantation at high fluence and subsequent annealing. Individual nanobubbles were analyzed by spatially resolved Electron Energy-loss Spectroscopy (EELS). We report on the in situ probing of helium desorption from the nanobubbles under electron irradiation. This opens new perspectives for a more accurate determination of the helium density through spatially resolved EELS.

  16. Turbulent dispersal promotes species coexistence

    PubMed Central

    Berkley, Heather A; Kendall, Bruce E; Mitarai, Satoshi; Siegel, David A

    2010-01-01

    Several recent advances in coexistence theory emphasize the importance of space and dispersal, but focus on average dispersal rates and require spatial heterogeneity, spatio-temporal variability or dispersal-competition tradeoffs to allow coexistence. We analyse a model with stochastic juvenile dispersal (driven by turbulent flow in the coastal ocean) and show that a low-productivity species can coexist with a high-productivity species by having dispersal patterns sufficiently uncorrelated from those of its competitor, even though, on average, dispersal statistics are identical and subsequent demography and competition is spatially homogeneous. This produces a spatial storage effect, with an ephemeral partitioning of a ‘spatial niche’, and is the first demonstration of a physical mechanism for a pure spatiotemporal environmental response. ‘Turbulent coexistence’ is widely applicable to marine species with pelagic larval dispersal and relatively sessile adult life stages (and perhaps some wind-dispersed species) and complements other spatial and temporal storage effects previously documented for such species. PMID:20455921

  17. Achieving high spatial resolution using a microchannel plate detector with an economic and scalable approach

    NASA Astrophysics Data System (ADS)

    Wiggins, B. B.; deSouza, Z. O.; Vadas, J.; Alexander, A.; Hudan, S.; deSouza, R. T.

    2017-11-01

    A second generation position-sensitive microchannel plate detector using the induced signal approach has been realized. This detector is presently capable of measuring the incident position of electrons, photons, or ions. To assess the spatial resolution, the masked detector was illuminated by electrons. The initial, measured spatial resolution of 276 μm FWHM was improved by requiring a minimum signal amplitude on the anode and by employing digital signal processing techniques. The resulting measured spatial resolution of 119 μm FWHM corresponds to an intrinsic resolution of 98 μm FWHM when the effect of the finite slit width is de-convoluted. This measurement is a substantial improvement from the last reported spatial resolution of 466 μm FWHM using the induced signal approach. To understand the factors that limit the measured resolution, the performance of the detector is simulated.

  18. Spatial learning while navigating with severely degraded viewing: The role of attention and mobility monitoring

    PubMed Central

    Rand, Kristina M.; Creem-Regehr, Sarah H.; Thompson, William B.

    2015-01-01

    The ability to navigate without getting lost is an important aspect of quality of life. In five studies, we evaluated how spatial learning is affected by the increased demands of keeping oneself safe while walking with degraded vision (mobility monitoring). We proposed that safe low-vision mobility requires attentional resources, providing competition for those needed to learn a new environment. In Experiments 1 and 2 participants navigated along paths in a real-world indoor environment with simulated degraded vision or normal vision. Memory for object locations seen along the paths was better with normal compared to degraded vision. With degraded vision, memory was better when participants were guided by an experimenter (low monitoring demands) versus unguided (high monitoring demands). In Experiments 3 and 4, participants walked while performing an auditory task. Auditory task performance was superior with normal compared to degraded vision. With degraded vision, auditory task performance was better when guided compared to unguided. In Experiment 5, participants performed both the spatial learning and auditory tasks under degraded vision. Results showed that attention mediates the relationship between mobility-monitoring demands and spatial learning. These studies suggest that more attention is required and spatial learning is impaired when navigating with degraded viewing. PMID:25706766

  19. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    USGS Publications Warehouse

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  20. Ultra-High Density Holographic Memory Module with Solid-State Architecture

    NASA Technical Reports Server (NTRS)

    Markov, Vladimir B.

    2000-01-01

    NASA's terrestrial. space, and deep-space missions require technology that allows storing. retrieving, and processing a large volume of information. Holographic memory offers high-density data storage with parallel access and high throughput. Several methods exist for data multiplexing based on the fundamental principles of volume hologram selectivity. We recently demonstrated that a spatial (amplitude-phase) encoding of the reference wave (SERW) looks promising as a way to increase the storage density. The SERW hologram offers a method other than traditional methods of selectivity, such as spatial de-correlation between recorded and reconstruction fields, In this report we present the experimental results of the SERW-hologram memory module with solid-state architecture, which is of particular interest for space operations.

  1. Mental Models of Invisible Logical Networks

    NASA Technical Reports Server (NTRS)

    Sanderson, P.

    1984-01-01

    Subjects were required to discover the structure of a logical network whose links were invisible. Network structure had to be inferred from the behavior of the components after a failure. It was hypothesized that since such failure diagnosis tasks often draw on spatial processes, a good deal of spatial complexity in the network should affect network discovery. Results show that the ability to discover the linkages in the network is directly related to the spatial complexity of the pathway described by the linkages. This effect was generally independent of the amount of evidence available to subjects about the existence of the link. These results raise the question of whether inferences about spatially complex pathways were simply not made, or whether they were made but not retained because of a high load on memory resources.

  2. Active Radiation Detectors for Use in Space Beyond Low Earth Orbit: Spatial and Energy Resolution Requirements and Methods for Heavy Ion Charge Classification

    NASA Astrophysics Data System (ADS)

    McBeth, Rafe A.

    Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.

  3. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.

    PubMed

    Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak

    2015-01-01

    Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. High spatial and temporal resolution cell manipulation techniques in microchannels.

    PubMed

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  5. Saving the Baltic Sea, the inland waters of its drainage basin, or both? spatial perspectives on reducing P-loads in eastern Sweden.

    PubMed

    Andersson, Ingela; Jarsjö, Jerker; Petersson, Mona

    2014-11-01

    Nutrient loads from inland sources to the Baltic Sea and adjacent inland waters need to be reduced in order to prevent eutrophication and meet requirements of the European Water Framework Directive (WFD) and the Baltic Sea Action Plan (BSAP). We here investigate the spatial implications of using different possible criteria for reducing water-borne phosphorous (P) loads in the Northern Baltic Sea River Basin District (NBS-RBD) in Sweden. Results show that most catchments that have a high degree of internal eutrophication do not express high export of P from their outlets. Furthermore, due to lake retention, lake catchments with high P-loads per agricultural area (which is potentially of concern for the WFD) did not considerably contribute to the P-loading of the Baltic Sea. Spatially uniform water quality goals may, therefore, not be effective in NBS-RBD, emphasizing more generally the need for regional adaptation of WFD and BSAP-related goals.

  6. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  7. A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff; Skalka, Christian

    2012-01-01

    This invention is designed to ascertain the snow water equivalence (SWE) of snowpacks with better spatial and temporal resolutions than present techniques. The approach is ground-based, as opposed to some techniques that are air-based. In addition, the approach is compact, non-destructive, and can be communicated with remotely, and thus can be deployed in areas not possible with current methods. Presently there are two principal ground-based techniques for obtaining SWE measurements. The first is manual snow core measurements of the snowpack. This approach is labor-intensive, destructive, and has poor temporal resolution. The second approach is to deploy a large (e.g., 3x3 m) snowpillow, which requires significant infrastructure, is potentially hazardous [uses a approximately equal to 200-gallon (approximately equal to 760-L) antifreeze-filled bladder], and requires deployment in a large, flat area. High deployment costs necessitate few installations, thus yielding poor spatial resolution of data. Both approaches have limited usefulness in complex and/or avalanche-prone terrains. This approach is compact, non-destructive to the snowpack, provides high temporal resolution data, and due to potential low cost, can be deployed with high spatial resolution. The invention consists of three primary components: a robust wireless network and computing platform designed for harsh climates, new SWE sensing strategies, and algorithms for smart sampling, data logging, and SWE computation.

  8. 3D undersampled golden-radial phase encoding for DCE-MRA using inherently regularized iterative SENSE.

    PubMed

    Prieto, Claudia; Uribe, Sergio; Razavi, Reza; Atkinson, David; Schaeffter, Tobias

    2010-08-01

    One of the current limitations of dynamic contrast-enhanced MR angiography is the requirement of both high spatial and high temporal resolution. Several undersampling techniques have been proposed to overcome this problem. However, in most of these methods the tradeoff between spatial and temporal resolution is constant for all the time frames and needs to be specified prior to data collection. This is not optimal for dynamic contrast-enhanced MR angiography where the dynamics of the process are difficult to predict and the image quality requirements are changing during the bolus passage. Here, we propose a new highly undersampled approach that allows the retrospective adaptation of the spatial and temporal resolution. The method combines a three-dimensional radial phase encoding trajectory with the golden angle profile order and non-Cartesian Sensitivity Encoding (SENSE) reconstruction. Different regularization images, obtained from the same acquired data, are used to stabilize the non-Cartesian SENSE reconstruction for the different phases of the bolus passage. The feasibility of the proposed method was demonstrated on a numerical phantom and in three-dimensional intracranial dynamic contrast-enhanced MR angiography of healthy volunteers. The acquired data were reconstructed retrospectively with temporal resolutions from 1.2 sec to 8.1 sec, providing a good depiction of small vessels, as well as distinction of different temporal phases.

  9. Overlapping MALDI-Mass Spectrometry Imaging for In-Parallel MS and MS/MS Data Acquisition without Sacrificing Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Hansen, Rebecca L.; Lee, Young Jin

    2017-09-01

    Metabolomics experiments require chemical identifications, often through MS/MS analysis. In mass spectrometry imaging (MSI), this necessitates running several serial tissue sections or using a multiplex data acquisition method. We have previously developed a multiplex MSI method to obtain MS and MS/MS data in a single experiment to acquire more chemical information in less data acquisition time. In this method, each raster step is composed of several spiral steps and each spiral step is used for a separate scan event (e.g., MS or MS/MS). One main limitation of this method is the loss of spatial resolution as the number of spiral steps increases, limiting its applicability for high-spatial resolution MSI. In this work, we demonstrate multiplex MS imaging is possible without sacrificing spatial resolution by the use of overlapping spiral steps, instead of spatially separated spiral steps as used in the previous work. Significant amounts of matrix and analytes are still left after multiple spectral acquisitions, especially with nanoparticle matrices, so that high quality MS and MS/MS data can be obtained on virtually the same tissue spot. This method was then applied to visualize metabolites and acquire their MS/MS spectra in maize leaf cross-sections at 10 μm spatial resolution. [Figure not available: see fulltext.

  10. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less

  11. Becoming a high-fidelity - super - imitator: what are the contributions of social and individual learning?

    PubMed

    Subiaul, Francys; Patterson, Eric M; Schilder, Brian; Renner, Elizabeth; Barr, Rachel

    2015-11-01

    In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation) - involving a demonstration - and two asocial conditions (trial-and-error, recall) - involving individual learning - using two touchscreen tasks. The tasks required responding to either three different pictures in a specific picture order (Cognitive: Airplane→Ball→Cow) or three identical pictures in a specific spatial order (Motor-Spatial: Up→Down→Right). There were age-related improvements across all conditions and imitation, emulation and recall performance were significantly better than trial-and-error learning. Generalized linear models demonstrated that motor-spatial imitation fidelity was associated with age and motor-spatial emulation performance, but cognitive imitation fidelity was only associated with age. While this study provides evidence for multiple imitation mechanisms, the development of one of those mechanisms - motor-spatial imitation - may be bootstrapped by the development of another social learning skill - motor-spatial emulation. Together, these findings provide important clues about the development of imitation, which is arguably a distinctive feature of the human species. © 2014 John Wiley & Sons Ltd.

  12. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    DOE PAGES

    Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.

    2015-07-30

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less

  13. Spatial-spectral flexible optical networking: enabling switching solutions for a simplified and efficient SDM network platform

    NASA Astrophysics Data System (ADS)

    Tomkos, I.; Zakynthinos, P.; Klonidis, D.; Marom, D.; Sygletos, S.; Ellis, A.; Salvadori, E.; Siracusa, D.; Angelou, M.; Papastergiou, G.; Psaila, N.; Ferran, J. F.; Ben-Ezra, S.; Jimenez, F.; Fernández-Palacios, J. P.

    2013-12-01

    The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution.

  14. Highly noise-tolerant hybrid algorithm for phase retrieval from a single-shot spatial carrier fringe pattern

    NASA Astrophysics Data System (ADS)

    Dong, Zhichao; Cheng, Haobo

    2018-01-01

    A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.

  15. High quality high spatial resolution functional classification in low dose dynamic CT perfusion using singular value decomposition (SVD) and k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2017-03-01

    Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps evaluation, or to guide a dataset smoothing before the modeling part.

  16. VLSI-based video event triggering for image data compression

    NASA Astrophysics Data System (ADS)

    Williams, Glenn L.

    1994-02-01

    Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.

  17. VLSI-based Video Event Triggering for Image Data Compression

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    1994-01-01

    Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.

  18. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    PubMed

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  19. Kite Aerial Photography for Low-Cost, Ultra-high Spatial Resolution Multi-Spectral Mapping of Intertidal Landscapes

    PubMed Central

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J.; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales. PMID:24069206

  20. Analysis of students geometry skills viewed from spatial intelligence

    NASA Astrophysics Data System (ADS)

    Riastuti, Nova; Mardiyana, Pramudya, Ikrar

    2017-12-01

    Geometry is one of the difficult materials for students because students must have the ability to visualize, describe the picture, draw a figure, and know the kinds of figures. This study aimisto describe the students geometry skills in resolving geometry problems viewed from spatial intelligence. This research uses a descriptive qualitative method has aim to identify students geometry skills by 6 students in eight grade of Ngawi regency, Indonesia. The subjects were 2 students with high spatial intelligence, 2 students with medium spatial intelligence, and 2 students with low spatial intelligence. Datas were collected based on written test and interview. The result of this research showed that the students geometry skills viewed from spatial intelligence includes. The results of this study indicate that there was a correlation between students' spatial intelligence with geometric skills. Students had different geometric skills in each category of spatial intelligence, although there were similarities in some geometry skill indicators. Students with low spatial intelligence had less geometry skills, thus requiring special attention from teachers. Mathematics teachers are expected to provide more practice questions that reinforce students' geometry skills including visual skills, descriptive skills, drawing skills, logical skills, applied skills.

  1. A highly accurate symmetric optical flow based high-dimensional nonlinear spatial normalization of brain images.

    PubMed

    Wen, Ying; Hou, Lili; He, Lianghua; Peterson, Bradley S; Xu, Dongrong

    2015-05-01

    Spatial normalization plays a key role in voxel-based analyses of brain images. We propose a highly accurate algorithm for high-dimensional spatial normalization of brain images based on the technique of symmetric optical flow. We first construct a three dimension optical model with the consistency assumption of intensity and consistency of the gradient of intensity under a constraint of discontinuity-preserving spatio-temporal smoothness. Then, an efficient inverse consistency optical flow is proposed with aims of higher registration accuracy, where the flow is naturally symmetric. By employing a hierarchical strategy ranging from coarse to fine scales of resolution and a method of Euler-Lagrange numerical analysis, our algorithm is capable of registering brain images data. Experiments using both simulated and real datasets demonstrated that the accuracy of our algorithm is not only better than that of those traditional optical flow algorithms, but also comparable to other registration methods used extensively in the medical imaging community. Moreover, our registration algorithm is fully automated, requiring a very limited number of parameters and no manual intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization

    PubMed Central

    Glaser, Joshua I.; Zamft, Bradley M.; Church, George M.; Kording, Konrad P.

    2015-01-01

    Current high-resolution imaging techniques require an intact sample that preserves spatial relationships. We here present a novel approach, “puzzle imaging,” that allows imaging a spatially scrambled sample. This technique takes many spatially disordered samples, and then pieces them back together using local properties embedded within the sample. We show that puzzle imaging can efficiently produce high-resolution images using dimensionality reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is possible; (2) the physical structure of a neural network can often be recovered based only on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacteria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled images promises to enable imaging based on DNA sequencing of homogenized tissue samples. PMID:26192446

  3. Applying narrowband remote-sensing reflectance models to wideband data.

    PubMed

    Lee, Zhongping

    2009-06-10

    Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth (50 nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in >20% underestimation in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted absorption coefficients even under perfect conditions, although smaller (approximately 5%) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.

  4. Stochastic Optical Reconstruction Microscopy (STORM).

    PubMed

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Highlights: • We developed a high-sensitive frequency transmission electric-field (FTE) system. • The output signal was highly enhanced by applying voltage to a metal layer on SiN. • The spatial resolution of new FTE method is 41 nm. • New FTE system enables observation of the intact bacteria and virus in water. - Abstract: The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently,more » we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41 nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.« less

  6. In vivo correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin

    2016-04-01

    To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.

  7. An examination of gender bias on the eighth-grade MEAP science test as it relates to the Hunter Gatherer Theory of Spatial Sex Differences

    NASA Astrophysics Data System (ADS)

    Armstrong-Hall, Judy Gail

    The purpose of this study was to apply the Hunter-Gatherer Theory of sex spatial skills to responses to individual questions by eighth grade students on the Science component of the Michigan Educational Assessment Program (MEAP) to determine if sex bias was inherent in the test. The Hunter-Gatherer Theory on Spatial Sex Differences, an original theory, that suggested a spatial dimorphism concept with female spatial skill of pattern recall of unconnected items and male spatial skills requiring mental movement. This is the first attempt to apply the Hunter-Gatherer Theory on Spatial Sex Differences to a standardized test. An overall hypothesis suggested that the Hunter-Gatherer Theory of Spatial Sex Differences could predict that males would perform better on problems involving mental movement and females would do better on problems involving the pattern recall of unconnected items. Responses to questions on the 1994-95 MEAP requiring the use of male spatial skills and female spatial skills were analyzed for 5,155 eighth grade students. A panel composed of five educators and a theory developer determined which test items involved the use of male and female spatial skills. A MANOVA, using a random sample of 20% of the 5,155 students to compare male and female correct scores, was statistically significant, with males having higher scores on male spatial skills items and females having higher scores on female spatial skills items. Pearson product moment correlation analyses produced a positive correlation for both male and female performance on both types of spatial skills. The Hunter-Gatherer Theory of Spatial Sex Differences appears to be able to predict that males could perform better on the problems involving mental movement and females could perform better on problems involving the pattern recall of unconnected items. Recommendations for further research included: examination of male/female spatial skill differences at early elementary and high school levels to determine impact of gender on difficulties in solving spatial problems; investigation of the relationship between dominant female spatial skills for students diagnosed with ADHD; study effects of teaching male spatial skills to female students starting in early elementary school to determine the effect on standardized testing.

  8. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less

  9. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE PAGES

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...

    2016-12-05

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less

  10. Visual-spatial processing and working-memory load as a function of negative and positive psychotic-like experiences.

    PubMed

    Abu-Akel, A; Reniers, R L E P; Wood, S J

    2016-09-01

    Patients with schizophrenia show impairments in working-memory and visual-spatial processing, but little is known about the dynamic interplay between the two. To provide insight into this important question, we examined the effect of positive and negative symptom expressions in healthy adults on perceptual processing while concurrently performing a working-memory task that requires the allocations of various degrees of cognitive resources. The effect of positive and negative symptom expressions in healthy adults (N = 91) on perceptual processing was examined in a dual-task paradigm of visual-spatial working memory (VSWM) under three conditions of cognitive load: a baseline condition (with no concurrent working-memory demand), a low VSWM load condition, and a high VSWM load condition. Participants overall performed more efficiently (i.e., faster) with increasing cognitive load. This facilitation in performance was unrelated to symptom expressions. However, participants with high-negative, low-positive symptom expressions were less accurate in the low VSWM condition compared to the baseline and the high VSWM load conditions. Attenuated, subclinical expressions of psychosis affect cognitive performance that is impaired in schizophrenia. The "resource limitations hypothesis" may explain the performance of the participants with high-negative symptom expressions. The dual-task of visual-spatial processing and working memory may be beneficial to assessing the cognitive phenotype of individuals with high risk for schizophrenia spectrum disorders.

  11. Theoretical considerations for mapping activation in human cardiac fibrillation

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan; Narayan, Sanjiv M.

    2013-06-01

    Defining mechanisms for cardiac fibrillation is challenging because, in contrast to other arrhythmias, fibrillation exhibits complex non-repeatability in spatiotemporal activation but paradoxically exhibits conserved spatial gradients in rate, dominant frequency, and electrical propagation. Unlike animal models, in which fibrillation can be mapped at high spatial and temporal resolution using optical dyes or arrays of contact electrodes, mapping of cardiac fibrillation in patients is constrained practically to lower resolutions or smaller fields-of-view. In many animal models, atrial fibrillation is maintained by localized electrical rotors and focal sources. However, until recently, few studies had revealed localized sources in human fibrillation, so that the impact of mapping constraints on the ability to identify rotors or focal sources in humans was not described. Here, we determine the minimum spatial and temporal resolutions theoretically required to detect rigidly rotating spiral waves and focal sources, then extend these requirements for spiral waves in computer simulations. Finally, we apply our results to clinical data acquired during human atrial fibrillation using a novel technique termed focal impulse and rotor mapping (FIRM). Our results provide theoretical justification and clinical demonstration that FIRM meets the spatio-temporal resolution requirements to reliably identify rotors and focal sources for human atrial fibrillation.

  12. Plasmonic computing of spatial differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Tengfeng; Zhou, Yihan; Lou, Yijie; Ye, Hui; Qiu, Min; Ruan, Zhichao; Fan, Shanhui

    2017-05-01

    Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal-dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.

  13. Minimizing Experimental Setup Time and Effort at APS beamline 1-ID through Instrumentation Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benda, Erika; Almer, Jonathan; Kenesei, Peter

    2016-01-01

    Sector 1-ID at the APS accommodates a number of dif-ferent experimental techniques in the same spatial enve-lope of the E-hutch end station. These include high-energy small and wide angle X-ray scattering (SAXS and WAXS), high-energy diffraction microscopy (HEDM, both near and far field modes) and high-energy X-ray tomography. These techniques are frequently combined to allow the users to obtain multimodal data, often attaining 1 μm spatial resolution and <0.05º angular resolution. Furthermore, these techniques are utilized while the sam-ple is thermo-mechanically loaded to mimic real operat-ing conditions. The instrumentation required for each of these techniques and environments has been designedmore » and configured in a modular way with a focus on stability and repeatability between changeovers. This approach allows the end station to be more versatile, capable of collecting multi-modal data in-situ while reducing time and effort typically required for set up and alignment, resulting in more efficient beam time use. Key instrumentation de-sign features and layout of the end station are presented.« less

  14. High-energy Gamma Rays from the Milky Way: Three-dimensional Spatial Models for the Cosmic-Ray and Radiation Field Densities in the Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, T. A.; Moskalenko, I. V.; Jóhannesson, G., E-mail: tporter@stanford.edu

    High-energy γ -rays of interstellar origin are produced by the interaction of cosmic-ray (CR) particles with the diffuse gas and radiation fields in the Galaxy. The main features of this emission are well understood and are reproduced by existing CR propagation models employing 2D galactocentric cylindrically symmetrical geometry. However, the high-quality data from instruments like the Fermi Large Area Telescope reveal significant deviations from the model predictions on few to tens of degrees scales, indicating the need to include the details of the Galactic spiral structure and thus requiring 3D spatial modeling. In this paper, the high-energy interstellar emissions frommore » the Galaxy are calculated using the new release of the GALPROP code employing 3D spatial models for the CR source and interstellar radiation field (ISRF) densities. Three models for the spatial distribution of CR sources are used that are differentiated by their relative proportion of input luminosity attributed to the smooth disk or spiral arms. Two ISRF models are developed based on stellar and dust spatial density distributions taken from the literature that reproduce local near- to far-infrared observations. The interstellar emission models that include arms and bulges for the CR source and ISRF densities provide plausible physical interpretations for features found in the residual maps from high-energy γ -ray data analysis. The 3D models for CR and ISRF densities provide a more realistic basis that can be used for the interpretation of the nonthermal interstellar emissions from the Galaxy.« less

  15. Making a Place for Space: Spatial Thinking in Social Science

    PubMed Central

    Logan, John R.

    2013-01-01

    New technologies and multilevel data sets that include geographic identifiers have heightened sociologists’ interest in spatial analysis. I review several of the key concepts, measures, and methods that are brought into play in this work, and offer examples of their application in a variety of substantive fields. I argue that the most effective use of the new tools requires greater emphasis on spatial thinking. A device as simple as an illustrative map requires some understanding of how people respond to visual cues; models as complex as HLM with spatial lags require thoughtful measurement decisions and raise questions about what a spatial effect represents. PMID:24273374

  16. Implementing direct, spatially isolated problems on transputer networks

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    Parametric studies were performed on transputer networks of up to 40 processors to determine how to implement and maximize the performance of the solution of problems where no processor-to-processor data transfer is required for the problem solution (spatially isolated). Two types of problems are investigated a computationally intensive problem where the solution required the transmission of 160 bytes of data through the parallel network, and a communication intensive example that required the transmission of 3 Mbytes of data through the network. This data consists of solutions being sent back to the host processor and not intermediate results for another processor to work on. Studies were performed on both integer and floating-point transputers. The latter features an on-chip floating-point math unit and offers approximately an order of magnitude performance increase over the integer transputer on real valued computations. The results indicate that a minimum amount of work is required on each node per communication to achieve high network speedups (efficiencies). The floating-point processor requires approximately an order of magnitude more work per communication than the integer processor because of the floating-point unit's increased computing capacity.

  17. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display.

    PubMed

    Fattal, David; Peng, Zhen; Tran, Tho; Vo, Sonny; Fiorentino, Marco; Brug, Jim; Beausoleil, Raymond G

    2013-03-21

    Multiview three-dimensional (3D) displays can project the correct perspectives of a 3D image in many spatial directions simultaneously. They provide a 3D stereoscopic experience to many viewers at the same time with full motion parallax and do not require special glasses or eye tracking. None of the leading multiview 3D solutions is particularly well suited to mobile devices (watches, mobile phones or tablets), which require the combination of a thin, portable form factor, a high spatial resolution and a wide full-parallax view zone (for short viewing distance from potentially steep angles). Here we introduce a multi-directional diffractive backlight technology that permits the rendering of high-resolution, full-parallax 3D images in a very wide view zone (up to 180 degrees in principle) at an observation distance of up to a metre. The key to our design is a guided-wave illumination technique based on light-emitting diodes that produces wide-angle multiview images in colour from a thin planar transparent lightguide. Pixels associated with different views or colours are spatially multiplexed and can be independently addressed and modulated at video rate using an external shutter plane. To illustrate the capabilities of this technology, we use simple ink masks or a high-resolution commercial liquid-crystal display unit to demonstrate passive and active (30 frames per second) modulation of a 64-view backlight, producing 3D images with a spatial resolution of 88 pixels per inch and full-motion parallax in an unprecedented view zone of 90 degrees. We also present several transparent hand-held prototypes showing animated sequences of up to six different 200-view images at a resolution of 127 pixels per inch.

  18. Introduction of digital soil mapping techniques for the nationwide regionalization of soil condition in Hungary; the first results of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Laborczi, Annamária; Szatmári, Gábor; Takács, Katalin; Bakacsi, Zsófia; Szabó, József; Dobos, Endre

    2014-05-01

    Due to the former soil surveys and mapping activities significant amount of soil information has accumulated in Hungary. Present soil data requirements are mainly fulfilled with these available datasets either by their direct usage or after certain specific and generally fortuitous, thematic and/or spatial inference. Due to the more and more frequently emerging discrepancies between the available and the expected data, there might be notable imperfection as for the accuracy and reliability of the delivered products. With a recently started project (DOSoReMI.hu; Digital, Optimized, Soil Related Maps and Information in Hungary) we would like to significantly extend the potential, how countrywide soil information requirements could be satisfied in Hungary. We started to compile digital soil related maps which fulfil optimally the national and international demands from points of view of thematic, spatial and temporal accuracy. The spatial resolution of the targeted countrywide, digital, thematic maps is at least 1:50.000 (approx. 50-100 meter raster resolution). DOSoReMI.hu results are also planned to contribute to the European part of GSM.net products. In addition to the auxiliary, spatial data themes related to soil forming factors and/or to indicative environmental elements we heavily lean on the various national soil databases. The set of the applied digital soil mapping techniques is gradually broadened incorporating and eventually integrating geostatistical, data mining and GIS tools. In our paper we will present the first results. - Regression kriging (RK) has been used for the spatial inference of certain quantitative data, like particle size distribution components, rootable depth and organic matter content. In the course of RK-based mapping spatially segmented categorical information provided by the SMUs of Digital Kreybig Soil Information System (DKSIS) has been also used in the form of indicator variables. - Classification and regression trees (CART) were used to improve the spatial resolution of category-type soil maps (thematic downscaling), like genetic soil type and soil productivity maps. The approach was justified by the fact that certain thematic soil maps are not available in the required scale. Decision trees were applied for the understanding of the soil-landscape models involved in existing soil maps, and for the post-formalization of survey/compilation rules. The relationships identified and expressed in decision rules made the creation of spatially refined maps possible with the aid of high resolution environmental auxiliary variables. Among these co-variables, a special role was played by larger scale spatial soil information with diverse attributes. As a next step, the testing of random forests for the same purposes has been started. - Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil (related) map. This suggests the opportunity of optimization. For the creation of an object specific soil (related) map with predefined parameters (resolution, accuracy, reliability etc.) one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). The first findings on the inclusion and joint usage of spatial soil data as well as on the consistency of various evaluations of the result maps will be also presented. Acknowledgement: Our work has been supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  19. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

  20. Fluvial process and the establishment of bottomland trees

    USGS Publications Warehouse

    Scott, Michael L.; Friedman, Jonathan M.; Auble, Gregor T.

    1996-01-01

    The relation between streamflow and establishment of bottomland trees is conditioned by the dominant fluvial process or processes acting along a stream. For successful establishment, cottonwoods, poplars, and willows require bare, moist surfaces protected from disturbance. Channel narrowing, channel meandering, and flood deposition promote different spatial and temporal patterns of establishment. During channel narrowing, the site requirements are met on portions of the bed abandoned by the stream, and establishment is associated with a period of low flow lasting one to several years. During channel meandering, the requirements are met on point bars following moderate or higher peak flows. Following flood deposition, the requirements are met on flood deposits ;high above the channel bed. Flood deposition can occur along most streams, but where a channel is constrained by a narrow valley, this process may be the only mechanism that can produce a bare, moist surface high enough to be safe from future disturbance. Because of differences in local bedrock, tributary influence, or geologic history, two nearby reaches of the same stream may be dominated by different fluvial processes and have different spatial and temporal patterns of trees. We illustrate this phenomenon with examples from forests of plains cottonwood (Populus deltoides ssp. monilifera) along meandering and constrained reaches of the Missouri River in Montana.

  1. Every photon counts: improving low, mid, and high-spatial frequency errors on astronomical optics and materials with MRF

    NASA Astrophysics Data System (ADS)

    Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul

    2016-07-01

    Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF fluid, called C30, has been developed to finish surfaces to ultra-low roughness (ULR) and has been used as the low removal rate fluid required for fine figure correction of mid-spatial frequency errors. This novel MRF fluid is able to achieve <4Å RMS on Nickel-plated Aluminum and even <1.5Å RMS roughness on Silicon, Fused Silica and other materials. C30 fluid is best utilized within a fine figure correction process to target mid-spatial frequency errors as well as smooth surface roughness 'for free' all in one step. In this paper we will discuss recent advancements in MRF technology and the ability to meet requirements for precision optics in low, mid and high spatial frequency regimes and how improved MRF performance addresses the need for achieving tight specifications required for astronomical optics.

  2. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    DTIC Science & Technology

    2017-06-27

    realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based

  3. Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer

    NASA Technical Reports Server (NTRS)

    Rai, Man M.; Moin, Parviz

    1991-01-01

    A high-order-accurate finite-difference approach to direct simulations of transition and turbulence in compressible flows is described. Attention is given to the high-free-stream disturbance case in which transition to turbulence occurs close to the leading edge. In effect, computation requirements are reduced. A method for numerically generating free-stream disturbances is presented.

  4. Spatially extended hybrid methods: a review

    PubMed Central

    2018-01-01

    Many biological and physical systems exhibit behaviour at multiple spatial, temporal or population scales. Multiscale processes provide challenges when they are to be simulated using numerical techniques. While coarser methods such as partial differential equations are typically fast to simulate, they lack the individual-level detail that may be required in regions of low concentration or small spatial scale. However, to simulate at such an individual level throughout a domain and in regions where concentrations are high can be computationally expensive. Spatially coupled hybrid methods provide a bridge, allowing for multiple representations of the same species in one spatial domain by partitioning space into distinct modelling subdomains. Over the past 20 years, such hybrid methods have risen to prominence, leading to what is now a very active research area across multiple disciplines including chemistry, physics and mathematics. There are three main motivations for undertaking this review. Firstly, we have collated a large number of spatially extended hybrid methods and presented them in a single coherent document, while comparing and contrasting them, so that anyone who requires a multiscale hybrid method will be able to find the most appropriate one for their need. Secondly, we have provided canonical examples with algorithms and accompanying code, serving to demonstrate how these types of methods work in practice. Finally, we have presented papers that employ these methods on real biological and physical problems, demonstrating their utility. We also consider some open research questions in the area of hybrid method development and the future directions for the field. PMID:29491179

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco

    High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, butmore » requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.« less

  6. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.

    PubMed

    Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2012-04-23

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection. © 2012 Optical Society of America

  7. A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena

    NASA Technical Reports Server (NTRS)

    Zingg, David W.

    1996-01-01

    This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.

  8. Simultaneous entanglement swapping of multiple orbital angular momentum states of light.

    PubMed

    Zhang, Yingwen; Agnew, Megan; Roger, Thomas; Roux, Filippus S; Konrad, Thomas; Faccio, Daniele; Leach, Jonathan; Forbes, Andrew

    2017-09-21

    High-bit-rate long-distance quantum communication is a proposed technology for future communication networks and relies on high-dimensional quantum entanglement as a core resource. While it is known that spatial modes of light provide an avenue for high-dimensional entanglement, the ability to transport such quantum states robustly over long distances remains challenging. To overcome this, entanglement swapping may be used to generate remote quantum correlations between particles that have not interacted; this is the core ingredient of a quantum repeater, akin to repeaters in optical fibre networks. Here we demonstrate entanglement swapping of multiple orbital angular momentum states of light. Our approach does not distinguish between different anti-symmetric states, and thus entanglement swapping occurs for several thousand pairs of spatial light modes simultaneously. This work represents the first step towards a quantum network for high-dimensional entangled states and provides a test bed for fundamental tests of quantum science.Entanglement swapping in high dimensions requires large numbers of entangled photons and consequently suffers from low photon flux. Here the authors demonstrate entanglement swapping of multiple spatial modes of light simultaneously, without the need for increasing the photon numbers with dimension.

  9. Agroforestry, climate change, and food security

    USDA-ARS?s Scientific Manuscript database

    Successfully addressing global climate change effects on agriculture will require a holistic, sustained approach incorporating a suite of strategies at multiple spatial scales and time horizons. In the USA of the 1930’s, bold and innovative leadership at high levels of government was needed to enact...

  10. Generating high temporal and spatial resolution thermal band imagery using robust sharpening approach

    USDA-ARS?s Scientific Manuscript database

    Thermal infrared band imagery provides key information for detecting wild fires, mapping land surface energy fluxes and evapotranspiration, monitoring urban heat fluxes and drought monitoring. Thermal infrared (TIR) imagery at fine resolution is required for field scale applications. However, therma...

  11. PREFACE TO SPECIAL SECTION ON PARTICULATE MATTER SUPERSITES

    EPA Science Inventory

    An improved understanding of the key sources, development of the most cost/effective control strategies, and health risks associated with PM2.5 requires high-quality measurements of PM2.5 composition, size and, concentration over a variety of spatial and temporal scales. However...

  12. High spatial resolution infrared camera as ISS external experiment

    NASA Astrophysics Data System (ADS)

    Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan

    High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.

  13. Delineating high-density areas in spatial Poisson fields from strip-transect sampling using indicator geostatistics: application to unexploded ordnance removal.

    PubMed

    Saito, Hirotaka; McKenna, Sean A

    2007-07-01

    An approach for delineating high anomaly density areas within a mixture of two or more spatial Poisson fields based on limited sample data collected along strip transects was developed. All sampled anomalies were transformed to anomaly count data and indicator kriging was used to estimate the probability of exceeding a threshold value derived from the cdf of the background homogeneous Poisson field. The threshold value was determined so that the delineation of high-density areas was optimized. Additionally, a low-pass filter was applied to the transect data to enhance such segmentation. Example calculations were completed using a controlled military model site, in which accurate delineation of clusters of unexploded ordnance (UXO) was required for site cleanup.

  14. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

    DOE PAGES

    Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; ...

    2014-11-05

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formore » high resolution focusing at three different energies, 10, 11.8, and 25 keV.« less

  15. Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system.

    PubMed

    Hugot, Emmanuel; Ferrari, Marc; El Hadi, Kacem; Vola, Pascal; Gimenez, Jean Luc; Lemaitre, Gérard R; Rabou, Patrick; Dohlen, Kjetil; Puget, Pascal; Beuzit, Jean Luc; Hubin, Norbert

    2009-05-20

    The manufacturing of toric mirrors for the Very Large Telescope-Spectro-Polarimetric High-Contrast Exoplanet Research instrument (SPHERE) is based on Active Optics and stress polishing. This figuring technique allows minimizing mid and high spatial frequency errors on an aspherical surface by using spherical polishing with full size tools. In order to reach the tight precision required, the manufacturing error budget is described to optimize each parameter. Analytical calculations based on elasticity theory and finite element analysis lead to the mechanical design of the Zerodur blank to be warped during the stress polishing phase. Results on the larger (366 mm diameter) toric mirror are evaluated by interferometry. We obtain, as expected, a toric surface within specification at low, middle, and high spatial frequencies ranges.

  16. Attribution of soil information associated with modeling background clutter

    NASA Astrophysics Data System (ADS)

    Mason, George; Melloh, Rae

    2006-05-01

    This paper examines the attribution of data fields required to generate high resolution soil profiles for support of Computational Test Bed (CTB) used for countermine research. The countermine computational test bed is designed to realistically simulate the geo-environment to support the evaluation of sensors used to locate unexploded ordnance. The goal of the CTB is to derive expected moisture, chemical compounds, and measure heat migration over time, from which we expect to optimize sensor performance. Several tests areas were considered for the collection of soils data to populate the CTB. Collection of bulk soil properties has inherent spatial resolution limits. Novel techniques are therefore required to populate a high resolution model. This paper presents correlations between spatial variability in texture as related to hydraulic permeability and heat transfer properties of the soil. The extracted physical properties are used to exercise models providing a signature of subsurface media and support the simulation of detection by various sensors of buried and surface ordnance.

  17. Laser beam temporal and spatial tailoring for laser shock processing

    DOEpatents

    Hackel, Lloyd; Dane, C. Brent

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  18. Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Pazner, Will; Persson, Per-Olof

    2018-02-01

    In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.

  19. Free-space propagation of high-dimensional structured optical fields in an urban environment

    PubMed Central

    Lavery, Martin P. J.; Peuntinger, Christian; Günthner, Kevin; Banzer, Peter; Elser, Dominique; Boyd, Robert W.; Padgett, Miles J.; Marquardt, Christoph; Leuchs, Gerd

    2017-01-01

    Spatially structured optical fields have been used to enhance the functionality of a wide variety of systems that use light for sensing or information transfer. As higher-dimensional modes become a solution of choice in optical systems, it is important to develop channel models that suitably predict the effect of atmospheric turbulence on these modes. We investigate the propagation of a set of orthogonal spatial modes across a free-space channel between two buildings separated by 1.6 km. Given the circular geometry of a common optical lens, the orthogonal mode set we choose to implement is that described by the Laguerre-Gaussian (LG) field equations. Our study focuses on the preservation of phase purity, which is vital for spatial multiplexing and any system requiring full quantum-state tomography. We present experimental data for the modal degradation in a real urban environment and draw a comparison to recognized theoretical predictions of the link. Our findings indicate that adaptations to channel models are required to simulate the effects of atmospheric turbulence placed on high-dimensional structured modes that propagate over a long distance. Our study indicates that with mitigation of vortex splitting, potentially through precorrection techniques, one could overcome the challenges in a real point-to-point free-space channel in an urban environment. PMID:29075663

  20. Free-space propagation of high-dimensional structured optical fields in an urban environment.

    PubMed

    Lavery, Martin P J; Peuntinger, Christian; Günthner, Kevin; Banzer, Peter; Elser, Dominique; Boyd, Robert W; Padgett, Miles J; Marquardt, Christoph; Leuchs, Gerd

    2017-10-01

    Spatially structured optical fields have been used to enhance the functionality of a wide variety of systems that use light for sensing or information transfer. As higher-dimensional modes become a solution of choice in optical systems, it is important to develop channel models that suitably predict the effect of atmospheric turbulence on these modes. We investigate the propagation of a set of orthogonal spatial modes across a free-space channel between two buildings separated by 1.6 km. Given the circular geometry of a common optical lens, the orthogonal mode set we choose to implement is that described by the Laguerre-Gaussian (LG) field equations. Our study focuses on the preservation of phase purity, which is vital for spatial multiplexing and any system requiring full quantum-state tomography. We present experimental data for the modal degradation in a real urban environment and draw a comparison to recognized theoretical predictions of the link. Our findings indicate that adaptations to channel models are required to simulate the effects of atmospheric turbulence placed on high-dimensional structured modes that propagate over a long distance. Our study indicates that with mitigation of vortex splitting, potentially through precorrection techniques, one could overcome the challenges in a real point-to-point free-space channel in an urban environment.

  1. Unmanned Aircraft Systems for Studying Spatial Abundance of Ungulates: Relevance to Spatial Epidemiology

    PubMed Central

    Barasona, José A.; Mulero-Pázmány, Margarita; Acevedo, Pelayo; Negro, Juan J.; Torres, María J.; Gortázar, Christian; Vicente, Joaquín

    2014-01-01

    Complex ecological and epidemiological systems require multidisciplinary and innovative research. Low cost unmanned aircraft systems (UAS) can provide information on the spatial pattern of hosts’ distribution and abundance, which is crucial as regards modelling the determinants of disease transmission and persistence on a fine spatial scale. In this context we have studied the spatial epidemiology of tuberculosis (TB) in the ungulate community of Doñana National Park (South-western Spain) by modelling species host (red deer, fallow deer and cattle) abundance at fine spatial scale. The use of UAS high-resolution images has allowed us to collect data to model the environmental determinants of host abundance, and in a further step to evaluate their relationships with the spatial risk of TB throughout the ungulate community. We discuss the ecological, epidemiological and logistic conditions under which UAS may contribute to study the wildlife/livestock sanitary interface, where the spatial aggregation of hosts becomes crucial. These findings are relevant for planning and implementing research, fundamentally when managing disease in multi-host systems, and focusing on risky areas. Therefore, managers should prioritize the implementation of control strategies to reduce disease of conservation, economic and social relevance. PMID:25551673

  2. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries.

    PubMed

    Colloca, Francesco; Garofalo, Germana; Bitetto, Isabella; Facchini, Maria Teresa; Grati, Fabio; Martiradonna, Angela; Mastrantonio, Gianluca; Nikolioudakis, Nikolaos; Ordinas, Francesc; Scarcella, Giuseppe; Tserpes, George; Tugores, M Pilar; Valavanis, Vasilis; Carlucci, Roberto; Fiorentino, Fabio; Follesa, Maria C; Iglesias, Magdalena; Knittweis, Leyla; Lefkaditou, Eugenia; Lembo, Giuseppe; Manfredi, Chiara; Massutí, Enric; Pace, Marie Louise; Papadopoulou, Nadia; Sartor, Paolo; Smith, Christopher J; Spedicato, Maria Teresa

    2015-01-01

    The identification of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on the exploited populations and ecosystems. The reduction in juvenile mortality is particularly relevant in the Mediterranean and is considered as one of the main prerequisites for the future sustainability of trawl fisheries. The distribution of nursery areas of 11 important commercial species of demersal fish and shellfish was analysed in the European Union Mediterranean waters using time series of bottom trawl survey data with the aim of identifying the most persistent recruitment areas. A high interspecific spatial overlap between nursery areas was mainly found along the shelf break of many different sectors of the Northern Mediterranean indicating a high potential for the implementation of conservation measures. Overlap of the nursery grounds with existing spatial fisheries management measures and trawl fisheries restricted areas was also investigated. Spatial analyses revealed considerable variation depending on species and associated habitat/depth preferences with increased protection seen in coastal nurseries and minimal protection seen for deeper nurseries (e.g. Parapenaeus longirostris 6%). This is partly attributed to existing environmental policy instruments (e.g. Habitats Directive and Mediterranean Regulation EC 1967/2006) aiming at minimising impacts on coastal priority habitats such as seagrass, coralligenous and maerl beds. The new knowledge on the distribution and persistence of demersal nurseries provided in this study can support the application of spatial conservation measures, such as the designation of no-take Marine Protected Areas in EU Mediterranean waters and their inclusion in a conservation network. The establishment of no-take zones will be consistent with the objectives of the Common Fisheries Policy applying the ecosystem approach to fisheries management and with the requirements of the Marine Strategy Framework Directive to maintain or achieve seafloor integrity and good environmental status.

  3. The Seascape of Demersal Fish Nursery Areas in the North Mediterranean Sea, a First Step Towards the Implementation of Spatial Planning for Trawl Fisheries

    PubMed Central

    Colloca, Francesco; Garofalo, Germana; Bitetto, Isabella; Facchini, Maria Teresa; Grati, Fabio; Martiradonna, Angela; Mastrantonio, Gianluca; Nikolioudakis, Nikolaos; Ordinas, Francesc; Scarcella, Giuseppe; Tserpes, George; Tugores, M. Pilar; Valavanis, Vasilis; Carlucci, Roberto; Fiorentino, Fabio; Follesa, Maria C.; Iglesias, Magdalena; Knittweis, Leyla; Lefkaditou, Eugenia; Lembo, Giuseppe; Manfredi, Chiara; Massutí, Enric; Pace, Marie Louise; Papadopoulou, Nadia; Sartor, Paolo; Smith, Christopher J.; Spedicato, Maria Teresa

    2015-01-01

    The identification of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on the exploited populations and ecosystems. The reduction in juvenile mortality is particularly relevant in the Mediterranean and is considered as one of the main prerequisites for the future sustainability of trawl fisheries. The distribution of nursery areas of 11 important commercial species of demersal fish and shellfish was analysed in the European Union Mediterranean waters using time series of bottom trawl survey data with the aim of identifying the most persistent recruitment areas. A high interspecific spatial overlap between nursery areas was mainly found along the shelf break of many different sectors of the Northern Mediterranean indicating a high potential for the implementation of conservation measures. Overlap of the nursery grounds with existing spatial fisheries management measures and trawl fisheries restricted areas was also investigated. Spatial analyses revealed considerable variation depending on species and associated habitat/depth preferences with increased protection seen in coastal nurseries and minimal protection seen for deeper nurseries (e.g. Parapenaeus longirostris 6%). This is partly attributed to existing environmental policy instruments (e.g. Habitats Directive and Mediterranean Regulation EC 1967/2006) aiming at minimising impacts on coastal priority habitats such as seagrass, coralligenous and maerl beds. The new knowledge on the distribution and persistence of demersal nurseries provided in this study can support the application of spatial conservation measures, such as the designation of no-take Marine Protected Areas in EU Mediterranean waters and their inclusion in a conservation network. The establishment of no-take zones will be consistent with the objectives of the Common Fisheries Policy applying the ecosystem approach to fisheries management and with the requirements of the Marine Strategy Framework Directive to maintain or achieve seafloor integrity and good environmental status. PMID:25785737

  4. Digital holographic interferometry for characterizing deformable mirrors in aero-optics

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme

    2016-08-01

    Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.

  5. Analysis of High Temporal and Spatial Observations of Hurricane Joaquin During TCI-15

    NASA Technical Reports Server (NTRS)

    Creasey, Robert; Elsberry, Russell L.; Velden, Chris; Cecil, Daniel J.; Bell, Michael; Hendricks, Eric A.

    2016-01-01

    Objectives: Provide an example of why analysis of high density soundings across Hurricane Joaquin also require highly accurate center positions; Describe technique for calculating 3-D zero-wind center positions from the highly accurate GPS positions of sequences of High-Density Sounding System (HDSS) soundings as they fall from 10 km to the ocean surface; Illustrate the vertical tilt of the vortex above 4-5 km during two center passes through Hurricane Joaquin on 4 October 2015.

  6. Deciphering the Genetic Programme Triggering Timely and Spatially-Regulated Chitin Deposition

    PubMed Central

    Rotstein, Bárbara; Casali, Andreu; Llimargas, Marta

    2015-01-01

    Organ and tissue formation requires a finely tuned temporal and spatial regulation of differentiation programmes. This is necessary to balance sufficient plasticity to undergo morphogenesis with the acquisition of the mature traits needed for physiological activity. Here we addressed this issue by analysing the deposition of the chitinous extracellular matrix of Drosophila, an essential element of the cuticle (skin) and respiratory system (tracheae) in this insect. Chitin deposition requires the activity of the chitin synthase Krotzkopf verkehrt (Kkv). Our data demonstrate that this process equally requires the activity of two other genes, namely expansion (exp) and rebuf (reb). We found that Exp and Reb have interchangeable functions, and in their absence no chitin is produced, in spite of the presence of Kkv. Conversely, when Kkv and Exp/Reb are co-expressed in the ectoderm, they promote chitin deposition, even in tissues normally devoid of this polysaccharide. Therefore, our results indicate that both functions are not only required but also sufficient to trigger chitin accumulation. We show that this mechanism is highly regulated in time and space, ensuring chitin accumulation in the correct tissues and developmental stages. Accordingly, we observed that unregulated chitin deposition disturbs morphogenesis, thus highlighting the need for tight regulation of this process. In summary, here we identify the genetic programme that triggers the timely and spatially regulated deposition of chitin and thus provide new insights into the extracellular matrix maturation required for physiological activity. PMID:25617778

  7. Evolution at ‘Sutures’ and ‘Centers’: Recombination Can Aid Adaptation of Spatially Structured Populations on Rugged Fitness Landscapes

    PubMed Central

    Cooper, Jacob D.; Kerr, Benjamin

    2016-01-01

    Epistatic interactions among genes can give rise to rugged fitness landscapes, in which multiple “peaks” of high-fitness allele combinations are separated by “valleys” of low-fitness genotypes. How populations traverse rugged fitness landscapes is a long-standing question in evolutionary biology. Sexual reproduction may affect how a population moves within a rugged fitness landscape. Sex may generate new high-fitness genotypes by recombination, but it may also destroy high-fitness genotypes by shuffling the genes of a fit parent with a genetically distinct mate, creating low-fitness offspring. Either of these opposing aspects of sex require genotypic diversity in the population. Spatially structured populations may harbor more diversity than well-mixed populations, potentially amplifying both positive and negative effects of sex. On the other hand, spatial structure leads to clumping in which mating is more likely to occur between like types, diminishing the effects of recombination. In this study, we use computer simulations to investigate the combined effects of recombination and spatial structure on adaptation in rugged fitness landscapes. We find that spatially restricted mating and offspring dispersal may allow multiple genotypes inhabiting suboptimal peaks to coexist, and recombination at the “sutures” between the clusters of these genotypes can create genetically novel offspring. Sometimes such an offspring genotype inhabits a new peak on the fitness landscape. In such a case, spatially restricted mating allows this fledgling subpopulation to avoid recombination with distinct genotypes, as mates are more likely to be the same genotype. Such population “centers” can allow nascent peaks to establish despite recombination. Spatial structure may therefore allow an evolving population to enjoy the creative side of sexual recombination while avoiding its destructive side. PMID:27973606

  8. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  9. First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation.

    PubMed

    Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M

    2013-02-01

    Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  10. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    USDA-ARS?s Scientific Manuscript database

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  11. Increased fusiform area activation in schizophrenia during processing of spatial frequency-degraded faces, as revealed by fMRI.

    PubMed

    Silverstein, S M; All, S D; Kasi, R; Berten, S; Essex, B; Lathrop, K L; Little, D M

    2010-07-01

    People with schizophrenia demonstrate perceptual organization impairments, and these are thought to contribute to their face processing difficulties. We examined the neural substrates of emotionally neutral face processing in schizophrenia by investigating neural activity under three stimulus conditions: faces characterized by the full spectrum of spatial frequencies, faces with low spatial frequency information removed [high spatial frequency (HSF) condition], and faces with high spatial frequency information removed [low spatial frequency (LSF) condition]. Face perception in the HSF condition is more reliant on local feature processing whereas perception in the LSF condition requires greater reliance on global form processing. Past studies of perceptual organization in schizophrenia indicate that patients perform relatively more poorly with degraded stimuli but also that, when global information is absent, patients may perform better than controls because of their relatively increased ability to initially process individual features. Therefore, we hypothesized that people with schizophrenia (n=14) would demonstrate greater face processing difficulties than controls (n=13) in the LSF condition, whereas they would demonstrate a smaller difference or superior performance in the HSF condition. In a gender-discrimination task, behavioral data indicated high levels of accuracy for both groups, with a trend toward an interaction involving higher patient performance in the HSF condition and poorer patient performance in the LSF condition. Patients demonstrated greater activity in the fusiform gyrus compared to controls in both degraded conditions. These data suggest that impairments in basic integration abilities may be compensated for by relatively increased activity in this region.

  12. High-resolution hot-film measurement of surface heat flux to an impinging jet

    NASA Astrophysics Data System (ADS)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  13. High quality digital holographic reconstruction on analog film

    NASA Astrophysics Data System (ADS)

    Nelsen, B.; Hartmann, P.

    2017-05-01

    High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.

  14. Ultrabroadband infrared nanospectroscopic imaging

    PubMed Central

    Bechtel, Hans A.; Muller, Eric A.; Olmon, Robert L.; Martin, Michael C.; Raschke, Markus B.

    2014-01-01

    Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity. PMID:24803431

  15. Spatial statistical analysis of tree deaths using airborne digital imagery

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Mei; Baddeley, Adrian; Wallace, Jeremy; Canci, Michael

    2013-04-01

    High resolution digital airborne imagery offers unprecedented opportunities for observation and monitoring of vegetation, providing the potential to identify, locate and track individual vegetation objects over time. Analytical tools are required to quantify relevant information. In this paper, locations of trees over a large area of native woodland vegetation were identified using morphological image analysis techniques. Methods of spatial point process statistics were then applied to estimate the spatially-varying tree death risk, and to show that it is significantly non-uniform. [Tree deaths over the area were detected in our previous work (Wallace et al., 2008).] The study area is a major source of ground water for the city of Perth, and the work was motivated by the need to understand and quantify vegetation changes in the context of water extraction and drying climate. The influence of hydrological variables on tree death risk was investigated using spatial statistics (graphical exploratory methods, spatial point pattern modelling and diagnostics).

  16. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2017-07-01

    A new stochastic weather generator, Advanced WEather GENerator for a two-dimensional grid (AWE-GEN-2d) is presented. The model combines physical and stochastic approaches to simulate key meteorological variables at high spatial and temporal resolution: 2 km × 2 km and 5 min for precipitation and cloud cover and 100 m × 100 m and 1 h for near-surface air temperature, solar radiation, vapor pressure, atmospheric pressure, and near-surface wind. The model requires spatially distributed data for the calibration process, which can nowadays be obtained by remote sensing devices (weather radar and satellites), reanalysis data sets and ground stations. AWE-GEN-2d is parsimonious in terms of computational demand and therefore is particularly suitable for studies where exploring internal climatic variability at multiple spatial and temporal scales is fundamental. Applications of the model include models of environmental systems, such as hydrological and geomorphological models, where high-resolution spatial and temporal meteorological forcing is crucial. The weather generator was calibrated and validated for the Engelberg region, an area with complex topography in the Swiss Alps. Model test shows that the climate variables are generated by AWE-GEN-2d with a level of accuracy that is sufficient for many practical applications.

  17. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges.

    PubMed

    Fernández-Guisuraga, José Manuel; Sanz-Ablanedo, Enoc; Suárez-Seoane, Susana; Calvo, Leonor

    2018-02-14

    This study evaluated the opportunities and challenges of using drones to obtain multispectral orthomosaics at ultra-high resolution that could be useful for monitoring large and heterogeneous burned areas. We conducted a survey using an octocopter equipped with a Parrot SEQUOIA multispectral camera in a 3000 ha framework located within the perimeter of a megafire in Spain. We assessed the quality of both the camera raw imagery and the multispectral orthomosaic obtained, as well as the required processing capability. Additionally, we compared the spatial information provided by the drone orthomosaic at ultra-high spatial resolution with another image provided by the WorldView-2 satellite at high spatial resolution. The drone raw imagery presented some anomalies, such as horizontal banding noise and non-homogeneous radiometry. Camera locations showed a lack of synchrony of the single frequency GPS receiver. The georeferencing process based on ground control points achieved an error lower than 30 cm in X-Y and lower than 55 cm in Z. The drone orthomosaic provided more information in terms of spatial variability in heterogeneous burned areas in comparison with the WorldView-2 satellite imagery. The drone orthomosaic could constitute a viable alternative for the evaluation of post-fire vegetation regeneration in large and heterogeneous burned areas.

  18. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges

    PubMed Central

    2018-01-01

    This study evaluated the opportunities and challenges of using drones to obtain multispectral orthomosaics at ultra-high resolution that could be useful for monitoring large and heterogeneous burned areas. We conducted a survey using an octocopter equipped with a Parrot SEQUOIA multispectral camera in a 3000 ha framework located within the perimeter of a megafire in Spain. We assessed the quality of both the camera raw imagery and the multispectral orthomosaic obtained, as well as the required processing capability. Additionally, we compared the spatial information provided by the drone orthomosaic at ultra-high spatial resolution with another image provided by the WorldView-2 satellite at high spatial resolution. The drone raw imagery presented some anomalies, such as horizontal banding noise and non-homogeneous radiometry. Camera locations showed a lack of synchrony of the single frequency GPS receiver. The georeferencing process based on ground control points achieved an error lower than 30 cm in X-Y and lower than 55 cm in Z. The drone orthomosaic provided more information in terms of spatial variability in heterogeneous burned areas in comparison with the WorldView-2 satellite imagery. The drone orthomosaic could constitute a viable alternative for the evaluation of post-fire vegetation regeneration in large and heterogeneous burned areas. PMID:29443914

  19. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  20. Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyu; Gurney, Kevin Robert

    2011-09-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.

  1. GIEMS-D3: A new long-term, dynamical, high-spatial resolution inundation extent dataset at global scale

    NASA Astrophysics Data System (ADS)

    Aires, Filipe; Miolane, Léo; Prigent, Catherine; Pham Duc, Binh; Papa, Fabrice; Fluet-Chouinard, Etienne; Lehner, Bernhard

    2017-04-01

    The Global Inundation Extent from Multi-Satellites (GIEMS) provides multi-year monthly variations of the global surface water extent at 25kmx25km resolution. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. A new procedure is introduced to downscale the GIEMS low spatial resolution inundations to a 3 arc second (90 m) dataset. The methodology is based on topography and hydrography information from the HydroSHEDS database. A new floodability index is adopted and an innovative smoothing procedure is developed to ensure the smooth transition, in the high-resolution maps, between the low-resolution boxes from GIEMS. Topography information is relevant for natural hydrology environments controlled by elevation, but is more limited in human-modified basins. However, the proposed downscaling approach is compatible with forthcoming fusion with other more pertinent satellite information in these difficult regions. The resulting GIEMS-D3 database is the only high spatial resolution inundation database available globally at the monthly time scale over the 1993-2007 period. GIEMS-D3 is assessed by analyzing its spatial and temporal variability, and evaluated by comparisons to other independent satellite observations from visible (Google Earth and Landsat), infrared (MODIS) and active microwave (SAR).

  2. Visuo-spatial ability in colonoscopy simulator training.

    PubMed

    Luursema, Jan-Maarten; Buzink, Sonja N; Verwey, Willem B; Jakimowicz, J J

    2010-12-01

    Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques.

  3. Landscape requirements of a primate population in a human-dominated environment

    PubMed Central

    2012-01-01

    Introduction As urban and rural land development become widespread features of the global landscape so an understanding of the landscape requirements of displaced and isolated wildlife species becomes increasingly important for conservation planning. In the Cape Peninsula, South Africa, rapid human population growth, and the associated urban and rural land transformation, threatens the sustainability of the local chacma baboon population. Here we analyse spatial data collected from nine of the 12 extant troops to determine their population-level landscape requirements. We use hurdle models to ascertain the key landscape features influencing baboon occurrence and abundance patterns on two hierarchical spatial scales. Results Both spatial scales produced similar results that were ecologically reliable and interpretable. The models indicated that baboons were more likely to occur, and be more abundant, at low altitudes, on steep slopes and in human-modified habitats. The combination of these landscape variables provides baboons with access to the best quality natural and anthropogenic food sources in close proximity to one another and suitable sleeping sites. Surface water did not emerge as an influential landscape feature presumably as the area is not water stressed. Conclusions The model results indicate that land development in the Cape Peninsula has pushed baboons into increasingly marginal natural habitat while simultaneously providing them with predictable and easily accessible food sources in human-modified habitats. The resultant spatial competition between humans and baboons explains the high levels of human-baboon conflict and further erosion of the remaining land fragments is predicted to exacerbate competition. This study demonstrates how the quantification of animal landscape requirements can provide a mechanism for identifying priority conservation areas at the human-wildlife interface. PMID:22269662

  4. Estimating Soil Moisture at High Spatial Resolution with Three Radiometric Satellite Products: A Study from a South-Eastern Australian Catchment

    NASA Astrophysics Data System (ADS)

    Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.

    2017-12-01

    Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.

  5. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator.

    PubMed

    Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2017-08-01

    The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.

  6. Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach

    NASA Astrophysics Data System (ADS)

    Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai

    2006-01-01

    With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.

  7. Design Parameters and Objectives of a High-­Resolution X-­ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitter, M; Gates, D; Neilson, H

    A high-resolution X-ray imaging crystal spectrometer, whose instrumental concept was thoroughly tested on NSTX and Alcator C-Mod, is presently being designed for LHD. The instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of 1 cm and > 10 ms which are obtained by a tomographic inversion of the spectral data, using the stellarator equilibrium reconstruction codes, STELLOPT and PIES. Since the spectrometer will be equipped with radiation hardened, high count rate, PILATUS detectors,, it is expected to be operational for all experimental conditions on LHD, which include plasmas ofmore » high density and plasmas with auxiliary RF and neutral beam heating. The special design features required by the magnetic field structure at LHD will be described.« less

  8. Multiplexed immunosensing and kinetics monitoring in nanofluidic devices with highly enhanced target capture efficiency

    PubMed Central

    Lin, Yii-Lih; Huang, Yen-Jun; Teerapanich, Pattamon; Leïchlé, Thierry

    2016-01-01

    Nanofluidic devices promise high reaction efficiency and fast kinetic responses due to the spatial constriction of transported biomolecules with confined molecular diffusion. However, parallel detection of multiple biomolecules, particularly proteins, in highly confined space remains challenging. This study integrates extended nanofluidics with embedded protein microarray to achieve multiplexed real-time biosensing and kinetics monitoring. Implementation of embedded standard-sized antibody microarray is attained by epoxy-silane surface modification and a room-temperature low-aspect-ratio bonding technique. An effective sample transport is achieved by electrokinetic pumping via electroosmotic flow. Through the nanoslit-based spatial confinement, the antigen-antibody binding reaction is enhanced with ∼100% efficiency and may be directly observed with fluorescence microscopy without the requirement of intermediate washing steps. The image-based data provide numerous spatially distributed reaction kinetic curves and are collectively modeled using a simple one-dimensional convection-reaction model. This study represents an integrated nanofluidic solution for real-time multiplexed immunosensing and kinetics monitoring, starting from device fabrication, protein immobilization, device bonding, sample transport, to data analysis at Péclet number less than 1. PMID:27375819

  9. A Modeling Framework for Inference of Surface Emissions Using Mobile Observations

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.

    2016-12-01

    Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.

  10. Spatial-temporal modeling of the association between air pollution exposure and preterm birth: identifying critical windows of exposure.

    PubMed

    Warren, Joshua; Fuentes, Montserrat; Herring, Amy; Langlois, Peter

    2012-12-01

    Exposure to high levels of air pollution during the pregnancy is associated with increased probability of preterm birth (PTB), a major cause of infant morbidity and mortality. New statistical methodology is required to specifically determine when a particular pollutant impacts the PTB outcome, to determine the role of different pollutants, and to characterize the spatial variability in these results. We develop a new Bayesian spatial model for PTB which identifies susceptible windows throughout the pregnancy jointly for multiple pollutants (PM(2.5) , ozone) while allowing these windows to vary continuously across space and time. We geo-code vital record birth data from Texas (2002-2004) and link them with standard pollution monitoring data and a newly introduced EPA product of calibrated air pollution model output. We apply the fully spatial model to a region of 13 counties in eastern Texas consisting of highly urban as well as rural areas. Our results indicate significant signal in the first two trimesters of pregnancy with different pollutants leading to different critical windows. Introducing the spatial aspect uncovers critical windows previously unidentified when space is ignored. A proper inference procedure is introduced to correctly analyze these windows. © 2012, The International Biometric Society.

  11. A Framework for Widespread Replication of a Highly Spatially Resolved Childhood Lead Exposure Risk Model

    PubMed Central

    Kim, Dohyeong; Galeano, M. Alicia Overstreet; Hull, Andrew; Miranda, Marie Lynn

    2008-01-01

    Background Preventive approaches to childhood lead poisoning are critical for addressing this longstanding environmental health concern. Moreover, increasing evidence of cognitive effects of blood lead levels < 10 μg/dL highlights the need for improved exposure prevention interventions. Objectives Geographic information system–based childhood lead exposure risk models, especially if executed at highly resolved spatial scales, can help identify children most at risk of lead exposure, as well as prioritize and direct housing and health-protective intervention programs. However, developing highly resolved spatial data requires labor-and time-intensive geocoding and analytical processes. In this study we evaluated the benefit of increased effort spent geocoding in terms of improved performance of lead exposure risk models. Methods We constructed three childhood lead exposure risk models based on established methods but using different levels of geocoded data from blood lead surveillance, county tax assessors, and the 2000 U.S. Census for 18 counties in North Carolina. We used the results to predict lead exposure risk levels mapped at the individual tax parcel unit. Results The models performed well enough to identify high-risk areas for targeted intervention, even with a relatively low level of effort on geocoding. Conclusions This study demonstrates the feasibility of widespread replication of highly spatially resolved childhood lead exposure risk models. The models guide resource-constrained local health and housing departments and community-based organizations on how best to expend their efforts in preventing and mitigating lead exposure risk in their communities. PMID:19079729

  12. Differential verbal, visual, and spatial working memory in written language production.

    PubMed

    Raulerson, Bascom A; Donovan, Michael J; Whiteford, Alison P; Kellogg, Ronald T

    2010-02-01

    The contributions of verbal, visual, and spatial working memory to written language production were investigated. Participants composed definitions for nouns while concurrently performing a task which required updating, storing, and retrieving information coded either verbally, visually, or spatially. The present study extended past findings by showing the linguistic encoding of planned conceptual content makes its largest demand on verbal working memory for both low and high frequency nouns. Kellogg, Olive, and Piolat in 2007 found that concrete nouns place substantial demands on visual working memory when imaging the nouns' referents during planning, whereas abstract nouns make no demand. The current study further showed that this pattern was not an artifact of visual working memory being sensitive to manipulation of just any lexical property of the noun prompts. In contrast to past results, writing made a small but detectible demand on spatial working memory.

  13. Contingent capture of visual-spatial attention depends on capacity-limited central mechanisms: evidence from human electrophysiology and the psychological refractory period.

    PubMed

    Brisson, Benoit; Leblanc, Emilie; Jolicoeur, Pierre

    2009-02-01

    It has recently been demonstrated that a lateralized distractor that matches the individual's top-down control settings elicits an N2pc wave, an electrophysiological index of the focus of visual-spatial attention, indicating that contingent capture has a visual-spatial locus. Here, we investigated whether contingent capture required capacity-limited central resources by incorporating a contingent capture task as the second task of a psychological refractory period (PRP) dual-task paradigm. The N2pc was used to monitor where observers were attending while they performed concurrent central processing known to cause the PRP effect. The N2pc elicited by the lateralized distractor that matched the top-down control settings was attenuated in high concurrent central load conditions, indicating that although involuntary, the deployment of visual-spatial attention occurring during contingent capture depends on capacity-limited central resources.

  14. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    NASA Astrophysics Data System (ADS)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  15. Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties

    PubMed Central

    Zhang, Houxi; Zhuang, Shunyao; Qian, Haiyan; Wang, Feng; Ji, Haibao

    2015-01-01

    Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to improve sampling design and to develop soil management strategies in terrestrial ecosystems. Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) forests have a high SOC storage potential; however, they also vary significantly spatially. This study investigated the spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC) based on spatial distribution. The spatial variability of SOC was then examined using geostatistics. A Kriging map was produced through ordinary interpolation and required sample numbers were calculated by classical and Kriging methods. An aggregated boosted tree (ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC) was best fitted with an exponential model and that it exhibited moderate spatial dependence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with BD (r = −0.373**), pH (r = −0.429**), GC (r = −0.163*), CEC (r = 0.263**), and elevation (r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical method given an expected standard error level as per a variance analysis. ABT analysis indicated that the physicochemical variables of soil affected SOC variation more significantly than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be strongly influenced by management practices. Thus, this study provides valuable information in relation to sampling strategy and insight into the potential of adjustments in agronomic measure, such as in fertilization for Moso bamboo production. PMID:25789615

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jetmore » sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.« less

  17. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling

    NASA Astrophysics Data System (ADS)

    Leandro, J.; Schumann, A.; Pfister, A.

    2016-04-01

    Some of the major challenges in modelling rainfall-runoff in urbanised areas are the complex interaction between the sewer system and the overland surface, and the spatial heterogeneity of the urban key features. The former requires the sewer network and the system of surface flow paths to be solved simultaneously. The latter is still an unresolved issue because the heterogeneity of runoff formation requires high detailed information and includes a large variety of feature specific rainfall-runoff dynamics. This paper discloses a methodology for considering the variability of building types and the spatial heterogeneity of land surfaces. The former is achieved by developing a specific conceptual rainfall-runoff model and the latter by defining a fully distributed approach for infiltration processes in urban areas with limited storage capacity dependent on OpenStreetMaps (OSM). The model complexity is increased stepwise by adding components to an existing 2D overland flow model. The different steps are defined as modelling levels. The methodology is applied in a German case study. Results highlight that: (a) spatial heterogeneity of urban features has a medium to high impact on the estimated overland flood-depths, (b) the addition of multiple urban features have a higher cumulative effect due to the dynamic effects simulated by the model, (c) connecting the runoff from buildings to the sewer contributes to the non-linear effects observed on the overland flood-depths, and (d) OSM data is useful in identifying pounding areas (for which infiltration plays a decisive role) and permeable natural surface flow paths (which delay the flood propagation).

  18. Investigating trends in water use over the Choptank River watershed using a multi-satellite data fusion approach

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing technologies have been widely used to map spatiotemporal variability in consumptive water use (or evapotranspiration; ET) for agricultural water management applications. However, current satellite-based sensors with the high spatial resolution required to map ET at sub-field...

  19. Investigating water use over the Choptank River Watershed using a multi-satellite data fusion approach

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing technologies have been widely used to map spatiotemporal variability in consumptive water use (or evapotranspiration; ET) for agricultural water management applications. However, current satellite-based sensors with the high spatial resolution required to map ET at sub-field...

  20. High resolution pollutant measurements in complex urban environments using mobile monitoring

    EPA Science Inventory

    Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires advanced in...

  1. Modelling topographic potential for erosion and deposition using GIS

    Treesearch

    Helena Mitasova; Louis R. Iverson

    1996-01-01

    Modelling of erosion and deposition in complex terrain within a geographical information system (GIS) requires a high resolution digital elevation model (DEM), reliable estimation of topographic parameters, and formulation of erosion models adequate for digital representation of spatially distributed parameters. Regularized spline with tension was integrated within a...

  2. Considerations for achieving cross-platform point cloud data fusion across different dryland ecosystem structural states

    USDA-ARS?s Scientific Manuscript database

    Dryland ecosystems undergo long periods of senescence punctuated by rapid growth following seasonal precipitation events. Remote sensing of vegetation dynamics which capture new growth as well as herbivory and disturbance require both high spatial and temporal resolution data acquired by various op...

  3. Visual Processing on Graphics Task: The Case of a Street Map

    ERIC Educational Resources Information Center

    Logan, Tracy; Lowrie, Tom

    2013-01-01

    Tracy Logan and Tom Lowrie argue that while little attention is given to visual imagery and spatial reasoning within the Australian Curriculum, a significant proportion of National Assessment Program--Literacy and Numeracy (NAPLAN) tasks require high levels of visuospatial reasoning. This article includes teaching ideas to promote visuospatial…

  4. Inductively generated streaming plasma ion source

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  5. The Moon Mineralogy (M3) Imaging Spectrometer: Early Assessment of the Spectral, Radiometric, Spatial and Uniformity Properties

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pieters, C. M.; Boardman, J.; Barr, D.; Bruce, C.; Bousman, J.; Chatterjee, A.; Eastwood, M.; Essandoh, V.; Geier, S.; hide

    2009-01-01

    The Moon Mineralogy Mapper's (M3) is a high uniformity and high signal-to-noise ratio NASA imaging spectrometer that is a guest instrument on the Indian Chandrayaan-1 Mission to the Moon. The laboratory measured spectral, radiometric, spatial, and uniformity characteristics of the M3 instrument are given. The M3 imaging spectrometer takes advantage of a suite of critical enabling capabilities to achieve its measurement requirement with a mass of 8 kg, power usage of 15 W, and volume of 25X18X12 cm. The M3 detector and spectrometer are cooled by a multi-stage passive cooler. This paper presents early M3 performance assessment results.

  6. Index mismatch aberration correction over long working distances using spatial light modulation.

    PubMed

    Gjonaj, Bergin; Johnson, Patrick; Bonn, Mischa; Domke, Katrin F

    2012-11-20

    For many microscopy applications, millimeters-long free working distances (LWD) are required. However, the high resolution and contrast of LWD objectives operated in air are lost when introducing glass and/or liquid with the sample. We propose to use spatial light modulation to correct for such beam aberrations caused by refractive index mismatches. Focusing a monochromatic laser beam with a 10 mm working distance air objective (50×, 0.5 NA) through air, glass, and water, we manage to restore a sharp, intense focus (FWHM<2λ) by adaptive beam phase shaping. Our approach offers a practical and cost-effective route to high resolution and contrast microscopy using LWD air objectives, extending their usage beyond applications in air.

  7. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory.

    PubMed

    Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.

  8. Noncontact temperature measurement: Requirements and applications for metals and alloys research

    NASA Technical Reports Server (NTRS)

    Perepezko, J. H.

    1988-01-01

    Temperature measurement is an essential capability for almost all areas of metals and alloys research. In the microgravity environment many of the science priorities that have been identified for metals and alloys also require noncontact temperature measurement capability. For example, in order to exploit the full potential of containerless processing, it is critical to have available a suitable noncontact temperature measurement system. This system is needed to track continuously the thermal history, including melt undercooling and rapid recalescence, of relatively small metal spheres during free-fall motion in drop tube systems. During containerless processing with levitation-based equipment, accurate noncontact temperature measurement is required to monitor one or more quasi-static samples with sufficient spatial and thermal resolution to follow the progress of solidification fronts originating in undercooled melts. In crystal growth, thermal migration, coarsening and other experiments high resolution thermal maps would be a valuable asset in the understanding and modeling of solidification processes, fluid flows and microstructure development. The science and applications requirements place several constraints on the spatial resolution, response time and accuracy of suitable instrumentation.

  9. Performance assessment of MEMS adaptive optics in tactical airborne systems

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1999-09-01

    Tactical airborne electro-optical systems are severely constrained by weight, volume, power, and cost. Micro- electrical-mechanical adaptive optics provide a solution that addresses the engineering realities without compromising spatial and temporal compensation requirements. Through modeling and analysis, we determined that substantial benefits could be gained for laser designators, ladar, countermeasures, and missile seekers. The developments potential exists for improving seeker imagery resolution 20 percent, extending countermeasures keep-out range by a factor of 5, doubling the range for ladar detection and identification, and compensating for supersonic and hypersonic aircraft boundary layers. Innovative concepts are required for atmospheric pat hand boundary layer compensation. We have developed design that perform these tasks using high speed scene-based wavefront sensing, IR aerosol laser guide stars, and extended-object wavefront beacons. We have developed a number of adaptive optics system configurations that met the spatial resolution requirements and we have determined that sensing and signal processing requirements can be met. With the help of micromachined deformable mirrors and sensor, we will be able to integrate the systems into existing airborne pods and missiles as well as next generation electro-optical systems.

  10. Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca; Palmer, Kevin; Deutsch, Clayton V.

    High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit inmore » South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.« less

  11. A Novel Multi-Digital Camera System Based on Tilt-Shift Photography Technology

    PubMed Central

    Sun, Tao; Fang, Jun-yong; Zhao, Dong; Liu, Xue; Tong, Qing-xi

    2015-01-01

    Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product. PMID:25835187

  12. A novel multi-digital camera system based on tilt-shift photography technology.

    PubMed

    Sun, Tao; Fang, Jun-Yong; Zhao, Dong; Liu, Xue; Tong, Qing-Xi

    2015-03-31

    Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product.

  13. High-field fMRI unveils orientation columns in humans.

    PubMed

    Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil

    2008-07-29

    Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.

  14. Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys.

    PubMed

    Chareyron, Loïc J; Banta Lavenex, Pamela; Amaral, David G; Lavenex, Pierre

    2017-12-01

    Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.

  15. Maritime User Requirements at High Latitudes - the MARENOR Project

    NASA Astrophysics Data System (ADS)

    Behlke, R.

    2014-12-01

    The ionosphere at high latitudes is characterised by a great variety of spatial and temporal variations that influence radio signals. In addition to navigation solutions that are based on Global Navigation Satellite Systems (GNSS), satellite communication systems also suffer from ionospheric degradation. This is worsened by harsh weather conditions, insufficient coverage by geostationary satellites and the absence of land-based augmentation infrastructure. Climate change will lead to a decrease in sea ice extent and thus to an increased use of trans-polar shipping routes, presence of gas and oil industries in the High Arctic and higher focus on Search-and-Rescue (SAR) as well as sovereignty issues. These moments usually require navigation and communication solutions that are accurate and reliable. We describe requirements presented by industrial operators on and around Svalbard. In addition, we present the MARENOR project that aims on evaluating navigation and communication systems at high latitudes including first results

  16. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of the jet where the average convection velocity is negligible and turbulence intensities increase dramatically. The measurements in the developing region reveal interesting features of an incomplete Richardson-Kolmogorov cascade under development.

  17. Wide-field motion tuning in nocturnal hawkmoths

    PubMed Central

    Theobald, Jamie C.; Warrant, Eric J.; O'Carroll, David C.

    2010-01-01

    Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the evolution of eyes for nocturnal vision, maintenance of high spatial acuity compromises absolute sensitivity. To investigate these trade-offs, we compared responses of wide-field motion-sensitive neurons in three species of hawkmoth: Manduca sexta (a crepuscular hoverer), Deilephila elpenor (a fully nocturnal hoverer) and Acherontia atropos (a fully nocturnal hawkmoth that does not hover as it feeds uniquely from honey in bees' nests). We show that despite smaller eyes, the motion pathway of D. elpenor is tuned to higher spatial frequencies and lower temporal frequencies than A. atropos, consistent with D. elpenor's need to detect low velocities for hovering. Acherontia atropos, however, presumably evolved low-light sensitivity without sacrificing temporal acuity. Manduca sexta, active at higher light levels, is tuned to the highest spatial frequencies of the three and temporal frequencies comparable with A. atropos. This yields similar tuning to low velocities as in D. elpenor, but with the advantage of shorter neural delays in processing motion. PMID:19906663

  18. Optical spatial heterodyne interferometric Fourier transform technique (OSHIFT) and a resulting interferometer

    NASA Astrophysics Data System (ADS)

    Georges, James A., III

    2007-09-01

    This article reports on the novel patent pending Optical Spatial Heterodyne Interferometric Fourier Transform Technique (the OSHIFT technique), the resulting interferometer also referred to as OSHIFT, and its preliminary results. OSHIFT was borne out of the following requirements: wavefront sensitivity on the order of 1/100 waves, high-frequency wavefront spatial sampling, snapshot 100Hz operation, and the ability to deal with discontinuous wavefronts. The first two capabilities lend themselves to the use of traditional interferometric techniques; however, the last two prove difficult for standard techniques, e.g., phase shifting interferometry tends to take a time sequence of images and most interferometers require estimation of a center fringe across wavefront discontinuities. OSHIFT overcomes these challenges by employing a spatial heterodyning concept in the Fourier (image) plane of the optic-under-test. This concept, the mathematical theory, an autocorrelation view of operation, and the design with results of OSHIFT will be discussed. Also discussed will be future concepts such as a sensor that could interrogate an entire imaging system as well as a methodology to create innovative imaging systems that encode wavefront information onto the image. Certain techniques and systems described in this paper are the subject of a patent application currently pending in the United States Patent Office.

  19. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  20. Comparison of Envisat ASAR GM, AMSR-E Passive Microwave, and MODIS Optical Remote Sensing for Flood Monitoring in Australia

    NASA Astrophysics Data System (ADS)

    Ticehurst, C. J.; Bartsch, A.; Doubkova, M.; van Dijk, A. I. J. M.

    2009-11-01

    Continuous flood monitoring can support emergency response, water management and environmental monitoring. Optical sensors such as MODIS allow inundation mapping with high spatial and temporal resolution (250-1000 m, twice daily) but are affected by cloud cover. Passive microwave sensors also acquire observations at high temporal resolution, but coarser spatial resolution (e.g. ca. 5-70 km for AMSR-E) and smaller footprints are also affected by cloud and/or rain. ScanSAR systems allow all-weather monitoring but require spatial resolution to be traded off against coverage and/or temporal resolution; e.g. the ENVISAT ASAR Global Mode observes at ca. 1 km over large regions about twice a week. The complementary role of the AMSR-E and ASAR GM data to that of MODIS is here introduced for three flood events and locations across Australia. Additional improvements can be made by integrating digital elevation models and stream flow gauging data.

  1. Development of a spatially resolved reflectometer to monitor corrosion of solar reflectors

    NASA Astrophysics Data System (ADS)

    Sutter, Florian; Meyen, Stephanie; Heller, Peter; Pitz-Paal, Robert

    2013-06-01

    Solar reflectors for Concentrating Solar Power (CSP) concentrators require a high reflectance and high specularity over the whole solar spectrum. During their lifetime of at least 20 years, the reflectors must withstand harsh outdoor conditions without loosing their reflective properties. Currently, there are not many devices available to measure the specular reflectance. In this work a prototype of a specular reflectometer with spatial resolution has been developed. The major advantage of the prototype compared to other reflectometers is the possibility of measuring the specular reflectance on an extended measuring spot of more than 5 cm in diameter with a spatial resolution of 37 pixel/mm. Additionally, measurements can be taken at three different acceptance half angles (φ = 3.5, 6.0, and 12.5 mrad) and at three different wavelengths (λ = 410 nm, 500 nm, and 656 nm). This lab scale instrument can be employed to monitor degradation effects, such as corrosion spots, and evaluate their influence on the specular reflectance of solar mirror materials.

  2. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Consentino, A.; Irwin, D.

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less

  3. Optimization of confocal laser induced fluorescence for long focal length applications

    NASA Astrophysics Data System (ADS)

    Jemiolo, Andrew J.; Henriquez, Miguel F.; Thompson, Derek S.; Scime, Earl E.

    2017-10-01

    Laser induced fluorescence (LIF) is a non-perturbative diagnostic for measuring ion and neutral particle velocities and temperatures in a plasma. The conventional method for single-photon LIF requires intersecting optical paths for light injection and collection. The multiple vacuum windows needed for such measurements are unavailable in many plasma experiments. Confocal LIF eliminates the need for perpendicular intersecting optical paths by using concentric injection and collection paths through a single window. One of the main challenges with using confocal LIF is achieving high resolution measurements at the longer focal lengths needed for many plasma experiments. We present confocal LIF measurements in HELIX, a helicon plasma experiment at West Virginia University, demonstrating spatial resolution dependence on focal length and spatial filtering. By combining aberration mitigating optics with spatial filtering, our results show high resolution measurements at focal lengths of 0.5 m, long enough to access the interiors of many laboratory plasma experiments. This work was supported by U.S. National Science Foundation Grant No. PHY-1360278.

  4. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    DOE PAGES

    Dorrer, C.; Consentino, A.; Irwin, D.

    2016-05-18

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less

  5. Analytical 3D views and virtual globes — scientific results in a familiar spatial context

    NASA Astrophysics Data System (ADS)

    Tiede, Dirk; Lang, Stefan

    In this paper we introduce analytical three-dimensional (3D) views as a means for effective and comprehensible information delivery, using virtual globes and the third dimension as an additional information carrier. Four case studies are presented, in which information extraction results from very high spatial resolution (VHSR) satellite images were conditioned and aggregated or disaggregated to regular spatial units. The case studies were embedded in the context of: (1) urban life quality assessment (Salzburg/Austria); (2) post-disaster assessment (Harare/Zimbabwe); (3) emergency response (Lukole/Tanzania); and (4) contingency planning (faked crisis scenario/Germany). The results are made available in different virtual globe environments, using the implemented contextual data (such as satellite imagery, aerial photographs, and auxiliary geodata) as valuable additional context information. Both day-to-day users and high-level decision makers are addressees of this tailored information product. The degree of abstraction required for understanding a complex analytical content is balanced with the ease and appeal by which the context is conveyed.

  6. Gaze-independent brain-computer interfaces based on covert attention and feature attention

    NASA Astrophysics Data System (ADS)

    Treder, M. S.; Schmidt, N. M.; Blankertz, B.

    2011-10-01

    There is evidence that conventional visual brain-computer interfaces (BCIs) based on event-related potentials cannot be operated efficiently when eye movements are not allowed. To overcome this limitation, the aim of this study was to develop a visual speller that does not require eye movements. Three different variants of a two-stage visual speller based on covert spatial attention and non-spatial feature attention (i.e. attention to colour and form) were tested in an online experiment with 13 healthy participants. All participants achieved highly accurate BCI control. They could select one out of thirty symbols (chance level 3.3%) with mean accuracies of 88%-97% for the different spellers. The best results were obtained for a speller that was operated using non-spatial feature attention only. These results show that, using feature attention, it is possible to realize high-accuracy, fast-paced visual spellers that have a large vocabulary and are independent of eye gaze.

  7. High-resolution imaging of a shock front in plastic by phase contrast imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Beckwith, M.; Jiang, S.; Zhao, Y.; Schropp, A.; Fernandez-Panella, A.; Rinderknecht, H. G.; Wilks, S.; Fournier, K.; Galtier, E.; Xing, Z.; Granados, E.; Gamboa, E.; Glenzer, S. H.; Heimann, P.; Zastrau, U.; Cho, B. I.; Eggert, J. H.; Collins, G. W.; Ping, Y.

    2017-10-01

    Understanding the propagation of shock waves is important for many areas of high energy density physics, including inertial confinement fusion (ICF) and shock compression science. In order to probe the shock front structures in detail, a diagnostic capable of detecting both the small spatial and temporal changes in the material is required. Here we show the experiment using hard X-ray phase contrast imaging (PCI) to probe the shock wave propagation in polyimide with submicron spatial resolution. The experiment was performed at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Lightsource (LCLS). PCI together with the femtosecond time scales of x-ray free electron lasers enables the imaging of optically opaque materials that undergo rapid temporal and spatial changes. The result reveals the evolution of the density profile with time. Work performed under DOE Contract No. DE-AC52-07NA27344 with support from OFES Early Career and LLNL LDRD program.

  8. Pathways for Energization of Ca in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2015-01-01

    We investigate the possible pathways to produce the extreme energy observed in the calcium exosphere of Mercury. Any mechanism must explain the facts that Ca in Mercury's exosphere is extremely hot, that it is seen almost exclusively on the dawnside of the planet, and that its content varies seasonally, not sporadically. Simple diatomic molecules or their clusters are considered, focusing on calcium oxides while acknowledging that Ca sulfides may also be the precursor molecules. We first discuss impact vaporization to justify the assumption that CaO and Ca-oxide clusters are expected from impacts on Mercury. Then we discuss processes by which the atomic Ca is energized to a 70,000 K gas. The processes considered are (1) electron-impact dissociation of CaO molecules, (2) spontaneous dissociation of Ca-bearing molecules following impact vaporization, (3) shock-induced dissociative ionization, (4) photodissociation and (5) sputtering. We conclude that electron-impact dissociation cannot produce the required abundance of Ca, and sputtering cannot reproduce the observed spatial and temporal variation that is measured. Spontaneous dissociation is unlikely to result in the high energy that is seen. Of the two remaining processes, shock induced dissociative ionization produces the required energy and comes close to producing the required abundance, but rates are highly dependent on the incoming velocity distribution of the impactors. Photodissociation probably can produce the required abundance of Ca, but simulations show that photodissociation cannot reproduce the observed spatial distribution.

  9. Rule-based topology system for spatial databases to validate complex geographic datasets

    NASA Astrophysics Data System (ADS)

    Martinez-Llario, J.; Coll, E.; Núñez-Andrés, M.; Femenia-Ribera, C.

    2017-06-01

    A rule-based topology software system providing a highly flexible and fast procedure to enforce integrity in spatial relationships among datasets is presented. This improved topology rule system is built over the spatial extension Jaspa. Both projects are open source, freely available software developed by the corresponding author of this paper. Currently, there is no spatial DBMS that implements a rule-based topology engine (considering that the topology rules are designed and performed in the spatial backend). If the topology rules are applied in the frontend (as in many GIS desktop programs), ArcGIS is the most advanced solution. The system presented in this paper has several major advantages over the ArcGIS approach: it can be extended with new topology rules, it has a much wider set of rules, and it can mix feature attributes with topology rules as filters. In addition, the topology rule system can work with various DBMSs, including PostgreSQL, H2 or Oracle, and the logic is performed in the spatial backend. The proposed topology system allows users to check the complex spatial relationships among features (from one or several spatial layers) that require some complex cartographic datasets, such as the data specifications proposed by INSPIRE in Europe and the Land Administration Domain Model (LADM) for Cadastral data.

  10. Isolating Flow-field Discontinuities while Preserving Monotonicity and High-order Accuracy on Cartesian Meshes

    DTIC Science & Technology

    2017-01-09

    2017 Distribution A – Approved for public release; Distribution Unlimited. PA Clearance 17030 Introduction • Filtering schemes offer a less...dissipative alternative to the standard artificial dissipation operators when applied to high- order spatial/temporal schemes • Limiting Fact: Filters impart...systems require a preconditioned dual-time framework to be solved efficiently • Limiting Fact: Filtering cannot be applied only at the physical- time

  11. Sodern development of a high LIDT laser beam expander for ATLID

    NASA Astrophysics Data System (ADS)

    Battarel, Denis C.; Barnasson, Elodie

    2017-11-01

    Sodern has been contracted for the development of the laser beam expander used on the lidar of the ATLID instrument developed by Airbus Defence & Space France and Germany (Formerly ASTRIUM) embarked on the EathCARE satellite, element of the ESA (European Space Agency) Living Planet Programme. The ATLID emission beam expander (E-BEX) has two functions: one is to reduce the divergence of the laser in order to achieve a high spatial resolution and the other is to enlarge the laser beam to reduce the power density and thus reduce Laser Induced Contamination (LIC) and Laser Induced Damage Threshold (LIDT) effects on the outer surface exposed to vacuum. This paper exposes the design drivers of the beam expander which are: having optical components withstanding very high laser fluence at a wavelength of 355nm and exhibiting a very low depolarization ratio., hermetically sealing the cavity with metallic gaskets in order to keep the pressure constant so that beam collimation is not affected, choosing housing material compatible with both hermiticity requirements and thermal control. To obtain a high spatial resolution on Earth, ATLID requires a means for controlling beam collimation. This is ensured by an active thermal control on the beam expander in order to change its Wavefront Error (WFE) by a few tens of nanometers.

  12. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture

    NASA Astrophysics Data System (ADS)

    Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac

    2015-12-01

    Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.

  13. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  14. Evaluation of a spatially-distributed Thornthwaite water-balance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lough, J.A.

    1993-03-01

    A small watershed of low relief in coastal New Hampshire was divided into hydrologic sub-areas in a geographic information system on the basis of soils, sub-basins and remotely-sensed landcover. Three variables were spatially modeled for input to 49 individual water-balances: available water content of the root zone, water input and potential evapotranspiration (PET). The individual balances were weight-summed to generate the aggregate watershed-balance, which saw 9% (48--50 mm) less annual actual-evapotranspiration (AET) compared to a lumped approach. Analysis of streamflow coefficients suggests that the spatially-distributed approach is more representative of the basin dynamics. Variation of PET by landcover accounted formore » the majority of the 9% AET reduction. Variation of soils played a near-negligible role. As a consequence of the above points, estimates of landcover proportions and annual PET by landcover are sufficient to correct a lumped water-balance in the Northeast. If remote sensing is used to estimate the landcover area, a sensor with a high spatial resolution is required. Finally, while the lower Thornthwaite model has conceptual limitations for distributed application, the upper Thornthwaite model is highly adaptable to distributed problems and may prove useful in many earth-system models.« less

  15. Study on detecting spatial distribution of neutrons and gamma rays using a multi-imaging plate system.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Endo, Satoru; Takada, Jun

    2014-06-01

    In order to measure the spatial distributions of neutrons and gamma rays separately using the imaging plate, the requirement for the converter to enhance specific component was investigated with the PHITS code. Consequently, enhancing fast neutrons using recoil protons from epoxy resin was not effective due to high sensitivity of the imaging plate to gamma rays. However, the converter of epoxy resin doped with (10)B was found to have potential for thermal and epithermal neutrons, and graphite for gamma rays. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Accuracy Assessment of Coastal Topography Derived from Uav Images

    NASA Astrophysics Data System (ADS)

    Long, N.; Millescamps, B.; Pouget, F.; Dumon, A.; Lachaussée, N.; Bertin, X.

    2016-06-01

    To monitor coastal environments, Unmanned Aerial Vehicle (UAV) is a low-cost and easy to use solution to enable data acquisition with high temporal frequency and spatial resolution. Compared to Light Detection And Ranging (LiDAR) or Terrestrial Laser Scanning (TLS), this solution produces Digital Surface Model (DSM) with a similar accuracy. To evaluate the DSM accuracy on a coastal environment, a campaign was carried out with a flying wing (eBee) combined with a digital camera. Using the Photoscan software and the photogrammetry process (Structure From Motion algorithm), a DSM and an orthomosaic were produced. Compared to GNSS surveys, the DSM accuracy is estimated. Two parameters are tested: the influence of the methodology (number and distribution of Ground Control Points, GCPs) and the influence of spatial image resolution (4.6 cm vs 2 cm). The results show that this solution is able to reproduce the topography of a coastal area with a high vertical accuracy (< 10 cm). The georeferencing of the DSM require a homogeneous distribution and a large number of GCPs. The accuracy is correlated with the number of GCPs (use 19 GCPs instead of 10 allows to reduce the difference of 4 cm); the required accuracy should be dependant of the research problematic. Last, in this particular environment, the presence of very small water surfaces on the sand bank does not allow to improve the accuracy when the spatial resolution of images is decreased.

  17. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  18. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents

    USGS Publications Warehouse

    McShane, Ryan R.; Driscoll, Katelyn P.; Sando, Roy

    2017-09-27

    Many approaches have been developed for measuring or estimating actual evapotranspiration (ETa), and research over many years has led to the development of remote sensing methods that are reliably reproducible and effective in estimating ETa. Several remote sensing methods can be used to estimate ETa at the high spatial resolution of agricultural fields and the large extent of river basins. More complex remote sensing methods apply an analytical approach to ETa estimation using physically based models of varied complexity that require a combination of ground-based and remote sensing data, and are grounded in the theory behind the surface energy balance model. This report, funded through cooperation with the International Joint Commission, provides an overview of selected remote sensing methods used for estimating water consumed through ETa and focuses on Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Operational Simplified Surface Energy Balance (SSEBop), two energy balance models for estimating ETa that are currently applied successfully in the United States. The METRIC model can produce maps of ETa at high spatial resolution (30 meters using Landsat data) for specific areas smaller than several hundred square kilometers in extent, an improvement in practice over methods used more generally at larger scales. Many studies validating METRIC estimates of ETa against measurements from lysimeters have shown model accuracies on daily to seasonal time scales ranging from 85 to 95 percent. The METRIC model is accurate, but the greater complexity of METRIC results in greater data requirements, and the internalized calibration of METRIC leads to greater skill required for implementation. In contrast, SSEBop is a simpler model, having reduced data requirements and greater ease of implementation without a substantial loss of accuracy in estimating ETa. The SSEBop model has been used to produce maps of ETa over very large extents (the conterminous United States) using lower spatial resolution (1 kilometer) Moderate Resolution Imaging Spectroradiometer (MODIS) data. Model accuracies ranging from 80 to 95 percent on daily to annual time scales have been shown in numerous studies that validated ETa estimates from SSEBop against eddy covariance measurements. The METRIC and SSEBop models can incorporate low and high spatial resolution data from MODIS and Landsat, but the high spatiotemporal resolution of ETa estimates using Landsat data over large extents takes immense computing power. Cloud computing is providing an opportunity for processing an increasing amount of geospatial “big data” in a decreasing period of time. For example, Google Earth EngineTM has been used to implement METRIC with automated calibration for regional-scale estimates of ETa using Landsat data. The U.S. Geological Survey also is using Google Earth EngineTM to implement SSEBop for estimating ETa in the United States at a continental scale using Landsat data.

  19. Assessment of Required Accuracy of Digital Elevation Data for Hydrologic Modeling

    NASA Technical Reports Server (NTRS)

    Kenward, T.; Lettenmaier, D. P.

    1997-01-01

    The effect of vertical accuracy of Digital Elevation Models (DEMs) on hydrologic models is evaluated by comparing three DEMs and resulting hydrologic model predictions applied to a 7.2 sq km USDA - ARS watershed at Mahantango Creek, PA. The high resolution (5 m) DEM was resempled to a 30 m resolution using method that constrained the spatial structure of the elevations to be comparable with the USGS and SIR-C DEMs. This resulting 30 m DEM was used as the reference product for subsequent comparisons. Spatial fields of directly derived quantities, such as elevation differences, slope, and contributing area, were compared to the reference product, as were hydrologic model output fields derived using each of the three DEMs at the common 30 m spatial resolution.

  20. Multiseasonal variables in digital image enhancements for geological applications

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Vitorello, I.; Almeidafilho, R.

    1984-01-01

    Examples of enhanced multiseasonal orbital imagery illustrate the influence of multiseasonal changes in their spatial and spectral attributes, and consequently in their application to structural geology and lithological discrimination. Shadow effects associated with appropriate solar elevation and azimuth effects enhance the spatial attributes but not the spectral. In this case, variations in illumination conditions should be minimized by selecting images with high solar elevation and by the use of techniques that minimize illumination conditions. Multiseasonal imagery should be used in the identification of spectral contrast changes of rock-soil-vegetation associations which can provide evidences of related lithological units and structural features. The extraction of maximum geological information requires, at least, a fall/winter and a spring/summer scene from which spatial, spectral and multiseasonal attributes can be adequately explored.

  1. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  2. Onboard image compression schemes for modular airborne imaging spectrometer (MAIS) based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyu; Wang, Jianyu

    1996-11-01

    In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.

  3. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Astrophysics Data System (ADS)

    Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-11-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  4. Automated Approach to Very High-Order Aeroacoustic Computations. Revision

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Goodrich, John W.

    2001-01-01

    Computational aeroacoustics requires efficient, high-resolution simulation tools. For smooth problems, this is best accomplished with very high-order in space and time methods on small stencils. However, the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewski recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that am located near wall boundaries. These procedures are used to develop automatically and to implement very high-order methods (> 15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.

  5. An Automated Approach to Very High Order Aeroacoustic Computations in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Goodrich, John W.

    2000-01-01

    Computational aeroacoustics requires efficient, high-resolution simulation tools. And for smooth problems, this is best accomplished with very high order in space and time methods on small stencils. But the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewslci recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that are located near wall boundaries. These procedures are used to automatically develop and implement very high order methods (>15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.

  6. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  7. Modeling α- and β-diversity in a tropical forest from remotely sensed and spatial data

    NASA Astrophysics Data System (ADS)

    Hernández-Stefanoni, J. Luis; Gallardo-Cruz, J. Alberto; Meave, Jorge A.; Rocchini, Duccio; Bello-Pineda, Javier; López-Martínez, J. Omar

    2012-10-01

    Comprehensive information on species distribution and species composition patterns of plant communities is required for effective conservation and management of biodiversity. Remote sensing offers an inexpensive means of attaining complete spatial coverage for large areas, at regular time intervals, and can therefore be extremely useful for estimating both species richness and spatial variation of species composition (α- and β-diversity). An essential step to map such attributes is to identify and understand their main drivers. We used remotely sensed data as a surrogate of plant productivity and habitat structure variables for explaining α- and β-diversity, and evaluated the relative roles of productivity-habitat structure and spatial variables in explaining observed patterns of α- and β-diversity by using a Principal Coordinates of Neighbor Matrices analysis. We also examined the relationship between remotely sensed and field data, in order to map α- and β-diversity at the landscape-level in the Yucatan Peninsula, using a regression kriging procedure. These two procedures integrate the relationship of species richness and spatial species turnover both with remotely sensed data and spatial structure. The empirical models so obtained can be used to predict species richness and variation in species composition, and they can be regarded as valuable tools not only for identifying areas with high local species richness (α-diversity), but also areas with high species turnover (β-diversity). Ultimately, information obtained in this way can help maximize the number of species preserved in a landscape.

  8. The Hyperspectral Thermal Emission Spectrometer (HyTES): Preliminary Results

    NASA Technical Reports Server (NTRS)

    Hook, Simon; Johnson, William R.; Eng, Bjorn T.; Gunapala, Sarah D.; Lamborn, Andrew U.; Mouroulis, Pantazis, Z.; Mouroulis, Pantazis, Z.; Paine, Christopher G.; Soibel, Alexander; Wilson, Daniel W.

    2011-01-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). HyspIRI is one of the Tier 2 Decadal Survey Missions. HyTES will provide information on how to place the filters on the HyspIRI Thermal Infrared Instrument (TIR) as well as provide antecedent science data. The pushbroom design has 512 spatial pixels over a 50-degree field of view and 256 spectral channels between 7.5 micrometers to 12 micrometers. HyTES includes many key enabling state-of-the-art technologies including a high performance convex diffraction grating, a quantum well infrared photodetector (QWIP) focal plane array, and a compact Dyson-inspired optical design. The Dyson optical design allows for a very compact and optically fast system (F/1.6). It also minimizes cooling requirements due to the fact it has a single monolithic prism-like grating design which allows baffling for stray light suppression. The monolithic configuration eases mechanical tolerancing requirements which are a concern since the complete optical assembly is operated at cryogenic temperatures ((is) approximately 100K). The QWIP allows for optimum spatial and spectral uniformity and provides adequate responsivity or D-star to allow 200mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. Assembly of the system is nearly complete. After completion, alignment results will be presented which show low keystone and smile distortion. This is required to minimize spatial-spectral mixing between adjacent spectral channels and spatial positions. Predictions show the system will have adequate signal to noise for laboratory calibration targets.

  9. Proteome | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    A proteome is the entire complement of proteins, including modifications made to a particular set of proteins, produced by an organism or a cellular system. This will vary with time and distinct requirements such as growth conditions and stresses, and thus is highly dynamic and spatial. Proteomics is the study of the proteome.

  10. Pharmacodynamic Assay Panel for Monitoring Phospho-Signaling Networks | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The DNA damage response (DDR) is a highly regulated signal transduction network that orchestrates the temporal and spatial organization of protein complexes required to repair (or tolerate) DNA damage (e.g., nucleotide excision repair, base excision repair, homologous recombination, non-homologous end joining, post-replication repair).

  11. Rationale and Application of Tangential Scanning to Industrial Inspection of Hardwood Logs

    Treesearch

    Nand K. Gupta; Daniel L. Schmoldt; Bruce Isaacson

    1998-01-01

    Industrial computed tomography (CT) inspection of hardwood logs has some unique requirements not found in other CT applications. Sawmill operations demand that large volumes of wood be scanned quickly at high spatial resolution for extended duty cycles. Current CT scanning geometries and commercial systems have both technical and economic [imitations. Tangential...

  12. Recent Developments in Transition-Edge Strip Detectors for Solar X-Rays

    NASA Technical Reports Server (NTRS)

    Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.

    2008-01-01

    LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ delta E approximately equals 1600) and temporal (single photon delta t approximately equals 10 micro s) resolutions with imaging capabilities, these devices will be able to study high-temperature (>l0 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of delta E(sub fwhm) approximately equals 30 eV and spatial resolutions of approximately 10-15 micron, suggesting the strip-detector concept is viable.

  13. Monitoring Earth's Shortwave Reflectance: GEO Instrument Concept

    NASA Technical Reports Server (NTRS)

    Brageot, Emily; Mercury, Michael; Green, Robert; Mouroulis, Pantazis; Gerwe, David

    2015-01-01

    In this paper we present a GEO instrument concept dedicated to monitoring the Earth's global spectral reflectance with a high revisit rate. Based on our measurement goals, the ideal instrument needs to be highly sensitive (SNR greater than 100) and to achieve global coverage with spectral sampling (less than or equal to 10nm) and spatial sampling (less than or equal to 1km) over a large bandwidth (380-2510 nm) with a revisit time (greater than or equal to greater than or equal to 3x/day) sufficient to fully measure the spectral-radiometric-spatial evolution of clouds and confounding factor during daytime. After a brief study of existing instruments and their capabilities, we choose to use a GEO constellation of up to 6 satellites as a platform for this instrument concept in order to achieve the revisit time requirement with a single launch. We derive the main parameters of the instrument and show the above requirements can be fulfilled while retaining an instrument architecture as compact as possible by controlling the telescope aperture size and using a passively cooled detector.

  14. Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; Rothschild, Richard E.; Leblanc, Philippe; McFee, John Elton

    2009-02-01

    Defence R&D Canada has an active research and development program on detection of explosive devices using nuclear methods. One system under development is a coded aperture-based X-ray backscatter imaging detector designed to provide sufficient speed, contrast and spatial resolution to detect antipersonnel landmines and improvised explosive devices. The successful development of a hand-held imaging detector requires, among other things, a light-weight, ruggedized detector with low power requirements, supplying high spatial resolution. The University of California, San Diego-designed HEXIS detector provides a modern, large area, high-temperature CZT imaging surface, robustly packaged in a light-weight housing with sound mechanical properties. Based on the potential for the HEXIS detector to be incorporated as the detection element of a hand-held imaging detector, the authors initiated a collaborative effort to demonstrate the capability of a coded aperture-based X-ray backscatter imaging detector. This paper will discuss the landmine and IED detection problem and review the coded aperture technique. Results from initial proof-of-principle experiments will then be reported.

  15. Adaptive x-ray optics development at AOA-Xinetics

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cavaco, Jeff L.; Brooks, Audrey D.; Ezzo, Kevin; Pearson, David D.; Wellman, John A.

    2013-05-01

    Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOA-Xinetics.

  16. Adaptive x-ray optics development at AOA-Xinetics

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Pearson, David D.; Cavaco, Jeffrey L.; Plinta, Audrey D.; Wellman, John A.

    2012-10-01

    Grazing-incidence optics for X-ray applications require extremely smooth surfaces with precise mirror figures to provide well focused beams and small image spot sizes for astronomical telescopes and laboratory test facilities. The required precision has traditionally been achieved by time-consuming grinding and polishing of thick substrates with frequent pauses for precise metrology to check the mirror figure. More recently, substrates with high quality surface finish and figures have become available at reasonable cost, and techniques have been developed to mechanically adjust the figure of these traditionally polished substrates for ground-based applications. The beam-bending techniques currently in use are mechanically complex, however, with little control over mid-spatial frequency errors. AOA-Xinetics has been developing been developing techniques for shaping grazing incidence optics with surface-normal and surface-parallel electrostrictive Lead magnesium niobate (PMN) actuators bonded to mirror substrates for several years. These actuators are highly reliable; exhibit little to no hysteresis, aging or creep; and can be closely spaced to correct low and mid-spatial frequency errors in a compact package. In this paper we discuss recent development of adaptive x-ray optics at AOAXinetics.

  17. Next generation miniature simultaneous multi-hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Gupta, Neelam

    2014-03-01

    The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.

  18. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Feng, Chun-Lei; Wang, Zhi-Wei; Ding, Hongbin

    2017-05-01

    The current paucity of spatial and temporal characterization of reactive oxygen and nitrogen species (RONS) concentration has been a major hurdle to the advancement and clinical translation of low temperature atmospheric plasmas. In this study, an advanced laser induced fluorescence (LIF) system has been developed to be an effective antibacterial surface discharge reactor for the diagnosis of RONS, where the highest spatial and temporal resolution of the LIF system has been achieved to ˜100 μm scale and ˜20 ns scale, respectively. Measurements on an oxidative OH radical have been carried out as typical RONS for the benchmark of the whole LIF system, where absolute number density calibration has been performed on the basis of the laser Rayleigh scattering method. Requirements for pixel resolved spatial distribution and outer plasma region detection become challenging tasks due to the low RONS concentration (˜ppb level) and strong interference, especially the discharge induced emission and pulsed laser induced stray light. In order to design the highly sensitive LIF system, a self-developed fluorescence telescope, the optimization of high precision synchronization among a tunable pulsed laser, a surface discharge generator, intensified Charge Coupled Device (iCCD) camera, and an oscilloscope have been performed. Moreover, an image BOXCAR approach has been developed to remarkably improve the sensitivity of the whole LIF system by optimizing spatial and temporal gating functions via both hardware and software, which has been integrated into our automatic control and data acquisition system on the LabVIEW platform. In addition, a reciprocation averaging measurement has been applied to verify the accuracy of the whole LIF detecting system, indicating the relative standard deviation of ˜3%.

  19. Small-scale spatial variation in population dynamics and fishermen response in a coastal marine fishery.

    PubMed

    Wilson, Jono R; Kay, Matthew C; Colgate, John; Qi, Roy; Lenihan, Hunter S

    2012-01-01

    A major challenge for small-scale fisheries management is high spatial variability in the demography and life history characteristics of target species. Implementation of local management actions that can reduce overfishing and maximize yields requires quantifying ecological heterogeneity at small spatial scales and is therefore limited by available resources and data. Collaborative fisheries research (CFR) is an effective means to collect essential fishery information at local scales, and to develop the social, technical, and logistical framework for fisheries management innovation. We used a CFR approach with fishing partners to collect and analyze geographically precise demographic information for grass rockfish (Sebastes rastrelliger), a sedentary, nearshore species harvested in the live fish fishery on the West Coast of the USA. Data were used to estimate geographically distinct growth rates, ages, mortality, and length frequency distributions in two environmental subregions of the Santa Barbara Channel, CA, USA. Results indicated the existence of two subpopulations; one located in the relatively cold, high productivity western Channel, and another in the relatively warm, low productivity eastern Channel. We parameterized yield per recruit models, the results of which suggested nearly twice as much yield per recruit in the high productivity subregion relative to the low productivity subregion. The spatial distribution of fishing in the two environmental subregions demonstrated a similar pattern to the yield per recruit outputs with greater landings, effort, and catch per unit effort in the high productivity subregion relative to the low productivity subregion. Understanding how spatial variability in stock dynamics translates to variability in fishery yield and distribution of effort is important to developing management plans that maximize fishing opportunities and conservation benefits at local scales.

  20. Incorporating land-use requirements and environmental constraints in low-carbon electricity planning for California.

    PubMed

    Wu, Grace C; Torn, Margaret S; Williams, James H

    2015-02-17

    The land-use implications of deep decarbonization of the electricity sector (e.g., 80% below 1990 emissions) have not been well-characterized quantitatively or spatially. We assessed the operational-phase land-use requirements of different low-carbon scenarios for California in 2050 and found that most scenarios have comparable direct land footprints. While the per MWh footprint of renewable energy (RE) generation is initially higher, that of fossil and nuclear generation increases over time with continued fuel use. We built a spatially explicit model to understand the interactions between resource quality and environmental constraints in a high RE scenario (>70% of total generation). We found that there is sufficient land within California to meet the solar and geothermal targets, but areas with the highest quality wind and solar resources also tend to be those with high conservation value. Development of some land with lower conservation value results in lower average capacity factors, but also provides opportunity for colocation of different generation technologies, which could significantly improve land-use efficiency and reduce permitting, leasing, and transmission infrastructure costs. Basing siting decisions on environmentally-constrained long-term RE build-out requirements produces significantly different results, including better conservation outcomes, than implied by the current piecemeal approach to planning.

  1. GENERATING SOPHISTICATED SPATIAL SURROGATES USING THE MIMS SPATIAL ALLOCATOR

    EPA Science Inventory

    The Multimedia Integrated Modeling System (MIMS) Spatial Allocator is open-source software for generating spatial surrogates for emissions modeling, changing the map projection of Shapefiles, and performing other types of spatial allocation that does not require the use of a comm...

  2. Supporting the operational use of process based hydrological models and NASA Earth Observations for use in land management and post-fire remediation through a Rapid Response Erosion Database (RRED).

    NASA Astrophysics Data System (ADS)

    Miller, M. E.; Elliot, W.; Billmire, M.; Robichaud, P. R.; Banach, D. M.

    2017-12-01

    We have built a Rapid Response Erosion Database (RRED, http://rred.mtri.org/rred/) for the continental United States to allow land managers to access properly formatted spatial model inputs for the Water Erosion Prediction Project (WEPP). Spatially-explicit process-based models like WEPP require spatial inputs that include digital elevation models (DEMs), soil, climate and land cover. The online database delivers either a 10m or 30m USGS DEM, land cover derived from the Landfire project, and soil data derived from SSURGO and STATSGO datasets. The spatial layers are projected into UTM coordinates and pre-registered for modeling. WEPP soil parameter files are also created along with linkage files to match both spatial land cover and soils data with the appropriate WEPP parameter files. Our goal is to make process-based models more accessible by preparing spatial inputs ahead of time allowing modelers to focus on addressing scenarios of concern. The database provides comprehensive support for post-fire hydrological modeling by allowing users to upload spatial soil burn severity maps, and within moments returns spatial model inputs. Rapid response is critical following natural disasters. After moderate and high severity wildfires, flooding, erosion, and debris flows are a major threat to life, property and municipal water supplies. Mitigation measures must be rapidly implemented if they are to be effective, but they are expensive and cannot be applied everywhere. Fire, runoff, and erosion risks also are highly heterogeneous in space, creating an urgent need for rapid, spatially-explicit assessment. The database has been used to help assess and plan remediation on over a dozen wildfires in the Western US. Future plans include expanding spatial coverage, improving model input data and supporting additional models. Our goal is to facilitate the use of the best possible datasets and models to support the conservation of soil and water.

  3. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy« less

  4. Semi-autonomous remote sensing time series generation tool

    NASA Astrophysics Data System (ADS)

    Babu, Dinesh Kumar; Kaufmann, Christof; Schmidt, Marco; Dhams, Thorsten; Conrad, Christopher

    2017-10-01

    High spatial and temporal resolution data is vital for crop monitoring and phenology change detection. Due to the lack of satellite architecture and frequent cloud cover issues, availability of daily high spatial data is still far from reality. Remote sensing time series generation of high spatial and temporal data by data fusion seems to be a practical alternative. However, it is not an easy process, since it involves multiple steps and also requires multiple tools. In this paper, a framework of Geo Information System (GIS) based tool is presented for semi-autonomous time series generation. This tool will eliminate the difficulties by automating all the steps and enable the users to generate synthetic time series data with ease. Firstly, all the steps required for the time series generation process are identified and grouped into blocks based on their functionalities. Later two main frameworks are created, one to perform all the pre-processing steps on various satellite data and the other one to perform data fusion to generate time series. The two frameworks can be used individually to perform specific tasks or they could be combined to perform both the processes in one go. This tool can handle most of the known geo data formats currently available which makes it a generic tool for time series generation of various remote sensing satellite data. This tool is developed as a common platform with good interface which provides lot of functionalities to enable further development of more remote sensing applications. A detailed description on the capabilities and the advantages of the frameworks are given in this paper.

  5. Requirements Engineering for inter-organizational health information systems with functions for spatial analyses: modeling a WHO safe community applying Use Case Maps.

    PubMed

    Olvingson, C; Hallberg, N; Timpka, T; Lindqvist, K

    2002-01-01

    To evaluate Use Case Maps (UCMs) as a technique for Requirements Engineering (RE) in the development of information systems with functions for spatial analyses in inter-organizational public health settings. In this study, Participatory Action Research (PAR) is used to explore the UCM notation for requirements elicitation and to gather the opinions of the users. The Delphi technique is used to reach consensus in the construction of UCMs. The results show that UCMs can provide a visualization of the system's functionality and in combination with PAR provide a sound basis for gathering requirements in inter-organizational settings. UCMs were found to represent a suitable level for describing the organization and the dynamic flux of information including spatial resolution to all stakeholders. Moreover, by using PAR, the voices of the users and their tacit knowledge is intercepted. Further, UCMs are found useful in generating intuitive requirements by the creation of use cases. With UCMs and PAR it is possible to study the effects of design changes in the general information display and the spatial resolution in the same context. Both requirements on the information system in general and the functions for spatial analyses are possible to elicit when identifying the different responsibilities and the demands on spatial resolution associated to the actions of each administrative unit. However, the development process of UCM is not well documented and needs further investigation and formulation of guidelines.

  6. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  7. Scales of snow depth variability in high elevation rangeland sagebrush

    NASA Astrophysics Data System (ADS)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  8. Addressing geographic access barriers to emergency care services: a national ecologic study of hospitals in Brazil.

    PubMed

    Rocha, Thiago Augusto Hernandes; da Silva, Núbia Cristina; Amaral, Pedro Vasconcelos; Barbosa, Allan Claudius Queiroz; Rocha, João Victor Muniz; Alvares, Viviane; de Almeida, Dante Grapiuna; Thumé, Elaine; Thomaz, Erika Bárbara Abreu Fonseca; de Sousa Queiroz, Rejane Christine; de Souza, Marta Rovery; Lein, Adriana; Lopes, Daniel Paulino; Staton, Catherine A; Vissoci, João Ricardo Nickenig; Facchini, Luiz Augusto

    2017-08-22

    Unequal distribution of emergency care services is a critical barrier to be overcome to assure access to emergency and surgical care. Considering this context it was objective of the present work analyze geographic access barriers to emergency care services in Brazil. A secondary aim of the study is to define possible roles to be assumed by small hospitals in the Brazilian healthcare network to overcome geographic access challenges. The present work can be classified as a cross-sectional ecological study. To carry out the present study, data of all 5843 Brazilian hospitals were categorized among high complexity centers and small hospitals. The geographical access barriers were identified through the use of two-step floating catchment area method. Once concluded the previous step an evaluation using the Getis-Ord-Gi method was performed to identify spatial clusters of municipalities with limited access to high complexity centers but well covered by well-equipped small hospitals. The analysis of accessibility index of high complexity centers highlighted large portions of the country with nearly zero hospital beds by inhabitant. In contrast, it was possible observe a group of 1595 municipalities with high accessibility to small hospitals, simultaneously with a low coverage of high complexity centers. Among the 1595 municipalities with good accessibility to small hospitals, 74% (1183) were covered by small hospitals with at least 60% of minimum emergency service requirements. The spatial clusters analysis aggregated 589 municipalities with high values related to minimum emergency service requirements. Small hospitals in these 589 cities could promote the equity in access to emergency services benefiting more than eight million people. There is a spatial disequilibrium within the country with prominent gaps in the health care network for emergency services. Taking this challenge into consideration, small hospitals could be a possible solution and foster equity in access to emergency and surgical care. However more investments in are necessary to improve small hospitals capabilities to fill this gap.

  9. Spatial resampling of IDR frames for low bitrate video coding with HEVC

    NASA Astrophysics Data System (ADS)

    Hosking, Brett; Agrafiotis, Dimitris; Bull, David; Easton, Nick

    2015-03-01

    As the demand for higher quality and higher resolution video increases, many applications fail to meet this demand due to low bandwidth restrictions. One factor contributing to this problem is the high bitrate requirement of the intra-coded Instantaneous Decoding Refresh (IDR) frames featuring in all video coding standards. Frequent coding of IDR frames is essential for error resilience in order to prevent the occurrence of error propagation. However, as each one consumes a huge portion of the available bitrate, the quality of future coded frames is hindered by high levels of compression. This work presents a new technique, known as Spatial Resampling of IDR Frames (SRIF), and shows how it can increase the rate distortion performance by providing a higher and more consistent level of video quality at low bitrates.

  10. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, Regina; Baker, Sherry L.; Windt, David L.

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less

  11. Accelerated damage visualization using binary search with fixed pitch-catch distance laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Park, Byeongjin; Sohn, Hoon

    2017-07-01

    Laser ultrasonic scanning, especially full-field wave propagation imaging, is attractive for damage visualization thanks to its noncontact nature, sensitivity to local damage, and high spatial resolution. However, its practicality is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated damage visualization technique is developed to visualize damage with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio (SNR) of measured ultrasonic responses. The approximate damage boundary is identified by examining the interactions between ultrasonic waves and damage observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and damage, such as reflections and transmissions, can be better identified in the spatial ultrasonic domain. Then, the area inside the identified damage boundary is visualized as damage. The performance of the proposed damage visualization technique is validated excusing a numerical simulation performed on an aluminum plate with a notch and experiments performed on an aluminum plate with a crack and a wind turbine blade with delamination. The proposed damage visualization technique accelerates the damage visualization process in three aspects: (1) the number of measurements that is necessary for damage visualization is dramatically reduced by a binary search algorithm; (2) the number of averaging that is necessary to achieve a high SNR is reduced by maintaining the wave propagation distance short; and (3) with the proposed technique, the same damage can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.

  12. Canopies to Continents: What spatial scales are needed to represent landcover distributions in earth system models?

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Duhl, T.

    2011-12-01

    Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.

  13. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA

    NASA Astrophysics Data System (ADS)

    Longuevergne, Laurent; Scanlon, Bridget R.; Wilson, Clark R.

    2010-11-01

    The Gravity Recovery and Climate Experiment (GRACE) satellites provide observations of water storage variation at regional scales. However, when focusing on a region of interest, limited spatial resolution and noise contamination can cause estimation bias and spatial leakage, problems that are exacerbated as the region of interest approaches the GRACE resolution limit of a few hundred km. Reliable estimates of water storage variations in small basins require compromises between competing needs for noise suppression and spatial resolution. The objective of this study was to quantitatively investigate processing methods and their impacts on bias, leakage, GRACE noise reduction, and estimated total error, allowing solution of the trade-offs. Among the methods tested is a recently developed concentration algorithm called spatiospectral localization, which optimizes the basin shape description, taking into account limited spatial resolution. This method is particularly suited to retrieval of basin-scale water storage variations and is effective for small basins. To increase confidence in derived methods, water storage variations were calculated for both CSR (Center for Space Research) and GRGS (Groupe de Recherche de Géodésie Spatiale) GRACE products, which employ different processing strategies. The processing techniques were tested on the intensively monitored High Plains Aquifer (450,000 km2 area), where application of the appropriate optimal processing method allowed retrieval of water storage variations over a portion of the aquifer as small as ˜200,000 km2.

  14. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    NASA Astrophysics Data System (ADS)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  15. Effects of Digitization and JPEG Compression on Land Cover Classification Using Astronaut-Acquired Orbital Photographs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Webb, Edward L.; Evangelista, Arlene

    2000-01-01

    Studies that utilize astronaut-acquired orbital photographs for visual or digital classification require high-quality data to ensure accuracy. The majority of images available must be digitized from film and electronically transferred to scientific users. This study examined the effect of scanning spatial resolution (1200, 2400 pixels per inch [21.2 and 10.6 microns/pixel]), scanning density range option (Auto, Full) and compression ratio (non-lossy [TIFF], and lossy JPEG 10:1, 46:1, 83:1) on digital classification results of an orbital photograph from the NASA - Johnson Space Center archive. Qualitative results suggested that 1200 ppi was acceptable for visual interpretive uses for major land cover types. Moreover, Auto scanning density range was superior to Full density range. Quantitative assessment of the processing steps indicated that, while 2400 ppi scanning spatial resolution resulted in more classified polygons as well as a substantially greater proportion of polygons < 0.2 ha, overall agreement between 1200 ppi and 2400 ppi was quite high. JPEG compression up to approximately 46:1 also did not appear to have a major impact on quantitative classification characteristics. We conclude that both 1200 and 2400 ppi scanning resolutions are acceptable options for this level of land cover classification, as well as a compression ratio at or below approximately 46:1. Auto range density should always be used during scanning because it acquires more of the information from the film. The particular combination of scanning spatial resolution and compression level will require a case-by-case decision and will depend upon memory capabilities, analytical objectives and the spatial properties of the objects in the image.

  16. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    PubMed

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  17. Landsat multispectral sharpening using a sensor system model and panchromatic image

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2003-01-01

    The thematic mapper (TM) sensor aboard Landsats 4, 5 and enhanced TM plus (ETM+) on Landsat 7 collect imagery at 30-m sample distance in six spectral bands. New with ETM+ is a 15-m panchromatic (P) band. With image sharpening techniques, this higher resolution P data, or as an alternative, the 10-m (or 5-m) P data of the SPOT satellite, can increase the spatial resolution of the multispectral (MS) data. Sharpening requires that the lower resolution MS image be coregistered and resampled to the P data before high spatial frequency information is transferred to the MS data. For visual interpretation and machine classification tasks, it is important that the sharpened data preserve the spectral characteristics of the original low resolution data. A technique was developed for sharpening (in this case, 3:1 spatial resolution enhancement) visible spectral band data, based on a model of the sensor system point spread function (PSF) in order to maintain spectral fidelity. It combines high-pass (HP) filter sharpening methods with iterative image restoration to reduce degradations caused by sensor-system-induced blurring and resembling. Also there is a spectral fidelity requirement: sharpened MS when filtered by the modeled degradations should reproduce the low resolution source MS. Quantitative evaluation of sharpening performance was made by using simulated low resolution data generated from digital color-IR aerial photography. In comparison to the HP-filter-based sharpening method, results for the technique in this paper with simulated data show improved spectral fidelity. Preliminary results with TM 30-m visible band data sharpened with simulated 10-m panchromatic data are promising but require further study.

  18. Toward a RPC-based muon tomography system for cargo containers.

    NASA Astrophysics Data System (ADS)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.

    2014-10-01

    A large area scanner for cosmic muon tomography is currently being developed at University of Bristol. Thanks to their abundance and penetrating power, cosmic muons have been suggested as ideal candidates to scan large containers in search of special nuclear materials, which are characterized by high-Z and high density. The feasibility of such a scanner heavily depends on the detectors used to track the muons: for a typical container, the minimum required sensitive area is of the order of 100 2. The spatial resolution required depends on the geometrical configuration of the detectors. For practical purposes, a resolution of the order of 1 mm or better is desirable. A good time resolution can be exploited to provide momentum information: a resolution of the order of nanoseconds can be used to separate sub-GeV muons from muons with higher energies. Resistive plate chambers have a low cost per unit area and good spatial and time resolution; these features make them an excellent choice as detectors for muon tomography. In order to instrument a large area demonstrator we have produced 25 new readout boards and 30 glass RPCs. The RPCs measure 1800 mm× 600 mm and are read out using 1.68 mm pitch copper strips. The chambers were tested with a standardized procedure, i.e. without optimizing the working parameters to take into account differences in the manufacturing process, and the results show that the RPCs have an efficiency between 87% and 95%. The readout electronics show a signal to noise ratio greater than 20 for minimum ionizing particles. Spatial resolution better than 500 μm can easily be achieved using commercial read out ASICs. These results are better than the original minimum requirements to pass the tests and we are now ready to install the detectors.

  19. Behavioral assessment of emotional and motivational appraisal during visual processing of emotional scenes depending on spatial frequencies.

    PubMed

    Fradcourt, B; Peyrin, C; Baciu, M; Campagne, A

    2013-10-01

    Previous studies performed on visual processing of emotional stimuli have revealed preference for a specific type of visual spatial frequencies (high spatial frequency, HSF; low spatial frequency, LSF) according to task demands. The majority of studies used a face and focused on the appraisal of the emotional state of others. The present behavioral study investigates the relative role of spatial frequencies on processing emotional natural scenes during two explicit cognitive appraisal tasks, one emotional, based on the self-emotional experience and one motivational, based on the tendency to action. Our results suggest that HSF information was the most relevant to rapidly identify the self-emotional experience (unpleasant, pleasant, and neutral) while LSF was required to rapidly identify the tendency to action (avoidance, approach, and no action). The tendency to action based on LSF analysis showed a priority for unpleasant stimuli whereas the identification of emotional experience based on HSF analysis showed a priority for pleasant stimuli. The present study confirms the interest of considering both emotional and motivational characteristics of visual stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Automatic delineation of brain regions on MRI and PET images from the pig.

    PubMed

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus

    2018-01-15

    The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Parallel exploitation of a spatial-spectral classification approach for hyperspectral images on RVC-CAL

    NASA Astrophysics Data System (ADS)

    Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.

    2017-10-01

    Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.

  2. Estimating planktonic diversity through spatial dominance patterns in a model ocean.

    PubMed

    Soccodato, Alice; d'Ovidio, Francesco; Lévy, Marina; Jahn, Oliver; Follows, Michael J; De Monte, Silvia

    2016-10-01

    In the open ocean, the observation and quantification of biodiversity patterns is challenging. Marine ecosystems are indeed largely composed by microbial planktonic communities whose niches are affected by highly dynamical physico-chemical conditions, and whose observation requires advanced methods for morphological and molecular classification. Optical remote sensing offers an appealing complement to these in-situ techniques. Global-scale coverage at high spatiotemporal resolution is however achieved at the cost of restrained information on the local assemblage. Here, we use a coupled physical and ecological model ocean simulation to explore one possible metrics for comparing measures performed on such different scales. We show that a large part of the local diversity of the virtual plankton ecosystem - corresponding to what accessible by genomic methods - can be inferred from crude, but spatially extended, information - as conveyed by remote sensing. Shannon diversity of the local community is indeed highly correlated to a 'seascape' index, which quantifies the surrounding spatial heterogeneity of the most abundant functional group. The error implied in drastically reducing the resolution of the plankton community is shown to be smaller in frontal regions as well as in regions of intermediate turbulent energy. On the spatial scale of hundreds of kms, patterns of virtual plankton diversity are thus largely sustained by mixing communities that occupy adjacent niches. We provide a proof of principle that in the open ocean information on spatial variability of communities can compensate for limited local knowledge, suggesting the possibility of integrating in-situ and satellite observations to monitor biodiversity distribution at the global scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Overt and covert attention to location-based reward.

    PubMed

    McCoy, Brónagh; Theeuwes, Jan

    2018-01-01

    Recent research on the impact of location-based reward on attentional orienting has indicated that reward factors play an influential role in spatial priority maps. The current study investigated whether and how reward associations based on spatial location translate from overt eye movements to covert attention. If reward associations can be tied to locations in space, and if overt and covert attention rely on similar overlapping neuronal populations, then both overt and covert attentional measures should display similar spatial-based reward learning. Our results suggest that location- and reward-based changes in one attentional domain do not lead to similar changes in the other. Specifically, although we found similar improvements at differentially rewarded locations during overt attentional learning, this translated to the least improvement at a highly rewarded location during covert attention. We interpret this as the result of an increased motivational link between the high reward location and the trained eye movement response acquired during learning, leading to a relative slowing during covert attention when the eyes remained fixated and the saccade response was suppressed. In a second experiment participants were not required to keep fixated during the covert attention task and we no longer observed relative slowing at the high reward location. Furthermore, the second experiment revealed no covert spatial priority of rewarded locations. We conclude that the transfer of location-based reward associations is intimately linked with the reward-modulated motor response employed during learning, and alternative attentional and task contexts may interfere with learned spatial priorities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Accelerated defect visualization of microelectronic systems using binary search with fixed pitch-catch distance laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Park, Byeongjin; Sohn, Hoon

    2018-04-01

    The practicality of laser ultrasonic scanning is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated defect visualization technique is developed to visualize defect with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio of measured ultrasonic responses. The approximate defect boundary is identified by examining the interactions between ultrasonic waves and defect observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and defect can be better identified in the spatial ultrasonic domain. Then, the area inside the identified defect boundary is visualized as defect. The performance of the proposed defect visualization technique is validated through an experiment on a semiconductor chip. The proposed defect visualization technique accelerates the defect visualization process in three aspects: (1) The number of measurements that is necessary for defect visualization is dramatically reduced by a binary search algorithm; (2) The number of averaging that is necessary to achieve a high signal-to-noise ratio is reduced by maintaining the wave propagation distance short; and (3) With the proposed technique, defect can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.

  5. Special-Purpose High-Torque Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  6. Spatial analysis of ecosystem service relationships to improve targeting of payments for hydrological services

    PubMed Central

    Manson, Robert H.; Ricketts, Taylor H.; Geissert, Daniel

    2018-01-01

    Payment for hydrological services (PHS) are popular tools for conserving ecosystems and their water-related services. However, improving the spatial targeting and impacts of PHS, as well as their ability to foster synergies with other ecosystem services (ES), remain challenging. We aimed at using spatial analyses to evaluate the targeting performance of México’s National PHS program in central Veracruz. We quantified the effectiveness of areas targeted for PHS in actually covering areas of high HS provision and social priority during 2003–2013. First, we quantified provisioning and spatial distributions of two target (water yield and soil retention), and one non-target ES (carbon storage) using InVEST. Subsequently, pairwise relationships among ES were quantified by using spatial correlation and overlap analyses. Finally, we evaluated targeting by: (i) prioritizing areas of individual and overlapping ES; (ii) quantifying spatial co-occurrences of these priority areas with those targeted by PHS; (iii) evaluating the extent to which PHS directly contribute to HS delivery; and (iv), testing if PHS targeted areas disproportionately covered areas with high ecological and social priority. We found that modelled priority areas exhibited non-random distributions and distinct spatial patterns. Our results show significant pairwise correlations between all ES suggesting synergistic relationships. However, our analysis showed a significantly lower overlap than expected and thus significant mismatches between PHS targeted areas and all types of priority areas. These findings suggest that the targeting of areas with high HS provisioning and social priority by Mexico’s PHS program could be improved significantly. This study underscores: (1) the importance of using maps of HS provisioning as main targeting criteria in PHS design to channel payments towards areas that require future conservation, and (2) the need for future research that helps balance ecological and socioeconomic targeting criteria. PMID:29462205

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations weremore » given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.« less

  8. An Overview of the GIS Weasel

    USGS Publications Warehouse

    Viger, Roland J.

    2008-01-01

    This fact sheet provides a high-level description of the GIS Weasel, a software system designed to aid users in preparing spatial information as input to lumped and distributed parameter environmental simulation models (ESMs). The GIS Weasel provides geographic information system (GIS) tools to help create maps of geographic features relevant to the application of a user?s ESM and to generate parameters from those maps. The operation of the GIS Weasel does not require a user to be a GIS expert, only that a user has an understanding of the spatial information requirements of the model. The GIS Weasel software system provides a GIS-based graphical user interface (GUI), C programming language executables, and general utility scripts. The software will run on any computing platform where ArcInfo Workstation (version 8.1 or later) and the GRID extension are accessible. The user controls the GIS Weasel by interacting with menus, maps, and tables.

  9. Application and evaluation of ISVR method in QuickBird image fusion

    NASA Astrophysics Data System (ADS)

    Cheng, Bo; Song, Xiaolu

    2014-05-01

    QuickBird satellite images are widely used in many fields, and applications have put forward high requirements for the integration of the spatial information and spectral information of the imagery. A fusion method for high resolution remote sensing images based on ISVR is identified in this study. The core principle of ISVS is taking the advantage of radicalization targeting to remove the effect of different gain and error of satellites' sensors. Transformed from DN to radiance, the multi-spectral image's energy is used to simulate the panchromatic band. The linear regression analysis is carried through the simulation process to find a new synthetically panchromatic image, which is highly linearly correlated to the original panchromatic image. In order to evaluate, test and compare the algorithm results, this paper used ISVR and other two different fusion methods to give a comparative study of the spatial information and spectral information, taking the average gradient and the correlation coefficient as an indicator. Experiments showed that this method could significantly improve the quality of fused image, especially in preserving spectral information, to maximize the spectral information of original multispectral images, while maintaining abundant spatial information.

  10. Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas.

    PubMed

    Zhang, Zejun; Sheppard, James K; Swaisgood, Ronald R; Wang, Guan; Nie, Yonggang; Wei, Wei; Zhao, Naxun; Wei, Fuwen

    2014-01-01

    We report on the first study to track the spatial behaviors of wild giant pandas (Ailuropoda melanoleuca) using high-resolution global positioning system (GPS) telemetry. Between 2008 and 2009, 4 pandas (2 male and 2 female) were tracked in Foping Reserve, China for an average of 305 days (± 54.8 SE). Panda home ranges were larger than those of previous very high frequency tracking studies, with a bimodal distribution of space-use and distinct winter and summer centers of activity. Home range sizes were larger in winter than in summer, although there was considerable individual variability. All tracked pandas exhibited individualistic, unoriented and multiphasic movement paths, with a high level of tortuosity within seasonal core habitats and directed, linear, large-scale movements between habitats. Pandas moved from low elevation winter habitats to high elevation (>2000 m) summer habitats in May, when temperatures averaged 17.5 °C (± 0.3 SE), and these large-scale movements took <1 month to complete. The peak in panda mean elevation occurred in Jul, after which they began slow, large-scale movements back to winter habitats that were completed in Nov. An adult female panda made 2 longdistance movements during the mating season. Pandas remain close to rivers and streams during winter, possibly reflecting the elevated water requirements to digest their high-fiber food. Panda movement path tortuosity and first-passage-time as a function of spatial scale indicated a mean peak in habitat search effort and patch use of approximately 700 m. Despite a high degree of spatial overlap between panda home ranges, particularly in winter, we detected neither avoidance nor attraction behavior between conspecifics. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  11. Assessment of craniospinal arteriovenous malformations at 3T with highly temporally and highly spatially resolved contrast-enhanced MR angiography.

    PubMed

    Saleh, R S; Lohan, D G; Villablanca, J P; Duckwiler, G; Kee, S T; Finn, J P

    2008-05-01

    Patients with arteriovenous malformation (AVM) are known to have an elevated risk of complications with conventional catheter angiography (CCA) but nonetheless require monitoring of hemodynamics. Thus, we aimed to evaluate both anatomy and hemodynamics in patients with AVM noninvasively by using contrast-enhanced MR angiography (CE-MRA) at 3T and to compare the results with CCA. Institutional review board approval and informed consent were obtained for this Health Insurance Portability and Accountability Act-compliant study. Twenty control subjects without vascular malformation (6 men, 18-70 years of age) and 10 patients with AVMs (6 men, 20-74 years of age) underwent supra-aortic time-resolved and high-spatial-resolution CE-MRA at 3T. Large-field-of-view coronal acquisitions extending from the root of the aorta to the cranial vertex were obtained for both MRA techniques. Image quality was assessed by 2 specialized radiologists by using a 4-point scale. AVM characteristics and nidus size were evaluated by using both CE-MRA and CCA in all patients. In patients, 96.6% (319/330) of arterial segments on high-spatial-resolution MRA and 87.7% (272/310) of arterial segments on time-resolved MRA were graded excellent/good. MRA showed 100% specificity for detecting feeding arteries and venous drainage (n = 8) and complete obliteration of the AVM in 2 cases (concordance with CCA). Nidus diameters measured by both MRA and CCA resulted in a very strong correlation (r = 0.99) with a mild overestimation by MRA (0.10 cm by using the Bland-Altman plot). By combining highly temporally resolved and highly spatially resolved MRA at 3T as complementary studies, one can assess vascular anatomy and hemodynamics noninvasively in patients with AVM.

  12. A Probabilistic Analysis of Surface Water Flood Risk in London.

    PubMed

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2018-06-01

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  13. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    PubMed

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  14. The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme

    USGS Publications Warehouse

    Townshend, J.R.G.; Justice, C.O.; Skole, D.; Malingreau, J.-P.; Cihlar, J.; Teillet, P.; Sadowski, F.; Ruttenberg, S.

    1994-01-01

    Examination of the scientific priorities for the International Geosphere Biosphere Programme (IGBP) reveals a requirement for global land data sets in several of its Core Projects. These data sets need to be at several space and time scales. Requirements are demonstrated for the regular acquisition of data at spatial resolutions of 1 km and finer and at high temporal frequencies. Global daily data at a resolution of approximately 1 km are sensed by the Advanced Very High Resolution Radiometer (AVHRR), but they have not been available in a single archive. It is proposed, that a global data set of the land surface is created from remotely sensed data from the AVHRR to support a number of IGBP's projects. This data set should have a spatial resolution of 1 km and should be generated at least once every 10 days for the entire globe. The minimum length of record should be a year, and ideally a system should be put in place which leads to the continuous acquisition of 1 km data to provide a base line data set prior to the Earth Observing System (EOS) towards the end of the decade. Because of the high cloud cover in many parts of the world, it is necessary to plan for the collection of data from every orbit. Substantial effort will be required in the preprocessing of the data set involving radiometric calibration, atmospheric correction, geometric correction and temporal compositing, to make it suitable for the extraction of information.

  15. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    PubMed

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  16. Comparative Geostatistical Analysis of Flowmeter and Direct-Push Hydraulic Conductivity Profiles at the MADE Site

    NASA Astrophysics Data System (ADS)

    Bohling, G.; Liu, G.; Knobbe, S. J.; Reboulet, E. C.; Hyndman, D. W.; Dietrich, P.; Butler, J. J.

    2010-12-01

    Spatial variations in hydraulic conductivity (K) are a critical control on subsurface solute transport. Characterization of such variations at the resolution (cm to dm) required for transport investigations, however, has proven to be a formidable challenge. A new generation of direct-push (DP) tools has now been developed for the characterization of vertical K variations at this resolution. These tools, which can be run in high- (0.015-m) and low- (0.4 m) resolution modes, were recently applied to the extensively studied and highly heterogeneous MADE site. Results from a geostatistical analysis of 64 DP K profiles compare favorably with the flowmeter K data that have served as the primary basis for previous MADE studies. The global statistics of the low-resolution DP and flowmeter K data are in excellent agreement. The correlation structures for the high-resolution DP data show excellent agreement with those computed from the flowmeter data. However, the geometric mean DP K value for high-resolution profiling is roughly one order of magnitude lower than the geometric mean flowmeter K value, possibly as a result of the biases inherent in each approach compounded with differences in the areal distribution of flowmeter and DP profile locations. A DP profile through the MADE aquifer to a depth of 12 m can be completed as rapidly as 1.5-2 hours, a small fraction of the time required to obtain a single flowmeter profile when well drilling, installation, and development are considered. The results of this study demonstrate that DP profiling is a practically feasible approach for characterization of spatial variations in K at the resolution required for transport investigations in highly heterogeneous systems.

  17. Bow Your Head in Shame, or, Hold Your Head Up with Pride: Semantic Processing of Self-Esteem Concepts Orients Attention Vertically.

    PubMed

    Taylor, J Eric T; Lam, Timothy K; Chasteen, Alison L; Pratt, Jay

    2015-01-01

    Embodied cognition holds that abstract concepts are grounded in perceptual-motor simulations. If a given embodied metaphor maps onto a spatial representation, then thinking of that concept should bias the allocation of attention. In this study, we used positive and negative self-esteem words to examine two properties of conceptual cueing. First, we tested the orientation-specificity hypothesis, which predicts that conceptual cues should selectively activate certain spatial axes (in this case, valenced self-esteem concepts should activate vertical space), instead of any spatial continuum. Second, we tested whether conceptual cueing requires semantic processing, or if it can be achieved with shallow visual processing of the cue words. Participants viewed centrally presented words consisting of high or low self-esteem traits (e.g., brave, timid) before detecting a target above or below the cue in the vertical condition, or on the left or right of the word in the horizontal condition. Participants were faster to detect targets when their location was compatible with the valence of the word cues, but only in the vertical condition. Moreover, this effect was observed when participants processed the semantics of the word, but not when processing its orthography. The results show that conceptual cueing by spatial metaphors is orientation-specific, and that an explicit consideration of the word cues' semantics is required for conceptual cueing to occur.

  18. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    NASA Astrophysics Data System (ADS)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  19. Four dimensional lidar imaging of the atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Eloranta, E.

    2010-12-01

    High resolution four-dimensional depictions of atmospheric structure are needed for many atmospheric investigations. Scanning lidar offers the potential to provide high spatial and temporal resolution four-dimensional imaging of atmospheric structure. This paper will use data acquired with the University of Wisconsin Volume Imaging Lidar (VIL) to illustrate the potential of such measurements, describe the necessary lidar performance requirements , and provide measurement examples. The University of Wisconsin Volume imaging lidar acquired it's first data in the 1987 FIFE experiment and was operated in several deployments until it was mothballed after the 1997-98 Lake-ICE experiment. Although this data is old and the system is now obsolete, the data illustrates the power of the measurement approach and the system characteristics needed to acquire such data. The key challenge in acquiring useful 4-D scan is to provide high spatial resolution along with a scan repeat time short enough to maintain temporal coherence between successive images. This requires a high power transmitter, high pulse repetition rates, large optics, high quantum efficiency, good optical throughput and fast data acquisition. The VIL operated at a wavelength of 1064 nm, emitting an average power of 40 W at a repetition rate of 100 Hz. The receiver utilized 0.5 m diameter telescope with an avalanche photodiode detector that provides a quantum efficiency of ~35%. Operating at the fundamental Nd:YAG wavelength of 1064 rather than the more usual doubled 532 nm wavelength, avoided the loss of power and photon numbers involved in frequency doubling. It also allowed use of the high quantum efficiency of the avalanche photodiode in place of the the lower efficiency photomultiplier. Signal-to-noise calculations show that the combination of higher photon numbers and greater quantum efficiency more than maked up for the large dark current noise of the APD-amplifier combination. The high power and sensitivity of the VIL yielded unique measurements, however the high power and 1064 nm wavelength combine to create an eye safety hazard that severely restricted conditions under which it could be deployed. It is now becoming possible to operate at eye safe wavelengths to mitigate this problem, although the sensitivity of these systems do not yet match that of the VIL. Several examples of VIL data will be presented, including: 1) placing insitu aircraft measurements into context of their position within the temporal and spatial structure of clear convection, 2) mapping the spatial structure of cirrus clouds within multiple pixels of a satellite retrievals, 3) showing high resolution images of a land breeze front, 4) mapping pollutant plumes, 4) mapping two-dimensional wind fields, 5) comparison of LES predicted spatial and temporal statistics of aerosol structure with VIL measurements. Boundary layer convective fields were imaged to a range ~15 km with a 3-d repeat time of a few minutes. Cirrus cloud observations extend to maximum ranges of greater than 60 km.

  20. Decoding and Reconstructing the Focus of Spatial Attention from the Topography of Alpha-band Oscillations.

    PubMed

    Samaha, Jason; Sprague, Thomas C; Postle, Bradley R

    2016-08-01

    Many aspects of perception and cognition are supported by activity in neural populations that are tuned to different stimulus features (e.g., orientation, spatial location, color). Goal-directed behavior, such as sustained attention, requires a mechanism for the selective prioritization of contextually appropriate representations. A candidate mechanism of sustained spatial attention is neural activity in the alpha band (8-13 Hz), whose power in the human EEG covaries with the focus of covert attention. Here, we applied an inverted encoding model to assess whether spatially selective neural responses could be recovered from the topography of alpha-band oscillations during spatial attention. Participants were cued to covertly attend to one of six spatial locations arranged concentrically around fixation while EEG was recorded. A linear classifier applied to EEG data during sustained attention demonstrated successful classification of the attended location from the topography of alpha power, although not from other frequency bands. We next sought to reconstruct the focus of spatial attention over time by applying inverted encoding models to the topography of alpha power and phase. Alpha power, but not phase, allowed for robust reconstructions of the specific attended location beginning around 450 msec postcue, an onset earlier than previous reports. These results demonstrate that posterior alpha-band oscillations can be used to track activity in feature-selective neural populations with high temporal precision during the deployment of covert spatial attention.

  1. Neuropsychology of selective attention and magnetic cortical stimulation.

    PubMed

    Sabatino, M; Di Nuovo, S; Sardo, P; Abbate, C S; La Grutta, V

    1996-01-01

    Informed volunteers were asked to perform different neuropsychological tests involving selective attention under control conditions and during transcranial magnetic cortical stimulation. The tests chosen involved the recognition of a specific letter among different letters (verbal test) and the search for three different spatial orientations of an appendage to a square (visuo-spatial test). For each test the total time taken and the error rate were calculated. Results showed that cortical stimulation did not cause a worsening in performance. Moreover, magnetic stimulation of the temporal lobe neither modified completion time in both verbal and visuo-spatial tests nor changed error rate. In contrast, magnetic stimulation of the pre-frontal area induced a significant reduction in the performance time of both the verbal and visuo-spatial tests always without an increase in the number of errors. The experimental findings underline the importance of the pre-frontal area in performing tasks requiring a high level of controlled attention and suggest the need to adopt an interdisciplinary approach towards the study of neurone/mind interface mechanisms.

  2. Extracellular oxygen concentration mapping with a confocal multiphoton laser scanning microscope and TCSPC card

    NASA Astrophysics Data System (ADS)

    Hosny, Neveen A.; Lee, David A.; Knight, Martin M.

    2010-02-01

    Extracellular oxygen concentrations influence cell metabolism and tissue function. Fluorescence Lifetime Imaging Microscopy (FLIM) offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods show limited spatial resolution and/or require custom made systems. This study describes a new optimised approach for quantitative extracellular oxygen detection, providing an off-the-shelf system with high spatial resolution and an improved lifetime determination over previous techniques, while avoiding systematic photon pile-up. Fluorescence lifetime detection of an oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was measured using a Becker&Hickl time-correlated single photon counting (TCSPC) card with excitation provided by a multi-photon laser. This technique was able to identify a subpopulation of isolated chondrocyte cells, seeded in three-dimensional agarose gel, displaying a significant spatial oxygen gradient. Thus this technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  3. Spatial adaptive sampling in multiscale simulation

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, Bertrand; Barros, Kipton; Cieren, Emmanuel; Elango, Venmugil; Junghans, Christoph; Lookman, Turab; Mohd-Yusof, Jamaludin; Pavel, Robert S.; Rivera, Axel Y.; Roehm, Dominic; McPherson, Allen L.; Germann, Timothy C.

    2014-07-01

    In a common approach to multiscale simulation, an incomplete set of macroscale equations must be supplemented with constitutive data provided by fine-scale simulation. Collecting statistics from these fine-scale simulations is typically the overwhelming computational cost. We reduce this cost by interpolating the results of fine-scale simulation over the spatial domain of the macro-solver. Unlike previous adaptive sampling strategies, we do not interpolate on the potentially very high dimensional space of inputs to the fine-scale simulation. Our approach is local in space and time, avoids the need for a central database, and is designed to parallelize well on large computer clusters. To demonstrate our method, we simulate one-dimensional elastodynamic shock propagation using the Heterogeneous Multiscale Method (HMM); we find that spatial adaptive sampling requires only ≈ 50 ×N0.14 fine-scale simulations to reconstruct the stress field at all N grid points. Related multiscale approaches, such as Equation Free methods, may also benefit from spatial adaptive sampling.

  4. Short-Term Memory Maintenance of Object Locations during Active Navigation: Which Working Memory Subsystem Is Essential?

    PubMed Central

    Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.

    2011-01-01

    The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686

  5. Head-mounted spatial instruments II: Synthetic reality or impossible dream

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Grunwald, Arthur

    1989-01-01

    A spatial instrument is defined as a spatial display which has been either geometrically or symbolically enhanced to enable a user to accomplish a particular task. Research conducted over the past several years on 3-D spatial instruments has shown that perspective displays, even when viewed from the correct viewpoint, are subject to systematic viewer biases. These biases interfere with correct spatial judgements of the presented pictorial information. The design of spatial instruments may not only require the introduction of compensatory distortions to remove the naturally occurring biases but also may significantly benefit from the introduction of artificial distortions which enhance performance. However, these image manipulations can cause a loss of visual-vestibular coordination and induce motion sickness. Consequently, the design of head-mounted spatial instruments will require an understanding of the tolerable limits of visual-vestibular discord.

  6. Interpreting the ASTM 'content standard for digital geospatial metadata'

    USGS Publications Warehouse

    Nebert, Douglas D.

    1996-01-01

    ASTM and the Federal Geographic Data Committee have developed a content standard for spatial metadata to facilitate documentation, discovery, and retrieval of digital spatial data using vendor-independent terminology. Spatial metadata elements are identifiable quality and content characteristics of a data set that can be tied to a geographic location or area. Several Office of Management and Budget Circulars and initiatives have been issued that specify improved cataloguing of and accessibility to federal data holdings. An Executive Order further requires the use of the metadata content standard to document digital spatial data sets. Collection and reporting of spatial metadata for field investigations performed for the federal government is an anticipated requirement. This paper provides an overview of the draft spatial metadata content standard and a description of how the standard could be applied to investigations collecting spatially-referenced field data.

  7. Experimental Test of Compatibility-Loophole-Free Contextuality with Spatially Separated Entangled Qutrits.

    PubMed

    Hu, Xiao-Min; Chen, Jiang-Shan; Liu, Bi-Heng; Guo, Yu; Huang, Yun-Feng; Zhou, Zong-Quan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-10-21

    The physical impact and the testability of the Kochen-Specker (KS) theorem is debated because of the fact that perfect compatibility in a single quantum system cannot be achieved in practical experiments with finite precision. Here, we follow the proposal of A. Cabello and M. T. Cunha [Phys. Rev. Lett. 106, 190401 (2011)], and present a compatibility-loophole-free experimental violation of an inequality of noncontextual theories by two spatially separated entangled qutrits. A maximally entangled qutrit-qutrit state with a fidelity as high as 0.975±0.001 is prepared and distributed to separated spaces, and these two photons are then measured locally, providing the compatibility requirement. The results show that the inequality for noncontextual theory is violated by 31 standard deviations. Our experiments pave the way to close the debate about the testability of the KS theorem. In addition, the method to generate high-fidelity and high-dimension entangled states will provide significant advantages in high-dimension quantum encoding and quantum communication.

  8. Generic functional requirements for a NASA general-purpose data base management system

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.

    1981-01-01

    Generic functional requirements for a general-purpose, multi-mission data base management system (DBMS) for application to remotely sensed scientific data bases are detailed. The motivation for utilizing DBMS technology in this environment is explained. The major requirements include: (1) a DBMS for scientific observational data; (2) a multi-mission capability; (3) user-friendly; (4) extensive and integrated information about data; (5) robust languages for defining data structures and formats; (6) scientific data types and structures; (7) flexible physical access mechanisms; (8) ways of representing spatial relationships; (9) a high level nonprocedural interactive query and data manipulation language; (10) data base maintenance utilities; (11) high rate input/output and large data volume storage; and adaptability to a distributed data base and/or data base machine configuration. Detailed functions are specified in a top-down hierarchic fashion. Implementation, performance, and support requirements are also given.

  9. Spatial aliasing for efficient direction-of-arrival estimation based on steering vector reconstruction

    NASA Astrophysics Data System (ADS)

    Yan, Feng-Gang; Cao, Bin; Rong, Jia-Jia; Shen, Yi; Jin, Ming

    2016-12-01

    A new technique is proposed to reduce the computational complexity of the multiple signal classification (MUSIC) algorithm for direction-of-arrival (DOA) estimate using a uniform linear array (ULA). The steering vector of the ULA is reconstructed as the Kronecker product of two other steering vectors, and a new cost function with spatial aliasing at hand is derived. Thanks to the estimation ambiguity of this spatial aliasing, mirror angles mathematically relating to the true DOAs are generated, based on which the full spectral search involved in the MUSIC algorithm is highly compressed into a limited angular sector accordingly. Further complexity analysis and performance studies are conducted by computer simulations, which demonstrate that the proposed estimator requires an extremely reduced computational burden while it shows a similar accuracy to the standard MUSIC.

  10. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N.; Izumi, N.; Landen, O. L.

    2016-08-03

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments, and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro channel plate) to provide gating and high DQE at the 40–200keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Here, experiments were performed atmore » energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.« less

  11. Single-photon-level quantum image memory based on cold atomic ensembles

    PubMed Central

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711

  12. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  13. Mapping cumulative noise from shipping to inform marine spatial planning.

    PubMed

    Erbe, Christine; MacGillivray, Alexander; Williams, Rob

    2012-11-01

    Including ocean noise in marine spatial planning requires predictions of noise levels on large spatiotemporal scales. Based on a simple sound transmission model and ship track data (Automatic Identification System, AIS), cumulative underwater acoustic energy from shipping was mapped throughout 2008 in the west Canadian Exclusive Economic Zone, showing high noise levels in critical habitats for endangered resident killer whales, exceeding limits of "good conservation status" under the EU Marine Strategy Framework Directive. Error analysis proved that rough calculations of noise occurrence and propagation can form a basis for management processes, because spending resources on unnecessary detail is wasteful and delays remedial action.

  14. Quantifying the effect of 3D spatial resolution on the accuracy of microstructural distributions

    NASA Astrophysics Data System (ADS)

    Loughnane, Gregory; Groeber, Michael; Uchic, Michael; Riley, Matthew; Shah, Megna; Srinivasan, Raghavan; Grandhi, Ramana

    The choice of spatial resolution for experimentally-collected 3D microstructural data is often governed by general rules of thumb. For example, serial section experiments often strive to collect at least ten sections through the average feature-of-interest. However, the desire to collect high resolution data in 3D is greatly tempered by the exponential growth in collection times and data storage requirements. This paper explores the use of systematic down-sampling of synthetically-generated grain microstructures to examine the effect of resolution on the calculated distributions of microstructural descriptors such as grain size, number of nearest neighbors, aspect ratio, and Ω3.

  15. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    NASA Astrophysics Data System (ADS)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  16. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users

    PubMed Central

    Calera, Alfonso; Campos, Isidro; Osann, Anna; D’Urso, Guido; Menenti, Massimo

    2017-01-01

    The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools. PMID:28492515

  17. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users.

    PubMed

    Calera, Alfonso; Campos, Isidro; Osann, Anna; D'Urso, Guido; Menenti, Massimo

    2017-05-11

    The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools.

  18. Effects of a high protein diet on cognition and brain metabolism in cirrhotic rats.

    PubMed

    Méndez-López, M; Méndez, M; Arias, J; Arias, J L

    2015-10-01

    Hepatic encephalopathy (HE) is a neurological complication observed in patients with liver disease. Patients who suffer from HE present neuropsychiatric, neuromuscular and behavioral symptoms. Animal models proposed to study HE resulting from cirrhosis mimic the clinical characteristics of cirrhosis and portal hypertension, and require the administration of hepatotoxins such as thioacetamide (TAA). The aim of this study was to assess the effects of a high protein diet on motor function, anxiety and memory processes in a model of cirrhosis induced by TAA administration. In addition, we used cytochrome c-oxidase (COx) histochemistry to assess the metabolic activity of the limbic system regions. Male rats were distributed into groups: control, animals with cirrhosis, Control rats receiving a high protein diet, and animals with cirrhosis receiving a high protein diet. Results showed preserved motor function and normal anxiety levels in all the groups. The animals with cirrhosis showed an impairment in active avoidance behavior and spatial memory, regardless of the diet they received. However, the animals with cirrhosis and a high protein diet showed longer escape latencies on the spatial memory task. The model of cirrhosis presented an under-activation of the dentate gyrus and CA3 hippocampal subfields and the medial part of the medial mammillary nucleus. The results suggest that a high protein intake worsens spatial memory deficits shown by the TAA-induced model of cirrhosis. However, high protein ingestion has no influence on the COx hypoactivity associated with the model. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    NASA Astrophysics Data System (ADS)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.

  20. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    PubMed

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.

  1. Fracture behavior of W based materials. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, J.E.

    This report describes the results of a program to investigate the fracture properties of tungsten based materials. In particular, the role of crack velocity on crack instability was determined in a W-Fe-Ni-Co ``heavy alloy`` and pure polycrystalline tungsten. A considerable effort was expended on the development of an appropriate crack velocity gage for use on these materials. Having succeeded in that, the gage technology was employed to determine the crack velocity response to the applied level of stress intensity factor at the onset of crack instability in pre-cracked specimens. The results were also correlated to the failure mode observed inmore » two material systems of interest. Major results include: (1) unstable crack velocity measurements on metallic specimens which require high spatial resolution require the use of brittle, insulating substrates, as opposed to the ductile, polymer based substrates employed in low spatial resolution measurements; and (2) brittle failure modes, such as cleavage, are characterized by relatively slow unstable crack velocities while evidence of high degrees of deformation are associated with failures which proceed at high unstable crack velocities. This latter behavior is consistent with the predictions of the modeling of Hack et al and may have a significant impact on the interpretation of fractographs in general.« less

  2. Short-term Temperature Prediction Using Adaptive Computing on Dynamic Scales

    NASA Astrophysics Data System (ADS)

    Hu, W.; Cervone, G.; Jha, S.; Balasubramanian, V.; Turilli, M.

    2017-12-01

    When predicting temperature, there are specific places and times when high accuracy predictions are harder. For example, not all the sub-regions in the domain require the same amount of computing resources to generate an accurate prediction. Plateau areas might require less computing resources than mountainous areas because of the steeper gradient of temperature change in the latter. However, it is difficult to estimate beforehand the optimal allocation of computational resources because several parameters play a role in determining the accuracy of the forecasts, in addition to orography. The allocation of resources to perform simulations can become a bottleneck because it requires human intervention to stop jobs or start new ones. The goal of this project is to design and develop a dynamic approach to generate short-term temperature predictions that can automatically determines the required computing resources and the geographic scales of the predictions based on the spatial and temporal uncertainties. The predictions and the prediction quality metrics are computed using a numeric weather prediction model, Analog Ensemble (AnEn), and the parallelization on high performance computing systems is accomplished using Ensemble Toolkit, one component of the RADICAL-Cybertools family of tools. RADICAL-Cybertools decouple the science needs from the computational capabilities by building an intermediate layer to run general ensemble patterns, regardless of the science. In this research, we show how the ensemble toolkit allows generating high resolution temperature forecasts at different spatial and temporal resolution. The AnEn algorithm is run using NAM analysis and forecasts data for the continental United States for a period of 2 years. AnEn results show that temperature forecasts perform well according to different probabilistic and deterministic statistical tests.

  3. Gain measurements and spatial coherence in neon-like x-ray lasers

    NASA Astrophysics Data System (ADS)

    Krishnan, J.; Cairns, C.; Dwivedi, L.; Holden, M.; Key, M. H.; Lewis, C. L. S.; MacPhee, A.; Neely, D.; Norreys, P. A.; Pert, G. J.; Ramsden, S. A.; Smith, C. G.; Tallents, G. J.; Zhang, J.

    1995-05-01

    Many of the applications with x-ray lasers require high quality output radiation with properties such as short wavelength and a high degree of coherence (longitudinal and spatial). Ne-like Yttrium (Z=39) is potentially a bright and monochromatic XUV lasing medium. The output at 15.5 nm is monochromatic due to the overlap of the J=2-1 and J=0-1 lines. A gain coefficient of 3±1 was obtained at 15.5 nm by irradiating 100 μm wide yttrium stripes at 6×1013 W/cm2 with 1.06 μm, 650 ps pulses from the Rutherford Appleton Laboratory VULCAN laser. We have investigated improving x-ray laser spatial coherence utilizing a series of amplifiers instead of the standard double target configuration. An ``injector-amplifier'' scheme was successfully demonstrated with the Ne-like Ge x-ray laser. A spatially small and coherent part of the 23 nm beam from the standard double target geometry has been relayed using a W/Si multilayer mirror onto a single or double target configuration situated at a distance of ˜1.5 m from the mirror and pumped by two 150 mm diameter beams of VULCAN laser. A beam ``foot-print monitor'' was employed with a flat mirror to relay 23 nm output onto a film pack to record the spatial variation of the x-ray laser beam. Analyzing the fringes obtained through a cross-wire placed in front of the beam shows that an increase in spatial coherence was achieved by adding amplifiers to the x-ray laser beam line.

  4. Magnetized Plasma Compression for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Degnan, James; Grabowski, Christopher; Domonkos, Matthew; Amdahl, David

    2013-10-01

    Magnetized Plasma Compression (MPC) uses magnetic inhibition of thermal conduction and enhancement of charge particle product capture to greatly reduce the temporal and spatial compression required relative to un-magnetized inertial fusion (IFE)--to microseconds, centimeters vs nanoseconds, sub-millimeter. MPC greatly reduces the required confinement time relative to MFE--to microseconds vs minutes. Proof of principle can be demonstrated or refuted using high current pulsed power driven compression of magnetized plasmas using magnetic pressure driven implosions of metal shells, known as imploding liners. This can be done at a cost of a few tens of millions of dollars. If demonstrated, it becomes worthwhile to develop repetitive implosion drivers. One approach is to use arrays of heavy ion beams for energy production, though with much less temporal and spatial compression than that envisioned for un-magnetized IFE, with larger compression targets, and with much less ambitious compression ratios. A less expensive, repetitive pulsed power driver, if feasible, would require engineering development for transient, rapidly replaceable transmission lines such as envisioned by Sandia National Laboratories. Supported by DOE-OFES.

  5. Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification.

    PubMed

    Wang, Yubo; Veluvolu, Kalyana C

    2017-01-01

    The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of these techniques in two channel settings, its application in multiple-channel EEG is not straightforward and challenging. As more channels are available, a spatial filter will be required to eliminate the noise and preserve the required useful information. Moreover, multiple-channel EEG also adds the high dimensionality to the frequency feature space. Feature selection will be required to stabilize the performance of the classifier. In this paper, we develop a new method based on Evolutionary Algorithm (EA) to solve these two problems simultaneously. The real-valued EA encodes both the spatial filter estimates and the feature selection into its solution and optimizes it with respect to the classification error. Three Fourier based designs are tested in this paper. Our results show that the combination of Fourier based method with covariance matrix adaptation evolution strategy (CMA-ES) has the best overall performance.

  6. Identification of mosquito larval habitats in high resolution satellite data

    NASA Astrophysics Data System (ADS)

    Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.

    2003-09-01

    Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.

  7. Fast automated segmentation of multiple objects via spatially weighted shape learning

    NASA Astrophysics Data System (ADS)

    Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-01

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  8. Fast automated segmentation of multiple objects via spatially weighted shape learning.

    PubMed

    Chandra, Shekhar S; Dowling, Jason A; Greer, Peter B; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-21

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice's similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  9. The Use of Convolutional Neural Network in Relating Precipitation to Circulation

    NASA Astrophysics Data System (ADS)

    Pan, B.; Hsu, K. L.; AghaKouchak, A.; Sorooshian, S.

    2017-12-01

    Precipitation prediction in dynamical weather and climate models depends on 1) the predictability of pressure or geopotential height for the forecasting period and 2) the successive work of interpreting the pressure field in terms of precipitation events. The later task is represented as parameterization schemes in numerical models, where detailed computing inevitably blurs the hidden cause-and-effect relationship in precipitation generation. The "big data" provided by numerical simulation, reanalysis and observation networks requires better causation analysis for people to digest and realize their use. While classic synoptical analysis methods are very-often insufficient for spatially distributed high dimensional data, a Convolutional Neural Network(CNN) is developed here to directly relate precipitation with circulation. Case study carried over west coast United States during boreal winter showed that CNN can locate and capture key pressure zones of different structures to project precipitation spatial distribution with high accuracy across hourly to monthly scales. This direct connection between atmospheric circulation and precipitation offers a probe for attributing precipitation to the coverage, location, intensity and spatial structure of characteristic pressure zones, which can be used for model diagnosis and improvement.

  10. The methane distribution on Titan: high resolution spectroscopy in the near-IR with Keck NIRSPEC/AO

    NASA Astrophysics Data System (ADS)

    Adamkovics, Mate; Mitchell, Jonathan L.

    2014-11-01

    The distribution of methane on Titan is a diagnostic of regional scale meteorology and large scale atmospheric circulation. The observed formation of clouds and the transport of heat through the atmosphere both depend on spatial and temporal variations in methane humidity. We have performed observations to measure the the distribution on methane Titan using high spectral resolution near-IR (H-band) observations made with NIRSPEC, with adaptive optics, at Keck Observatory in July 2014. This work builds on previous attempts at this measurement with improvement in the observing protocol and data reduction, together with increased integration times. Radiative transfer models using line-by-line calculation of methane opacities from the HITRAN2012 database are used to retrieve methane abundances. We will describe analysis of the reduced observations, which show latitudinal spatial variation in the region the spectrum that is thought to be sensitive to methane abundance. Quantifying the methane abundance variation requires models that include the spatial variation in surface albedo and meridional haze gradient; we will describe (currently preliminary) analysis of the the methane distribution and uncertainties in the retrieval.

  11. Investigation of spatial resolution dependent variability in transcutaneous oxygen saturation using point spectroscopy system

    NASA Astrophysics Data System (ADS)

    Philimon, Sheena P.; Huong, Audrey K. C.; Ngu, Xavier T. I.

    2017-08-01

    This paper aims to investigate the variation in one’s percent mean transcutaneous oxygen saturation (StO2) with differences in spatial resolution of data. This work required the knowledge of extinction coefficient of hemoglobin derivatives in the wavelength range of 520 - 600 nm to solve for the StO2 value via an iterative fitting procedure. A pilot study was conducted on three healthy subjects with spectroscopic data collected from their right index finger at different arbitrarily selected distances. The StO2 value estimated by Extended Modified Lambert Beer (EMLB) model revealed a higher mean StO2 of 91.1 ± 1.3% at a proximity distance of 30 mm compared to 60.83 ± 2.8% at 200 mm. The results showed a high correlation between data spatial resolution and StO2 value, and revealed a decrease in StO2 value as the sampling distance increased. The preliminary findings from this study contribute to the knowledge of the appropriate distance range for consistent and high repeatability measurement of skin oxygenation.

  12. Hillslope terracing effects on the spatial variability of plant development as assessed by NDVI in vineyards of the Priorat region (NE Spain).

    PubMed

    Martínez-Casasnovas, José A; Ramos, María Concepción; Espinal-Utgés, Sílvia

    2010-04-01

    The availability of heavy machinery and the vineyard restructuring and conversion plans of the European Union Common Agricultural Policy (Commission Regulation EC no. 1227/2000 of 31 May 2000) have encouraged the restructuring of many vineyards on hillslopes of Mediterranean Europe, through the creation of terraces to favor the mechanization of agricultural work. Terrace construction requires cutting and filling operations that create soil spatial variability, which affects soil properties and plant development. In the present paper, we study the effects of hillslope terracing on the spatial variability of the normalized difference vegetation index (NDVI) in fields of the Priorat region (NE Spain) during 2004, 2005, and 2006. This index was computed from high-resolution remote sensing data (Quickbird-2). Detailed digital terrain models before and after terrace construction were used to assess the earth movements. The results indicate that terracing by heavy machinery induced high variability on the NDVI values over the years, showing significant differences as effect of the cut and fill operations.

  13. Conflict resolved: On the role of spatial attention in reading and color naming tasks.

    PubMed

    Robidoux, Serje; Besner, Derek

    2015-12-01

    The debate about whether or not visual word recognition requires spatial attention has been marked by a conflict: the results from different tasks yield different conclusions. Experiments in which the primary task is reading based show no evidence that unattended words are processed, whereas when the primary task is color identification, supposedly unattended words do affect processing. However, the color stimuli used to date does not appear to demand as much spatial attention as explicit word reading tasks. We first identify a color stimulus that requires as much spatial attention to identify as does a word. We then demonstrate that when spatial attention is appropriately captured, distractor words in unattended locations do not affect color identification. We conclude that there is no word identification without spatial attention.

  14. A Framework for Spatial Interaction Analysis Based on Large-Scale Mobile Phone Data

    PubMed Central

    Li, Weifeng; Cheng, Xiaoyun; Guo, Gaohua

    2014-01-01

    The overall understanding of spatial interaction and the exact knowledge of its dynamic evolution are required in the urban planning and transportation planning. This study aimed to analyze the spatial interaction based on the large-scale mobile phone data. The newly arisen mass dataset required a new methodology which was compatible with its peculiar characteristics. A three-stage framework was proposed in this paper, including data preprocessing, critical activity identification, and spatial interaction measurement. The proposed framework introduced the frequent pattern mining and measured the spatial interaction by the obtained association. A case study of three communities in Shanghai was carried out as verification of proposed method and demonstration of its practical application. The spatial interaction patterns and the representative features proved the rationality of the proposed framework. PMID:25435865

  15. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    NASA Astrophysics Data System (ADS)

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including: the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half-maximum (FWHM) across the entire dynamic range, and a noise floor about 20 keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.

  16. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    PubMed Central

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2014-01-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications. PMID:25937684

  17. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications.

    PubMed

    Barber, W C; Wessel, J C; Nygard, E; Iwanczyk, J S

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.

  18. Spatial analysis of climate factors used to determine suitability of greenhouse production in Turkey

    NASA Astrophysics Data System (ADS)

    Cemek, Bilal; Güler, Mustafa; Arslan, Hakan

    2017-04-01

    This study aimed to identify the most suitable growing periods for greenhouse production in Turkey in order to make valuable contribution to economic viability. Data collected from the meteorological databases of 81 provinces was used to determine periodic climatological requirements of greenhouses in terms of cooling, heating, natural ventilation, and lighting. Spatial distributions of mean daily outside temperatures and greenhouse heating requirements were derived using ordinary co-kriging (OCK) supported by Geographical Information System (GIS). Mean monthly temperatures throughout the country were found to decrease below 12 °C in January, February, March, and December, indicating heating requirements, whereas temperatures in 94.46 % of the country rose above 22 °C in July, indicating cooling requirements. Artificial lighting is not a requirement in Turkey except for November, December, and January. The Mediterranean, Aegean, Marmara, and Black Sea Regions are more advantageous than the Central, East, and Southeast Anatolia Regions in terms of greenhouse production because the Mediterranean and Aegean Regions are more advantageous in terms of heating, and the Black Sea Region is more advantageous in terms of cooling. Results of our study indicated that greenhouse cultivation of winter vegetables is possible in certain areas in the north of the country. Moreover, greenhouses could alternatively be used for drying fruits and vegetables during the summer period which requires uneconomical cooling systems due to high temperatures in the Mediterranean and Southeastern Anatolian Regions.

  19. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Pongetti, Thomas J.; Sander, Stanley P.; Cheung, Ross; Stutz, Jochen; Park, Chang Hyoun; Li, Qinbin

    2011-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gases and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warming Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distributions of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  20. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  1. Novel chip coating approaches to improve white LED technology

    NASA Astrophysics Data System (ADS)

    Hartmann, Paul; Schweighart, Marko; Sommer, Christian; Wenzl, Franz-P.; Zinterl, Ernst; Hoschopf, Hans; Pachler, Peter; Tasch, Stefan

    2008-02-01

    Key market requirements for white LEDs, especially in the general lighting and automotive headlamp segments call for improved concepts and performance of white LEDs based on phosphor conversion. Major challenges are small emission areas, highest possible intensities, long-term color stability, and spatial homogeneity of color coordinates. On the other hand, the increasingly high radiation power of the blue LEDs poses problems for all involved materials. Various thick film coating technologies are widely used for applying the color conversion layer to the semiconductor chip. We present novel concepts based on Silicate phosphors with high performance in terms of spatial homogeneity of the emission and variability of the color temperature. Numerical calculation of the optical properties with the help of state-of-the-art simulation tools was used as a basis for the practical optimization of the layer geometries.

  2. Hyperentanglement purification using imperfect spatial entanglement.

    PubMed

    Wang, Tie-Jun; Mi, Si-Chen; Wang, Chuan

    2017-02-06

    As the interaction between the photons and the environment which will make the entangled photon pairs in less entangled states or even in mixed states, the security and the efficiency of quantum communication will decrease. We present an efficient hyperentanglement purification protocol that distills nonlocal high-fidelity hyper-entangled Bell states in both polarization and spatial-mode degrees of freedom from ensembles of two-photon system in mixed states using linear optics. Here, we consider the influence of the photon loss in the channel which generally is ignored in the conventional entanglement purification and hyperentanglement purification (HEP) schemes. Compared with previous HEP schemes, our HEP scheme decreases the requirement for nonlocal resources by employing high-dimensional mode-check measurement, and leads to a higher fidelity, especially in the range where the conventional HEP schemes become invalid but our scheme still can work.

  3. High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup

    PubMed Central

    Straub, Adam; Durst, Michael E.; Xu, Chris

    2011-01-01

    Simultaneous spatial and temporal focusing is used to acquire high speed (200Hz), chemically specific axial scans of mouse skin through a single-mode fiber. The temporal focus is remotely scanned by modulating the group delay dispersion (GDD) at the proximal end of the fiber. No moving parts or electronics are required at the distal end. A novel GDD modulation technique is implemented using a piezo bimorph mirror in a folded grating pair to achieve a large GDD tuning range at high speed. PMID:21326638

  4. Impulsive penetration : a viable mechanism for plasma entry across the magnetopause ?

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Echim, Marius; Darrouzet, Fabien; Gunell, Herbert

    Density inhomogeneities in the solar wind may cross the bow shock, and retain an excess earthward momentum in the magnetosheath upon approaching the magnetopause. Also, the bow shock dynamics as well as the behaviour of the magnetopause itself may introduce spatial inhomogeneities in the magnetosheath density and/or flow. Plasma entities with excess momentum may penetrate across the magnetopause, by the impulsive penetration mechanism. This plasma entry mechanism requires the existence of a polarization electric field in the moving blob, that is sustained by charge separation layers in the interfaces at the flanks of the blob. Both direct observation and simulation of plasma entry across the magnetopause following the impulsive penetration mechanism are hard. It is difficult to prove that observed plasma entry is really due to the impulsive penetration mechanism since the required charge separation layers or the resulting polarization electric field are hard to measure directly. Simply assessing the geometry is not easy, although multi-spacecraft missions like Cluster have resolved many of the ambiguities inherent in single-spacecraft measurements. Impulsive penetration is difficult to simulate as it operates on the fluid, the ion, and the electron scales simultaneously. It requires not only a high spatial resolution, but also a high precision to properly represent the charge imbalance in the flank interfaces. We have modelled impulsive penetration with a kinetic model, by simplifying the problem. The fully kinetic model is 3-dimensional in velocity space, but we consider spatial structure only along a single spatial dimension, namely the coordinate transverse to the blob’s direction of motion. We thereby assume that the blob is elongated both along the magnetic field and in the direction of motion. The model is semi-analytic and is able to represent the charge imbalance in the blob edges very well. In a second modelling step, we consider a slow, quasi-static change of this structure as the blob penetrates deeper into the magnetosphere, resulting in a description of the evolution of the penetrating plasma blob as a consequence of both adiabatic and non-adiabatic deceleration. Although the simulation considers this a simplified geometry, it sheds some light on some fundamental aspects of this plasma entry mechanism.

  5. Evaluation of Clove Oil, Icaridin, and Transfluthrin for Spatial Repellent Effects in Three Tests Systems Against the Aedes aegypti (Diptera: Culicidae).

    PubMed

    Nentwig, G; Frohberger, S; Sonneck, R

    2017-01-01

    One essential oil (clove oil), one skin repellent (icaridin), and one insecticide (transfluthrin) were tested for spatial repellent effects against non-blood-fed female Aedes aegypti (L.) mosquitoes. The compounds were tested in acetone dilution series using a Y-olfactometer, a double cage system, and a double room system. All compounds exhibited spatial repellent effects at certain concentrations. Clove oil required relative high dosages to cause high effects (Y-olfactometer 6 mg, double cage 60 mg, and double room 1,200 mg). The dosages to achieve comparable results with icaridin were lower (Y-olfactometer and double cage 1 mg, and double room 150 mg). For transfluthrin, the equivalent dosages were lower again (Y-olfactometer 0.003 mg, double cage 0.03 mg, and double room 0.1 mg). Furthermore, these results reveal a correlation between the size of the test system and the effective dosage. Averaged for the three compounds, the quantity for the double room was 21-fold higher than for the double cage, which required again a 9-fold higher dosage than the Y-olfactometer. An establishment of a screening cascade is discussed starting with the Y-olfactometer (high throughput rate), followed by the double cage system and ending with the double room system as the most nearest to practical conditions. Furthermore, the testing of existing repellent products to validate the double room test, the role of sublethal dosages concerning insecticides including possible upcoming of resistance after exposure, the delayed action and impact on blood feeding and oviposition are exemplified. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Development of a portable wireless system for bipolar concentric ECG recording

    NASA Astrophysics Data System (ADS)

    Prats-Boluda, G.; Ye-Lin, Y.; Bueno Barrachina, J. M.; Senent, E.; Rodriguez de Sanabria, R.; Garcia-Casado, J.

    2015-07-01

    Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization).

  7. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation.

    PubMed

    Rogers, Jake; Churilov, Leonid; Hannan, Anthony J; Renoir, Thibault

    2017-03-01

    Using a Matlab classification algorithm, we demonstrate that a highly salient distal cue array is required for significantly increased likelihoods of spatial search strategy selection during Morris water maze spatial learning. We hypothesized that increased spatial search strategy selection during spatial learning would be the key measure demonstrating the formation of an allocentric map to the escape location. Spatial memory, as indicated by quadrant preference for the area of the pool formally containing the hidden platform, was assessed as the main measure that this allocentric map had formed during spatial learning. Our C57BL/6J wild-type (WT) mice exhibit quadrant preference in the highly salient cue paradigm but not the low, corresponding with a 120% increase in the odds of a spatial search strategy selection during learning. In contrast, quadrant preference remains absent in serotonin 1A receptor (5-HT 1A R) knockout (KO) mice, who exhibit impaired search strategy selection during spatial learning. Additionally, we also aimed to assess the impact of the quality of the distal cue array on the spatial learning curves of both latency to platform and path length using mixed-effect regression models and found no significant associations or interactions. In contrast, we demonstrated that the spatial learning curve for search strategy selection was absent during training in the low saliency paradigm. Therefore, we propose that allocentric search strategy selection during spatial learning is the learning parameter in mice that robustly indicates the formation of a cognitive map for the escape goal location. These results also suggest that both latency to platform and path length spatial learning curves do not discriminate between allocentric and egocentric spatial learning and do not reliably predict spatial memory formation. We also show that spatial memory, as indicated by the absolute time in the quadrant formerly containing the hidden platform alone (without reference to the other areas of the pool), was not sensitive to cue saliency or impaired in 5-HT 1A R KO mice. Importantly, in the absence of a search strategy analysis, this suggests that to establish that the Morris water maze has worked (i.e. control mice have formed an allocentric map to the escape goal location), a measure of quadrant preference needs to be reported to establish spatial memory formation. This has implications for studies that claim hippocampal functioning is impaired using latency to platform or path length differences within the existing Morris water maze literature. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Satellite image time series simulation for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-11-01

    The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.

  9. The impact of fornix lesions in rats on spatial learning tasks sensitive to anterior thalamic and hippocampal damage

    PubMed Central

    Dumont, Julie R.; Amin, Eman; Wright, Nicholas F.; Dillingham, Christopher M.; Aggleton, John P.

    2015-01-01

    The present study sought to understand how the hippocampus and anterior thalamic nuclei are conjointly required for spatial learning by examining the impact of cutting a major tract (the fornix) that interconnects these two sites. The initial experiments examined the consequences of fornix lesions in rats on spatial biconditional discrimination learning. The rationale arose from previous findings showing that fornix lesions spare the learning of spatial biconditional tasks, despite the same task being highly sensitive to both hippocampal and anterior thalamic nuclei lesions. In the present study, fornix lesions only delayed acquisition of the spatial biconditional task, pointing to additional contributions from non-fornical routes linking the hippocampus with the anterior thalamic nuclei. The same fornix lesions spared the learning of an analogous nonspatial biconditional task that used local contextual cues. Subsequent tests, including T-maze place alternation, place learning in a cross-maze, and a go/no-go place discrimination, highlighted the impact of fornix lesions when distal spatial information is used flexibly to guide behaviour. The final experiment examined the ability to learn incidentally the spatial features of a square water-maze that had differently patterned walls. Fornix lesions disrupted performance but did not stop the rats from distinguishing the various corners of the maze. Overall, the results indicate that interconnections between the hippocampus and anterior thalamus, via the fornix, help to resolve problems with flexible spatial and temporal cues, but the results also signal the importance of additional, non-fornical contributions to hippocampal-anterior thalamic spatial processing, particularly for problems with more stable spatial solutions. PMID:25453745

  10. “Spatial Energetics”: Integrating Data From GPS, Accelerometry, and GIS to Address Obesity and Inactivity

    PubMed Central

    James, Peter; Jankowska, Marta; Marx, Christine; Hart, Jaime E.; Berrigan, David; Kerr, Jacqueline; Hurvitz, Philip M.; Hipp, J. Aaron; Laden, Francine

    2016-01-01

    To address the current obesity and inactivity epidemics, public health researchers have attempted to identify spatial factors that influence physical inactivity and obesity. Technologic and methodologic developments have led to a revolutionary ability to examine dynamic, high-resolution measures of temporally matched location and behavior data through GPS, accelerometry, and GIS. These advances allow the investigation of spatial energetics, high–spatiotemporal resolution data on location and time-matched energetics, to examine how environmental characteristics, space, and time are linked to activity-related health behaviors with far more robust and detailed data than in previous work. Although the transdisciplinary field of spatial energetics demonstrates promise to provide novel insights on how individuals and populations interact with their environment, there remain significant conceptual, technical, analytical, and ethical challenges stemming from the complex data streams that spatial energetics research generates. First, it is essential to better understand what spatial energetics data represent, the relevant spatial context of analysis for these data, and if spatial energetics can establish causality for development of spatially relevant interventions. Second, there are significant technical problems for analysis of voluminous and complex data that may require development of spatially aware scalable computational infrastructures. Third, the field must come to agreement on appropriate statistical methodologies to account for multiple observations per person. Finally, these challenges must be considered within the context of maintaining participant privacy and security. This article describes gaps in current practice and understanding, and suggests solutions to move this promising area of research forward. PMID:27528538

  11. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  12. Gradient and shim technologies for ultra high field MRI

    PubMed Central

    Winkler, Simone A.; Schmitt, Franz; Landes, Hermann; DeBever, Josh; Wade, Trevor; Alejski, Andrew

    2017-01-01

    Ultra High Field (UHF) MRI requires improved gradient and shim performance to fully realize the promised gains (SNR as well as spatial, spectral, diffusion resolution) that higher main magnetic fields offer. Both the more challenging UHF environment by itself, as well as the higher currents used in high performance coils, require a deeper understanding combined with sophisticated engineering modeling and construction, to optimize gradient and shim hardware for safe operation and for highest image quality. This review summarizes the basics of gradient and shim technologies, and outlines a number of UHF-related challenges and solutions. In particular, Lorentz forces, vibroacoustics, eddy currents, and peripheral nerve stimulation are discussed. Several promising UHF-relevant gradient concepts are described, including insertable gradient coils aimed at higher performance neuroimaging. PMID:27915120

  13. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  14. Does the Data Resolution/origin Matter? Satellite, Airborne and Uav Imagery to Tackle Plant Invasions

    NASA Astrophysics Data System (ADS)

    Müllerová, Jana; Brůna, Josef; Dvořák, Petr; Bartaloš, Tomáš; Vítková, Michaela

    2016-06-01

    Invasive plant species represent a serious threat to biodiversity and landscape as well as human health and socio-economy. To successfully fight plant invasions, new methods enabling fast and efficient monitoring, such as remote sensing, are needed. In an ongoing project, optical remote sensing (RS) data of different origin (satellite, aerial and UAV), spectral (panchromatic, multispectral and color), spatial (very high to medium) and temporal resolution, and various technical approaches (object-, pixelbased and combined) are tested to choose the best strategies for monitoring of four invasive plant species (giant hogweed, black locust, tree of heaven and exotic knotweeds). In our study, we address trade-offs between spectral, spatial and temporal resolutions required for balance between the precision of detection and economic feasibility. For the best results, it is necessary to choose best combination of spatial and spectral resolution and phenological stage of the plant in focus. For species forming distinct inflorescences such as giant hogweed iterative semi-automated object-oriented approach was successfully applied even for low spectral resolution data (if pixel size was sufficient) whereas for lower spatial resolution satellite imagery or less distinct species with complicated architecture such as knotweed, combination of pixel and object based approaches was used. High accuracies achieved for very high resolution data indicate the possible application of described methodology for monitoring invasions and their long-term dynamics elsewhere, making management measures comparably precise, fast and efficient. This knowledge serves as a basis for prediction, monitoring and prioritization of management targets.

  15. Imaging the motion of electrons in 2D semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Dani, Keshav

    Technological progress since the late 20th century has centered on semiconductor devices, such as transistors, diodes, and solar cells. At the heart of these devices, is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. In this talk, we combine femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy to image the motion of photoexcited electrons from high-energy to low-energy states in a 2D InSe/GaAs heterostructure exhibiting a type-II band alignment. At the instant of photoexcitation, energy-resolved photoelectron images reveal a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observe the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we make a movie lasting a few tens of picoseconds of the electron transfer process in the photoexcited type-II heterostructure - a fundamental phenomenon in semiconductor devices like solar cells. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into future solar cells, electron dynamics in 2D materials, and other semiconductor devices.

  16. Imaging the motion of electrons across semiconductor heterojunctions.

    PubMed

    Man, Michael K L; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E Laine; Krishna, M Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M; Dani, Keshav M

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure-a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  17. Imaging the motion of electrons across semiconductor heterojunctions

    NASA Astrophysics Data System (ADS)

    Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  18. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  19. Real-time control system for adaptive resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flath, L; An, J; Brase, J

    2000-07-24

    Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.

  20. In-duct identification of fluid-borne source with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Heo, Yong-Ho; Ih, Jeong-Guon; Bodén, Hans

    2014-11-01

    Source identification of acoustic characteristics of in-duct fluid machinery is required for coping with the fluid-borne noise. By knowing the acoustic pressure and particle velocity field at the source plane in detail, the sound generation mechanism of a fluid machine can be understood. The identified spatial distribution of the strength of major radiators would be useful for the low noise design. Conventional methods for measuring the source in a wide duct have not been very helpful in investigating the source properties in detail because their spatial resolution is improper for the design purpose. In this work, an inverse method to estimate the source parameters with a high spatial resolution is studied. The theoretical formulation including the evanescent modes and near-field measurement data is given for a wide duct. After validating the proposed method to a duct excited by an acoustic driver, an experiment on a duct system driven by an air blower is conducted in the presence of flow. A convergence test for the evanescent modes is performed to find the necessary number of modes to regenerate the measured pressure field precisely. By using the converged modal amplitudes, very-close near-field pressure to the source is regenerated and compared with the measured pressure, and the maximum error was -16.3 dB. The source parameters are restored from the converged modal amplitudes. Then, the distribution of source parameters on the driver and the blower is clearly revealed with a high spatial resolution for kR<1.84 in which range only plane waves can propagate to far field in a duct. Measurement using a flush mounted sensor array is discussed, and the removal of pure radial modes in the modeling is suggested.

  1. Spatial distribution of protons at high and low altitudes in the radiation belts. Comparison of theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, M.I.; Reizman, S.Y.; Sosnovets, E.N.

    1986-05-01

    A comparative analysis of experimental data on the spatial distributions of protons with energies (E) greater than 0.1 MeV at high and low latitudes, which were obtained on the Molniya-1, Kosmos-900, Elektron, and 1964-45A satellites, is carried out. As a result of the comparison of the experimental data relating to the measurements of protons with E - 0.2 MeV with the calculation including radial drift of particles under the action of electric and magnetic field fluctuations, it is shown that radial diffusion with a diffusion coefficient independent of geomagnetic latitude is the primary mechanism shaping the spatial distributions of protonsmore » at geomagnetic latitudes up to ..lambda.. approx. = 40/sup 0/. The results of the experiments and the calculations agree under the assumption of both magnetic and electric diffusion, but the latter case requires the inclusion of the model of a spatially inhomogeneous convection electric field. At ..lambda.. greater than or equal to 50/sup 0/ pitchangle scattering makes the primary contribution to the shaping of the spatial structure of the protons at low altitudes. A value of 2 less than or equal to n less than or equal to 4 is obtained for the exponent of the slope of the radial distribution of cold electrons N /sub e/ (r)..cap alpha.. /sup -n/ at 2 less than or equal to L less than or equal to 4.« less

  2. Observational study of treatment space in individual neonatal cot spaces.

    PubMed

    Hignett, Sue; Lu, Jun; Fray, Mike

    2010-01-01

    Technology developments in neonatal intensive care units have increased the spatial requirements for clinical activities. Because the effectiveness of healthcare delivery is determined in part by the design of the physical environment and the spatial organization of work, it is appropriate to apply an evidence-based approach to architectural design. This study aimed to provide empirical evidence of the spatial requirements for an individual cot or incubator space. Observational data from 2 simulation exercises were combined with an expert review to produce a final recommendation. A validated 5-step protocol was used to collect data. Step 1 defined the clinical specialty and space. In step 2, data were collected with 28 staff members and 15 neonates to produce a simulation scenario representing the frequent and safety-critical activities. In step 3, 21 staff members participated in functional space experiments to determine the average spatial requirements. Step 4 incorporated additional data (eg, storage and circulation) to produce a spatial recommendation. Finally, the recommendation was reviewed in step 5 by a national expert clinical panel to consider alternative layouts and technology. The average space requirement for an individual neonatal intensive care unit cot (incubator) space was 13.5 m2 (or 145.3 ft2). The circulation and storage space requirements added in step 4 increased this to 18.46 m2 (or 198.7 ft2). The expert panel reviewed the recommendation and agreed that the average individual cot space (13.5 m2/[or 145.3 ft2]) would accommodate variance in working practices. Care needs to be taken when extrapolating this recommendation to multiple cot areas to maintain the minimum spatial requirement.

  3. U.S. Geological Survey spatial data access

    USGS Publications Warehouse

    Faundeen, John L.; Kanengieter, Ronald L.; Buswell, Michael D.

    2002-01-01

    The U.S. Geological Survey (USGS) has done a progress review on improving access to its spatial data holdings over the Web. The USGS EROS Data Center has created three major Web-based interfaces to deliver spatial data to the general public; they are Earth Explorer, the Seamless Data Distribution System (SDDS), and the USGS Web Mapping Portal. Lessons were learned in developing these systems, and various resources were needed for their implementation. The USGS serves as a fact-finding agency in the U.S. Government that collects, monitors, analyzes, and provides scientific information about natural resource conditions and issues. To carry out its mission, the USGS has created and managed spatial data since its inception. Originally relying on paper maps, the USGS now uses advanced technology to produce digital representations of the Earth’s features. The spatial products of the USGS include both source and derivative data. Derivative datasets include Digital Orthophoto Quadrangles (DOQ), Digital Elevation Models, Digital Line Graphs, land-cover Digital Raster Graphics, and the seamless National Elevation Dataset. These products, created with automated processes, use aerial photographs, satellite images, or other cartographic information such as scanned paper maps as source data. With Earth Explorer, users can search multiple inventories through metadata queries and can browse satellite and DOQ imagery. They can place orders and make payment through secure credit card transactions. Some USGS spatial data can be accessed with SDDS. The SDDS uses an ArcIMS map service interface to identify the user’s areas of interest and determine the output format; it allows the user to either download the actual spatial data directly for small areas or place orders for larger areas to be delivered on media. The USGS Web Mapping Portal provides views of national and international datasets through an ArcIMS map service interface. In addition, the map portal posts news about new map services available from the USGS, many simultaneously published on the Environmental Systems Research Institute Geography Network. These three information systems use new software tools and expanded hardware to meet the requirements of the users. The systems are designed to handle the required workload and are relatively easy to enhance and maintain. The software tools give users a high level of functionality and help the system conform to industry standards. The hardware and software architecture is designed to handle the large amounts of spatial data and Internet traffic required by the information systems. Last, customer support was needed to answer questions, monitor e-mail, and report customer problems.

  4. Comparing the effects of sustained and transient spatial attention on the orienting towards and the processing of electrical nociceptive stimuli.

    PubMed

    Van der Lubbe, Rob H J; Blom, Jorian H G; De Kleine, Elian; Bohlmeijer, Ernst T

    2017-02-01

    We examined whether sustained vs. transient spatial attention differentially affect the processing of electrical nociceptive stimuli. Cued nociceptive stimuli of a relevant intensity (low or high) on the left or right forearm required a foot pedal press. The cued side varied trial wise in the transient attention condition, while it remained constant during a series of trials in the sustained attention condition. The orienting phase preceding the nociceptive stimuli was examined by focusing on lateralized EEG activity. ERPs were computed to examine the influence of spatial attention on the processing of the nociceptive stimuli. Results for the orienting phase showed increased ipsilateral alpha and beta power above somatosensory areas in both the transient and the sustained attention conditions, which may reflect inhibition of ipsilateral and/or disinhibition of contralateral somatosensory areas. Cued nociceptive stimuli evoked a larger N130 than uncued stimuli, both in the transient and the sustained attention conditions. Support for increased efficiency of spatial attention in the sustained attention condition was obtained for the N180 and the P540 component. We concluded that spatial attention is more efficient in the case of sustained than in the case of transient spatial attention. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High spatial resolution spectral unmixing for mapping ash species across a complex urban environment

    Treesearch

    Jennifer Pontius; Ryan P. Hanavan; Richard A. Hallett; Bruce D. Cook; Lawrence A. Corp

    2017-01-01

    Ash (Fraxinus L.) species are currently threatened by the emerald ash borer (EAB; Agrilus planipennis Fairmaire) across a growing area in the eastern US. Accurate mapping of ash species is required to monitor the host resource, predict EAB spread and better understand the short- and long-term effects of EAB on the ash resource...

  6. Chapter 2: Stream and riparian habitat analysis and monitoring with a high-resolution terrestrial-aquatic LiDAR

    Treesearch

    Jim McKean; Dan Isaak; Wayne Wright

    2009-01-01

    Management of aquatic habitat in streams requires description of conditions and processes both inside the channels and in the adjacent riparian zones. Biological and physical processes in these environments operate over a range of spatial scales from microhabitat to whole river networks. Limitations of previous survey technologies have focused management and research...

  7. Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus.

    PubMed

    Hutzler, Michael; Fromherz, Peter

    2004-04-01

    Probing projections between brain areas and their modulation by synaptic potentiation requires dense arrays of contacts for noninvasive electrical stimulation and recording. Semiconductor technology is able to provide planar arrays with high spatial resolution to be used with planar neuronal structures such as organotypic brain slices. To address basic methodical issues we developed a silicon chip with simple arrays of insulated capacitors and field-effect transistors for stimulation of neuronal activity and recording of evoked field potentials. Brain slices from rat hippocampus were cultured on that substrate. We achieved local stimulation of the CA3 region by applying defined voltage pulses to the chip capacitors. Recording of resulting local field potentials in the CA1 region was accomplished with transistors. The relationship between stimulation and recording was rationalized by a sheet conductor model. By combining a row of capacitors with a row of transistors we determined a simple stimulus-response matrix from CA3 to CA1. Possible contributions of inhomogeneities of synaptic projection, of tissue structure and of neuroelectronic interfacing were considered. The study provides the basis for a development of semiconductor chips with high spatial resolution that are required for long-term studies of topographic mapping.

  8. Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles

    1993-01-01

    The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Nancy J.; Pasa-Tolic, Ljiljana; Bailey, Vanessa L.

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  10. Using a spatially explicit analysis model to evaluate spatial variation of corn yield

    USDA-ARS?s Scientific Manuscript database

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  11. Cognitive maps and attention.

    PubMed

    Hardt, Oliver; Nadel, Lynn

    2009-01-01

    Cognitive map theory suggested that exploring an environment and attending to a stimulus should lead to its integration into an allocentric environmental representation. We here report that directed attention in the form of exploration serves to gather information needed to determine an optimal spatial strategy, given task demands and characteristics of the environment. Attended environmental features may integrate into spatial representations if they meet the requirements of the optimal spatial strategy: when learning involves a cognitive mapping strategy, cues with high codability (e.g., concrete objects) will be incorporated into a map, but cues with low codability (e.g., abstract paintings) will not. However, instructions encouraging map learning can lead to the incorporation of cues with low codability. On the other hand, if spatial learning is not map-based, abstract cues can and will be used to encode locations. Since exploration appears to determine what strategy to apply and whether or not to encode a cue, recognition memory for environmental features is independent of whether or not a cue is part of a spatial representation. In fact, when abstract cues were used in a way that was not map-based, or when they were not used for spatial navigation at all, they were nevertheless recognized as familiar. Thus, the relation between exploratory activity on the one hand and spatial strategy and memory on the other appears more complex than initially suggested by cognitive map theory.

  12. Evaluating the Impact of Spatial Resolution of Landsat Predictors on the Accuracy of Biomass Models for Large-area Estimation Across the Eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, R. K.; Domke, G. M.; Russell, M.; Woodall, C. W.

    2017-12-01

    Landsat data have been widely used to support strategic forest inventory and management decisions despite the limited success of passive optical remote sensing for accurate estimation of aboveground biomass (AGB). The archive of publicly available Landsat data, available at 30-m spatial resolutions since 1984, has been a valuable resource for cost-effective large-area estimation of AGB to inform national requirements such as for the US national greenhouse gas inventory (NGHGI). In addition, other optical satellite data such as MODIS imagery of wider spatial coverage and higher temporal resolution are enriching the domain of spatial predictors for regional scale mapping of AGB. Because NGHGIs require national scale AGB information and there are tradeoffs in the prediction accuracy versus operational efficiency of Landsat, this study evaluated the impact of various resolutions of Landsat predictors on the accuracy of regional AGB models across three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We used recent national forest inventory (NFI) data with numerous Landsat-derived predictors at ten different spatial resolutions ranging from 30 to 1000 m to understand the optimal spatial resolution of the optical data for enhanced spatial inventory of AGB for NGHGI reporting. Ten generic spatial models at different spatial resolutions were developed for all sites and large-area estimates were evaluated (i) at the county-level against the independent designed-based estimates via the US NFI Evalidator tool and (ii) within a large number of strips ( 1 km wide) predicted via LiDAR metrics at a high spatial resolution. The county-level estimates by the Evalidator and Landsat models were statistically equivalent and produced coefficients of determination (R2) above 0.85 that varied with sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of decreasing resolutions. The Landsat-based total AGB estimates within the strips against the total AGB obtained using LiDAR metrics did not differ significantly and were within ±15 Mg/ha for each of the sites. We conclude that the optical satellite data at resolutions up to 1000 m provide acceptable accuracy for the US' NGHGI.

  13. Temporal and Region-Specific Requirements of αCaMKII in Spatial and Contextual Learning

    PubMed Central

    Achterberg, Katharina G.; Buitendijk, Gabriëlle H.S.; Kool, Martijn J.; Goorden, Susanna M.I.; Post, Laura; Slump, Denise E.; Silva, Alcino J.; van Woerden, Geeske M.

    2014-01-01

    The α isoform of the calcium/calmodulin-dependent protein kinase II (αCaMKII) has been implicated extensively in molecular and cellular mechanisms underlying spatial and contextual learning in a wide variety of species. Germline deletion of Camk2a leads to severe deficits in spatial and contextual learning in mice. However, the temporal and region-specific requirements for αCaMKII have remained largely unexplored. Here, we generated conditional Camk2a mutants to examine the influence of spatially restricted and temporally controlled expression of αCaMKII. Forebrain-specific deletion of the Camk2a gene resulted in severe deficits in water maze and contextual fear learning, whereas mice with deletion restricted to the cerebellum learned normally. Furthermore, we found that temporally controlled deletion of the Camk2a gene in adult mice is as detrimental as germline deletion for learning and synaptic plasticity. Together, we confirm the requirement for αCaMKII in the forebrain, but not the cerebellum, in spatial and contextual learning. Moreover, we highlight the absolute requirement for intact αCaMKII expression at the time of learning. PMID:25143599

  14. Modality dependence and intermodal transfer in the Corsi Spatial Sequence Task: Screen vs. Floor.

    PubMed

    Röser, Andrea; Hardiess, Gregor; Mallot, Hanspeter A

    2016-07-01

    Four versions of the Corsi Spatial Sequence Task (CSST) were tested in a complete within-subject design, investigating whether participants' performance depends on the modality of task presentation and reproduction that put different demands on spatial processing. Presentation of the sequence (encoding phase) and the reproduction (recall phase) were each carried out either on a computer screen or on the floor of a room, involving actual walking in the recall phase. Combinations of the two different encoding and recall procedures result in the modality conditions Screen-Screen, Screen-Floor, Floor-Screen, and Floor-Floor. Results show the expected decrease in performance with increasing sequence length, which is likely due to processing limitations of working memory. We also found differences in performance between the modality conditions indicating different involvements of spatial working memory processes. Participants performed best in the Screen-Screen modality condition. Floor-Screen and Floor-Floor modality conditions require additional working memory resources for reference frame transformation and spatial updating, respectively; the resulting impairment of the performance was about the same in these two conditions. Finally, the Screen-Floor modality condition requires both types of additional spatial demands and led to the poorest performance. Therefore, we suggest that besides the well-known spatial requirements of CSST, additional working memory resources are demanded in walking CSST supporting processes such as spatial updating, mental rotation, reference frame transformation, and the control of walking itself.

  15. Compensation for Blur Requires Increase in Field of View and Viewing Time

    PubMed Central

    Kwon, MiYoung; Liu, Rong; Chien, Lillian

    2016-01-01

    Spatial resolution is an important factor for human pattern recognition. In particular, low resolution (blur) is a defining characteristic of low vision. Here, we examined spatial (field of view) and temporal (stimulus duration) requirements for blurry object recognition. The spatial resolution of an image such as letter or face, was manipulated with a low-pass filter. In experiment 1, studying spatial requirement, observers viewed a fixed-size object through a window of varying sizes, which was repositioned until object identification (moving window paradigm). Field of view requirement, quantified as the number of “views” (window repositions) for correct recognition, was obtained for three blur levels, including no blur. In experiment 2, studying temporal requirement, we determined threshold viewing time, the stimulus duration yielding criterion recognition accuracy, at six blur levels, including no blur. For letter and face recognition, we found blur significantly increased the number of views, suggesting a larger field of view is required to recognize blurry objects. We also found blur significantly increased threshold viewing time, suggesting longer temporal integration is necessary to recognize blurry objects. The temporal integration reflects the tradeoff between stimulus intensity and time. While humans excel at recognizing blurry objects, our findings suggest compensating for blur requires increased field of view and viewing time. The need for larger spatial and longer temporal integration for recognizing blurry objects may further challenge object recognition in low vision. Thus, interactions between blur and field of view should be considered for developing low vision rehabilitation or assistive aids. PMID:27622710

  16. Landscape-scale accessibility of livestock to tigers: implications of spatial grain for modeling predation risk to mitigate human-carnivore conflict.

    PubMed

    Miller, Jennifer R B; Jhala, Yadvendradev V; Jena, Jyotirmay; Schmitz, Oswald J

    2015-03-01

    Innovative conservation tools are greatly needed to reduce livelihood losses and wildlife declines resulting from human-carnivore conflict. Spatial risk modeling is an emerging method for assessing the spatial patterns of predator-prey interactions, with applications for mitigating carnivore attacks on livestock. Large carnivores that ambush prey attack and kill over small areas, requiring models at fine spatial grains to predict livestock depredation hot spots. To detect the best resolution for predicting where carnivores access livestock, we examined the spatial attributes associated with livestock killed by tigers in Kanha Tiger Reserve, India, using risk models generated at 20, 100, and 200-m spatial grains. We analyzed land-use, human presence, and vegetation structure variables at 138 kill sites and 439 random sites to identify key landscape attributes where livestock were vulnerable to tigers. Land-use and human presence variables contributed strongly to predation risk models, with most variables showing high relative importance (≥0.85) at all spatial grains. The risk of a tiger killing livestock increased near dense forests and near the boundary of the park core zone where human presence is restricted. Risk was nonlinearly related to human infrastructure and open vegetation, with the greatest risk occurring 1.2 km from roads, 1.1 km from villages, and 8.0 km from scrubland. Kill sites were characterized by denser, patchier, and more complex vegetation with lower visibility than random sites. Risk maps revealed high-risk hot spots inside of the core zone boundary and in several patches in the human-dominated buffer zone. Validation against known kills revealed predictive accuracy for only the 20 m model, the resolution best representing the kill stage of hunting for large carnivores that ambush prey, like the tiger. Results demonstrate that risk models developed at fine spatial grains can offer accurate guidance on landscape attributes livestock should avoid to minimize human-carnivore conflict.

  17. [Design and optimization of wireless power and data transmission for visual prosthesis].

    PubMed

    Lei, Xuping; Wu, Kaijie; Zhao, Lei; Chai, Xinyu

    2013-11-01

    Boosting spatial resolution of visual prostheses is an effective method to improve implant subjects' visual perception. However, power consumption of visual implants greatly rises with the increasing number of implanted electrodes. In respond to this trend, visual prostheses need to develop high-efficiency wireless power transmission and high-speed data transmission. This paper presents a review of current research progress on wireless power and data transmission for visual prostheses, analyzes relative principles and requirement, and introduces design methods of power and data transmission.

  18. Image and Video Compression with VLSI Neural Networks

    NASA Technical Reports Server (NTRS)

    Fang, W.; Sheu, B.

    1993-01-01

    An advanced motion-compensated predictive video compression system based on artificial neural networks has been developed to effectively eliminate the temporal and spatial redundancy of video image sequences and thus reduce the bandwidth and storage required for the transmission and recording of the video signal. The VLSI neuroprocessor for high-speed high-ratio image compression based upon a self-organization network and the conventional algorithm for vector quantization are compared. The proposed method is quite efficient and can achieve near-optimal results.

  19. Ultrafast monoenergetic electron source by optical waveform control of surface plasmons.

    PubMed

    Dombi, Péter; Rácz, Péter

    2008-03-03

    We propose coherent control of photoelectron acceleration at metal surfaces mediated by surface plasmon polaritons. A high degree of spectral and spatial control of the emission process can be exercised by amplitude and phase controlling the optical waveform (including the carrier-envelope phase) of the plasmon generating few-cycle laser pulse. Numerical results show that the emitted electron beam is highly directional and monoenergetic suggesting applications in contemporary ultrafast methods where ultrashort, well-behaved electron pulses are required.

  20. Building perceptual color maps for visualizing interval data

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron

    2000-06-01

    In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces, we found that luminance-based color maps provided the most perceptually- uniform representations of the data. The just-detectable increment was constant at all points in the color map, with the exception of the lowest-luminance values, where a larger increment was required. The saturation-based color maps provided less sensitivity than the luminance-based color maps, requiring much larger increments for detection. For the hue- based color maps, the size of the increment required for detection varied across the range. For example, for the standard 'rainbow' color map (uncalibrated HSV, hue-varying map), a step in the 'green' region required an increment 16 times the size of the increment required in the 'cyan' part of the range. That is, the rainbow color map would not successfully represent changes in the data in the 'green' region of this color map. In this paper, we extend this research by studying the detectability of spatially-modulated Gabor targets based on these hue, saturation and luminance scales. Since, in visualization, the user is called upon to detect and identify patterns that vary in their spatial characteristics, it is important to study how different types of color maps represent data with varying spatial properties. To do so, we measured modulation thresholds for low-(0.2 c/deg) and high-spatial frequency (4.0 c/deg) Gabor patches and compared them with the Gaussian results. As before, we measured increment thresholds for hue, saturation, and luminance modulations. These color scales were constructed as trajectories along the three perceptual dimensions of color (hue, saturation, and luminance) in two color spaces, uncalibrated HSV and calibrated L*a*b. This allowed us to study how the three perceptual dimensions represent magnitude information for test patterns varying in spatial frequency. This design also allowed us to test the hypothesis that the luminance channel best carries high-spatial frequency information while the saturation channel best represents low spatial-frequency information (Mullen 1985; DeValois and DeValois 1988).

  1. The experiment of cooperative learning model type team assisted individualization (TAI) on three-dimensional space subject viewed from spatial intelligence

    NASA Astrophysics Data System (ADS)

    Manapa, I. Y. H.; Budiyono; Subanti, S.

    2018-03-01

    The aim of this research is to determine the effect of TAI or direct learning (DL) on student’s mathematics achievement viewed from spatial intelligence. This research was quasi experiment. The population was 10th grade senior high school students in Alor Regency on academic year of 2015/2016 chosen by stratified cluster random sampling. The data were collected through achievement and spatial intelligence test. The data were analyzed by two ways, ANOVA with unequal cell and scheffe test. This research showed that student’s mathematics achievement used in TAI had better results than DL models one. In spatial intelligence category, student’s mathematics achievement with high spatial intelligence has better result than the other spatial intelligence category and students with high spatial intelligence have better results than those with middle spatial intelligence category. At TAI, student’s mathematics achievement with high spatial intelligence has better result than those with the other spatial intelligence category and students with middle spatial intelligence have better results than students with low spatial intelligence. In DL model, student’s mathematics achievement with high and middle spatial intelligence has better result than those with low spatial intelligence, but students with high spatial intelligence and middle spatial intelligence have no significant difference. In each category of spatial intelligence and learning model, mathematics achievement has no significant difference.

  2. Shadow imaging of geosynchronous satellites

    NASA Astrophysics Data System (ADS)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite. Atmospheric effects including signal attenuation, refraction/dispersion, and turbulence are also applied to the model. The light collection and physical measurement process using highly sensitive geiger-mode avalanche photo-diode (GM-APD) detectors is described in detail. A simulation of the end-to-end shadow imaging process is constructed and then utilized to quantify the spatial resolution limits based on source star, environmental, observational, collection, measurement, and image reconstruction parameters.

  3. Compressed single pixel imaging in the spatial frequency domain

    PubMed Central

    Torabzadeh, Mohammad; Park, Il-Yong; Bartels, Randy A.; Durkin, Anthony J.; Tromberg, Bruce J.

    2017-01-01

    Abstract. We have developed compressed sensing single pixel spatial frequency domain imaging (cs-SFDI) to characterize tissue optical properties over a wide field of view (35  mm×35  mm) using multiple near-infrared (NIR) wavelengths simultaneously. Our approach takes advantage of the relatively sparse spatial content required for mapping tissue optical properties at length scales comparable to the transport scattering length in tissue (ltr∼1  mm) and the high bandwidth available for spectral encoding using a single-element detector. cs-SFDI recovered absorption (μa) and reduced scattering (μs′) coefficients of a tissue phantom at three NIR wavelengths (660, 850, and 940 nm) within 7.6% and 4.3% of absolute values determined using camera-based SFDI, respectively. These results suggest that cs-SFDI can be developed as a multi- and hyperspectral imaging modality for quantitative, dynamic imaging of tissue optical and physiological properties. PMID:28300272

  4. Spatial data analysis and the use of maps in scientific health articles.

    PubMed

    Nucci, Luciana Bertoldi; Souccar, Patrick Theodore; Castilho, Silvia Diez

    2016-07-01

    Despite the growing number of studies with a characteristic element of spatial analysis, the application of the techniques is not always clear and its continuity in epidemiological studies requires careful evaluation. To verify the spread and use of those processes in national and international scientific papers. An assessment was made of periodicals according to the impact index. Among 8,281 journals surveyed, four national and four international were selected, of which 1,274 articles were analyzed regarding the presence or absence of spatial analysis techniques. Just over 10% of articles published in 2011 in high impact journals, both national and international, showed some element of geographical location. Although these percentages vary greatly from one journal to another, denoting different publication profiles, we consider this percentage as an indication that location variables have become an important factor in studies of health.

  5. On the identification of normal modes of oscillation from observations of the solar periphery

    NASA Technical Reports Server (NTRS)

    Gough, D. D.; Latour, J.

    1984-01-01

    The decomposition of solar oscillations into their constituent normal modes requires a knowledge of both the spatial and temporal variation of the perturbation to the Sun's surface. The task is especially difficult when only limited spatial information is available. Observations of the limb darkening function, for example, are probably sensitive to too large a number of modes to permit most of the modes to be identified in a power spectrum of measurements at only a few points on the limb, unless the results are combined with other data. A procedure was considered by which the contributions from quite small groups of modes to spatially well resolved data obtained at any instant can be extracted from the remaining modes. Combining these results with frequency information then permits the modes to be identified, at least if their frequencies are low enough to ensure that modes of high degree do not contribute substantially to the signal.

  6. Exploiting spatial degrees of freedom for high data rate ultrasound communication with implantable devices

    NASA Astrophysics Data System (ADS)

    Wang, Max L.; Arbabian, Amin

    2017-09-01

    We propose and demonstrate an ultrasonic communication link using spatial degrees of freedom to increase data rates for deeply implantable medical devices. Low attenuation and millimeter wavelengths make ultrasound an ideal communication medium for miniaturized low-power implants. While a small spectral bandwidth has drastically limited achievable data rates in conventional ultrasonic implants, a large spatial bandwidth can be exploited by using multiple transducers in a multiple-input/multiple-output system to provide spatial multiplexing gain without additional power, larger bandwidth, or complicated packaging. We experimentally verify the communication link in mineral oil with a transmitter and a receiver 5 cm apart, each housing two custom-designed mm-sized piezoelectric transducers operating at the same frequency. Two streams of data modulated with quadrature phase-shift keying at 125 kbps are simultaneously transmitted and received on both channels, effectively doubling the data rate to 250 kbps with a measured bit error rate below 10-4. We also evaluate the performance and robustness of the channel separation network by testing the communication link after introducing position offsets. These results demonstrate the potential of spatial multiplexing to enable more complex implant applications requiring higher data rates.

  7. Rockfall hazard analysis using LiDAR and spatial modeling

    NASA Astrophysics Data System (ADS)

    Lan, Hengxing; Martin, C. Derek; Zhou, Chenghu; Lim, Chang Ho

    2010-05-01

    Rockfalls have been significant geohazards along the Canadian Class 1 Railways (CN Rail and CP Rail) since their construction in the late 1800s. These rockfalls cause damage to infrastructure, interruption of business, and environmental impacts, and their occurrence varies both spatially and temporally. The proactive management of these rockfall hazards requires enabling technologies. This paper discusses a hazard assessment strategy for rockfalls along a section of a Canadian railway using LiDAR and spatial modeling. LiDAR provides accurate topographical information of the source area of rockfalls and along their paths. Spatial modeling was conducted using Rockfall Analyst, a three dimensional extension to GIS, to determine the characteristics of the rockfalls in terms of travel distance, velocity and energy. Historical rockfall records were used to calibrate the physical characteristics of the rockfall processes. The results based on a high-resolution digital elevation model from a LiDAR dataset were compared with those based on a coarse digital elevation model. A comprehensive methodology for rockfall hazard assessment is proposed which takes into account the characteristics of source areas, the physical processes of rockfalls and the spatial attribution of their frequency and energy.

  8. An unsupervised technique for optimal feature selection in attribute profiles for spectral-spatial classification of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Kaushal; Patra, Swarnajyoti

    2018-04-01

    Inclusion of spatial information along with spectral features play a significant role in classification of remote sensing images. Attribute profiles have already proved their ability to represent spatial information. In order to incorporate proper spatial information, multiple attributes are required and for each attribute large profiles need to be constructed by varying the filter parameter values within a wide range. Thus, the constructed profiles that represent spectral-spatial information of an hyperspectral image have huge dimension which leads to Hughes phenomenon and increases computational burden. To mitigate these problems, this work presents an unsupervised feature selection technique that selects a subset of filtered image from the constructed high dimensional multi-attribute profile which are sufficiently informative to discriminate well among classes. In this regard the proposed technique exploits genetic algorithms (GAs). The fitness function of GAs are defined in an unsupervised way with the help of mutual information. The effectiveness of the proposed technique is assessed using one-against-all support vector machine classifier. The experiments conducted on three hyperspectral data sets show the robustness of the proposed method in terms of computation time and classification accuracy.

  9. Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.

    PubMed

    Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun

    2017-09-01

    Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.

  10. High spatial variability of carbon dioxide and methane emission in three tropical reservoirs

    NASA Astrophysics Data System (ADS)

    Reinaldo Paranaiba, José; Barros, Nathan O.; Mendonça, Raquel F.; Linkhorst, Annika; Isidorova, Anastasija; Roland, Fabio; Sobek, Sebastian

    2017-04-01

    In the tropics, many new large hydropower dams are being built, in order to produce renewable energy for economic growth. Most inland waters, such as rivers, lakes and reservoirs, emit greenhouse gases to the atmosphere, and especially tropical reservoirs have been pointed out as strong sources of methane. However, present estimates of greenhouse gas emission from reservoirs are limited by the amount of available data. In particular, the spatial variability of greenhouse gas emission from reservoirs is insufficiently understood. In order to test the hypothesis that the diffusive emission of carbon dioxide (CO2) and methane (CH4) from tropical reservoirs is characterized by strong spatial variability and incorrectly represented by measurements at one site only, we studied three reservoirs situated in different tropical climates, during the dry period. We conducted spatially resolved measurements of surface water concentrations of dissolved carbon dioxide and methane using an on-line equilibration system, as well as of the gas exchange velocity using floating chambers. We found pronounced spatial variability of diffusive CO2 and CH4 emission in all three reservoirs. River inflow areas were more likely to have high concentrations of particularly CH4, but also CO2, than other areas in the reservoirs. Close to the dam, CH4 concentrations were comparatively low in each reservoir. The variability of CH4 concentration was linked to geographical position, which we ascribe to hot spots of methanogenesis at sites of high sediment deposition, such as river inflow areas. The variability of CO2 concentration seemed instead rather to be linked to in-situ metabolism. Also the gas exchange velocity varied pronouncedly in each reservoir, but without any detectable systematic patterns, calling for further studies. We conclude that accurate upscaling of reservoir greenhouse gas emissions requires accounting for within-reservoir spatial variability, and that the anthropogenic increase of sediment flux from catchments to downstream reservoirs may be linked to increased reservoir CH4 emission.

  11. Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs

    PubMed Central

    Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

    2014-01-01

    Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377

  12. Exploring component-based approaches in forest landscape modeling

    Treesearch

    H. S. He; D. R. Larsen; D. J. Mladenoff

    2002-01-01

    Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...

  13. Continuous-tone applications in digital hard-copy output devices

    NASA Astrophysics Data System (ADS)

    Saunders, Jeffrey C.

    1990-11-01

    Dye diffusion technology has made a recent entry into the hardcopy printer arena making it now possible to achieve near-photographic quality images from digital raster image data. Whereas the majority of low cost printers utilizing ink-jet, thermal wax, or dotmatrix technologies advertise high resolution printheads, the restrictions which dithering algorithms apply to these inherently binary printing systems force them to sacrifice spatial resolution capability for tone scale reproduction. Dye diffusion technology allows a fully continuous range of density at each pixel location thus preserving the full spatial resolution capability of the printhead; spatial resolution is not sacrificed for tone scale. This results in images whose quality is far superior to the ink-jet or wax-transfer products; image quality so high in fact, to the unaided eye, dye diffusion images are indistinguishable from their silver-halide counterparts. Eastman Kodak Co. offers a highly refined application of dye diffusion technology in the Kodak XL 7700 Digital Continuous Tone Printer and Kodak EKTATHERM media products. The XL . 7700 Printer represents a serious alternative to expensive laser-based film recorders for applications which require high quality image output from digital data files. This paper presents an explanation of dye diffusion printing, what distinguishes it from other technologies, sensitometric control and image quality parameters, and applications within the industry, particularly that of Airborne Reconnaissance and Remote Sensing.

  14. Evaluation of glued-diaphragm fibre optic pressure sensors in a shock tube

    NASA Astrophysics Data System (ADS)

    Sharifian, S. Ahmad; Buttsworth, David R.

    2007-02-01

    Glued-diaphragm fibre optic pressure sensors that utilize standard telecommunications components which are based on Fabry-Perot interferometry are appealing in a number of respects. Principally, they have high spatial and temporal resolution and are low in cost. These features potentially make them well suited to operation in extreme environments produced in short-duration high-enthalpy wind tunnel facilities where spatial and temporal resolution are essential, but attrition rates for sensors are typically very high. The sensors we consider utilize a zirconia ferrule substrate and a thin copper foil which are bonded together using an adhesive. The sensors show a fast response and can measure fluctuations with a frequency up to 250 kHz. The sensors also have a high spatial resolution on the order of 0.1 mm. However, with the interrogation and calibration processes adopted in this work, apparent errors of up to 30% of the maximum pressure have been observed. Such errors are primarily caused by mechanical hysteresis and adhesive viscoelasticity. If a dynamic calibration is adopted, the maximum measurement error can be limited to about 10% of the maximum pressure. However, a better approach is to eliminate the adhesive from the construction process or design the diaphragm and substrate in a way that does not require the adhesive to carry a significant fraction of the mechanical loading.

  15. The Pale Blue Dot: Utilizing Real World Globes in High School and Undergraduate Oceanography Classrooms

    NASA Astrophysics Data System (ADS)

    Rogers, D. B.

    2017-12-01

    Geoscience classrooms have benefitted greatly from the use of interactive, dry-erasable globes to supplement instruction on topics that require three-dimensional visualization, such as seismic wave propagation and the large-scale movements of tectonic plates. Indeed, research by Bamford (2013) demonstrates that using three-dimensional visualization to illustrate complex processes enhances student comprehension. While some geoscience courses tend to bake-in lessons on visualization, other disciplines of earth science that require three-dimensional visualization, such as oceanography, tend to rely on students' prior spatial abilities. In addition to spatial intelligence, education on the three-dimensional structure of the ocean requires knowledge of the external processes govern the behavior of the ocean, as well as the vertical and lateral distribution of water properties around the globe. Presented here are two oceanographic activities that utilize RealWorldGlobes' dry-erase globes to supplement traditional oceanography lessons on thermohaline and surface ocean circulation. While simultaneously promoting basic plotting techniques, mathematical calculations, and unit conversions, these activities touch on the processes that govern global ocean circulation, the principles of radiocarbon dating, and the various patterns exhibited by surface ocean currents. These activities challenge students to recognize inherent patterns within their data and synthesize explanations for their occurrence. Spatial visualization and critical thinking are integral to any geoscience education, and the combination of these abilities with engaging hands-on activities has the potential to greatly enhance oceanography education in both secondary and postsecondary settings

  16. Asymmetries in Core-Collapse Supernovae from Maps of Radioactiver 44Ti in Cassiopeia A

    NASA Technical Reports Server (NTRS)

    Grefenstette, B.W.; Harrison, F. A.; Boggs, S. E.; Reynolds, S. P.; Fryer, C. L.; Madsen, K. K.; Wik, Daniel R.; Zoglauer, A.; Ellinger, C. I.; Alexander, D. M.; hide

    2014-01-01

    Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surroundingmedium1, directly probes the explosion asymmetries. Cassiopeia A is a young2, nearby3, core-collapse4 remnant from which 44Ti emission has previously been detected5-8 but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission9, from optical light echoes10, and from jet-like features seen in the X-ray11 and optical12 ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.

  17. A novel x-ray detector design with higher DQE and reduced aliasing: Theoretical analysis of x-ray reabsoprtion in detector converter material

    NASA Astrophysics Data System (ADS)

    Nano, Tomi; Escartin, Terenz; Karim, Karim S.; Cunningham, Ian A.

    2016-03-01

    The ability to improve visualization of structural information in digital radiography without increasing radiation exposures requires improved image quality across all spatial frequencies, especially at high frequencies. The detective quantum efficiency (DQE) as a function of spatial frequency quantifies image quality given by an x-ray detector. We present a method of increasing DQE at high spatial frequencies by improving the modulation transfer function (MTF) and reducing noise aliasing. The Apodized Aperature Pixel (AAP) design uses a detector with micro-elements to synthesize desired pixels and provide higher DQE than conventional detector designs. A cascaded system analysis (CSA) that incorporates x-ray interactions is used for comparison of the theoretical MTF, noise power spectrum (NPS), and DQE. Signal and noise transfer through the converter material is shown to consist of correlated an uncorrelated terms. The AAP design was shown to improve the DQE of both material types that have predominantly correlated transfer (such as CsI) and predominantly uncorrelated transfer (such as Se). Improvement in the MTF by 50% and the DQE by 100% at the sampling cut-off frequency is obtained when uncorrelated transfer is prevalent through the converter material. Optimizing high-frequency DQE results in improved image contrast and visualization of small structures and fine-detail.

  18. Acoustic MIMO communications in a very shallow water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  19. High-power diode lasers for optical communications applications

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Channin, D. J.

    1985-01-01

    High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.

  20. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images

    PubMed Central

    Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-01-01

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images. PMID:29614745

  1. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images.

    PubMed

    Kwan, Chiman; Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Perez, Daniel; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-03-31

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images.

  2. Digital differential confocal microscopy based on spatial shift transformation.

    PubMed

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  3. MTF analysis of LANDSAT-4 Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Schowengerdt, R.

    1983-01-01

    The spatial radiance distribution of a ground target must be known to a resolution at least four to five times greater than that of the system under test when measuring a satellite sensor's modulation transfer function. Calibration of the target requires either the use of man-made special purpose targets with known properties, e.g., a small reflective mirror or a dark-light linear pattern such as line or edge, or use of relatively high resolution underflight imagery to calibrate an arbitrary ground scene. Both approaches are to be used in addition a technique that utilizes an analytical model for the scene spatial frequency power spectrum is being investigated as an alternative to calibration of the scene.

  4. MTF Analysis of LANDSAT-4 Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Schowengerdt, R.

    1985-01-01

    The spatial radiance distribution of a ground target must be known to a resolution at least four to five times greater than that of the system under test when measuring a satellite sensor's modulation transfer function. Calibration of the target requires either the use of man-made special purpose targets with known properties, e.g., a small reflective mirror or a dark-light linear pattern such as line or edge, or use of relatively high resolution underflight imagery to calibrate an arbitrary ground scene. Both approaches are to be used, in addition a technique that utilizes an analytical model of the scene spatial frequency power spectrum is being investigated as an alternative to calibration of the scene.

  5. Development of Scanning Ultrafast Electron Microscope Capability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less

  6. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    NASA Astrophysics Data System (ADS)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  7. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.

  8. Generating Within-Plant Spatial Distributions of an Insect Herbivore Based on Aggregation Patterns and Per-Node Infestation Probabilities.

    PubMed

    Rincon, Diego F; Hoy, Casey W; Cañas, Luis A

    2015-04-01

    Most predator-prey models extrapolate functional responses from small-scale experiments assuming spatially uniform within-plant predator-prey interactions. However, some predators focus their search in certain plant regions, and herbivores tend to select leaves to balance their nutrient uptake and exposure to plant defenses. Individual-based models that account for heterogeneous within-plant predator-prey interactions can be used to scale-up functional responses, but they would require the generation of explicit prey spatial distributions within-plant architecture models. The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a significant pest of tomato crops worldwide that exhibits highly aggregated populations at several spatial scales, including within the plant. As part of an analytical framework to understand predator-silverleaf whitefly interactions, the objective of this research was to develop an algorithm to generate explicit spatial counts of silverleaf whitefly nymphs within tomato plants. The algorithm requires the plant size and the number of silverleaf whitefly individuals to distribute as inputs, and includes models that describe infestation probabilities per leaf nodal position and the aggregation pattern of the silverleaf whitefly within tomato plants and leaves. The output is a simulated number of silverleaf whitefly individuals for each leaf and leaflet on one or more plants. Parameter estimation was performed using nymph counts per leaflet censused from 30 artificially infested tomato plants. Validation revealed a substantial agreement between algorithm outputs and independent data that included the distribution of counts of both eggs and nymphs. This algorithm can be used in simulation models that explore the effect of local heterogeneity on whitefly-predator dynamics. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Hybrid fs/ps Coherent Anti-Stokes Raman Scattering for Multiparameter Measurements of Combustion and Nonequilibrium

    NASA Astrophysics Data System (ADS)

    Dedic, Chloe Elizabeth

    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is developed for measuring internal energy distributions, species concentration, and pressure for highly dynamic gas-phase environments. Systems of interest include next-generation combustors, plasma-based manufacturing and plasma-assisted combustion, and high-speed aerodynamic flow. These challenging environments include spatial variations and fast dynamics that require the spatial and temporal resolution offered by hybrid fs/ps CARS. A novel dual-pump fs/ps CARS approach is developed to simultaneously excite pure-rotational and rovibrational Raman coherences for dynamic thermometry (300-2400 K) and detection of major combustion species. This approach was also used to measure single-shot vibrational and rotational energy distributions of the nonequilibrium environment of a dielectric barrier discharge plasma. Detailed spatial distributions and shot-to-shot fluctuations of rotational and vibrational temperatures spanning 325-450 K and 1200-5000 K were recorded across the plasma and surrounding flow, and are compared to plasma emission spectroscopy measurements. Dual-pump hybrid fs/ps CARS allows for concise, kHz-rate measurements of vibrational and rotational energy distributions or temperatures at equilibrium and nonequilibrium without nonresonant wave-mixing or molecular collisional interference. Additionally, a highly transient ns laser spark is explored using CARS to measure temperature and pressure behind the shock wave and temperature of the expanding plasma kernel. Vibrational energy distributions at the exit of a microscale gaseous detonation tube are presented. Theory required to model fs/ps CARS response, including nonthermal energy distributions, is presented. The impact of nonequilibrium on measurement accuracy is explored, and a coherent line-mixing model is validated with high-pressure measurements. Temperature and pressure sensitivity are investigated for multiple measurement configurations, and accuracy and precision is quantified as a function of signal-to-noise for the fs/ps CARS system.

  10. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.

    PubMed

    Coggins, Liah X; Ghisalberti, Marco; Ghadouani, Anas

    2017-03-01

    Waste stabilisation ponds (WSPs) are used worldwide for wastewater treatment, and throughout their operation require periodic sludge surveys. Sludge accumulation in WSPs can impact performance by reducing the effective volume of the pond, and altering the pond hydraulics and wastewater treatment efficiency. Traditionally, sludge heights, and thus sludge volume, have been measured using low-resolution and labour intensive methods such as 'sludge judge' and the 'white towel test'. A sonar device, a readily available technology, fitted to a remotely operated vehicle (ROV) was shown to improve the spatial resolution and accuracy of sludge height measurements, as well as reduce labour and safety requirements. Coupled with a dedicated software package, the profiling of several WSPs has shown that the ROV with autonomous sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution in a greatly reduced profiling time, leading to a better understanding of the role played by sludge accumulation in hydraulic performance of WSPs. The high-resolution bathymetry collected was used to support a much more detailed hydrodynamic assessment of systems with low, medium and high accumulations of sludge. The results of the modelling show that hydraulic performance is not only influenced by the sludge accumulation, but also that the spatial distribution of sludge plays a critical role in reducing the treatment capacity of these systems. In a range of ponds modelled, the reduction in residence time ranged from 33% in a pond with a uniform sludge distribution to a reduction of up to 60% in a pond with highly channelized flow. The combination of high-resolution measurement of sludge accumulation and hydrodynamic modelling will help in the development of frameworks for wastewater sludge management, including the development of more reliable computer models, and could potentially have wider application in the monitoring of other small to medium water bodies, such as channels, recreational water bodies, and commercial ports. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Spatiotemporal comparison of highly-resolved emissions and concentrations of carbon dioxide and criteria pollutants in Salt Lake City, Utah for health and policy applications

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Fasoli, B.; Bares, R.; o'Keefe, D.; Song, T.; Huang, J.; Horel, J.; Crosman, E.; Ehleringer, J. R.

    2015-12-01

    This study addresses the need for robust highly-resolved emissions and concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are dependent on proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present emissions inventories and modeled concentrations for CO2 and CAPs: carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), particulate matter (PM2.5 and PM10), and sulfur oxides (SOx) for Salt Lake County, Utah. We compare the resulting concentrations against stationary and mobile measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at an hourly, building and road link resolution as well as hourly gridded emissions with a 0.002o x 0.002o spatial resolution. Two methods for deriving criteria pollutant emission inventories were compared. One was constructed using methods similar to Hestia but downscales total emissions based on the 2011 National Emissions Inventory (NEI). The other used Emission Modeling Clearinghouse spatial and temporal surrogates to downscale the NEI data from annual and county-level resolution to hourly and 0.002o x 0.002o grid cells. The gridded emissions from both criteria pollutant methods were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The CALPUFF dispersion model was used to transport emissions and estimate air pollutant concentrations at an hourly 0.002o x 0.002o resolution. The resulting concentrations were spatially compared in the same manner as the emissions. Modeled results were compared against stationary measurements and from equipment mounted atop a light rail car in the Salt Lake City area. The comparison between both approaches to emissions estimation and resulting concentrations highlights spatial locations and hours of high variability and uncertainty.

  12. A rank-based approach for correcting systematic biases in spatial disaggregation of coarse-scale climate simulations

    NASA Astrophysics Data System (ADS)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2017-07-01

    Use of General Circulation Model (GCM) precipitation and evapotranspiration sequences for hydrologic modelling can result in unrealistic simulations due to the coarse scales at which GCMs operate and the systematic biases they contain. The Bias Correction Spatial Disaggregation (BCSD) method is a popular statistical downscaling and bias correction method developed to address this issue. The advantage of BCSD is its ability to reduce biases in the distribution of precipitation totals at the GCM scale and then introduce more realistic variability at finer scales than simpler spatial interpolation schemes. Although BCSD corrects biases at the GCM scale before disaggregation; at finer spatial scales biases are re-introduced by the assumptions made in the spatial disaggregation process. Our study focuses on this limitation of BCSD and proposes a rank-based approach that aims to reduce the spatial disaggregation bias especially for both low and high precipitation extremes. BCSD requires the specification of a multiplicative bias correction anomaly field that represents the ratio of the fine scale precipitation to the disaggregated precipitation. It is shown that there is significant temporal variation in the anomalies, which is masked when a mean anomaly field is used. This can be improved by modelling the anomalies in rank-space. Results from the application of the rank-BCSD procedure improve the match between the distributions of observed and downscaled precipitation at the fine scale compared to the original BCSD approach. Further improvements in the distribution are identified when a scaling correction to preserve mass in the disaggregation process is implemented. An assessment of the approach using a single GCM over Australia shows clear advantages especially in the simulation of particularly low and high downscaled precipitation amounts.

  13. Performance of the Multi-Radar Multi-Sensor System over the Lower Colorado River, Texas

    NASA Astrophysics Data System (ADS)

    Bayabil, H. K.; Sharif, H. O.; Fares, A.; Awal, R.; Risch, E.

    2017-12-01

    Recently observed increases in intensities and frequencies of climate extremes (e.g., floods, dam failure, and overtopping of river banks) necessitate the development of effective disaster prevention and mitigation strategies. Hydrologic models can be useful tools in predicting such events at different spatial and temporal scales. However, accuracy and prediction capability of such models are often constrained by the availability of high-quality representative hydro-meteorological data (e.g., precipitation) that are required to calibrate and validate such models. Improved technologies and products such as the Multi-Radar Multi-Sensor (MRMS) system that allows gathering and transmission of vast meteorological data have been developed to provide such data needs. While the MRMS data are available with high spatial and temporal resolutions (1 km and 15 min, respectively), its accuracy in estimating precipitation is yet to be fully investigated. Therefore, the main objective of this study is to evaluate the performance of the MRMS system in effectively capturing precipitation over the Lower Colorado River, Texas using observations from a dense rain gauge network. In addition, effects of spatial and temporal aggregation scales on the performance of the MRMS system were evaluated. Point scale comparisons were made at 215 gauging locations using rain gauges and MRMS data from May 2015. Moreover, the effects of temporal and spatial data aggregation scales (30, 45, 60, 75, 90, 105, and 120 min) and (4 to 50 km), respectively on the performance of the MRMS system were tested. Overall, the MRMS system (at 15 min temporal resolution) captured precipitation reasonably well, with an average R2 value of 0.65 and RMSE of 0.5 mm. In addition, spatial and temporal data aggregations resulted in increases in R2 values. However, reduction in RMSE was achieved only with an increase in spatial aggregations.

  14. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-08-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.

  15. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-01-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650

  16. Thermometry of Silicon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Matthew; Zutter, Brian; Regan, B. C.

    2018-01-01

    Current thermometry techniques lack the spatial resolution required to see the temperature gradients in typical, highly scaled modern transistors. As a step toward addressing this problem, we measure the temperature dependence of the volume plasmon energy in silicon nanoparticles from room temperature to 1250 °C , using a chip-style heating sample holder in a scanning transmission electron microscope (STEM) equipped with electron energy loss spectroscopy (EELS). The plasmon energy changes as expected for an electron gas subject to the thermal expansion of silicon. Reversing this reasoning, we find that measurements of the plasmon energy provide an independent measure of the nanoparticle temperature consistent with that of the heater chip's macroscopic, dual-function heater-and-thermometer to within the 5% accuracy of the thermometer's calibration. Thus, silicon has the potential to provide its own high-spatial-resolution thermometric readout signal via measurements of its volume plasmon energy. Furthermore, nanoparticles can, in general, serve as convenient nanothermometers for in situ electron-microscopy experiments.

  17. Novel Handheld Magnetometer Probe Based on Magnetic Tunnelling Junction Sensors for Intraoperative Sentinel Lymph Node Identification

    PubMed Central

    Cousins, A.; Balalis, G. L.; Thompson, S. K.; Forero Morales, D.; Mohtar, A.; Wedding, A. B.; Thierry, B.

    2015-01-01

    Using magnetic tunnelling junction sensors, a novel magnetometer probe for the identification of the sentinel lymph node using magnetic tracers was developed. Probe performance was characterised in vitro and validated in a preclinical swine model. Compared to conventional gamma probes, the magnetometer probe showed excellent spatial resolution of 4.0 mm, and the potential to detect as few as 5 μg of magnetic tracer. Due to the high sensitivity of the magnetometer, all first-tier nodes were identified in the preclinical experiments, and there were no instances of false positive or false negative detection. Furthermore, these preliminary data encourage the application of the magnetometer probe for use in more complex lymphatic environments, such as in gastrointestinal cancers, where the sentinel node is often in close proximity to other non-sentinel nodes, and high spatial resolution detection is required. PMID:26038833

  18. High throughput dual-wavelength temperature distribution imaging via compressive imaging

    NASA Astrophysics Data System (ADS)

    Yao, Xu-Ri; Lan, Ruo-Ming; Liu, Xue-Feng; Zhu, Ge; Zheng, Fu; Yu, Wen-Kai; Zhai, Guang-Jie

    2018-03-01

    Thermal imaging is an essential tool in a wide variety of research areas. In this work we demonstrate high-throughput double-wavelength temperature distribution imaging using a modified single-pixel camera without the requirement of a beam splitter (BS). A digital micro-mirror device (DMD) is utilized to display binary masks and split the incident radiation, which eliminates the necessity of a BS. Because the spatial resolution is dictated by the DMD, this thermal imaging system has the advantage of perfect spatial registration between the two images, which limits the need for the pixel registration and fine adjustments. Two bucket detectors, which measures the total light intensity reflected from the DMD, are employed in this system and yield an improvement in the detection efficiency of the narrow-band radiation. A compressive imaging algorithm is utilized to achieve under-sampling recovery. A proof-of-principle experiment was presented to demonstrate the feasibility of this structure.

  19. Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device.

    PubMed

    Hoffmann, Maximilian; Papadopoulos, Ioannis N; Judkewitz, Benjamin

    2018-01-01

    The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation, or patterned photostimulation. For most of these applications, it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.

  20. Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Hoffmann, Maximilian; Papadopoulos, Ioannis N.; Judkewitz, Benjamin

    2018-01-01

    The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation or patterned photostimulation. For most of these applications it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator, but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.

Top