NASA Astrophysics Data System (ADS)
Mazher, Wamidh Jalil; Ibrahim, Hadeel T.; Ucan, Osman N.; Bayat, Oguz
2018-03-01
This paper aims to design a drone swarm network by employing free-space optical (FSO) communication for detecting and deep decision making of topological problems (e.g., oil pipeline leak), where deep decision making requires the highest image resolution. Drones have been widely used for monitoring and detecting problems in industrial applications during which the drone sends images from the on-air camera video stream using radio frequency (RF) signals. To obtain higher-resolution images, higher bandwidth (BW) is required. The current study proposed the use of the FSO communication system to facilitate higher BW for higher image resolution. Moreover, the number of drones required to survey a large physical area exceeded the capabilities of RF technologies. Our configuration of the drones is V-shaped swarm with one leading drone called mother drone (DM). The optical decode-and-forward (DF) technique is used to send the optical payloads of all drones in V-shaped swarm to the single ground station through DM. Furthermore, it is found that the transmitted optical power (Pt) is required for each drone based on the threshold outage probability of FSO link failure among the onboard optical-DF drones. The bit error rate of optical payload is calculated based on optical-DF onboard processing. Finally, the number of drones required for different image resolutions based on the size of the considered topological area is optimized.
NASA Astrophysics Data System (ADS)
Liu, Gang; Wen, Desheng; Song, Zongxi
2017-10-01
With the development of aeronautics and astronautics, higher resolution requirement of the telescope was necessary. However, the increase in resolution of conventional telescope required larger apertures, whose size, weight and power consumption could be prohibitively expensive. This limited the further development of the telescope. This paper introduced a new imaging technology using interference—Compact Passive Interference Imaging Technology with High Resolution, and proposed a rearranging method for the arrangement of the lenslet array to obtain continuously object spatial frequency.
Detector motion method to increase spatial resolution in photon-counting detectors
NASA Astrophysics Data System (ADS)
Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong
2017-03-01
Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.
Report of the x ray and gamma ray sensors panel
NASA Technical Reports Server (NTRS)
Szymkowiak, Andrew; Collins, S.; Kurfess, J.; Mahoney, W.; Mccammon, D.; Pehl, R.; Ricker, G.
1991-01-01
Overall five major areas of technology are recommended for development in order to meet the science requirements of the Astrotech 21 mission set. These are: detectors for high resolution gamma ray spectroscopy, cryogenic detectors for improved x ray spectral and spatial resolution, advanced x ray charge coupled devices (CCDs) for higher energy resolution and larger format, extension to higher energies, liquid and solid position sensitive detectors for improving stopping power in the energy range 5 to 500 keV and 0.2 to 2 MeV. Development plans designed to achieve the desired capabilities on the time scales required by the technology freeze dates have been recommended in each of these areas.
Temporal and spatial resolution required for imaging myocardial function
NASA Astrophysics Data System (ADS)
Eusemann, Christian D.; Robb, Richard A.
2004-05-01
4-D functional analysis of myocardial mechanics is an area of significant interest and research in cardiology and vascular/interventional radiology. Current multidimensional analysis is limited by insufficient temporal resolution of x-ray and magnetic resonance based techniques, but recent improvements in system design holds hope for faster and higher resolution scans to improve images of moving structures allowing more accurate functional studies, such as in the heart. This paper provides a basis for the requisite temporal and spatial resolution for useful imaging during individual segments of the cardiac cycle. Multiple sample rates during systole and diastole are compared to determine an adequate sample frequency to reduce regional myocardial tracking errors. Concurrently, out-of-plane resolution has to be sufficiently high to minimize partial volume effect. Temporal resolution and out-of-plane spatial resolution are related factors that must be considered together. The data used for this study is a DSR dynamic volume image dataset with high temporal and spatial resolution using implanted fiducial markers to track myocardial motion. The results of this study suggest a reduced exposure and scan time for x-ray and magnetic resonance imaging methods, since a lower sample rate during systole is sufficient, whereas the period of rapid filling during diastole requires higher sampling. This could potentially reduce the cost of these procedures and allow higher patient throughput.
USDA-ARS?s Scientific Manuscript database
The SMOS (Soil Moisture and Ocean Salinity) mission provides surface soil moisture (SM) maps at a mean resolution of ~50 km. However, agricultural applications (irrigation, crop monitoring) and some hydrological applications (floods and modeling of small basins) require higher resolution SM...
MERLIN - A meV Resolution Beamline at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reininger, Ruben; Bozek, John; Chuang, Y.-D.
2007-01-19
An ultra-high resolution beamline is being constructed at the Advanced Light Source (ALS) for the study of low energy excitations in strongly correlated systems with the use of high-resolution inelastic scattering and angle-resolved photoemission. This new beamline, given the acronym Merlin (for meV resolution line), will cover the energy range 10-150 eV. The monochromator has fixed entrance and exit slits and a plane mirror that can illuminate a spherical grating at the required angle of incidence (as in the SX-700 mechanism). The monochromator can be operated in two different modes. In the highest resolution mode, the energy scanning requires translatingmore » the monochromator chamber (total travel 1.1 m) as well as rotating the grating and the plane mirror in front of the grating. The resolution in this mode is practically determined by the slits width. In the second mode, the scanning requires rotating the grating and the plane mirror. This mode can be used to scan a few eV without a significant resolution loss. The source for the beamline is a 1.9 m long, 90 mm period quasi periodic EPU. The expected flux at the sample is higher than 1011 photons/s at a resolving power of 5 x 104 in the energy range 16-130 eV. A second set of gratings can be used to obtain higher flux at the expense of resolution.« less
Minimal modeling of the extratropical general circulation
NASA Technical Reports Server (NTRS)
O'Brien, Enda; Branscome, Lee E.
1989-01-01
The ability of low-order, two-layer models to reproduce basic features of the mid-latitude general circulation is investigated. Changes in model behavior with increased spectral resolution are examined in detail. Qualitatively correct time-mean heat and momentum balances are achieved in a beta-plane channel model which includes the first and third meridional modes. This minimal resolution also reproduces qualitatively realistic surface and upper-level winds and mean meridional circulations. Higher meridional resolution does not result in substantial changes in the latitudinal structure of the circulation. A qualitatively correct kinetic energy spectrum is produced when the resolution is high enough to include several linearly stable modes. A model with three zonal waves and the first three meridional modes has a reasonable energy spectrum and energy conversion cycle, while also satisfying heat and momentum budget requirements. This truncation reproduces the basic mechanisms and zonal circulation features that are obtained at higher resolution. The model performance improves gradually with higher resolution and is smoothly dependent on changes in external parameters.
Three-Dimensional Super-Resolution: Theory, Modeling, and Field Tests Results
NASA Technical Reports Server (NTRS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Vincent E.; Hines, Glenn; Pierrottet, Diego; Reisse, Robert
2014-01-01
Many flash lidar applications continue to demand higher three-dimensional image resolution beyond the current state-of-the-art technology of the detector arrays and their associated readout circuits. Even with the available number of focal plane pixels, the required number of photons for illuminating all the pixels may impose impractical requirements on the laser pulse energy or the receiver aperture size. Therefore, image resolution enhancement by means of a super-resolution algorithm in near real time presents a very attractive solution for a wide range of flash lidar applications. This paper describes a superresolution technique and illustrates its performance and merits for generating three-dimensional image frames at a video rate.
Ensuring Safety of Navigation: A Three-Tiered Approach
NASA Astrophysics Data System (ADS)
Johnson, S. D.; Thompson, M.; Brazier, D.
2014-12-01
The primary responsibility of the Hydrographic Department at the Naval Oceanographic Office (NAVOCEANO) is to support US Navy surface and sub-surface Safety of Navigation (SoN) requirements. These requirements are interpreted, surveys are conducted, and accurate products are compiled and archived for future exploitation. For a number of years NAVOCEANO has employed a two-tiered data-basing structure to support SoN. The first tier (Data Warehouse, or DWH) provides access to the full-resolution sonar and lidar data. DWH preserves the original data such that any scale product can be built. The second tier (Digital Bathymetric Database - Variable resolution, or DBDB-V) served as the final archive for SoN chart scale, gridded products compiled from source bathymetry. DBDB-V has been incorporated into numerous DoD tactical decision aids and serves as the foundation bathymetry for ocean modeling. With the evolution of higher density survey systems and the addition of high-resolution gridded bathymetry product requirements, a two-tiered model did not provide an efficient solution for SoN. The two-tiered approach required scientists to exploit full-resolution data in order to build any higher resolution product. A new perspective on the archival and exploitation of source data was required. This new perspective has taken the form of a third tier, the Navigation Surface Database (NSDB). NSDB is an SQLite relational database populated with International Hydrographic Organization (IHO), S-102 compliant Bathymetric Attributed Grids (BAGs). BAGs archived within NSDB are developed at the highest resolution that the collection sensor system can support and contain nodal estimates for depth, uncertainty, separation values and metadata. Gridded surface analysis efforts culminate in the generation of the source resolution BAG files and their storage within NSDB. Exploitation of these resources eliminates the time and effort needed to re-grid and re-analyze native source file formats.
Evaluating an image-fusion algorithm with synthetic-image-generation tools
NASA Astrophysics Data System (ADS)
Gross, Harry N.; Schott, John R.
1996-06-01
An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.
Numerical simulation of immiscible viscous fingering using adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Adam, A.; Salinas, P.; Percival, J. R.; Pavlidis, D.; Pain, C.; Muggeridge, A. H.; Jackson, M.
2015-12-01
Displacement of one fluid by another in porous media occurs in various settings including hydrocarbon recovery, CO2 storage and water purification. When the invading fluid is of lower viscosity than the resident fluid, the displacement front is subject to a Saffman-Taylor instability and is unstable to transverse perturbations. These instabilities can grow, leading to fingering of the invading fluid. Numerical simulation of viscous fingering is challenging. The physics is controlled by a complex interplay of viscous and diffusive forces and it is necessary to ensure physical diffusion dominates numerical diffusion to obtain converged solutions. This typically requires the use of high mesh resolution and high order numerical methods. This is computationally expensive. We demonstrate here the use of a novel control volume - finite element (CVFE) method along with dynamic unstructured mesh adaptivity to simulate viscous fingering with higher accuracy and lower computational cost than conventional methods. Our CVFE method employs a discontinuous representation for both pressure and velocity, allowing the use of smaller control volumes (CVs). This yields higher resolution of the saturation field which is represented CV-wise. Moreover, dynamic mesh adaptivity allows high mesh resolution to be employed where it is required to resolve the fingers and lower resolution elsewhere. We use our results to re-examine the existing criteria that have been proposed to govern the onset of instability.Mesh adaptivity requires the mapping of data from one mesh to another. Conventional methods such as consistent interpolation do not readily generalise to discontinuous fields and are non-conservative. We further contribute a general framework for interpolation of CV fields by Galerkin projection. The method is conservative, higher order and yields improved results, particularly with higher order or discontinuous elements where existing approaches are often excessively diffusive.
NASA Astrophysics Data System (ADS)
Devilliers, C.; Du Jeu, C.; Costes, V.; Suau, A.; Girault, N.; Cornillon, L.
2017-11-01
Space telescopes pupil diameter increases continuously to reach higher resolutions and associated optical scheme become more sensitive. As a consequence the size of these telescopes but also their stability requirements increase. Therefore, mass of space telescopes becomes a strong design driver to be still compatible with price competitive launcher capabilities. Moreover satellite agility requirements are more and more severe and instruments shall be compatible with quick evolution of thermal environment.
NASA Technical Reports Server (NTRS)
Ford, J. P.
1982-01-01
A survey conducted to evaluate user preference for resolution versus speckle relative to the geologic interpretability of spaceborne radar images is discussed. Thirteen different resolution/looks combinations are simulated from Seasat synthetic-aperture radar data of each of three test sites. The SAR images were distributed with questionnaires for analysis to 85 earth scientists. The relative discriminability of geologic targets at each test site for each simulation of resolution and speckle on the images is determined on the basis of a survey of the evaluations. A large majority of the analysts respond that for most targets a two-look image at the highest simulated resolution is best. For a constant data rate, a higher resolution is more important for target discrimination than a higher number of looks. It is noted that sand dunes require more looks than other geologic targets. At all resolutions, multiple-look images are preferred over the corresponding single-look image. In general, the number of multiple looks that is optimal for discriminating geologic targets is inversely related to the simulated resolution.
Advanced aerosense display interfaces
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.; Meyer, Frederick M.
1998-09-01
High-resolution display technologies are being developed to meet the ever-increasing demand for realistic detail. The requirement for evermore visual information exceeds the capacity of fielded aerospace display interfaces. In this paper we begin an exploration of display interfaces and evolving aerospace requirements. Current and evolving standards for avionics, commercial, and flat panel displays are summarized and compared to near term goals for military and aerospace applications. Aerospace and military applications prior to 2005 up to UXGA and digital HDTV resolution can be met by using commercial interface standard developments. Advanced aerospace requirements require yet higher resolutions (2560 X 2048 color pixels, 5120 X 4096 color pixels at 85 Hz, etc.) and necessitate the initiation of discussion herein of an 'ultra digital interface standard (UDIS)' which includes 'smart interface' features such as large memory and blazingly fast resizing microcomputer. Interface capacity, IT, increased about 105 from 1973 to 1998; 102 more is needed for UDIS.
The Inevitability of Conflict and the Importance of Its Resolution in Christian Higher Education
ERIC Educational Resources Information Center
Ennis, Leslie Sturdivant
2008-01-01
Among Christian adherents, the subject of conflict and its proper resolution has been a source of misunderstanding and angst for centuries. New Testament admonitions concerning the proper Christian life have traditionally focused on passivism and have been interpreted broadly by Christendom to require avoidance of all conflict as a virtue. The…
Examples of current radar technology and applications, chapter 5, part B
NASA Technical Reports Server (NTRS)
1975-01-01
Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m.
A digital gigapixel large-format tile-scan camera.
Ben-Ezra, M
2011-01-01
Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.
Allon, Ayala S.; Balaban, Halely; Luria, Roy
2014-01-01
In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM) by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across three experiments we presented the same novel complex items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item’s resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms. PMID:24734026
50 CFR 660.15 - Equipment requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... perceived weight of water, slime, mud, debris, or other materials. Scale printouts must show: (A) The vessel... with Pentium 75-MHz or higher. Random Access Memory (RAM) must have sufficient megabyte (MB) space to... space of 217 MB or greater. A CD-ROM drive with a Video Graphics Adapter (VGA) or higher resolution...
An Overview of Numerical Weather Prediction on Various Scales
NASA Astrophysics Data System (ADS)
Bao, J.-W.
2009-04-01
The increasing public need for detailed weather forecasts, along with the advances in computer technology, has motivated many research institutes and national weather forecasting centers to develop and run global as well as regional numerical weather prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for global models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution global and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.
Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction
Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver
2015-01-01
High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146
A Hydrogen and He Isotope Nanoprobe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Barney L.; Van Deusen, Stuart B.
Materials that incorporate hydrogen and helium isotopes are of great interest at Sandia and throughout the NNSA and DOE. The Ion Beam Lab at SNL-NM has invented techniques using micron to mm-size MeV ion beams to recoil these light isotopes (Elastic Recoil Detection or ERD) that can very accurately make such measurements. However, there are many measurements that would benefit NW and DOE that require much better resolution, such as the distribution of H isotopes (and 3He) in individual grains of materials relevant to TPBARs, H and He-embrittlement of weapon components important to Tritium Sustainment Programs, issues with GTSs, batteries…more » Higher resolution would also benefit the field of materials science in general. To address these and many other issues, nm-scale lateral resolution is required. This LDRD demonstrated that neutral H atoms could be recoiled through a thin film by 70 keV electrons and detected with a Channeltron electron multiplier (CEM). The electrons were steered away from the CEM by strong permanent magnets. This proved the feasibility that the high energy electrons from a transmissionelectron- microscope-TEM can potentially be used to recoil and subsequently detect (e-ERD), quantify and map the concentration of H and He isotopes with nm resolution. This discovery could lead to a TEM-based H/He-isotope nanoprobe with 1000x higher resolution than currently available.« less
Automation for Air Traffic Control: The Rise of a New Discipline
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Tobias, Leonard (Technical Monitor)
1997-01-01
The current debate over the concept of Free Flight has renewed interest in automated conflict detection and resolution in the enroute airspace. An essential requirement for effective conflict detection is accurate prediction of trajectories. Trajectory prediction is, however, an inexact process which accumulates errors that grow in proportion to the length of the prediction time interval. Using a model of prediction errors for the trajectory predictor incorporated in the Center-TRACON Automation System (CTAS), a computationally fast algorithm for computing conflict probability has been derived. Furthermore, a method of conflict resolution has been formulated that minimizes the average cost of resolution, when cost is defined as the increment in airline operating costs incurred in flying the resolution maneuver. The method optimizes the trade off between early resolution at lower maneuver costs but higher prediction error on the one hand and late resolution with higher maneuver costs but lower prediction errors on the other. The method determines both the time to initiate the resolution maneuver as well as the characteristics of the resolution trajectory so as to minimize the cost of the resolution. Several computational examples relevant to the design of a conflict probe that can support user-preferred trajectories in the enroute airspace will be presented.
Generating High-Temporal and Spatial Resolution TIR Image Data
NASA Astrophysics Data System (ADS)
Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.
2017-09-01
Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.
Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.
Jung, Phill Gu; Lee, Chi Hoon; Bae, Kong Myeong; Lee, Jae Min; Lee, Sang Min; Lim, Chang Hwy; Yun, Seungman; Kim, Ho Kyung; Ko, Jong Soo
2010-07-05
A flexible microdome-grooved Gd(2)O(2)S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.
MSE spectrograph optical design: a novel pupil slicing technique
NASA Astrophysics Data System (ADS)
Spanò, P.
2014-07-01
The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.
Hain, Christopher R; Anderson, Martha C
2017-10-16
Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.
Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system
NASA Astrophysics Data System (ADS)
Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi
2010-05-01
Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.
Du, Shichuan; Martinez, Aleix M.
2013-01-01
Abstract Facial expressions of emotion are essential components of human behavior, yet little is known about the hierarchical organization of their cognitive analysis. We study the minimum exposure time needed to successfully classify the six classical facial expressions of emotion (joy, surprise, sadness, anger, disgust, fear) plus neutral as seen at different image resolutions (240 × 160 to 15 × 10 pixels). Our results suggest a consistent hierarchical analysis of these facial expressions regardless of the resolution of the stimuli. Happiness and surprise can be recognized after very short exposure times (10–20 ms), even at low resolutions. Fear and anger are recognized the slowest (100–250 ms), even in high-resolution images, suggesting a later computation. Sadness and disgust are recognized in between (70–200 ms). The minimum exposure time required for successful classification of each facial expression correlates with the ability of a human subject to identify it correctly at low resolutions. These results suggest a fast, early computation of expressions represented mostly by low spatial frequencies or global configural cues and a later, slower process for those categories requiring a more fine-grained analysis of the image. We also demonstrate that those expressions that are mostly visible in higher-resolution images are not recognized as accurately. We summarize implications for current computational models. PMID:23509409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Said, A. H.; Sinn, H.; Divan, R.
2011-05-01
In this work new improvements related to the fabrication of spherical bent analyzers for 1 meV energy-resolution inelastic X-ray scattering spectroscopy are presented. The new method includes the use of a two-dimensional bender to achieve the required radius of curvature for X-ray analyzers. The advantage of this method is the ability to monitor the focus during bending, which leads to higher-efficiency analyzers.
NASA Astrophysics Data System (ADS)
Hummatov, Ruslan; Hall, John A.; Kim, Geon-Bo; Friedrich, Stephan; Cantor, Robin; Boyd, S. T. P.
2018-05-01
We are developing metallic magnetic calorimeters for high-resolution gamma-ray spectroscopy for non-destructive assay of nuclear materials. Absorbers for these higher-energy photons can require substantial thickness to achieve adequate stopping power. We developed a new absorber fabrication process using dry-film photoresists to electroform cantilevered, thick absorbers. Gamma detectors with these absorbers have an energy resolution of 38 eV FWHM at 60 keV. In this report, we summarize modifications to STARCryo's "Delta 1000" process for our devices and describe the new absorber fabrication process.
Temporal resolution for the perception of features and conjunctions.
Bodelón, Clara; Fallah, Mazyar; Reynolds, John H
2007-01-24
The visual system decomposes stimuli into their constituent features, represented by neurons with different feature selectivities. How the signals carried by these feature-selective neurons are integrated into coherent object representations is unknown. To constrain the set of possible integrative mechanisms, we quantified the temporal resolution of perception for color, orientation, and conjunctions of these two features. We find that temporal resolution is measurably higher for each feature than for their conjunction, indicating that time is required to integrate features into a perceptual whole. This finding places temporal limits on the mechanisms that could mediate this form of perceptual integration.
High-resolution low-dose scanning transmission electron microscopy.
Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning
2010-01-01
During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.
Computational analysis of high resolution unsteady airloads for rotor aeroacoustics
NASA Technical Reports Server (NTRS)
Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.
1994-01-01
The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yuxing; Fan, Jiwen; Xiao, Heng
Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less
Low frequency radio synthesis imaging of the galactic center region
NASA Astrophysics Data System (ADS)
Nord, Michael Evans
2005-11-01
The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74 MHz to extract three-dimensional data on the distribution of Galactic cosmic ray emissivity, a measurement possible only at low radio frequencies.
NASA Astrophysics Data System (ADS)
Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.
2017-03-01
X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.
A multi-resolution approach to electromagnetic modeling.
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu
2018-04-01
We present a multi-resolution approach for three-dimensional magnetotelluric forward modeling. Our approach is motivated by the fact that fine grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography, and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. This is especially true for forward modeling required in regularized inversion, where conductivity variations at depth are generally very smooth. With a conventional structured finite-difference grid the fine discretization required to adequately represent rapid variations near the surface are continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modeling is especially important for solving regularized inversion problems. We implement a multi-resolution finite-difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of sub-grids, with each sub-grid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modeling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modeling operators on interfaces between adjacent sub-grids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models show that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.
NASA Astrophysics Data System (ADS)
Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten
2013-04-01
The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.
Macro-actor execution on multilevel data-driven architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudiot, J.L.; Najjar, W.
1988-12-31
The data-flow model of computation brings to multiprocessors high programmability at the expense of increased overhead. Applying the model at a higher level leads to better performance but also introduces loss of parallelism. We demonstrate here syntax directed program decomposition methods for the creation of large macro-actors in numerical algorithms. In order to alleviate some of the problems introduced by the lower resolution interpretation, we describe a multi-level of resolution and analyze the requirements for its actual hardware and software integration.
NASA Astrophysics Data System (ADS)
Camarero, R.; Thiebaut, C.; Dejean, Ph.; Speciel, A.
2010-08-01
Future CNES high resolution instruments for remote sensing missions will lead to higher data-rates because of the increase in resolution and dynamic range. For example, the ground resolution improvement has induced a data-rate multiplied by 8 from SPOT4 to SPOT5 [1] and by 28 to PLEIADES-HR [2]. Innovative "smart" compression techniques will be then required, performing different types of compression inside a scene, in order to reach higher global compression ratios while complying with image quality requirements. This socalled "selective compression", allows important compression gains by detecting and then differently compressing the regions-of-interest (ROI) and non-interest in the image (e.g. higher compression ratios are assigned to the non-interesting data). Given that most of CNES high resolution images are cloudy [1], significant mass-memory and transmission gain could be reached by just detecting and suppressing (or compressing significantly) the areas covered by clouds. Since 2007, CNES works on a cloud detection module [3] as a simplification for on-board implementation of an already existing module used on-ground for PLEIADES-HR album images [4]. The different steps of this Support Vector Machine classifier have already been analyzed, for simplification and optimization, during this on-board implementation study: reflectance computation, characteristics vector computation (based on multispectral criteria) and computation of the SVM output. In order to speed up the hardware design phase, a new approach based on HLS [5] tools is being tested for the VHDL description stage. The aim is to obtain a bit-true VDHL design directly from a high level description language as C or Matlab/Simulink [6].
Cho, Sanghee; Grazioso, Ron; Zhang, Nan; Aykac, Mehmet; Schmand, Matthias
2011-12-07
The main focus of our study is to investigate how the performance of digital timing methods is affected by sampling rate, anti-aliasing and signal interpolation filters. We used the Nyquist sampling theorem to address some basic questions such as what will be the minimum sampling frequencies? How accurate will the signal interpolation be? How do we validate the timing measurements? The preferred sampling rate would be as low as possible, considering the high cost and power consumption of high-speed analog-to-digital converters. However, when the sampling rate is too low, due to the aliasing effect, some artifacts are produced in the timing resolution estimations; the shape of the timing profile is distorted and the FWHM values of the profile fluctuate as the source location changes. Anti-aliasing filters are required in this case to avoid the artifacts, but the timing is degraded as a result. When the sampling rate is marginally over the Nyquist rate, a proper signal interpolation is important. A sharp roll-off (higher order) filter is required to separate the baseband signal from its replicates to avoid the aliasing, but in return the computation will be higher. We demonstrated the analysis through a digital timing study using fast LSO scintillation crystals as used in time-of-flight PET scanners. From the study, we observed that there is no significant timing resolution degradation down to 1.3 Ghz sampling frequency, and the computation requirement for the signal interpolation is reasonably low. A so-called sliding test is proposed as a validation tool checking constant timing resolution behavior of a given timing pick-off method regardless of the source location change. Lastly, the performance comparison for several digital timing methods is also shown.
Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth
Brandt, Timothy D.; Spiegel, David S.
2014-01-01
The goal of finding and characterizing nearby Earth-like planets is driving many NASA high-contrast flagship mission concepts, the latest of which is known as the Advanced Technology Large-Aperture Space Telescope (ATLAST). In this article, we calculate the optimal spectral resolution R = λ/δλ and minimum signal-to-noise ratio per spectral bin (SNR), two central design requirements for a high-contrast space mission, to detect signatures of water, oxygen, and chlorophyll on an Earth twin. We first develop a minimally parametric model and demonstrate its ability to fit synthetic and observed Earth spectra; this allows us to measure the statistical evidence for each component’s presence. We find that water is the easiest to detect, requiring a resolution R ≳ 20, while the optimal resolution for oxygen is likely to be closer to R = 150, somewhat higher than the canonical value in the literature. At these resolutions, detecting oxygen will require approximately two times the SNR as water. Chlorophyll requires approximately six times the SNR as oxygen for an Earth twin, only falling to oxygen-like levels of detectability for a low cloud cover and/or a large vegetation covering fraction. This suggests designing a mission for sensitivity to oxygen and adopting a multitiered observing strategy, first targeting water, then oxygen on the more favorable planets, and finally chlorophyll on only the most promising worlds. PMID:25197095
Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth.
Brandt, Timothy D; Spiegel, David S
2014-09-16
The goal of finding and characterizing nearby Earth-like planets is driving many NASA high-contrast flagship mission concepts, the latest of which is known as the Advanced Technology Large-Aperture Space Telescope (ATLAST). In this article, we calculate the optimal spectral resolution R = λ/δλ and minimum signal-to-noise ratio per spectral bin (SNR), two central design requirements for a high-contrast space mission, to detect signatures of water, oxygen, and chlorophyll on an Earth twin. We first develop a minimally parametric model and demonstrate its ability to fit synthetic and observed Earth spectra; this allows us to measure the statistical evidence for each component's presence. We find that water is the easiest to detect, requiring a resolution R ≳ 20, while the optimal resolution for oxygen is likely to be closer to R = 150, somewhat higher than the canonical value in the literature. At these resolutions, detecting oxygen will require approximately two times the SNR as water. Chlorophyll requires approximately six times the SNR as oxygen for an Earth twin, only falling to oxygen-like levels of detectability for a low cloud cover and/or a large vegetation covering fraction. This suggests designing a mission for sensitivity to oxygen and adopting a multitiered observing strategy, first targeting water, then oxygen on the more favorable planets, and finally chlorophyll on only the most promising worlds.
Sensor and computing resource management for a small satellite
NASA Astrophysics Data System (ADS)
Bhatia, Abhilasha; Goehner, Kyle; Sand, John; Straub, Jeremy; Mohammad, Atif; Korvald, Christoffer; Nervold, Anders Kose
A small satellite in a low-Earth orbit (e.g., approximately a 300 to 400 km altitude) has an orbital velocity in the range of 8.5 km/s and completes an orbit approximately every 90 minutes. For a satellite with minimal attitude control, this presents a significant challenge in obtaining multiple images of a target region. Presuming an inclination in the range of 50 to 65 degrees, a limited number of opportunities to image a given target or communicate with a given ground station are available, over the course of a 24-hour period. For imaging needs (where solar illumination is required), the number of opportunities is further reduced. Given these short windows of opportunity for imaging, data transfer, and sending commands, scheduling must be optimized. In addition to the high-level scheduling performed for spacecraft operations, payload-level scheduling is also required. The mission requires that images be post-processed to maximize spatial resolution and minimize data transfer (through removing overlapping regions). The payload unit includes GPS and inertial measurement unit (IMU) hardware to aid in image alignment for the aforementioned. The payload scheduler must, thus, split its energy and computing-cycle budgets between determining an imaging sequence (required to capture the highly-overlapping data required for super-resolution and adjacent areas required for mosaicking), processing the imagery (to perform the super-resolution and mosaicking) and preparing the data for transmission (compressing it, etc.). This paper presents an approach for satellite control, scheduling and operations that allows the cameras, GPS and IMU to be used in conjunction to acquire higher-resolution imagery of a target region.
Application of the phase extension method in virus crystallography.
Reddy, Vijay S
2016-01-01
The procedure for phase extension (PX) involves gradually extending the initial phases from low resolution (e.g., ~8Å) to the high-resolution limit of a diffraction data set. Structural redundancy present in the viral capsids that display icosahedral symmetry results in a high degree of non-crystallographic symmetry (NCS), which in turn translates into higher phasing power and is critical for improving and extending phases to higher resolution. Greater completeness of the diffraction data and determination of a molecular replacement solution, which entails accurately identifying the virus particle orientation(s) and position(s), are important for the smooth progression of the PX procedure. In addition, proper definition of a molecular mask (envelope) around the NCS-asymmetric unit has been found to be important for the success of density modification procedures, such as density averaging and solvent flattening. Regardless of the degree of NCS, the PX method appears to work well in all space groups, provided an accurate molecular mask is used along with reasonable initial phases. However, in the cases with space group P1, in addition to requiring a molecular mask, starting the phase extension at a higher resolution (e.g., 6Å) overcame the previously reported problems due to Babinet phases and phase flipping errors.
An ex vivo rat eye model to aid development of high-resolution retina imaging devices for rodents
NASA Astrophysics Data System (ADS)
van Oterendorp, Christian; Martin, Keith R.; Zhong, Jiang Jian; Diaz-Santana, Luis
2010-09-01
High resolution in vivo retinal imaging in rodents is becoming increasingly important in eye research. Development of suitable imaging devices currently requires many lengthy animal procedures. We present an ex vivo rat model eye with fluorescently labelled retinal ganglion cells (RGC) and nerve fibre bundles that reduces the need for animal procedures while preserving key properties of the living rat eye. Optical aberrations and scattering of four model eyes and eight live rat eyes were quantified using a Shack-Hartmann sensor. Fluorescent images from RGCs were obtained using a prototype scanning laser ophthalmoscope. The wavefront aberration root mean square value without defocus did not significantly differ between model and living eyes. Higher order aberrations were slightly higher but RGC image quality was comparable to published in vivo work. Overall, the model allows a large reduction in number and duration of animal procedures required to develop new in vivo retinal imaging devices.
A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England
NASA Astrophysics Data System (ADS)
Komurcu, M.; Huber, M.
2016-12-01
Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Omari, Kamel; Iourin, Oleg; Kadlec, Jan
2014-08-01
The sulfur SAD phasing method was successfully used to determine the structure of the N-terminal domain of HCV E1 from low-resolution diffracting crystals by combining data from 32 crystals. Single-wavelength anomalous dispersion of S atoms (S-SAD) is an elegant phasing method to determine crystal structures that does not require heavy-atom incorporation or selenomethionine derivatization. Nevertheless, this technique has been limited by the paucity of the signal at the usual X-ray wavelengths, requiring very accurate measurement of the anomalous differences. Here, the data collection and structure solution of the N-terminal domain of the ectodomain of HCV E1 from crystals that diffractedmore » very weakly is reported. By combining the data from 32 crystals, it was possible to solve the sulfur substructure and calculate initial maps at 7 Å resolution, and after density modication and phase extension using a higher resolution native data set to 3.5 Å resolution model building was achievable.« less
A multi-resolution approach to electromagnetic modelling
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu
2018-07-01
We present a multi-resolution approach for 3-D magnetotelluric forward modelling. Our approach is motivated by the fact that fine-grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. With a conventional structured finite difference grid, the fine discretization required to adequately represent rapid variations near the surface is continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modelling is especially important for solving regularized inversion problems. We implement a multi-resolution finite difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of subgrids, with each subgrid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modelling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modelling operators on interfaces between adjacent subgrids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models shows that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.
Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne
2015-01-01
The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic Exploration (REGAE) are given that show the significantly reduced multiple electron scattering problem in this regime, which opens up micron scale systems, notably solution phase chemistry, to atomically resolved structural dynamics.
Landsat multispectral sharpening using a sensor system model and panchromatic image
Lemeshewsky, G.P.; ,
2003-01-01
The thematic mapper (TM) sensor aboard Landsats 4, 5 and enhanced TM plus (ETM+) on Landsat 7 collect imagery at 30-m sample distance in six spectral bands. New with ETM+ is a 15-m panchromatic (P) band. With image sharpening techniques, this higher resolution P data, or as an alternative, the 10-m (or 5-m) P data of the SPOT satellite, can increase the spatial resolution of the multispectral (MS) data. Sharpening requires that the lower resolution MS image be coregistered and resampled to the P data before high spatial frequency information is transferred to the MS data. For visual interpretation and machine classification tasks, it is important that the sharpened data preserve the spectral characteristics of the original low resolution data. A technique was developed for sharpening (in this case, 3:1 spatial resolution enhancement) visible spectral band data, based on a model of the sensor system point spread function (PSF) in order to maintain spectral fidelity. It combines high-pass (HP) filter sharpening methods with iterative image restoration to reduce degradations caused by sensor-system-induced blurring and resembling. Also there is a spectral fidelity requirement: sharpened MS when filtered by the modeled degradations should reproduce the low resolution source MS. Quantitative evaluation of sharpening performance was made by using simulated low resolution data generated from digital color-IR aerial photography. In comparison to the HP-filter-based sharpening method, results for the technique in this paper with simulated data show improved spectral fidelity. Preliminary results with TM 30-m visible band data sharpened with simulated 10-m panchromatic data are promising but require further study.
Kim, Dong-Keun; Yoo, Sun K; Kim, Sun H
2005-01-01
The instant transmission of radiological images may be important for making rapid clinical decisions about emergency patients. We have examined an instant image transfer system based on a personal digital assistant (PDA) phone with a built-in camera. Images displayed on a picture archiving and communication systems (PACS) monitor can be captured by the camera in the PDA phone directly. Images can then be transmitted from an emergency centre to a remote physician via a wireless high-bandwidth network (CDMA 1 x EVDO). We reviewed the radiological lesions in 10 normal and 10 abnormal cases produced by modalities such as computerized tomography (CT), magnetic resonance (MR) and digital angiography. The images were of 24-bit depth and 1,144 x 880, 1,120 x 840, 1,024 x 768, 800 x 600, 640 x 480 and 320 x 240 pixels. Three neurosurgeons found that for satisfactory remote consultation a minimum size of 640 x 480 pixels was required for CT and MR images and 1,024 x 768 pixels for angiography images. Although higher resolution produced higher clinical satisfaction, it also required more transmission time. At the limited bandwidth employed, higher resolutions could not be justified.
Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach
NASA Astrophysics Data System (ADS)
Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai
2006-01-01
With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.
High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy
Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; ...
2015-02-17
A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 10 4 achieved routinely today to well above 10 5. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations inmore » matter. These excitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.« less
Dictionary-based image reconstruction for superresolution in integrated circuit imaging.
Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim
2015-06-01
Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.
The viability of ADVANTG deterministic method for synthetic radiography generation
NASA Astrophysics Data System (ADS)
Bingham, Andrew; Lee, Hyoung K.
2018-07-01
Fast simulation techniques to generate synthetic radiographic images of high resolution are helpful when new radiation imaging systems are designed. However, the standard stochastic approach requires lengthy run time with poorer statistics at higher resolution. The investigation of the viability of a deterministic approach to synthetic radiography image generation was explored. The aim was to analyze a computational time decrease over the stochastic method. ADVANTG was compared to MCNP in multiple scenarios including a small radiography system prototype, to simulate high resolution radiography images. By using ADVANTG deterministic code to simulate radiography images the computational time was found to decrease 10 to 13 times compared to the MCNP stochastic approach while retaining image quality.
Inexpensive Neutron Imaging Cameras Using CCDs for Astronomy
NASA Astrophysics Data System (ADS)
Hewat, A. W.
We have developed inexpensive neutron imaging cameras using CCDs originally designed for amateur astronomical observation. The low-light, high resolution requirements of such CCDs are similar to those for neutron imaging, except that noise as well as cost is reduced by using slower read-out electronics. For example, we use the same 2048x2048 pixel ;Kodak; KAI-4022 CCD as used in the high performance PCO-2000 CCD camera, but our electronics requires ∼5 sec for full-frame read-out, ten times slower than the PCO-2000. Since neutron exposures also require several seconds, this is not seen as a serious disadvantage for many applications. If higher frame rates are needed, the CCD unit on our camera can be easily swapped for a faster readout detector with similar chip size and resolution, such as the PCO-2000 or the sCMOS PCO.edge 4.2.
Chemically amplified i-line positive resist for next-generation flat panel display
NASA Astrophysics Data System (ADS)
Lee, Hsing-Chieh; Lu, Ying-Hao; Huang, Shin-Yih; Lan, Wei-Jen; Hanabata, Makoto
2017-03-01
Traditional diazonaphthoquinone (DNQ) positive photoresists are widely used for TFT-LCD array process. Current LTPS technology has more than 600ppi resolution is required for small or middle-sized TFT liquid crystal display panels. One of the ways to enhance resolution is to apply i-line single exposure system instead of traditional g/h/ibroadband exposure system. We have been developing i-line chemically amplified photoresist ECA 200 series for the next generation flat panel display (FPD). ECA 200 consists of three components: a phenol resin, a photo acid generator and dissolution enhancer. We applied two different types of dissolution enhancers with two different kinds of protected groups to our resist materials. As a result, we achieved higher sensitivity, higher resolution, less footing of the resist profile and reduced standing wave effect compared with traditional DNQ photoresists. In addition, we have found further property of photoresist that does not need post exposure bake (PEB) process. This resist has a great advantage at most of current panel plants without PEB process.
In vivo correlation mapping microscopy
NASA Astrophysics Data System (ADS)
McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin
2016-04-01
To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.
Castellano-Muñoz, Manuel; Peng, Anthony Wei; Salles, Felipe T.; Ricci, Anthony J.
2013-01-01
Confocal fluorescence microscopy is a broadly used imaging technique that enhances the signal-to-noise ratio by removing out of focal plane fluorescence. Confocal microscopes come with a variety of modifications depending on the particular experimental goals. Microscopes, illumination pathways, and light collection were originally focused upon obtaining the highest resolution image possible, typically on fixed tissue. More recently, live-cell confocal imaging has gained importance. Since measured signals are often rapid or transient, thus requiring higher sampling rates, specializations are included to enhance spatial and temporal resolution while maintaining tissue viability. Thus, a balance between image quality, temporal resolution, and tissue viability is needed. A subtype of confocal imaging, termed swept field confocal (SFC) microscopy, can image live cells at high rates while maintaining confocality. SFC systems can use a pinhole array to obtain high spatial resolution, similar to spinning disc systems. In addition, SFC imaging can achieve faster rates by using a slit to sweep the light across the entire image plane, thus requiring a single scan to generate an image. Coupled to a high-speed charge-coupled device camera and a laser illumination source, images can be obtained at greater than 1,000 frames per second while maintaining confocality. PMID:22831554
Real-Time Nanoscopy by Using Blinking Enhanced Quantum Dots
Watanabe, Tomonobu M.; Fukui, Shingo; Jin, Takashi; Fujii, Fumihiko; Yanagida, Toshio
2010-01-01
Superresolution optical microscopy (nanoscopy) is of current interest in many biological fields. Superresolution optical fluctuation imaging, which utilizes higher-order cumulant of fluorescence temporal fluctuations, is an excellent method for nanoscopy, as it requires neither complicated optics nor illuminations. However, it does need an impractical number of images for real-time observation. Here, we achieved real-time nanoscopy by modifying superresolution optical fluctuation imaging and enhancing the fluctuation of quantum dots. Our developed quantum dots have higher blinking than commercially available ones. The fluctuation of the blinking improved the resolution when using a variance calculation for each pixel instead of a cumulant calculation. This enabled us to obtain microscopic images with 90-nm and 80-ms spatial-temporal resolution by using a conventional fluorescence microscope without any optics or devices. PMID:20923631
Ultra high spatial and temporal resolution breast imaging at 7T.
van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J
2013-04-01
There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.
Design of a Holonic Control Architecture for Distributed Sensor Management
2009-09-01
Tracking tasks require only intermit - tent access to the sensors to maintain a given track quality. The higher the specified quality, the more often...resolution of the sensor (i.e., sensor mode), which can be adjusted to compensate for fast moving targets tracked over long ranges, or slower moving...but provides higher data update rates that are beneficial when tracking fast agile targets (i.e., a fighter). Table A.2 illustrates the dependence of
Boundaries of mass resolution in native mass spectrometry.
Lössl, Philip; Snijder, Joost; Heck, Albert J R
2014-06-01
Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values, requiring special mass analyzers for their detection. Depending on the particular mass analyzer used, instrumental mass resolution does often decrease at higher m/z but can still be above a couple of thousand at m/z 5000. However, the mass resolving power obtained on charge states of protein complexes in this m/z region is experimentally found to remain well below the inherent instrument resolution of the mass analyzers employed. Here, we inquire into reasons for this discrepancy and ask how native MS would benefit from higher instrumental mass resolution. To answer this question, we discuss advantages and shortcomings of mass analyzers used to study intact biomolecules and biomolecular complexes in their native state, and we review which other factors determine mass resolving power in native MS analyses. Recent examples from the literature are given to illustrate the current status and limitations.
Functional cardiac magnetic resonance microscopy
NASA Astrophysics Data System (ADS)
Brau, Anja Christina Sophie
2003-07-01
The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.
Toward a RPC-based muon tomography system for cargo containers.
NASA Astrophysics Data System (ADS)
Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.
2014-10-01
A large area scanner for cosmic muon tomography is currently being developed at University of Bristol. Thanks to their abundance and penetrating power, cosmic muons have been suggested as ideal candidates to scan large containers in search of special nuclear materials, which are characterized by high-Z and high density. The feasibility of such a scanner heavily depends on the detectors used to track the muons: for a typical container, the minimum required sensitive area is of the order of 100 2. The spatial resolution required depends on the geometrical configuration of the detectors. For practical purposes, a resolution of the order of 1 mm or better is desirable. A good time resolution can be exploited to provide momentum information: a resolution of the order of nanoseconds can be used to separate sub-GeV muons from muons with higher energies. Resistive plate chambers have a low cost per unit area and good spatial and time resolution; these features make them an excellent choice as detectors for muon tomography. In order to instrument a large area demonstrator we have produced 25 new readout boards and 30 glass RPCs. The RPCs measure 1800 mm× 600 mm and are read out using 1.68 mm pitch copper strips. The chambers were tested with a standardized procedure, i.e. without optimizing the working parameters to take into account differences in the manufacturing process, and the results show that the RPCs have an efficiency between 87% and 95%. The readout electronics show a signal to noise ratio greater than 20 for minimum ionizing particles. Spatial resolution better than 500 μm can easily be achieved using commercial read out ASICs. These results are better than the original minimum requirements to pass the tests and we are now ready to install the detectors.
Gradient and shim technologies for ultra high field MRI
Winkler, Simone A.; Schmitt, Franz; Landes, Hermann; DeBever, Josh; Wade, Trevor; Alejski, Andrew
2017-01-01
Ultra High Field (UHF) MRI requires improved gradient and shim performance to fully realize the promised gains (SNR as well as spatial, spectral, diffusion resolution) that higher main magnetic fields offer. Both the more challenging UHF environment by itself, as well as the higher currents used in high performance coils, require a deeper understanding combined with sophisticated engineering modeling and construction, to optimize gradient and shim hardware for safe operation and for highest image quality. This review summarizes the basics of gradient and shim technologies, and outlines a number of UHF-related challenges and solutions. In particular, Lorentz forces, vibroacoustics, eddy currents, and peripheral nerve stimulation are discussed. Several promising UHF-relevant gradient concepts are described, including insertable gradient coils aimed at higher performance neuroimaging. PMID:27915120
Detection performance in clutter with variable resolution
NASA Astrophysics Data System (ADS)
Schmieder, D. E.; Weathersby, M. R.
1983-07-01
Experiments were conducted to determine the influence of background clutter on target detection criteria. The experiment consisted of placing observers in front of displayed images on a TV monitor. Observer ability to detect military targets embedded in simulated natural and manmade background clutter was measured when there was unlimited viewing time. Results were described in terms of detection probability versus target resolution for various signal to clutter ratios (SCR). The experiments were preceded by a search for a meaningful clutter definition. The selected definition was a statistical measure computed by averaging the standard deviation of contiguous scene cells over the whole scene. The cell size was comparable to the target size. Observer test results confirmed the expectation that the resolution required for a given detection probability was a continuum function of the clutter level. At the lower SCRs the resolution required for a high probability of detection was near 6 line pairs per target (LP/TGT), while at the higher SCRs it was found that a resoluton of less than 0.25 LP/TGT would yield a high probability of detection. These results are expected to aid in target acquisition performance modeling and to lead to improved specifications for imaging automatic target screeners.
An Experiment Quantifying The Effect Of Clutter On Target Detection
NASA Astrophysics Data System (ADS)
Weathersby, Marshall R.; Schmieder, David E.
1985-01-01
Experiments were conducted to determine the influence of background clutter on target detection criteria. The experiment consisted of placing observers in front of displayed images on a TV monitor. Observer ability to detect military targets embedded in simulated natural and manmade background clutter was measured when there was unlimited viewing time. Results were described in terms of detection probability versus target resolution for various signal to clutter ratios (SCR). The experiments were preceded by a search for a meaningful clutter definition. The selected definition was a statistical measure computed by averaging the standard deviation of contiguous scene cells over the whole scene. The cell size was comparable to the target size. Observer test results confirmed the expectation that the resolution required for a given detection probability was a continuum function of the clutter level. At the lower SCRs the resolution required for a high probability of detection was near 6 lines pairs per target (LP/TGT), while at the higher SCRs it was found that a resolution of less than 0.25 LP/TGT would yield a high probability of detection. These results are expected to aid in target acquisition performance modeling and to lead to improved specifications for imaging automatic target screeners.
Gokirmak, Ali; Inaltekin, Hazer; Tiwari, Sandip
2009-08-19
A high resolution capacitance-voltage (C-V) characterization technique, enabling direct measurement of electronic properties at the nanoscale in devices such as nanowire field effect transistors (FETs) through the use of random fluctuations, is described. The minimum noise level required for achieving sub-aF (10(-18) F) resolution, the leveraging of stochastic resonance, and the effect of higher levels of noise are illustrated through simulations. The non-linear DeltaC(gate-source/drain)-V(gate) response of FETs is utilized to determine the inversion layer capacitance (C(inv)) and carrier mobility. The technique is demonstrated by extracting the carrier concentration and effective electron mobility in a nanoscale Si FET with C(inv) = 60 aF.
Scaduto, David A; Tousignant, Olivier; Zhao, Wei
2017-08-01
Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.
Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope
NASA Technical Reports Server (NTRS)
Shealy, David L.; Wang, Cheng; Hoover, Richard B.
1994-01-01
This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.
NASA Technical Reports Server (NTRS)
Kenny, Caitlin; Fern, Lisa
2012-01-01
Continuing demand for the use of Unmanned Aircraft Systems (UAS) has put increasing pressure on operations in civil airspace. The need to fly UAS in the National Airspace System (NAS) in order to perform missions vital to national security and defense, emergency management, and science is increasing at a rapid pace. In order to ensure safe operations in the NAS, operators of unmanned aircraft, like those of manned aircraft, may be required to maintain separation assurance and avoid loss of separation with other aircraft while performing their mission tasks. This experiment investigated the effects of varying levels of automation on UAS operator performance and workload while responding to conflict resolution instructions provided by the Tactical Collision Avoidance System II (TCAS II) during a UAS mission in high-density airspace. The purpose of this study was not to investigate the safety of using TCAS II on UAS, but rather to examine the effect of automation on the ability of operators to respond to traffic collision alerts. Six licensed pilots were recruited to act as UAS operators for this study. Operators were instructed to follow a specified mission flight path, while maintaining radio contact with Air Traffic Control and responding to TCAS II resolution advisories. Operators flew four, 45 minute, experimental missions with four different levels of automation: Manual, Knobs, Management by Exception, and Fully Automated. All missions included TCAS II Resolution Advisories (RAs) that required operator attention and rerouting. Operator compliance and reaction time to RAs was measured, and post-run NASA-TLX ratings were collected to measure workload. Results showed significantly higher compliance rates, faster responses to TCAS II alerts, as well as less preemptive operator actions when higher levels of automation are implemented. Physical and Temporal ratings of workload were significantly higher in the Manual condition than in the Management by Exception and Fully Automated conditions.
Segmented X-Ray Optics for Future Space Telescopes
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.
2013-01-01
Lightweight and high resolution mirrors are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The slumped glass mirror technology in development at NASA GSFC aims to build X-ray mirror modules with an area to mass ratio of approx.17 sq cm/kg at 1 keV and a resolution of 10 arc-sec Half Power Diameter (HPD) or better at an affordable cost. As the technology nears the performance requirements, additional engineering effort is needed to ensure the modules are compatible with space-flight. This paper describes Flight Mirror Assembly (FMA) designs for several X-ray astrophysics missions studied by NASA and defines generic driving requirements and subsequent verification tests necessary to advance technology readiness for mission implementation. The requirement to perform X-ray testing in a horizontal beam, based on the orientation of existing facilities, is particularly burdensome on the mirror technology, necessitating mechanical over-constraint of the mirror segments and stiffening of the modules in order to prevent self-weight deformation errors from dominating the measured performance. This requirement, in turn, drives the mass and complexity of the system while limiting the testable angular resolution. Design options for a vertical X-ray test facility alleviating these issues are explored. An alternate mirror and module design using kinematic constraint of the mirror segments, enabled by a vertical test facility, is proposed. The kinematic mounting concept has significant advantages including potential for higher angular resolution, simplified mirror integration, and relaxed thermal requirements. However, it presents new challenges including low vibration modes and imperfections in kinematic constraint. Implementation concepts overcoming these challenges are described along with preliminary test and analysis results demonstrating the feasibility of kinematically mounting slumped glass mirror segments.
NASA Astrophysics Data System (ADS)
Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.
2017-12-01
A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This enables us to accurately build the relationship between LST, air temperature, and the heat index in the future.
Image quality prediction: an aid to the Viking Lander imaging investigation on Mars.
Huck, F O; Wall, S D
1976-07-01
Two Viking spacecraft scheduled to land on Mars in the summer of 1976 will return multispectral panoramas of the Martian surface with resolutions 4 orders of magnitude higher than have been previously obtained and stereo views with resolutions approaching that of the human eye. Mission constraints and uncertainties require a carefully planned imaging investigation that is supported by a computer model of camera response and surface features to aid in diagnosing camera performance, in establishing a preflight imaging strategy, and in rapidly revising this strategy if pictures returned from Mars reveal unfavorable or unanticipated conditions.
Li, Yihan; Kuse, Naoya; Fermann, Martin
2017-08-07
A high-speed ultra-wideband microwave spectral scanning system is proposed and experimentally demonstrated. Utilizing coherent dual electro-optical frequency combs and a recirculating optical frequency shifter, the proposed system realizes wavelength- and time-division multiplexing at the same time, offering flexibility between scan speed and size, weight and power requirements (SWaP). High-speed spectral scanning spanning from ~1 to 8 GHz with ~1.2 MHz spectral resolution is achieved experimentally within 14 µs. The system can be easily scaled to higher bandwidth coverage, faster scanning speed or finer spectral resolution with suitable hardware.
Determining neutrino mass from the cosmic microwave background alone.
Kaplinghat, Manoj; Knox, Lloyd; Song, Yong-Seon
2003-12-12
Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).
Study of a quasi-microscope design for planetary landers
NASA Technical Reports Server (NTRS)
Giat, O.; Brown, E. B.
1973-01-01
The Viking Lander fascimile camera, in its present form, provides for a minimum object distance of 1.9 meters, at which distance its resolution of 0.0007 radian provides an object resolution of 1.33 millimeters. It was deemed desirable, especially for follow-on Viking missions, to provide means for examing Martian terrain at resolutions considerably higher than that now provided. This led to the concept of quasi-microscope, an attachment to be used in conjunction with the fascimile camera to convert it to a low power microscope. The results are reported of an investigation to consider alternate optical configurations for the quasi-microscope and to develop optical designs for the selected system or systems. Initial requirements included consideration of object resolutions in the range of 2 to 50 micrometers, an available field of view of the order of 500 pixels, and no significant modifications to the fascimile camera.
Digital orthoimagery base specification V1.0
Rufe, Philip P.
2014-01-01
The resolution requirement for orthoimagery in support of the The National Map of the U.S. Geological Survey (USGS) is 1 meter. However, as the Office of Management and Budget A-16 designated Federal agency responsible for base orthoimagery, the USGS National Geospatial Program (NGP) has developed this base specification to include higher resolution orthoimagery. Many Federal, State, and local programs use high-resolution orthoimagery for various purposes including critical infrastructure management, vector data updates, land-use analysis, natural resource inventory, and extraction of data. The complex nature of large-area orthoimagery datasets, combined with the broad interest in orthoimagery, which is of consistent quality and spatial accuracy, requires high-resolution orthoimagery to meet or exceed the format and content outlined in this specification. The USGS intends to use this specification primarily to create consistency across all NGP funded and managed orthoimagery collections, in particular, collections in support of the National Digital Orthoimagery Program (NDOP). In the absence of other comprehensive specifications or standards, the USGS intends that this specification will, to the highest degree practical, be adopted by other USGS programs and mission areas, and by other Federal agencies. This base specification, defining minimum parameters for orthoimagery data collection. Local conditions in any given project area, specialized applications for the data, or the preferences of cooperators, may mandate more stringent requirements. The USGS fully supports the acquisition of more detailed, accurate, or value-added data that exceed the base specification outlined herein. A partial list of common “buy-up” options is provided in appendix 1 for those areas and projects that require more stringent or expanded specifications.
DMI's Baltic Sea Coastal operational forecasting system
NASA Astrophysics Data System (ADS)
Murawski, Jens; Berg, Per; Weismann Poulsen, Jacob
2017-04-01
Operational forecasting is challenged with bridging the gap between the large scales of the driving weather systems and the local, human scales of the model applications. The limit of what can be represented by local model has been continuously shifted to higher and higher spatial resolution, with the aim to better resolve the local dynamic and to make it possible to describe processes that could only be parameterised in older versions, with the ultimate goal to improve the quality of the forecast. Current hardware trends demand a str onger focus on the development of efficient, highly parallelised software and require a refactoring of the code with a solid focus on portable performance. The gained performance can be used for running high resolution model with a larger coverage. Together with the development of efficient two-way nesting routines, this has made it possible to approach the near-coastal zone with model applications that can run in a time effective way. Denmarks Meteorological Institute uses the HBM(1) ocean circulation model for applications that covers the entire Baltic Sea and North Sea with an integrated model set-up that spans the range of horizontal resolution from 1nm for the entire Baltic Sea to approx. 200m resolution in local fjords (Limfjord). For the next model generation, the high resolution set-ups are going to be extended and new high resolution domains in coastal zones are either implemented or tested for operational use. For the first time it will be possible to cover large stretches of the Baltic coastal zone with sufficiently high resolution to model the local hydrodynamic adequately. (1) HBM stands for HIROMB-BOOS-Model, whereas HIROMB stands for "High Resolution Model for the Baltic Sea" and BOOS stands for "Baltic Operational Oceanography System".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti
Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei ofmore » fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.« less
An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline
2010-01-01
High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.
Takeshima, T; Takahashi, T; Yamashita, J; Okada, Y; Watanabe, S
2018-05-25
Multi-emitter fitting algorithms have been developed to improve the temporal resolution of single-molecule switching nanoscopy, but the molecular density range they can analyse is narrow and the computation required is intensive, significantly limiting their practical application. Here, we propose a computationally fast method, wedged template matching (WTM), an algorithm that uses a template matching technique to localise molecules at any overlapping molecular density from sparse to ultrahigh density with subdiffraction resolution. WTM achieves the localization of overlapping molecules at densities up to 600 molecules μm -2 with a high detection sensitivity and fast computational speed. WTM also shows localization precision comparable with that of DAOSTORM (an algorithm for high-density super-resolution microscopy), at densities up to 20 molecules μm -2 , and better than DAOSTORM at higher molecular densities. The application of WTM to a high-density biological sample image demonstrated that it resolved protein dynamics from live cell images with subdiffraction resolution and a temporal resolution of several hundred milliseconds or less through a significant reduction in the number of camera images required for a high-density reconstruction. WTM algorithm is a computationally fast, multi-emitter fitting algorithm that can analyse over a wide range of molecular densities. The algorithm is available through the website. https://doi.org/10.17632/bf3z6xpn5j.1. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.
Mask data processing in the era of multibeam writers
NASA Astrophysics Data System (ADS)
Abboud, Frank E.; Asturias, Michael; Chandramouli, Maesh; Tezuka, Yoshihiro
2014-10-01
Mask writers' architectures have evolved through the years in response to ever tightening requirements for better resolution, tighter feature placement, improved CD control, and tolerable write time. The unprecedented extension of optical lithography and the myriad of Resolution Enhancement Techniques have tasked current mask writers with ever increasing shot count and higher dose, and therefore, increasing write time. Once again, we see the need for a transition to a new type of mask writer based on massively parallel architecture. These platforms offer a step function improvement in both dose and the ability to process massive amounts of data. The higher dose and almost unlimited appetite for edge corrections open new windows of opportunity to further push the envelope. These architectures are also naturally capable of producing curvilinear shapes, making the need to approximate a curve with multiple Manhattan shapes unnecessary.
Multistage remote sensing: toward an annual national inventory
Raymond L. Czaplewski
1999-01-01
Remote sensing can improve efficiency of statistical information. Landsat data can identify and map a few broad categories of forest cover and land use. However, more-detailed information requires a sample of higher-resolution imagery, which costs less than field data but considerably more than Landsat data. A national remote sensing program would be a major...
USDA-ARS?s Scientific Manuscript database
The rapid release of tight-binding inhibitors from dead-end Rubisco complexes requires the activity of Rubisco activase, an AAA+ ATPase that utilizes chemo-mechanical energy to catalyze the reactivation of Rubisco. Activase is thought to play a central role in coordinating the rate of CO2 fixation w...
Development of an autonomous video rendezvous and docking system, phase 3
NASA Technical Reports Server (NTRS)
Tietz, J. C.
1984-01-01
Field-of-view limitations proved troublesome. Higher resolution was required. Side thrusters were too weak. The strategy logic was improved and the Kalman filter was augmented to estimate target attitude and tumble rate. Two separate filters were used. The new filter estimates target attitude and angular momentum. The Newton-Raphson iteration improves image interpretation.
The effects of spatial sampling choices on MR temperature measurements.
Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L
2011-02-01
The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.
Tests of high-resolution simulations over a region of complex terrain in Southeast coast of Brazil
NASA Astrophysics Data System (ADS)
Chou, Sin Chan; Luís Gomes, Jorge; Ristic, Ivan; Mesinger, Fedor; Sueiro, Gustavo; Andrade, Diego; Lima-e-Silva, Pedro Paulo
2013-04-01
The Eta Model is used operationally by INPE at the Centre for Weather Forecasts and Climate Studies (CPTEC) to produce weather forecasts over South America since 1997. The model has gone through upgrades along these years. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain where it can rise from sea level up to about 1000 m. Accurate near-surface wind direction and magnitude are needed for the power plant emergency plan. Besides, the region suffers from frequent events of floods and landslides, therefore accurate local forecasts are required for disaster warnings. The objective of this work is to carry out a series of numerical experiments to test and evaluate high resolution simulations in this complex area. Verification of model runs uses observations taken from the nuclear power plant and higher resolution reanalyses data. The runs were tested in a period when flow was predominately forced by local conditions and in a period forced by frontal passage. The Eta Model was configured initially with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The series of experiments consists of replacing surface layer stability function, adjusting cloud microphysics scheme parameters, further increasing vertical and horizontal resolutions. By replacing the stability function for the stable conditions substantially increased the katabatic winds and verified better against the tower wind data. Precipitation produced by the model was excessive in the region. Increasing vertical resolution to 60 layers caused a further increase in precipitation production. This excessive precipitation was reduced by adjusting some parameters in the cloud microphysics scheme. Precipitation overestimate still occurs and further tests are still necessary. The increase of horizontal resolution to 1 km required adjusting model diffusion parameters and refining divergence calculations. Available observations in the region for a thorough evaluation is a major constraint.
Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi
2018-01-19
An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.
High resolution imaging of a subsonic projectile using automated mirrors with large aperture
NASA Astrophysics Data System (ADS)
Tateno, Y.; Ishii, M.; Oku, H.
2017-02-01
Visual tracking of high-speed projectiles is required for studying the aerodynamics around the objects. One solution to this problem is a tracking method based on the so-called 1 ms Auto Pan-Tilt (1ms-APT) system that we proposed in previous work, which consists of rotational mirrors and a high-speed image processing system. However, the images obtained with that system did not have high enough resolution to realize detailed measurement of the projectiles because of the size of the mirrors. In this study, we propose a new system consisting of enlarged mirrors for tracking a high-speed projectiles so as to achieve higher-resolution imaging, and we confirmed the effectiveness of the system via an experiment in which a projectile flying at subsonic speed tracked.
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel
2008-01-01
Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches
NASA Astrophysics Data System (ADS)
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
CMOS-TDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten
2014-10-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.
A framework for WRF to WRF-IBM grid nesting to enable multiscale simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersema, David John; Lundquist, Katherine A.; Chow, Fotini Katapodes
With advances in computational power, mesoscale models, such as the Weather Research and Forecasting (WRF) model, are often pushed to higher resolutions. As the model’s horizontal resolution is refined, the maximum resolved terrain slope will increase. Because WRF uses a terrain-following coordinate, this increase in resolved terrain slopes introduces additional grid skewness. At high resolutions and over complex terrain, this grid skewness can introduce large numerical errors that require methods, such as the immersed boundary method, to keep the model accurate and stable. Our implementation of the immersed boundary method in the WRF model, WRF-IBM, has proven effective at microscalemore » simulations over complex terrain. WRF-IBM uses a non-conforming grid that extends beneath the model’s terrain. Boundary conditions at the immersed boundary, the terrain, are enforced by introducing a body force term to the governing equations at points directly beneath the immersed boundary. Nesting between a WRF parent grid and a WRF-IBM child grid requires a new framework for initialization and forcing of the child WRF-IBM grid. This framework will enable concurrent multi-scale simulations within the WRF model, improving the accuracy of high-resolution simulations and enabling simulations across a wide range of scales.« less
VISTA - A Constellation for Real Time Regional Imaging
NASA Astrophysics Data System (ADS)
Meerman, Max; Boland, Lee; da Silva Curiel, Alex; Sweeting, Martin, , Sir
2002-01-01
The role of satellites in medium and high-resolution reconnaissance of the Earth's surface has been well demonstrated in recent years through missions such as Landsat, SPOT, IKONOS, ImageSat and Quickbird. The market for such data products is well served and likely to become more competitive with further very-high-resolution missions. Whereas commercial markets have concentrated on enhancing resolution, the small satellite sector has concentrated on reducing the cost of data products, and the development of systems providing niche services. One such EO requirement that can be well met by smaller satellites is the need for higher temporal resolution, as this typically requires a large number of satellites to operate as a constellation - thus far financially impractical using conventional EO satellites. Surrey is currently engaged in building its first constellation that will provide daily global coverage at moderate resolution (32-metre GSD and 600km swath) in three spectral bands. Targeted at providing timely quick-look data products for disaster mitigation and monitoring, the constellation comprises 7 satellites in a single orbital plane. Each satellite has a wide swath so that successive satellites progressively cover the entire globe in a single day. The Vista constellation takes this concept a step further, and is proposed for applications requiring near-continuous surveillance of regional activity. By introducing a multiple plane constellation of small Earth observation satellites, it is possible to monitor continuously selected regions anywhere on the globe. The paper describes the system trades and outlines the scope of the performance that could be obtained from such a system. A cost model illustrates that the balance between launch and space segment costs must be reached by considering suitable replacement strategies, and that the system is highly sensitive to requirement creep. Finally, it is shown that the use of cost effective, small satellites leads to solutions previously thought to be financially beyond sensible reach.
Prospects of third-generation femtosecond laser technology in biological spectromicroscopy
NASA Astrophysics Data System (ADS)
Fattahi, Hanieh; Fattahi, Zohreh; Ghorbani, Asghar
2018-05-01
The next generation of biological imaging modalities will be a movement towards super-resolution, label-free approaches to realize subcellular images in a nonperturbative, non-invasive manner and towards new detection metrologies to reach a higher sensitivity and dynamic range. In this paper, we discuss how the third generation femtosecond laser technology in combination with the already existing concepts in time-resolved spectroscopy could fulfill the requirements of these exciting prospects. The expected enhanced specificity and sensitivity of the envisioned super-resolution microscope could lead us to a better understanding of the inter- and intra-cellular molecular transport and DNA-protein interaction.
NASA Astrophysics Data System (ADS)
Yao, Wei; van Aardt, Jan; Messinger, David
2017-05-01
The Hyperspectral Infrared Imager (HyspIRI) mission aims to provide global imaging spectroscopy data to the benefit of especially ecosystem studies. The onboard spectrometer will collect radiance spectra from the visible to short wave infrared (VSWIR) regions (400-2500 nm). The mission calls for fine spectral resolution (10 nm band width) and as such will enable scientists to perform material characterization, species classification, and even sub-pixel mapping. However, the global coverage requirement results in a relatively low spatial resolution (GSD 30m), which restricts applications to objects of similar scales. We therefore have focused on the assessment of sub-pixel vegetation structure from spectroscopy data in past studies. In this study, we investigate the development or reconstruction of higher spatial resolution imaging spectroscopy data via fusion of multi-temporal data sets to address the drawbacks implicit in low spatial resolution imagery. The projected temporal resolution of the HyspIRI VSWIR instrument is 15 days, which implies that we have access to as many as six data sets for an area over the course of a growth season. Previous studies have shown that select vegetation structural parameters, e.g., leaf area index (LAI) and gross ecosystem production (GEP), are relatively constant in summer and winter for temperate forests; we therefore consider the data sets collected in summer to be from a similar, stable forest structure. The first step, prior to fusion, involves registration of the multi-temporal data. A data fusion algorithm then can be applied to the pre-processed data sets. The approach hinges on an algorithm that has been widely applied to fuse RGB images. Ideally, if we have four images of a scene which all meet the following requirements - i) they are captured with the same camera configurations; ii) the pixel size of each image is x; and iii) at least r2 images are aligned on a grid of x/r - then a high-resolution image, with a pixel size of x/r, can be reconstructed from the multi-temporal set. The algorithm was applied to data from NASA's classic Airborne Visible and Infrared Imaging Spectrometer (AVIRIS-C; GSD 18m), collected between 2013-2015 (summer and fall) over our study area (NEON's Southwest Pacific Domain; Fresno, CA) to generate higher spatial resolution imagery (GSD 9m). The reconstructed data set was validated via comparison to NEON's imaging spectrometer (NIS) data (GSD 1m). The results showed that algorithm worked well with the AVIRIS-C data and could be applied to the HyspIRI data.
Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation
NASA Technical Reports Server (NTRS)
Salmon, Ellen; Duffy, Daniel; Spear, Carrie; Sinno, Scott; Vaughan, Garrison; Bowen, Michael
2018-01-01
This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics.
Eglin virtual range database for hardware-in-the-loop testing
NASA Astrophysics Data System (ADS)
Talele, Sunjay E.; Pickard, J. W., Jr.; Owens, Monte A.; Foster, Joseph; Watson, John S.; Amick, Mary Amenda; Anthony, Kenneth
1998-07-01
Realistic backgrounds are necessary to support high fidelity hardware-in-the-loop testing. Advanced avionics and weapon system sensors are driving the requirement for higher resolution imagery. The model-test-model philosophy being promoted by the T&E community is resulting in the need for backgrounds that are realistic or virtual representations of actual test areas. Combined, these requirements led to a major upgrade of the terrain database used for hardware-in-the-loop testing at the Guided Weapons Evaluation Facility (GWEF) at Eglin Air Force Base, Florida. This paper will describe the process used to generate the high-resolution (1-foot) database of ten sites totaling over 20 square kilometers of the Eglin range. this process involved generating digital elevation maps from stereo aerial imagery and classifying ground cover material using the spectral content. These databases were then optimized for real-time operation at 90 Hz.
A Reassessment of the Mars Ocean Hypothesis
NASA Technical Reports Server (NTRS)
Parker, T. J.
2004-01-01
Initial work on the identification and mapping of potential ancient shorelines on Mars was based on Viking Orbiter image data (Parker et al., 1987, 1989, 1993). The Viking Orbiters were designed to locate landing site for the two landers and were not specifically intended to map the entire planet. Fortunately, they mapped the entire planet. Unfortunately, they did so at an average resolution of greater than 200m/pixel. Higher resolution images, even mosaics of interesting regions, are available, but relatively sparse. Mapping of shorelines on Earth requires both high-resolution aerial photos or satellite images and good topographic information. Three significant sources of additional data from missions subsequent to Viking are useful for reassessing the ocean hypothesis. These are: MGS MOC images; MGS MOLA topography; Odyssey THEMIS IR and VIS images; and MER surface geology at Meridiani and Gusev. Okay, my mistake: Four.
Recent advancements in structured-illumination microscopy toward live-cell imaging.
Hirano, Yasuhiro; Matsuda, Atsushi; Hiraoka, Yasushi
2015-08-01
Fluorescence microscopy allows us to observe fluorescently labeled molecules in diverse biological processes and organelle structures within living cells. However, the diffraction limit restricts its spatial resolution to about half of its wavelength, limiting the capability of biological observation at the molecular level. Structured-illumination microscopy (SIM), a type of super-resolution microscopy, doubles the spatial resolution in all three dimensions by illuminating the sample with a patterned excitation light, followed by computer reconstruction. SIM uses a relatively low illumination power compared with other methods of super-resolution microscopy and is easily available for multicolor imaging. SIM has great potential for meeting the requirements of live-cell imaging. Recent developments in diverse types of SIM have achieved higher spatial (∼50 nm lateral) and temporal (∼100 Hz) resolutions. Here, we review recent advancements in SIM and discuss its application in noninvasive live-cell imaging. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Quality evaluation of pansharpened hyperspectral images generated using multispectral images
NASA Astrophysics Data System (ADS)
Matsuoka, Masayuki; Yoshioka, Hiroki
2012-11-01
Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.
Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy
NASA Astrophysics Data System (ADS)
Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan
2016-03-01
Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.
Magnetic resonance imaging protocols for examination of the neurocranium at 3 T.
Schwindt, W; Kugel, H; Bachmann, R; Kloska, S; Allkemper, T; Maintz, D; Pfleiderer, B; Tombach, B; Heindel, W
2003-09-01
The increasing availability of high-field (3 T) MR scanners requires adapting and optimizing clinical imaging protocols to exploit the theoretically higher signal-to-noise ratio (SNR) of the higher field strength. Our aim was to establish reliable and stable protocols meeting the clinical demands for imaging the neurocranium at 3 T. Two hundred patients with a broad range of indications received an examination of the neurocranium with an appropriate assortment of imaging techniques at 3 T. Several imaging parameters were optimized. Keeping scan times comparable to those at 1.5 T we increased spatial resolution. Contrast-enhanced and non-enhanced T1-weighted imaging was best applying gradient-echo and inversion recovery (rather than spin-echo) techniques, respectively. For fluid-attenuated inversion recovery (FLAIR) imaging a TE of 120 ms yielded optimum contrast-to-noise ratio (CNR). High-resolution isotropic 3D data sets were acquired within reasonable scan times. Some artifacts were pronounced, but generally imaging profited from the higher SNR. We present a set of optimized examination protocols for neuroimaging at 3 T, which proved to be reliable in a clinical routine setting.
Community Sediment Transport Model
2007-01-01
Woods Hole, MA 02543-1598 Phone: (508) 457-2269 Fax: (508) 457-2310 email: csherwood@usgs.gov Timothy Keen Naval Research Laboratory, Code...intended to be used as both a research tool and for practical applications. An accurate and useful model will require coupling sediment-transport with...and time steps range from seconds to minutes. We include higher-resolution sediment- transport calculation modules for research problems but, for
2013-04-01
Forces can be computed at specific angular positions, and geometrical parameters can be evaluated. Much higher resolution models are required, along...composition engines (C#, C++, Python, Java ) Desert operates on the CyPhy model, converting from a design space alternative structure to a set of design...consists of scripts to execute dymola, post-processing of results to create metrics, and general management of the job sequence. An earlier version created
NASA Astrophysics Data System (ADS)
van de Moortele, Pierre-Francois; Amili, Omid; Coletti, Filippo; Toloui, Mostafa
2017-11-01
Cardiovascular flows are predominantly laminar. Nevertheless, transient and even turbulent flows have been observed in the vicinity of the heart (e.g. valves, ascending aorta, valvular/vascular stenosis). Effective in-vivo hemodynamic-based diagnostics in these sites require both high-resolution velocity measurements (especially in the near-vessel wall regions) and accurate evaluation of blood flow turbulence level (e.g. in terms of TKE). In addition to phase contrast (PC), appropriately designed PC-MRI sequences provide intravoxel incoherent motion encoding, a unique tool for simultaneous, non-invasive evaluation of velocity 3D vector fields and Reynolds stresses in cardiovascular flows in vivo. However, limited spatial and temporal resolution of PC-MRI result in inaccuracies in the estimation of hemodynamics (e.g. WSS) and of flow turbulence characteristics. This study aims to assess whether SNR gains at higher magnetic field could overcome these limits, providing more accurate velocity and turbulence characterization at higher spatial resolution. Experiments are conducted on MR Scanners at 3 and 7 Tesla with a U-bent pipe flow shaped phantom. 3D velocity fields, Reynolds stresses and TKE are analyzed and compared to a reference PIV experiments.
Breaking the news on mobile TV: user requirements of a popular mobile content
NASA Astrophysics Data System (ADS)
Knoche, Hendrik O.; Sasse, M. Angela
2006-02-01
This paper presents the results from three lab-based studies that investigated different ways of delivering Mobile TV News by measuring user responses to different encoding bitrates, image resolutions and text quality. All studies were carried out with participants watching News content on mobile devices, with a total of 216 participants rating the acceptability of the viewing experience. Study 1 compared the acceptability of a 15-second video clip at different video and audio encoding bit rates on a 3G phone at a resolution of 176x144 and an iPAQ PDA (240x180). Study 2 measured the acceptability of video quality of full feature news clips of 2.5 minutes which were recorded from broadcast TV, encoded at resolutions ranging from 120x90 to 240x180, and combined with different encoding bit rates and audio qualities presented on an iPAQ. Study 3 improved the legibility of the text included in the video simulating a separate text delivery. The acceptability of News' video quality was greatly reduced at a resolution of 120x90. The legibility of text was a decisive factor in the participants' assessment of the video quality. Resolutions of 168x126 and higher were substantially more acceptable when they were accompanied by optimized high quality text compared to proportionally scaled inline text. When accompanied by high quality text TV news clips were acceptable to the vast majority of participants at resolutions as small as 168x126 for video encoding bitrates of 160kbps and higher. Service designers and operators can apply this knowledge to design a cost-effective mobile TV experience.
NASA Astrophysics Data System (ADS)
Liffner, Joel W.; Hewa, Guna A.; Peel, Murray C.
2018-05-01
Derivation of the hypsometric curve of a catchment, and properties relating to that curve, requires both use of topographical data (commonly in the form of a Digital Elevation Model - DEM), and the estimation of a functional representation of that curve. An early investigation into catchment hypsometry concluded 3rd order polynomials sufficiently describe the hypsometric curve, without the consideration of higher order polynomials, or the sensitivity of hypsometric properties relating to the curve. Another study concluded the hypsometric integral (HI) is robust against changes in DEM resolution, a conclusion drawn from a very limited sample size. Conclusions from these earlier studies have resulted in the adoption of methods deemed to be "sufficient" in subsequent studies, in addition to assumptions that the robustness of the HI extends to other hypsometric properties. This study investigates and demonstrates the sensitivity of hypsometric properties to DEM resolution, DEM type and polynomial order through assessing differences in hypsometric properties derived from 417 catchments and sub-catchments within South Australia. The sensitivity of hypsometric properties across DEM types and polynomial orders is found to be significant, which suggests careful consideration of the methods chosen to derive catchment hypsometric information is required.
High-performance software-only H.261 video compression on PC
NASA Astrophysics Data System (ADS)
Kasperovich, Leonid
1996-03-01
This paper describes an implementation of a software H.261 codec for PC, that takes an advantage of the fast computational algorithms for DCT-based video compression, which have been presented by the author at the February's 1995 SPIE/IS&T meeting. The motivation for developing the H.261 prototype system is to demonstrate a feasibility of real time software- only videoconferencing solution to operate across a wide range of network bandwidth, frame rate, and resolution of the input video. As the bandwidths of current network technology will be increased, the higher frame rate and resolution of video to be transmitted is allowed, that requires, in turn, a software codec to be able to compress pictures of CIF (352 X 288) resolution at up to 30 frame/sec. Running on Pentium 133 MHz PC the codec presented is capable to compress video in CIF format at 21 - 23 frame/sec. This result is comparable to the known hardware-based H.261 solutions, but it doesn't require any specific hardware. The methods to achieve high performance, the program optimization technique for Pentium microprocessor along with the performance profile, showing the actual contribution of the different encoding/decoding stages to the overall computational process, are presented.
A Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF)
NASA Astrophysics Data System (ADS)
Trotta, Francesco; Fenu, Elisa; Pinardi, Nadia; Bruciaferri, Diego; Giacomelli, Luca; Federico, Ivan; Coppini, Giovanni
2016-11-01
We present a numerical platform named Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF). The platform is developed for short-time forecasts and is designed to be embedded in any region of the large-scale Mediterranean Forecasting System (MFS) via downscaling. We employ CTD data collected during a campaign around the Elba island to calibrate and validate SURF. The model requires an initial spin up period of a few days in order to adapt the initial interpolated fields and the subsequent solutions to the higher-resolution nested grids adopted by SURF. Through a comparison with the CTD data, we quantify the improvement obtained by SURF model compared to the coarse-resolution MFS model.
NASA Astrophysics Data System (ADS)
Li, J.; Wasko, C.; Johnson, F.; Evans, J. P.; Sharma, A.
2018-05-01
The spatial extent and organization of extreme storm events has important practical implications for flood forecasting. Recently, conflicting evidence has been found on the observed changes of storm spatial extent with increasing temperatures. To further investigate this question, a regional climate model assessment is presented for the Greater Sydney region, in Australia. Two regional climate models were considered: the first a convection-resolving simulation at 2-km resolution, the second a resolution of 10 km with three different convection parameterizations. Both the 2- and the 10-km resolutions that used the Betts-Miller-Janjic convective scheme simulate decreasing storm spatial extent with increasing temperatures for 1-hr duration precipitation events, consistent with the observation-based study in Australia. However, other observed relationships of extreme rainfall with increasing temperature were not well represented by the models. Improved methods for considering storm organization are required to better understand potential future changes.
Multidimensional Processing and Visual Rendering of Complex 3D Biomedical Images
NASA Technical Reports Server (NTRS)
Sams, Clarence F.
2016-01-01
The proposed technology uses advanced image analysis techniques to maximize the resolution and utility of medical imaging methods being used during spaceflight. We utilize COTS technology for medical imaging, but our applications require higher resolution assessment of the medical images than is routinely applied with nominal system software. By leveraging advanced data reduction and multidimensional imaging techniques utilized in analysis of Planetary Sciences and Cell Biology imaging, it is possible to significantly increase the information extracted from the onboard biomedical imaging systems. Year 1 focused on application of these techniques to the ocular images collected on ground test subjects and ISS crewmembers. Focus was on the choroidal vasculature and the structure of the optic disc. Methods allowed for increased resolution and quantitation of structural changes enabling detailed assessment of progression over time. These techniques enhance the monitoring and evaluation of crew vision issues during space flight.
Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartzsch, Stefan, E-mail: stefan.bartzsch@icr.ac.uk; Oelfke, Uwe; Lott, Johanna
2015-07-15
Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 μm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup ®} HD-810 and HD-V2 films are exposed to MRT fields at the biomedicalmore » beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 × 1000 μm{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 μm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required. Dosimetry at low photon energies should be performed with great caution due to the energy sensitivity of the films. In this respect, HD-V2 films showed to have an advantage over HD-810 films. However, HD-810 films have a lower statistical noise level. When a higher resolution is required, e.g., for the dosimetry of pencil beam irradiations, noise may render HD-V2 films inapplicable.« less
The impact of mesoscale convective systems on global precipitation: A modeling study
NASA Astrophysics Data System (ADS)
Tao, Wei-Kuo
2017-04-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. Typical MCSs have horizontal scales of a few hundred kilometers (km); therefore, a large domain and high resolution are required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) with 32 CRM grid points and 4 km grid spacing also might not have sufficient resolution and domain size for realistically simulating MCSs. In this study, the impact of MCSs on precipitation processes is examined by conducting numerical model simulations using the Goddard Cumulus Ensemble model (GCE) and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with less grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show that the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are either weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures (SSTs) is conducted and results in both reduced surface rainfall and evaporation.
Bian, Lin
2012-01-01
In clinical practice, hearing thresholds are measured at only five to six frequencies at octave intervals. Thus, the audiometric configuration cannot closely reflect the actual status of the auditory structures. In addition, differential diagnosis requires quantitative comparison of behavioral thresholds with physiological measures, such as otoacoustic emissions (OAEs) that are usually measured in higher resolution. The purpose of this research was to develop a method to improve the frequency resolution of the audiogram. A repeated-measure design was used in the study to evaluate the reliability of the threshold measurements. A total of 16 participants with clinically normal hearing and mild hearing loss were recruited from a population of university students. No intervention was involved in the study. Custom developed system and software were used for threshold acquisition with quality control (QC). With real-ear calibration and monitoring of test signals, the system provided accurate and individualized measure of hearing thresholds that were determined by an analysis based on signal detection theory (SDT). The reliability of the threshold measure was assessed by correlation and differences between the repeated measures. The audiometric configurations were diverse and unique to each individual ear. The accuracy, within-subject reliability, and between-test repeatability are relatively high. With QC, the high-resolution audiograms can be reliably and accurately measured. Hearing thresholds measured as ear canal sound pressures with higher frequency resolution can provide more customized hearing-aid fitting. The test system may be integrated with other physiological measures, such as OAEs, into a comprehensive evaluative tool. American Academy of Audiology.
Data Serving Climate Simulation Science at the NASA Center for Climate Simulation
NASA Technical Reports Server (NTRS)
Salmon, Ellen M.
2011-01-01
The NASA Center for Climate Simulation (NCCS) provides high performance computational resources, a multi-petabyte archive, and data services in support of climate simulation research and other NASA-sponsored science. This talk describes the NCCS's data-centric architecture and processing, which are evolving in anticipation of researchers' growing requirements for higher resolution simulations and increased data sharing among NCCS users and the external science community.
Critical carbon input to maintain current soil organic carbon stocks in global wheat systems
Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing
2016-01-01
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha−1 yr−1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. PMID:26759192
Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems
NASA Astrophysics Data System (ADS)
Wang, G.
2017-12-01
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.
Image applications for coastal resource planning: Elkhorn Slough Pilot Project
NASA Technical Reports Server (NTRS)
Kvitek, Rikk G.; Sharp, Gary D.; VanCoops, Jonathan; Fitzgerald, Michael
1995-01-01
The purpose of this project has been to evaluate the utility of digital spectral imagery at two levels of resolution for large scale, accurate, auto-classification of land cover along the Central California Coast. Although remote sensing technology offers obvious advantages over on-the-ground mapping, there are substantial trade-offs that must be made between resolving power and costs. Higher resolution images can theoretically be used to identify smaller habitat patches, but they usually require more scenes to cover a given area and processing these images is computationally intense requiring much more computer time and memory. Lower resolution images can cover much larger areas, are less costly to store, process, and manipulate, but due to their larger pixel size can lack the resolving power of the denser images. This lack of resolving power can be critical in regions such as the Central California Coast where important habitat change often occurs on a scale of 10 meters. Our approach has been to compare vegetation and habitat classification results from two aircraft-based spectral scenes covering the same study area but at different levels of resolution with a previously produced ground-truthed land cover base map of the area. Both of the spectral images used for this project were of significantly higher resolution than the satellite-based LandSat scenes used in the C-CAP program. The lower reaches of the Elkhorn Slough watershed was chosen as an ideal study site because it encompasses a suite of important vegetation types and habitat loss processes characteristic of the central coast region. Dramatic habitat alterations have and are occurring within the Elkhorn Slough drainage area, including erosion and sedimentation, land use conversion, wetland loss, and incremental loss due to development and encroachnnent by agriculture. Additonally, much attention has already been focused on the Elkhorn Slough due to its status as a National Marine Education and Research Reserve and as part of the Monterey Bay National Marine Sanctuary. These destinations have resulted in a rich collection of prior spatial and temporal habitat data.
NASA Astrophysics Data System (ADS)
di Luca, Alejandro; de Elía, Ramón; Laprise, René
2012-03-01
Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions.
NASA Astrophysics Data System (ADS)
Kim, Jong-Ahn; Bae, Eui Won; Kim, Soo Hyun; Kwak, Yoon Keun
2001-09-01
Precision actuators, such as pick-up actuators for HDDs or CD-ROMs, mostly show multidimensional motion. So, to evaluate them more completely, multidimensional measurement is required. Through structural variation and optimization of the design index, the performance of a measurement system can be improved to satisfy the requirement of this application, and so the resolution of each axis is higher than 0.1 μm for translation and 0.5 arcsec for rotation. Using this measurement system, the multidimensional motion and frequency transfer functions of a bimorph-type piezoelectric actuator are obtained.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
Theory and optical design of x-ray echo spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvyd'ko, Yuri
X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less
Theory and optical design of x-ray echo spectrometers
Shvyd'ko, Yuri
2017-08-02
X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less
Preliminary Assessment of Microwave Readout Multiplexing Factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croce, Mark Philip; Koehler, Katrina Elizabeth; Rabin, Michael W.
2017-01-23
Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must bemore » operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.« less
2011-01-01
Background Hypertension may increase tortuosity or twistedness of arteries. We applied a centerline extraction algorithm and tortuosity metric to magnetic resonance angiography (MRA) brain images to quantitatively measure the tortuosity of arterial vessel centerlines. The most commonly used arterial tortuosity measure is the distance factor metric (DFM). This study tested a DFM based measurement’s ability to detect increases in arterial tortuosity of hypertensives using existing images. Existing images presented challenges such as different resolutions which may affect the tortuosity measurement, different depths of the area imaged, and different artifacts of imaging that require filtering. Methods The stability and accuracy of alternative centerline algorithms was validated in numerically generated models and test brain MRA data. Existing images were gathered from previous studies and clinical medical systems by manually reading electronic medical records to identify hypertensives and negatives. Images of different resolutions were interpolated to similar resolutions. Arterial tortuosity in MRA images was measured from a DFM curve and tested on numerically generated models as well as MRA images from two hypertensive and three negative control populations. Comparisons were made between different resolutions, different filters, hypertensives versus negatives, and different negative controls. Results In tests using numerical models of a simple helix, the measured tortuosity increased as expected with more tightly coiled helices. Interpolation reduced resolution-dependent differences in measured tortuosity. The Korean hypertensive population had significantly higher arterial tortuosity than its corresponding negative control population across multiple arteries. In addition one negative control population of different ethnicity had significantly less arterial tortuosity than the other two. Conclusions Tortuosity can be compared between images of different resolutions by interpolating from lower to higher resolutions. Use of a universal negative control was not possible in this study. The method described here detected elevated arterial tortuosity in a hypertensive population compared to the negative control population and can be used to study this relation in other populations. PMID:22166145
Diedrich, Karl T; Roberts, John A; Schmidt, Richard H; Kang, Chang-Ki; Cho, Zang-Hee; Parker, Dennis L
2011-10-18
Hypertension may increase tortuosity or twistedness of arteries. We applied a centerline extraction algorithm and tortuosity metric to magnetic resonance angiography (MRA) brain images to quantitatively measure the tortuosity of arterial vessel centerlines. The most commonly used arterial tortuosity measure is the distance factor metric (DFM). This study tested a DFM based measurement's ability to detect increases in arterial tortuosity of hypertensives using existing images. Existing images presented challenges such as different resolutions which may affect the tortuosity measurement, different depths of the area imaged, and different artifacts of imaging that require filtering. The stability and accuracy of alternative centerline algorithms was validated in numerically generated models and test brain MRA data. Existing images were gathered from previous studies and clinical medical systems by manually reading electronic medical records to identify hypertensives and negatives. Images of different resolutions were interpolated to similar resolutions. Arterial tortuosity in MRA images was measured from a DFM curve and tested on numerically generated models as well as MRA images from two hypertensive and three negative control populations. Comparisons were made between different resolutions, different filters, hypertensives versus negatives, and different negative controls. In tests using numerical models of a simple helix, the measured tortuosity increased as expected with more tightly coiled helices. Interpolation reduced resolution-dependent differences in measured tortuosity. The Korean hypertensive population had significantly higher arterial tortuosity than its corresponding negative control population across multiple arteries. In addition one negative control population of different ethnicity had significantly less arterial tortuosity than the other two. Tortuosity can be compared between images of different resolutions by interpolating from lower to higher resolutions. Use of a universal negative control was not possible in this study. The method described here detected elevated arterial tortuosity in a hypertensive population compared to the negative control population and can be used to study this relation in other populations.
NASA Astrophysics Data System (ADS)
Adams, P. J.; Marks, M.
2015-12-01
The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant differences are also evident with respect to model-measurement comparisons, and will be discussed.
Quantum imaging with incoherently scattered light from a free-electron laser
NASA Astrophysics Data System (ADS)
Schneider, Raimund; Mehringer, Thomas; Mercurio, Giuseppe; Wenthaus, Lukas; Classen, Anton; Brenner, Günter; Gorobtsov, Oleg; Benz, Adrian; Bhatti, Daniel; Bocklage, Lars; Fischer, Birgit; Lazarev, Sergey; Obukhov, Yuri; Schlage, Kai; Skopintsev, Petr; Wagner, Jochen; Waldmann, Felix; Willing, Svenja; Zaluzhnyy, Ivan; Wurth, Wilfried; Vartanyants, Ivan A.; Röhlsberger, Ralf; von Zanthier, Joachim
2018-02-01
The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional X-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered X-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second order, paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations.
Can we observe the fronts of the Antarctic Circumpolar Current using GRACE OBP?
NASA Astrophysics Data System (ADS)
Makowski, J.; Chambers, D. P.; Bonin, J. A.
2014-12-01
The Antarctic Circumpolar Current (ACC) and the Southern Ocean remains one of the most undersampled regions of the world's oceans. The ACC is comprised of four major fronts: the Sub-Tropical Front (STF), the Polar Front (PF), the Sub-Antarctic Front (SAF), and the Southern ACC Front (SACCF). These were initially observed individually from repeat hydrographic sections and their approximate locations globally have been quantified using all available temperature data from the World Ocean and Climate Experiment (WOCE). More recent studies based on satellite altimetry have found that the front positions are more dynamic and have shifted south by up to 1° on average since 1993. Using ocean bottom pressure (OBP) data from the current Gravity Recovery and Climate Experiment (GRACE) we have measured integrated transport variability of the ACC south of Australia. However, differentiation of variability of specific fronts has been impossible due to the necessary smoothing required to reduce noise and correlated errors in the measurements. The future GRACE Follow-on (GFO) mission and the post 2020 GRACE-II mission are expected to produce higher resolution gravity fields with a monthly temporal resolution. Here, we study the resolution and error characteristics of GRACE gravity data that would be required to resolve variations in the front locations and transport. To do this, we utilize output from a high-resolution model of the Southern Ocean, hydrology models, and ice sheet surface mass balance models; add various amounts of random and correlated errors that may be expected from GFO and GRACE-II; and quantify requirements needed for future satellite gravity missions to resolve variations along the ACC fronts.
On the benefit of high resolution and low aberrations for in-die mask registration metrology
NASA Astrophysics Data System (ADS)
Beyer, Dirk; Seidel, Dirk; Heisig, Sven; Steinert, Steffen; Töpfer, Susanne; Scherübl, Thomas; Hetzler, Jochen
2014-10-01
With the introduction of complex lithography schemes like double and multi - patterning and new design principles like gridded designs with cut masks the requirements for mask to mask overlay have increased dramatically. Still, there are some good news too for the mask industry since more mask are needed and qualified. Although always confronted with throughput demands, latest writing tool developments are able to keep pace with ever increasing pattern placement specs not only for global signatures but for in-die features within the active area. Placement specs less than 3nm (max. 3 Sigma) are expected and needed in all cases in order to keep the mask contribution to the overall overlay budget at an accepted level. The qualification of these masks relies on high precision metrology tools which have to fulfill stringent metrology as well as resolution constrains at the same time. Furthermore, multi-patterning and gridded designs with pinhole type cut masks are drivers for a paradigm shift in registration metrology from classical registration crosses to in-die registration metrology on production features. These requirements result in several challenges for registration metrology tools. The resolution of the system must be sufficiently high to resolve small production features. At the same time tighter repeatability is required. Furthermore, tool induced shift (TIS) limit the accuracy of in-die measurements. This paper discusses and demonstrates the importance of low illumination wavelength together with low aberrations for best contrast imaging for in-die registration metrology. Typical effects like tool induced shift are analyzed and evaluated using the ZEISS PROVE® registration metrology tool. Additionally, we will address performance gains when going to higher resolution. The direct impact on repeatability for small features by registration measurements will be discussed as well.
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M
2013-02-01
Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.
1987-10-15
apparent shift of this band to higher energy with increasing coverage, observed at lower resolution (but higher sensitivity) in electron energy loss...apparent shift of this band to higher energy with increasing coverage, observed at lower resolution (but higher sen- sitivity) in electron energy ...11 using high-resolution electron energy -loss spectroscopy (EELS), is especially intriguing. 02 dissociates on this surface to populate two types of
Challenges and requirements of mask data processing for multi-beam mask writer
NASA Astrophysics Data System (ADS)
Choi, Jin; Lee, Dong Hyun; Park, Sinjeung; Lee, SookHyun; Tamamushi, Shuichi; Shin, In Kyun; Jeon, Chan Uk
2015-07-01
To overcome the resolution and throughput of current mask writer for advanced lithography technologies, the platform of e-beam writer have been evolved by the developments of hardware and software in writer. Especially, aggressive optical proximity correction (OPC) for unprecedented extension of optical lithography and the needs of low sensitivity resist for high resolution result in the limit of variable shaped beam writer which is widely used for mass production. The multi-beam mask writer is attractive candidate for photomask writing of sub-10nm device because of its high speed and the large degree of freedom which enable high dose and dose modulation for each pixel. However, the higher dose and almost unlimited appetite for dose modulation challenge the mask data processing (MDP) in aspects of extreme data volume and correction method. Here, we discuss the requirements of mask data processing for multi-beam mask writer and presents new challenges of the data format, data flow, and correction method for user and supplier MDP tool.
Reliability of Fault Tolerant Control Systems. Part 2
NASA Technical Reports Server (NTRS)
Wu, N. Eva
2000-01-01
This paper reports Part II of a two part effort that is intended to delineate the relationship between reliability and fault tolerant control in a quantitative manner. Reliability properties peculiar to fault-tolerant control systems are emphasized, such as the presence of analytic redundancy in high proportion, the dependence of failures on control performance, and high risks associated with decisions in redundancy management due to multiple sources of uncertainties and sometimes large processing requirements. As a consequence, coverage of failures through redundancy management can be severely limited. The paper proposes to formulate the fault tolerant control problem as an optimization problem that maximizes coverage of failures through redundancy management. Coverage modeling is attempted in a way that captures its dependence on the control performance and on the diagnostic resolution. Under the proposed redundancy management policy, it is shown that an enhanced overall system reliability can be achieved with a control law of a superior robustness, with an estimator of a higher resolution, and with a control performance requirement of a lesser stringency.
A Multi-object Exoplanet Detecting Technique
NASA Astrophysics Data System (ADS)
Zhang, K.
2011-05-01
Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in 2010. A related spectrum reduction program and the instrumental stability were tested by obtaining some multi-object interference spectrum. Thirdly, studying the parameter optimization of fixed-delay Michelson interferometer is helpful to increase its inner thermal stability and reduce the external environmental requirement. Referring to Wide-angle Michelson Interferometer successfully used in Upper Atmospheric Wind field, a glass pair selecting scheme is given. By choosing a suitable glass pair of interference arms, the RV error can be stable as several hundred m\\cdots^{-1}\\cdot{dg}C^{-1}. Therefore, this work is helpful to deeply study EDI technique and speed up the development of multi-object exoplanet survey system. LAMOST will make a greater contribution to astronomy when the combination between its spectrographs and EDI technique comes true.
Probing evolutionary population synthesis models in the near infrared with early-type galaxies
NASA Astrophysics Data System (ADS)
Dahmer-Hahn, Luis Gabriel; Riffel, Rogério; Rodríguez-Ardila, Alberto; Martins, Lucimara P.; Kehrig, Carolina; Heckman, Timothy M.; Pastoriza, Miriani G.; Dametto, Natacha Z.
2018-06-01
We performed a near-infrared (NIR; ˜1.0 -2.4 μm) stellar population study in a sample of early-type galaxies. The synthesis was performed using five different evolutionary population synthesis libraries of models. Our main results can be summarized as follows: low-spectral-resolution libraries are not able to produce reliable results when applied to the NIR alone, with each library finding a different dominant population. The two newest higher resolution models, on the other hand, perform considerably better, finding consistent results to each other and to literature values. We also found that optical results are consistent with each other even for lower resolution models. We also compared optical and NIR results and found out that lower resolution models tend to disagree in the optical and in the NIR, with higher fraction of young populations in the NIR and dust extinction ˜1 mag higher than optical values. For higher resolution models, optical and NIR results tend to agree much better, suggesting that a higher spectral resolution is fundamental to improve the quality of the results.
Magnetic Fields in Population III Star Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom
2012-02-22
We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement tomore » be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.« less
Triangulation-based 3D surveying borescope
NASA Astrophysics Data System (ADS)
Pulwer, S.; Steglich, P.; Villringer, C.; Bauer, J.; Burger, M.; Franz, M.; Grieshober, K.; Wirth, F.; Blondeau, J.; Rautenberg, J.; Mouti, S.; Schrader, S.
2016-04-01
In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of +/- 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.
Resolution requirements for numerical simulations of transition
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Krist, Steven E.; Hussaini, M. Yousuff
1989-01-01
The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition.
Large motion high cycle high speed optical fibers for space based applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stromberg, Peter G.; Tandon, Rajan; Gibson, Cory S.
2014-10-01
Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000more » cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.« less
Żurek-Biesiada, Dominika; Szczurek, Aleksander T; Prakash, Kirti; Mohana, Giriram K; Lee, Hyun-Keun; Roignant, Jean-Yves; Birk, Udo J; Dobrucki, Jurek W; Cremer, Christoph
2016-05-01
Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant(®) DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10(6) signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. Copyright © 2016. Published by Elsevier Inc.
Implementation of a pulse coupled neural network in FPGA.
Waldemark, J; Millberg, M; Lindblad, T; Waldemark, K; Becanovic, V
2000-06-01
The Pulse Coupled neural network, PCNN, is a biologically inspired neural net and it can be used in various image analysis applications, e.g. time-critical applications in the field of image pre-processing like segmentation, filtering, etc. a VHDL implementation of the PCNN targeting FPGA was undertaken and the results presented here. The implementation contains many interesting features. By pipelining the PCNN structure a very high throughput of 55 million neuron iterations per second could be achieved. By making the coefficients re-configurable during operation, a complete recognition system could be implemented on one, or maybe two, chip(s). Reconsidering the ranges and resolutions of the constants may save a lot of hardware, since the higher resolution requires larger multipliers, adders, memories etc.
Long-term optical imaging of intrinsic signals in anesthetized and awake monkeys
NASA Astrophysics Data System (ADS)
Roe, Anna W.
2007-04-01
Some exciting new efforts to use intrinsic signal optical imaging methods for long-term studies in anesthetized and awake monkeys are reviewed. The development of such methodologies opens the door for studying behavioral states such as attention, motivation, memory, emotion, and other higher-order cognitive functions. Long-term imaging is also ideal for studying changes in the brain that accompany development, plasticity, and learning. Although intrinsic imaging lacks the temporal resolution offered by dyes, it is a high spatial resolution imaging method that does not require application of any external agents to the brain. The bulk of procedures described here have been developed in the monkey but can be applied to the study of surface structures in any in vivo preparation.
Parallelization of a blind deconvolution algorithm
NASA Astrophysics Data System (ADS)
Matson, Charles L.; Borelli, Kathy J.
2006-09-01
Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring and the platforms on which the algorithms are executed. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to a specific computer hardware architecture.
Technology Development for Nickel X-Ray Optics Enhancement
NASA Technical Reports Server (NTRS)
Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell
2008-01-01
We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.
Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.
2009-05-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).
NASA Astrophysics Data System (ADS)
Deo, R. K.; Domke, G. M.; Russell, M.; Woodall, C. W.
2017-12-01
Landsat data have been widely used to support strategic forest inventory and management decisions despite the limited success of passive optical remote sensing for accurate estimation of aboveground biomass (AGB). The archive of publicly available Landsat data, available at 30-m spatial resolutions since 1984, has been a valuable resource for cost-effective large-area estimation of AGB to inform national requirements such as for the US national greenhouse gas inventory (NGHGI). In addition, other optical satellite data such as MODIS imagery of wider spatial coverage and higher temporal resolution are enriching the domain of spatial predictors for regional scale mapping of AGB. Because NGHGIs require national scale AGB information and there are tradeoffs in the prediction accuracy versus operational efficiency of Landsat, this study evaluated the impact of various resolutions of Landsat predictors on the accuracy of regional AGB models across three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We used recent national forest inventory (NFI) data with numerous Landsat-derived predictors at ten different spatial resolutions ranging from 30 to 1000 m to understand the optimal spatial resolution of the optical data for enhanced spatial inventory of AGB for NGHGI reporting. Ten generic spatial models at different spatial resolutions were developed for all sites and large-area estimates were evaluated (i) at the county-level against the independent designed-based estimates via the US NFI Evalidator tool and (ii) within a large number of strips ( 1 km wide) predicted via LiDAR metrics at a high spatial resolution. The county-level estimates by the Evalidator and Landsat models were statistically equivalent and produced coefficients of determination (R2) above 0.85 that varied with sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of decreasing resolutions. The Landsat-based total AGB estimates within the strips against the total AGB obtained using LiDAR metrics did not differ significantly and were within ±15 Mg/ha for each of the sites. We conclude that the optical satellite data at resolutions up to 1000 m provide acceptable accuracy for the US' NGHGI.
10 CFR 30.2 - Resolution of conflict.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Resolution of conflict. 30.2 Section 30.2 Energy NUCLEAR... Provisions § 30.2 Resolution of conflict. The requirements of this part are in addition to, and not in substitution for, other requirements of this chapter. In any conflict between the requirements in this part and...
NASA Astrophysics Data System (ADS)
Petrou, Zisis I.; Xian, Yang; Tian, YingLi
2018-04-01
Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.
Lamberti, A; Vanlanduit, S; De Pauw, B; Berghmans, F
2014-03-24
Fiber Bragg Gratings (FBGs) can be used as sensors for strain, temperature and pressure measurements. For this purpose, the ability to determine the Bragg peak wavelength with adequate wavelength resolution and accuracy is essential. However, conventional peak detection techniques, such as the maximum detection algorithm, can yield inaccurate and imprecise results, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. Other techniques, such as the cross-correlation demodulation algorithm are more precise and accurate but require a considerable higher computational effort. To overcome these problems, we developed a novel fast phase correlation (FPC) peak detection algorithm, which computes the wavelength shift in the reflected spectrum of a FBG sensor. This paper analyzes the performance of the FPC algorithm for different values of the SNR and wavelength resolution. Using simulations and experiments, we compared the FPC with the maximum detection and cross-correlation algorithms. The FPC method demonstrated a detection precision and accuracy comparable with those of cross-correlation demodulation and considerably higher than those obtained with the maximum detection technique. Additionally, FPC showed to be about 50 times faster than the cross-correlation. It is therefore a promising tool for future implementation in real-time systems or in embedded hardware intended for FBG sensor interrogation.
Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H
2013-10-29
The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.
Geosensors to Support Crop Production: Current Applications and User Requirements
Thessler, Sirpa; Kooistra, Lammert; Teye, Frederick; Huitu, Hanna; Bregt, Arnold K.
2011-01-01
Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load. PMID:22163978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, D.R.; Hutchinson, J.L.
Eagle 11 is a prototype analytic model derived from the integration of the low resolution Eagle model with the high resolution SIMNET model. This integration promises a new capability to allow for a more effective examination of proposed or existing combat systems that could not be easily evaluated using either Eagle or SIMNET alone. In essence, Eagle II becomes a multi-resolution combat model in which simulated combat units can exhibit both high and low fidelity behavior at different times during model execution. This capability allows a unit to behave in a highly manner only when required, thereby reducing the overallmore » computational and manpower requirements for a given study. In this framework, the SIMNET portion enables a highly credible assessment of the performance of individual combat systems under consideration, encompassing both engineering performance and crew capabilities. However, when the assessment being conducted goes beyond system performance and extends to questions of force structure balance and sustainment, then SISMNET results can be used to ``calibrate`` the Eagle attrition process appropriate to the study at hand. Advancing technologies, changes in the world-wide threat, requirements for flexible response, declining defense budgets, and down-sizing of military forces motivate the development of manpower-efficient, low-cost, responsive tools for combat development studies. Eagle and SIMNET both serve as credible and useful tools. The integration of these two models promises enhanced capabilities to examine the broader, deeper, more complex battlefield of the future with higher fidelity, greater responsiveness and low overall cost.« less
Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.
Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E
2016-01-19
Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system.
Numerical analysis of scalar dissipation length-scales and their scaling properties
NASA Astrophysics Data System (ADS)
Vaishnavi, Pankaj; Kronenburg, Andreas
2006-11-01
Scalar dissipation rate, χ, is fundamental to the description of scalar-mixing in turbulent non-premixed combustion. Most contributions to the statistics for χ come from the finest turbulent mixing-scales and thus its adequate characterisation requires good resolution. Reliable χ-measurement is complicated by the trade-off between higher resolution and greater signal-to-noise ratio. Thus, the present numerical study utilises the error-free mixture fraction, Z, and fluid mechanical data from the turbulent reacting jet DNS of Pantano (2004). The aim is to quantify the resolution requirements for χ-measurement in terms of easily measurable properties of the flow like the integral-scale Reynolds number, Reδ, using spectral and spatial-filtering [cf. Barlow and Karpetis (2005)] analyses. Analysis of the 1-D cross-stream dissipation spectra enables the estimation of the dissipation length scales. It is shown that these spectrally-computed scales follow the expected Kolmogorov scaling with Reδ-0.75 . The work also involves local smoothening of the instantaneous χ-field over a non-overlapping spatial-interval (filter-width, wf), to study the smoothened χ-value as a function of wf, as wf is extrapolated to the smallest scale of interest. The dissipation length-scales thus captured show a stringent Reδ-1 scaling, compared to the usual Kolmogorov-type. This concurs with the criterion of 'resolution adequacy' of the DNS, as set out by Sreenivasan (2004) using the theory of multi-fractals.
Precision glass molding of high-resolution diffractive optical elements
NASA Astrophysics Data System (ADS)
Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas
2016-04-01
The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.
Peña, José M; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I; López-Granados, Francisca
2015-03-06
In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations.
Peña, José M.; Torres-Sánchez, Jorge; Serrano-Pérez, Angélica; de Castro, Ana I.; López-Granados, Francisca
2015-01-01
In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5–6 true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images captured before date 2 had slightly better results than the images captured later. However, this trend changed in the visible-light images captured at 60 m and higher, which had notably better results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results showed the requirements on spectral and spatial resolutions needed to generate a suitable weed map early in the growing season, as well as the best moment for the UAV image acquisition, with the ultimate objective of applying site-specific weed management operations. PMID:25756867
Future Prospects for Very High Angular Resolution Imaging in the UV/Optical
NASA Astrophysics Data System (ADS)
Allen, R. J.
2004-05-01
Achieving the most demanding science goals outlined by the previous speakers will ultimately require the development of coherent space-based arrays of UV/Optical light collectors spread over distances of hundreds of meters. It is possible to envisage ``in situ" assembly of large segmented filled-aperture telescopes in space using components ferried up with conventional launchers. However, the cost will grow roughly as the mass of material required, and this will ultimately limit the sizes of the apertures we can afford. Furthermore, since the collecting area and the angular resolution are coupled for diffraction-limited filled apertures, the sensitivity may be much higher than is actually required to do the science. Constellations of collectors deployed over large areas as interferometer arrays or sparse apertures offer the possibility of independently tailoring the angular resolution and the sensitivity in order to optimally match the science requirements. Several concept designs have been proposed to provide imaging data for different classes of targets such as protoplanetary disks, the nuclear regions of the nearest active galaxies, and the surfaces of stars of different types. Constellations of identical collectors may be built and launched at lower cost through mass production, but new challenges arise when they have to be deployed. The ``aperture" synthesized is only as good as the accuracy with which the individual collectors can be placed and held to the required figure. This ``station-keeping" problem is one of the most important engineering problems to be solved before the promise of virtually unlimited angular resolution in the UV/Optical can be realized. Among the attractive features of an array of free-flying collectors configured for imaging is the fact that the figure errors of the ``aperture" so produced may be much more random than is the case for monolithic or segmented telescopes. This can result in a significant improvement in the dynamic range and permit imaging of faint objects near much brighter extraneous nearby sources, a task presently reserved for specially-designed coronagraphs on filled apertures.
The outlook for precipitation measurements from space
NASA Technical Reports Server (NTRS)
Atlas, D.; Eckerman, J.; Meneghini, R.; Moore, R. K.
1981-01-01
To provide useful precipitation measurements from space, two requirements must be met: adequate spatial and temporal sampling of the storm and sufficient accuracy in the estimate of precipitation intensity. Although presently no single instrument or method completely satisfies both requirements, the visible/IR, microwave radiometer and radar methods can be used in a complementary manner. Visible/IR instruments provide good temporal sampling and rain area depiction, but recourse must be made to microwave measurements for quantitative rainfall estimates. The inadequacy of microwave radiometer measurements over land suggests, in turn, the use of radar. Several recently developed attenuating-wavelength radar methods are discussed in terms of their accuracy, dynamic range and system implementation. Traditionally, the requirements of high resolution and adequate dynamic range led to fairly costly and complex radar systems. Some simplications and cost reduction can be made; however, by using K-band wavelengths which have the advantages of greater sensitivity at the low rain rates and higher resolution capabilities. Several recently proposed methods of this kind are reviewed in terms of accuracy and system implementation. Finally, an adaptive-pointing multi-sensor instrument is described that would exploit certain advantages of the IR, radiometric and radar methods.
Enhanced PET resolution by combining pinhole collimation and coincidence detection
NASA Astrophysics Data System (ADS)
DiFilippo, Frank P.
2015-10-01
Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a 18F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT algorithm. Hot rods of 1.4 mm diameter were resolved easily in a simulated phantom. System sensitivity was 0.09% for a simulated 70-mm line source corresponding to the NEMA NU-4 mouse phantom. Higher resolution is expected with further optimization of pinhole design, and higher sensitivity is expected with a focused and denser pinhole configuration. The simulations demonstrate high spatial resolution and feasibility of small animal imaging with an add-on multi-pinhole collimator for a clinical PET scanner. Further work is needed to develop geometric calibration and quantitative data corrections and, eventually, to construct a prototype device and produce images with physical phantoms.
Thin glass substrates for mobile applications
NASA Astrophysics Data System (ADS)
Mauch, Reiner H.; Wegener, Holger; Kruse, Anke; Hildebrand, Norbert
2000-10-01
Flat panel displays play an important role as the visual interface for today's electronic devices (Notebook computers, PDA's, pagers, mobile phones, etc.). Liquid Crystal Display's are dominating the market. While for higher resolution displays active matrix displays like Thin Film Transistor LCD's are used, portable devices are mainly using Super Twisted Nematic (STN) displays. Based on the application, STN displays for mobile applications require thinner glass substrates with improved surface quality at a lower cost. The requirements and trends for STN glass substrates are identified and discussed. Different glass manufacturing processes are used today for the manufacture of these substrates. Advantages and disadvantages of the different glass substrate types are presented and discussed.
Scale dependency of regional climate modeling of current and future climate extremes in Germany
NASA Astrophysics Data System (ADS)
Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver
2017-11-01
A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.
Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring.
Asner, Gregory P; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez
2013-11-12
Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests.
Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring
Asner, Gregory P.; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez
2013-01-01
Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests. PMID:24167281
In conflict with ourselves? An investigation of heuristic and analytic processes in decision making.
Bonner, Carissa; Newell, Ben R
2010-03-01
Many theorists propose two types of processing: heuristic and analytic. In conflict tasks, in which these processing types lead to opposing responses, giving the analytic response may require both detection and resolution of the conflict. The ratio bias task, in which people tend to treat larger numbered ratios (e.g., 20/100) as indicating a higher likelihood of winning than do equivalent smaller numbered ratios (e.g., 2/10), is considered to induce such a conflict. Experiment 1 showed response time differences associated with conflict detection, resolution, and the amount of conflict induced. The conflict detection and resolution effects were replicated in Experiment 2 and were not affected by decreasing the influence of the heuristic response or decreasing the capacity to make the analytic response. The results are consistent with dual-process accounts, but a single-process account in which quantitative, rather than qualitative, differences in processing are assumed fares equally well in explaining the data.
Merging climate and multi-sensor time-series data in real-time drought monitoring across the U.S.A.
Brown, Jesslyn F.; Miura, T.; Wardlow, B.; Gu, Yingxin
2011-01-01
Droughts occur repeatedly in the United States resulting in billions of dollars of damage. Monitoring and reporting on drought conditions is a necessary function of government agencies at multiple levels. A team of Federal and university partners developed a drought decision- support tool with higher spatial resolution relative to traditional climate-based drought maps. The Vegetation Drought Response Index (VegDRI) indicates general canopy vegetation condition assimilation of climate, satellite, and biophysical data via geospatial modeling. In VegDRI, complementary drought-related data are merged to provide a comprehensive, detailed representation of drought stress on vegetation. Time-series data from daily polar-orbiting earth observing systems [Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS)] providing global measurements of land surface conditions are ingested into VegDRI. Inter-sensor compatibility is required to extend multi-sensor data records; thus, translations were developed using overlapping observations to create consistent, long-term data time series.
Temporal resolution improvement using PICCS in MDCT cardiac imaging
Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang
2009-01-01
The current paradigm for temporal resolution improvement is to add more source-detector units and∕or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120°, which is roughly 50% of the standard short-scan angular range (∼240° for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications. PMID:19610302
Temporal resolution improvement using PICCS in MDCT cardiac imaging.
Chen, Guang-Hong; Tang, Jie; Hsieh, Jiang
2009-06-01
The current paradigm for temporal resolution improvement is to add more source-detector units and/or increase the gantry rotation speed. The purpose of this article is to present an innovative alternative method to potentially improve temporal resolution by approximately a factor of 2 for all MDCT scanners without requiring hardware modification. The central enabling technology is a most recently developed image reconstruction method: Prior image constrained compressed sensing (PICCS). Using the method, cardiac CT images can be accurately reconstructed using the projection data acquired in an angular range of about 120 degrees, which is roughly 50% of the standard short-scan angular range (approximately 240 degrees for an MDCT scanner). As a result, the temporal resolution of MDCT cardiac imaging can be universally improved by approximately a factor of 2. In order to validate the proposed method, two in vivo animal experiments were conducted using a state-of-the-art 64-slice CT scanner (GE Healthcare, Waukesha, WI) at different gantry rotation times and different heart rates. One animal was scanned at heart rate of 83 beats per minute (bpm) using 400 ms gantry rotation time and the second animal was scanned at 94 bpm using 350 ms gantry rotation time, respectively. Cardiac coronary CT imaging can be successfully performed at high heart rates using a single-source MDCT scanner and projection data from a single heart beat with gantry rotation times of 400 and 350 ms. Using the proposed PICCS method, the temporal resolution of cardiac CT imaging can be effectively improved by approximately a factor of 2 without modifying any scanner hardware. This potentially provides a new method for single-source MDCT scanners to achieve reliable coronary CT imaging for patients at higher heart rates than the current heart rate limit of 70 bpm without using the well-known multisegment FBP reconstruction algorithm. This method also enables dual-source MDCT scanner to achieve higher temporal resolution without further hardware modifications.
What model resolution is required in climatological downscaling over complex terrain?
NASA Astrophysics Data System (ADS)
El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem
2018-05-01
This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited < 10% bias with respect to observational data. The errors in minimum and maximum temperatures were reduced by the downscaling, along with a high-quality delineation of temperature variability and extremes for both the 1 and 3 km resolution runs. Wind speeds, on the other hand, are generally overestimated for all model resolutions, in comparison with observational data, particularly on the coast (up to 50%) compared to inland stations (up to 40%). The findings therefore indicate that a 3 km resolution is sufficient for the downscaling, especially that it would allow more years and scenarios to be investigated compared to the higher 1 km resolution at the same computational effort. In addition, the results provide a quantitative measure of the potential errors for various hydrometeorological variables.
Holtrop, Joseph L.; Sutton, Bradley P.
2016-01-01
Abstract. A diffusion weighted imaging (DWI) approach that is signal-to-noise ratio (SNR) efficient and can be applied to achieve sub-mm resolutions on clinical 3 T systems was developed. The sequence combined a multislab, multishot pulsed gradient spin echo diffusion scheme with spiral readouts for imaging data and navigators. Long data readouts were used to keep the number of shots, and hence total imaging time, for the three-dimensional acquisition short. Image quality was maintained by incorporating a field-inhomogeneity-corrected image reconstruction to remove distortions associated with long data readouts. Additionally, multiple shots were required for the high-resolution images, necessitating motion induced phase correction through the use of efficiently integrated navigator data. The proposed approach is compared with two-dimensional (2-D) acquisitions that use either a spiral or a typical echo-planar imaging (EPI) acquisition to demonstrate the improved SNR efficiency. The proposed technique provided 71% higher SNR efficiency than the standard 2-D EPI approach. The adaptability of the technique to achieve high spatial resolutions is demonstrated by acquiring diffusion tensor imaging data sets with isotropic resolutions of 1.25 and 0.8 mm. The proposed approach allows for SNR-efficient sub-mm acquisitions of DWI data on clinical 3 T systems. PMID:27088107
Identification of mosquito larval habitats in high resolution satellite data
NASA Astrophysics Data System (ADS)
Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.
2003-09-01
Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna
Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jetmore » sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.« less
Comparing the imaging performance of computed super resolution and magnification tomosynthesis
NASA Astrophysics Data System (ADS)
Maidment, Tristan D.; Vent, Trevor L.; Ferris, William S.; Wurtele, David E.; Acciavatti, Raymond J.; Maidment, Andrew D. A.
2017-03-01
Computed super-resolution (SR) is a method of reconstructing images with pixels that are smaller than the detector element size; superior spatial resolution is achieved through the elimination of aliasing and alteration of the sampling function imposed by the reconstructed pixel aperture. By comparison, magnification mammography is a method of projection imaging that uses geometric magnification to increase spatial resolution. This study explores the development and application of magnification digital breast tomosynthesis (MDBT). Four different acquisition geometries are compared in terms of various image metrics. High-contrast spatial resolution was measured in various axes using a lead star pattern. A modified Defrise phantom was used to determine the low-frequency spatial resolution. An anthropomorphic phantom was used to simulate clinical imaging. Each experiment was conducted at three different magnifications: contact (1.04x), MAG1 (1.3x), and MAG2 (1.6x). All images were taken on our next generation tomosynthesis system, an in-house solution designed to optimize SR. It is demonstrated that both computed SR and MDBT (MAG1 and MAG2) provide improved spatial resolution over non-SR contact imaging. To achieve the highest resolution, SR and MDBT should be combined. However, MDBT is adversely affected by patient motion at higher magnifications. In addition, MDBT requires more radiation dose and delays diagnosis, since MDBT would be conducted upon recall. By comparison, SR can be conducted with the original screening data. In conclusion, this study demonstrates that computed SR and MDBT are both viable methods of imaging the breast.
NASA Astrophysics Data System (ADS)
Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.
2018-03-01
Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.
Aggression, conflict resolution, popularity, and attitude to school in Russian adolescents.
Butovskaya, Marina L; Timentschik, Vera M; Burkova, Valentina N
2007-01-01
The objective of the present study was to examine the effects of aggression and conflict-managing skills on popularity and attitude to school in Russian adolescents. Three types of aggression (physical, verbal, and indirect), constructive conflict resolution, third-party intervention, withdrawal, and victimization were examined using the Peer-Estimated Conflict Behavior (PECOBE) inventory [Bjorkquist and Osterman, 1998]. Also, all respondents rated peer and self-popularity with same-sex classmates and personal attitude to school. The sample consisted of 212 Russian adolescents (101 boys, 111 girls) aged between 11 and 15 years. The findings attest to significant sex differences in aggression and conflict resolution patterns. Boys scored higher on physical and verbal aggression, and girls on indirect aggression. Girls were socially more skillful than boys in the use of peaceful means of conflict resolution (they scored higher on constructive conflict resolution and third-party intervention). The attributional discrepancy index (ADI) scores were negative for all three types of aggression in both sexes. Verbal aggression is apparently more condemned in boys than in girls. ADI scores were positive for constructive conflict resolution and third-party intervention in both genders, being higher in boys. In girls, verbal aggression was positively correlated with popularity. In both sexes, popularity showed a positive correlation with constructive conflict resolution and third-party intervention, and a negative correlation with withdrawal and victimization. Boys who liked school were popular with same-sex peers and scored higher on constructive conflict resolution. Girls who liked school were less aggressive according to peer rating. They also rated higher on conflict resolution and third-party intervention. Physical aggression was related to age. The results are discussed in a cross-cultural perspective. Copyright 2007 Wiley-Liss, Inc.
X-ray imaging detectors for synchrotron and XFEL sources
Hatsui, Takaki; Graafsma, Heinz
2015-01-01
Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846
Spatial resampling of IDR frames for low bitrate video coding with HEVC
NASA Astrophysics Data System (ADS)
Hosking, Brett; Agrafiotis, Dimitris; Bull, David; Easton, Nick
2015-03-01
As the demand for higher quality and higher resolution video increases, many applications fail to meet this demand due to low bandwidth restrictions. One factor contributing to this problem is the high bitrate requirement of the intra-coded Instantaneous Decoding Refresh (IDR) frames featuring in all video coding standards. Frequent coding of IDR frames is essential for error resilience in order to prevent the occurrence of error propagation. However, as each one consumes a huge portion of the available bitrate, the quality of future coded frames is hindered by high levels of compression. This work presents a new technique, known as Spatial Resampling of IDR Frames (SRIF), and shows how it can increase the rate distortion performance by providing a higher and more consistent level of video quality at low bitrates.
CryoSat Plus For Oceans: an ESA Project for CryoSat-2 Data Exploitation Over Ocean
NASA Astrophysics Data System (ADS)
Benveniste, J.; Cotton, D.; Clarizia, M.; Roca, M.; Gommenginger, C. P.; Naeije, M. C.; Labroue, S.; Picot, N.; Fernandes, J.; Andersen, O. B.; Cancet, M.; Dinardo, S.; Lucas, B. M.
2012-12-01
The ESA CryoSat-2 mission is the first space mission to carry a space-borne radar altimeter that is able to operate in the conventional pulsewidth-limited (LRM) mode and in the novel Synthetic Aperture Radar (SAR) mode. Although the prime objective of the Cryosat-2 mission is dedicated to monitoring land and marine ice, the SAR mode capability of the Cryosat-2 SIRAL altimeter also presents the possibility of demonstrating significant potential benefits of SAR altimetry for ocean applications, based on expected performance enhancements which include improved range precision and finer along track spatial resolution. With this scope in mind, the "CryoSat Plus for Oceans" (CP4O) Project, dedicated to the exploitation of CryoSat-2 Data over ocean, supported by the ESA STSE (Support To Science Element) programme, brings together an expert European consortium comprising: DTU Space, isardSAT, National Oceanography Centre , Noveltis, SatOC, Starlab, TU Delft, the University of Porto and CLS (supported by CNES),. The objectives of CP4O are: - to build a sound scientific basis for new scientific and operational applications of Cryosat-2 data over the open ocean, polar ocean, coastal seas and for sea-floor mapping. - to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter , and extend their application beyond the initial mission objectives. - to ensure that the scientific return of the Cryosat-2 mission is maximised. In particular four themes will be addressed: -Open Ocean Altimetry: Combining GOCE Geoid Model with CryoSat Oceanographic LRM Products for the retrieval of CryoSat MSS/MDT model over open ocean surfaces and for analysis of mesoscale and large scale prominent open ocean features. Under this priority the project will also foster the exploitation of the finer resolution and higher SNR of novel CryoSat SAR Data to detect short spatial scale open ocean features. -High Resolution Polar Ocean Altimetry: Combination of GOCE Geoid Model with CryoSat Oceanographic SAR Products over polar oceans for the retrieval of CryoSat MSS/MDT and currents circulations system improving the polar tides models and studying the coupling between blowing wind and current pattern. -High Resolution Coastal Zone Altimetry: Exploitation of the finer resolution and higher SNR of novel CryoSat SAR Data to get the radar altimetry closer to the shore exploiting the SARIn mode for the discrimination of off-nadir land targets (e.g. steep cliffs) in the radar footprint from nadir sea return. -High Resolution Sea-Floor Altimetry: Exploitation of the finer resolution and higher SNR of novel CryoSat SAR Data to resolve the weak short-wavelength sea surface signals caused by sea-floor topography elements and to map uncharted sea-mounts/trenches. One of the first project activities is the consolidation of preliminary scientific requirements for the four themes under investigation. This paper will present the CP4O project content and objectives and will address the first initial results from the on-going work to define the scientific requirements.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, Jiun-Dar
2017-01-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. In this study, the impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE) model and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.
NASA Astrophysics Data System (ADS)
Tao, Wei-Kuo; Chern, Jiun-Dar
2017-06-01
The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multiscale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. The impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE, a CRM) model and Goddard MMF that uses the GCEs as its embedded CRMs. Both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the Goddard MMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feedback are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation.
Evaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2017-02-01
We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable points than fibers in the bundle. An experimental test platform was assembled to evaluate and compare two candidate architectures, based on introducing a coded amplitude mask at either a conjugate image or Fourier plane within the optical system. The benchtop platform consists of a common illumination and object path followed by separate imaging arms for each compressive architecture. The imaging arms contain a digital micromirror device (DMD) as a reprogrammable mask, with a CCD camera for image acquisition. One arm has the DMD positioned at a conjugate image plane ("IP arm"), while the other arm has the DMD positioned at a Fourier plane ("FP arm"). Lenses were selected and positioned within each arm to achieve an element-to-pixel ratio of 16 (230,400 mask elements mapped onto 14,400 camera pixels). We discuss our mathematical model for each system arm and outline the importance of accounting for system non-idealities. Reconstruction of a 1951 USAF resolution target using optimization-based compressive sensing algorithms produced images with higher spatial resolution than bicubic interpolation for both system arms when system non-idealities are included in the model. Furthermore, images generated with image plane coding appear to exhibit higher spatial resolution, but more noise, than images acquired through Fourier plane coding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...
2016-12-05
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.
NASA Astrophysics Data System (ADS)
Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki
2017-02-01
As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.
NASA Astrophysics Data System (ADS)
Gan, Shuwei; Wang, Shoudong; Chen, Yangkang; Qu, Shan; Zu, Shaohuan
2016-02-01
Direct imaging of simultaneous-source (or blended) data, without the need of deblending, requires a precise subsurface velocity model. In this paper, we focus on the velocity analysis of simultaneous-source data using the normal moveout-based velocity picking approach.We demonstrate that it is possible to obtain a precise velocity model directly from the blended data in the common-midpoint domain. The similarity-weighted semblance can help us obtain much better velocity spectrum with higher resolution and higher reliability compared with the traditional semblance. The similarity-weighted semblance enforces an inherent noise attenuation solely in the semblance calculation stage, thus it is not sensitive to the intense interference. We use both simulated synthetic and field data examples to demonstrate the performance of the similarity-weighted semblance in obtaining reliable subsurface velocity model for direct migration of simultaneous-source data. The migrated image of blended field data using prestack Kirchhoff time migration approach based on the picked velocity from the similarity-weighted semblance is very close to the migrated image of unblended data.
Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.
2008-12-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.
Adaptive optics with pupil tracking for high resolution retinal imaging
Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris
2012-01-01
Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577
Adaptive optics with pupil tracking for high resolution retinal imaging.
Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris
2012-02-01
Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.
Multimaterial 4D Printing with Tailorable Shape Memory Polymers
Ge, Qi; Sakhaei, Amir Hosein; Lee, Howon; Dunn, Conner K.; Fang, Nicholas X.; Dunn, Martin L.
2016-01-01
We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PμSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures. PMID:27499417
Mori, Shinichiro; Inaniwa, Taku; Kumagai, Motoki; Kuwae, Tsunekazu; Matsuzaki, Yuka; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji
2012-06-01
To increase the accuracy of carbon ion beam scanning therapy, we have developed a graphical user interface-based digitally-reconstructed radiograph (DRR) software system for use in routine clinical practice at our center. The DRR software is used in particular scenarios in the new treatment facility to achieve the same level of geometrical accuracy at the treatment as at the imaging session. DRR calculation is implemented simply as the summation of CT image voxel values along the X-ray projection ray. Since we implemented graphics processing unit-based computation, the DRR images are calculated with a speed sufficient for the particular clinical practice requirements. Since high spatial resolution flat panel detector (FPD) images should be registered to the reference DRR images in patient setup process in any scenarios, the DRR images also needs higher spatial resolution close to that of FPD images. To overcome the limitation of the CT spatial resolution imposed by the CT voxel size, we applied image processing to improve the calculated DRR spatial resolution. The DRR software introduced here enabled patient positioning with sufficient accuracy for the implementation of carbon-ion beam scanning therapy at our center.
Multiresolution MR elastography using nonlinear inversion
McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.
2012-01-01
Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution NLI elastography provides a more flexible framework for mechanical property estimation compared to previous single mesh implementations. PMID:23039674
Fast generation of computer-generated hologram by graphics processing unit
NASA Astrophysics Data System (ADS)
Matsuda, Sho; Fujii, Tomohiko; Yamaguchi, Takeshi; Yoshikawa, Hiroshi
2009-02-01
A cylindrical hologram is well known to be viewable in 360 deg. This hologram depends high pixel resolution.Therefore, Computer-Generated Cylindrical Hologram (CGCH) requires huge calculation amount.In our previous research, we used look-up table method for fast calculation with Intel Pentium4 2.8 GHz.It took 480 hours to calculate high resolution CGCH (504,000 x 63,000 pixels and the average number of object points are 27,000).To improve quality of CGCH reconstructed image, fringe pattern requires higher spatial frequency and resolution.Therefore, to increase the calculation speed, we have to change the calculation method. In this paper, to reduce the calculation time of CGCH (912,000 x 108,000 pixels), we employ Graphics Processing Unit (GPU).It took 4,406 hours to calculate high resolution CGCH on Xeon 3.4 GHz.Since GPU has many streaming processors and a parallel processing structure, GPU works as the high performance parallel processor.In addition, GPU gives max performance to 2 dimensional data and streaming data.Recently, GPU can be utilized for the general purpose (GPGPU).For example, NVIDIA's GeForce7 series became a programmable processor with Cg programming language.Next GeForce8 series have CUDA as software development kit made by NVIDIA.Theoretically, calculation ability of GPU is announced as 500 GFLOPS. From the experimental result, we have achieved that 47 times faster calculation compared with our previous work which used CPU.Therefore, CGCH can be generated in 95 hours.So, total time is 110 hours to calculate and print the CGCH.
A pratical deconvolution algorithm in multi-fiber spectra extraction
NASA Astrophysics Data System (ADS)
Zhang, Haotong; Li, Guangwei; Bai, Zhongrui
2015-08-01
Deconvolution algorithm is a very promising method in multi-fiber spectroscopy data reduction, the method can extract spectra to the photo noise level as well as improve the spectral resolution, but as mentioned in Bolton & Schlegel (2010), it is limited by its huge computation requirement and thus can not be implemented directly in actual data reduction. We develop a practical algorithm to solve the computation problem. The new algorithm can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. We further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. A series of simulations based on LAMOST data are carried out to test our method under more real situations with poisson noise and extreme cross talk, i.e., the fiber-to-fiber distance is comparable to the FWHM of the fiber profile. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method shows both higher S/N and spectral resolution. The computaion time for a noise added image with 250 fibers and 4k pixels in wavelength direction, is about 2 hours when the fiber cross talk is not in the extreme case and 3.5 hours for the extreme fiber cross talk. We finally apply our method to real LAMOST data. We find that the 1D spectrum extracted by our method has both higher SNR and resolution than the traditional methods, but there are still some suspicious weak features possibly caused by the noise sensitivity of the method around the strong emission lines. How to further attenuate the noise influence will be the topic of our future work. As we have demonstrated, multi-fiber spectra extracted by our method will have higher resolution and signal to noise ratio thus will provide more accurate information (such as higher radial velocity and metallicity measurement accuracy in stellar physics) to astronomers than traditional methods.
Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods
NASA Astrophysics Data System (ADS)
Kozdon, J. E.; Wilcox, L.
2013-12-01
Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.
Ocean Color Inferred from Radiometers on Low-Flying Aircraft.
Churnside, James H; Wilson, James J
2008-02-08
The color of sunlight reflected from the ocean to orbiting visible radiometers hasprovided a great deal of information about the global ocean, after suitable corrections aremade for atmospheric effects. Similar ocean-color measurements can be made from a lowflyingaircraft to get higher spatial resolution and to obtain measurements under clouds.A different set of corrections is required in this case, and we describe algorithms to correctfor clouds and sea-surface effects. An example is presented and errors in the correctionsdiscussed.
2014-01-01
pressure of 325 kPa (40 psi) at the peak of the temperature ramp of the cure schedule (13). The higher hold pressure requires the use of a high -pressure...Henkel Corporation Aerospace Group. Hysol EA 9896 Peel Ply; Preliminary Technical Datasheet, Bay Point, CA, February 2010. 11. Airtech Advanced ...using FM 94K epoxy film adhesive by mechanical testing, elemental surface analysis, and high -resolution imaging of failure surfaces. Woven S2
X-ray GEM Detectors for Burning Plasma Experiments
NASA Astrophysics Data System (ADS)
Puddu, S.; Bombarda, F.; Pizzicaroli, G.; Murtas, F.
2009-11-01
The harsh environment and higher values of plasma parameters to be expected in future burning plasma experiments (and even more so in future power producing fusion reactors) is prompting the development of new, advanced diagnostic systems. The detection of radiation emitted by the plasma in the X-ray spectral region is likely to play the role that visible or UV radiation have in present day experiments. GEM gas detectors, developed at CERN, are the natural evolution of Multiwire Proportional Chambers, with a number of advantages: higher counting rates, lower noise, good energy resolution, low sensitivity to background radiation. GEM's can be used in several different ways, but two specific applications are being explored in the framework of the Ignitor program, one for plasma position control and the other for high resolution spectroscopy. The diagnostic layout on the Ignitor machine is such that the detectors will not be in direct view of the plasma, at locations where they can be efficiently screened by the background radiation. Prototype detectors 10 x 10 cm^2 in area have been assembled and will be tested to assess the optimal geometrical parameters and operating conditions, regarding in particular the choice between Single and Triple GEM configurations, the gas mixture, and the problem of fan-out associated with the high number of output channels required for high resolution crystal spectrometers.
OCT imaging with temporal dispersion induced intense and short coherence laser source
NASA Astrophysics Data System (ADS)
Manna, Suman K.; le Gall, Stephen; Li, Guoqiang
2016-10-01
Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic photonic band gap have been designed to provide maximum reduction in coherence volume while maintaining the intensity higher than 50%. As an example, the coherence length of a multimode He-Ne laser is reduced by more than 730 times.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory
2010-01-01
The slide presentation discusses the integration of 1-kilometer spatial resolution land temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS), with 8-day temporal resolution, into the NASA Monsoon-Asia Integrated Regional Study (MAIRS) Data Center. The data will be available for analysis and visualization in the Giovanni data system. It discusses the NASA MAIRS Data Center, presents an introduction to the data access tools, and an introduction of Products available from the service, discusses the higher resolution Land Surface Temperature (LST) and presents preliminary results of LST Trends over China.
Development of Finer Spatial Resolution Optical Properties from MODIS
2008-02-04
infrared (SWIR) channels at 1240 nm and 2130 run. The increased resolution spectral Rrs channels are input into bio-optical algorithms (Quasi...processes. Additionally, increased resolution is required for validation of ocean color products in coastal regions due to the shorter spatial scales of...with in situ Rrs data to determine the "best" method in coastal regimes. We demonstrate that finer resolution is required for validation of coastal
NASA Astrophysics Data System (ADS)
Zhou, J.; Li, G.; Liu, S.; Zhan, W.; Zhang, X.
2015-12-01
At present land surface temperatures (LSTs) can be generated from thermal infrared remote sensing with spatial resolutions from ~100 m to tens of kilometers. However, LSTs with high spatial resolution, e.g. tens of meters, are still lack. The purpose of LST downscaling is to generate LSTs with finer spatial resolutions than their native spatial resolutions. The statistical linear or nonlinear regression models are most frequently used for LST downscaling. The basic assumption of these models is the scale-invariant relationships between LST and its descriptors, which is questioned but rare researches have been reported. In addition, few researches can be found for downscaling satellite LST or TIR data to a high spatial resolution, i.e. better than 100 m or even finer. The lack of LST with high spatial resolution cannot satisfy the requirements of applications such as evapotranspiration mapping at the field scale. By selecting a dynamically developing agricultural oasis as the study area, the aim of this study is to downscale the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LSTs to 15 m, to satisfy the requirement of evapotranspiration mapping at the field scale. Twelve ASTER images from May to September in 2012, covering the entire growth stage of maize, were selected. Four statistical models were evaluated, including one global model, one piecewise model, and two local models. The influence from scale effect in downscaling LST was quantified. The downscaled LSTs are evaluated from accuracy and image quality. Results demonstrate that the influence from scale effect varies according to models and the maize growth stage. Significant influence about -4 K to 6 K existed at the early stage and weaker influence existed in the middle stage. When compared with the ground measured LSTs, the downscaled LSTs resulted from the global and local models yielded higher accuracies and better image qualities than the local models. In addition to the vegetation indices, the surface albedo is an important descriptor for downscaling LST through explaining its spatial variation induced by soil moisture.
Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation
Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong
2017-01-01
Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175
A Large Scale Code Resolution Service Network in the Internet of Things
Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan
2012-01-01
In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT's advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS. PMID:23202207
A large scale code resolution service network in the Internet of Things.
Yu, Haining; Zhang, Hongli; Fang, Binxing; Yu, Xiangzhan
2012-11-07
In the Internet of Things a code resolution service provides a discovery mechanism for a requester to obtain the information resources associated with a particular product code immediately. In large scale application scenarios a code resolution service faces some serious issues involving heterogeneity, big data and data ownership. A code resolution service network is required to address these issues. Firstly, a list of requirements for the network architecture and code resolution services is proposed. Secondly, in order to eliminate code resolution conflicts and code resolution overloads, a code structure is presented to create a uniform namespace for code resolution records. Thirdly, we propose a loosely coupled distributed network consisting of heterogeneous, independent; collaborating code resolution services and a SkipNet based code resolution service named SkipNet-OCRS, which not only inherits DHT’s advantages, but also supports administrative control and autonomy. For the external behaviors of SkipNet-OCRS, a novel external behavior mode named QRRA mode is proposed to enhance security and reduce requester complexity. For the internal behaviors of SkipNet-OCRS, an improved query algorithm is proposed to increase query efficiency. It is analyzed that integrating SkipNet-OCRS into our resolution service network can meet our proposed requirements. Finally, simulation experiments verify the excellent performance of SkipNet-OCRS.
Negoita, Madalina; Zolgharni, Massoud; Dadkho, Elham; Pernigo, Matteo; Mielewczik, Michael; Cole, Graham D; Dhutia, Niti M; Francis, Darrel P
2016-09-01
To determine the optimal frame rate at which reliable heart walls velocities can be assessed by speckle tracking. Assessing left ventricular function with speckle tracking is useful in patient diagnosis but requires a temporal resolution that can follow myocardial motion. In this study we investigated the effect of different frame rates on the accuracy of speckle tracking results, highlighting the temporal resolution where reliable results can be obtained. 27 patients were scanned at two different frame rates at their resting heart rate. From all acquired loops, lower temporal resolution image sequences were generated by dropping frames, decreasing the frame rate by up to 10-fold. Tissue velocities were estimated by automated speckle tracking. Above 40 frames/s the peak velocity was reliably measured. When frame rate was lower, the inter-frame interval containing the instant of highest velocity also contained lower velocities, and therefore the average velocity in that interval was an underestimate of the clinically desired instantaneous maximum velocity. The higher the frame rate, the more accurately maximum velocities are identified by speckle tracking, until the frame rate drops below 40 frames/s, beyond which there is little increase in peak velocity. We provide in an online supplement the vendor-independent software we used for automatic speckle-tracked velocity assessment to help others working in this field. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Modeling the QBO-Improvements resulting from higher-model vertical resolution.
Geller, Marvin A; Zhou, Tiehan; Shindell, D; Ruedy, R; Aleinov, I; Nazarenko, L; Tausnev, N L; Kelley, M; Sun, S; Cheng, Y; Field, R D; Faluvegi, G
2016-09-01
Using the NASA Goddard Institute for Space Studies (GISS) climate model, it is shown that with proper choice of the gravity wave momentum flux entering the stratosphere and relatively fine vertical layering of at least 500 m in the upper troposphere-lower stratosphere (UTLS), a realistic stratospheric quasi-biennial oscillation (QBO) is modeled with the proper period, amplitude, and structure down to tropopause levels. It is furthermore shown that the specified gravity wave momentum flux controls the QBO period whereas the width of the gravity wave momentum flux phase speed spectrum controls the QBO amplitude. Fine vertical layering is required for the proper downward extension to tropopause levels as this permits wave-mean flow interactions in the UTLS region to be resolved in the model. When vertical resolution is increased from 1000 to 500 m, the modeled QBO modulation of the tropical tropopause temperatures increasingly approach that from observations, and the "tape recorder" of stratospheric water vapor also approaches the observed. The transport characteristics of our GISS models are assessed using age-of-air and N 2 O diagnostics, and it is shown that some of the deficiencies in model transport that have been noted in previous GISS models are greatly improved for all of our tested model vertical resolutions. More realistic tropical-extratropical transport isolation, commonly referred to as the "tropical pipe," results from the finer vertical model layering required to generate a realistic QBO.
Delayed relapse in pseudotumor cerebri due to new stenosis after transverse sinus stenting
Winters, Hugh Stephen; Parker, Geoff; Halmagyi, Gabor Michael; Mehta, Ankur; Atkins, Thomas
2015-01-01
A patient presented with recurrent severe pseudotumor cerebri (PTC). Transverse sinus stenting is a very effective treatment option, however stenosis and intracranial hypertension can recur. In our patient, stenting initially resulted in resolution of papilloedema. However, after 5 years, a new stenosis developed which required further stenting. This case highlights the fact that, in patients with PTC who undergo transverse sinus stenting, a small proportion require repeat treatment due to formation of a new stenosis, usually adjacent to the existing stent. Patients with severe disease, such as ours, may be at higher risk of recurrence. Regardless of the severity, all patients who undergo stenting should have regular ocular follow-up. PMID:26351311
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.
The optics of microscope image formation.
Wolf, David E
2013-01-01
Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.
Marcinkowski, Radosław; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan
2016-03-07
The mouse model is widely used in a vast range of biomedical and preclinical studies. Thanks to the ability to detect and quantify biological processes at the molecular level in vivo, PET has become a well-established tool in these investigations. However, the need to visualize and quantify radiopharmaceuticals in anatomic structures of millimetre or less requires good spatial resolution and sensitivity from small-animal PET imaging systems.In previous work we have presented a proof-of-concept of a dedicated high-resolution small-animal PET scanner based on thin monolithic scintillator crystals and Digital Photon Counter photosensor. The combination of thin monolithic crystals and MLE positioning algorithm resulted in an excellent spatial resolution of 0.7 mm uniform in the entire field of view (FOV). However, the limitation of the scanner was its low sensitivity due to small thickness of the lutetium-yttrium oxyorthosilicate (LYSO) crystals (2 mm).Here we present an improved detector design for a small-animal PET system that simultaneously achieves higher sensitivity and sustains a sub-millimetre spatial resolution. The proposed detector consists of a 5 mm thick monolithic LYSO crystal optically coupled to a Digital Photon Counter. Mean nearest neighbour (MNN) positioning combined with depth of interaction (DOI) decoding was employed to achieve sub-millimetre spatial resolution. To evaluate detector performance the intrinsic spatial resolution, energy resolution and coincidence resolving time (CRT) were measured. The average intrinsic spatial resolution of the detector was 0.60 mm full-width-at-half-maximum (FWHM). A DOI resolution of 1.66 mm was achieved. The energy resolution was 23% FWHM at 511 keV and CRT of 529 ps were measured. The improved detector design overcomes the sensitivity limitation of the previous design by increasing the nominal sensitivity of the detector block and retains an excellent intrinsic spatial resolution.
Effects of cusped field thruster on the performance of drag-free control system
NASA Astrophysics Data System (ADS)
Cui, K.; Liu, H.; Jiang, W. J.; Sun, Q. Q.; Hu, P.; Yu, D. R.
2018-03-01
With increased measurement tasks of space science, more requirements for the spacecraft environment have been put forward. Those tasks (e.g. the measurement of Earth's steady state gravity field anomalies) lead to the desire for developing drag-free control. Higher requirements for the thruster performance are made due to the demand for the drag-free control system and real-time compensation for non-conservative forces. Those requirements for the propulsion system include wide continuous throttling ability, high resolution, rapid response, low noise and so on. As a promising candidate, the cusped field thruster has features such as the high working stability, the low erosion rate, a long lifetime and the simple structure, so that it is chosen as the thruster to be discussed in this paper. Firstly, the performance of a new cusped field thruster is tested and analyzed. Then a drag-free control scheme based on the cusped field thruster is designed to evaluate the performance of this thruster. Subsequently, the effects of the thrust resolution, transient response time and thrust uncertainty on the controller are calculated respectively. Finally, the performance of closed-loop system is analyzed, and the simulation results verify the feasibility of applying cusped field thruster to drag-free flight in the space science measurement tasks.
Parametric Study for Increasing On-Station Duration via Unconventional Aircraft Launch Approach
NASA Technical Reports Server (NTRS)
Kuhl, Christopher A.; Moses, Robert W.; Croom, Mark A.; Sandford, Stephen P.
2004-01-01
The need for better atmospheric predictions is causing the atmospheric science community to look for new ways to obtain longer, higher-resolution measurements over several diurnal cycles. The high resolution, in-situ measurements required to study many atmospheric phenomena can be achieved by an Autonomous Aerial Observation System (AAOS); however, meeting the long on-station time requirements with an aerial platform poses many challenges. Inspired by the half-scale drop test of the deployable Aerial Regional-scale Environmental Survey (ARES) Mars airplane, a study was conducted at the NASA Langley Research Center to examine the possibility of increasing on-station time by launching an airplane directly at the desired altitude. The ARES Mars airplane concept was used as a baseline for Earth atmospheric flight, and parametric analyses of fundamental configuration elements were performed to study their impact on achieving desired on-station time with this class of airplane. The concept involved lifting the aircraft from the ground to the target altitude by means of an air balloon, thereby unburdening the airplane of ascent requirements. The parameters varied in the study were aircraft wingspan, payload, fuel quantity, and propulsion system. The results show promising trends for further research into aircraft-payload design using this unconventional balloon-based launch approach.
High-resolution high-efficiency multilayer Fresnel zone plates for soft and hard x-rays
NASA Astrophysics Data System (ADS)
Sanli, Umut T.; Keskinbora, Kahraman; Gregorczyk, Keith; Leister, Jonas; Teeny, Nicolas; Grévent, Corinne; Knez, Mato; Schütz, Gisela
2015-09-01
X-ray microscopy enables high spatial resolutions, high penetration depths and characterization of a broad range of materials. Calculations show that nanometer range resolution is achievable in the hard X-ray regime by using Fresnel zone plates (FZPs) if certain conditions are satisfied. However, this requires, among other things, aspect ratios of several thousands. The multilayer (ML) type FZPs, having virtually unlimited aspect ratios, are strong candidates to achieve single nanometer resolutions. Our research is focused on the fabrication of ML-FZPs which encompasses deposition of multilayers over a glass fiber via the atomic layer deposition (ALD), which is subsequently sliced in the optimum thickness for the X-ray energy by a focused ion beam (FIB). We recently achieved aberration free imaging by resolving 21 nm features with an efficiency of up to 12.5 %, the highest imaging resolution achieved by an ML-FZP. We also showed efficient focusing of 7.9 keV X-rays down to 30 nm focal spot size (FWHM). For resolutions below ~10 nm, efficiencies would decrease significantly due to wave coupling effects. To compensate this effect high efficiency, low stress materials have to be researched, as lower intrinsic stresses will allow fabrication of larger FZPs with higher number of zones, leading to high light intensity at the focus. As a first step we fabricated an ML-FZP with a diameter of 62 μm, an outermost zone width of 12 nm and 452 active zones. Further strategies for fabrication of high resolution high efficiency multilayer FZPs will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting Yuan-Sen; Conroy, Charlie; Cargile, Phillip
Understanding the evolution of the Milky Way calls for the precise abundance determination of many elements in many stars. A common perception is that deriving more than a few elemental abundances ([Fe/H], [ α /Fe], perhaps [C/H], [N/H]) requires medium-to-high spectral resolution, R ≳ 10,000, mostly to overcome the effects of line blending. In a recent work, we presented an efficient and practical way to model the full stellar spectrum, even when fitting a large number of stellar labels simultaneously. In this paper, we quantify to what precision the abundances of many different elements can be recovered, as a functionmore » of spectroscopic resolution and wavelength range. In the limit of perfect spectral models and spectral normalization, we show that the precision of elemental abundances is nearly independent of resolution, for a fixed exposure time and number of detector pixels; low-resolution spectra simply afford much higher S/N per pixel and generally larger wavelength range in a single setting. We also show that estimates of most stellar labels are not strongly correlated with one another once R ≳ 1000. Modest errors in the line-spread function, as well as small radial velocity errors, do not affect these conclusions, and data-driven models indicate that spectral (continuum) normalization can be achieved well enough in practice. These results, to be confirmed with an analysis of observed low-resolution data, open up new possibilities for the design of large spectroscopic stellar surveys and for the reanalysis of archival low-resolution data sets.« less
NASA Astrophysics Data System (ADS)
Jeon, Seungwan; Park, Jihoon; Kim, Chulhong
2018-02-01
Photoacoustic microscopy (PAM) is a hybrid imaging technology using optical illumination and acoustic detection. PAM is divided into two types: optical-resolution PAM (OR-PAM) and acoustic-resolution photoacoustic microscopy (AR-PAM). Among them, AR-PAM has a great advantage in the penetration depth compared to OR-PAM because ARPAM relies on the acoustic focus, which is much less scattered in biological tissue than optical focus. However, because the acoustic focus is not as tight as the optical focus with a same numerical aperture (NA), the AR-PAM requires acoustic NA higher than optical NA. The high NA of the acoustic focus produces good image quality in the focal zone, but significantly degrades spatial resolution and signal-to-noise ratio (SNR) in the out-of-focal zone. To overcome the problem, synthetic aperture focusing technique (SAFT) has been introduced. SAFT improves the degraded image quality in terms of both SNR and spatial resolution in the out-of-focus zone by calculating the time delay of the corresponding signals and combining them. To extend the dimension of correction effect, several 2D SAFTs have been introduced, but there was a problem that the conventional 2D SAFTs cannot improve the degraded SNR and resolution as 1D SAFT can do. In this study, we proposed a new 2D SAFT that can compensate the distorted signals in x and y directions while maintaining the correction performance as the 1D SAFT.
Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M
2014-02-01
Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.
NASA Astrophysics Data System (ADS)
Gochis, D. J.; Dugger, A. L.; Karsten, L. R.; Barlage, M. J.; Sampson, K. M.; Yu, W.; Pan, L.; McCreight, J. L.; Howard, K.; Busto, J.; Deems, J. S.
2017-12-01
Hydrometeorological processes vary over comparatively short length scales in regions of complex terrain such as the southern Rocky Mountains. Changes in temperature, precipitation, wind and solar radiation can vary significantly across elevation gradients, terrain landform and land cover conditions throughout the region. Capturing such variability in hydrologic models can necessitate the utilization of so-called `hyper-resolution' spatial meshes with effective element spacings of less than 100m. However, it is often difficult to obtain meteorological forcings of high quality in such regions at those resolutions which can result in significant uncertainty in fundamental in hydrologic model inputs. In this study we examine the comparative influences of meteorological forcing data fidelity and spatial resolution on seasonal simulations of snowpack evolution, runoff and streamflow in a set of high mountain watersheds in southern Colorado. We utilize the operational, NOAA National Water Model configuration of the community WRF-Hydro system as a baseline and compare against it, additional model scenarios with differing specifications of meteorological forcing data, with and without topographic downscaling adjustments applied, with and without experimental high resolution radar derived precipitation estimates and with WRF-Hydro configurations of progressively finer spatial resolution. The results suggest significant influence from and importance of meteorological downscaling techniques in controlling spatial distributions of meltout and runoff timing. The use of radar derived precipitation exhibits clear sensitivity on hydrologic simulation skill compared with the use of coarser resolution, background precipitation analyses. Advantages and disadvantages of the utilization of progressively higher resolution model configurations both in terms of computational requirements and model fidelity are also discussed.
Improved spatial resolution in PET scanners using sampling techniques
Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.
2009-01-01
Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586
Near-infrared high-resolution real-time omnidirectional imaging platform for drone detection
NASA Astrophysics Data System (ADS)
Popovic, Vladan; Ott, Beat; Wellig, Peter; Leblebici, Yusuf
2016-10-01
Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps).1 Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.2 In this paper, we focus on the system-level design of multi-camera sensor acquiring near-infrared (NIR) spectrum and its ability to detect mini-UAVs in a representative rural Swiss environment. The presented results show the UAV detection from the trial that we conducted during a field trial in August 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. P. Jensen; Toto, T.
Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25more » and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.« less
The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors
NASA Astrophysics Data System (ADS)
Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.
2008-04-01
Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.
Collision Resolution Scheme with Offset for Improved Performance of Heterogeneous WLAN
NASA Astrophysics Data System (ADS)
Upadhyay, Raksha; Vyavahare, Prakash D.; Tokekar, Sanjiv
2016-03-01
CSMA/CA based DCF of 802.11 MAC layer employs best effort delivery model, in which all stations compete for channel access with same priority. Heterogeneous conditions result in unfairness among stations and degradation in throughput, therefore, providing different priorities to different applications for required quality of service in heterogeneous networks is challenging task. This paper proposes a collision resolution scheme with a novel concept of introducing offset, which is suitable for heterogeneous networks. Selection of random value by a station for its contention with offset results in reduced probability of collision. Expression for the optimum value of the offset is also derived. Results show that proposed scheme, when applied to heterogeneous networks, has improved throughput and fairness than conventional scheme. Results show that proposed scheme also exhibits higher throughput and fairness with reduced delay in homogeneous networks.
A Study of the Extratropical Tropopause from Observations and Models
NASA Astrophysics Data System (ADS)
Wang, Shu Meir
The extratropical tropopause is a familiar feature in meteorology; however, the understanding of the mechanisms for its existence, formation, maintenance and sharpness is still an active area of research. Son and Povalni (2007) used a simple general circulation model to produce the TIL (Tropopause Inversion Layer), and they found that the extratropical tropopause is more sensitive to the change of the horizontal resolution than to the change of the vertical resolution. The extratropical tropopause is sharper and lower in higher horizontal resolution. They also successfully mimicked the seasonal variation of the extratropical tropopause by changing the Equator-to-Pole temperature difference. They found these features of the extratropical tropopause, but they did not explain why these features were seen in their simplified model. In this research, we try to explain why these features of the extratropical tropopause are seen from both observations and the models. I have shown in my MS thesis that the distance from the jet is more associated with the extratropical tropopause than is the upper tropospheric relative vorticity (Wirth, 2001) from observations. In this research, the reproduction of the work is done from both the idealized and the full model run, and the results are similar to those from the observations, which show that even on synoptic time scales, the distance from the jet is more important in determining the extratropical tropopause height than is the upper tropospheric relative vorticity. It also explains the seasonal variations of the extratropical tropopause since the jet is more poleward in summer than in winter (the Equator-to-Pole temperature difference is smaller in summer than in winter), thus there is larger area at south of the jet which means the extratropical tropopause is sharper and higher at midlatitudes in summer than in winter. We believe that baroclinic mixing of PV is the key factor that sharpens the extratropical tropopause, and adequate horizontal resolution is needed to resolve the baroclinic mixing and the small-scale filamentary structures. We used many methods in this study to show that there is more baroclinic activity seen in higher horizontal resolution. We also compared the correlations of the tropopause height with three variations in different quantities (PV fluxes, the upper tropospheric vorticity, and heat fluxes), and found that the correlations of the tropopause height and PV fluxes are the highest among the three. Thus, we conclude that baroclinic mixing is the most important factor that controls the extratropical tropopause sharpness. This also explains why the extratropical tropopause is sharper at midlatitudes when higher horizontal resolution is used (see figure 2.4 in the thesis and figure 2 in Son and Polvani's (2007)) since there is more baroclinic activity in the higher horizontal resolution models. Since there is more baroclinic activity seen in higher horizontal resolution, the baroclinic eddy drag is larger, which intensifies the thermally direct cell. The stronger thermally direct cell with higher horizontal resolution has greater downward motion in higher latitudes, and thus lowers the extratropical tropopause more in higher horizontal resolution models, which explains why the extratropical tropopause is lower in higher horizontal than in lower horizontal resolution models, as in Son and Polvani's (2007) paper.
Modeling of a sensitive time-of-flight flash LiDAR system
NASA Astrophysics Data System (ADS)
Fathipour, V.; Wheaton, S.; Johnson, W. E.; Mohseni, H.
2016-09-01
used for monitoring and profiling structures, range, velocity, vibration, and air turbulence. Remote sensing in the IR region has several advantages over the visible region, including higher transmitter energy while maintaining eye-safety requirements. Electron-injection detectors are a new class of detectors with high internal avalanche-free amplification together with an excess-noise-factor of unity. They have a cutoff wavelength of 1700 nm. Furthermore, they have an extremely low jitter. The detector operates in linear-mode and requires only bias voltage of a few volts. This together with the feedback stabilized gain mechanism, makes formation of large-format high pixel density electron-injection FPAs less challenging compared to other detector technologies such as avalanche photodetectors. These characteristics make electron-injection detectors an ideal choice for flash LiDAR application with mm scale resolution at longer ranges. Based on our experimentally measured device characteristics, a detailed theoretical LiDAR model was developed. In this model we compare the performance of the electron-injection detector with commercially available linear-mode InGaAs APD from (Hamamatsu G8931-20) as well as a p-i-n diode (Hamamatsu 11193 p-i-n). Flash LiDAR images obtained by our model, show the electron-injection detector array (of 100 x 100 element) achieves better resolution with higher signal-to-noise compared with both the InGaAs APD and the p-i-n array (of 100 x 100 element).
Wide field video-rate two-photon imaging by using spinning disk beam scanner
NASA Astrophysics Data System (ADS)
Maeda, Yasuhiro; Kurokawa, Kazuo; Ito, Yoko; Wada, Satoshi; Nakano, Akihiko
2018-02-01
The microscope technology with wider view field, deeper penetration depth, higher spatial resolution and higher imaging speed are required to investigate the intercellular dynamics or interactions of molecules and organs in cells or a tissue in more detail. The two-photon microscope with a near infrared (NIR) femtosecond laser is one of the technique to improve the penetration depth and spatial resolution. However, the video-rate or high-speed imaging with wide view field is difficult to perform with the conventional two-photon microscope. Because point-to-point scanning method is used in conventional one, so it's difficult to achieve video-rate imaging. In this study, we developed a two-photon microscope with spinning disk beam scanner and femtosecond NIR fiber laser with around 10 W average power for the microscope system to achieve above requirements. The laser is consisted of an oscillator based on mode-locked Yb fiber laser, a two-stage pre-amplifier, a main amplifier based on a Yb-doped photonic crystal fiber (PCF), and a pulse compressor with a pair of gratings. The laser generates a beam with maximally 10 W average power, 300 fs pulse width and 72 MHz repetition rate. And the beam incident to a spinning beam scanner (Yokogawa Electric) optimized for two-photon imaging. By using this system, we achieved to obtain the 3D images with over 1mm-penetration depth and video-rate image with 350 x 350 um view field from the root of Arabidopsis thaliana.
Timing Characterization of Helium-4 Fast Neutron Detector with EJ-309 Organic Liquid Scintillator
NASA Astrophysics Data System (ADS)
Liang, Yinong; Zhu, Ting; Enqvist, Andreas
2018-01-01
Recently, the Helium-4 gas fast neutron scintillation detectors is being used in time-sensitive measurements, such time-of-flight and multiplicity counting. In this paper, a set of time aligned signals was acquired in a coincidence measurement using the Helium-4 gas detectors and EJ-309 liquid scintillators. The high-speed digitizer system is implanted with a trigger moving average window (MAW) unit combing with its constant fraction discriminator (CFD) feature. It can calculate a "time offset" to the timestamp value to get a higher resolution timestamp (up to 50 ps), which is better than the digitizer's time resolution (4 ns) [1]. The digitized waveforms were saved to the computer hard drive and post processed with digital analysis code to determine the difference of their arrival times. The full-width at half-maximum (FWHM) of the Gaussian fit was used as to examine the resolution. For the cascade decay of Cobalt-60 (1.17 and 1.33 MeV), the first version of the Helium-4 detector with two Hamamatsu R580 photomultipliers (PMT) installed at either end of the cylindrical gas chamber (20 cm in length and 4.4 cm in diameter) has a time resolution which is about 3.139 ns FWHM. With improved knowledge of the timing performance, the Helium-4 scintillation detectors are excellent for neutron energy spectrometry applications requiring high temporal and energy resolutions.
Multispectral multisensor image fusion using wavelet transforms
Lemeshewsky, George P.
1999-01-01
Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.
Gatenby, J. Christopher; Gore, John C.; Tong, Frank
2012-01-01
High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI. PMID:22514646
Swisher, Jascha D; Sexton, John A; Gatenby, J Christopher; Gore, John C; Tong, Frank
2012-01-01
High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.
In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla
Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.
2015-01-01
Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770
Psychosocial Maturity and Conflict Resolution Management of Higher Secondary School Students
ERIC Educational Resources Information Center
Jaseena M.P.M., Fathima; P., Divya
2014-01-01
The aim of the study is to find out the extent and difference in the mean scores of Psychosocial Maturity and Conflict Resolution Management of Higher secondary school students of Kerala. A survey technique was used for the study. Sample consists of 685 higher secondary students by giving due representation other criteria. Findings revealed that…
NASA Astrophysics Data System (ADS)
Philimon, Sheena P.; Huong, Audrey K. C.; Ngu, Xavier T. I.
2017-08-01
This paper aims to investigate the variation in one’s percent mean transcutaneous oxygen saturation (StO2) with differences in spatial resolution of data. This work required the knowledge of extinction coefficient of hemoglobin derivatives in the wavelength range of 520 - 600 nm to solve for the StO2 value via an iterative fitting procedure. A pilot study was conducted on three healthy subjects with spectroscopic data collected from their right index finger at different arbitrarily selected distances. The StO2 value estimated by Extended Modified Lambert Beer (EMLB) model revealed a higher mean StO2 of 91.1 ± 1.3% at a proximity distance of 30 mm compared to 60.83 ± 2.8% at 200 mm. The results showed a high correlation between data spatial resolution and StO2 value, and revealed a decrease in StO2 value as the sampling distance increased. The preliminary findings from this study contribute to the knowledge of the appropriate distance range for consistent and high repeatability measurement of skin oxygenation.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-05
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion.
Han, Lei; Wulie, Buzha; Yang, Yiling; Wang, Hongqing
2015-01-01
This study investigated a novel method of fusing visible (VIS) and infrared (IR) images with the major objective of obtaining higher-resolution IR images. Most existing image fusion methods focus only on visual performance and many fail to consider the thermal physical properties of the IR images, leading to spectral distortion in the fused image. In this study, we use the IR thermal physical property to correct the VIS image directly. Specifically, the Stefan-Boltzmann Law is used as a strong constraint to modulate the VIS image, such that the fused result shows a similar level of regional thermal energy as the original IR image, while preserving the high-resolution structural features from the VIS image. This method is an improvement over our previous study, which required VIS-IR multi-wavelet fusion before the same correction method was applied. The results of experiments show that applying this correction to the VIS image directly without multi-resolution analysis (MRA) processing achieves similar results, but is considerably more computationally efficient, thereby providing a new perspective on VIS and IR image fusion. PMID:25569749
Line spread functions of blazed off-plane gratings operated in the Littrow mounting
NASA Astrophysics Data System (ADS)
DeRoo, Casey T.; McEntaffer, Randall L.; Miles, Drew M.; Peterson, Thomas J.; Marlowe, Hannah; Tutt, James H.; Donovan, Benjamin D.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Allured, Ryan; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo
2016-04-01
Future soft x-ray (10 to 50 Å) spectroscopy missions require higher effective areas and resolutions to perform critical science that cannot be done by instruments on current missions. An x-ray grating spectrometer employing off-plane reflection gratings would be capable of meeting these performance criteria. Off-plane gratings with blazed groove facets operating in the Littrow mounting can be used to achieve excellent throughput into orders achieving high resolutions. We have fabricated two off-plane gratings with blazed groove profiles via a technique that uses commonly available microfabrication processes, is easily scaled for mass production, and yields gratings customized for a given mission architecture. Both fabricated gratings were tested in the Littrow mounting at the Max Planck Institute for Extraterrestrial Physics (MPE) PANTER x-ray test facility to assess their performance. The line spread functions of diffracted orders were measured, and a maximum resolution of 800±20 is reported. In addition, we also observe evidence of a blaze effect from measurements of relative efficiencies of the diffracted orders.
Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L.; McCabe, Justin; Savarino, Joel; Thiemens, Mark H.
2013-01-01
The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth’s system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980–2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher ∆17O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and ∆17O = 3.3‰, OEI = 11 and ∆17O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that ∆17O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations. PMID:23447567
Kennedy, Benjamin C.; Kelly, Kathleen M.; Phan, Michelle Q.; Bruce, Samuel S.; McDowell, Michael M.; Anderson, Richard C. E.; Feldstein, Neil A.
2015-01-01
Object Symptomatic pediatric Chiari malformation Type I (CM-I) is most often treated with posterior fossa decompression (PFD), but controversy exists over whether the dura needs to be opened during PFD. While dural opening as a part of PFD has been suggested to result in a higher rate of resolution of CM symptoms, it has also been shown to lead to more frequent complications. In this paper, the authors present the largest reported series of outcomes after PFD without dural opening surgery, as well as identify risk factors for recurrence. Methods The authors performed a retrospective review of 156 consecutive pediatric patients in whom the senior authors performed PFD without dural opening from 2003 to 2013. Patient demographics, clinical symptoms and signs, radiographic findings, intraoperative ultrasound results, and neuromonitoring findings were reviewed. Univariate and multivariate regression analyses were performed to determine risk factors for recurrence of symptoms and the need for reoperation. Results Over 90% of patients had a good clinical outcome, with improvement or resolution of their symptoms at last follow-up (mean 32 months). There were no major complications. The mean length of hospital stay was 2.0 days. In a multivariate regression model, partial C-2 laminectomy was an independent risk factor associated with reoperation (p = 0.037). Motor weakness on presentation was also associated with reoperation but only with trend-level significance (p = 0.075). No patient with < 8 mm of tonsillar herniation required reoperation. Conclusions The vast majority (> 90%) of children with symptomatic CM-I will have improvement or resolution of symptoms after a PFD without dural opening. A non–dural opening approach avoids major complications. While no patient with tonsillar herniation < 8 mm required reoperation, children with tonsillar herniation at or below C-2 have a higher risk for failure when this approach is used. PMID:25932779
High-resolution ammonia emissions inventories in Fujian, China, 2009-2015
NASA Astrophysics Data System (ADS)
Wu, Shui-Ping; Zhang, Yin-Ju; Schwab, James J.; Li, Yang-Fan; Liu, Yuan-Long; Yuan, Chung-Shin
2017-08-01
A high-resolution NH3 emission inventory was developed based on the corrected emission factors and county-level activity data. To provide model-ready emission input, the NH3 emission inventory was gridded for the modeling domain at 1 × 1 km resolution using source-based spatial surrogates and a GIS system. The best estimate of total NH3 emission for the province was 228.02 kt in 2015 with a percentage uncertainty of ±16.3%. Four major contributors were farmland ecosystem, livestock wastes, humans and waste treatment, which contributed 39.4%, 43.1%, 4.9%, and 4.2% of the total emissions, respectively. The averaged NH3 emission density for the whole region was 1.88 t km-2 yr-1 and the higher values were found in coastal areas with higher dense populations. The seasonal patterns, with higher emissions in summer, were consistent with the patterns of temperature and planting practices. From 2009 to 2015, annual NH3 emissions increased from 218.49 kt to 228.02 kt. All of these changes are insignificant compared to the estimated overall uncertainties in the analysis, but indicative of changes in the source categories over this period. Between 2009 and 2015, the largest changes occurred in human emissions and waste treatment plants, which were consistent with the process of rapid urbanization. Meanwhile, the decrease of emissions from pigs was slightly higher than the increased emissions from broilers and the increased emissions from meat goats and beef cattle due to the combine effects of increasingly stringent environmental requirements for pig farms and shift away from pork consumption to beef, chicken and mutton. The validity of the estimates was further evaluated using uncertainty analysis, comparison with previous studies, and correlation analysis between emission density and observed ground ammonia. The inventories reflect the changes in economic progress and environmental protection and can provide scientific basis for the establishment of effective PM2.5 control strategies.
Bringing the Coastal Zone into Finer Focus
NASA Astrophysics Data System (ADS)
Guild, L. S.; Hooker, S. B.; Kudela, R. M.; Morrow, J. H.; Torres-Perez, J. L.; Palacios, S. L.; Negrey, K.; Dungan, J. L.
2015-12-01
Measurements over extents from submeter to 10s of meters are critical science requirements for the design and integration of remote sensing instruments for coastal zone research. Various coastal ocean phenomena operate at different scales (e.g. meters to kilometers). For example, river plumes and algal blooms have typical extents of 10s of meters and therefore can be resolved with satellite data, however, shallow benthic ecosystem (e.g., coral, seagrass, and kelp) biodiversity and change are best studied at resolutions of submeter to meter, below the pixel size of typical satellite products. The delineation of natural phenomena do not fit nicely into gridded pixels and the coastal zone is complicated by mixed pixels at the land-sea interface with a range of bio-optical signals from terrestrial and water components. In many standard satellite products, these coastal mixed pixels are masked out because they confound algorithms for the ocean color parameter suite. In order to obtain data at the land/sea interface, finer spatial resolution satellite data can be achieved yet spectral resolution is sacrificed. This remote sensing resolution challenge thwarts the advancement of research in the coastal zone. Further, remote sensing of benthic ecosystems and shallow sub-surface phenomena are challenged by the requirements to sense through the sea surface and through a water column with varying light conditions from the open ocean to the water's edge. For coastal waters, >80% of the remote sensing signal is scattered/absorbed due to the atmospheric constituents, sun glint from the sea surface, and water column components. In addition to in-water measurements from various platforms (e.g., ship, glider, mooring, and divers), low altitude aircraft outfitted with high quality bio-optical radiometer sensors and targeted channels matched with in-water sensors and higher altitude platform sensors for ocean color products, bridge the sea-truth measurements to the pixels acquired from satellite and high altitude platforms. We highlight a novel NASA airborne calibration, validation, and research capability for addressing the coastal remote sensing resolution challenge.
Development of Turbulence-Measuring Equipment
NASA Technical Reports Server (NTRS)
Kovasznay, Leslie S G
1954-01-01
Hot wire turbulence-measuring equipment has been developed to meet the more stringent requirements involved in the measurement of fluctuations in flow parameters at supersonic velocities. The higher mean speed necessitates the resolution of higher frequency components than at low speed, and the relatively low turbulence level present at supersonic speed makes necessary an improved noise level for the equipment. The equipment covers the frequency range from 2 to about 70,000 cycles per second. Constant-current operation is employed. Compensation for hot-wire lag is adjusted manually using square-wave testing to indicate proper setting. These and other features make the equipment adaptable to all-purpose turbulence work with improved utility and accuracy over that of older types of equipment. Sample measurements are given to demonstrate the performance.
NASA Astrophysics Data System (ADS)
Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.
2004-11-01
The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during the Implementation Phase scheduled to begin FY05 for a resultant FY12 launch. The magnitude of complexity of the HES development requires an appreciation of the technologies required to achieve the functional objectives. To this end, the GOES-R project team is making available all NASA developed technologies to potential HES vendors, including, the NASA New Millennium Program"s (NMP) Earth Observing-3, Geostationary Imaging Fourier Transform Spectrometer (GIFTS) instrument developed technologies, as applicable. It is anticipated that the instrument(s) meeting the HES requirements will be either a dispersive spectrometer or an interferometric spectrometer or perhaps a combination. No instrument configuration is preferred or favored by the Government. This paper outlines the HES development plan; including an overview of current requirements, existing partnerships and the GOES-R project methodologies to achieve the advanced functional objectives of the GOES Program partnership.
Bazan, I; Ramos, A; Balay, G; Negreira, C
2018-07-01
The aim of this work is to develop a new type of ultrasonic analysis of the mechanical properties of an arterial wall with improved resolution, and to confirm its feasibility under laboratory conditions. it is expected that this would facilitate a non-invasive path for accurate predictive diagnosis that enables an early detection & therapy of vascular pathologies. In particular, the objective is to detect and quantify the small elasticity changes (in Young's modulus E) of arterial walls, which precede pathology. A submicron axial resolution is required for this analysis, as the periodic widening of the wall (under oscillatory arterial pressure) varies between ±10 and 20 μm. This high resolution represents less than 1% of the parietal thickness (e.g., < 7 μm in carotid arteries). The novelty of our proposal is the new technique used to estimate the modulus E of the arterial walls, which achieves the requisite resolution. It calculates the power spectral evolution associated with the temporal dynamics in higher harmonics of the wall internal resonance f 0 . This was attained via the implementation of an autoregressive parametric algorithm that accurately detects parietal echo-dynamics during a heartbeat. Thus, it was possible to measure the punctual elasticity of the wall, with a higher resolution (> an order of magnitude) compared to conventional approaches. The resolution of a typical ultrasonic image is limited to several hundred microns, and thus, such small changes are undetected. The proposed procedure provides a non-invasive and direct measure of elasticity by doing an estimation of changes in the Nf 0 harmonics and wall thickness with a resolution of 0.1%, for first time. The results obtained by using the classic temporal cross-correlation method (TCC) were compared to those obtained with the new procedure. The latter allowed the evaluation of alterations in the elastic properties of arterial walls that are 30 times smaller than those being detectable with TCC; in fact, the depth resolution of the TCC approach is limited to ≈20 μm for typical SNRs. These values were calculated based on echoes obtained using a reference pattern (rubber tube). The application of the proposed procedure was also confirmed via "ex-vivo" measurements in pig carotid segments. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Helen; Lee, Robben; Lee, Tyzy; Xue, Teddy; Liu, Hermes; Wu, Hall; Wan, Qijian; Du, Chunshan; Hu, Xinyi; Liu, Zhengfang
2018-03-01
As technology advances, escalating layout design complexity and chip size make defect inspection becomes more challenging than ever before. The YE (Yield Enhancement) engineers are seeking for an efficient strategy to ensure accuracy without suffering running time. A smart way is to set different resolutions for different pattern structures, for examples, logic pattern areas have a higher scan resolution while the dummy areas have a lower resolution, SRAM area may have another different resolution. This can significantly reduce the scan processing time meanwhile the accuracy does not suffer. Due to the limitation of the inspection equipment, the layout must be processed in order to output the Care Area marker in line with the requirement of the equipment, for instance, the marker shapes must be rectangle and the number of the rectangle shapes should be as small as possible. The challenge is how to select the different Care Areas by pattern structures, merge the areas efficiently and then partition them into pieces of rectangle shapes. This paper presents a solution based on Calibre DRC and Pattern Matching. Calibre equation-based DRC is a powerful layout processing engine and Calibre Pattern Matching's automated visual capture capability enables designers to define these geometries as layout patterns and store them in libraries which can be re-used in multiple design layouts. Pattern Matching simplifies the description of very complex relationships between pattern shapes efficiently and accurately. Pattern matching's true power is on display when it is integrated with normal DRC deck. In this application of defects inspection, we first run Calibre DRC to get rule based Care Area then use Calibre Pattern Matching's automated pattern capture capability to capture Care Area shapes which need a higher scan resolution with a tune able pattern halo. In the pattern matching step, when the patterns are matched, a bounding box marker will be output to identify the high resolution area. The equation-based DRC and Pattern Matching effectively work together for different scan phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jie; Wang, Xin, E-mail: wangx@tongji.edu.cn, E-mail: mubz@tongji.edu.cn; Zhan, Qi
This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system basedmore » on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.« less
Effects of temporal averaging on short-term irradiance variability under mixed sky conditions
NASA Astrophysics Data System (ADS)
Lohmann, Gerald M.; Monahan, Adam H.
2018-05-01
Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.
Optimal design of an earth observation optical system with dual spectral and high resolution
NASA Astrophysics Data System (ADS)
Yan, Pei-pei; Jiang, Kai; Liu, Kai; Duan, Jing; Shan, Qiusha
2017-02-01
With the increasing demand of the high-resolution remote sensing images by military and civilians, Countries around the world are optimistic about the prospect of higher resolution remote sensing images. Moreover, design a visible/infrared integrative optic system has important value in earth observation. Because visible system can't identify camouflage and recon at night, so we should associate visible camera with infrared camera. An earth observation optical system with dual spectral and high resolution is designed. The paper mainly researches on the integrative design of visible and infrared optic system, which makes the system lighter and smaller, and achieves one satellite with two uses. The working waveband of the system covers visible, middle infrared (3-5um). Dual waveband clear imaging is achieved with dispersive RC system. The focal length of visible system is 3056mm, F/# is 10.91. And the focal length of middle infrared system is 1120mm, F/# is 4. In order to suppress the middle infrared thermal radiation and stray light, the second imaging system is achieved and the narcissus phenomenon is analyzed. The system characteristic is that the structure is simple. And the especial requirements of the Modulation Transfer Function (MTF), spot, energy concentration, and distortion etc. are all satisfied.
NASA Astrophysics Data System (ADS)
Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong
2016-07-01
This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.
Micelle-templated composite quantum dots for super-resolution imaging.
Xu, Jianquan; Fan, Qirui; Mahajan, Kalpesh D; Ruan, Gang; Herrington, Andrew; Tehrani, Kayvan F; Kner, Peter; Winter, Jessica O
2014-05-16
Quantum dots (QDs) have tremendous potential for biomedical imaging, including super-resolution techniques that permit imaging below the diffraction limit. However, most QDs are produced via organic methods, and hence require surface treatment to render them water-soluble for biological applications. Previously, we reported a micelle-templating method that yields nanocomposites containing multiple core/shell ZnS-CdSe QDs within the same nanocarrier, increasing overall particle brightness and virtually eliminating QD blinking. Here, this technique is extended to the encapsulation of Mn-doped ZnSe QDs (Mn-ZnSe QDs), which have potential applications in super-resolution imaging as a result of the introduction of Mn(2+) dopant energy levels. The size, shape and fluorescence characteristics of these doped QD-micelles were compared to those of micelles created using core/shell ZnS-CdSe QDs (ZnS-CdSe QD-micelles). Additionally, the stability of both types of particles to photo-oxidation was investigated. Compared to commercial QDs, micelle-templated QDs demonstrated superior fluorescence intensity, higher signal-to-noise ratios, and greater stability against photo-oxidization,while reducing blinking. Additionally, the fluorescence of doped QD-micelles could be modulated from a bright 'on' state to a dark 'off' state, with a modulation depth of up to 76%, suggesting the potential of doped QD-micelles for applications in super-resolution imaging.
Krishnan, Sunder Ram; Seelamantula, Chandra Sekhar; Bouwens, Arno; Leutenegger, Marcel; Lasser, Theo
2012-10-01
We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.
Automated Conflict Resolution For Air Traffic Control
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
2005-01-01
The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.
Integrating TITAN2D Geophysical Mass Flow Model with GIS
NASA Astrophysics Data System (ADS)
Namikawa, L. M.; Renschler, C.
2005-12-01
TITAN2D simulates geophysical mass flows over natural terrain using depth-averaged granular flow models and requires spatially distributed parameter values to solve differential equations. Since a Geographical Information System (GIS) main task is integration and manipulation of data covering a geographic region, the use of a GIS for implementation of simulation of complex, physically-based models such as TITAN2D seems a natural choice. However, simulation of geophysical flows requires computationally intensive operations that need unique optimizations, such as adaptative grids and parallel processing. Thus GIS developed for general use cannot provide an effective environment for complex simulations and the solution is to develop a linkage between GIS and simulation model. The present work presents the solution used for TITAN2D where data structure of a GIS is accessed by simulation code through an Application Program Interface (API). GRASS is an open source GIS with published data formats thus GRASS data structure was selected. TITAN2D requires elevation, slope, curvature, and base material information at every cell to be computed. Results from simulation are visualized by a system developed to handle the large amount of output data and to support a realistic dynamic 3-D display of flow dynamics, which requires elevation and texture, usually from a remote sensor image. Data required by simulation is in raster format, using regular rectangular grids. GRASS format for regular grids is based on data file (binary file storing data either uncompressed or compressed by grid row), header file (text file, with information about georeferencing, data extents, and grid cell resolution), and support files (text files, with information about color table and categories names). The implemented API provides access to original data (elevation, base material, and texture from imagery) and slope and curvature derived from elevation data. From several existing methods to estimate slope and curvature from elevation, the selected one is based on estimation by a third-order finite difference method, which has shown to perform better or with minimal difference when compared to more computationally expensive methods. Derivatives are estimated using weighted sum of 8 grid neighbor values. The method was implemented and simulation results compared to derivatives estimated by a simplified version of the method (uses only 4 neighbor cells) and proven to perform better. TITAN2D uses an adaptative mesh grid, where resolution (grid cell size) is not constant, and visualization tools also uses texture with varying resolutions for efficient display. The API supports different resolutions applying bilinear interpolation when elevation, slope and curvature are required at a resolution higher (smaller cell size) than the original and using a nearest cell approach for elevations with lower resolution (larger) than the original. For material information nearest neighbor method is used since interpolation on categorical data has no meaning. Low fidelity characteristic of visualization allows use of nearest neighbor method for texture. Bilinear interpolation estimates the value at a point as the distance-weighted average of values at the closest four cell centers, and interpolation performance is just slightly inferior compared to more computationally expensive methods such as bicubic interpolation and kriging.
Ultra-high spatial resolution multi-energy CT using photon counting detector technology
NASA Astrophysics Data System (ADS)
Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.
2017-03-01
Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.
NASA Astrophysics Data System (ADS)
Arns, James A.
2016-08-01
The Subaru Prime Focus Spectrograph[1] (PFS) requires a suite of volume phase holographic (VPH) gratings that parse the observational spectrum into three sub-spectral regions. In addition, the red region has a second, higher resolution arm that includes a VPH grating that will eventually be incorporated into a grism. This paper describes the specifications of the four grating types, gives the theoretical performances of diffraction efficiency for the production designs and presents the measured performances on the gratings produced to date.
NASA Technical Reports Server (NTRS)
1976-01-01
This report covers the development of a three channel Hall effect position sensing system for the commutation of a three phase dc torquer motor. The effort consisted of the evaluation, modification and re-packaging of a commercial position sensor and the design of a target configuration unique to this application. The resulting design meets the contract requirements and, furthermore, the test results indicate not only the practicality and versatility of the design, but also that there may be higher limits of resolution and accuracy achievable.
On Computations of Duct Acoustics with Near Cut-Off Frequency
NASA Technical Reports Server (NTRS)
Dong, Thomas Z.; Povinelli, Louis A.
1997-01-01
The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. A study of this cut-off effect on the computations of duct acoustics is performed in the present work. The results show that the computation of duct acoustic modes near cut-off requires higher numerical resolutions than others to avoid being numerically cut off. Duct acoustic problems in Category 2 are solved by the DRP finite difference scheme with the selective artificial damping method and results are presented and compared to reference solutions.
Ocean Color Inferred from Radiometers on Low-Flying Aircraft
Churnside, James H.; Wilson, James J.
2008-01-01
The color of sunlight reflected from the ocean to orbiting visible radiometers has provided a great deal of information about the global ocean, after suitable corrections are made for atmospheric effects. Similar ocean-color measurements can be made from a low-flying aircraft to get higher spatial resolution and to obtain measurements under clouds. A different set of corrections is required in this case, and we describe algorithms to correct for clouds and sea-surface effects. An example is presented and errors in the corrections discussed. PMID:27879739
Global Coverage from Ad-Hoc Constellations in Rideshare Orbits
NASA Technical Reports Server (NTRS)
Ellis, Armin; Mercury, Michael; Brown, Shannon
2012-01-01
A promising area of small satellite development is in providing higher temporal resolution than larger satellites. Traditional constellations have required specific orbits and dedicated launch vehicles. In this paper we discuss an alternative architecture in which the individual elements of the constellation are launched as rideshare opportunities. We compare the coverage of such an ad-hoc constellation with more traditional constellations. Coverage analysis is based on actual historical data from rideshare opportunities. Our analysis includes ground coverage and temporal revisits for Polar, Tropics, Temperate, and Global regions, comparing ad-hoc and Walker constellation.
Improving whole brain structural MRI at 4.7 Tesla using 4 irregularly shaped receiver coils.
Carmichael, David W; Thomas, David L; De Vita, Enrico; Fernández-Seara, Maria A; Chhina, Navjeet; Cooper, Mark; Sunderland, Colin; Randell, Chris; Turner, Robert; Ordidge, Roger J
2006-09-01
Both higher magnetic field strengths (> or =3 T) and multiple receiver "array coils" can provide increased signal-to-noise ratio (SNR) for MRI. This increase in SNR can be used to obtain images with higher resolution, enabling better visualisation of structures within the human brain. However, high field strength systems also suffer from increased B(1) non-uniformity and increased power deposition, reaching specific absorption rate (SAR) limits more quickly. For these problems to be mitigated, a careful choice of both the pulse sequence design and transmit RF coil is required. This paper describes the use of a prototype array coil consisting of 4 irregularly shaped coils within a standard configuration for neuroimaging at 4.7 T (a head transmit/receive volume coil to minimise SAR and a head gradient insert for maximum gradient performance). With a fast spin echo (FSE) pulse sequence optimised for 4.7 T, this provides dramatically increased quality and resolution over a large brain volume. Using the array coil, a SNR improvement relative to the volume coil of 1-1.5 times in central brain areas and 2-3 times in cortical regions was obtained. Array coil images with a resolution of 352 x 352 x 2000 mum had a SNR of 16.0 to 26.2 in central regions and 19.9 to 34.8 in cortical areas. Such images easily demonstrate cortical myeloarchitecture, while still covering most of the brain in a approximately 12 min scan.
Maximum Entropy Method applied to Real-time Time-Dependent Density Functional Theory
NASA Astrophysics Data System (ADS)
Zempo, Yasunari; Toogoshi, Mitsuki; Kano, Satoru S.
Maximum Entropy Method (MEM) is widely used for the analysis of a time-series data such as an earthquake, which has fairly long-periodicity but short observable data. We have examined MEM to apply to the optical analysis of the time-series data from the real-time TDDFT. In the analysis, usually Fourier Transform (FT) is used, and we have to pay our attention to the lower energy part such as the band gap, which requires the long time evolution. The computational cost naturally becomes quite expensive. Since MEM is based on the autocorrelation of the signal, in which the periodicity can be described as the difference of time-lags, its value in the lower energy naturally gets small compared to that in the higher energy. To improve the difficulty, our MEM has the two features: the raw data is repeated it many times and concatenated, which provides the lower energy resolution in high resolution; together with the repeated data, an appropriate phase for the target frequency is introduced to reduce the side effect of the artificial periodicity. We have compared our improved MEM and FT spectrum using small-to-medium size molecules. We can see the clear spectrum of MEM, compared to that of FT. Our new technique provides higher resolution in fewer steps, compared to that of FT. This work was partially supported by JSPS Grants-in-Aid for Scientific Research (C) Grant number 16K05047, Sumitomo Chemical, Co. Ltd., and Simulatio Corp.
Global tropospheric ozone modeling: Quantifying errors due to grid resolution
NASA Astrophysics Data System (ADS)
Wild, Oliver; Prather, Michael J.
2006-06-01
Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.
High Resolution Energetic X-ray Imager (HREXI)
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan
We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a nIR telescope in spece, will enable GRBs to be used as probes of the formation of the first stars and structure in the Universe. HREXI on its own, with broad bandwidth and high spectral and spatial resolution, will extend both Galactic surveys for obscured young supernova remnants (44Ti sources) and for transients, black holes and flaring AGN and TDEs well at greatly increased sensitivity and spatial/spectral resolution than has been done with Swift or INTEGRAL. If the HREXI-1 technology is developed in the first year of this proposed effort, it could be used on the upcoming Brazil-US MIRAX telescope on the Lattes satellite, scheduled for a 2018 launch with imaging detector planes to be provided (under contract) by our group. Finally, the 3D stacking technology development proposed here for imaging detector arrays has broad application to Wide Field soft X-ray imaging, to CMB polarization mode (B mode) imaging detectors with very high detector-pixel count, and to Homeland Security.
Analysis of Interactive Conflict Resolution Tool Usage in a Mixed Equipage Environment
NASA Technical Reports Server (NTRS)
Homola, Jeffrey; Morey, Susan; Cabrall, Christopher; Martin, Lynne; Mercer, Joey; Prevot, Thomas
2013-01-01
A human-in-the-loop simulation was conducted that examined separation assurance concepts in varying levels of traffic density with mixtures of aircraft equipage and automation. This paper's analysis focuses on one of the experimental conditions in which traffic levels were approximately fifty percent higher than today, and approximately fifty percent of the traffic within the test area were equipped with data communications (data comm) capabilities. The other fifty percent of the aircraft required control by voice much like today. Within this environment, the air traffic controller participants were provided access to tools and automation designed to support the primary task of separation assurance that are currently unavailable. Two tools were selected for analysis in this paper: 1) a pre-probed altitude fly-out menu that provided instant feedback of conflict probe results for a range of altitudes, and 2) an interactive auto resolver that provided on-demand access to an automation-generated conflict resolution trajectory. Although encouraged, use of the support tools was not required; the participants were free to use the tools as they saw fit, and they were also free to accept, reject, or modify the resolutions offered by the automation. This mode of interaction provided a unique opportunity to examine exactly when and how these tools were used, as well as how acceptable the resolutions were. Results showed that the participants used the pre-probed altitude fly-out menu in 14% of conflict cases and preferred to use it in a strategic timeframe on data comm equipped and level flight aircraft. The interactive auto resolver was also used in a primarily strategic timeframe on 22% of conflicts and that their preference was to use it on conflicts involving data comm equipped aircraft as well. Of the 258 resolutions displayed, 46% were implemented and 54% were not. The auto resolver was rated highly by participants in terms of confidence and preference. Factors such as aircraft equipage, ownership, and location of predicted separation loss appeared to play a role in the decision of controllers to accept or reject the auto resolver's resolutions.
Interpolated Sounding and Gridded Sounding Value-Added Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toto, T.; Jensen, M.
Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25more » and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.The INTERPOLATEDSONDE VAP, a continuous time-height grid of relative humidity-corrected sounding data, is intended to provide input to higher-order products, such as the Merged Soundings (MERGESONDE; Troyan 2012) VAP, which extends INTERPOLATEDSONDE by incorporating model data. The INTERPOLATEDSONDE VAP also is used to correct gaseous attenuation of radar reflectivity in products such as the KAZRCOR VAP.« less
Low-Cost Sensor Units for Measuring Urban Air Quality
NASA Astrophysics Data System (ADS)
Popoola, O. A.; Mead, M.; Stewart, G.; Hodgson, T.; McLoed, M.; Baldovi, J.; Landshoff, P.; Hayes, M.; Calleja, M.; Jones, R.
2010-12-01
Measurements of selected key air quality gases (CO, NO & NO2) have been made with a range of miniature low-cost sensors based on electrochemical gas sensing technology incorporating GPS and GPRS for position and communication respectively. Two types of simple to operate sensors units have been designed to be deployed in relatively large numbers. Mobile handheld sensor units designed for operation by members of the public have been deployed on numerous occasions including in Cambridge, London and Valencia. Static sensor units have also been designed for long-term autonomous deployment on existing street furniture. A study was recently completed in which 45 sensor units were deployed in the Cambridge area for a period of 3 months. Results from these studies indicate that air quality varies widely both spatially and temporally. The widely varying concentrations found suggest that the urban environment cannot be fully understood using limited static site (AURN) networks and that a higher resolution, more dispersed network is required to better define air quality in the urban environment. The results also suggest that higher spatial and temporal resolution measurements could improve knowledge of the levels of individual exposure in the urban environment.
NASA Astrophysics Data System (ADS)
Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.
2017-12-01
Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.
Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P; Yang, Chen; Hosseini, Nahid; Fantner, Georg E
2017-12-01
Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.
A trade-off between model resolution and variance with selected Rayleigh-wave data
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (??? 2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. First, we employed a data-resolution matrix to select data that would be well predicted and to explain advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher mode data are normally more accurately predicted than fundamental mode data because of restrictions on the data kernel for the inversion system. Second, we obtained an optimal damping vector in a vicinity of an inverted model by the singular value decomposition of a trade-off function of model resolution and variance. In the end of the paper, we used a real-world example to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher mode data in inversion can provide better results. We also calculated model-resolution matrices of these examples to show the potential of increasing model resolution with selected surface-wave data. With the optimal damping vector, we can improve and assess an inverted model obtained by a damped least-square method.
Ghumman, Abul Razzaq; Al-Salamah, Ibrahim Saleh; AlSaleem, Saleem Saleh; Haider, Husnain
2017-02-01
Geomorphological instantaneous unit hydrograph (GIUH) usually uses geomorphologic parameters of catchment estimated from digital elevation model (DEM) for rainfall-runoff modeling of ungauged watersheds with limited data. Higher resolutions (e.g., 5 or 10 m) of DEM play an important role in the accuracy of rainfall-runoff models; however, such resolutions are expansive to obtain and require much greater efforts and time for preparation of inputs. In this research, a modeling framework is developed to evaluate the impact of lower resolutions (i.e., 30 and 90 m) of DEM on the accuracy of Clark GIUH model. Observed rainfall-runoff data of a 202-km 2 catchment in a semiarid region was used to develop direct runoff hydrographs for nine rainfall events. Geographical information system was used to process both the DEMs. Model accuracy and errors were estimated by comparing the model results with the observed data. The study found (i) high model efficiencies greater than 90% for both the resolutions, and (ii) that the efficiency of Clark GIUH model does not significantly increase by enhancing the resolution of the DEM from 90 to 30 m. Thus, it is feasible to use lower resolutions (i.e., 90 m) of DEM in the estimation of peak runoff in ungauged catchments with relatively less efforts. Through sensitivity analysis (Monte Carlo simulations), the kinematic wave parameter and stream length ratio are found to be the most significant parameters in velocity and peak flow estimations, respectively; thus, they need to be carefully estimated for calculation of direct runoff in ungauged watersheds using Clark GIUH model.
Using Aerosol Reflectance for Dust Detection
NASA Astrophysics Data System (ADS)
Bahramvash Shams, S.; Mohammadzade, A.
2013-09-01
In this study we propose an approach for dust detection by aerosol reflectance over arid and urban region in clear sky condition. In urban and arid areas surface reflectance in red and infrared spectral is bright and hence shorter wavelength is required for this detections. Main step of our approach can be mentioned as: cloud mask for excluding cloudy pixels from our calculation, calculate Rayleigh path radiance, construct a surface reflectance data base, estimate aerosol reflectance, detect dust aerosol, dust detection and evaluations of dust detection. Spectral with wavelength 0.66, 0.55, 0.47 μm has been used in our dust detection. Estimating surface reflectance is the most challenging step of obtaining aerosol reflectance from top of atmosphere (TOA) reflectance. Hence for surface estimation we had created a surface reflectance database of 0.05 degree latitude by 0.05 degree longitude resolution by using minimum reflectivity technique (MRT). In order to evaluate our dust detection algorithm MODIS aerosol product MOD04 and common dust detection method named Brightness Temperature Difference (BTD) had been used. We had implemented this method to Moderate Resolution Imaging Spectroradiometer (MODIS) image of part of Iran (7 degree latitude and 8 degree longitude) spring 2005 dust phenomenon from April to June. This study uses MODIS LIB calibrated reflectance high spatial resolution (500 m) MOD02Hkm on TERRA spacecraft. Hence our dust detection spatial resolution will be higher spatial resolution than MODIS aerosol product MOD04 which has 10 × 10 km2 and BTD resolution is 1 km due to the band 29 (8.7 μm), 31 (11 μm), and 32 (12 μm) spatial resolutions.
Estimation of position resolution for DOI-PET detector using diameter 0.2 mm WLS fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Naomi; Ito, Hiroshi; Kawai, Hideyuki
We have been developing sub mm resolution andmore » $$ 1 million DOI-PET detector using wavelength shifting fibers (WLSF), scintillation crystals of plate shape and SiPM (MPPC: HAMAMATSU K. K.). Conventional design of DOI-PET detector is obtained about mm{sup 3} of resolution by using some blocks detecting gamma-ray in mm 3 voxel. It requires the production cost of $$ a few ten million or more for high technique of processing crystal and a lot of number of photo-devices, and this technology is reaching the limit of the resolution. Both higher resolution and lower cost of DOI-PET detector production is challenging for PET diagnosis population. We propose two type of detector. One is a whole body PET system, and the other for brain or small animal. Both PET system consist 6 blocks. the former consist of 6 layers 300 mm x 300 mm x 4 mm crystal plate. The latter consist 16 crystal layers, 4 x 4 crystal array. The size of crystal plate is 40 mm x 40 mm x 1 mm.The WLSF sheets connect to upper and lower plane. The whole PET systems connect 8 SiPMs are bonded on each side. For the brain PET, 9 WLSF fibers are bond on the each side. The expected position resolution maybe less than 1 mm at the former. We have estimation experimental performance the system using {sup 22}Na radioactive source. The collection efficiency of WLSF (R-3) sheet was achieved 10% with GAGG at 511 keV. The relation between reconstruction position and incident position is obtained linearity and achieved the resolution of 0.7 mm FWHM for x-axis of DOI by readout WLSF. (authors)« less
NASA Astrophysics Data System (ADS)
Ogawa, Masahiko; Shidoji, Kazunori
2011-03-01
High-resolution stereoscopic images are effective for use in virtual reality and teleoperation systems. However, the higher the image resolution, the higher is the cost of computer processing and communication. To reduce this cost, numerous earlier studies have suggested the use of multi-resolution images, which have high resolution in region of interests and low resolution in other areas. However, observers can perceive unpleasant sensations and incorrect depth because they can see low-resolution areas in their field of vision. In this study, we conducted an experiment to research the relationship between the viewing field and the perception of image resolution, and determined respective thresholds of image-resolution perception for various positions of the viewing field. The results showed that participants could not distinguish between the high-resolution stimulus and the decreased stimulus, 63 ppi, at positions more than 8 deg outside the gaze point. Moreover, with positions shifted a further 11 and 13 deg from the gaze point, participants could not distinguish between the high-resolution stimulus and the decreased stimuli whose resolution densities were 42 and 25 ppi. Hence, we will propose the composition of multi-resolution images in which observers do not perceive unpleasant sensations and incorrect depth with data reduction (compression).
Satellite image time series simulation for environmental monitoring
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-11-01
The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.
Comet Science Working Group report on the Halley Intercept Mission
NASA Technical Reports Server (NTRS)
1980-01-01
The Halley Intercept Mission is described and the scientific benefits expected from the program are defined. One characteristic of the mission is the optical navigation and resulting accurate delivery of the spacecraft to a desired point near the nucleus. This accuracy of delivery has two important implications: (1) high probability that the mass spectrometers and other in situ measurement devices will reach the cometary ionosphere and the zone of parent molecules next to the nucleus; (2) high probability that sunlit, high resolution images of Halley's nucleus will be obtained under proper lighting conditions. In addition an observatory phase is included during which high quality images of the tail and coma structure will be obtained at progressively higher spatial resolutions as the spacecraft approaches the comet. Complete measurements of the comet/solar wind interaction can be made around the time of encounter. Specific recommendations are made concerning project implementation and spacecraft requirements.
Use of noncrystallographic symmetry for automated model building at medium to low resolution.
Wiegels, Tim; Lamzin, Victor S
2012-04-01
A novel method is presented for the automatic detection of noncrystallographic symmetry (NCS) in macromolecular crystal structure determination which does not require the derivation of molecular masks or the segmentation of density. It was found that throughout structure determination the NCS-related parts may be differently pronounced in the electron density. This often results in the modelling of molecular fragments of variable length and accuracy, especially during automated model-building procedures. These fragments were used to identify NCS relations in order to aid automated model building and refinement. In a number of test cases higher completeness and greater accuracy of the obtained structures were achieved, specifically at a crystallographic resolution of 2.3 Å or poorer. In the best case, the method allowed the building of up to 15% more residues automatically and a tripling of the average length of the built fragments.
Applying narrowband remote-sensing reflectance models to wideband data.
Lee, Zhongping
2009-06-10
Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth (50 nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in >20% underestimation in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted absorption coefficients even under perfect conditions, although smaller (approximately 5%) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.
Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics.
James, Katherine; Cockell, Simon J; Zenkin, Nikolay
2017-05-01
The identification of the protein-coding regions of a genome is straightforward due to the universality of start and stop codons. However, the boundaries of the transcribed regions, conditional operon structures, non-coding RNAs and the dynamics of transcription, such as pausing of elongation, are non-trivial to identify, even in the comparatively simple genomes of prokaryotes. Traditional methods for the study of these areas, such as tiling arrays, are noisy, labour-intensive and lack the resolution required for densely-packed bacterial genomes. Recently, deep sequencing has become increasingly popular for the study of the transcriptome due to its lower costs, higher accuracy and single nucleotide resolution. These methods have revolutionised our understanding of prokaryotic transcriptional dynamics. Here, we review the deep sequencing and data analysis techniques that are available for the study of transcription in prokaryotes, and discuss the bioinformatic considerations of these analyses. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
French, N. H. F.; Lawrence, R. L.
2017-12-01
AmericaView is a nationwide partnership of remote sensing scientists who support the use of Landsat and other public domain remotely sensed data through applied remote sensing research, K-12 and higher STEM education, workforce development, and technology transfer. The national AmericaView program currently has active university-lead members in 39 states, each of which has a "stateview" consortium consisting of some combination of university, agency, non-profit, and other members. This "consortium of consortia" has resulted in a strong and unique nationwide network of remote sensing practitioners. AmericaView has used this network to contribute to the USGS Requirements Capabilities & Analysis for Earth Observations. Participating states have conducted interviews of key remote sensing end users across the country to provide key input at the state and local level for the design and implementation of future U.S. moderate resolution Earth observations.
Performance Evaluation and Analysis for Gravity Matching Aided Navigation.
Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong
2017-04-05
Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN.
Performance Evaluation and Analysis for Gravity Matching Aided Navigation
Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong
2017-01-01
Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN. PMID:28379178
Rehak, P.; Gatti, E.
1984-02-24
A semiconductor charge transport device and method for making same, characterized by providing a thin semiconductor wafer having rectifying functions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution.
Rehak, Pavel; Gatti, Emilio
1987-01-01
A semiconductor charge transport device and method for making same, characterized by providing a thin semiconductor wafer having rectifying junctions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution.
Rehak, P.; Gatti, E.
1987-08-18
A semiconductor charge transport device and method for making same are disclosed, characterized by providing a thin semiconductor wafer having rectifying junctions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution. 16 figs.
Foley, Kevin M.
2011-01-01
The Equidistant Cylindrical Map projection is popular with digital modelers and others for storing and processing worldwide data sets because of the simple association of latitude and longitude to cell values or pixels in the resulting grid. This projection does not accurately display area, and the diminished geographic area represented by cells at high latitudes is not often carefully considered. A simple mathematical analysis quantifies the discrepancy in area sampled by cells at different latitudes. The presence of this discrepancy indicates that the use of this projection can induce bias in data sets when both sampling and reporting data. It is demonstrated that as the resolution requirements of input data for models increase, the necessity of providing data to accurately describe smaller cells, particularly at high latitude, will be a challenge.
14 CFR 382.151 - What are the requirements for providing Complaints Resolution Officials?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What are the requirements for providing Complaints Resolution Officials? 382.151 Section 382.151 Aeronautics and Space OFFICE OF THE SECRETARY... DISABILITY IN AIR TRAVEL Complaints and Enforcement Procedures § 382.151 What are the requirements for...
14 CFR 382.151 - What are the requirements for providing Complaints Resolution Officials?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What are the requirements for providing Complaints Resolution Officials? 382.151 Section 382.151 Aeronautics and Space OFFICE OF THE SECRETARY... DISABILITY IN AIR TRAVEL Complaints and Enforcement Procedures § 382.151 What are the requirements for...
14 CFR 382.151 - What are the requirements for providing Complaints Resolution Officials?
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What are the requirements for providing Complaints Resolution Officials? 382.151 Section 382.151 Aeronautics and Space OFFICE OF THE SECRETARY... DISABILITY IN AIR TRAVEL Complaints and Enforcement Procedures § 382.151 What are the requirements for...
14 CFR 382.151 - What are the requirements for providing Complaints Resolution Officials?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What are the requirements for providing Complaints Resolution Officials? 382.151 Section 382.151 Aeronautics and Space OFFICE OF THE SECRETARY... DISABILITY IN AIR TRAVEL Complaints and Enforcement Procedures § 382.151 What are the requirements for...
14 CFR 382.151 - What are the requirements for providing Complaints Resolution Officials?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What are the requirements for providing Complaints Resolution Officials? 382.151 Section 382.151 Aeronautics and Space OFFICE OF THE SECRETARY... DISABILITY IN AIR TRAVEL Complaints and Enforcement Procedures § 382.151 What are the requirements for...
Ultra-high speed digital micro-mirror device based ptychographic iterative engine method
Sun, Aihui; He, Xiaoliang; Kong, Yan; Cui, Haoyang; Song, Xiaojun; Xue, Liang; Wang, Shouyu; Liu, Cheng
2017-01-01
To reduce the long data acquisition time of the common mechanical scanning based Ptychographic Iterative Engine (PIE) technique, the digital micro-mirror device (DMD) is used to form the fast scanning illumination on the sample. Since the transverse mechanical scanning in the common PIE is replaced by the on/off switching of the micro-mirrors, the data acquisition time can be reduced from more than 15 minutes to less than 20 seconds for recording 12 × 10 diffraction patterns to cover the same field of 147.08 mm2. Furthermore, since the precision of DMD fabricated with the optical lithography is always higher than 10 nm (1 μm for the mechanical translation stage), the time consuming position-error-correction procedure is not required in the iterative reconstruction. These two improvements fundamentally speed up both the data acquisition and the reconstruction procedures in PIE, and relax its requirements on the stability of the imaging system, therefore remarkably improve its applicability for many practices. It is demonstrated experimentally with both USAF resolution target and biological sample that, the spatial resolution of 5.52 μm and the field of view of 147.08 mm2 can be reached with the DMD based PIE method. In a word, by using the DMD to replace the translation stage, we can effectively overcome the main shortcomings of common PIE related to the mechanical scanning, while keeping its advantages on both the high resolution and large field of view. PMID:28717560
Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J
2017-09-01
Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.
STS-99 / Endeavour Mission Overview
NASA Technical Reports Server (NTRS)
2000-01-01
The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM). This radar system will produce unrivaled 3-D images of the Earth's Surface. This videotape presents a mission overview press briefing. The panel members are Dr. Ghassem Asrar, NASA Associate Administrator Earth Sciences; General James C. King, Director National Imagery and Mapping Agency (NIMA); Professor Achim Bachem, Member of the Executive Board, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), the German National Aerospace Research Center; and Professor Sergio Deiulio, President of the Italian Space Agency. Dr. Asrar opened with a summary of the history of Earth Observations from space, relating the SRTM to this history. This mission, due to cost and complexity, required partnership with other agencies and nations, and the active participation of the astronauts. General King spoke to the expectations of NIMA, and the use of the Synthetic Aperture Radar to produce the high resolution topographic images. Dr. Achim Bachem spoke about the international cooperation that this mission required, and some of the commercial applications and companies that will use this data. Dr Deiulio spoke of future plans to improve knowledge of the Earth using satellites. Questions from the press concerned use of the information for military actions, the reason for the restriction on access to the higher resolution data, the mechanism to acquire that data for scientific research, and the cost sharing from the mission's partners. There was also discussion about the mission's length.
All-optical optoacoustic microscopy system based on probe beam deflection technique
NASA Astrophysics Data System (ADS)
Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.
2016-03-01
It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.
The CHARIS High-Contrast Integral-Field Spectrograph
NASA Technical Reports Server (NTRS)
Groff, Tyler D.; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja;
2017-01-01
One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has 'high' and 'low' resolution operating modes. The "high-resolution" mode is used to characterize targets in J, H, and K bands at R70. The "low-resolution" prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS is in the final stages of commissioning, with the instrument open for science observations beginning February 2017. Here we review the science case, design, on-sky performance, engineering observations of exoplanet and disk targets, and specific lessons learned for extremely high contrast imagers. Key design aspects that will be demonstrated are crosstalk optimization, wavefront correction using the IFS image, lenslet tolerancing, the required spectral resolution to fit exoplanet atmospheres, and the utility of the spectrum in achieving higher contrast detection limits.
Huang, Shaohua; Wu, Rui; Bai, Zhengwu; Yang, Ying; Li, Suying; Dou, Xiaowei
2014-09-01
Polyvinylpyrrolidone (PVP) was used as a virtual stationary phase to separate p-xylene, benzyl alcohol, and p-methylphenol by the chromatographic NMR technique. The effects of concentration and weight-average molecular weight (Mw) of PVP, solvent viscosity, solvent polarity, and sample temperature on the resolution of these components were investigated. It was found that both higher PVP concentration and higher PVP Mw caused the increase of diffusion resolution for the three components. Moreover, the diffusion resolution did not change at viscosity-higher solvents. Moreover, the three components showed different resolution at different solvents. As temperature increased, the diffusion resolution between p-xylene and benzyl alcohol gradually increased, and the one between p-xylene and p-methylphenol slightly increased from 278 to 298 K and then decreased above 298 K. It was also found that the polarity of the analytes played an important role for the separation by affecting the diffusion coefficient. Copyright © 2014 John Wiley & Sons, Ltd.
Fractional screen video enhancement apparatus
Spletzer, Barry L [Albuquerque, NM; Davidson, George S [Albuquerque, NM; Zimmerer, Daniel J [Tijeras, NM; Marron, Lisa C [Albuquerque, NM
2005-07-19
The present invention provides a method and apparatus for displaying two portions of an image at two resolutions. For example, the invention can display an entire image at a first resolution, and a subset of the image at a second, higher resolution. Two inexpensive, low resolution displays can be used to produce a large image with high resolution only where needed.
Ethics Requirement Score: new tool for evaluating ethics in publications.
Santos, Lígia Gabrielle dos; Costa e Fonseca, Ana Carolina da; Bica, Claudia Giuliano
2014-01-01
To analyze ethical standards considered by health-related scientific journals, and to prepare the Ethics Requirement Score, a bibliometric index to be applied to scientific healthcare journals in order to evaluate criteria for ethics in scientific publication. Journals related to healthcare selected by the Journal of Citation Reports™ 2010 database were considered as experimental units. Parameters related to publication ethics were analyzed for each journal. These parameters were acquired by analyzing the author's guidelines or instructions in each journal website. The parameters considered were approval by an Internal Review Board, Declaration of Helsinki or Resolution 196/96, recommendations on plagiarism, need for application of Informed Consent Forms with the volunteers, declaration of confidentiality of patients, record in the database for clinical trials (if applicable), conflict of interest disclosure, and funding sources statement. Each item was analyzed considering their presence or absence. The foreign journals had a significantly higher Impact Factor than the Brazilian journals, however, no significant results were observed in relation to the Ethics Requirement Score. There was no correlation between the Ethics Requirement Score and the Impact Factor. Although the Impact Factor of foreigner journals was considerably higher than that of the Brazilian publications, the results showed that the Impact Factor has no correlation with the proposed score. This allows us to state that the ethical requirements for publication in biomedical journals are not related to the comprehensiveness or scope of the journal.
A new PET detector concept for compact preclinical high-resolution hybrid MR-PET
NASA Astrophysics Data System (ADS)
Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph
2018-04-01
This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.
The influence of model resolution on ozone in industrial volatile organic compound plumes.
Henderson, Barron H; Jeffries, Harvey E; Kim, Byeong-Uk; Vizuete, William G
2010-09-01
Regions with concentrated petrochemical industrial activity (e.g., Houston or Baton Rouge) frequently experience large, localized releases of volatile organic compounds (VOCs). Aircraft measurements suggest these released VOCs create plumes with ozone (O3) production rates 2-5 times higher than typical urban conditions. Modeling studies found that simulating high O3 productions requires superfine (1-km) horizontal grid cell size. Compared with fine modeling (4-kmin), the superfine resolution increases the peak O3 concentration by as much as 46%. To understand this drastic O3 change, this study quantifies model processes for O3 and "odd oxygen" (Ox) in both resolutions. For the entire plume, the superfine resolution increases the maximum O3 concentration 3% but only decreases the maximum Ox concentration 0.2%. The two grid sizes produce approximately equal Ox mass but by different reaction pathways. Derived sensitivity to oxides of nitrogen (NOx) and VOC emissions suggests resolution-specific sensitivity to NOx and VOC emissions. Different sensitivity to emissions will result in different O3 responses to subsequently encountered emissions (within the city or downwind). Sensitivity of O3 to emission changes also results in different simulated O3 responses to the same control strategies. Sensitivity of O3 to NOx and VOC emission changes is attributed to finer resolved Eulerian grid and finer resolved NOx emissions. Urban NOx concentration gradients are often caused by roadway mobile sources that would not typically be addressed with Plume-in-Grid models. This study shows that grid cell size (an artifact of modeling) influences simulated control strategies and could bias regulatory decisions. Understanding the dynamics of VOC plume dependence on grid size is the first step toward providing more detailed guidance for resolution. These results underscore VOC and NOx resolution interdependencies best addressed by finer resolution. On the basis of these results, the authors suggest a need for quantitative metrics for horizontal grid resolution in future model guidance.
Meza, Daphne; Wang, Danni; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C
2015-04-01
Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
1987-01-01
The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.
Radar systems for a polar mission, volume 3, appendices A-D, S, T
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.
1976-01-01
Success is reported in the radar monitoring of such features of sea ice as concentration, floe size, leads and other water openings, drift, topographic features such as pressure ridges and hummocks, fractures, and a qualitative indication of age and thickness. Scatterometer measurements made north of Alaska show a good correlation with a scattering coefficient with apparent thickness as deduced from ice type analysis of stereo aerial photography. Indications are that frequencies from 9 GHz upward seem to be better for sea ice radar purposes than the information gathered at 0.4 GHz by a scatterometer. Some information indicates that 1 GHz is useful, but not as useful as higher frequencies. Either form of like-polarization can be used and it appears that cross-polarization may be more useful for thickness measurement. Resolution requirements have not been fully established, but most of the systems in use have had poorer resolution than 20 meters. The radar return from sea ice is found to be much different than that from lake ice. Methods to decrease side lobe levels of the Fresnel zone-plate processor and to decrease the memory requirements of a synthetic radar processor are discussed.
Detection limits of intraoperative near infrared imaging for tumor resection.
Thurber, Greg M; Figueiredo, Jose-Luiz; Weissleder, Ralph
2010-12-01
The application of fluorescent molecular imaging to surgical oncology is a developing field with the potential to reduce morbidity and mortality. However, the detection thresholds and other requirements for successful intervention remain poorly understood. Here we modeled and experimentally validated depth and size of detection of tumor deposits, trade-offs in coverage and resolution of areas of interest, and required pharmacokinetics of probes based on differing levels of tumor target presentation. Three orthotopic tumor models were imaged by widefield epifluorescence and confocal microscopes, and the experimental results were compared with pharmacokinetic models and light scattering simulations to determine detection thresholds. Widefield epifluorescence imaging can provide sufficient contrast to visualize tumor margins and detect tumor deposits 3-5 mm deep based on labeled monoclonal antibodies at low objective magnification. At higher magnification, surface tumor deposits at cellular resolution are detectable at TBR ratios achieved with highly expressed antigens. A widefield illumination system with the capability for macroscopic surveying and microscopic imaging provides the greatest utility for varying surgical goals. These results have implications for system and agent designs, which ultimately should aid complete resection in most surgical beds and provide real-time feedback to obtain clean margins. © 2010 Wiley-Liss, Inc.
Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution
NASA Astrophysics Data System (ADS)
Wild, O.; Prather, M. J.
2005-12-01
Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.
NASA Astrophysics Data System (ADS)
Erskine, David J.; Edelstein, J.; Sirk, M.; Wishnow, E.; Ishikawa, Y.; McDonald, E.; Shourt, W. V.
2014-07-01
High resolution broad-band spectroscopy at near-infrared wavelengths has been performed using externally dis- persed interferometry (EDI) at the Hale telescope at Mt. Palomar. The EDI technique uses a field-widened Michelson interferometer in series with a dispersive spectrograph, and is able to recover a spectrum with a resolution 4 to 10 times higher than the existing grating spectrograph. This method increases the resolution well beyond the classical limits enforced by the slit width and the detector pixel Nyquist limit and, in principle, decreases the effect of pupil variation on the instrument line-shape function. The EDI technique permits arbi- trarily higher resolution measurements using the higher throughput, lower weight, size, and expense of a lower resolution spectrograph. Observations of many stars were performed with the TEDI interferometer mounted within the central hole of the 200 inch primary mirror. Light from the interferometer was then dispersed by the TripleSpec near-infrared echelle spectrograph. Continuous spectra between 950 and 2450 nm with a resolution as high as ~27,000 were recovered from data taken with TripleSpec at a native resolution of ˜2,700. Aspects of data analysis for interferometric spectral reconstruction are described. This technique has applications in im- proving measurements of high-resolution stellar template spectra, critical for precision Doppler velocimetry using conventional spectroscopic methods. A new interferometer to be applied for this purpose at visible wavelengths is under construction.
High resolution A/D conversion based on piecewise conversion at lower resolution
Terwilliger, Steve [Albuquerque, NM
2012-06-05
Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.
Dependence of Hurricane intensity and structures on vertical resolution and time-step size
NASA Astrophysics Data System (ADS)
Zhang, Da-Lin; Wang, Xiaoxue
2003-09-01
In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
Predictors of heartburn resolution and erosive esophagitis in patients with GERD.
Orlando, Roy C; Monyak, John T; Silberg, Debra G
2009-09-01
The primary objective was to assess gastroesophageal reflux disease (GERD) symptom resolution rates with esomeprazole by erosive esophagitis (EE) status, and the secondary objective was to evaluate potential predictors of the presence of EE and heartburn resolution. Patients with GERD who have EE have higher reported symptom resolution rates than those with nonerosive reflux disease (NERD) when treated with proton pump inhibitors (PPIs). This open-label multicenter study included adults with GERD symptoms. Patients were stratified by EE status after endoscopy and received once-daily esomeprazole 40 mg for 4 weeks. Questionnaires determined symptom response rates, and baseline predictors of EE or heartburn resolution were evaluated. Potential predictors, including years with GERD, history of EE, and time to relief with antacids, were examined. Heartburn resolution rates at 4 weeks were higher for patients with EE than NERD (69% [124/179] vs. 48% [85/177]; p < 0.0001). Multivariate models had moderate predictive ability for EE (c-index, 0.76) and poor predictive ability (c-index, 0.57) for heartburn resolution. However, faster heartburn relief with antacid use, particularly within 15 min, was predictive of EE and heartburn resolution. Patients with EE have higher heartburn resolution rates than patients with NERD after treatment, although recall bias may be possible. Fast relief with antacid use is predictive of EE and heartburn resolution with a PPI and suggests that a history of antacid relief may provide corroborative evidence to empiric PPI therapy in determining whether patients with heartburn have acid reflux disease. ClinicalTrials.Gov IDENTIFIER: NCT00242736.
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.; ...
2016-12-19
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
PTR, PCR and Energy Resolution Study of GAGG:Ce Scintillator
NASA Astrophysics Data System (ADS)
Limkitjaroenporn, Pruittipol; Hongtong, Wiraporn; Kim, Hong Joo; Kaewkhao, Jakrapong
2018-03-01
In this paper, the peak to total ratio (PTR), the peak to Compton ratio (PCR) and the energy resolution of cerium doped gadolinium aluminium gallium garnet (GAGG:Ce) scintillator are measured in the range of energy from 511 keV to 1332 keV using the radioactive source Na-22, Cs-137 and Co-60. The crystal is coupled with the PMT number R1306 and analyzed by the nuclear instrument module (NIM). The results found that the PTR and PCR of GAGG:Ce scintillator decrease with the increasing of energy. The results of energy resolution show the trend is decrease with the increasing of energy which corresponding to the higher energy resolution at higher energy. Moreover the energy resolution found to be linearly with.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp
Highlights: • We developed a high-sensitive frequency transmission electric-field (FTE) system. • The output signal was highly enhanced by applying voltage to a metal layer on SiN. • The spatial resolution of new FTE method is 41 nm. • New FTE system enables observation of the intact bacteria and virus in water. - Abstract: The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently,more » we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41 nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haemmerli, Alexandre J.; Pruitt, Beth L., E-mail: pruitt@stanford.edu; Harjee, Nahid
The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design,more » fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip.« less
Development of double-sided silicon strip detectors for solar hard x-ray observation
NASA Astrophysics Data System (ADS)
Saito, Shinya; Ishikawa, Shin-Nosuke; Watanabe, Shin; Odaka, Hirokazu; Sugimoto, Soichiro; Fukuyama, Taro; Kokubun, Motohide; Takahashi, Tadayuki; Terada, Yukikatsu; Tajima, Hiroyasu; Tanaka, Takaaki; Krucker, Säm; Christe, Steven; McBride, Steve; Glesener, Lindsay
2010-07-01
The Focusing Optics X-ray Solar Imager (FOXSI) is a rocket experiment scheduled for January 2011 launch. FOXSI observes 5 - 15 keV hard X-ray emission from quiet-region solar flares in order to study the acceleration process of electrons and the mechanism of coronal heating. For observing faint hard X-ray emission, FOXSI uses focusing optics for the first time in solar hard X-ray observation, and attains 100 times higher sensitivity than RHESSI, which is the present solar hard X-ray observing satellite. Now our group is working on developments of both Double-sided Silicon Strip Detector (DSSD) and read-out analog ASIC "VATA451" used for FOXSI. Our DSSD has a very fine strip pitch of 75 μm, which has sufficient position resolution for FOXSI mirrors with angular resolution (FWHM) of 12 arcseconds. DSSD also has high spectral resolution and efficiency in the FOXSI's energy range of 5 - 15 keV, when it is read out by our 64-channel analog ASIC. In advance of the FOXSI launch, we have established and tested a setup of 75 μm pitch DSSD bonded with "VATA451" ASICs. We successfully read out from almost all the channels of the detector, and proved ability to make a shadow image of tungsten plate. We also confirmed that our DSSD has energy resolution (FWHM) of 0.5 keV, lower threshold of 5 keV, and position resolution less than 63 μm. These performance satisfy FOXSI's requirements.
Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries.
Brachet, M E; Bustamante, M D; Krstulovic, G; Mininni, P D; Pouquet, A; Rosenberg, D
2013-01-01
We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions for the development of potentially singular structures. The methodology consists in implementing the fourfold symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory savings at a given resolution; we also use a regridding method that allows for lower-resolution runs at early times, with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 6144(3) points and three different configurations on grids of 4096(3) points. At the highest resolution, two different current and vorticity sheet systems are found to collide, producing two successive accelerations in the development of small scales. At the latest time, a convergence of magnetic field lines to the location of maximum current is probably leading locally to a strong bending and directional variability of such lines. A novel analytical method, based on sharp analysis inequalities, is used to assess the validity of the finite-time singularity scenario. This method allows one to rule out spurious singularities by evaluating the rate at which the logarithmic decrement of the analyticity-strip method goes to zero. The result is that the finite-time singularity scenario cannot be ruled out, and the singularity time could be somewhere between t=2.33 and t=2.70. More robust conclusions will require higher resolution runs and grid-point interpolation measurements of maximum current and vorticity.
Orbital operations with the Shuttle Infrared Telescope Facility /SIRTF/
NASA Technical Reports Server (NTRS)
Werner, M. W.; Lorell, K. R.
1981-01-01
The Shuttle Infrared Telescope Facility (SIRTF) is a cryogenically-cooled, 1-m-class telescope that will be operated from the Space Shuttle as an observatory for infrared astronomy. This paper discusses the scientific constraints on and the requirements for pointing and controlling SIRTF as well as several aspects of SIRTF orbital operations. The basic pointing requirement is for an rms stability of 0.25 arcsec, which is necessary to realize the full angular resolution of the 5-micron diffraction-limited SIRTF. Achieving this stability requires the use of hardware and software integral to SIRTF working interactively with the gyrostabilized Shuttle pointing-mount. The higher sensitivity of SIRTF, together with orbital and time constraints, puts a premium on rapid target acquisition and on efficient operational and observational procedures. Several possible acquisition modes are discussed, and the importance of source acquisition by maximizing the output of an infrared detector is emphasized.
NASA Astrophysics Data System (ADS)
Neal, Lucy S.; Dalvi, Mohit; Folberth, Gerd; McInnes, Rachel N.; Agnew, Paul; O'Connor, Fiona M.; Savage, Nicholas H.; Tilbee, Marie
2017-11-01
There is a clear need for the development of modelling frameworks for both climate change and air quality to help inform policies for addressing these issues simultaneously. This paper presents an initial attempt to develop a single modelling framework, by introducing a greater degree of consistency in the meteorological modelling framework by using a two-step, one-way nested configuration of models, from a global composition-climate model (GCCM) (140 km resolution) to a regional composition-climate model covering Europe (RCCM) (50 km resolution) and finally to a high (12 km) resolution model over the UK (AQUM). The latter model is used to produce routine air quality forecasts for the UK. All three models are based on the Met Office's Unified Model (MetUM). In order to better understand the impact of resolution on the downscaling of projections of future climate and air quality, we have used this nest of models to simulate a 5-year period using present-day emissions and under present-day climate conditions. We also consider the impact of running the higher-resolution model with higher spatial resolution emissions, rather than simply regridding emissions from the RCCM. We present an evaluation of the models compared to in situ air quality observations over the UK, plus a comparison against an independent 1 km resolution gridded dataset, derived from a combination of modelling and observations, effectively producing an analysis of annual mean surface pollutant concentrations. We show that using a high-resolution model over the UK has some benefits in improving air quality modelling, but that the use of higher spatial resolution emissions is important to capture local variations in concentrations, particularly for primary pollutants such as nitrogen dioxide and sulfur dioxide. For secondary pollutants such as ozone and the secondary component of PM10, the benefits of a higher-resolution nested model are more limited and reasons for this are discussed. This study highlights the point that the resolution of models is not the only factor in determining model performance - consistency between nested models is also important.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Are Self-Governance Tribes required to adopt a separate resolution or take equivalent Tribal action to assume environmental responsibilities for each...-GOVERNANCE Construction Nepa Process § 137.293 Are Self-Governance Tribes required to adopt a separate...
12 CFR 1510.8 - What are the audit requirements for the Funding Corporation?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false What are the audit requirements for the Funding Corporation? 1510.8 Section 1510.8 Banks and Banking DEPARTMENT OF THE TREASURY RESOLUTION FUNDING CORPORATION RESOLUTION FUNDING CORPORATION OPERATIONS § 1510.8 What are the audit requirements for the Funding...
Pengelly, Reuben J; Tapper, William; Gibson, Jane; Knut, Marcin; Tearle, Rick; Collins, Andrew; Ennis, Sarah
2015-09-03
An understanding of linkage disequilibrium (LD) structures in the human genome underpins much of medical genetics and provides a basis for disease gene mapping and investigating biological mechanisms such as recombination and selection. Whole genome sequencing (WGS) provides the opportunity to determine LD structures at maximal resolution. We compare LD maps constructed from WGS data with LD maps produced from the array-based HapMap dataset, for representative European and African populations. WGS provides up to 5.7-fold greater SNP density than array-based data and achieves much greater resolution of LD structure, allowing for identification of up to 2.8-fold more regions of intense recombination. The absence of ascertainment bias in variant genotyping improves the population representativeness of the WGS maps, and highlights the extent of uncaptured variation using array genotyping methodologies. The complete capture of LD patterns using WGS allows for higher genome-wide association study (GWAS) power compared to array-based GWAS, with WGS also allowing for the analysis of rare variation. The impact of marker ascertainment issues in arrays has been greatest for Sub-Saharan African populations where larger sample sizes and substantially higher marker densities are required to fully resolve the LD structure. WGS provides the best possible resource for LD mapping due to the maximal marker density and lack of ascertainment bias. WGS LD maps provide a rich resource for medical and population genetics studies. The increasing availability of WGS data for large populations will allow for improved research utilising LD, such as GWAS and recombination biology studies.
NASA Astrophysics Data System (ADS)
Salehipour, H.; Stuhne, G.; Peltier, W. R.
2012-12-01
The development of models of the ocean tides with higher resolution near the coastlines and courser mesh offshore, has been required due to the significant impacts of coastline configuration and bathymetry (associated with sea level rise) on the amplitude and phase of tidal constituents, not only under present conditions but also in the deep past [Griffiths and Peltier GRL 2008, Griffiths and Peltier AMS 2009, Hill et al. JGR 2011]. A global tidal model with enhanced resolution at the poles has been developed by Griffiths and Peltier [2008, 2009], which, although capable of highly resolving polar ocean tides , is based upon a standard structured Arakawa C grid and hence is not capable of resolving coastlines locally. Furthermore the use of a nested modelling approach, although it may enable local spatial refinement [Hill et al. 2011], nevertheless suffers from its inherent dependence on the availability of a global tidal model with necessarily low spatial resolution to provide the open boundary conditions required for the local high resolution model. On the other hand, an unstructured triangulation of the global domain provides a standalone framework that may be employed to study highly resolved regions without relying on secondary models. The first step in the development of the structure we are employing was described in Stuhne and Peltier [Ocean Modeling, 2009]. In further extending this modelling structure we are employing a new discontinuous Galerkin (DG) discretization of the governing equations in order to provide very high order of accuracy while also ensuring that momentum transport is locally conserved [Giraldo et al. JCP 2002]. After validating the 2D shallow water model with several test suites appropriate to aquaplanets [Williamson et al. JCP 1992, Galewsky et al. Tellus 2004, Nair and Lauritzen JCP 2010], the governing equations are extended to include the influence of internal tide drag in the deep ocean as well as the drag in shallow marginal seas together with the influence of gravitational self-attraction and loading. In this paper, we will explain the mathematical and numerical framework employed in the development of the DG global tidal model and present the validation results obtained using the present-day satellite altimetry data-constrained TPXO 6.2 global tidal solutions of Egbert et al. [JGR 1994].igure 1. Barotropic Instability Test of Galewsky et al. (Tellus 2004), with 2nd order DG
Interpolation of diffusion weighted imaging datasets.
Dyrby, Tim B; Lundell, Henrik; Burke, Mark W; Reislev, Nina L; Paulson, Olaf B; Ptito, Maurice; Siebner, Hartwig R
2014-12-01
Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal to the voxel size showed that conventional higher-order interpolation methods improved the geometrical representation of white-matter tracts with reduced partial-volume-effect (PVE), except at tract boundaries. Simulations and interpolation of ex-vivo monkey brain DWI datasets revealed that conventional interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical resolution and more anatomical details in complex regions such as tract boundaries and cortical layers, which are normally only visualized at higher image resolutions. Similar results were found with typical clinical human DWI dataset. However, a possible bias in quantitative values imposed by the interpolation method used should be considered. The results indicate that conventional interpolation methods can be successfully applied to DWI datasets for mining anatomical details that are normally seen only at higher resolutions, which will aid in tractography and microstructural mapping of tissue compartments. Copyright © 2014. Published by Elsevier Inc.
Conceptual Design Standards for eXternal Visibility System (XVS) Sensor and Display Resolution
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Wilz, Susan J.; Arthur, Jarvis J, III
2012-01-01
NASA is investigating eXternal Visibility Systems (XVS) concepts which are a combination of sensor and display technologies designed to achieve an equivalent level of safety and performance to that provided by forward-facing windows in today s subsonic aircraft. This report provides the background for conceptual XVS design standards for display and sensor resolution. XVS resolution requirements were derived from the basis of equivalent performance. Three measures were investigated: a) human vision performance; b) see-and-avoid performance and safety; and c) see-to-follow performance. From these three factors, a minimum but perhaps not sufficient resolution requirement of 60 pixels per degree was shown for human vision equivalence. However, see-and-avoid and see-to-follow performance requirements are nearly double. This report also reviewed historical XVS testing.
Super-resolved microsphere-assisted Mirau digital holography by oblique illumination
NASA Astrophysics Data System (ADS)
Abbasian, Vahid; Ganjkhani, Yasaman; Akhlaghi, Ehsan A.; Anand, Arun; Javidi, Bahram; Moradi, Ali-Reza
2018-06-01
In this paper, oblique illumination is used to improve the lateral resolution and edge sharpness in microsphere (MS)-assisted Mirau digital holographic microscopy (Mirau-DHM). Abbe showed that tilting the illumination light allows entrance of higher spatial frequencies into the imaging system thus increasing the resolution power. We extended the idea to common-path DHM, based on Mirau objective, toward super-resolved 3D imaging. High magnification Mirau objectives are very expensive and low-magnification ones suffer from low resolution, therefore, any attempt to increase the effective resolution of the system may be of a great interest. We have already demonstrated the effective resolution increasing of a Mirau-DHM system by incorporating a transparent MS within the working distance of the objective. Here, we show that by integrating a MS-assisted Mirau-DHM with the oblique illumination even higher resolutions can be achieved. We have applied the technique for various samples and have shown the increase in the lateral resolution for the both cases of Mirau-DHM with and without the MS.
NASA Astrophysics Data System (ADS)
Anantharaj, Valentine; Norman, Matthew; Evans, Katherine; Taylor, Mark; Worley, Patrick; Hack, James; Mayer, Benjamin
2014-05-01
During 2013, high-resolution climate model simulations accounted for over 100 million "core hours" using Titan at the Oak Ridge Leadership Computing Facility (OLCF). The suite of climate modeling experiments, primarily using the Community Earth System Model (CESM) at nearly 0.25 degree horizontal resolution, generated over a petabyte of data and nearly 100,000 files, ranging in sizes from 20 MB to over 100 GB. Effective utilization of leadership class resources requires careful planning and preparation. The application software, such as CESM, need to be ported, optimized and benchmarked for the target platform in order to meet the computational readiness requirements. The model configuration needs to be "tuned and balanced" for the experiments. This can be a complicated and resource intensive process, especially for high-resolution configurations using complex physics. The volume of I/O also increases with resolution; and new strategies may be required to manage I/O especially for large checkpoint and restart files that may require more frequent output for resiliency. It is also essential to monitor the application performance during the course of the simulation exercises. Finally, the large volume of data needs to be analyzed to derive the scientific results; and appropriate data and information delivered to the stakeholders. Titan is currently the largest supercomputer available for open science. The computational resources, in terms of "titan core hours" are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) and ASCR Leadership Computing Challenge (ALCC) programs, both sponsored by the U.S. Department of Energy (DOE) Office of Science. Titan is a Cray XK7 system, capable of a theoretical peak performance of over 27 PFlop/s, consists of 18,688 compute nodes, with a NVIDIA Kepler K20 GPU and a 16-core AMD Opteron CPU in every node, for a total of 299,008 Opteron cores and 18,688 GPUs offering a cumulative 560,640 equivalent cores. Scientific applications, such as CESM, are also required to demonstrate a "computational readiness capability" to efficiently scale across and utilize 20% of the entire system. The 0,25 deg configuration of the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), the atmospheric component of CESM, has been demonstrated to scale efficiently across more than 5,000 nodes (80,000 CPU cores) on Titan. The tracer transport routines of CAM-SE have also been ported to take advantage of the hybrid many-core architecture of Titan using GPUs [see EGU2014-4233], yielding over 2X speedup when transporting over 100 tracers. The high throughput I/O in CESM, based on the Parallel IO Library (PIO), is being further augmented to support even higher resolutions and enhance resiliency. The application performance of the individual runs are archived in a database and routinely analyzed to identify and rectify performance degradation during the course of the experiments. The various resources available at the OLCF now support a scientific workflow to facilitate high-resolution climate modelling. A high-speed center-wide parallel file system, called ATLAS, capable of 1 TB/s, is available on Titan as well as on the clusters used for analysis (Rhea) and visualization (Lens/EVEREST). Long-term archive is facilitated by the HPSS storage system. The Earth System Grid (ESG), featuring search & discovery, is also used to deliver data. The end-to-end workflow allows OLCF users to efficiently share data and publish results in a timely manner.
Writing next-generation display photomasks
NASA Astrophysics Data System (ADS)
Sandstrom, Tor; Wahlsten, Mikael; Park, Youngjin
2016-10-01
Recent years have seen a fast technical development within the display area. Displays get ever higher pixel density and the pixels get smaller. Current displays have over 800 PPI and market forces will eventually drive for densities of 2000 PPI or higher. The transistor backplanes also get more complex. OLED displays require 4-7 transistors per pixel instead of the typical 1-2 transistors used for LCDs, and they are significantly more sensitive to errors. New large-area maskwriters have been developed for masks used in high volume production of screens for state-of-theart smartphones. Redesigned laser optics with higher NA and lower aberrations improve resolution and CD uniformity and reduce mura effects. The number of beams has been increased to maintain the throughput despite the higher writing resolution. OLED displays are highly sensitive to placement errors and registration in the writers has been improved. To verify the registration of produced masks a separate metrology system has been developed. The metrology system is self-calibrated to high accuracy. The calibration is repeatable across machines and sites using Z-correction. The repeatability of the coordinate system makes it possible to standardize the coordinate system across an entire supply chain or indeed across the entire industry. In-house metrology is a commercial necessity for high-end mask shop, but also the users of the masks, the panel makers, would benefit from having in-house metrology. It would act as the reference for their mask suppliers, give better predictive and post mortem diagnostic power for the panel process, and the metrology could be used to characterize and improve the entire production loop from data to panel.
Zhang, Banglin; Tallapragada, Vijay; Weng, Fuzhong; Liu, Qingfu; Sippel, Jason A.; Ma, Zaizhong; Bender, Morris A.
2016-01-01
The atmosphere−ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical resolutions for Hurricane Joaquin, which occurred from September 27 to October 8, 2015, in the Atlantic Basin. The results show that the track prediction for Hurricane Joaquin is much more accurate with higher vertical resolution. The positive impacts of higher vertical resolution on hurricane track forecasts suggest that National Oceanic and Atmospheric Administration/NCEP should upgrade both HWRF and the Global Forecast System to have more vertical levels. PMID:27698121
Spatial resolution requirements for automated cartographic road extraction
Benjamin, S.; Gaydos, L.
1990-01-01
Ground resolution requirements for detection and extraction of road locations in a digitized large-scale photographic database were investigated. A color infrared photograph of Sunnyvale, California was scanned, registered to a map grid, and spatially degraded to 1- to 5-metre resolution pixels. Road locations in each data set were extracted using a combination of image processing and CAD programs. These locations were compared to a photointerpretation of road locations to determine a preferred pixel size for the extraction method. Based on road pixel omission error computations, a 3-metre pixel resolution appears to be the best choice for this extraction method. -Authors
2015-11-24
spatial concerns: ¤ how well are gradients captured? (resolution requirement) spatial/temporal concerns: ¤ dispersion and dissipation error...distribution is unlimited. Gradient Capture vs. Resolution: Single Mode FFT: Solution/Derivative: Convergence: f x( )= sin(x) with x∈[0,2π ] df dx...distribution is unlimited. Gradient Capture vs. Resolution: Multiple Modes FFT: Solution/Derivative: Convergence: 6 __ CD02 __ CD04 __ CD06
High Spatial Resolution Commercial Satellite Imaging Product Characterization
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas
2005-01-01
NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Are Self-Governance Tribes required to adopt a...-GOVERNANCE Construction Nepa Process § 137.293 Are Self-Governance Tribes required to adopt a separate... project agreement? No, the Self-Governance Tribe may adopt a single resolution or take equivalent Tribal...
NASA Astrophysics Data System (ADS)
Seo, Jeongmin; Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Kim, Chan Hyeong; Jeong, Jong Hwi; Kim, SeongHoon
2017-04-01
In proton therapy, the spot scanning method is known to suffer from the interplay effect induced from the independent movements of the proton beam and the organs in the patient during the treatment. To study the interplay effect, several investigators have performed four-dimensional (4D) dose calculations with some limited temporal resolutions (4 or 10 phases per respiratory cycle) by using the 4D computed tomography (CT) images of the patient; however, the validity of the limited temporal resolutions has not been confirmed. The aim of the present study is to determine whether the previous temporal resolutions (4 or 10 phases per respiratory cycle) are really high enough for adequate study of the interplay effect in spot scanning proton therapy. For this study, a series of 4D dose calculations were performed with a virtual water phantom moving in the vertical direction during dose delivery. The dose distributions were calculated for different temporal resolutions (4, 10, 25, 50, and 100 phases per respiratory cycle), and the calculated dose distributions were compared with the reference dose distribution, which was calculated using an almost continuously-moving water phantom ( i.e., 1000 phases per respiratory cycle). The results of the present study show that the temporal resolutions of 4 and 10 phases per respiratory cycle are not high enough for an accurate evaluation of the interplay effect for spot scanning proton therapy. The temporal resolution should be at least 14 and 17 phases per respiratory cycle for 10-mm and 20-mm movement amplitudes, respectively, even for rigid movement ( i.e., without deformation) of the homogeneous water phantom considered in the present study. We believe that even higher temporal resolutions are needed for an accurate evaluation of the interplay effect in the human body, in which the organs are inhomogeneous and deform during movement.
Design and evaluation of a THz time domain imaging system using standard optical design software.
Brückner, Claudia; Pradarutti, Boris; Müller, Ralf; Riehemann, Stefan; Notni, Gunther; Tünnermann, Andreas
2008-09-20
A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.
Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry
2012-03-01
The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for Applied Spectroscopy
NASA Astrophysics Data System (ADS)
Ni, Guangming; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong
2018-01-01
With the development of the liquid crystal display (LCD) module industry, LCD modules become more and more precise with larger sizes, which demands harsh imaging requirements for automated optical inspection (AOI). Here, we report a high-resolution and clearly focused imaging optomechatronics for precise LCD module bonding AOI inspection. It first presents and achieves high-resolution imaging for LCD module bonding AOI inspection using a line scan camera (LSC) triggered by a linear optical encoder, self-adaptive focusing for the whole large imaging region using LSC, and a laser displacement sensor, which reduces the requirements of machining, assembly, and motion control of AOI devices. Results show that this system can directly achieve clearly focused imaging for AOI inspection of large LCD module bonding with 0.8 μm image resolution, 2.65-mm scan imaging width, and no limited imaging width theoretically. All of these are significant for AOI inspection in the LCD module industry and other fields that require imaging large regions with high resolution.
40 CFR 766.16 - Developing the analytical test method.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resolution Gas Chromatography (HRGC) with High Resolution Mass Spectrometry (HRMS) is the method of choice... meet the requirements of the chemical matrix. (d) Analysis. The method of choice is High Resolution Gas...
40 CFR 766.16 - Developing the analytical test method.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resolution Gas Chromatography (HRGC) with High Resolution Mass Spectrometry (HRMS) is the method of choice... meet the requirements of the chemical matrix. (d) Analysis. The method of choice is High Resolution Gas...
Moslemi, Vahid; Ashoor, Mansour
2017-05-01
In addition to the trade-off between resolution and sensitivity which is a common problem among all types of parallel hole collimators (PCs), obtained images by high energy PCs (HEPCs) suffer from hole-pattern artifact (HPA) due to further septa thickness. In this study, a new design on the collimator has been proposed to improve the trade-off between resolution and sensitivity and to eliminate the HPA. A novel PC, namely high energy extended PC (HEEPC), is proposed and is compared to HEPCs. In the new PC, trapezoidal denticles were added upon the septa in the detector side. The performance of the HEEPCs were evaluated and compared to that of HEPCs using a Monte Carlo-N-particle version5 (MCNP5) simulation. The point spread functions (PSF) of HEPCs and HEEPCs were obtained as well as the various parameters such as resolution, sensitivity, scattering, and penetration ratios, and the HPA of the collimators was assessed. Furthermore, a Picker phantom study was performed to examine the effects of the collimators on the quality of planar images. It was found that the HEEPC D with an identical resolution to that of HEPC C increased sensitivity by 34.7%, and it improved the trade-off between resolution and sensitivity as well as to eliminate the HPA. In the picker phantom study, the HEEPC D indicated the hot and cold lesions with the higher contrast, lower noise, and higher contrast to noise ratio (CNR). Since the HEEPCs modify the shaping of PSFs, they are able to improve the trade-off between the resolution and sensitivity; consequently, planar images can be achieved with higher contrast resolutions. Furthermore, because the HEEPC S reduce the HPA and produce images with a higher CNR, compared to HEPCs, the obtained images by HEEPCs have a higher quality, which can help physicians to provide better diagnosis.
Resolution requirements for aero-optical simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Ali; Wang Meng; Moin, Parviz
2008-11-10
Analytical criteria are developed to estimate the error of aero-optical computations due to inadequate spatial resolution of refractive index fields in high Reynolds number flow simulations. The unresolved turbulence structures are assumed to be locally isotropic and at low turbulent Mach number. Based on the Kolmogorov spectrum for the unresolved structures, the computational error of the optical path length is estimated and linked to the resulting error in the computed far-field optical irradiance. It is shown that in the high Reynolds number limit, for a given geometry and Mach number, the spatial resolution required to capture aero-optics within a pre-specifiedmore » error margin does not scale with Reynolds number. In typical aero-optical applications this resolution requirement is much lower than the resolution required for direct numerical simulation, and therefore, a typical large-eddy simulation can capture the aero-optical effects. The analysis is extended to complex turbulent flow simulations in which non-uniform grid spacings are used to better resolve the local turbulence structures. As a demonstration, the analysis is used to estimate the error of aero-optical computation for an optical beam passing through turbulent wake of flow over a cylinder.« less
Scanning laser beam displays based on a 2D MEMS
NASA Astrophysics Data System (ADS)
Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason
2010-05-01
The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.
Finite element analyses of thin film active grazing incidence x-ray optics
NASA Astrophysics Data System (ADS)
Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.
2010-09-01
The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.
Kim, Ji Hun; Titus, Katelyn R; Gong, Wanfeng; Beagan, Jonathan A; Cao, Zhendong; Phillips-Cremins, Jennifer E
2018-05-14
Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs, and looping interactions. Currently, there is a great need to evaluate the link between chromatin topology and genome function across many biological conditions and genetic perturbations. Hi-C can generate genome-wide maps of looping interactions but is intractable for high-throughput comparison of loops across multiple conditions due to the enormous number of reads (>6 Billion) required per library. Here, we describe 5C-ID, a new version of Chromosome-Conformation-Capture-Carbon-Copy (5C) with restriction digest and ligation performed in the nucleus (in situ Chromosome-Conformation-Capture (3C)) and ligation-mediated amplification performed with a double alternating primer design. We demonstrate that 5C-ID produces higher-resolution 3D genome folding maps with reduced spatial noise using markedly lower cell numbers than canonical 5C. 5C-ID enables the creation of high-resolution, high-coverage maps of chromatin loops in up to a 30 Megabase subset of the genome at a fraction of the cost of Hi-C. Copyright © 2018 Elsevier Inc. All rights reserved.
GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation
Jiang, Bo; Liang, Shunlin; Ma, Han; ...
2016-03-09
Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less
NASA Technical Reports Server (NTRS)
Barrentine, Emily M.; Noroozian, Omid; Brown, Ari D.; Cataldo, Giuseppe; Ehsan, Negar; Hsieh, Wen-Ting; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Moseley, S. Harvey
2015-01-01
Micro-Spec is a compact submillimeter (350-700 GHz) spectrometer which uses low loss superconducting niobium microstrip transmission lines and a single-crystal silicon dielectric to integrate all of the components of a grating-analog spectrometer onto a single chip. Here we present details of the fabrication and design of a prototype Micro-Spec spectrometer with resolution, R64, where we use a high-yield single-flip wafer bonding process to realize instrument components on a 0.45 m single-crystal silicon dielectric. We discuss some of the electromagnetic design concerns (such as loss, stray-light, cross-talk, and fabrication tolerances) for each of the spectrometer components and their integration into the instrument as a whole. These components include a slot antenna with a silicon lens for optical coupling, a phase delay transmission line network, parallel plate waveguide interference region, and aluminum microstrip transmission line kinetic inductance detectors with extremely low cross-talk and immunity to stray light. We have demonstrated this prototype spectrometer with design resolution of R64. Given the optical performance of this prototype, we will also discuss the extension of this design to higher resolutions suitable for balloon-flight.
GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Bo; Liang, Shunlin; Ma, Han
Mapping surface all-wave net radiation (R n) is critically needed for various applications. Several existing R n products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime R n product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS R n product based on high-quality in situ measurementsmore » in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm -2, and an average bias of 17.59 Wm -2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS R n product is satisfactory. The GLASS R n product from 2000 to the present is operational and freely available to the public.« less
A new family of high-order compact upwind difference schemes with good spectral resolution
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Yao, Zhaohui; He, Feng; Shen, M. Y.
2007-12-01
This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.
High-resolution studies of the Majorana atomic chain platform
NASA Astrophysics Data System (ADS)
Feldman, Benjamin E.; Randeria, Mallika T.; Li, Jian; Jeon, Sangjun; Xie, Yonglong; Wang, Zhijun; Drozdov, Ilya K.; Andrei Bernevig, B.; Yazdani, Ali
2017-03-01
Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a one-dimensional topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher-resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunnelling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero-bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive `double eye’ spatial pattern on nanometre length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle-hole symmetric MQP signature expected in such measurements.
Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z
2009-10-21
Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.
Relationship between noise, dose, and pitch in cardiac multi-detector row CT.
Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G
2006-01-01
In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006
25 CFR 522.2 - Submission requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.2 Submission requirements. A tribe... officials and key employees; (d) Copies of all tribal gaming regulations; (e) When an ordinance or...
A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions
USDA-ARS?s Scientific Manuscript database
Studies of land surface dynamics in heterogeneous landscapes often require remote sensing data with high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta ...
NASA Astrophysics Data System (ADS)
Guenther, A. B.; Duhl, T.
2011-12-01
Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.
Quantitative DLA-based compressed sensing for T1-weighted acquisitions
NASA Astrophysics Data System (ADS)
Svehla, Pavel; Nguyen, Khieu-Van; Li, Jing-Rebecca; Ciobanu, Luisa
2017-08-01
High resolution Manganese Enhanced Magnetic Resonance Imaging (MEMRI), which uses manganese as a T1 contrast agent, has great potential for functional imaging of live neuronal tissue at single neuron scale. However, reaching high resolutions often requires long acquisition times which can lead to reduced image quality due to sample deterioration and hardware instability. Compressed Sensing (CS) techniques offer the opportunity to significantly reduce the imaging time. The purpose of this work is to test the feasibility of CS acquisitions based on Diffusion Limited Aggregation (DLA) sampling patterns for high resolution quantitative T1-weighted imaging. Fully encoded and DLA-CS T1-weighted images of Aplysia californica neural tissue were acquired on a 17.2T MRI system. The MR signal corresponding to single, identified neurons was quantified for both versions of the T1 weighted images. For a 50% undersampling, DLA-CS can accurately quantify signal intensities in T1-weighted acquisitions leading to only 1.37% differences when compared to the fully encoded data, with minimal impact on image spatial resolution. In addition, we compared the conventional polynomial undersampling scheme with the DLA and showed that, for the data at hand, the latter performs better. Depending on the image signal to noise ratio, higher undersampling ratios can be used to further reduce the acquisition time in MEMRI based functional studies of living tissues.
NASA Astrophysics Data System (ADS)
van Es, Maarten H.; Mohtashami, Abbas; Piras, Daniele; Sadeghian, Hamed
2018-03-01
Nondestructive subsurface nanoimaging through optically opaque media is considered to be extremely challenging and is essential for several semiconductor metrology applications including overlay and alignment and buried void and defect characterization. The current key challenge in overlay and alignment is the measurement of targets that are covered by optically opaque layers. Moreover, with the device dimensions moving to the smaller nodes and the issue of the so-called loading effect causing offsets between between targets and product features, it is increasingly desirable to perform alignment and overlay on product features or so-called on-cell overlay, which requires higher lateral resolution than optical methods can provide. Our recently developed technique known as SubSurface Ultrasonic Resonance Force Microscopy (SSURFM) has shown the capability for high-resolution imaging of structures below a surface based on (visco-)elasticity of the constituent materials and as such is a promising technique to perform overlay and alignment with high resolution in upcoming production nodes. In this paper, we describe the developed SSURFM technique and the experimental results on imaging buried features through various layers and the ability to detect objects with resolution below 10 nm. In summary, the experimental results show that the SSURFM is a potential solution for on-cell overlay and alignment as well as detecting buried defects or voids and generally metrology through optically opaque layers.
NASA Astrophysics Data System (ADS)
Mazlin, Viacheslav; Xiao, Peng; Dalimier, Eugénie; Grieve, Kate; Irsch, Kristina; Sahel, José; Fink, Mathias; Boccara, Claude
2018-02-01
Despite obvious improvements in visualization of the in vivo cornea through the faster imaging speeds and higher axial resolutions, cellular imaging stays unresolvable task for OCT, as en face viewing with a high lateral resolution is required. The latter is possible with FFOCT, a method that relies on a camera, moderate numerical aperture (NA) objectives and an incoherent light source to provide en face images with a micrometer-level resolution. Recently, we for the first time demonstrated the ability of FFOCT to capture images from the in vivo human cornea1. In the current paper we present an extensive study of appearance of healthy in vivo human corneas under FFOCT examination. En face corneal images with a micrometer-level resolution were obtained from the three healthy subjects. For each subject it was possible to acquire images through the entire corneal depth and visualize the epithelium structures, Bowman's layer, sub-basal nerve plexus (SNP) fibers, anterior, middle and posterior stroma, endothelial cells with nuclei. Dimensions and densities of the structures visible with FFOCT, are in agreement with those seen by other cornea imaging methods. Cellular-level details in the images obtained together with the relatively large field-of-view (FOV) and contactless way of imaging make this device a promising candidate for becoming a new tool in ophthalmological diagnostics.
NASA Astrophysics Data System (ADS)
Cristea, Nicoleta C.; Breckheimer, Ian; Raleigh, Mark S.; HilleRisLambers, Janneke; Lundquist, Jessica D.
2017-08-01
Reliable maps of snow-covered areas at scales of meters to tens of meters, with daily temporal resolution, are essential to understanding snow heterogeneity, melt runoff, energy exchange, and ecological processes. Here we develop a parsimonious downscaling routine that can be applied to fractional snow covered area (fSCA) products from satellite platforms such as the Moderate Resolution Imaging Spectroradiometer (MODIS) that provide daily ˜500 m data, to derive higher-resolution snow presence/absence grids. The method uses a composite index combining both the topographic position index (TPI) to represent accumulation effects and the diurnal anisotropic heat (DAH, sun exposure) index to represent ablation effects. The procedure is evaluated and calibrated using airborne-derived high-resolution data sets across the Tuolumne watershed, CA using 11 scenes in 2014 to downscale to 30 m resolution. The average matching F score was 0.83. We then tested our method's transferability in time and space by comparing against the Tuolumne watershed in water years 2013 and 2015, and over an entirely different site, Mt. Rainier, WA in 2009 and 2011, to assess applicability to other topographic and climatic conditions. For application to sites without validation data, we recommend equal weights for the TPI and DAH indices and close TPI neighborhoods (60 and 27 m for downscaling to 30 and 3 m, respectively), which worked well in both our study areas. The method is less effective in forested areas, which still requires site-specific treatment. We demonstrate that the procedure can even be applied to downscale to 3 m resolution, a very fine scale relevant to alpine ecohydrology research.
Scaled multisensor inspection of extended surfaces for industrial quality control
NASA Astrophysics Data System (ADS)
Kayser, Daniel; Bothe, Thorsten; Osten, Wolfgang
2002-06-01
Reliable real-time surface inspection of extended surfaces with high resolution is needed in several industrial applications. With respect to an efficient application to extended technical components such as aircraft or automotive parts, the inspection system has to perform a robust measurement with a ratio of less then 10-6 between depth resolution and lateral extension. This ratio is at least one order beyond the solutions that are offered by existing technologies. The concept of scaled topometry consists of arranging different optical measurement techniques with overlapping ranges of resolution systematically in order to receive characteristic surface information with the required accuracy. In such a surface inspection system, an active algorithm combines measurements on several scales of resolution and distinguishes between local fault indicating structures with different extensions and global geometric properties. The first part of this active algorithm finds indications of critical surface areas in the data of every measurement and separates them into different categories. The second part analyses the detected structures in the data with respect to their resolution and decides whether a further local measurement with a higher resolution has to be performed. The third part positions the sensors and starts the refined measurements. The fourth part finally integrates the measured local data set into the overall data mesh. We have constructed a laboratory setup capable of measuring surfaces with extensions up to 1500mm x 1000mm x 500mm (in x-, y- and z-direction respectively). Using this measurement system we will be able to separate the fault indicating structures on the surface from the global shape and to classify the detected structures according to their extensions and characteristic shapes simultaneously. The level of fault detection probability will be applicable by input parameter control.
NASA Astrophysics Data System (ADS)
Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.
2017-09-01
Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.
Linking the Weather Generator with Regional Climate Model: Effect of Higher Resolution
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Huth, Radan; Farda, Ales; Skalak, Petr
2014-05-01
This contribution builds on our last year EGU contribution, which followed two aims: (i) validation of the simulations of the present climate made by the ALADIN-Climate Regional Climate Model (RCM) at 25 km resolution, and (ii) presenting a methodology for linking the parametric weather generator (WG) with RCM output (aiming to calibrate a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations). Now we have available new higher-resolution (6.25 km) simulations with the same RCM. The main topic of this contribution is an anser to a following question: What is an effect of using a higher spatial resolution on a quality of simulating the surface weather characteristics? In the first part, the high resolution RCM simulation of the present climate will be validated in terms of selected WG parameters, which are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series. When comparing the WG parameters from the two sources (RCM vs observations), we interpolate the RCM-based parameters into the station locations while accounting for the effect of altitude. In the second part, we will discuss an effect of using the higher resolution: the results of the validation tests will be compared with those obtained with the lower-resolution RCM. Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).
NASA Astrophysics Data System (ADS)
Fenech, Sara; Doherty, Ruth M.; Heaviside, Clare; Vardoulakis, Sotiris; Macintyre, Helen L.; O'Connor, Fiona M.
2018-04-01
We examine the impact of model horizontal resolution on simulated concentrations of surface ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5), and the associated health impacts over Europe, using the HadGEM3-UKCA chemistry-climate model to simulate pollutant concentrations at a coarse (˜ 140 km) and a finer (˜ 50 km) resolution. The attributable fraction (AF) of total mortality due to long-term exposure to warm season daily maximum 8 h running mean (MDA8) O3 and annual-average PM2.5 concentrations is then calculated for each European country using pollutant concentrations simulated at each resolution. Our results highlight a seasonal variation in simulated O3 and PM2.5 differences between the two model resolutions in Europe. Compared to the finer resolution results, simulated European O3 concentrations at the coarse resolution are higher on average in winter and spring (˜ 10 and ˜ 6 %, respectively). In contrast, simulated O3 concentrations at the coarse resolution are lower in summer and autumn (˜ -1 and ˜ -4 %, respectively). These differences may be partly explained by differences in nitrogen dioxide (NO2) concentrations simulated at the two resolutions. Compared to O3, we find the opposite seasonality in simulated PM2.5 differences between the two resolutions. In winter and spring, simulated PM2.5 concentrations are lower at the coarse compared to the finer resolution (˜ -8 and ˜ -6 %, respectively) but higher in summer and autumn (˜ 29 and ˜ 8 %, respectively). Simulated PM2.5 values are also mostly related to differences in convective rainfall between the two resolutions for all seasons. These differences between the two resolutions exhibit clear spatial patterns for both pollutants that vary by season, and exert a strong influence on country to country variations in estimated AF for the two resolutions. Warm season MDA8 O3 levels are higher in most of southern Europe, but lower in areas of northern and eastern Europe when simulated at the coarse resolution compared to the finer resolution. Annual-average PM2.5 concentrations are higher across most of northern and eastern Europe but lower over parts of southwest Europe at the coarse compared to the finer resolution. Across Europe, differences in the AF associated with long-term exposure to population-weighted MDA8 O3 range between -0.9 and +2.6 % (largest positive differences in southern Europe), while differences in the AF associated with long-term exposure to population-weighted annual mean PM2.5 range from -4.7 to +2.8 % (largest positive differences in eastern Europe) of the total mortality. Therefore this study, with its unique focus on Europe, demonstrates that health impact assessments calculated using modelled pollutant concentrations, are sensitive to a change in model resolution by up to ˜ ±5 % of the total mortality across Europe.
The Effect of New Ozone Cross Sections Applied to SBUV and TOMS Retrievals
NASA Technical Reports Server (NTRS)
McPeters, Richard D.; Labow, Gordon J.
2010-01-01
The ozone cross sections as measured by Bass and Paur have been used for processing of SBUV and TOMS data since 1986. While these cross sections were a big improvement over those previously available, there were known minor problems with accuracy for wavelengths longward of 330 nm and with the temperature dependance. Today's requirements to separate stratospheric ozone from tropospheric ozone and for the derivation of minor species such as BrO and N02 place stringent new requirements on the accuracy needed. The ozone cross section measurements of Brion, Daumont, and Malicet (BDM) are being considered for use in UV-based ozone retrievals. They have much better resolution, an extended wavelength range, and a more consistent temperature dependance. Tests show that BDM retrievals exhibit lower retrieval residuals in the satellite data; i.e., they explain our measured atmospheric radiances more accurately. Total column ozone retrieved by the TOMS instruments is about 1.5% higher than before. Ozone profiles retrieved from SBUV using the new cross sections are lower in the upper stratosphere and higher in the lower stratosphere and troposphere.
Low-dose, high-resolution and high-efficiency ptychography at STXM beamline of SSRF
NASA Astrophysics Data System (ADS)
Xu, Zijian; Wang, Chunpeng; Liu, Haigang; Tao, Xulei; Tai, Renzhong
2017-06-01
Ptychography is a diffraction-based X-ray microscopy method that can image extended samples quantitatively while remove the resolution limit imposed by image-forming optical elements. As a natural extension of scanning transmission X-ray microscopy (STXM) imaging method, we developed soft X-ray ptychographic coherent diffraction imaging (PCDI) method at the STXM endstation of BL08U beamline of Shanghai Synchrotron Radiation Facility. Compared to the traditional STXM imaging, the new PCDI method has resulted in significantly lower dose, higher resolution and higher efficiency imaging in our platform. In the demonstration experiments shown here, a spatial resolution of sub-10 nm was obtained for a gold nanowires sample, which is much better than the limit resolution 30 nm of the STXM method, while the radiation dose is only 1/12 of STXM.
Toward high-resolution NMR spectroscopy of microscopic liquid samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying
A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed,more » as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.« less
Object segmentation using graph cuts and active contours in a pyramidal framework
NASA Astrophysics Data System (ADS)
Subudhi, Priyambada; Mukhopadhyay, Susanta
2018-03-01
Graph cuts and active contours are two very popular interactive object segmentation techniques in the field of computer vision and image processing. However, both these approaches have their own well-known limitations. Graph cut methods perform efficiently giving global optimal segmentation result for smaller images. However, for larger images, huge graphs need to be constructed which not only takes an unacceptable amount of memory but also increases the time required for segmentation to a great extent. On the other hand, in case of active contours, initial contour selection plays an important role in the accuracy of the segmentation. So a proper selection of initial contour may improve the complexity as well as the accuracy of the result. In this paper, we have tried to combine these two approaches to overcome their above-mentioned drawbacks and develop a fast technique of object segmentation. Here, we have used a pyramidal framework and applied the mincut/maxflow algorithm on the lowest resolution image with the least number of seed points possible which will be very fast due to the smaller size of the image. Then, the obtained segmentation contour is super-sampled and and worked as the initial contour for the next higher resolution image. As the initial contour is very close to the actual contour, so fewer number of iterations will be required for the convergence of the contour. The process is repeated for all the high-resolution images and experimental results show that our approach is faster as well as memory efficient as compare to both graph cut or active contour segmentation alone.
NASA Technical Reports Server (NTRS)
Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James;
2011-01-01
Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.
NASA Astrophysics Data System (ADS)
Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul
2011-05-01
Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.
Lessons Learned from OMI Observations of Point Source SO2 Pollution
NASA Technical Reports Server (NTRS)
Krotkov, N.; Fioletov, V.; McLinden, Chris
2011-01-01
The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.
BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients
NASA Astrophysics Data System (ADS)
Xiao, Dan; Balcom, Bruce J.
2017-12-01
MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.
NASA Astrophysics Data System (ADS)
Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc
2017-03-01
Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps evaluation, or to guide a dataset smoothing before the modeling part.
Ethics Requirement Score: new tool for evaluating ethics in publications
dos Santos, Lígia Gabrielle; Fonseca, Ana Carolina da Costa e; Bica, Claudia Giuliano
2014-01-01
Objective To analyze ethical standards considered by health-related scientific journals, and to prepare the Ethics Requirement Score, a bibliometric index to be applied to scientific healthcare journals in order to evaluate criteria for ethics in scientific publication. Methods Journals related to healthcare selected by the Journal of Citation Reports™ 2010 database were considered as experimental units. Parameters related to publication ethics were analyzed for each journal. These parameters were acquired by analyzing the author’s guidelines or instructions in each journal website. The parameters considered were approval by an Internal Review Board, Declaration of Helsinki or Resolution 196/96, recommendations on plagiarism, need for application of Informed Consent Forms with the volunteers, declaration of confidentiality of patients, record in the database for clinical trials (if applicable), conflict of interest disclosure, and funding sources statement. Each item was analyzed considering their presence or absence. Result The foreign journals had a significantly higher Impact Factor than the Brazilian journals, however, no significant results were observed in relation to the Ethics Requirement Score. There was no correlation between the Ethics Requirement Score and the Impact Factor. Conclusion Although the Impact Factor of foreigner journals was considerably higher than that of the Brazilian publications, the results showed that the Impact Factor has no correlation with the proposed score. This allows us to state that the ethical requirements for publication in biomedical journals are not related to the comprehensiveness or scope of the journal. PMID:25628189
Problems and Resolutions in the Practice of Project Teaching in Higher Vocational Schools
ERIC Educational Resources Information Center
Sheng, Zhichong; Tan, Jianhua
2011-01-01
Recently, there has been a hot discussion on project teaching theory among many higher vocational schools; however the practice of project teaching is still in the beginning period. Hence, many problems appear in project lead. This paper aims to analyze the existing problems in the practice of project teaching and also raise some resolutions.
Refinement procedure for the image alignment in high-resolution electron tomography.
Houben, L; Bar Sadan, M
2011-01-01
High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.
Achieving superresolution with illumination-enhanced sparsity.
Yu, Jiun-Yann; Becker, Stephen R; Folberth, James; Wallin, Bruce F; Chen, Simeng; Cogswell, Carol J
2018-04-16
Recent advances in superresolution fluorescence microscopy have been limited by a belief that surpassing two-fold resolution enhancement of the Rayleigh resolution limit requires stimulated emission or the fluorophore to undergo state transitions. Here we demonstrate a new superresolution method that requires only image acquisitions with a focused illumination spot and computational post-processing. The proposed method utilizes the focused illumination spot to effectively reduce the object size and enhance the object sparsity and consequently increases the resolution and accuracy through nonlinear image post-processing. This method clearly resolves 70nm resolution test objects emitting ~530nm light with a 1.4 numerical aperture (NA) objective, and, when imaging through a 0.5NA objective, exhibits high spatial frequencies comparable to a 1.4NA widefield image, both demonstrating a resolution enhancement above two-fold of the Rayleigh resolution limit. More importantly, we examine how the resolution increases with photon numbers, and show that the more-than-two-fold enhancement is achievable with realistic photon budgets.
Vadnais, Carolyn; Stensaas, Gregory
2014-01-01
Under the National Land Imaging Requirements (NLIR) Project, the U.S. Geological Survey (USGS) is developing a functional capability to obtain, characterize, manage, maintain and prioritize all Earth observing (EO) land remote sensing user requirements. The goal is a better understanding of community needs that can be supported with land remote sensing resources, and a means to match needs with appropriate solutions in an effective and efficient way. The NLIR Project is composed of two components. The first component is focused on the development of the Earth Observation Requirements Evaluation System (EORES) to capture, store and analyze user requirements, whereas, the second component is the mechanism and processes to elicit and document the user requirements that will populate the EORES. To develop the second component, the requirements elicitation methodology was exercised and refined through a pilot project conducted from June to September 2013. The pilot project focused specifically on applications and user requirements for moderate resolution imagery (5–120 meter resolution) as the test case for requirements development. The purpose of this summary report is to provide a high-level overview of the requirements elicitation process that was exercised through the pilot project and an early analysis of the moderate resolution imaging user requirements acquired to date to support ongoing USGS sustainable land imaging study needs. The pilot project engaged a limited set of Federal Government users from the operational and research communities and therefore the information captured represents only a subset of all land imaging user requirements. However, based on a comparison of results, trends, and analysis, the pilot captured a strong baseline of typical applications areas and user needs for moderate resolution imagery. Because these results are preliminary and represent only a sample of users and application areas, the information from this report should only be used to indicate general user needs for the applications covered. Users of the information are cautioned that use of specific numeric results may be inappropriate without additional research. Any information used or cited from this report should specifically be cited as preliminary findings.
A global "imaging'' view on systems approaches in immunology.
Ludewig, Burkhard; Stein, Jens V; Sharpe, James; Cervantes-Barragan, Luisa; Thiel, Volker; Bocharov, Gennady
2012-12-01
The immune system exhibits an enormous complexity. High throughput methods such as the "-omic'' technologies generate vast amounts of data that facilitate dissection of immunological processes at ever finer resolution. Using high-resolution data-driven systems analysis, causal relationships between complex molecular processes and particular immunological phenotypes can be constructed. However, processes in tissues, organs, and the organism itself (so-called higher level processes) also control and regulate the molecular (lower level) processes. Reverse systems engineering approaches, which focus on the examination of the structure, dynamics and control of the immune system, can help to understand the construction principles of the immune system. Such integrative mechanistic models can properly describe, explain, and predict the behavior of the immune system in health and disease by combining both higher and lower level processes. Moving from molecular and cellular levels to a multiscale systems understanding requires the development of methodologies that integrate data from different biological levels into multiscale mechanistic models. In particular, 3D imaging techniques and 4D modeling of the spatiotemporal dynamics of immune processes within lymphoid tissues are central for such integrative approaches. Both dynamic and global organ imaging technologies will be instrumental in facilitating comprehensive multiscale systems immunology analyses as discussed in this review. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulations as a tool for higher mass resolution spectrometer: Lessons from existing observations
NASA Astrophysics Data System (ADS)
Nicolaou, Georgios; Yamauchi, Masatoshi; Nilsson, Hans; Wieser, Martin; Fedorov, Andrei
2017-04-01
Scientific requirements of each mission are crucial for the instrument's design. Ion tracing simulations of instruments can be helpful to characterize their performance, identify their limitations and improving the design for future missions. However, simulations provide the best performance in ideal case, and the actual response is determined by many other factors. Therefore, simulations should be compared with observations when possible. Characterizing the actual response of a running instrument gives valuable lessons for the future design of test instruments with the same detection principle before spending resources to build and calibrate them. In this study we use an ion tracing simulation of the Ion Composition Analyser (ICA) on board ROSETTA, in order to characterize its response and to compare it with the observations. It turned out that, due to the complicated unexpected response of the running instrument, the heavy cometary ions and molecules are sometimes difficult to be resolved. However, preliminary simulation of a slightly modified design predicts much higher mass resolution. Even after considering the complicated unexpected response, we safely expect that the modified design can resolve most abundant heavy atomic ions (e.g., O^+) and molecular ions (e.g., N_2+ and O_2^+). We show the simulation results for both designs and ICA data.
Automated color classification of urine dipstick image in urine examination
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Royananda; Muchtar, M. A.; Taqiuddin, R.; Adnan, S.; Anugrahwaty, R.; Budiarto, R.
2018-03-01
Urine examination using urine dipstick has long been used to determine the health status of a person. The economical and convenient use of urine dipstick is one of the reasons urine dipstick is still used to check people health status. The real-life implementation of urine dipstick is done manually, in general, that is by comparing it with the reference color visually. This resulted perception differences in the color reading of the examination results. In this research, authors used a scanner to obtain the urine dipstick color image. The use of scanner can be one of the solutions in reading the result of urine dipstick because the light produced is consistent. A method is required to overcome the problems of urine dipstick color matching and the test reference color that have been conducted manually. The method proposed by authors is Euclidean Distance, Otsu along with RGB color feature extraction method to match the colors on the urine dipstick with the standard reference color of urine examination. The result shows that the proposed approach was able to classify the colors on a urine dipstick with an accuracy of 95.45%. The accuracy of color classification on urine dipstick against the standard reference color is influenced by the level of scanner resolution used, the higher the scanner resolution level, the higher the accuracy.
Jizan, Iman; Helt, L. G.; Xiong, Chunle; Collins, Matthew J.; Choi, Duk-Yong; Joon Chae, Chang; Liscidini, Marco; Steel, M. J.; Eggleton, Benjamin J.; Clark, Alex S.
2015-01-01
The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterisation. A promising tool for such characterisation uses classical stimulated processes, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a χ(2) integrated source in A. Eckstein et al. Laser Photon. Rev. 8, L76 (2014). In this work we extend these results to χ(3) integrated sources, directly measuring for the first time the relation between spectral correlation measurements via stimulated and spontaneous four wave mixing in an integrated optical waveguide, a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that this allows additional resolution to be gained when compared to traditional coincidence measurements without any increase in measurement time. As the pump pulse duration can influence the degree of spectral correlation, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral correlation regardless of pump pulse duration, and cements its place as an essential characterisation method for the development of future quantum integrated devices. PMID:26218609
Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging
Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M.; Fujita, Katsumasa; Mimori-Kiyosue, Yuko
2013-01-01
A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to “pinhole cross-talk,” which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging. PMID:23401517
Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging.
Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M; Fujita, Katsumasa; Mimori-Kiyosue, Yuko
2013-02-26
A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to "pinhole cross-talk," which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging.
Blood pressure in head‐injured patients
Mitchell, Patrick; Gregson, Barbara A; Piper, Ian; Citerio, Giuseppe; Mendelow, A David; Chambers, Iain R
2007-01-01
Objective To determine the statistical characteristics of blood pressure (BP) readings from a large number of head‐injured patients. Methods The BrainIT group has collected high time‐resolution physiological and clinical data from head‐injured patients who require intracranial pressure (ICP) monitoring. The statistical features of this dataset of BP measurements with time resolution of 1 min from 200 patients is examined. The distributions of BP measurements and their relationship with simultaneous ICP measurements are described. Results The distributions of mean, systolic and diastolic readings are close to normal with modest skewing towards higher values. There is a trend towards an increase in blood pressure with advancing age, but this is not significant. Simultaneous blood pressure and ICP values suggest a triphasic relationship with a BP rising at 0.28 mm Hg/mm Hg of ICP, for ICP up to 32 mm Hg, and 0.9 mm Hg/mm Hg of ICP for ICP from 33 to 55 mm Hg, and falling sharply with rising ICP for ICP >55 mm Hg. Conclusions Patients with head injury appear to have a near normal distribution of blood pressure readings that are skewed towards higher values. The relationship between BP and ICP may be triphasic. PMID:17138594
Elusive Ethylene Detected in Saturns Northern Storm Region
NASA Technical Reports Server (NTRS)
Hesman, B. E.; Bjoraker, G. L.; Sada, P. V.; Achterberg, R. K.; Jennings, D. E.; Romani, P. N.; Lunsford, A. W.; Fletcher, L. N.; Boyle, R. J.; Simon-Miller, A. A.;
2013-01-01
The massive eruption at 40 deg. N (planetographic latitude) on Saturn in 2010 December has produced significant and lasting effects in the northern hemisphere on temperature and species abundances. The northern storm region was observed on many occasions in 2011 by Cassini's Composite Infrared Spectrometer (CIRS). In 2011 May, temperatures in the stratosphere greater than 200 K were derived from CIRS spectra in the regions referred to as "beacons" (warm regions in the stratosphere). Ethylene has been detected in the beacon region in Saturn's northern storm region using CIRS. Ground-based observations using the high-resolution spectrometer Celeste on the McMath-Pierce Telescope on 2011 May 15 were used to confirm the detection and improve the altitude resolution in the retrieved profile. The derived ethylene profile from the CIRS data gives a C2H4 mole fraction of 5.9 +/- 4.5 x 10(exp -7) at 0.5 mbar, and from Celeste data it gives 2.7 +/- 0.45 x 10(exp -6) at 0.1 mbar. This is two orders of magnitude higher than the amount measured in the ultraviolet at other latitudes prior to the storm. It is also much higher than predicted by photochemical models, indicating that perhaps another production mechanism is required or a loss mechanism is being inhibited.
Zürch, M; Jung, R; Späth, C; Tümmler, J; Guggenmos, A; Attwood, D; Kleineberg, U; Stiel, H; Spielmann, C
2017-07-13
Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12 | ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
Requirements on high resolution detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, A.
For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.
Petridou, N; Italiaander, M; van de Bank, B L; Siero, J C W; Luijten, P R; Klomp, D W J
2013-01-01
Recent studies have shown that functional MRI (fMRI) can be sensitive to the laminar and columnar organization of the cortex based on differences in the spatial and temporal characteristics of the blood oxygenation level-dependent (BOLD) signal originating from the macrovasculature and the neuronal-specific microvasculature. Human fMRI studies at this scale of the cortical architecture, however, are very rare because the high spatial/temporal resolution required to explore these properties of the BOLD signal are limited by the signal-to-noise ratio. Here, we show that it is possible to detect BOLD signal changes at an isotropic spatial resolution as high as 0.55 mm at 7 T using a high-density multi-element surface coil with minimal electronics, which allows close proximity to the head. The coil comprises of very small, 1 × 2-cm(2) , elements arranged in four flexible modules of four elements each (16-channel) that can be positioned within 1 mm from the head. As a result of this proximity, tissue losses were five-fold greater than coil losses and sufficient to exclude preamplifier decoupling. When compared with a standard 16-channel head coil, the BOLD sensitivity was approximately 2.2-fold higher for a high spatial/temporal resolution (1 mm isotropic/0.4 s), multi-slice, echo planar acquisition, and approximately three- and six-fold higher for three-dimensional echo planar images acquired with isotropic resolutions of 0.7 and 0.55 mm, respectively. Improvements in parallel imaging performance (geometry factor) were up to around 1.5-fold with increasing acceleration factor, and improvements in fMRI detectability (temporal signal-to-noise ratio) were up to around four-fold depending on the distance to the coil. Although deeper lying structures may not benefit from the design, most fMRI questions pertain to the neocortex which lies within approximately 4 cm from the surface. These results suggest that the resolution of fMRI (at 7 T) can approximate levels that are closer to the spatial/temporal scale of the fundamental functional organization of the human cortex using a simple high-density coil design for high sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.
Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert
2012-04-02
There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.
Regional and global modeling estimates of policy relevant background ozone over the United States
NASA Astrophysics Data System (ADS)
Emery, Christopher; Jung, Jaegun; Downey, Nicole; Johnson, Jeremiah; Jimenez, Michele; Yarwood, Greg; Morris, Ralph
2012-02-01
Policy Relevant Background (PRB) ozone, as defined by the US Environmental Protection Agency (EPA), refers to ozone concentrations that would occur in the absence of all North American anthropogenic emissions. PRB enters into the calculation of health risk benefits, and as the US ozone standard approaches background levels, PRB is increasingly important in determining the feasibility and cost of compliance. As PRB is a hypothetical construct, modeling is a necessary tool. Since 2006 EPA has relied on global modeling to establish PRB for their regulatory analyses. Recent assessments with higher resolution global models exhibit improved agreement with remote observations and modest upward shifts in PRB estimates. This paper shifts the paradigm to a regional model (CAMx) run at 12 km resolution, for which North American boundary conditions were provided by a low-resolution version of the GEOS-Chem global model. We conducted a comprehensive model inter-comparison, from which we elucidate differences in predictive performance against ozone observations and differences in temporal and spatial background variability over the US. In general, CAMx performed better in replicating observations at remote monitoring sites, and performance remained better at higher concentrations. While spring and summer mean PRB predicted by GEOS-Chem ranged 20-45 ppb, CAMx predicted PRB ranged 25-50 ppb and reached well over 60 ppb in the west due to event-oriented phenomena such as stratospheric intrusion and wildfires. CAMx showed a higher correlation between modeled PRB and total observed ozone, which is significant for health risk assessments. A case study during April 2006 suggests that stratospheric exchange of ozone is underestimated in both models on an event basis. We conclude that wildfires, lightning NO x and stratospheric intrusions contribute a significant level of uncertainty in estimating PRB, and that PRB will require careful consideration in the ozone standard setting process.
Silicone Molding and Lifetime Testing of Peripheral Nerve Interfaces for Neuroprostheses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupte, Kimaya; Tolosa, Vanessa
Implantable peripheral nerve cuffs have a large application in neuroprostheses as they can be used to restore sensation to those with upper limb amputations. Modern day prosthetics, while lessening the pain associated with phantom limb syndrome, have limited fine motor control and do not provide sensory feedback to patients. Sensory feedback with prosthetics requires communication between the nervous system and limbs, and is still a challenge to accomplish with amputees. Establishing this communication between the peripheral nerves in the arm and artificial limbs is vital as prosthetics research aims to provide sensory feedback to amputees. Peripheral nerve cuffs restore sensationmore » by electrically stimulating certain parts of the nerve in order to create feeling in the hand. Cuff electrodes have an advantage over standard electrodes as they have high selective stimulation by bringing the electrical interface close to the neural tissue in order to selectively activate targeted regions of a peripheral nerve. In order to further improve the selective stimulation of these nerve cuffs, there is need for finer spatial resolution among electrodes. One method to achieve a higher spatial resolution is to increase the electrode density on the cuff itself. Microfabrication techniques can be used to achieve this higher electrode density. Using L-Edit, a layout editor, microfabricated peripheral nerve cuffs were designed with a higher electrode density than the current model. This increase in electrode density translates to an increase in spatial resolution by at least one order of magnitude. Microfabricated devices also have two separate components that are necessary to understand before implantation: lifetime of the device and assembly to prevent nerve damage. Silicone molding procedures were optimized so that devices do not damage nerves in vivo, and lifetime testing was performed on test microfabricated devices to determine their lifetime in vivo. Future work of this project would include fabricating some of the designed devices and seeing how they compare to the current cuffs in terms of their electrical performance, lifetime, shape, and mechanical properties.« less
Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit
NASA Astrophysics Data System (ADS)
Molthan, A.; Burks, J. E.; Camp, P.; McGrath, K.; Bell, J. R.
2014-12-01
Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit (DAT), a suite of applications used by meteorologists in the survey process. The DAT includes a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season months of June, July, and August. This presentation will present an overview of recent activities, challenges and successes, best practices, and opportunities for future work and collaboration.
Integration of Earth Remote Sensing into the NOAA/NWS Damage Assessment Toolkit
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Burks, Jason; Camp, Parks; McGrath, Kevin; Bell, Jordan
2014-01-01
Following the occurrence of severe weather, NOAA/NWS meteorologists are tasked with performing a storm damage survey to assess the type and severity of the weather event, primarily focused with the confirmation and assessment of tornadoes. This labor-intensive process requires meteorologists to venture into the affected area, acquire damage indicators through photos, eyewitness accounts, and other documentation, then aggregation of data in order to make a final determination of the tornado path length, width, maximum intensity, and other characteristics. Earth remote sensing from operational, polar-orbiting satellites can support the damage assessment process by helping to identify portions of damage tracks that are difficult to access due to road limitations or time constraints by applying change detection techniques. In addition, higher resolution commercial imagery can corroborate ground-based surveys by examining higher-resolution commercial imagery. As part of an ongoing collaboration, NASA and NOAA are working to integrate near real-time Earth remote sensing observations into the NOAA/NWS Damage Assessment Toolkit, a handheld application used by meteorologists in the survey process. The team has recently developed a more streamlined approach for delivering data via a web mapping service and menu interface, allowing for caching of imagery before field deployment. Near real-time products have been developed using MODIS and VIIRS imagery and change detection for preliminary track identification, along with conduits for higher-resolution Landsat, ASTER, and commercial imagery as they become available. In addition to tornado damage assessments, the team is also investigating the use of near real-time imagery for identifying hail damage to vegetation, which also results in large swaths of damage, particularly in the central United States during the peak growing season months of June, July, and August. This presentation will present an overview of recent activities, challenges and successes, best practices, and opportunities for future work and collaboration.
CZT drift strip detectors for high energy astrophysics
NASA Astrophysics Data System (ADS)
Kuvvetli, I.; Budtz-Jørgensen, C.; Caroli, E.; Auricchio, N.
2010-12-01
Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions. We report on experimental investigations on the CZT drift detector developed DTU Space. It is operated in the planar transverse field (PTF) mode, with the purpose of demonstrating that the good energy resolution of the CZT drift detector can be combined with the high efficiency of the PTF configuration. Furthermore, we demonstrated and characterized the 3D sensing capabilities of this detector configuration. The CZT drift strip detector (10 mm×10 mm×2.5 mm) was characterized in both standard illumination geometry, Photon Parallel Field (PPF) configuration and in PTF configuration. The detection efficiency and energy resolution are compared for both configurations . The PTF configuration provided a higher efficiency in agreement with calculations. The detector energy resolution was found to be the same (3 keV FWHM at 122 keV) in both in PPF and PTF . The depth sensing capabilities offered by drift strip detectors was investigated by illuminating the detector using a collimated photon beam of 57Co radiation in PTF configuration. The width (300μm FWHM at 122 keV) of the measured depth distributions was almost equal to the finite beam size. However, the data indicate that the best achievable depth resolution for the CZT drift detector is 90μm FWHM at 122 keV and that it is determined by the electronic noise from the setup.
The scale dependence of optical diversity in a prairie ecosystem
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.
2015-12-01
Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.
NASA Astrophysics Data System (ADS)
Xu, W.; Hays, B.; Fayrer-Hosken, R.; Presotto, A.
2016-06-01
The ability of remote sensing to represent ecologically relevant features at multiple spatial scales makes it a powerful tool for studying wildlife distributions. Species of varying sizes perceive and interact with their environment at differing scales; therefore, it is important to consider the role of spatial resolution of remotely sensed data in the creation of distribution models. The release of the Globeland30 land cover classification in 2014, with its 30 m resolution, presents the opportunity to do precisely that. We created a series of Maximum Entropy distribution models for African savanna elephants (Loxodonta africana) using Globeland30 data analyzed at varying resolutions. We compared these with similarly re-sampled models created from the European Space Agency's Global Land Cover Map (Globcover). These data, in combination with GIS layers of topography and distance to roads, human activity, and water, as well as elephant GPS collar data, were used with MaxEnt software to produce the final distribution models. The AUC (Area Under the Curve) scores indicated that the models created from 600 m data performed better than other spatial resolutions and that the Globeland30 models generally performed better than the Globcover models. Additionally, elevation and distance to rivers seemed to be the most important variables in our models. Our results demonstrate that Globeland30 is a valid alternative to the well-established Globcover for creating wildlife distribution models. It may even be superior for applications which require higher spatial resolution and less nuanced classifications.
Coherent diffractive imaging of time-evolving samples with improved temporal resolution
Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; ...
2016-05-19
Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which wemore » call "chrono CDI," may find use in improving the time resolution in other imaging techniques.« less
Small pixel pitch MCT IR-modules
NASA Astrophysics Data System (ADS)
Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.
2016-05-01
It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.
ALMA RESOLVES 30 DORADUS: SUB-PARSEC MOLECULAR CLOUD STRUCTURE NEAR THE CLOSEST SUPER STAR CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indebetouw, Remy; Brogan, Crystal; Leroy, Adam
2013-09-01
We present Atacama Large (sub)Millimeter Array observations of 30 Doradus-the highest resolution view of molecular gas in an extragalactic star formation region to date ({approx}0.4 pc Multiplication-Sign 0.6 pc). The 30Dor-10 cloud north of R136 was mapped in {sup 12}CO 2-1, {sup 13}CO 2-1, C{sup 18}O 2-1, 1.3 mm continuum, the H30{alpha} recombination line, and two H{sub 2}CO 3-2 transitions. Most {sup 12}CO emission is associated with small filaments and clumps ({approx}<1 pc, {approx}10{sup 3} M{sub Sun} at the current resolution). Some clumps are associated with protostars, including ''pillars of creation'' photoablated by intense radiation from R136. Emission from molecularmore » clouds is often analyzed by decomposition into approximately beam-sized clumps. Such clumps in 30 Doradus follow similar trends in size, linewidth, and surface density to Milky Way clumps. The 30 Doradus clumps have somewhat larger linewidths for a given size than predicted by Larson's scaling relation, consistent with pressure confinement. They extend to a higher surface density at a given size and linewidth compared to clouds studied at 10 pc resolution. These trends are also true of clumps in Galactic infrared-dark clouds; higher resolution observations of both environments are required. Consistency of clump masses calculated from dust continuum, CO, and the virial theorem reveals that the CO abundance in 30 Doradus clumps is not significantly different from the Large Magellanic Cloud mean, but the dust abundance may be reduced by {approx}2. There are no strong trends in clump properties with distance from R136; dense clumps are not strongly affected by the external radiation field, but there is a modest trend toward lower dense clump filling fraction deeper in the cloud.« less
Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology
Ye-Lin, Yiyao; Garcia-Casado, Javier
2018-01-01
Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment. PMID:29361722
Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology.
Lidón-Roger, José Vicente; Prats-Boluda, Gema; Ye-Lin, Yiyao; Garcia-Casado, Javier; Garcia-Breijo, Eduardo
2018-01-21
Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records. These developed textile electrodes bring the use of CREs closer to the clinical environment.
NASA Astrophysics Data System (ADS)
Jordan, Phil; Melland, Alice; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Ryan, David; Crockford, Lucy; Macintosh, Katrina; Campbell, Julie; Arnscheidt, Joerg; Cassidy, Rachel
2014-05-01
A complete appraisal of material fluxes in flowing waters is really only possibly with high time resolution data synchronous with measurements of discharge. Defined by Kirchner et al. (2004; Hydrological Processes, 18/7) as the high-frequency wave of the future and with regard to disentangling signal noise from process pattern, this challenge has been met in terms of nutrient flux monitoring by automated bankside analysis. In Ireland over a ten-year period, time-series nutrient data collected on a sub-hourly basis in rivers have been used to distinguish fluxes from different catchment sources and pathways and to provide more certain temporal pictures of flux for the comparative definition of catchment nutrient dynamics. In catchments where nutrient fluxes are particularly high and exhibit a mix of extreme diffuse and point source influences, high time resolution data analysis indicates that there are no satisfactory statistical proxies for seasonal or annual flux predictions that use coarse datasets. Or at least exposes the limits of statistical approaches to catchment scale and hydrological response. This has profound implications for catchment monitoring programmes that rely on modelled relationships. However, using high resolution monitoring for long term assessments of catchment mitigation measures comes with further challenges. Sustaining continuous wet chemistry analysis at river stations is resource intensive in terms of capital, maintenance and quality assurance. Furthermore, big data capture requires investment in data management systems and analysis. These two institutional challenges are magnified when considering the extended time period required to identify the influences of land-based nutrient control measures on water based systems. Separating the 'climate signal' from the 'source signal' in river nutrient flux data is a major analysis challenge; more so when tackled with anything but higher resolution data. Nevertheless, there is scope to lower costs in bankside analysis through technology development, and the scientific advantages of these data are clear and exciting. When integrating its use with policy appraisal, it must be made clear that the advances in river process understanding from high resolution monitoring data capture come as a package with the ability to make more informed decisions through an investment in better information.
ERIC Educational Resources Information Center
Law, Kimberli Marie
2013-01-01
The purpose of this study was to remedy the paucity of knowledge about higher education's conflict resolution practice of online dispute resolution by providing an in-depth description of mediator and instructor online practices. Telephone interviews were used as the primary data collection method. Eleven interview questions were relied upon to…
Wang, Yan; Li, Jingwen; Sun, Bing; Yang, Jian
2016-01-01
Azimuth resolution of airborne stripmap synthetic aperture radar (SAR) is restricted by the azimuth antenna size. Conventionally, a higher azimuth resolution should be achieved by employing alternate modes that steer the beam in azimuth to enlarge the synthetic antenna aperture. However, if a data set of a certain region, consisting of multiple tracks of airborne stripmap SAR data, is available, the azimuth resolution of specific small region of interest (ROI) can be conveniently improved by a novel azimuth super-resolution method as introduced by this paper. The proposed azimuth super-resolution method synthesize the azimuth bandwidth of the data selected from multiple discontinuous tracks and contributes to a magnifier-like function with which the ROI can be further zoomed in with a higher azimuth resolution than that of the original stripmap images. Detailed derivation of the azimuth super-resolution method, including the steps of two-dimensional dechirping, residual video phase (RVP) removal, data stitching and data correction, is provided. The restrictions of the proposed method are also discussed. Lastly, the presented approach is evaluated via both the single- and multi-target computer simulations. PMID:27304959
Image Stability Requirements For a Geostationary Imaging Fourier Transform Spectrometer (GIFTS)
NASA Technical Reports Server (NTRS)
Bingham, G. E.; Cantwell, G.; Robinson, R. C.; Revercomb, H. E.; Smith, W. L.
2001-01-01
A Geostationary Imaging Fourier Transform Spectrometer (GIFTS) has been selected for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. Our paper will discuss one of the key GIFTS measurement requirements, Field of View (FOV) stability, and its impact on required system performance. The GIFTS NMP mission is designed to demonstrate new and emerging sensor and data processing technologies with the goal of making revolutionary improvements in meteorological observational capability and forecasting accuracy. The GIFTS payload is a versatile imaging FTS with programmable spectral resolution and spatial scene selection that allows radiometric accuracy and atmospheric sounding precision to be traded in near real time for area coverage. The GIFTS sensor combines high sensitivity with a massively parallel spatial data collection scheme to allow high spatial resolution measurement of the Earth's atmosphere and rapid broad area coverage. An objective of the GIFTS mission is to demonstrate the advantages of high spatial resolution (4 km ground sample distance - gsd) on temperature and water vapor retrieval by allowing sampling in broken cloud regions. This small gsd, combined with the relatively long scan time required (approximately 10 s) to collect high resolution spectra from geostationary (GEO) orbit, may require extremely good pointing control. This paper discusses the analysis of this requirement.
Garcia, M; Naraghi, R; Zumbrunn, T; Rösch, J; Hastreiter, P; Dörfler, A
2012-08-01
High-resolution MR imaging is useful for diagnosis and preoperative planning in patients with NVC. Because high-field MR imaging promises higher SNR and resolution, the aim of this study was to determine the value of high-resolution 3D-CISS and 3D-TOF MRA at 3T compared with 1.5T in patients with NVC. Forty-seven patients with NVC, trigeminal neuralgia, hemifacial spasm, and glossopharyngeal neuralgia were examined at 1.5T and 3T, including high-resolution 3D-CISS and 3D-TOF MRA sequences. Delineation of anatomic structures, overall image quality, severity of artifacts, visibility of NVC, and assessment of the SNR and CNR were compared between field strengths. SNR and CNR were significantly higher at 3T (P < .001). Significantly better anatomic conspicuity, including delineation of CNs, nerve branches, and assessment of small vessels, was obtained at 3T (P < .02). Severity of artifacts was significantly lower at 3T (P < .001). Consequently, overall image quality was significantly higher at 3T. NVC was significantly better delineated at 3T (P < .001). Six patients in whom NVC was not with certainty identifiable at 1.5T were correctly diagnosed at 3T. Patients with NVC may benefit from the higher resolution and greater sensitivity of 3T for preoperative assessment of NVC, and 3T may be of particular value when 1.5T is equivocal.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1975-01-01
Device has resolution required to analyze polarization of the spectra of unknown gases, liquids, or solids (or a mixture of these phases). Such resolution has not been available on conventional instruments.
Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers
NASA Astrophysics Data System (ADS)
Snyder, Dalton T.; Pulliam, Christopher J.; Wiley, Joshua S.; Duncan, Jason; Cooks, R. Graham
2016-07-01
Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.
Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.
Snyder, Dalton T; Pulliam, Christopher J; Wiley, Joshua S; Duncan, Jason; Cooks, R Graham
2016-07-01
Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection. Graphical Abstract ᅟ.
Field-deployable gamma-radiation detectors for DHS use
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy
2007-09-01
Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and software-triggers the digital camera to take a snapshot. The spectral data including in situ analysis and the imagery data will be packaged in a suitable format and sent to a command post using an imbedded cell phone.
Miyashita, Kiyoteru; Oude Vrielink, Timo; Mylonas, George
2018-05-01
Endomicroscopy (EM) provides high resolution, non-invasive histological tissue information and can be used for scanning of large areas of tissue to assess cancerous and pre-cancerous lesions and their margins. However, current robotic solutions do not provide the accuracy and force sensitivity required to perform safe and accurate tissue scanning. A new surgical instrument has been developed that uses a cable-driven parallel mechanism (CPDM) to manipulate an EM probe. End-effector forces are determined by measuring the tensions in each cable. As a result, the instrument allows to accurately apply a contact force on a tissue, while at the same time offering high resolution and highly repeatable probe movement. 0.2 and 0.6 N force sensitivities were found for 1 and 2 DoF image acquisition methods, respectively. A back-stepping technique can be used when a higher force sensitivity is required for the acquisition of high quality tissue images. This method was successful in acquiring images on ex vivo liver tissue. The proposed approach offers high force sensitivity and precise control, which is essential for robotic EM. The technical benefits of the current system can also be used for other surgical robotic applications, including safe autonomous control, haptic feedback and palpation.
Copernicus: Lunar surface mapper
NASA Technical Reports Server (NTRS)
Redd, Frank J.; Anderson, Shaun D.
1992-01-01
The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth
2007-01-01
Space-based interferometric observatories will be challenging projects, equal at least to that of building the Great Observatories (the Hubble Space Telescope (HST), Spitzer Space Telescope (SST), Chandra X-ray Observatory, and the Gamma Ray Observatory), if not the Pyramids of Eygpt - but they represent the next logical step in examining our Universe at substantially higher angular resolution. Increasing our resolving power by factors of 100 or more (as is needed to make meaningful improvements in this observational arena) over existing facilities such as HST and SST requires mirror diameters (100's to 1000's of meters) much larger than can be supported by single or segmented mirrors - and thus the design and construction of sparse aperture, inteferometric arrays such as those described herein will be required. But just imagine the rewards of being able to see, for the first time, the surfaces of other stars, the location and type of extrasolar planets and even pictures of those same planets, the inner workings of Active Galactic Nuclei, the close-in details of supernovae explosions, black hole event horizons, and the infrared universe at the same resolution of the UV-optical Hubble Deep Fields. As a slight variation on the "Star Trek: Enterprise" theme song might say, it'll be a "long road, getting from here to there", but it will one well-worth taking.
Wang, Jun; Chen, Wen Feng; Li, Qing X
2012-02-24
The need of quick diagnostics and increasing number of bacterial species isolated necessitate development of a rapid and effective phenotypic identification method. Mass spectrometry (MS) profiling of whole cell proteins has potential to satisfy the requirements. The genus Mycobacterium contains more than 154 species that are taxonomically very close and require use of multiple genes including 16S rDNA for phylogenetic identification and classification. Six strains of five Mycobacterium species were selected as model bacteria in the present study because of their 16S rDNA similarity (98.4-99.8%) and the high similarity of the concatenated 16S rDNA, rpoB and hsp65 gene sequences (95.9-99.9%), requiring high identification resolution. The classification of the six strains by MALDI TOF MS protein barcodes was consistent with, but at much higher resolution than, that of the multi-locus sequence analysis of using 16S rDNA, rpoB and hsp65. The species were well differentiated using MALDI TOF MS and MALDI BioTyper™ software after quick preparation of whole-cell proteins. Several proteins were selected as diagnostic markers for species confirmation. An integration of MALDI TOF MS, MALDI BioTyper™ software and diagnostic protein fragments provides a robust phenotypic approach for bacterial identification and classification. Copyright © 2011 Elsevier B.V. All rights reserved.
Local Analogues: Comparing a 12 inch Telescope to the Hubble
NASA Astrophysics Data System (ADS)
Moore, Nathaniel; DeGroot, Laura
2018-01-01
The College of Wooster Campus Observatory is home to two telescopes: an 8 inch and a 12 inch. We aimed to test the limits of the observatory equipment and conditions by targeting nearby galaxies, to determine their morphology based on lower resolution. We suspected that this resolution would be similar to that of the Hubble Telescope (HST) for galaxies with a higher redshift. From our images, we hoped to find various variables related to the morphology of the nearby galaxies. These variables included the Sérsic index, concentration, asymmetry, smoothness, the Gini coefficient, and M20. From here, we hoped that these would allow us to create a comparison between lower resolution galaxies that are nearby and galaxies with a higher redshift with similar resolutions.
Tigges, Jan; Lakes, Tobia
2017-10-04
Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time. Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril
High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less
Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; ...
2017-10-09
High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ~6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the artmore » and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr 3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr 3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2” (length) × 2” (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ~3 Mcps. An experimental methodology was developed that uses the average current from the PMT’s anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr 3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ~3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.« less
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.
2015-12-01
Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).
Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W
2009-03-01
This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.
NASA Astrophysics Data System (ADS)
Favalli, Andrea; Iliev, Metodi; Ianakiev, Kiril; Hunt, Alan W.; Ludewigt, Bernhard
2018-01-01
High-energy delayed γ-ray spectroscopy is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Requirements for the γ-ray detection system, up to ∼6 MeV, can be summarized as follows: high efficiency at high γ-ray energies, high energy resolution, good linearity between γ-ray energy and output signal amplitude, ability to operate at very high count rates, and ease of use in industrial environments such as nuclear facilities. High Purity Germanium Detectors (HPGe) are the state of the art and provide excellent energy resolution but are limited in their count rate capability. Lanthanum Bromide (LaBr3) scintillation detectors offer significantly higher count rate capabilities at lower energy resolution. Thus, LaBr3 detectors may be an effective alternative for nuclear spent-fuel applications, where count-rate capability is a requirement. This paper documents the measured performance of a 2" (length) × 2" (diameter) of LaBr3 scintillation detector system, coupled to a negatively biased PMT and a tapered active high voltage divider, with count-rates up to ∼3 Mcps. An experimental methodology was developed that uses the average current from the PMT's anode and a dual source method to characterize the detector system at specific very high count rate values. Delayed γ-ray spectra were acquired with the LaBr3 detector system at the Idaho Accelerator Center, Idaho State University, where samples of ∼3g of 235U were irradiated with moderated neutrons from a photo-neutron source. Results of the spectroscopy characterization and analysis of the delayed γ-ray spectra acquired indicate the possible use of LaBr3 scintillation detectors when high count rate capability may outweigh the lower energy resolution.
Data processing and in-flight calibration systems for OMI-EOS-Aura
NASA Astrophysics Data System (ADS)
van den Oord, G. H. J.; Dobber, M.; van de Vegte, J.; van der Neut, I.; Som de Cerff, W.; Rozemeijer, N. C.; Schenkelaars, V.; ter Linden, M.
2006-08-01
The OMI instrument that flies on the EOS Aura mission was launched in July 2004. OMI is a UV-VIS imaging spectrometer that measures in the 270 - 500 nm wavelength range. OMI provides daily global coverage with high spatial resolution. Every orbit of 100 minutes OMI generates about 0.5 GB of Level 0 data and 1.2 GB of Level 1 data. About half of the Level 1 data consists of in-flight calibration measurements. These data rates make it necessary to automate the process of in-flight calibration. For that purpose two facilities have been developed at KNMI in the Netherlands: the OMI Dutch Processing System (ODPS) and the Trend Monitoring and In-flight Calibration Facility (TMCF). A description of these systems is provided with emphasis on the use for radiometric, spectral and detector calibration and characterization. With the advance of detector technology and the need for higher spatial resolution, data rates will become even higher for future missions. To make effective use of automated systems like the TMCF, it is of paramount importance to integrate the instrument operations concept, the information contained in the Level 1 (meta-)data products and the inflight calibration software and system databases. In this way a robust but also flexible end-to-end system can be developed that serves the needs of the calibration staff, the scientific data users and the processing staff. The way this has been implemented for OMI may serve as an example of a cost-effective and user friendly solution for future missions. The basic system requirements for in-flight calibration are discussed and examples are given how these requirements have been implemented for OMI. Special attention is paid to the aspect of supporting the Level 0 - 1 processing with timely and accurate calibration constants.
Land use change detection based on multi-date imagery from different satellite sensor systems
NASA Technical Reports Server (NTRS)
Stow, Douglas A.; Collins, Doretta; Mckinsey, David
1990-01-01
An empirical study is conducted to assess the accuracy of land use change detection using satellite image data acquired ten years apart by sensors with differing spatial resolutions. The primary goals of the investigation were to (1) compare standard change detection methods applied to image data of varying spatial resolution, (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice versa in the registration process, (3) determine if Landsat/Thermatic Mapper or SPOT/High Resolution Visible multispectral data provide more accurate detection of land use changes when registered to historical Landsat/MSS data. It is concluded that image ratioing of multisensor, multidate satellite data produced higher change detection accuracies than did principal components analysis, and that it is useful as a land use change enhancement method.
Assessment of the impact of modeling axial compression on PET image reconstruction.
Belzunce, Martin A; Reader, Andrew J
2017-10-01
To comprehensively evaluate both the acceleration and image-quality impacts of axial compression and its degree of modeling in fully 3D PET image reconstruction. Despite being used since the very dawn of 3D PET reconstruction, there are still no extensive studies on the impact of axial compression and its degree of modeling during reconstruction on the end-point reconstructed image quality. In this work, an evaluation of the impact of axial compression on the image quality is performed by extensively simulating data with span values from 1 to 121. In addition, two methods for modeling the axial compression in the reconstruction were evaluated. The first method models the axial compression in the system matrix, while the second method uses an unmatched projector/backprojector, where the axial compression is modeled only in the forward projector. The different system matrices were analyzed by computing their singular values and the point response functions for small subregions of the FOV. The two methods were evaluated with simulated and real data for the Biograph mMR scanner. For the simulated data, the axial compression with span values lower than 7 did not show a decrease in the contrast of the reconstructed images. For span 11, the standard sinogram size of the mMR scanner, losses of contrast in the range of 5-10 percentage points were observed when measured for a hot lesion. For higher span values, the spatial resolution was degraded considerably. However, impressively, for all span values of 21 and lower, modeling the axial compression in the system matrix compensated for the spatial resolution degradation and obtained similar contrast values as the span 1 reconstructions. Such approaches have the same processing times as span 1 reconstructions, but they permit significant reduction in storage requirements for the fully 3D sinograms. For higher span values, the system has a large condition number and it is therefore difficult to recover accurately the higher frequencies. Modeling the axial compression also achieved a lower coefficient of variation but with an increase of intervoxel correlations. The unmatched projector/backprojector achieved similar contrast values to the matched version at considerably lower reconstruction times, but at the cost of noisier images. For a line source scan, the reconstructions with modeling of the axial compression achieved similar resolution to the span 1 reconstructions. Axial compression applied to PET sinograms was found to have a negligible impact for span values lower than 7. For span values up to 21, the spatial resolution degradation due to the axial compression can be almost completely compensated for by modeling this effect in the system matrix at the expense of considerably larger processing times and higher intervoxel correlations, while retaining the storage benefit of compressed data. For even higher span values, the resolution loss cannot be completely compensated possibly due to an effective null space in the system. The use of an unmatched projector/backprojector proved to be a practical solution to compensate for the spatial resolution degradation at a reasonable computational cost but can lead to noisier images. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
On a fast calculation of structure factors at a subatomic resolution.
Afonine, P V; Urzhumtsev, A
2004-01-01
In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 A. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.
NASA Astrophysics Data System (ADS)
Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed
2017-12-01
This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.
Double-Cusp type electrostatic Analyzer for SupraThermal ions (DCAST)
NASA Astrophysics Data System (ADS)
Ogasawara, Keiichi; Livi, Stefano; Desai, Mihir; Allegrini, Frederic; McComas, David; John, Joerg-Micha
2016-04-01
Measurements obtained over the last decade have led to a general consensus that the poorly understood suprathermal (ST) tail between ˜2-100 keV/nucleon provides much of the seed population for CME-driven shocks near the Sun and in the interplanetary space. However, existing instruments are not only resource hungry (e.g., power and mass) but also require very long integration times (>days) to measure key properties of the ST ions e.g., anisotropy, energy spectra, composition, and spatial-temporal variations. Our proposed concept of the electrostatic analyzer, employing a toroidal double-shell structure, covers the ST energy between ˜3-200 keV/q ions with higher temporal resolution while using significantly lower resources compared to conventional solar wind instruments covering ST energy range. In this presentation, we describe the concept and show testing results obtained with our laboratory prototype. We will give the expected performance (G-factor, analyzer constant, energy resolution, cross-shell contamination, and UV suppression) based on measurements and simulations.
Testing a Flexible Method to Reduce False Monsoon Onsets
Stiller-Reeve, Mathew Alexander; Spengler, Thomas; Chu, Pao-Shin
2014-01-01
To generate information about the monsoon onset and withdrawal we have to choose a monsoon definition and apply it to data. One problem that arises is that false monsoon onsets can hamper our analysis, which is often alleviated by smoothing the data in time or space. Another problem is that local communities or stakeholder groups may define the monsoon differently. We therefore aim to develop a technique that reduces false onsets for high-resolution gridded data, while also being flexible for different requirements that can be tailored to particular end-users. In this study, we explain how we developed our technique and demonstrate how it successfully reduces false onsets and withdrawals. The presented results yield improved information about the monsoon length and its interannual variability. Due to this improvement, we are able to extract information from higher resolution data sets. This implies that we can potentially get a more detailed picture of local climate variations that can be used in more local climate application projects such as community-based adaptations. PMID:25105900
Díaz, Laura; Llorca-Pórcel, Julio; Valor, Ignacio
2008-08-22
A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the detection of pesticides in tap and treated wastewater was developed and validated according to the ISO/IEC 17025:1999. Key features of this method include direct injection of 100 microL of sample, an 11 min separation by means of a rapid resolution liquid chromatography system with a 4.6 mm x 50 mm, 1.8 microm particle size reverse phase column and detection by electrospray ionization (ESI) MS-MS. The limits of detection were below 15 ng L(-1) and correlation coefficients for the calibration curves in the range of 30-2000 ng L(-1) were higher than 0.99. Precision was always below 20% and accuracy was confirmed by external evaluation. The main advantages of this method are direct injection of sample without preparative procedures and low limits of detection that fulfill the requirements established by the current European regulations governing pesticide detection.
Mathematical Modeling of Microbial Community Dynamics: A Methodological Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.
Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can bemore » potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.« less
NASA Astrophysics Data System (ADS)
Teige, V. E.; Weichsel, K.; Hooker, A.; Wooldridge, P. J.; Cohen, R. C.
2012-12-01
Efforts to curb greenhouse gas emissions, while global in their impacts, often focus on local and regional scales for execution and are dependent on the actions of communities and individuals. Evaluating the effectiveness of local policies requires observations with much higher spatial resolution than are currently available---kilometer scale. The Berkeley Atmospheric CO2 Observation Network (BEACON):, launched at the end of 2011, aims to provide measurements of urban-scale concentrations of CO2, temperature, pressure, relative humidity, O3, CO, and NO2 with sufficient spatial and temporal resolution to characterize the sources of CO2 within cities. Our initial deployment in Oakland, California uses ~40 sensor packages at a roughly 2 km spacing throughout the city. We will present an initial analysis of the vertical gradients and other spatial patterns observed to date.
Analytical estimates of the PP-algorithm at low number of Doppler periods per pulse length
NASA Technical Reports Server (NTRS)
Angelova, M. D.; Stoykova, E. V.; Stoyanov, D. V.
1992-01-01
When discussing the Doppler velocity estimators, it is of significant interest to analyze their behavior at a low number of Doppler periods n(sub D) = 2v(sub r)t(sub s)/lambda is approximately equal to 1 within the resolution cell t(sub s) (v(sub 4) is the radial velocity, lambda is the wavelength). Obviously, at n(sub D) is approximately less than 1 the velocity error is essentially increased. The problem of low n(sub D) arises in the planetary boundary layer (PBL), where higher resolutions are usually required but the signal-to-noise ratio (SNR) is relatively high. In this work analytical expression for the relative root mean square (RMS) error of the PP Doppler estimator at low number of periods for a narrowband Doppler signal and arbitrary model of the noise correlation function is obtained. The results are correct at relatively high SNR. The analysis is supported by computer simulations at various SNR's.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artuso, M.; et al.,
Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In additionmore » the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.« less
Sensor Compendium - A Snowmass Whitepaper-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artuso, M.; Battaglia, M.; Bolla, G.
Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In additionmore » the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.« less
Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA
2011-12-06
A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.
Image charge multi-role and function detectors
NASA Astrophysics Data System (ADS)
Milnes, James; Lapington, Jon S.; Jagutzki, Ottmar; Howorth, Jon
2009-06-01
The image charge technique used with microchannel plate imaging tubes provides several operational and practical benefits by serving to isolate the electronic image readout from the detector. The simple dielectric interface between detector and readout provides vacuum isolation and no vacuum electrical feed-throughs are required. Since the readout is mechanically separate from the detector, an image tube of generic design can be simply optimised for various applications by attaching it to different readout devices and electronics. We present imaging performance results using a single image tube with a variety of readout devices suited to differing applications: (a) A four electrode charge division tetra wedge anode, optimised for best spatial resolution in photon counting mode. (b) A cross delay line anode, enabling higher count rate, and the possibility of discriminating near co-incident events, and an event timing resolution of better than 1 ns. (c) A multi-anode readout connected, either to a multi-channel oscilloscope for analogue measurements of fast optical pulses, or alternately, to a multi-channel time correlated single photon counting (TCSPC) card.
Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H; Chenu, Jeremy; Groves, Peter; Raidal, Shane; Ghorashi, Seyed Ali
2018-03-01
Campylobacter infection is a common cause of bacterial gastroenteritis in humans and remains a significant global public health issue. The capability of two multiplex PCR (mPCR)-high-resolution melt (HRM) curve analysis methods (i.e., mPCR1-HRM and mPCR2-HRM) to detect and differentiate 24 poultry isolates and three reference strains of Campylobacter jejuni and Campylobacter coli was investigated. Campylobacter jejuni and C. coli were successfully differentiated in both assays, but the differentiation power of mPCR2-HRM targeting the cadF gene was found superior to that of mPCR1-HRM targeting the gpsA gene or a hypothetical protein gene. However, higher intraspecies variation within C. coli and C. jejuni isolates was detected in mPCR1-HRM when compared with mPCR2-HRM. Both assays were rapid and required minimum interpretation skills for discrimination between and within Campylobacter species when using HRM curve analysis software.
The time resolution of the St Petersburg paradox
Peters, Ole
2011-01-01
A resolution of the St Petersburg paradox is presented. In contrast to the standard resolution, utility is not required. Instead, the time-average performance of the lottery is computed. The final result can be phrased mathematically identically to Daniel Bernoulli's resolution, which uses logarithmic utility, but is derived using a conceptually different argument. The advantage of the time resolution is the elimination of arbitrary utility functions. PMID:22042904
Resolution of hypertension and proteinuria after preeclampsia.
Berks, Durk; Steegers, Eric A P; Molas, Marek; Visser, Willy
2009-12-01
To estimate the time required for hypertension and proteinuria to resolve after preeclampsia, and to estimate how this time to resolution correlates with the levels of blood pressure and proteinuria during preeclampsia and prolonging pregnancy after the development of preeclampsia. This is a historic prospective cohort study of 205 preeclamptic women who were admitted between 1990 and 1992 at the Erasmus MC Medical Centre, Rotterdam, The Netherlands. Data were collected at 1.5, 3, 6, 12, 18, and 24 months after delivery. Hypertension was defined as a blood pressure 140/90 mm Hg or higher or use of antihypertensive drugs. Proteinuria was defined as 0.3 g/d or more. Resolution of hypertension and proteinuria were analyzed with the Turnbull extension to the Kaplan-Meier procedure. Correlations were calculated with an accelerated failure time model. At 3 months postpartum, 39% of women still had hypertension, which decreased to 18% at 2 years postpartum. Resolution time increased by 60% (P<.001) for every 10-mm Hg increase in maximal systolic blood pressure, 40% (P=.044) for every 10-mm Hg increase in maximal diastolic blood pressure, and 3.6% (P=.001) for every 1-day increase in the diagnosis-to-delivery interval. At 3 months postpartum, 14% still had proteinuria, which decreased to 2% at 2 years postpartum. Resolution time increased by 16% (P=.001) for every 1-g/d increase in maximal proteinuria. Gestational age at onset of preeclampsia was not correlated with resolution time of hypertension and proteinuria. The severity of preeclampsia and the time interval between diagnosis and delivery are associated with postpartum time to resolution of hypertension and proteinuria. After preeclampsia, it can take up to 2 years for hypertension and proteinuria to resolve. Therefore, the authors suggest that further invasive diagnostic tests for underlying renal disease may be postponed until 2 years postpartum. III.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei
Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations weremore » given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.« less
NASA Technical Reports Server (NTRS)
Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph
2012-01-01
Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.
Fast neutron sensitivity of neutron detectors based on Boron-10 converter layers
NASA Astrophysics Data System (ADS)
Mauri, G.; Messi, F.; Kanaki, K.; Hall-Wilton, R.; Karnickis, E.; Khaplanov, A.; Piscitelli, F.
2018-03-01
In the last few years many detector technologies for thermal neutron detection have been developed in order to face the shortage of 3He, which is now much less available and more expensive. Moreover the 3He-based detectors can not fulfil the requirements in performance, e.g. the spatial resolution and the counting rate capability needed for the new instruments. The Boron-10-based gaseous detectors have been proposed as a suitable choice. This and other alternative technologies are being developed at ESS. Higher intensities mean higher signals but higher background as well. The signal-to-background ratio is an important feature to study, in particular the γ-ray and the fast neutron contributions. This paper investigates, for the first time, the fast neutrons sensitivity of 10B-based thermal neutron detector. It presents the study of the detector response as a function of energy threshold and the underlying physical mechanisms. The latter are explained with the help of theoretical considerations and simulations.
Prioritized retransmission in slotted all-optical packet-switched networks
NASA Astrophysics Data System (ADS)
Ghaffar Pour Rahbar, Akbar; Yang, Oliver
2006-12-01
We consider an all-optical slotted packet-switched network interconnected by a number of bufferless all-optical switches with contention-based operation. One approach to reduce the cost of the expensive contention resolution hardware could be retransmission in which each ingress switch keeps a copy of the transmitted traffic in the electronic buffer and retransmits whenever required. The conventional retransmission technique may need a higher number of retransmissions until traffic passes through the network. This in turn may lead to a retransmission at a higher layer and reduce the network throughput. In this paper, we propose and analyze a simple but effective prioritized retransmission technique in which dropped traffic is prioritized when retransmitted from ingress switches so that the core switch can process them with a higher priority. We present the analysis of both techniques in multifiber network architecture and verify it via simulation to demonstrate that our proposed algorithm can limit the number of retransmissions significantly and can improve TCP throughput better than the conventional retransmission technique.
A flexible spatiotemporal method for fusing satellite images with different resolutions
Xiaolin Zhu; Eileen H. Helmer; Feng Gao; Desheng Liu; Jin Chen; Michael A. Lefsky
2016-01-01
Studies of land surface dynamics in heterogeneous landscapes often require remote sensing datawith high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta Fusion (FSDAF) method, to generate synthesized frequent high spatial...
Influence of mechanical noise inside a scanning electron microscope.
de Faria, Marcelo Gaudenzi; Haddab, Yassine; Le Gorrec, Yann; Lutz, Philippe
2015-04-01
The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.
Meier, Matt E.; Kane, Michael J.
2015-01-01
Three experiments examined the relation between working memory capacity (WMC) and two different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (SR) interference. Our goal was to test whether WMC’s relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the two conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher-WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher-WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (non-conflict) trials to promote reliance on goal-maintenance processes. Here, higher-WMC subjects resolved both S-S and S-R conflict more successfully than did lower-WMC subjects. The results were consistent with Kane and Engle’s (2003) two-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher-WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774
Meier, Matt E; Kane, Michael J
2015-11-01
Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. (c) 2015 APA, all rights reserved).
Assessing the quality of rainfall data when aiming to achieve flood resilience
NASA Astrophysics Data System (ADS)
Hoang, C. T.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.
2012-04-01
A new EU Floods Directive entered into force five years ago. This Directive requires Member States to coordinate adequate measures to reduce flood risk. European flood management systems require reliable rainfall statistics, e.g. the Intensity-duration-Frequency curves for shorter and shorter durations and for a larger and larger range of return periods. Preliminary studies showed that the number of floods was lower when using low time resolution data of high intensity rainfall events, compared to estimates obtained with the help of higher time resolution data. These facts suggest that a particular attention should be paid to the rainfall data quality in order to adequately investigate flood risk aiming to achieve flood resilience. The potential consequences of changes in measuring and recording techniques have been somewhat discussed in the literature with respect to a possible introduction of artificial inhomogeneities in time series. In this paper, we discuss how to detect another artificiality: most of the rainfall time series have a lower recording frequency than that is assumed, furthermore the effective high-frequency limit often depends on the recording year due to algorithm changes. This question is particularly important for operational hydrology, because an error on the effective recording high frequency introduces biases in the corresponding statistics. In this direction, we developed a first version of a SERQUAL procedure to automatically detect the effective time resolution of highly mixed data. Being applied to the 166 rainfall time series in France, the SERQUAL procedure has detected that most of them have an effective hourly resolution, rather than a 5 minutes resolution. Furthermore, series having an overall 5 minute resolution do not have it for all years. These results raise serious concerns on how to benchmark stochastic rainfall models at a sub-hourly resolution, which are particularly desirable for operational hydrology. Therefore, database quality must be checked before use. Due to the fact that the multiple scales and possible scaling behaviour of hydrological data are particularly important for many applications, including flood resilience research, this paper first investigates the sensitivity of the scaling estimates and methods to the deficit of short duration rainfall data, and consequently propose a few simple criteria for a reliable evaluation of the data quality. Then we showed that our procedure SERQUAL enable us to extract high quality sub-series from longer time series that will be much more reliable to calibrate and/or validate short duration quantiles and hydrological models.
Van de Kamer, J B; Lagendijk, J J W
2002-05-21
SAR distributions in a healthy female adult head as a result of a radiating vertical dipole antenna (frequency 915 MHz) representing a hand-held mobile phone have been computed for three different resolutions: 2 mm, 1 mm and 0.4 mm. The extremely high resolution of 0.4 mm was obtained with our quasistatic zooming technique, which is briefly described in this paper. For an effectively transmitted power of 0.25 W, the maximum averaged SAR values in both cubic- and arbitrary-shaped volumes are, respectively, about 1.72 and 2.55 W kg(-1) for 1 g and 0.98 and 1.73 W kg(-1) for 10 g of tissue. These numbers do not vary much (<8%) for the different resolutions, indicating that SAR computations at a resolution of 2 mm are sufficiently accurate to describe the large-scale distribution. However, considering the detailed SAR pattern in the head, large differences may occur if high-resolution computations are performed rather than low-resolution ones. These deviations are caused by both increased modelling accuracy and improved anatomical description in higher resolution simulations. For example, the SAR profile across a boundary between tissues with high dielectric contrast is much more accurately described at higher resolutions. Furthermore, low-resolution dielectric geometries may suffer from loss of anatomical detail, which greatly affects small-scale SAR distributions. Thus. for strongly inhomogeneous regions high-resolution SAR modelling is an absolute necessity.
46 CFR 502.405 - Confidentiality.
Code of Federal Regulations, 2010 CFR
2010-10-01
... discovery or compulsory process be required to disclose any dispute resolution communication or any communication provided in confidence to the neutral, unless— (1) All parties to the dispute resolution proceeding and the neutral consent in writing, and, if the dispute resolution communication was provided by a...
Diagnostic and functional structure of a high-resolution thyroid nodule clinic.
Fernández-García, José Carlos; Mancha-Doblas, Isabel; Ortega-Jiménez, María Victoria; Ruiz-Escalante, José Francisco; Castells-Fusté, Ignasi; Tofé-Povedano, Santiago; Argüelles-Jiménez, Iñaki; Tinahones, Francisco José
2014-01-01
Appearance of a thyroid nodule has become a daily occurrence in clinical practice. Adequate thyroid nodule assessment requires several diagnostic tests and multiple medical appointments, which results in a substantial delay in diagnosis. Implementation of a high-resolution thyroid nodule clinic largely avoids these drawbacks by condensing in a single appointment all tests required for adequate evaluation of thyroid nodule. This paper reviews the diagnostic and functional structure of a high-resolution thyroid nodule clinic. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.
Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise
2014-07-01
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.
670-GHz Down- and Up-Converting HEMT-Based Mixers
NASA Technical Reports Server (NTRS)
Schlecht, Enrich T.; Chattopadhyay, Goutam; Lin, Robert H.; Sin, Seth; Deal, William; Rodriquez, Bryan; Bayuk, Brian; Leong, Kevin; Mei, Gerry
2012-01-01
A large category of scientific investigation takes advantage of the interactions of signals in the frequency range from 300 to 1,000 GHz and higher. This includes astronomy and atmospheric science, where spectral observations in this frequency range give information about molecular abundances, pressures, and temperatures of small-sized molecules such as water. Additionally, there is a minimum in the atmospheric absorption at around 670 GHz that makes this frequency useful for terrestrial imaging, radar, and possibly communications purposes. This is because 670 GHz is a good compromise for imaging and radar applications between spatial resolution (for a given antenna size) that favors higher frequencies, and atmospheric losses that favor lower frequencies. A similar trade-off applies to communications link budgets: higher frequencies allow smaller antennas, but incur a higher loss. All of these applications usually require converting the RF (radio frequency) signal at 670 GHz to a lower IF (intermediate frequency) for processing. Further, transmitting for communication and radar generally requires up-conversion from IF to the RF. The current state-of-the-art device for performing the frequency conversion is based on Schottky diode mixers for both up and down conversion in this frequency range for room-temperature operation. Devices that can operate at room temperature are generally required for terrestrial, military, and planetary applications that cannot tolerate the mass, bulk, and power consumption of cryogenic cooling. The technology has recently advanced to the point that amplifiers in the region up to nearly 1,000 GHz are feasible. Almost all of these have been based on indium phosphide pseudomorphic high-electron mobility transistors (pHEMTs), in the form of monolithic microwave integrated circuits (MMICs). Since the processing of HEMT amplifiers is quite differ en t from that of Schottky diodes, use of Schottky mixers requires separate MMICs for the mixers and amplifiers. Fabrication of all the down-/up-conversion circuitry on single MMICs, using a ll-HEMT circuits, would constitute a major advance in circuit simplicity.
Monnin, P; Gutierrez, D; Bulling, S; Lepori, D; Verdun, F R
2005-10-07
Three standard radiation qualities (RQA 3, RQA 5 and RQA 9) and two screens, Kodak Lanex Regular and Insight Skeletal, were used to compare the imaging performance and dose requirements of the new Kodak Hyper Speed G and the current Kodak T-MAT G/RA medical x-ray films. The noise equivalent quanta (NEQ) and detective quantum efficiencies (DQE) of the four screen-film combinations were measured at three gross optical densities and compared with the characteristics for the Kodak CR 9000 system with GP (general purpose) and HR (high resolution) phosphor plates. The new Hyper Speed G film has double the intrinsic sensitivity of the T-MAT G/RA film and a higher contrast in the high optical density range for comparable exposure latitude. By providing both high sensitivity and high spatial resolution, the new film significantly improves the compromise between dose and image quality. As expected, the new film has a higher noise level and a lower signal-to-noise ratio than the standard film, although in the high frequency range this is compensated for by a better resolution, giving better DQE results--especially at high optical density. Both screen-film systems outperform the phosphor plates in terms of MTF and DQE for standard imaging conditions (Regular screen at RQA 5 and RQA 9 beam qualities). At low energy (RQA 3), the CR system has a comparable low-frequency DQE to screen-film systems when used with a fine screen at low and middle optical densities, and a superior low-frequency DQE at high optical density.
Beaupre, Lauren A; Stampe, Kyle; Masson, Edward; O'Connor, Gregory; Clark, Marcia; Joffe, A Mark; Boychuk, Lesia R; Lavoie, Guy
2017-01-01
The study purpose was to (1) evaluate health-related quality of life (HRQL) with the PROSthesis of Antibiotic Loaded Acrylic Cement (PROSTALAC) in situ for infected total hip arthroplasty (THA), (2) determine infection resolution, and (3) compare subjects who underwent second stage surgery with those who retained the PROSTALAC on a longer term basis. Demographics, physical demand level, and comorbidities were recorded prospectively in 29 subjects followed to at least 24 months after initial PROSTALAC insertion. HRQL was evaluated using the Western Ontario McMaster Osteoarthritis Index (WOMAC) and RAND 36-Item Health Survey. Infection resolution was determined using a pre-specified clinical definition. Twenty-five of 29 (86%) subjects' infections resolved. Three subjects died, of whom two had resolved infections. For survivors, 22/26 (85%) completed HRQL evaluations. After PROSTALAC insertion, pain and function improved within 3-6 months and was retained at 24 months. Of those followed to 24 months, 7/22 (32%) subjects underwent second stage surgery. They were higher physical demand subjects ( p = 0.03) than those not undergoing second stage surgery. We found no difference in WOMAC scores at 24 months between those who underwent second stage surgery and those who retained the PROSTALAC ( p > 0.32). The PROSTALAC system for THA appears to allow acceptable HRQL while in situ for at least 2 years in low physical demand patients. Subjects with higher physical demand levels are more likely to undergo second stage surgery. Further evaluation is required to determine whether longer term PROSTALAC retention may be appropriate for specific patient groups.
Banville, Frederic A; Moreau, Julien; Sarkar, Mitradeep; Besbes, Mondher; Canva, Michael; Charette, Paul G
2018-04-16
Surface plasmon resonance imaging (SPRI) is an optical near-field method used for mapping the spatial distribution of chemical/physical perturbations above a metal surface without exogenous labeling. Currently, the majority of SPRI systems are used in microarray biosensing, requiring only modest spatial resolution. There is increasing interest in applying SPRI for label-free near-field imaging of biological cells to study cell/surface interactions. However, the required resolution (sub-µm) greatly exceeds what current systems can deliver. Indeed, the attenuation length of surface plasmon polaritons (SPP) severely limits resolution along one axis, typically to tens of µm. Strategies to date for improving spatial resolution result in a commensurate deterioration in other imaging parameters. Unlike the smooth metal surfaces used in SPRI that support purely propagating surface modes, nanostructured metal surfaces support "hybrid" SPP modes that share attributes from both propagating and localized modes. We show that these hybrid modes are especially well-suited to high-resolution imaging and demonstrate how the nanostructure geometry can be designed to achieve sub-µm resolution while mitigating the imaging parameter trade-off according to an application-specific optimum.
NASA Astrophysics Data System (ADS)
Paget, A. C.; Brodzik, M. J.; Long, D. G.; Hardman, M.
2016-02-01
The historical record of satellite-derived passive microwave brightness temperatures comprises data from multiple imaging radiometers (SMMR, SSM/I-SSMIS, AMSR-E), spanning nearly 40 years of Earth observations from 1978 to the present. Passive microwave data are used to monitor time series of many climatological variables, including ocean wind speeds, cloud liquid water and sea ice concentrations and ice velocity. Gridded versions of passive microwave data have been produced using various map projections (polar stereographic, Lambert azimuthal equal-area, cylindrical equal-area, quarter-degree Platte-Carree) and data formats (flat binary, HDF). However, none of the currently available versions can be rendered in the common visualization standard, geoTIFF, without requiring cartographic reprojection. Furthermore, the reprojection details are complicated and often require expert knowledge of obscure software package options. We are producing a consistently calibrated, completely reprocessed data set of this valuable multi-sensor satellite record, using EASE-Grid 2.0, an improved equal-area projection definition that will require no reprojection for translation into geoTIFF. Our approach has been twofold: 1) define the projection ellipsoid to match the reference datum of the satellite data, and 2) include required file-level metadata for standard projection software to correctly render the data in the geoTIFF standard. The Calibrated, Enhanced Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR), leverages image reconstruction techniques to enhance gridded spatial resolution to 3 km and uses newly available intersensor calibrations to improve the quality of derived geophysical products. We expect that our attention to easy geoTIFF compatibility will foster higher-quality analysis with the CETB product by enabling easy and correct intercomparison with other gridded and in situ data.
NASA Astrophysics Data System (ADS)
Weng, Yi; Wang, Junyi; He, Xuan; Pan, Zhongqi
2018-02-01
The Nyquist spectral shaping techniques facilitate a promising solution to enhance spectral efficiency (SE) and further reduce the cost-per-bit in high-speed wavelength-division multiplexing (WDM) transmission systems. Hypothetically, any Nyquist WDM signals with arbitrary shapes can be generated by the use of the digital signal processing (DSP) based electrical filters (E-filter). Nonetheless, in actual 100G/ 200G coherent systems, the performance as well as DSP complexity are increasingly restricted by cost and power consumption. Henceforward it is indispensable to optimize DSP to accomplish the preferred performance at the least complexity. In this paper, we systematically investigated the minimum requirements and challenges of Nyquist WDM signal generation, particularly for higher-order modulation formats, including 16 quadrature amplitude modulation (QAM) or 64QAM. A variety of interrelated parameters, such as channel spacing and roll-off factor, have been evaluated to optimize the requirements of the digital-to-analog converter (DAC) resolution and transmitter E-filter bandwidth. The impact of spectral pre-emphasis has been predominantly enhanced via the proposed interleaved DAC architecture by at least 4%, and hence reducing the required optical signal to noise ratio (OSNR) at a bit error rate (BER) of 10-3 by over 0.45 dB at a channel spacing of 1.05 symbol rate and an optimized roll-off factor of 0.1. Furthermore, the requirements of sampling rate for different types of super-Gaussian E-filters are discussed for 64QAM Nyquist WDM transmission systems. Finally, the impact of the non-50% duty cycle error between sub-DACs upon the quality of the generated signals for the interleaved DAC structure has been analyzed.
18 CFR 385.606 - Confidentiality in dispute resolution proceedings (Rule 606).
Code of Federal Regulations, 2010 CFR
2010-04-01
... be required to disclose, any information concerning any dispute resolution communication or any communication provided in confidence to the neutral, unless: (1) All participants in the dispute resolution... reducing the confidence of participants in future cases that their communications will remain confidential...
Multifeature-based high-resolution palmprint recognition.
Dai, Jifeng; Zhou, Jie
2011-05-01
Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.
Random phase detection in multidimensional NMR.
Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C
2011-10-04
Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.
Liquid crystal light valve technologies for display applications
NASA Astrophysics Data System (ADS)
Kikuchi, Hiroshi; Takizawa, Kuniharu
2001-11-01
The liquid crystal (LC) light valve, which is a spatial light modulator that uses LC material, is a very important device in the area of display development, image processing, optical computing, holograms, etc. In particular, there have been dramatic developments in the past few years in the application of the LC light valve to projectors and other display technologies. Various LC operating modes have been developed, including thin film transistors, MOS-FETs and other active matrix drive techniques to meet the requirements for higher resolution, and substantial improvements have been achieved in the performance of optical systems, resulting in brighter display images. Given this background, the number of applications for the LC light valve has greatly increased. The resolution has increased from QVGA (320 x 240) to QXGA (2048 x 1536) or even super- high resolution of eight million pixels. In the area of optical output, projectors of 600 to 13,000 lm are now available, and they are used for presentations, home theatres, electronic cinema and other diverse applications. Projectors using the LC light valve can display high- resolution images on large screens. They are now expected to be developed further as part of hyper-reality visual systems. This paper provides an overview of the needs for large-screen displays, human factors related to visual effects, the way in which LC light valves are applied to projectors, improvements in moving picture quality, and the results of the latest studies that have been made to increase the quality of images and moving images or pictures.
A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)
Glen E. Liston; Kelly Elder
2006-01-01
An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...
The significance of spatial resolution: Identifying forest cover from satellite data
Dumitru Salajanu; Charles E. Olson
2001-01-01
Twenty-five years ago, a National Academy of Sciences report identified species identification as a requirement if satellite data are to reach their full potential in forest inventory and monitoring; the report suggested that improving spatial resolution to 10 meters would probably be required (Committee on Remote Sensing Programs for Earth Resource Surveys [CORSPERS]...
Higher resolution satellite remote sensing and the impact on image mapping
Watkins, Allen H.; Thormodsgard, June M.
1987-01-01
Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.
Predictive displays for a process-control schematic interface.
Yin, Shanqing; Wickens, Christopher D; Helander, Martin; Laberge, Jason C
2015-02-01
Our objective was to examine the extent to which increasing precision of predictive (rate of change) information in process control will improve performance on a simulated process-control task. Predictive displays have been found to be useful in process control (as well as aviation and maritime industries). However, authors of prior research have not examined the extent to which predictive value is increased by increasing predictor resolution, nor has such research tied potential improvements to changes in process control strategy. Fifty nonprofessional participants each controlled a simulated chemical mixture process (honey mixer simulation) that simulated the operations found in process control. Participants in each of five groups controlled with either no predictor or a predictor ranging in the resolution of prediction of the process. Increasing detail resolution generally increased the benefit of prediction over the control condition although not monotonically so. The best overall performance, combining quality and predictive ability, was obtained by the display of intermediate resolution. The two displays with the lowest resolution were clearly inferior. Predictors with higher resolution are of value but may trade off enhanced sensitivity to variable change (lower-resolution discrete state predictor) with smoother control action (higher-resolution continuous predictors). The research provides guidelines to the process-control industry regarding displays that can most improve operator performance.
Development of a low energy electron spectrometer for SCOPE
NASA Astrophysics Data System (ADS)
Tominaga, Yuu; Saito, Yoshifumi; Yokota, Shoichiro
We are newly developing a low-energy charged particle analyzer for the future satellite mission SCOPE (cross Scale COupling in the Plasma universE). The main purpose of the mission is to understand the cross scale coupling between macroscopic MHD scale phenomena and microscopic ion and electron-scale phenomena. In order to under-stand the dynamics of plasma in small scales, we need to observe the plasma with an analyzer which has high time resolution. For ion-scale phenomena, the time resolution must be as high as ion cyclotron frequency (-10 sec) in Earth's magnetosphere. However, for electron-scale phe-nomena, the time resolution must be as high as electron cyclotron frequency (-1 msec). The GEOTAIL satellite that observes Earth's magnetosphere has the analyzer whose time resolution is 12 sec, so the satellite can observe ion-scale phenomena. However in the SCOPE mission, we will go further to observe electron-scale phenomena. Then we need analyzers that have at least several msec time resolution. Besides, we need to make the analyzer as small as possible for the volume and weight restrictions of the satellite. The diameter of the top-hat analyzer must be smaller than 20 cm. In this study, we are developing an electrostatic analyzer that meets such requirements using numerical simulations. The electrostatic analyzer is a spherical/toroidal top-hat electrostatic analyzer with three nested spherical/toroidal deflectors. Using these deflectors, the analyzer measures charged particles simultaneously in two different energy ranges. Therefore time res-olution of the analyzer can be doubled. With the analyzer, we will measure energies from 10 eV to 22.5 keV. In order to obtain three-dimensional distribution functions of low energy parti-cles, the analyzer must have 4-pi str field of view. Conventional electrostatic analyzers use the spacecraft spin to have 4-pi field of view. So the time resolution of the analyzer depends on the spin frequency of the spacecraft. However, we cannot secure the several msec time resolution by using the spacecraft spin. In the SCOPE mission, we set 8 pairs of two nested electrostatic analyzers on each side of the spacecraft, which enable us to secure 4-pi field of view altogether. Then the time resolution of the analyzer does not depend on the spacecraft spin. Given that the sampling time of the analyzer is 0.5 msec, the time resolution of the analyzer can be 8 msec. In order to secure the time resolution as high as 10 msec, the geometric factor of the analyzer has to be as high as 8*10-3 (cm2 str eV/eV/22.5deg). Higher geometric factor requires bigger instrument. However, we have to reduce the volume and weight of the instrument to set it on the satellite. Under these restrictions, we have realized the analyzer which has the geometric factors of 7.5*10-3 (cm2 str eV/eV/22.5deg) (inner sphere) and 10.0*10-3 (cm2 str eV/eV/22.5deg) (outer sphere) with diameter of 17.4 cm.
Concept development for the ITER equatorial port visible∕infrared wide angle viewing system.
Reichle, R; Beaumont, B; Boilson, D; Bouhamou, R; Direz, M-F; Encheva, A; Henderson, M; Huxford, R; Kazarian, F; Lamalle, Ph; Lisgo, S; Mitteau, R; Patel, K M; Pitcher, C S; Pitts, R A; Prakash, A; Raffray, R; Schunke, B; Snipes, J; Diaz, A Suarez; Udintsev, V S; Walker, C; Walsh, M
2012-10-01
The ITER equatorial port visible∕infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R&D topics are outlined.
Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale
NASA Technical Reports Server (NTRS)
Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.
2000-01-01
A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.
Akhmetov, Ildar; Ramaswamy, Rakshambikai; Akhmetov, Illias; Thimmaraju, Phani Kishore
2015-01-01
The pharma ecosphere is witnessing a measured transformation from the one-size-fits-all or blockbuster model of drugs to more informed and tailored personalized treatments that facilitate higher safety and efficacy for a relevant sub-population. However, with several breakthroughs still in a nascent stage, market access becomes a crucial factor for commercial success, especially when it comes to co-creating value for pertinent stakeholders. This article highlights diverse issues from stakeholder perspectives in Europe, specifically the ones which require immediate resolution. Furthermore, the article also discusses case studies articulating potential solutions for the issues discussed. PMID:26075972
Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc
2002-07-01
Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.
Uncooled emissive infrared imagers for CubeSats
NASA Astrophysics Data System (ADS)
Puschell, Jeffery J.; Masini, Paolo
2014-09-01
Raytheon's fourth generation uncooled microbolometer array technology with digital output, High Definition (HD) 1920 × 1200 format and 12 μm cell size enables uncooled thermal infrared (TIR) multispectral imagers with the sensitivity and spatial sampling needed for a variety of Earth observation missions in LEO, GEO and HEO. A powerful combination of small detector cell size, fast optics and high sensitivity achieved without cryogenic cooling leads to instruments that are much smaller than current TIR systems, while still offering the capability to meet challenging measurement requirements for Earth observation missions. To consider how this technology could be implemented for Earth observation missions, we extend our previous studies with visible wavelength CubeSat imagers for environmental observations from LEO and examine whether small thermal infrared imagers based on fourth generation uncooled technology could be made small enough to fit onboard a 3U CubeSat and still meet challenging requirements for legacy missions. We found that moderate spatial resolution (~200 m) high sensitivity cloud and surface temperature observations meeting legacy MODIS/VIIRS requirements could be collected successfully with CubeSat-sized imagers but that multiple imagers are needed to cover the full swath for these missions. Higher spatial resolution land imagers are more challenging to fit into the CubeSat form factor, but it may be possible to do so for systems that require roughly 100 m spatial resolution. Regardless of whether it can fit into a CubeSat or not, uncooled land imagers meeting candidate TIR requirements can be implemented with a much smaller instrument than previous imagers. Even though this technology appears to be very promising, more work is needed to qualify this newly available uncooled infrared technology for use in space. If these new devices prove to be as space worthy as the first generation arrays that Raytheon qualified and built into the THEMIS imager still operating successfully onboard Mars Odyssey 2001, new classes of low cost, uncooled TIR Earth instruments will be enabled that are suitable for use as primary and hosted payloads in LEO, GEO and HEO or in constellations of small satellites as small as CubeSats to support Earth science measurement objectives in weather forecasting, land imaging and climate variability and change.
NASA Astrophysics Data System (ADS)
Michael, Scott; Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Boley, Aaron C.
2012-02-01
We conduct a convergence study of a protostellar disk, subject to a constant global cooling time and susceptible to gravitational instabilities (GIs), at a time when heating and cooling are roughly balanced. Our goal is to determine the gravitational torques produced by GIs, the level to which transport can be represented by a simple α-disk formulation, and to examine fragmentation criteria. Four simulations are conducted, identical except for the number of azimuthal computational grid points used. A Fourier decomposition of non-axisymmetric density structures in cos (mphi), sin (mphi) is performed to evaluate the amplitudes Am of these structures. The Am , gravitational torques, and the effective Shakura & Sunyaev α arising from gravitational stresses are determined for each resolution. We find nonzero Am for all m-values and that Am summed over all m is essentially independent of resolution. Because the number of measurable m-values is limited to half the number of azimuthal grid points, higher-resolution simulations have a larger fraction of their total amplitude in higher-order structures. These structures act more locally than lower-order structures. Therefore, as the resolution increases the total gravitational stress decreases as well, leading higher-resolution simulations to experience weaker average gravitational torques than lower-resolution simulations. The effective α also depends upon the magnitude of the stresses, thus αeff also decreases with increasing resolution. Our converged αeff is consistent with predictions from an analytic local theory for thin disks by Gammie, but only over many dynamic times when averaged over a substantial volume of the disk.
A stochastically fully connected conditional random field framework for super resolution OCT
NASA Astrophysics Data System (ADS)
Boroomand, A.; Tan, B.; Wong, A.; Bizheva, K.
2017-02-01
A number of factors can degrade the resolution and contrast of OCT images, such as: (1) changes of the OCT pointspread function (PSF) resulting from wavelength dependent scattering and absorption of light along the imaging depth (2) speckle noise, as well as (3) motion artifacts. We propose a new Super Resolution OCT (SR OCT) imaging framework that takes advantage of a Stochastically Fully Connected Conditional Random Field (SF-CRF) model to generate a Super Resolved OCT (SR OCT) image of higher quality from a set of Low-Resolution OCT (LR OCT) images. The proposed SF-CRF SR OCT imaging is able to simultaneously compensate for all of the factors mentioned above, that degrade the OCT image quality, using a unified computational framework. The proposed SF-CRF SR OCT imaging framework was tested on a set of simulated LR human retinal OCT images generated from a high resolution, high contrast retinal image, and on a set of in-vivo, high resolution, high contrast rat retinal OCT images. The reconstructed SR OCT images show considerably higher spatial resolution, less speckle noise and higher contrast compared to other tested methods. Visual assessment of the results demonstrated the usefulness of the proposed approach in better preservation of fine details and structures of the imaged sample, retaining biological tissue boundaries while reducing speckle noise using a unified computational framework. Quantitative evaluation using both Contrast to Noise Ratio (CNR) and Edge Preservation (EP) parameter also showed superior performance of the proposed SF-CRF SR OCT approach compared to other image processing approaches.
Compact dewar and electronics for large-format infrared detectors
NASA Astrophysics Data System (ADS)
Manissadjian, A.; Magli, S.; Mallet, E.; Cassaigne, P.
2011-06-01
Infrared systems cameras trend is to require higher performance (thanks to higher resolution) and in parallel higher compactness for easier integration in systems. The latest developments at SOFRADIR / France on HgCdTe (Mercury Cadmium Telluride / MCT) cooled IR staring detectors do show constant improvements regarding detector performances and compactness, by reducing the pixel pitch and optimizing their encapsulation. Among the latest introduced detectors, the 15μm pixel pitch JUPITER HD-TV format (1280×1024) has to deal with challenging specifications regarding dewar compactness, low power consumption and reliability. Initially introduced four years ago in a large dewar with a more than 2kg split Stirling cooler compressor, it is now available in a new versatile compact dewar that is vacuum-maintenance-free over typical 18 years mission profiles, and that can be integrated with the different available Stirling coolers: K548 microcooler for light solution (less than 0.7 kg), K549 or LSF9548 for split cooler and/or higher reliability solution. The IDDCAs are also required with simplified electrical interface enabling to shorten the system development time and to standardize the electronic boards definition with smaller volumes. Sofradir is therefore introducing MEGALINK, the new compact Command & Control Electronics compatible with most of the Sofradir IDDCAs. MEGALINK provides all necessary input biases and clocks to the FPAs, and digitizes and multiplexes the video outputs to provide a 14 bit output signal through a cameralink interface, in a surface smaller than a business card.
NASA Technical Reports Server (NTRS)
Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.;
2014-01-01
Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.
A key factor for improving models of ecosystem benefits is the availability of high quality spatial data. High resolution LIDAR data are now commonly available and can be used to produce more accurate model outputs. However, increased resolution leads to higher computer resource...
USDA-ARS?s Scientific Manuscript database
The SMAP (Soil Moisture Active Passive) mission provides global surface soil moisture product at 36 km resolution from its L-band radiometer. While the coarse resolution is satisfactory to many applications there are also a lot of applications which would benefit from a higher resolution soil moistu...
NASA Astrophysics Data System (ADS)
Rose, A.; McKee, J.; Weber, E.; Bhaduri, B. L.
2017-12-01
Leveraging decades of expertise in population modeling, and in response to growing demand for higher resolution population data, Oak Ridge National Laboratory is now generating LandScan HD at global scale. LandScan HD is conceived as a 90m resolution population distribution where modeling is tailored to the unique geography and data conditions of individual countries or regions by combining social, cultural, physiographic, and other information with novel geocomputation methods. Similarities among these areas are exploited in order to leverage existing training data and machine learning algorithms to rapidly scale development. Drawing on ORNL's unique set of capabilities, LandScan HD adapts highly mature population modeling methods developed for LandScan Global and LandScan USA, settlement mapping research and production in high-performance computing (HPC) environments, land use and neighborhood mapping through image segmentation, and facility-specific population density models. Adopting a flexible methodology to accommodate different geographic areas, LandScan HD accounts for the availability, completeness, and level of detail of relevant ancillary data. Beyond core population and mapped settlement inputs, these factors determine the model complexity for an area, requiring that for any given area, a data-driven model could support either a simple top-down approach, a more detailed bottom-up approach, or a hybrid approach.
High Data Rate Satellite Communications for Environmental Remote Sensing
NASA Astrophysics Data System (ADS)
Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.
2014-12-01
Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.
Konrad, Christopher P.; Voss, Frank D.
2012-01-01
The streamflow-gaging network in the Puget Sound basin was analyzed for its capacity to monitor stormwater in small streams. The analysis consisted of an inventory of active and inactive gages and an evaluation of the coverage and resolution of the gaging network with an emphasis on lowland areas. The active gaging network covers much of the Puget Lowland largely by gages located at sites on larger streams and rivers. Assessments of stormwater impacts and management will likely require streamflow information with higher spatial resolution than provided by the current gaging network. Monitoring that emphasizes small streams in combination with approaches for estimating streamflow at ungaged sites provides an alternative to expanding the current gaging network that can improve the spatial resolution of streamflow information in the region. The highest priority gaps in the gaging network are low elevation basins close to the Puget Sound shoreline and sites that share less than 10 percent of the drainage area of an active gage. Although small, lowland sites with long records of streamflow are particularly valuable to maintain in the region, other criteria for prioritizing sites in the gaging network should be based on the specific questions that stormwater managers need to answer.
Dsm Based Orientation of Large Stereo Satellite Image Blocks
NASA Astrophysics Data System (ADS)
d'Angelo, P.; Reinartz, P.
2012-07-01
High resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on CARTOSAT-1 imagery is presented, with emphasis on fully automated georeferencing. The proposed system processes level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The RPC are derived from orbit and attitude information and have a much lower accuracy than the ground resolution of approximately 2.5 m. In order to use the images for orthorectification or DSM generation, an affine RPC correction is required. In this paper, GCP are automatically derived from lower resolution reference datasets (Landsat ETM+ Geocover and SRTM DSM). The traditional method of collecting the lateral position from a reference image and interpolating the corresponding height from the DEM ignores the higher lateral accuracy of the SRTM dataset. Our method avoids this drawback by using a RPC correction based on DSM alignment, resulting in improved geolocation of both DSM and ortho images. Scene based method and a bundle block adjustment based correction are developed and evaluated for a test site covering the nothern part of Italy, for which 405 Cartosat-1 Stereopairs are available. Both methods are tested against independent ground truth. Checks against this ground truth indicate a lateral error of 10 meters.
[Influence of organizational commitment and professional nurses in conflict resolution strategies].
Pinho, Paula; Albuquerque, Carlos
2013-01-01
INTRODUCE: The changes in the health area and the set of structural changes in the nursing profession and career interfere in the dynamics and stability of the future of the nurses. To study the influence of organizational and professional commitment of the nurses in the strategies of conflict resolution. This is a quantitative, transversal and non-experimental research, following a descriptive-correlational way. Non-probabilistic sample of 102 nurses to perform duties in Health Units, mostly female (82.4%) with a mean age of 39.33 years and standard deviation 9.226. The measuring instrument consists of three scales calibrated and validated for the portuguese population: Organizational Commitment Questionnaire, Professional Commitment Scale and Inventory Strategies for Conflict Resolution, which assesses how individuals deal with conflict situations before higher (Form A), subordinate (Form B) and colleagues (Form C). Nurses demonstrate a moderate organizational commitment and higher affective commitment and normative commitment to the instrumental. Nurses demonstrate a moderate professional commitment and the results show that nurses have higher values on the dimensions of that interest and challenge the relevance dimension of nursing as a profession. The organizational commitment influences the adoption of strategies of conflict resolution as a conflict situation arises with the boss, subordinates or colleagues. The higher the level of organizational commitment higher the level of professional commitment. Nurses more engaged professionally demonstrate strategies that use more integrative and compromise in conflict resolution whether against the boss, subordinates or colleagues. The results ensure the need to promote and stimulate the affective commitment by the positive consequences it entails the organization and the profession. The organizational performance benefits from the stimulation of the conflict under certain conditions and that the constructive management of conflict is essential to organizational effectiveness.
Landsat 7 thermal-IR image sharpening using an artificial neural network and sensor model
Lemeshewsky, G.P.; Schowengerdt, R.A.; ,
2001-01-01
The enhanced thematic mapper (plus) (ETM+) instrument on Landsat 7 shares the same basic design as the TM sensors on Landsats 4 and 5, with some significant improvements. In common are six multispectral bands with a 30-m ground-projected instantaneous field of view (GIFOV). However, the thermaL-IR (TIR) band now has a 60-m GIFOV, instead of 120-m. Also, a 15-m panchromatic band has been added. The artificial neural network (NN) image sharpening method described here uses data from the higher spatial resolution ETM+ bands to enhance (sharpen) the spatial resolution of the TIR imagery. It is based on an assumed correlation over multiple scales of resolution, between image edge contrast patterns in the TIR band and several other spectral bands. A multilayer, feedforward NN is trained to approximate TIR data at 60m, given degraded (from 30-m to 60-m) spatial resolution input from spectral bands 7, 5, and 2. After training, the NN output for full-resolution input generates an approximation of a TIR image at 30-m resolution. Two methods are used to degrade the spatial resolution of the imagery used for NN training, and the corresponding sharpening results are compared. One degradation method uses a published sensor transfer function (TF) for Landsat 5 to simulate sensor coarser resolution imagery from higher resolution imagery. For comparison, the second degradation method is simply Gaussian low pass filtering and subsampling, wherein the Gaussian filter approximates the full width at half maximum amplitude characteristics of the TF-based spatial filter. Two fixed-size NNs (that is, number of weights and processing elements) were trained separately with the degraded resolution data, and the sharpening results compared. The comparison evaluates the relative influence of the degradation technique employed and whether or not it is desirable to incorporate a sensor TF model. Preliminary results indicate some improvements for the sensor model-based technique. Further evaluation using a higher resolution reference image and strict application of sensor model to data is recommended.
SPIDER: Next Generation Chip Scale Imaging Sensor
NASA Astrophysics Data System (ADS)
Duncan, Alan; Kendrick, Rick; Thurman, Sam; Wuchenich, Danielle; Scott, Ryan P.; Yoo, S. J. B.; Su, Tiehui; Yu, Runxiang; Ogden, Chad; Proiett, Roberto
The LM Advanced Technology Center and UC Davis are developing an Electro-Optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that provides a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger aperture imager in a constrained volume. The SPIDER concept consists of thousands of direct detection white-light interferometers densely packed onto Photonic Integrated Circuits (PICs) to measure the amplitude and phase of the visibility function at spatial frequencies that span the full synthetic aperture. In other words, SPIDER would sample the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then digitally reconstruct an image. The conventional approach for imaging interferometers requires complex mechanical delay lines to form the interference fringes. This results in designs that are not traceable to more than a few simultaneous spatial frequency measurements. SPIDER seeks to achieve this traceability by employing micron-=scale optical waveguides and nanophotonic structures fabricated on a PIC with micron-scale packing density to form the necessary interferometers. Prior LM IRAD and DARPA/NASA CRAD-funded SPIDER risk reduction experiments, design trades, and simulations have matured the SPIDER imager concept to a TRL 3 level. Current funding under the DARPA SPIDER Zoom program is maturing the underlying PIC technology for SPIDER to the TRL 4 level. This is done by developing and fabricating a second-generation PIC that is fully traceable to the multiple layers and low-power phase modulators required for higher-dimension waveguide arrays that are needed for higher field-of-view sensors. Our project also seeks to extend the SPIDER concept to add a zoom capability that would provide simultaneous low-resolution, large field-of-view and steerable high-resolution, narrow field-of-view imaging modes. A proof of concept demo is being designed to validate this capability. Finally, data collected by this project would be used to benchmark and increase the fidelity of our SPIDER image simulations and enhance our ability to predict the performance of existing and future SPIDER sensor design variations. These designs and their associated performance characteristics could then be evaluated as candidates for future mission opportunities to identify specific transition paths. This paper provides an overview of performance data on the first-generation PIC for SPIDER developed under DARPA SeeMe program funding. We provide a design description of the SPICER Zoom imaging sensor and the second-generation PIC (high- and low-resolution versions) currently under development on the DARPA SPIDER Zoom effort. Results of performance simulations and design trades are presented. Unique low-cost payload applications for future SSA missions are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, D.; Earle, Michael
2010-10-01
Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70more » particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.« less
LIDAR TS for ITER core plasma. Part III: calibration and higher edge resolution
NASA Astrophysics Data System (ADS)
Nielsen, P.; Gowers, C.; Salzmann, H.
2017-12-01
Calibration, after initial installation, of the proposed two wavelength LIDAR Thomson Scattering System requires no access to the front end and does not require a foreign gas fill for Raman scattering. As already described, the variation of solid angle of collection with scattering position is a simple geometrical variation over the unvignetted region. The additional loss over the vignetted region can easily be estimated and in the case of a small beam dump located between the Be tiles, it is within the specified accuracy of the density. The only additional calibration is the absolute spectral transmission of the front-end optics. Over time we expect the transmission of the two front-end mirrors to suffer a deterioration mainly due to depositions. The reduction in transmission is likely to be worse towards the blue end of the scattering spectrum. It is therefore necessary to have a method to monitor such changes and to determine its spectral variation. Standard methods use two lasers at different wavelength with a small time separation. Using the two-wavelength approach, a method has been developed to determine the relative spectral variation of the transmission loss, using simply the measured signals in plasmas with peak temperatures of 4-6 keV . Comparing the calculated line integral of the fitted density over the full chord to the corresponding interferometer data we also have an absolute calibration. At the outer plasma boundary, the standard resolution of the LIDAR Thomson Scattering System is not sufficient to determine the edge gradient in an H-mode plasma. However, because of the step like nature of the signal here, it is possible to carry out a deconvolution of the scattered signals, thereby achieving an effective resolution of ~ 1-2 cm in the outer 10-20 cm.
NASA Astrophysics Data System (ADS)
Adolph, Winny; Jung, Richard; Schmidt, Alena; Ehlers, Manfred; Heipke, Christian; Bartholomä, Alexander; Farke, Hubert
2017-04-01
The Wadden Sea is a large coastal transition area adjoining the southern North Sea uniting ecological key functions with an important role in coastal protection. The region is strictly protected by EU directives and national law and is a UNESCO World Heritage Site, requiring frequent quality assessments and regular monitoring. In 2014 an intertidal bedform area characterised by alternating crests and water-covered troughs on the tidal flats of the island of Norderney (German Wadden Sea sector) was chosen to test different remote sensing methods for habitat mapping: airborne lidar, satellite-based radar (TerraSAR-X) and electro-optical sensors (RapidEye). The results revealed that, although sensitive to different surface qualities, all sensors were able to image the bedforms. A digital terrain model generated from the lidar data shows crests and slopes of the bedforms with high geometric accuracy in the centimetre range, but high costs limit the operation area. TerraSAR-X data enabled identifying the positions of the bedforms reflecting the residual water in the troughs also with a high resolution of up to 1.1 m, but with larger footprints and much higher temporal availability. RapidEye data are sensitive to differences in sediment moisture employed to identify crest areas, slopes and troughs, with high spatial coverage but the lowest resolution (6.5 m). Monitoring concepts may differ in their remote sensing requirements regarding areal coverage, spatial and temporal resolution, sensitivity and geometric accuracy. Also financial budgets limit the selection of sensors. Thus, combining differing assets into an integrated concept of remote sensing contributes to solving these issues.
Dotan, Raffy
2012-06-01
The multisession maximal lactate steady-state (MLSS) test is the gold standard for anaerobic threshold (AnT) estimation. However, it is highly impractical, requires high fitness level, and suffers additional shortcomings. Existing single-session AnT-estimating tests are of compromised validity, reliability, and resolution. The presented reverse lactate threshold test (RLT) is a single-session, AnT-estimating test, aimed at avoiding the pitfalls of existing tests. It is based on the novel concept of identifying blood lactate's maximal appearance-disappearance equilibrium by approaching the AnT from higher, rather than from lower exercise intensities. Rowing, cycling, and running case data (4 recreational and competitive athletes, male and female, aged 17-39 y) are presented. Subjects performed the RLT test and, on a separate session, a single 30-min MLSS-type verification test at the RLT-determined intensity. The RLT and its MLSS verification exhibited exceptional agreement at 0.5% discrepancy or better. The RLT's training sensitivity was demonstrated by a case of 2.5-mo training regimen following which the RLT's 15-W improvement was fully MLSS-verified. The RLT's test-retest reliability was examined in 10 trained and untrained subjects. Test 2 differed from test 1 by only 0.3% with an intraclass correlation of 0.997. The data suggest RLT to accurately and reliably estimate AnT (as represented by MLSS verification) with high resolution and in distinctly different sports and to be sensitive to training adaptations. Compared with MLSS, the single-session RLT is highly practical and its lower fitness requirements make it applicable to athletes and untrained individuals alike. Further research is needed to establish RLT's validity and accuracy in larger samples.
Fu, Yong; Ji, Zhong; Ding, Wenzheng; Ye, Fanghao; Lou, Cunguang
2014-11-01
Previous studies demonstrated that thermoacoustic imaging (TAI) has great potential for breast tumor detection. However, large field of view (FOV) imaging remains a long-standing challenge for three-dimensional (3D) breast tumor localization. Here, the authors propose a practical TAI system for noninvasive 3D localization of breast tumors with large FOV through the use of ultrashort microwave pulse (USMP). A USMP generator was employed for TAI. The energy density required for quality imaging and the corresponding microwave-to-acoustic conversion efficiency were compared with that of conventional TAI. The microwave energy distribution, imaging depth, resolution, and 3D imaging capabilities were then investigated. Finally, a breast phantom embedded with a laboratory-grown tumor was imaged to evaluate the FOV performance of the USMP TAI system, under a simulated clinical situation. A radiation energy density equivalent to just 1.6%-2.2% of that for conventional submicrosecond microwave TAI was sufficient to obtain a thermoacoustic signal with the required signal-to-noise ratio. This result clearly demonstrated a significantly higher microwave-to-acoustic conversion efficiency of USMP TAI compared to that of conventional TAI. The USMP TAI system achieved 61 mm imaging depth and 12 × 12 cm(2) microwave radiation area. The volumetric image of a copper target measured at depth of 4-6 cm matched well with the actual shape and the resolution reaches 230 μm. The TAI of the breast phantom was precisely localized to an accuracy of 0.1 cm over an 8 × 8 cm(2) FOV. The experimental results demonstrated that the USMP TAI system offered significant potential for noninvasive clinical detection and 3D localization of deep breast tumors, with low microwave radiation dose and high spatial resolution over a sufficiently large FOV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreyer, J
2007-09-18
During my internship at Lawrence Livermore National Laboratory I worked with microcalorimeter gamma-ray and fast-neutron detectors based on superconducting Transition Edge Sensors (TESs). These instruments are being developed for fundamental science and nuclear non-proliferation applications because of their extremely high energy resolution; however, this comes at the expense of a small pixel size and slow decay times. The small pixel sizes are being addressed by developing detector arrays while the low count rate is being addressed by developing Digital Signal Processors (DSPs) that allow higher throughput than traditional pulse processing algorithms. Traditionally, low-temperature microcalorimeter pulses have been processed off-line withmore » optimum filtering routines based on the measured spectral characteristics of the signal and the noise. These optimum filters rely on the spectral content of the signal being identical for all events, and therefore require capturing the entire pulse signal without pile-up. In contrast, the DSP algorithm being developed is based on differences in signal levels before and after a trigger event, and therefore does not require the waveform to fully decay, or even the signal level to be close to the base line. The readout system allows for real time data acquisition and analysis at count rates exceeding 100 Hz for pulses with several {approx}ms decay times with minimal loss of energy resolution. Originally developed for gamma-ray analysis with HPGe detectors we have modified the hardware and firmware of the system to accommodate the slower TES signals and optimized the parameters of the filtering algorithm to maximize either resolution or throughput. The following presents an overview of the digital signal processing hardware and discusses the results of characterization measurements made to determine the systems performance.« less
Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2011-01-01
Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.
Optimization of Energy Resolution in the Digital Hadron Calorimeter using Longitudinal Weights
NASA Astrophysics Data System (ADS)
Smith, J. R.; Bilki, B.; Francis, K.; Repond, J.; Schlereth, J.; Xia, L.
2013-04-01
Physics at a future lepton collider requires unprecedented jet energy and dijet mass resolutions. Particle Flow Algorithms (PFAs) have been proposed to achieve these. PFAs measure particles in a jet individually with the detector subsystem providing the best resolution. For this to work a calorimeter system with very high granularity is required. A prototype Digital Hadron Calorimeter (the DHCAL) based on the Resistive Plate Chamber (RPC) technology with a record count of readout channels has been developed, constructed, and exposed to particle beams. In this context, we report on a technique to improve the single hadron energy resolution by applying a set of calibration weights to the individual layers of the calorimeter. This weighting procedure was applied to approximately 1 million events in the energy range up to 60 GeV and shows an improvement in the pion energy resolution. Simulated data is used to verify particle identification techniques and to compare with the data.
IMART software for correction of motion artifacts in images collected in intravital microscopy
Dunn, Kenneth W; Lorenz, Kevin S; Salama, Paul; Delp, Edward J
2014-01-01
Intravital microscopy is a uniquely powerful tool, providing the ability to characterize cell and organ physiology in the natural context of the intact, living animal. With the recent development of high-resolution microscopy techniques such as confocal and multiphoton microscopy, intravital microscopy can now characterize structures at subcellular resolution and capture events at sub-second temporal resolution. However, realizing the potential for high resolution requires remarkable stability in the tissue. Whereas the rigid structure of the skull facilitates high-resolution imaging of the brain, organs of the viscera are free to move with respiration and heartbeat, requiring additional apparatus for immobilization. In our experience, these methods are variably effective, so that many studies are compromised by residual motion artifacts. Here we demonstrate the use of IMART, a software tool for removing motion artifacts from intravital microscopy images collected in time series or in three dimensions. PMID:26090271