40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2011 CFR
2011-07-01
... affected source. (5) For pumps in light liquid service in an MCPU that has no continuous process vents and.../vapor and light liquid service at an existing source, you may elect to comply with the requirements in... light liquid service in an MCPU that has no continuous process vents and is part of an existing source...
Conceptual design of a stray light facility for Earth observation satellites
NASA Astrophysics Data System (ADS)
Stockman, Y.; Hellin, M. L.; Marcotte, S.; Mazy, E.; Versluys, J.; François, M.; Taccola, M.; Zuccaro Marchi, A.
2017-11-01
With the upcoming of TMA or FMA (Three or Four Mirrors Anastigmat) telescope design in Earth Observation system, stray light is a major contributor to the degradation of the image quality. Numerous sources of stray light can be identified and theoretically evaluated. Nevertheless in order to build a stray light model of the instrument, the Point Spread Function(s) of the instrument, i.e., the flux response of the instrument to the flux received at the instrument entrance from an infinite distant point source needs to be determined. This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.
The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.
ERIC Educational Resources Information Center
Jackson, David L.; And Others
1985-01-01
The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)
LED intense headband light source for fingerprint analysis
Villa-Aleman, Eliel
2005-03-08
A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.
Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh
2016-04-01
In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.
Microelectromechanical Systems (MEMS) Broadband Light Source Developed
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.
2003-01-01
A miniature, low-power broadband light source has been developed for aerospace applications, including calibrating spectrometers and powering miniature optical sensors. The initial motivation for this research was based on flight tests of a Fabry-Perot fiberoptic temperature sensor system used to detect aircraft engine exhaust gas temperature. Although the feasibility of the sensor system was proven, the commercial light source optically powering the device was identified as a critical component requiring improvement. Problems with the light source included a long stabilization time (approximately 1 hr), a large amount of heat generation, and a large input electrical power (6.5 W). Thus, we developed a new light source to enable the use of broadband optical sensors in aerospace applications. Semiconductor chip-based light sources, such as lasers and light-emitting diodes, have a relatively narrow range of emission wavelengths in comparison to incandescent sources. Incandescent light sources emit broadband radiation from visible to infrared wavelengths; the intensity at each wavelength is determined by the filament temperature and the materials chosen for the filament and the lamp window. However, present commercial incandescent light sources are large in size and inefficient, requiring several watts of electrical power to obtain the desired optical power, and they emit a large percentage of the input power as heat that must be dissipated. The miniature light source, developed jointly by the NASA Glenn Research Center, the Jet Propulsion Laboratory, and the Lighting Innovations Institute, requires one-fifth the electrical input power of some commercial light sources, while providing similar output light power that is easily coupled to an optical fiber. Furthermore, it is small, rugged, and lightweight. Microfabrication technology was used to reduce the size, weight, power consumption, and potential cost-parameters critical to future aerospace applications. This chip-based light source has the potential for monolithic fabrication with on-chip drive electronics. Other uses for these light sources are in systems for vehicle navigation, remote sensing applications such as monitoring bridges for stress, calibration sources for spectrometers, light sources for space sensors, display lighting, addressable arrays, and industrial plant monitoring. Two methods for filament fabrication are being developed: wet-chemical etching and laser ablation. Both yield a 25-mm-thick tungsten spiral filament. The proof-of-concept filament shown was fabricated with the wet etch method. Then it was tested by heating it in a vacuum chamber using about 1.25 W of electrical power; it generated bright, blackbody radiation at approximately 2650 K. The filament was packaged in Glenn's clean-room facilities. This design uses three chips vacuum-sealed with glass tape. The bottom chip consists of a reflective film deposited on silicon, the middle chip contains a tungsten filament bonded to silicon, and the top layer is a transparent window. Lifetime testing on the package will begin shortly. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 mm.
Superluminescent light emitting diodes: the best out of two worlds
NASA Astrophysics Data System (ADS)
Rossetti, M.; Napierala, J.; Matuschek, N.; Achatz, U.; Duelk, M.; Vélez, C.; Castiglia, A.; Grandjean, N.; Dorsaz, J.; Feltin, E.
2012-03-01
Since pico-projectors were starting to become the next electronic "must-have" gadget, the experts were discussing which light-source technology seems to be the best for the existing three major projection approaches for the optical scanning module such as digital light processing, liquid crystal on silica and laser beam steering. Both so-far used light source technologies have distinct advantages and disadvantages. Though laser-based pico-projectors are focus-free and deliver a wider color gamut, their major disadvantages are speckle noise, cost and safety issues. In contrast, projectors based on cheaper Light Emitting Diodes (LEDs) as light source are criticized for a lack of brightness and for having limited focus. Superluminescent Light Emitting Diodes (SLEDs) are temporally incoherent and spatially coherent light sources merging in one technology the advantages of both Laser Diodes (LDs) and LEDs. With almost no visible speckle noise, focus-free operation and potentially the same color gamut than LDs, SLEDs could potentially answer the question which light source to use in future projector applications. In this quest for the best light source, we realized visible SLEDs emitting both in the red and blue spectral region. While the technology required for the realization of red emitters is already well established, III-nitride compounds required for blue emission have experienced a major development only in relatively recent times and the technology is still under development. The present paper is a review of the status of development reached for the blue superluminescent diodes based on the GaN material system.
Centralized light-source optical access network based on polarization multiplexing.
Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José
2010-03-01
This paper presents and demonstrates a centralized light source optical access network based on optical polarization multiplexing technique. By using two optical sources emitting light orthogonally polarized in the Central Node for downstream and upstream operations, the Remote Node is kept source-free. EVM values below telecommunication standard requirements have been measured experimentally when bidirectional digital signals have been transmitted over 10 km of SMF employing subcarrier multiplexing technique in the electrical domain.
A non-laser light source for photodynamic therapy: in vitro effects on normal and malignant cells.
Kashtan, Hanoch; Haddad, Riad; Greenberg, Ron; Skornick, Yehuda; Kaplan, Ofer
2002-01-01
Photodynamic therapy (PDT) involves the use of photosensitizing drugs combined with light to treat tumors. Laser systems, the current source of light for PDT, have several inherent drawbacks: the spectrum is essentially monochromatic which may be problematic for second generation photosensitizers, the systems are bulky and nearly impossible to move between hospital locations and require complicated electrical and cooling installations, the cost of a typical system is enormous, and its maintenance and operation require highly trained personnel. We now introduce a new non-laser light system, Versa-Light, which appears to work as effectively and has none of the above drawbacks. A series of in vitro studies were performed using various murine and human normal and cancer cells which underwent PDT using aluminum phthalocyanine (AlPcS4) as a photosensitizer and Versa-Light as the light source. PDT of cancer cells at light energy levels of 50, 100 and 200 j/cm2 significantly decreased cell viability. PDT also decreased cell viability of normal murine splenocytes and normal human lymphocytes, but to a lesser extent. The observed significant hyperthermia was light dose-dependent. We believe that Versa-Light can replace laser systems as an enhanced light source for PDT. Further in vitro and pre-clinical studies are in progress.
NASA Technical Reports Server (NTRS)
Baker, John G.; Thorpe, J. I.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.
Optical design of free-form bicycle lamp
NASA Astrophysics Data System (ADS)
Tian, Chao; Cen, Zaofeng; Deng, Shitao; Wang, Jing
2008-03-01
Bicycle lamp used for road lighting is becoming popular now. However, few people have realized its potential market and correlative researches are far from enough. Generally speaking, researches on bicycle lamps are mostly focused on how to design a reflector which will collect light energy more efficiently and can transfer it to certain areas forward when the light source is determinated. In traditional angle of view, the reflector is usually a paraboloid or ellipsoid. However, both of them can not meet the requirement in practice most of the cases. Therefore, free form reflectors (FFRs) instead are widely used. In this paper, a new approach to design FFR which is convenient and rapid is presented. To do computer-aided simulation, certain light source should be selected first. Usually, light sources that behavior like a Lambertian emitter are modeled. To examine the correctness of this approach, a bicycle lamp is designed according to this approach to see if it can meet the requirements of the Germany standard which will be introduced in the text later. The standard requires specific illuminance values for particular points at the test screen with a distance of 10m from the source. The simulation results is exciting and can meet all the requirement. For example, 10lx is expected at the point (0, 0) while the obtained value is 10.42lx, under the conditions that the total luminous flux of the light source is 42lm and the reflectivity of FFR is 0.8. This method has certain universal significance and can provide references for the design of other illumination systems.
Matrix light and pixel light: optical system architecture and requirements to the light source
NASA Astrophysics Data System (ADS)
Spinger, Benno; Timinger, Andreas L.
2015-09-01
Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.
An entangled-light-emitting diode.
Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J
2010-06-03
An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications.
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2013 CFR
2013-07-01
... connectors at your affected source. (5) For pumps in light liquid service in an MCPU that has no continuous... connectors in gas/vapor and light liquid service at an existing source, you may elect to comply with the... in light liquid service in an MCPU that has no continuous process vents and is part of an existing...
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2014 CFR
2014-07-01
... connectors at your affected source. (5) For pumps in light liquid service in an MCPU that has no continuous... connectors in gas/vapor and light liquid service at an existing source, you may elect to comply with the... in light liquid service in an MCPU that has no continuous process vents and is part of an existing...
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2012 CFR
2012-07-01
... connectors at your affected source. (5) For pumps in light liquid service in an MCPU that has no continuous... connectors in gas/vapor and light liquid service at an existing source, you may elect to comply with the... in light liquid service in an MCPU that has no continuous process vents and is part of an existing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.
Minimum color quality standards are necessary, because the light sources most efficient at producing lumens are impractical for use in architectural lighting due to poor color rendition. Thus, accurate measures of color rendition and accompanying performance criteria are essential for helping technology developers and users balance tradeoffs between energy efficiency and lighting quality. Setting higher color-rendition criteria while maintaining use of CRI (e.g., CRI ≥ 90) may filter out some unacceptable light sources, but also filters out many highly desirable light sources and requires a greater tradeoff with energy efficiency. In contrast, specifying color rendition using TM-30 Rf, Rg, andmore » Rcs,h1 has been shown to be effective for differentiating desirable sources while maintaining flexibility for technology development and energy efficiency.« less
Interfacing a quantum dot with a spontaneous parametric down-conversion source
NASA Astrophysics Data System (ADS)
Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor
2017-09-01
Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.
NASA Technical Reports Server (NTRS)
Franke, John M.; Rhodes, David B.; Jones, Stephen B.; Dismond, Harriet R.
1992-01-01
A technique for synchronizing a pulse light source to charge coupled device cameras is presented. The technique permits the use of pulse light sources for continuous as well as stop action flow visualization. The technique has eliminated the need to provide separate lighting systems at facilities requiring continuous and stop action viewing or photography.
Internal heat gain from different light sources in the building lighting systems
NASA Astrophysics Data System (ADS)
Suszanowicz, Dariusz
2017-10-01
EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.
NASA Astrophysics Data System (ADS)
Gan, Ruting; Guo, Zhenning; Lin, Jieben
2015-09-01
To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.
DUV light source availability improvement via further enhancement of gas management technologies
NASA Astrophysics Data System (ADS)
Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.
2011-04-01
The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.
46 CFR 111.75-16 - Lighting of survival craft and rescue boats.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 111.75-16 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Lighting Circuits and Protection § 111.75-16 Lighting of survival... be adequately illuminated by lighting supplied from the emergency power source. (b) The arrangement...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
46 CFR 129.440 - Emergency lighting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... working (machinery) spaces below the main deck. (b) The emergency lighting required by paragraph (a) of... with a single source of power for emergency lighting, it must have individual battery-powered lighting that is— (1) Automatically actuated upon loss of normal power; (2) Not readily portable; (3) Connected...
Comparison of RF BPM Receivers for NSLS-II Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinayev,I.; Singh, O.
2009-05-04
The NSLS-II Light Source being built at Brookhaven National Laboratory requires submicron stability of the electron orbit in the storage ring in order to utilize fully very small emittances and electron beam sizes. This sets high stability requirements for beam position monitors and a program has been initiated for the purpose of characterizing RF beam position monitor (BPM) receivers in use at other light sources. Present state-of-the-art performance will be contrasted with more recently available technologies.
Light emitting diodes as a plant lighting source
NASA Technical Reports Server (NTRS)
Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.
1994-01-01
Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.
A numerical experiment on light pollution from distant sources
NASA Astrophysics Data System (ADS)
Kocifaj, M.
2011-08-01
To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.
Random laser illumination: an ideal source for biomedical polarization imaging?
NASA Astrophysics Data System (ADS)
Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.
2016-03-01
Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.
NASA Astrophysics Data System (ADS)
Hayashi, Motoki; Tameda, Yuichiro; Tomida, Takayuki; Tsunesada, Yoshiki; Seki, Terutsugu; Saito, Yoshinori
We are developing a unmanned aerial vehicle (UAV), which is called "Opt-copter", carrying a calibrated light source for fluorescence detector (FD) calibration of the Telescope Array (TA) experiment. Opt-copter is equipped with a high accuracy GPS device and a LED light source in the shape of a dodecahedron. A positioning accuracy of the GPS mounted on the UAV is 0.1 m, which meets the requirement for the calibration of the FDs at the distance of 100 m. The light source consists of 12 UV LEDs attached on each side of the dodecahedron, and it is covered with a spherical diffuser to improve the spatial uniformity of the light intensity. We report the status of Opt-copter development and the results of its test at the TA site.
NASA Technical Reports Server (NTRS)
Baker, John G.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Baker, John G; Thorpe, J I
2012-05-25
We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Opacity meter for monitoring exhaust emissions from non-stationary sources
Dec, John Edward
2000-01-01
Method and apparatus for determining the opacity of exhaust plumes from moving emissions sources. In operation, a light source is activated at a time prior to the arrival of a diesel locomotive at a measurement point, by means of a track trigger switch or the Automatic Equipment Identification system, such that the opacity measurement is synchronized with the passage of an exhaust plume past the measurement point. A beam of light from the light source passes through the exhaust plume of the locomotive and is detected by a suitable detector, preferably a high-rate photodiode. The light beam is well-collimated and is preferably monochromatic, permitting the use of a narrowband pass filter to discriminate against background light. In order to span a double railroad track and provide a beam which is substantially stronger than background, the light source, preferably a diode laser, must provide a locally intense beam. A high intensity light source is also desirable in order to increase accuracy at the high sampling rates required. Also included is a computer control system useful for data acquisition, manipulation, storage and transmission of opacity data and the identification of the associated diesel engine to a central data collection center.
Vacuum-Compatible Wideband White Light and Laser Combiner Source System
NASA Technical Reports Server (NTRS)
Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.
2010-01-01
For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a tracking laser fringe to assist in alignment can use this system.
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar
2018-02-01
We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.
Classification of light sources and their interaction with active and passive environments
NASA Astrophysics Data System (ADS)
El-Dardiry, Ramy G. S.; Faez, Sanli; Lagendijk, Ad
2011-03-01
Emission from a molecular light source depends on its optical and chemical environment. This dependence is different for various sources. We present a general classification in terms of constant-amplitude and constant-power sources. Using this classification, we have described the response to both changes in the local density of states and stimulated emission. The unforeseen consequences of this classification are illustrated for photonic studies by random laser experiments and are in good agreement with our correspondingly developed theory. Our results require a revision of studies on sources in complex media.
Teksheva, L M; Zvezdina, I V
2014-01-01
Hygienic evaluation of innovative equipment in educational institutions requires the use of appropriate methods permitting to establish valuable criterias for the effectiveness of the application of new technologies. The study of the response of the cardiovascular system of schoolchildren under using different light sources allowed to establish the increase in adaptive capacities and the improvement of the functional state of the organism in LED in comparison with fluorescent lighting.
Using a pseudo-thermal light source to teach spatial coherence
NASA Astrophysics Data System (ADS)
Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.
2018-07-01
Teaching students spatial coherence constitutes a challenge. On the one hand, discussing it theoretically requires a quite demanding mathematical breadth. On the other hand, discussing it experimentally is hardly possible as coherence usually cannot be directly observed. To solve this problem, we show, by studying the contrast of interference patterns of a double slit, that speckles of a pseudo-thermal light source, consisting of a laser and a rotating diffuser disc, are equivalent to the spatial extent of coherent areas of a thermal light source. Coherent areas are spatial regions within which light can be considered as coherent. The unique advantage of such pseudo-thermal light source is the opportunity to directly observe the spatial extent of the coherent areas. This renders the phenomena perceptible and accessible by various experiments, as described in this contribution. This opens modern paths to teach spatial coherence to students with a notably reduced order of abstraction.
Chemical Crystallography at the Advanced Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Laura; Giordano, Nico; Teat, Simon
Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.
Chemical Crystallography at the Advanced Light Source
McCormick, Laura; Giordano, Nico; Teat, Simon; ...
2017-12-18
Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.
Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs
NASA Astrophysics Data System (ADS)
Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko
2009-02-01
Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.
NASA Astrophysics Data System (ADS)
Anglada-Escudé, G.; Torra, J.
2006-04-01
Context: .Very precise planned space astrometric missions and recent improvements in imaging capabilities require a detailed review of the assumptions of classical astrometric modeling.Aims.We show that Light-Travel Time must be taken into account in modeling the kinematics of astronomical objects in nonlinear motion, even at stellar distances.Methods.A closed expression to include Light-Travel Time in the current astrometric models with nonlinear motion is provided. Using a perturbative approach the expression of the Light-Travel Time signature is derived. We propose a practical form of the astrometric modelling to be applied in astrometric data reduction of sources at stellar distances(d>1 pc).Results.We show that the Light-Travel Time signature is relevant at μ as accuracy (or even at mas) depending on the time span of the astrometric measurements. We explain how information on the radial motion of a source can be obtained. Some estimates are provided for known nearby binary systemsConclusions.Given the obtained results, it is clear that this effect must be taken into account in interpreting precise astrometric measurements. The effect is particularly relevant in measurements performed by the planned astrometric space missions (GAIA, SIM, JASMINE, TPF/DARWIN). An objective criterion is provided to quickly evaluate whether the Light-Travel Time modeling is required for a given source or system.
NASA Astrophysics Data System (ADS)
Ma, Suodong; Pan, Qiao; Shen, Weimin
2016-09-01
As one kind of light source simulation devices, spectrally tunable light sources are able to generate specific spectral shape and radiant intensity outputs according to different application requirements, which have urgent demands in many fields of the national economy and the national defense industry. Compared with the LED-type spectrally tunable light source, the one based on a DMD-convex grating Offner configuration has advantages of high spectral resolution, strong digital controllability, high spectrum synthesis accuracy, etc. As a key link of the above type light source to achieve target spectrum outputs, spectrum synthesis algorithm based on spectrum matching is therefore very important. An improved spectrum synthesis algorithm based on linear least square initialization and Levenberg-Marquardt iterative optimization is proposed in this paper on the basis of in-depth study of the spectrum matching principle. The effectiveness of the proposed method is verified by a series of simulations and experimental works.
Validation of luminescent source reconstruction using spectrally resolved bioluminescence images
NASA Astrophysics Data System (ADS)
Virostko, John M.; Powers, Alvin C.; Jansen, E. D.
2008-02-01
This study examines the accuracy of the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) in reconstruction of light source depth and intensity. Constant intensity light sources were placed in an optically homogeneous medium (chicken breast). Spectrally filtered images were taken at 560, 580, 600, 620, 640, and 660 nanometers. The Living Image® Software 3D Analysis Package was employed to reconstruct source depth and intensity using these spectrally filtered images. For sources shallower than the mean free path of light there was proportionally higher inaccuracy in reconstruction. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively. The ability to distinguish multiple sources decreased with increasing source depth and typically required a spatial separation of twice the depth. The constant intensity light sources were also implanted in mice to examine the effect of optical inhomogeneity. The reconstruction accuracy suffered in inhomogeneous tissue with accuracy influenced by the choice of optical properties used in reconstruction.
NASA Astrophysics Data System (ADS)
Kostal, Hubert; Kreysar, Douglas; Rykowski, Ronald
2009-08-01
The color and luminance distributions of large light sources are difficult to measure because of the size of the source and the physical space required for the measurement. We describe a method for the measurement of large light sources in a limited space that efficiently overcomes the physical limitations of traditional far-field measurement techniques. This method uses a calibrated, high dynamic range imaging colorimeter and a goniometric system to move the light source through an automated measurement sequence in the imaging colorimeter's field-of-view. The measurement is performed from within the near-field of the light source, enabling a compact measurement set-up. This method generates a detailed near-field color and luminance distribution model that can be directly converted to ray sets for optical design and that can be extrapolated to far-field distributions for illumination design. The measurements obtained show excellent correlation to traditional imaging colorimeter and photogoniometer measurement methods. The near-field goniometer approach that we describe is broadly applicable to general lighting systems, can be deployed in a compact laboratory space, and provides full near-field data for optical design and simulation.
Design of a Borescope for Extravehicular Non-Destructive Applications
NASA Technical Reports Server (NTRS)
Bachnak, Rafic
2003-01-01
Anomalies such as corrosion, structural damage, misalignment, cracking, stress fiactures, pitting, or wear can be detected and monitored by the aid of a borescope. A borescope requires a source of light for proper operation. Today s current lighting technology market consists of incandescent lamps, fluorescent lamps and other types of electric arc and electric discharge vapor lamp. Recent advances in LED technology have made LEDs viable for a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. LEDs promise significant reduction in power consumption compared to other sources of light. This project focused on comparing images taken by the Olympus IPLEX, using two different light sources. One of the sources is the 50-W internal metal halide lamp and the other is a 1 W LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation [l]. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. Analysis using pattern recognition using Eigenfaces and Gaussian Pyramid in face recognition may be more useful.
MEMS Incandescent Light Source
NASA Technical Reports Server (NTRS)
Tuma, Margaret; King, Kevin; Kim, Lynn; Hansler, Richard; Jones, Eric; George, Thomas
2001-01-01
A MEMS-based, low-power, incandescent light source is being developed. This light source is fabricated using three bonded chips. The bottom chip consists of a reflector on Silicon, the middle chip contains a Tungsten filament bonded to silicon and the top layer is a transparent window. A 25-micrometer-thick spiral filament is fabricated in Tungsten using lithography and wet-etching. A proof-of-concept device has been fabricated and tested in a vacuum chamber. Results indicate that the filament is electrically heated to approximately 2650 K. The power required to drive the proof-of-concept spiral filament to incandescence is 1.25 W. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 microns. The micromachining techniques used to fabricate this light source can be applied to other MEMS devices.
Spectral characteristics of light sources for S-cone stimulation.
Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P
2002-11-01
Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.
Olds, Kelly; Byard, Roger W; Winskog, Calle; Langlois, Neil E I
2017-03-01
Bruising is frequently documented in cases of violence for use as forensic evidence. However, bruises can be overlooked if they are not visible to the naked eye. Alternate light sources such as ultraviolet, narrow band, and infrared have been used in an attempt to reveal the presence of bruising that is not otherwise apparent. However, there is a significant gap in knowledge surrounding this technique as it has not been validated against histology to confirm that bruising is genuinely being enhanced. A recent study evaluated the ability of alternate light sources to enhance visibility of bruises using a pigskin model. However, histological confirmation of bruising in humans using these light sources has not yet been performed. In this study, embalmed and non-embalmed human cadavers were used. Bodies were surveyed with alternate light sources, and enhanced regions that were unapparent under white light were photographed with the alternate light sources and sampled for histological assessment. Immunohistochemical staining for the red blood cell surface protein glycophorin was used determine if the enhanced area was a bruise (defined by the presence of extravasated erythrocytes). Photographs of areas confirmed to be bruises were analyzed using the program Fiji to measure enhancement, which was defined as an increase in the measured transverse diameter. In the non-embalmed and the embalmed cadavers violet alternate light produced the greatest enhancement of histologically confirmed bruises, followed by blue (both p < 0.0001). Regions that were not confirmed as bruises also enhanced, indicating that light sources may not be specific. This suggests that the use of light sources to enhance the visibility of bruising should be undertaken with caution and further studies are required.
Equipment for an Inexpensive Introductory Optics Lab.
ERIC Educational Resources Information Center
Siefken, H. E.; Tomaschke, H. E.
1994-01-01
Provides an inexpensive method (less than $125) for performing experiments usually requiring a laser. Suggests building a laser diode light source, a device for producing multiple parallel beams, a light meter, a polar/analyzer, a laser light show apparatus, and a circuit to modulate the laser diode intensity. (MVL)
Masaoka, Kenichiro; Nishida, Yukihiro; Sugawara, Masayuki
2014-08-11
The wide-gamut system colorimetry has been standardized for ultra-high definition television (UHDTV). The chromaticities of the primaries are designed to lie on the spectral locus to cover major standard system colorimetries and real object colors. Although monochromatic light sources are required for a display to perfectly fulfill the system colorimetry, highly saturated emission colors using recent quantum dot technology may effectively achieve the wide gamut. This paper presents simulation results on the chromaticities of highly saturated non-monochromatic light sources and gamut coverage of real object colors to be considered in designing wide-gamut displays with color filters for the UHDTV.
Data format standard for sharing light source measurements
NASA Astrophysics Data System (ADS)
Gregory, G. Groot; Ashdown, Ian; Brandenburg, Willi; Chabaud, Dominique; Dross, Oliver; Gangadhara, Sanjay; Garcia, Kevin; Gauvin, Michael; Hansen, Dirk; Haraguchi, Kei; Hasna, Günther; Jiao, Jianzhong; Kelley, Ryan; Koshel, John; Muschaweck, Julius
2013-09-01
Optical design requires accurate characterization of light sources for computer aided design (CAD) software. Various methods have been used to model sources, from accurate physical models to measurement of light output. It has become common practice for designers to include measured source data for design simulations. Typically, a measured source will contain rays which sample the output distribution of the source. The ray data must then be exported to various formats suitable for import into optical analysis or design software. Source manufacturers are also making measurements of their products and supplying CAD models along with ray data sets for designers. The increasing availability of data has been beneficial to the design community but has caused a large expansion in storage needs for the source manufacturers since each software program uses a unique format to describe the source distribution. In 2012, the Illuminating Engineering Society (IES) formed a working group to understand the data requirements for ray data and recommend a standard file format. The working group included representatives from software companies supplying the analysis and design tools, source measurement companies providing metrology, source manufacturers creating the data and users from the design community. Within one year the working group proposed a file format which was recently approved by the IES for publication as TM-25. This paper will discuss the process used to define the proposed format, highlight some of the significant decisions leading to the format and list the data to be included in the first version of the standard.
Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production.
Baroukh, Caroline; Muñoz-Tamayo, Rafael; Bernard, Olivier; Steyer, Jean-Philippe
2015-06-01
The conversion of microalgae lipids and cyanobacteria carbohydrates into biofuels appears to be a promising source of renewable energy. This requires a thorough understanding of their carbon metabolism, supported by mathematical models, in order to optimize biofuel production. However, unlike heterotrophic microorganisms that utilize the same substrate as sources of energy and carbon, photoautotrophic microorganisms require light for energy and CO2 as carbon source. Furthermore, they are submitted to permanent fluctuating light environments due to outdoor cultivation or mixing inducing a flashing effect. Although, modeling these nonstandard organisms is a major challenge for which classical tools are often inadequate, this step remains a prerequisite towards efficient optimization of outdoor biofuel production at an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
From Extended Nanofluidics to an Autonomous Solar-Light-Driven Micro Fuel-Cell Device.
Pihosh, Yuriy; Uemura, Jin; Turkevych, Ivan; Mawatari, Kazuma; Kazoe, Yutaka; Smirnova, Adelina; Kitamori, Takehiko
2017-07-03
Autonomous micro/nano mechanical, chemical, and biomedical sensors require persistent power sources scaled to their size. Realization of autonomous micro-power sources is a challenging task, as it requires combination of wireless energy supply, conversion, storage, and delivery to the sensor. Herein, we realized a solar-light-driven power source that consists of a micro fuel cell (μFC) and a photocatalytic micro fuel generator (μFG) integrated on a single microfluidic chip. The μFG produces hydrogen by photocatalytic water splitting under solar light. The hydrogen fuel is then consumed by the μFC to generate electricity. Importantly, the by-product water returns back to the photocatalytic μFG via recirculation loop without losses. Both devices rely on novel phenomena in extended-nano-fluidic channels that ensure ultra-fast proton transport. As a proof of concept, we demonstrate that μFG/μFC source achieves remarkable energy density of ca. 17.2 mWh cm -2 at room temperature. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectrally resolved laser interference microscopy
NASA Astrophysics Data System (ADS)
Butola, Ankit; Ahmad, Azeem; Dubey, Vishesh; Senthilkumaran, P.; Singh Mehta, Dalip
2018-07-01
We developed a new quantitative phase microscopy technique, namely, spectrally resolved laser interference microscopy (SR-LIM), with which it is possible to quantify multi-spectral phase information related to biological specimens without color crosstalk using a color CCD camera. It is a single shot technique where sequential switched on/off of red, green, and blue (RGB) wavelength light sources are not required. The method is implemented using a three-wavelength interference microscope and a customized compact grating based imaging spectrometer fitted at the output port. The results of the USAF resolution chart while employing three different light sources, namely, a halogen lamp, light emitting diodes, and lasers, are discussed and compared. The broadband light sources like the halogen lamp and light emitting diodes lead to stretching in the spectrally decomposed images, whereas it is not observed in the case of narrow-band light sources, i.e. lasers. The proposed technique is further successfully employed for single-shot quantitative phase imaging of human red blood cells at three wavelengths simultaneously without color crosstalk. Using the present technique, one can also use a monochrome camera, even though the experiments are performed using multi-color light sources. Finally, SR-LIM is not only limited to RGB wavelengths, it can be further extended to red, near infra-red, and infra-red wavelengths, which are suitable for various biological applications.
Wei, Jianing; Bouman, Charles A; Allebach, Jan P
2014-05-01
Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.
NASA Astrophysics Data System (ADS)
Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine
2017-06-01
Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... dedicated emergency power source with sufficient capacity to supply those services that are necessary for... power source, except: (1) A load required by this part to be powered from the emergency power source; (2...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... dedicated emergency power source with sufficient capacity to supply those services that are necessary for... power source, except: (1) A load required by this part to be powered from the emergency power source; (2...
[Hygienic aspects of the use of LED light sources for general illumination in schools].
Kuchma, V R; Sukhareva, L M; Teksheva, L M; Stepanova, M I; Sazaniuk, Z I
2013-01-01
For the time present becoming more common semiconductor sources of artificial lighting has become a more and more frequent practice. With the aim to study the impact of LEDs on the health of schoolchildren studies in experimental conditions (specially equipped classrooms) were performed. The comparative analysis of the state of vision, mental health and emotional state of pupils in primary, middle and high schools under fluorescent and LED lighting, meeting to the regulatory requirements, has revealed that the physiological cost of schooling in the use of LED units in classrooms is lower than in a traditional, fluorescent lighting.
Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.
2010-01-01
Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.
Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki
2006-05-18
Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.
X-ray detectors at the Linac Coherent Light Source.
Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt
2015-05-01
Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.
X-ray detectors at the Linac Coherent Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella
Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less
X-ray detectors at the Linac Coherent Light Source
Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; ...
2015-04-21
Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less
X-ray detectors at the Linac Coherent Light Source
Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt
2015-01-01
Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071
NASA Astrophysics Data System (ADS)
Liu, Hui; Rudd, Grant; Daly, Liam; Hempstead, Joshua; Liu, Yiran; Khan, Amjad P.; Mallidi, Srivalleesha; Thomas, Richard; Rizvi, Imran; Arnason, Stephen; Cuckov, Filip; Hasan, Tayyaba; Celli, Jonathan P.
2016-03-01
Photodynamic therapy (PDT) is a light-based modality that shows promise for adaptation and implementation as a cancer treatment technology in resource-limited settings. In this context PDT is particularly well suited for treatment of pre-cancer and early stage malignancy of the oral cavity, that present a major global health challenge, but for which light delivery can be achieved without major infrastructure requirements. In recent reports we demonstrated that a prototype low-cost batterypowered 635nm LED light source for ALA-PpIX PDT achieves tumoricidal efficacy in vitro and vivo, comparable to a commercial turn-key laser source. Here, building on these reports, we describe the further development of a prototype PDT device to enable intraoral light delivery, designed for ALA- PDT treatment of precancerous and cancerous lesions of the oral cavity. We evaluate light delivery via fiber bundles and customized 3D printed light applicators for flexible delivery to lesions of varying size and position within the oral cavity. We also briefly address performance requirements (output power, stability, and light delivery) and present validation of the device for ALA-PDT treatment in monolayer squamous carcinoma cell cultures.
Electrically controlled optical latch and switch requires less current
NASA Technical Reports Server (NTRS)
Pieczonka, W. A.; Roy, M. M.; Yeh, T. H.
1966-01-01
Electrically controlled optical latch consists of a sensitive phototransistor and a solid-state light source. This design requires less current to activate an optically activated switch than in prior art.
Wu, Tingzhu; Lin, Yue; Zheng, Lili; Guo, Ziquan; Xu, Jianxing; Liang, Shijie; Liu, Zhuguagn; Lu, Yijun; Shih, Tien-Mo; Chen, Zhong
2018-02-19
An optimal design of light-emitting diode (LED) lighting that benefits both the photosynthesis performance for plants and the visional health for human eyes has drawn considerable attention. In the present study, we have developed a multi-color driving algorithm that serves as a liaison between desired spectral power distributions and pulse-width-modulation duty cycles. With the aid of this algorithm, our multi-color plant-growth light sources can optimize correlated-color temperature (CCT) and color rendering index (CRI) such that photosynthetic luminous efficacy of radiation (PLER) is maximized regardless of the number of LEDs and the type of photosynthetic action spectrum (PAS). In order to illustrate the accuracies of the proposed algorithm and the practicalities of our plant-growth light sources, we choose six color LEDs and German PAS for experiments. Finally, our study can help provide a useful guide to improve light qualities in plant factories, in which long-term co-inhabitance of plants and human beings is required.
Active implant for optoacoustic natural sound enhancement
NASA Astrophysics Data System (ADS)
Mohrdiek, S.; Fretz, M.; Jose James, R.; Spinola Durante, G.; Burch, T.; Kral, A.; Rettenmaier, A.; Milani, R.; Putkonen, M.; Noell, W.; Ortsiefer, M.; Daly, A.; Vinciguerra, V.; Garnham, C.; Shah, D.
2017-02-01
This paper summarizes the results of an EU project called ACTION: ACTive Implant for Optoacoustic Natural sound enhancement. The project is based on a recent discovery that relatively low levels of pulsed infrared laser light are capable of triggering activity in hair cells of the partially hearing (hearing impaired) cochlea and vestibule. The aim here is the development of a self-contained, smart, highly miniaturized system to provide optoacoustic stimuli directly from an array of miniature light sources in the cochlea. Optoacoustic compound action potentials (oaCAP) are generated by the light source fully inserted into the unmodified cochlea. Previously, the same could only be achieved with external light sources connected to a fiber optic light guide. This feat is achieved by integrating custom made VCSEL arrays at a wavelength of about 1550 nm onto small flexible substrates. The laser light is collimated by a specially designed silicon-based ultra-thin lens (165 um thick) to get the energy density required for the generation of oaCAP signals. A dramatic miniaturization of the packaging technology is also required. A long term biocompatible and hermetic sapphire housing with a size of less than a 1 cubic millimeter and miniature Pt/PtIr feedthroughs is developed, using a low temperature laser assisted process for sealing. A biofouling thin film protection layer is developed to avoid fibrinogen and cell growth on the system.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Salazar, G. A.; Brainard, G. C.; Kolomenski, A.; Hanifin, J.; Schwin, B. M.
2017-01-01
NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial crew feedback.
Solution of multi-element LED light sources development automation problem
NASA Astrophysics Data System (ADS)
Chertov, Aleksandr N.; Gorbunova, Elena V.; Korotaev, Valery V.; Peretyagin, Vladimir S.
2014-09-01
The intensive development of LED technologies resulted in the creation of multicomponent light sources in the form of controlled illumination devices based on usage of mentioned LED technologies. These light sources are used in different areas of production (for example, in the food industry for sorting products or in the textile industry for quality control, etc.). The use of LED lighting products in the devices used in specialized lighting, became possible due to wide range of colors of light, LED structures (which determines the direction of radiation, the spatial distribution and intensity of the radiation, electrical, heat, power and other characteristics), and of course, the possibility of obtaining any shade in a wide dynamic range of brightness values. LED-based lighting devices are notable for the diversity of parameters and characteristics, such as color radiation, location and number of emitters, etc. Although LED technologies have several advantages, however, they require more attention if you need to ensure a certain character of illumination distribution and/or distribution of the color picture at a predetermined distance (for example, at flat surface, work zone, area of analysis or observation). This paper presents software designed for the development of the multicomponent LED light sources. The possibility of obtaining the desired color and energy distribution at the zone of analysis by specifying the spatial parameters of the created multicomponent light source and using of real power, spectral and color parameters and characteristics of the LEDs is shown as well.
Lighting the Gym: A Guide to Illuminating Non-Traditional Spaces.
ERIC Educational Resources Information Center
Womack, Jennifer; Nelson, Steve
2000-01-01
Covers all the steps needed to light an open, non-traditional performance space--everything from where to locate lights, support towers, and power sources, to cable and dimmer requirements. Covers safety issues, equipment costs, what students should and should not be allowed to do, and how to deal with electricians and rental companies. (SC)
48 CFR 908.7101-6 - Acquisition of fuel-efficient vehicles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special..., and certain types of light trucks as specified by GSA, are subject to the requirements of the Energy...
Polarimetry - Scope on the 3.6-m Devasthal Optical Telescope
NASA Astrophysics Data System (ADS)
Joshi, Umesh Chandra; Ganesh, Shashikiran; Baliyan, Kiran Singh
2018-04-01
Polarization measurements are very helpful to understand the nature of some of the stellar and extra-galactic sources. Light from astronomical objects is in general polarized to some degree and its measurement gives additional information related to the magnetic field, the distribution of scattering material, the non-thermal nature of light, etc. Since the degree of polarization in the majority of astronomical sources is 1-5%, and polarimetry requires additional optics with respect to classical imaging, these measurements require much more photons to achieve a good signal-to-noise ratio for which the 3.6-m Devasthal Optical Telescope (DOT) facility is suitable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paget, Maria L.; McCullough, Jeffrey J.; Steward, Heidi E.
Solid-state lighting products for general lighting applications are now gaining a market presence, and more and more people are asking, “Which of these are ‘good’ products? Do they perform as claimed? How do they compare? Light Emitting Diodes (LEDs) differ from other light sources enough to require new procedures for measuring their performance and comparing to other lighting options, so both manufacturers and buyers are facing a learning curve. The energy-efficiency community has traditionally compared light sources based on system efficacy: rated lamp lumens divided by power into the system. This doesn’t work for LEDs because there are no standardmore » LED “lamp” packages and no lamp ratings, and because LED performance depends heavily on thermal, electrical, and optical design of complete lighting unit or ‘luminaire’. Luminaire efficacy is the preferred metric for LEDs because it measures the net light output from the luminaire divided by power into the system.« less
Towards a 4{sup th} generation storage ring at the Canadian Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallin, Les; Wurtz, Ward
2016-07-27
Demands from beamline scientists for more brilliant sources of synchrotron radiation have resulted in the emergence of 4{sup th} generation (diffraction-limited) storage rings. The practical development of the multi-bend achromat (MBA) concept by MAX IV lab has spurred many synchrotron light sources around the world to develop similar machines. For existing facilities two options are available: upgrading existing machines or building a new structure. The Canadian Light Source (CLS) has explored both options. For a new low emittance source in the existing CLS tunnel a decrease in electron energy would be required. A machine similar to the ALS upgrade couldmore » be contemplated. To achieve low emittance at our present energy of 2.9 GeV a new storage ring is desirable. Several options have been investigated. These designs use extremely strong focusing magnets to achieve extremely low emittances in compact lattice achromats.« less
Tabletop computed lighting for practical digital photography.
Mohan, Ankit; Bailey, Reynold; Waite, Jonathan; Tumblin, Jack; Grimm, Cindy; Bodenheimer, Bobby
2007-01-01
We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills required for high-quality photographic lighting of desktop-sized static objects such as museum artifacts. We place the object and a computer-steered moving-head spotlight inside a simple foam-core enclosure and use a camera to record photos as the light scans the box interior. Optimization, guided by interactive user sketching, selects a small set of these photos whose weighted sum best matches the user-defined target sketch. Unlike previous image-based relighting efforts, our method requires only a single area light source, yet it can achieve high-resolution light positioning to avoid multiple sharp shadows. A reduced version uses only a handheld light and may be suitable for battery-powered field photography equipment that fits into a backpack.
Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff
2015-01-01
Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.
Sodium leak detection system for liquid metal cooled nuclear reactors
Modarres, Dariush
1991-01-01
A light source is projected across the gap between the containment vessel and the reactor vessel. The reflected light is then analyzed with an absorption spectrometer. The presence of any sodium vapor along the optical path results in a change of the optical transmissivity of the media. Since the absorption spectrum of sodium is well known, the light source is chosen such that the sensor is responsive only to the presence of sodium molecules. The optical sensor is designed to be small and require a minimum of amount of change to the reactor containment vessel.
Lensless magneto-optic speed sensor
Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.
1998-02-17
Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.
Lensless Magneto-optic speed sensor
Veeser, Lynn R.; Forman, Peter R.; Rodriguez, Patrick J.
1998-01-01
Lensless magneto-optic speed sensor. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 .mu.m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation.
NASA Astrophysics Data System (ADS)
Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng
2018-02-01
High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.
Statistical photocalibration of photodetectors for radiometry without calibrated light sources
NASA Astrophysics Data System (ADS)
Yielding, Nicholas J.; Cain, Stephen C.; Seal, Michael D.
2018-01-01
Calibration of CCD arrays for identifying bad pixels and achieving nonuniformity correction is commonly accomplished using dark frames. This kind of calibration technique does not achieve radiometric calibration of the array since only the relative response of the detectors is computed. For this, a second calibration is sometimes utilized by looking at sources with known radiances. This process can be used to calibrate photodetectors as long as a calibration source is available and is well-characterized. A previous attempt at creating a procedure for calibrating a photodetector using the underlying Poisson nature of the photodetection required calculations of the skewness of the photodetector measurements. Reliance on the third moment of measurement meant that thousands of samples would be required in some cases to compute that moment. A photocalibration procedure is defined that requires only first and second moments of the measurements. The technique is applied to image data containing a known light source so that the accuracy of the technique can be surmised. It is shown that the algorithm can achieve accuracy of nearly 2.7% of the predicted number of photons using only 100 frames of image data.
1997-01-01
A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.
Lighting Systems For High Speed Photography Applying Special Metal Halide Discharge Lamps
NASA Astrophysics Data System (ADS)
Gillum, Keith M.; Steuernagel, K. H.
1983-03-01
High speed photography requires, in addition to a good color quality of the light source, a very high level of illumination. Conventional lighting systems utilizing incandescent lamps or other metal halide lamp types has inherent problems of inefficient light output or poor color quality. Heat generated by incandescent lamps and the power these sources require drive up operating and installation costs. A most economical and practical solution was devised by using the metal halide discharge lamp developed by OSRAM, GmbH of Munich, West Germany. This lamp trade marked the HMITM Metallogen was primarily developed for the needs of the television and motion picture film industry. Due to their high efficiency and other consistent operating qualities these lamps also fulfill the needs of high speed photography, e.g. in crash test facilities, when special engineering activities are carried out. The OSRAM HMITM lamp is an AC discharge metal halide lamp with rare earth additives to increase both the efficiency and light output qualities. Since the lamp is an AC source, a special method had to be developed to overcome the strobing effect, which is normal for AC lamps given their modulated light output, when used with high speed cameras, (e.g. with >1000 fps). This method is based on an increased frequency for the lamp supply voltage coupled with a mix of the light output achieved using a multiphase mains power supply. First developed in 1977, this system using the OSRAM HMITM lamps was installed in a crash test facility of a major automotive manufacturer in West Germany. The design resulted in the best lighting and performance ever experienced. Since that time several other motor companies have made use of this breakthrough. Industrial and scientific users are now considering additional applications use of this advanced high speed lighting system.
Wang, Haomin; Wang, Le; Xu, Xiaoji G.
2016-01-01
Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360
EQ-10 electrodeless Z-pinch EUV source for metrology applications
NASA Astrophysics Data System (ADS)
Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2011-11-01
With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.
46 CFR 112.40-1 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General requirements. 112.40-1 Section 112.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Alternating-Current Temporary Source of Supply § 112.40-1 General requirements...
46 CFR 112.40-1 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false General requirements. 112.40-1 Section 112.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Alternating-Current Temporary Source of Supply § 112.40-1 General requirements...
46 CFR 112.40-1 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false General requirements. 112.40-1 Section 112.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Alternating-Current Temporary Source of Supply § 112.40-1 General requirements...
46 CFR 112.40-1 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false General requirements. 112.40-1 Section 112.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Alternating-Current Temporary Source of Supply § 112.40-1 General requirements...
46 CFR 112.40-1 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General requirements. 112.40-1 Section 112.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Alternating-Current Temporary Source of Supply § 112.40-1 General requirements...
Human Engineering Design Criteria for Modern Control/Display Components and Standard Parts.
1980-05-01
to identify changes required to achieve the stated program objectives. The effort concentrated or the following factors: " Type and degree of change...greatest viewing angle) other than that actually forming the image ( nonimage brightness); i.e., I BR = n Contrast - The difference in brightness between...placement of the scope relative to the light source, through the use of a hood or shield; by optical coatings or filters over the light source; or by
Representations and uses of light distribution functions
NASA Astrophysics Data System (ADS)
Lalonde, Paul Albert
1998-11-01
At their lowest level, all rendering algorithms depend on models of local illumination to define the interplay of light with the surfaces being rendered. These models depend both on the representations of light scattering at a surface due to reflection and to an equal extent on the representation of light sources and light fields. Both emission and reflection have in common that they describe how light leaves a surface as a function of direction. Reflection also depends on an incident light direction. Emission can depend on the position on the light source We call the functions representing emission and reflection light distribution functions (LDF's). There are some difficulties to using measured light distribution functions. The data sets are very large-the size of the data grows with the fourth power of the sampling resolution. For example, a bidirectional reflectance distribution function (BRDF) sampled at five degrees angular resolution, which is arguably insufficient to capture highlights and other high frequency effects in the reflection, can easily require one and a half million samples. Once acquired this data requires some form of interpolation to use them. Any compression method used must be efficient, both in space and in the time required to evaluate the function at a point or over a range of points. This dissertation examines a wavelet representation of light distribution functions that addresses these issues. A data structure is presented that allows efficient reconstruction of LDFs for a given set of parameters, making the wavelet representation feasible for rendering tasks. Texture mapping methods that take advantage of our LDF representations are examined, as well as techniques for filtering LDFs, and methods for using wavelet compressed bidirection reflectance distribution functions (BRDFs) and light sources with Monte Carlo path tracing algorithms. The wavelet representation effectively compresses BRDF and emission data while inducing only a small error in the reconstructed signal. The representation can be used to evaluate efficiently some integrals that appear in shading computation which allows fast, accurate computation of local shading. The representation can be used to represent light fields and is used to reconstruct views of environments interactively from a precomputed set of views. The representation of the BRDF also allows the efficient generation of reflected directions for Monte Carlo array tracing applications. The method can be integrated into many different global illumination algorithms, including ray tracers and wavelet radiosity systems.
White-Light Optical Information Processing and Holography.
1985-07-29
this technique is the processing system does not require to carry its own light source. It is very suitable for spaceborne and satellite application. We...developed a technique of generating a spatialtrequency color coded speech spectrogram with a white-light optical system . This system not only offers a low...that the annoying moire fringes can be eliminated. In short, we have once again demonstrated the versatility of the white-light progress system ; a
Effects of pitch and shape for diffraction grating in LED fog lamp
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Lin, Jun-Yu; Wu, Jih-Huah; Ma, Shih-Hsin; Yang, Chi-Hao
2011-10-01
The characteristics of light-emitting diodes (LEDs) that make them energy-efficient and long-lasting light source for general illumination have attracted a great attention from the lighting industry and commercial market. As everyone know LEDs have the advantages of environmental protection, long lifetime, fast response time (μs), low voltage and good mechanical properties. Their high luminance and the wide region of the dominant wavelengths within the entire visible spectrum mean that people have high anticipations for the applications of LEDs. The output lighting from reflector in the traditional fog lamp was required to fit the standard of the ECE R19 F3 regulation. Therefore, this study investigated the effects of pitch and angle for a diffraction grating in LED fog lamp. The light pattern of fog lamp must be satisfied ECE regulations, so a design of diffraction grating to shift down the lighting was required. There are three LEDs (Cree XLamp XPE LEDs) as the light source in the fog lamp for the illumination efficiency. Then, an optimal simulation of diffraction grating was done for the pitch and angle of the diffraction grating at the test distance of 25 meters. The best pitch and angle was 2mm and 60 degree for the grating shape of wedge type.
Saito, Kenta; Arai, Yoshiyuki; Zhang, Jize; Kobayashi, Kentaro; Tani, Tomomi; Nagai, Takeharu
2011-01-01
Laser-scanning confocal microscopy has been employed for exploring structures at subcellular, cellular and tissue level in three dimensions. To acquire the confocal image, a coherent light source, such as laser, is generally required in conventional single-point scanning microscopy. The illuminating beam must be focused onto a small spot with diffraction-limited size, and this determines the spatial resolution of the microscopy system. In contrast, multipoint scanning confocal microscopy using a Nipkow disk enables the use of an incoherent light source. We previously demonstrated successful application of a 100 W mercury arc lamp as a light source for the Yokogawa confocal scanner unit in which a microlens array was coupled with a Nipkow disk to focus the collimated incident light onto a pinhole (Saito et al., Cell Struct. Funct., 33: 133-141, 2008). However, transmission efficiency of incident light through the pinhole array was low because off-axis light, the major component of the incident light, was blocked by the non-aperture area of the disk. To improve transmission efficiency, we propose an optical system in which off-axis light is able to be transmitted through pinholes surrounding the pinhole located on the optical axis of the collimator lens. This optical system facilitates the use of not only the on-axis but also the off-axis light such that the available incident light is considerably improved. As a result, we apply the proposed system to high-speed confocal and multicolor imaging both with a satisfactory signal-to-noise ratio.
Design of TIR collimating lens for ordinary differential equation of extended light source
NASA Astrophysics Data System (ADS)
Zhan, Qianjing; Liu, Xiaoqin; Hou, Zaihong; Wu, Yi
2017-10-01
The source of LED has been widely used in our daily life. The intensity angle distribution of single LED is lambert distribution, which does not satisfy the requirement of people. Therefore, we need to distribute light and change the LED's intensity angle distribution. The most commonly method to change its intensity angle distribution is the free surface. Generally, using ordinary differential equations to calculate free surface can only be applied in a point source, but it will lead to a big error for the expand light. This paper proposes a LED collimating lens based on the ordinary differential equation, combined with the LED's light distribution curve, and adopt the method of calculating the center gravity of the extended light to get the normal vector. According to the law of Snell, the ordinary differential equations are constructed. Using the runge-kutta method for solution of ordinary differential equation solution, the curve point coordinates are gotten. Meanwhile, the edge point data of lens are imported into the optical simulation software TracePro. Based on 1mm×1mm single lambert body for light conditions, The degrees of collimating light can be close to +/-3. Furthermore, the energy utilization rate is higher than 85%. In this paper, the point light source is used to calculate partial differential equation method and compared with the simulation of the lens, which improve the effect of 1 degree of collimation.
Zhang, Jibin; Huang, Ling; He, Jin; Tomberlin, Jeffery K; Li, Jianhong; Lei, Chaoliang; Sun, Ming; Liu, Ziduo; Yu, Ziniu
2010-01-01
Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch for the quartz-iodine lamp and sunlight treatments occurred in approximately 4 days, and the hatch rate was similar between these two treatments. Larval and pupal development under these treatments required approximately 18 and 15 days at 28°C, respectively. Development of methods for mass rearing of H. illucens using artificial light will enable production of this fly throughout the year without investing in greenhouse space or requiring sunlight.
Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.
The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less
Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...
2015-06-24
The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-1 General. This subpart contains requirements applicable to...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-1 General. This subpart contains requirements applicable to...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-1 General. This subpart contains requirements applicable to...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-1 General. This subpart contains requirements applicable to...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-1 General. This subpart contains requirements applicable to...
NASA Technical Reports Server (NTRS)
1997-01-01
A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.
Artificial light sources for simulating natural daylight and skylight.
Grum, F
1968-01-01
A review of the literature reveals the need for reliable and stable artificial light sources that can be used as simulators of daylight and skylight. In quest of such simulators a first requirement is quantitative information on the average spectral distributions of natural sources such as daylight and skylight. Recent investigations of the spectral energy characteristics of natural daylight and skylight made it possible to determine such average conditions. With these conditions established, a search was undertaken for an artificial light source that would simulate these average natural distributions with a minimum of filtering. Certain fluorescent lamps and combinations of them were considered first, but, although it was possible to achieve fairly good visual matches of daylight and skylight, the spectral characteristics and the variability of such combinations are drawbacks to their use in critical scientific work. For this purpose, therefore, xenon arc lamps were found to be superior.
III-V quantum light source and cavity-QED on silicon.
Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I
2013-01-01
Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.
NASA Astrophysics Data System (ADS)
Lee, Minseok; June, Seunghyeok; Kim, Sehwan
2018-01-01
Many biomedical applications require an efficient combination and localization of multiple discrete light sources ( e.g., fluorescence and absorbance imaging). We present a compact 6 channel combiner that couples the output of independent solid-state light sources into a single 400-μm-diameter fiber stub for handheld Internet of Things (IoT) devices. We demonstrate average coupling efficiencies > 80% for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity-modulated laser diodes. This fiber-stub-type beam combiner could be used to construct custom multi-wavelength sources for tissue oximeters, microscopes and molecular imaging technologies. In order to validate its suitability, we applied the developed fiber-stub-type beam combiner to a multi-wavelength light source for a handheld IoT device and demonstrated its feasibility for smart healthcare through a tumor-mimicking silicon phantom.
Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate
NASA Astrophysics Data System (ADS)
Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.
2008-08-01
The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.
NASA Astrophysics Data System (ADS)
Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel
2017-06-01
Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.
Photon Science for Renewable Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Zahid; Tamura, Lori; Padmore, Howard
2010-03-31
Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's lightmore » sources possible scientific directions for addressing these profound yet urgent challenges.« less
LED-based endoscopic light source for spectral imaging
NASA Astrophysics Data System (ADS)
Browning, Craig M.; Mayes, Samuel; Favreau, Peter; Rich, Thomas C.; Leavesley, Silas J.
2016-03-01
Colorectal cancer is the United States 3rd leading cancer in death rates.1 The current screening for colorectal cancer is an endoscopic procedure using white light endoscopy (WLE). There are multiple new methods testing to replace WLE, for example narrow band imaging and autofluorescence imaging.2 However, these methods do not meet the need for a higher specificity or sensitivity. The goal for this project is to modify the presently used endoscope light source to house 16 narrow wavelength LEDs for spectral imaging in real time while increasing sensitivity and specificity. The process to do such was to take an Olympus CLK-4 light source, replace the light and electronics with 16 LEDs and new circuitry. This allows control of the power and intensity of the LEDs. This required a larger enclosure to house a bracket system for the solid light guide (lightpipe), three new circuit boards, a power source and National Instruments hardware/software for computer control. The results were a successfully designed retrofit with all the new features. The LED testing resulted in the ability to control each wavelength's intensity. The measured intensity over the voltage range will provide the information needed to couple the camera for imaging. Overall the project was successful; the modifications to the light source added the controllable LEDs. This brings the research one step closer to the main goal of spectral imaging for early detection of colorectal cancer. Future goals will be to connect the camera and test the imaging process.
High-luminosity blue and blue-green gallium nitride light-emitting diodes.
Morkoç, H; Mohammad, S N
1995-01-06
Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.
NASA Astrophysics Data System (ADS)
Hu, Guansheng; Zhang, Tao; Zhang, Xuan; Shi, Gentai; Bai, Haojie
2018-03-01
In order to achieve multi-color temperature and multi-magnitude output, magnitude and temperature can real-time adjust, a new type of calibration single star simulator was designed with adjustable magnitude and optical spectrum output in this article. xenon lamp and halogen tungsten lamp were used as light source. The control of spectrum band and temperature of star was realized with different multi-beam narrow band spectrum with light of varying intensity. When light source with different spectral characteristics and color temperature go into the magnitude regulator, the light energy attenuation were under control by adjusting the light luminosity. This method can completely satisfy the requirements of calibration single star simulator with adjustable magnitude and optical spectrum output in order to achieve the adjustable purpose of magnitude and spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jozsef, G
Purpose: To build a test device for HDR afterloaders capable of checking source positions, times at positions and estimate the activity of the source. Methods: A catheter is taped on a plastic scintillation sheet. When a source travels through the catheter, the scintillator sheet lights up around the source. The sheet is monitored with a video camera, and records the movement of the light spot. The center of the spot on each image on the video provides the source location, and the time stamps of the images can provide the dwell time the source spend in each location. Finally, themore » brightness of the light spot is related to the activity of the source. A code was developed for noise removal, calibrate the scale of the image to centimeters, eliminate the distortion caused by the oblique view angle, identifying the boundaries of the light spot, transforming the image into binary and detect and calculate the source motion, positions and times. The images are much less noisy if the camera is shielded. That requires that the light spot is monitored in a mirror, rather than directly. The whole assembly is covered from external light and has a size of approximately 17×35×25cm (H×L×W) Results: A cheap camera in BW mode proved to be sufficient with a plastic scintillator sheet. The best images were resulted by a 3mm thick sheet with ZnS:Ag surface coating. The shielding of the camera decreased the noise, but could not eliminate it. A test run even in noisy condition resulted in approximately 1 mm and 1 sec difference from the planned positions and dwell times. Activity tests are in progress. Conclusion: The proposed method is feasible. It might simplify the monthly QA process of HDR Brachytherapy units.« less
Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires
NASA Astrophysics Data System (ADS)
Gordon, Jeffrey M.; Kashin, Peter
1994-01-01
Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.
Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires
NASA Astrophysics Data System (ADS)
Gordon, Jeffrey M.; Kashin, Peter
1993-11-01
Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while insuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric Compound Parabolic Luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illumination offer significant improvements in flux homogeneity relative to alternative designs to date.
Point to point multispectral light projection applied to cultural heritage
NASA Astrophysics Data System (ADS)
Vázquez, D.; Alvarez, A.; Canabal, H.; Garcia, A.; Mayorga, S.; Muro, C.; Galan, T.
2017-09-01
Use of new of light sources based on LED technology should allow the develop of systems that combine conservation and exhibition requirements and allow to make these art goods available to the next generations according to sustainability principles. The goal of this work is to develop light systems and sources with an optimized spectral distribution for each specific point of the art piece. This optimization process implies to maximize the color fidelity reproduction and the same time to minimize the photochemical damage. Perceived color under these sources will be similar (metameric) to technical requirements given by the restoration team uncharged of the conservation and exhibition of the goods of art. Depending of the fragility of the exposed art objects (i.e. spectral responsivity of the material) the irradiance must be kept under a critical level. Therefore, it is necessary to develop a mathematical model that simulates with enough accuracy both the visual effect of the illumination and the photochemical impact of the radiation. Spectral reflectance of a reference painting The mathematical model is based on a merit function that optimized the individual intensity of the LED-light sources taking into account the damage function of the material and color space coordinates. Moreover the algorithm used weights for damage and color fidelity in order to adapt the model to a specific museal application. In this work we show a sample of this technology applied to a picture of Sorolla (1863-1923) an important Spanish painter title "woman walking at the beach".
Polydiacetylenes: An Ideal Color System for Teaching Polymer Science.
ERIC Educational Resources Information Center
Patel, Gordhan N.; Yang, Nan-Loh
1983-01-01
Describes 14 experiments that illustrate, via color changes, a broad scope of fundamental phenomena in polymer science. The experiments, suitable for high school through graduate level, require only test tubes, filter paper, heat source (hot plate or hair drier), and ultra-violet light source. (JN)
Advanced light source master oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, C.C.; Taylor, B.; Baptiste, K.
1989-03-01
The Master Oscillator of the Advanced Light Source operates at a frequency of 499.654 MHz which is the 328th harmonic of the storage ring. The oscillator is capable of providing up to a maximum of {plus minus} 500 KHz frequency deviation for various experimental purposes. Provisions for external signal injection as well as using an external signal source have been designed into the unit. A power distribution system has also been included to provide signals for various parts of the ALS machine and user requirements. The Master Oscillator is made up with modules housed in a Euro chassis. 4 refs.,more » 7 figs.« less
Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Ogata, Yoshimune; Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu
2015-03-01
After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since 137Cs and 134Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from 137Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm 137Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq 137Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a 137Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.
14 CFR 25.812 - Emergency lighting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... sign required by § 25.811(d)(3) must have red letters at least 11/2 inches high on a white background... red letters at least 1 inch high on a white background at least 2 inches high. These signs may be... marking and locating signs, sources of general cabin illumination, interior lighting in emergency exit...
14 CFR 25.812 - Emergency lighting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... sign required by § 25.811(d)(3) must have red letters at least 11/2 inches high on a white background... red letters at least 1 inch high on a white background at least 2 inches high. These signs may be... marking and locating signs, sources of general cabin illumination, interior lighting in emergency exit...
White-Light Optical Information Processing and Holography.
1983-05-03
Processing, White-Light Holography, Image Subtraction, Image Deblurring , Coherence Requirement, Apparent Transfer Function, Source Encoding, Signal...in this period, also demonstrated several color image processing capabilities. Among those are broadband color image deblurring and color image...Broadband Image Deblurring ..... ......... 6 2.5 Color Image Subtraction ............... 7 2.6 Rainbow Holographic Aberrations . . ..... 7 2.7
High brightness electrodeless Z-Pinch EUV source for mask inspection tools
NASA Astrophysics Data System (ADS)
Horne, Stephen F.; Partlow, Matthew J.; Gustafson, Deborah S.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2012-03-01
Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 1995. The source is currently being used for metrology, mask inspection, and resist development. Energetiq's higher brightness source has been selected as the source for pre-production actinic mask inspection tools. This improved source enables the mask inspection tool suppliers to build prototype tools with capabilities of defect detection and review down to 16nm design rules. In this presentation we will present new source technology being developed at Energetiq to address the critical source brightness issue. The new technology will be shown to be capable of delivering brightness levels sufficient to meet the HVM requirements of AIMS and ABI and potentially API tools. The basis of the source technology is to use the stable pinch of the electrodeless light source and have a brightness of up to 100W/mm(carat)2-sr. We will explain the source design concepts, discuss the expected performance and present the modeling results for the new design.
Indirect measurement of three-photon correlation in nonclassical light sources
NASA Astrophysics Data System (ADS)
Ann, Byoung-moo; Song, Younghoon; Kim, Junki; Yang, Daeho; An, Kyungwon
2016-06-01
We observe the three-photon correlation in nonclassical light sources by using an indirect measurement scheme based on the dead-time effect of photon-counting detectors. We first develop a general theory which enables us to extract the three-photon correlation from the two-photon correlation of an arbitrary light source measured with detectors with finite dead times. We then confirm the validity of our measurement scheme in experiments done with a cavity-QED microlaser operating with a large intracavity mean photon number exhibiting both sub- and super-Poissonian photon statistics. The experimental results are in good agreement with the theoretical expectation. Our measurement scheme provides an alternative approach for N -photon correlation measurement employing (N -1 ) detectors and thus a reduced measurement time for a given signal-to-noise ratio, compared to the usual scheme requiring N detectors.
Horise, Yuki; He, Xingchi; Gehlbach, Peter; Taylor, Russell; Iordachita, Iulian
2015-01-01
In retinal surgery, microsurgical instruments such as micro forceps, scissors and picks are inserted through the eye wall via sclerotomies. A handheld intraocular light source is typically used to visualize the tools during the procedure. Retinal surgery requires precise and stable tool maneuvers as the surgical targets are micro scale, fragile and critical to function. Retinal surgeons typically control an active surgical tool with one hand and an illumination source with the other. In this paper, we present a "smart" light pipe that enables true bimanual surgery via utilization of an active, robot-assisted source of targeted illumination. The novel sensorized smart light pipe measures the contact force between the sclerotomy and its own shaft, thereby accommodating the motion of the patient's eye. Forces at the point of contact with the sclera are detected by fiber Bragg grating (FBG) sensors on the light pipe. Our calibration and validation results demonstrate reliable measurement of the contact force as well as location of the sclerotomy. Preliminary experiments have been conducted to functionally evaluate robotic intraocular illumination.
Head-mounted LED for optogenetic experiments of freely-behaving animal
NASA Astrophysics Data System (ADS)
Kwon, Ki Yong; Gnade, Andrew G.; Rush, Alexander D.; Patten, Craig D.
2016-03-01
Recent developments in optogenetics have demonstrated the ability to target specific types of neurons with sub-millisecond temporal precision via direct optical stimulation of genetically modified neurons in the brain. In most applications, the beam of a laser is coupled to an optical fiber, which guides and delivers the optical power to the region of interest. Light emitting diodes (LEDs) are an alternative light source for optogenetics and they provide many advantages over a laser based system including cost, size, illumination stability, and fast modulation. Their compact size and low power consumption make LEDs suitable light sources for a wireless optogenetic stimulation system. However, the coupling efficiency of an LED's output light into an optical fiber is lower than a laser due to its noncollimated output light. In typical chronic optogenetic experiment, the output of the light source is transmitted to the brain through a patch cable and a fiber stub implant, and this configuration requires two fiber-to-fiber couplings. Attenuation within the patch cable is potential source of optical power loss. In this study, we report and characterize a recently developed light delivery method for freely-behaving animal experiments. We have developed a head-mounted light source that maximizes the coupling efficiency of an LED light source by eliminating the need for a fiber optic cable. This miniaturized LED is designed to couple directly to the fiber stub implant. Depending on the desired optical power output, the head-mounted LED can be controlled by either a tethered (high power) or battery-powered wireless (moderate power) controller. In the tethered system, the LED is controlled through 40 gauge micro coaxial cable which is thinner, more flexible, and more durable than a fiber optic cable. The battery-powered wireless system uses either infrared or radio frequency transmission to achieve real-time control. Optical, electrical, mechanical, and thermal characteristics of the head-mounted LED were evaluated.
Code of Federal Regulations, 2013 CFR
2013-01-01
... matchbooks are generally sold by large chain stores, and constitute a small portion of the total resale..., individual stick matches, and lighters, predominantly supply the source of fire to meet these requirements... estimated to have supplied about 65 percent of the source of lights, lighters accounted for about 25 percent...
Code of Federal Regulations, 2012 CFR
2012-01-01
... matchbooks are generally sold by large chain stores, and constitute a small portion of the total resale..., individual stick matches, and lighters, predominantly supply the source of fire to meet these requirements... estimated to have supplied about 65 percent of the source of lights, lighters accounted for about 25 percent...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false General. 112.37-1 Section 112.37-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Temporary Emergency Power Source § 112.37-1 General. Each temporary source of emergency power required by...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false General. 112.37-1 Section 112.37-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Temporary Emergency Power Source § 112.37-1 General. Each temporary source of emergency power required by...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false General. 112.37-1 Section 112.37-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Temporary Emergency Power Source § 112.37-1 General. Each temporary source of emergency power required by...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false General. 112.37-1 Section 112.37-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Temporary Emergency Power Source § 112.37-1 General. Each temporary source of emergency power required by...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false General. 112.37-1 Section 112.37-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Temporary Emergency Power Source § 112.37-1 General. Each temporary source of emergency power required by...
46 CFR 112.15-1 - Temporary emergency loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND POWER SYSTEMS Emergency Loads § 112.15-1 Temporary emergency loads. On vessels required by § 112.05-5(a) to have a temporary emergency power source, the following emergency lighting and power loads must be arranged so that they can be energized from the temporary emergency power source: (a...
46 CFR 112.15-1 - Temporary emergency loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AND POWER SYSTEMS Emergency Loads § 112.15-1 Temporary emergency loads. On vessels required by § 112.05-5(a) to have a temporary emergency power source, the following emergency lighting and power loads must be arranged so that they can be energized from the temporary emergency power source: (a...
46 CFR 112.15-1 - Temporary emergency loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND POWER SYSTEMS Emergency Loads § 112.15-1 Temporary emergency loads. On vessels required by § 112.05-5(a) to have a temporary emergency power source, the following emergency lighting and power loads must be arranged so that they can be energized from the temporary emergency power source: (a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... matchbooks are generally sold by large chain stores, and constitute a small portion of the total resale..., individual stick matches, and lighters, predominantly supply the source of fire to meet these requirements... estimated to have supplied about 65 percent of the source of lights, lighters accounted for about 25 percent...
Code of Federal Regulations, 2011 CFR
2011-01-01
... matchbooks are generally sold by large chain stores, and constitute a small portion of the total resale..., individual stick matches, and lighters, predominantly supply the source of fire to meet these requirements... estimated to have supplied about 65 percent of the source of lights, lighters accounted for about 25 percent...
Rare earth patterns in shergottite phosphates and residues
NASA Technical Reports Server (NTRS)
Laul, J. C.
1987-01-01
Leaching experiments with 1M HCl on ALHA 77005 powder show that rare earth elements (REE) are concentrated in accessory phosphate phases (whitlockite, apatite) that govern the REE patterns of bulk shergottites. The REE patterns of whitlockite are typically light REE-depleted with a negative Eu anomaly and show a hump at the heavy REE side, while the REE pattern of apatite (in Shergotty) is light REE-enriched. Parent magmas are calculated from the modal compositions of residues of ALHA 77005, Shergotty, and EETA 79001. The parent magmas lack a Eu anomaly, indicating that plagioclase was a late-stage crystallizing phase and that it probably crystallized before the phosphates. The parent magmas of ALHA 77005 and Shergotty have similar REE patterns, with a subchondritic Nd/Sm ratio. However, the Sm/Nd isotopoics require a light REE-depleted source for ALHA 77005 (if the crystallization age is less than 600 Myr) and a light REE-enriched source for Shergotty. Distant Nd and Sr isotopic signatures may suggest different source regions for shergottites.
[Energy saving and LED lamp lighting and human health].
Deĭnego, V N; Kaptsov, V A
2013-01-01
The appearance of new sources of high-intensity with large proportion of blue light in the spectrum revealed new risks of their influence on the function of the eye and human health, especially for children and teenagers. There is an urgent need to reconsider the research methods of vision hygiene in conditions of energy-saving and LED bulbs lighting. On the basis of a systematic approach and knowledge of the newly discovered photosensitive receptors there was built hierarchical model of the interaction of "light environment - the eye - the system of formation of visual images - the hormonal system of the person - his psycho-physiological state." This approach allowed us to develop a range of risk for the negative impact of spectrum on the functions of the eye and human health, as well as to formulate the hygiene requirements for energy-efficient high-intensity light sources.
Timur Shaftan
2017-12-09
The NSLS-II project will establish a third-generation light source at Brookhaven Lab, increasing beam-line brightness by 10,000. Achieving and maintaining this will involve tightly focusing the electron beam, providing the most efficient insertion devices, and achieving and maintaining a high electron current. In this talk, the various sub-systems of NSLS-II will be reviewed, and the requirements and key elements of their design will be discussed. In addition, the a small prototype of a light source of a different kind that was developed by the NSLS will also be discussed.
Method for transmittance measurements in sunglasses for a kiosk
NASA Astrophysics Data System (ADS)
Mello, Marcio M.; Figueiredo, M.; Konda, R. A.; Ventura, Liliane
2013-03-01
Light transmittance measurements through sunglasses lenses is one of the required tests of the Brazilian Standard NBR15111(2004). Its measurement establishes the category of the sample and determines the required ultraviolet, visible and infrared protection, as well as the attenuation coefficient for signal light recognition. However, these measurements are usually performed by spectrophotometers and educated users, who are acknowledged to manage the equipment, use the weighting functions (WF) and interpret the data. We propose an alternative method, which consists in having matching optics and electronics to obtain a close WF to be used in transmittance measurements, and create an accessible device, for public self-use, providing a simple way for measuring and educating the public about sunglasses protection. Measurements were made in 30 samples for UV test, performed for the 280 - 400nm range, where UVA and UVB light sources and two photodiode sensors with Erythema action response are assembled, and for traffic signal a visible light sensor was used with spectral human eye response and different LEDs. As for the visible test, the visible light sensor was used for different light sources: incandescent, fluorescent, and a set of LEDs, while the infrared test is performed by several LEDs that provide the 780 - 2000nm range, and an infrared sensor. For these tests, only the samples spectrum were used. The transmittances were within the deviation limit required by NBR15111. The results have led us to build a self service kiosk for public use providing the category, UV protection and IR protection of the sunglasses as well as the information regarding its use for driving.
Zhang, Jibin; Huang, Ling; He, Jin; Tomberlin, Jeffery K.; Li, Jianhong; Lei, Chaoliang; Sun, Ming; Liu, Ziduo; Yu, Ziniu
2010-01-01
Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch for the quartz-iodine lamp and sunlight treatments occurred in approximately 4 days, and the hatch rate was similar between these two treatments. Larval and pupal development under these treatments required approximately 18 and 15 days at 28°° C, respectively. Development of methods for mass rearing of H. illucens using artificial light will enable production of this fly throughout the year without investing in greenhouse space or requiring sunlight. PMID:21268697
III–V quantum light source and cavity-QED on Silicon
Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.
2013-01-01
Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621
A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits.
Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo
2017-12-01
One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe 2 , a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.
A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits
NASA Astrophysics Data System (ADS)
Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M.; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K.; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo
2017-12-01
One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.
From dark to bright: novel daylighting applications in solid state lighting
NASA Astrophysics Data System (ADS)
Adler, Helmar G.
2011-10-01
The term "daylighting" is used in various ways, on one hand in a more architectural sense, i.e. using existing daylight to illuminate spaces, and on the other, more recently, for using light sources to replicate daylight. The emergence of solid state lighting (SSL) opens up a large number of new avenues for daylighting. SSL allows innovative controllability of intensity and color for artificial light sources that can be advantageously applied to daylighting. With the assistance of these new technologies the combination of natural and artificial lighting could lead to improvements in energy savings and comfort of living beings. Thus it is imperative to revisit or even improve daylighting research so that building networks of the future with their sensor, energy (e.g. HVAC) and lighting requirements can benefit from the emerging capabilities. This paper will briefly review existing daylighting concepts and technology and discuss new ideas. An example of a tunable multi-color SSL system will be shown.
Construction and Commissioning of A 248 m-long Beamline with X-ray Undulator Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Yoshio; Uesugi, Kentaro; Takimoto, Naoki
2004-05-12
A medium-length beamline with undulator source, BL20XU at SPring-8, was constructed, and opened to public use. The distance from source point to the end of the beamline is 248 m. By utilizing the long beam transport path, the beamline has advantages for experiment that requires high spatial coherence in hard X-ray regions.
Wilburn, David R.
2012-01-01
The use of light-emitting diodes (LEDs) is expanding because of environmental issues and the efficiency and cost savings achieved compared with use of traditional incandescent lighting. The longer life and reduced power consumption of some LEDs have led to annual energy savings, reduced maintenance costs, and lower emissions of carbon dioxide, sulfur dioxide, and nitrogen oxides from powerplants because of the resulting decrease in energy consumption required for lighting applications when LEDs are used to replace less-energy-efficient sources. Metals such as arsenic, gallium, indium, and the rare-earth elements (REEs) cerium, europium, gadolinium, lanthanum, terbium, and yttrium are important mineral materials used in LED semiconductor technology. Most of the world's supply of these materials is produced as byproducts from the production of aluminum, copper, lead, and zinc. Most of the rare earths required for LED production in 2011 came from China, and most LED production facilities were located in Asia. The LED manufacturing process is complex and is undergoing much change with the growth of the industry and the changes in demand patterns of associated commodities. In many respects, the continued growth of the LED industry, particularly in the general lighting sector, is tied to its ability to increase LED efficiency and color uniformity while decreasing the costs of producing, purchasing, and operating LEDs. Research is supported by governments of China, the European Union, Japan, the Republic of Korea, and the United States. Because of the volume of ongoing research in this sector, it is likely that the material requirements of future LEDs may be quite different than LEDs currently (2011) in use as industry attempts to cut costs by reducing material requirements of expensive heavy rare-earth phosphors and increasing the sizes of wafers for economies of scale. Improved LED performance will allow customers to reduce the number of LEDs in automotive, electronic, and lighting applications, which could reduce the overall demand for material components. Non-Chinese sources for rare earths are being developed, and some of these new sources are likely to be operational in time to meet increasing demand for rare earths from the LED sector. Because most LED component production and manufacturing occurs in Asia and many LED producers have established supply contracts with Chinese producers of rare earths, a significant amount of the metallic gallium, indium, and the rare earths used for LED production will likely continue to come from Chinese sources at least for the next 5 years; however, a greater amount of these materials are now being processed in Japan, the Republic of Korea, and Taiwan. As non-Chinese sources of rare earths come into production, these new mines are likely to be sources of light REEs, but China will likely remain the leading source of supply for the heavy REEs suitable for use as LED dopants and phosphors at least for the next few years. Increased research in the development of phosphors that use smaller amounts of or different REEs is intended to reduce dependence on rare earths from China. Supply disruption of rare earths and other specialty metals could take place if China's specialty metal exports are redirected to domestic markets. The cost of recovery is high and the lifespan for LEDs is comparatively long; thus, the LED waste volume was low in 2010, and few LEDs were recycled. The minute metal content of LEDs leads to a high cost for recovery, so recycling of LEDs outside of electronic waste is unlikely in the near term, although some LED producers are evaluating recycling options. Recycling of metals from LEDs in electronic waste is possible if the costs of recovering metals are justified by demand and metal prices.
Integrated RGB laser light module for autostereoscopic outdoor displays
NASA Astrophysics Data System (ADS)
Reitterer, Jörg; Fidler, Franz; Hambeck, Christian; Saint Julien-Wallsee, Ferdinand; Najda, Stephen; Perlin, Piotr; Stanczyk, Szymon; Czernecki, Robert; McDougall, Stewart D.; Meredith, Wyn; Vickers, Garrie; Landles, Kennedy; Schmid, Ulrich
2015-02-01
We have developed highly compact RGB laser light modules to be used as light sources in multi-view autostereoscopic outdoor displays and projection devices. Each light module consists of an AlGaInP red laser diode, a GaInN blue laser diode, a GaInN green laser diode, as well as a common cylindrical microlens. The plano-convex microlens is a so-called "fast axis collimator", which is widely used for collimating light beams emitted from high-power laser diode bars, and has been optimized for polychromatic RGB laser diodes. The three light beams emitted from the red, green, and blue laser diodes are collimated in only one transverse direction, the so-called "fast axis", and in the orthogonal direction, the so-called "slow axis", the beams pass the microlens uncollimated. In the far field of the integrated RGB light module this produces Gaussian beams with a large ellipticity which are required, e.g., for the application in autostereoscopic outdoor displays. For this application only very low optical output powers of a few milliwatts per laser diode are required and therefore we have developed tailored low-power laser diode chips with short cavity lengths of 250 μm for red and 300 μm for blue. Our RGB laser light module including the three laser diode chips, associated monitor photodiodes, the common microlens, as well as the hermetically sealed package has a total volume of only 0.45 cm³, which to our knowledge is the smallest RGB laser light source to date.
Beyond crystallography: Diffractive imaging using coherent x-ray light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, J.; Ishikawa, T.; Robinson, I. K.
X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imagingmore » in the 21st century.« less
Hyperspectral retinal imaging with a spectrally tunable light source
NASA Astrophysics Data System (ADS)
Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael
2011-03-01
Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.
OLEDs for lighting: new approaches
NASA Astrophysics Data System (ADS)
Duggal, Anil R.; Foust, Donald F.; Nealon, William F.; Heller, Christian M.
2004-02-01
OLED technology has improved to the point where it is now possible to envision developing OLEDs as a low cost solid state light source. In order to realize this, significant advances have to be made in device efficiency, lifetime at high brightness, high throughput fabrication, and the generation of illumination quality white light. In this talk, the requirements for general lighting will be reviewed and various approaches to meeting them will be outlined. Emphasis will be placed on a new monolithic series-connected OLED design architecture that promises scalability without high fabrication cost or design complexity.
Sub-Shot Noise Power Source for Microelectronics
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.; Yu, Nan; Mansour, Kamjou
2011-01-01
Low-current, high-impedance microelectronic devices can be affected by electric current shot noise more than they are affected by Nyquist noise, even at room temperature. An approach to implementing a sub-shot noise current source for powering such devices is based on direct conversion of amplitude-squeezed light to photocurrent. The phenomenon of optical squeezing allows for the optical measurements below the fundamental shot noise limit, which would be impossible in the domain of classical optics. This becomes possible by affecting the statistical properties of photons in an optical mode, which can be considered as a case of information encoding. Once encoded, the information describing the photon (or any other elementary excitations) statistics can be also transmitted. In fact, it is such information transduction from optics to an electronics circuit, via photoelectric effect, that has allowed the observation of the optical squeezing. It is very difficult, if not technically impossible, to directly measure the statistical distribution of optical photons except at extremely low light level. The photoelectric current, on the other hand, can be easily analyzed using RF spectrum analyzers. Once it was observed that the photocurrent noise generated by a tested light source in question is below the shot noise limit (e.g. produced by a coherent light beam), it was concluded that the light source in question possess the property of amplitude squeezing. The main novelty of this technology is to turn this well-known information transduction approach around. Instead of studying the statistical property of an optical mode by measuring the photoelectron statistics, an amplitude-squeezed light source and a high-efficiency linear photodiode are used to generate photocurrent with sub-Poissonian electron statistics. By powering microelectronic devices with this current source, their performance can be improved, especially their noise parameters. Therefore, a room-temperature sub-shot noise current source can be built that will be beneficial for a very broad range of low-power, low-noise electronic instruments and applications, both cryogenic and room-temperature. Taking advantage of recent demonstrations of the squeezed light sources based on optical micro-disks, this sub-shot noise current source can be made compatible with the size/power requirements specific of the electronic devices it will support.
New design of textile light diffusers for photodynamic therapy.
Cochrane, Cédric; Mordon, Serge R; Lesage, Jean Claude; Koncar, Vladan
2013-04-01
A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm(2): 5×20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/ cm(2)) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18±2.5 mw/cm(2). Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm(2)) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Ying, Qi; Kleeman, Michael J.
2009-12-01
Gases and particulate matter predictions from the UCD/CIT air quality model were used in a visibility model to predict source contributions to visual impairment in the San Joaquin Valley (SJV), the southern portion of California's Central Valley, during December 2000 and January 2001. Within the SJV, daytime (0800-1700 PST) light extinction was dominated by scattering associated with airborne particles. Measured daytime particle scattering coefficients were compared to predicted values at approximately 40 locations across the SJV after correction for the increased temperature and decreased relative humidity produced by "smart heaters" placed upstream of nephelometers. Mean fractional bias and mean fractional error were -0.22 and 0.65, respectively, indicating reasonable agreement between model predictions and measurements. Particulate water, nitrate, organic matter, and ammonium were the major particulate species contributing to light scattering in the SJV. Daytime light extinction in the SJV averaged between December 25, 2000 and January 7, 2001 was mainly associated with animal ammonia sources (28%), diesel engines (18%), catalyst gasoline engines (9%), other anthropogenic sources (9%), and wood smoke (7%) with initial and boundary conditions accounting for 13%. The source apportionment results from this study apply to wintertime conditions when airborne particulate matter concentrations are typically at their annual maximum. Further study would be required to quantify source contributions to light extinction in other seasons.
Im, C S; Matters, G L; Beale, S I
1996-01-01
The Chlamydomonas reinhardtii nuclear gene gsa, which encodes the early chlorophyll biosynthetic enzyme glutamate 1-semialdehyde aminotransferase (GSAT), is specifically induced by blue light in cells synchronized in a 12-hr-light and 12-hr-dark regime. Light induction required the presence of a nitrogen source in the incubation medium. Maximal induction also required acetate. However, in the absence of acetate, partial induction occurred when Ca2+ was present in the medium at concentrations of > or = 1 microM. The Ca2+ channel-blocking agents Nd3+ and nifedipine partially inhibited the external Ca(2+)-supported induction of GSAT mRNA but did not inhibit acetate-supported induction. The calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide inhibited both external Ca(2+)-supported and acetate-supported induction. The Ca2+ ionophore A23187 caused a transient induction in the dark. These results suggest that Ca2+ and calmodulin are involved in the signal transduction pathway linking blue light perception to the induction of GSAT mRNA. The electron transport uncoupler carbonyl cyanide m-chlorophenylhydrazone inhibited acetate-supported induction of GSAT mRNA but did not inhibit external Ca(2+)-supported induction. It is proposed that in the presence of acetate, an internal pool of Ca2+ can be mobilized as a second message, whereas in the absence of acetate, internal Ca2+ is not available but the requirement for Ca2+ can be partially met by an external Ca2+ source. The mobilization of internal Ca2+ may require energy derived from metabolism of acetate. PMID:8989881
Thermal injury secondary to laparoscopic fiber-optic cables.
Hindle, A Katharine; Brody, Fred; Hopkins, Vernon; Rosales, Greg; Gonzalez, Florencia; Schwartz, Arnold
2009-08-01
Laparoscopy requires a reliable light source to provide adequate visualization. However, thermal energy is produced as a by-product from the optical cable. This study attempts to quantify the degree of possible thermal damage secondary to the fiber-optic light source. Using a digital thermometer, temperature measurements were recorded at the tip of optical cables from five different light sources (Karl Storz, Inc., Tuttlingen, Germany). Temperature measurements were recorded with new and old bulbs. The tip of the cable was applied to surgical drapes and the time to charring was recorded. Subsequently, the tip of the optical cable was applied to a porcine model and tissue samples were obtained after varying amounts of time (5, 15, 30, 60, and 90 s). Sections of the damaged tissue were prepared for microscopic evaluation. Parameters for thermal injury included extent of epidermal, dermal, and subcutaneous fat damage and necrosis. The lateral extent and depth of injury were measured. The maximum temperature at the tip of the optical cable varied between 119.5 degrees C and 268.6 degrees C. When surgical drapes were exposed to the tip of the light source, the time to char was 3-6 s. The degree and volume of injury increased with longer exposure times, and significant injury was recorded with the optical cable 3 mm from the skin. This study demonstrates that the temperature at the tip of the optical light cord can induce extensive damage. The by-product of light, heat, can produce immediate superficial tissue necrosis that can extend into the subcutaneous fat even when the optical tip is not in direct contact with the skin. In addition, our study shows the variation in temperature that exists between light sources and bulb status. Overall, surgeons must realize and respect the potential complications associated with optical technology.
NASA Astrophysics Data System (ADS)
Zissis, Georges; Haverlag, Marco
2010-06-01
Light sources play an indispensable role in the daily life of any human being. Quality of life, health and urban security related to traffic and crime prevention depend on light and on its quality. In fact, every day approximately 30 billion electric light sources operate worldwide. These electric light sources consume almost 19% of worldwide electricity production. Finding new ways to light lamps is a challenge where the stakes are scientific, technological, economic and environmental. The production of more efficient light sources is a sustainable solution for humanity. There are many opportunities for not only enhancing the efficiency and reliability of lighting systems but also for improving the quality of light as seen by the end user. This is possible through intelligent use of new technologies, deep scientific understanding of the operating principles of light sources and knowledge of the varied human requirements for different types of lighting in different settings. A revolution in the domain of light source technology is on the way: high brightness light emitting diodes arriving in the general lighting market, together with organic LEDs (OLEDs), are producing spectacular advances. However, unlike incandescence, electrical discharge lamps are far from disappearing from the market. In addition, new generations of discharge lamps based on molecular radiators are becoming a reality. There are still many scientific and technological challenges to be raised in this direction. Diagnostics are important for understanding the fundamental mechanisms taking place in the discharge plasma. This understanding is an absolute necessity for system optimization leading to more efficient and high quality light sources. The studied medium is rather complex, but new diagnostic techniques coupled to innovative ideas and powerful tools have been developed in recent years. This cluster issue of seven papers illustrates these efforts. The selected papers cover all domains, from high to low pressure and dielectric barrier lamps, from breakdown to acoustic resonance. Especially in the domain of high pressure lamps, J J Curry shows how coherent and incoherent x-ray scattering can be used as an imaging technique adapted to lamps. J Hirsch et al treat the acoustic resonance phenomenon that seriously limits the frequency domain for high pressure lamp operation. M Jinno et al illustrate a method that allows for measuring Xe buffer gas pressure in Hg-free metal halide lamps for automotive applications. In the domain of low pressure lamps, M Gendre et al investigate the breakdown phase by means of optical and electrical diagnostic tools. The similarity rules used a long time ago for simulating plasma behaviour based on invariants are now serving as diagnostic tools, as shown in the paper by D Michael et al. N Dagang et al show how impurities can be detected in Hg-free electrodeless lamps and more particularly in dielectric barrier discharges emitting excimer radiation. The quality of light is illustrated by a final example by R Kozakov et al on how to qualify the light output from the lamp with respect to biological effects on humans.
NASA Technical Reports Server (NTRS)
Kim, Hyeon-Hye; Wheeler, Raymond M.; Sager, John C.; Yorio, Neil C.; Goins, Gregory D.
2005-01-01
The provision of sufficient light is a fundamental requirement to support long-term plant growth in space. Several types of electric lamps have been tested to provide radiant energy for plants in this regard, including fluorescent, high-pressure sodium, and metal halide lamps. These lamps vary in terms of spectral quality, which can result in differences in plant growth and morphology. Current lighting research for space-based plant culture is focused on innovative lighting technologies that demonstrate high electrical efficiency and reduced mass and volume. Among the lighting technologies considered for space are light-emitting diodes (LEDs). The combination of red and blue LEDs has proven to be an effective lighting source for several crops, yet the appearance of plants under red and blue lighting is purplish gray, making visual assessment of plant health difficult. Additional green light would make the plant leaves appear green and normal, similar to a natural setting under white light, and may also offer psychological benefits for the crew. The addition of 24% green light (500-600 nm) to red and blue LEDs enhanced the growth of lettuce plants compared with plants grown under cool white fluorescent lamps. Coincidentally, these plants grown under additional green light would have the additional aesthetic appeal of a green appearance.
Analysis of power supply circuits for electroluminescent panels
NASA Astrophysics Data System (ADS)
Drumea, Andrei; Dobre, Robert Alexandru
2016-12-01
The electroluminescent panel is a light emitting device that requires for normal operations alternative voltages with peak to peak amplitudes in 100V… 300V range and frequencies in 100Hz … 2 kHz range. Its advantages, when compared with standard light sources like incandescent lamps, gas-discharge lamps or light emitting diodes (LEDs), are lower power consumption, flexible substrate and uniform light without observable luminous points. One disadvantage of electroluminescent panels is the complex power supply required to drive them, but the continuous improvement in passive and active integrated devices for switched mode power supplies will eventually solve this issue. The present paper studies different topologies for these power supplies and the effect of the electric parameters like the amplitude, frequency, waveform of the supplying voltage on the light emission and on power consumption for electroluminescent panels with different size and colors.
The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source
Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; ...
2015-05-01
The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.
Hamada, T
1984-04-01
A method has been developed to measure the gain of the electro-oculogram (in volts per degree of eye rotation) which does not require the experimental subject to gaze at reference targets. The basis of the method is that the positional difference between the center of the entrance pupil and the corneal reflection of a light source is linearly related to the angle of eye rotation and is equal to zero when the pupillary axis of the eye is directed at the light source. The method has been validated in man and cat.
Ergonomics: The Forgotten Variable.
ERIC Educational Resources Information Center
Fitterman, L. Jeffrey
1998-01-01
Defines ergonomics and discusses design and environmental considerations. Suggests work-space requirements for: tables, chairs, monitor height, ambient noise and light, electricity, and environmental hazards. Includes sources for additional information related to ergonomic design. (AEF)
SeaWiFS technical report series. Volume 31: Stray light in the SeaWiFS radiometer
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Barnes, Robert A.; Holmes, Alan W.; Esaias, Wayne E.
1995-01-01
Some of the measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will not be useful as ocean measurements. For the ocean data set, there are procedures in place to mask the SeaWiFS measurements of clouds and ice. Land measurements will also be masked using a geographic technique based on each measurment's latitude and longitude. Each of these masks involves a source of light much brighter than the ocean. Because of stray light in the SeaWiFS radiometer, light from these bright sources can contaminate ocean measurements located a variable number of pixels away from a bright source. In this document, the sources of stray light in the sensor are examined, and a method is developed for masking measurements near bright targets for stray light effects. In addition, a procedure is proposed for reducing the effects of stray light in the flight data from SeaWiFS. This correction can also reduce the number of pixels masked for stray light. Without these corrections, local area scenes must be masked 10 pixels before and after bright targets in the along-scan direction. The addition of these corrections reduces the along-scan masks to four pixels before and after bright sources. In the along-track direction, the flight data are not corrected, and are masked two pixels before and after. Laboratory measurements have shown that stray light within the instrument changes in a direct ratio to the intensity of the bright source. The measurements have also shown that none of the bands show peculiarities in their stray light response. In other words, the instrument's response is uniform from band to band. The along-scan correction is based on each band's response to a 1 pixel wide bright sources. Since these results are based solely on preflight laboratory measurements, their successful implementation requires compliance with two additional criteria. First, since SeaWiFS has a large data volume, the correction and masking procedures must be such that they can be converted into computationally fast algorithms. Second, they must be shown to operate properly on flight data. The laboratory results, and the corrections and masking procedures that derive from them, should be considered as zeroeth order estimates of the effects that will be found on orbit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, H.E.; Lin, J.W. III; Macha, E.S.
1984-12-04
A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approachingmore » ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.« less
Polyplanar optical display electronics
NASA Astrophysics Data System (ADS)
DeSanto, Leonard; Biscardi, Cyrus
1997-07-01
The polyplanar optical display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid- state laser at 532 nm as its light source. To produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the digital micromirror device (DMD) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD chip is operated remotely from the Texas Instruments circuit board. We discuss the operation of the DMD divorced from the light engine and the interfacing of the DMD board with various video formats including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.
Limits on the maximum attainable efficiency for solid-state lighting
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Tsao, Jeffrey Y.; Ohno, Yoshi
2008-03-01
Artificial lighting for general illumination purposes accounts for over 8% of global primary energy consumption. However, the traditional lighting technologies in use today, i.e., incandescent, fluorescent, and high-intensity discharge lamps, are not very efficient, with less than about 25% of the input power being converted to useful light. Solid-state lighting is a rapidly evolving, emerging technology whose efficiency of conversion of electricity to visible white light is likely to approach 50% within the next years. This efficiency is significantly higher than that of traditional lighting technologies, with the potential to enable a marked reduction in the rate of world energy consumption. There is no fundamental physical reason why efficiencies well beyond 50% could not be achieved, which could enable even greater world energy savings. The maximum achievable luminous efficacy for a solid-state lighting source depends on many different physical parameters, for example the color rendering quality that is required, the architecture employed to produce the component light colors that are mixed to produce white, and the efficiency of light sources producing each color component. In this article, we discuss in some detail several approaches to solid-state lighting and the maximum luminous efficacy that could be attained, given various constraints such as those listed above.
Multispectral imaging of the ocular fundus using light emitting diode illumination
NASA Astrophysics Data System (ADS)
Everdell, N. L.; Styles, I. B.; Calcagni, A.; Gibson, J.; Hebden, J.; Claridge, E.
2010-09-01
We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.
Multispectral imaging of the ocular fundus using light emitting diode illumination.
Everdell, N L; Styles, I B; Calcagni, A; Gibson, J; Hebden, J; Claridge, E
2010-09-01
We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.
A squeezed light source operated under high vacuum
Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.
2015-01-01
Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616
A squeezed light source operated under high vacuum
NASA Astrophysics Data System (ADS)
Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.
2015-12-01
Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.
The tools of PDT: light sources and devices. Can they help in getting better therapeutic results?
NASA Astrophysics Data System (ADS)
Boucher, Didier
2011-08-01
PDT is a drug and device therapy using photosensitizing drugs activated by laser light, for tissue ablation. PDT light sources must deliver wavelengths matching the absorption of photosensitizers' compound without any side thermal effect. According to applications, these sources need to be: - pled to relatively small optical fibres so as to bring the light energy, of specific wavelength, inside of the body (gastroenterology, head & neck, urology, pneumology), - coupled to a slit lamp adapter to transmit the light to the eye (AMD) - or allow a direct illumination of tissues when large areas must be treated (dermatology). But they also need to be user-friendly with limited investment and installation costs. So as to achieve the required effects, several light sources are available and will be used but practical and economical reasons have limited the number and types of these sources. For PDT oncology applications, besides dermatology, it has also been necessary to develop specific light delivery systems based on optical fibres. These devices allow the treatment: - of circular lumens such as oesophagus, bile ducts, lungs - of solid volumes such as prostate, pancreas - of surfaces such as in head and neck - of empty volumes such as bladder, uterus, cervix. Due to the variety of these treatments, a full family of sources has been developed from original sophisticated costly lasers to more recent easy-to-use diode laser systems. The aim of this presentation is to present the actual state of the art of actual available PDT tools, analyze their qualities and weaknesses, analyze the consequences of a good and/or bad choice or good and/or bad utilization on the quality of the therapeutic results and resulting side effects. It will also evaluate the short and medium term developments of new tools and their effect on the development of the therapy including economical aspects.
Light ion production for a future radiobiological facility at CERN: Preliminary studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stafford-Haworth, Joshua, E-mail: Joshua.Stafford-Haworth@cern.ch; John Adams Institute at Royal Holloway, University of London, Egham, Surrey TW20 0EX; Bellodi, Giulia
2014-02-15
Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented alongmore » with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.« less
Light ion production for a future radiobiological facility at CERN: preliminary studies.
Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard
2014-02-01
Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.
Beyond crystallography: diffractive imaging using coherent x-ray light sources.
Miao, Jianwei; Ishikawa, Tetsuya; Robinson, Ian K; Murnane, Margaret M
2015-05-01
X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century. Copyright © 2015, American Association for the Advancement of Science.
A white super-stable source for the metrology of astronomical photometers
NASA Astrophysics Data System (ADS)
Wildi, F. P.; Deline, A.; Chazelas, B.
2015-09-01
The testing of photometers and in particular the testing of high precision photometers for the detection of planetary transits requires a light source which photometric stability is to par or better than the goal stability of the photometer to be tested. In the frame of the CHEOPS mission, a comprehensive calibration bench has been developed. Aside from measuring the sensibility of the CHEOPS payload to the different environmental conditions, this bench will also be used to test the relative accuracy of the payload. A key element of this bench is an extremely stable light source that is used to create an artificial star which is then projected into the payload's telescope. We present here the development of this payload and the performance achieved.
NASA Astrophysics Data System (ADS)
Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas
2016-02-01
Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.
NASA Astrophysics Data System (ADS)
Takeda, Shun; Kumagai, Hiroshi
2018-02-01
Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Brainard, G.; Salazar, G.; Johnston, S.; Schwing, B.; Litaker, H.; Kolomenski, A.; Venus, D.; Tran, K.; Hanifin, J.;
2017-01-01
NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial feedback to the crew. The research team for this grant used computer-based computational modeling and real-world lighting mockups to document the impact that light sources other than the ambient lighting system contribute to the ambient spectral lighting environment. In particular, the team was focused on understanding the impacts of long-term tasks located in front of avionics or computer displays. The team also wanted to understand options for mitigating the changes to the ambient light spectrum in the interest of maintaining the performance of a lighting countermeasure. The project utilized a variety of physical and computer-based simulations to determine direct relationships between system implementation and light spectrum. Using real-world data, computer models were built in the commercially available optics analysis software Zemax Optics Studio(c). The team also built a mockup test facility that had the same volume and configuration as one of the Zemax models. The team collected over 1200 spectral irradiance measurements, each representing a different configuration of the mockup. Analysis of the data showed a measurable impact on ambient light spectrum. This data showed that obvious design techniques exist that can be used to bind the ambient light spectrum closer to the planned spectral operating environment for the observer's eye point. The following observations should be considered when designing an operational environment that is dominated by computer displays. When more light is directed into the field of view of the observer, the greater the impact it will make on various human factors issues that depend on spectral shape and intensity. Because viewing angle has a large part to play in the amount of light flux on the crewmember's retina, beam shape, combined with light source location is an important factor for determining percent probable incident flux on the observer from any combination of light sources. Computer graphics design and display lumen output are major factors influencing the amount of spectrally intense light projected into the environment and in the viewer's direction. Use of adjustable white point display software was useful only if the predominant background color was white and if it matched the ambient light system's color. Display graphics that used a predominantly black background had the least influence on unplanned spectral energy projected into the environment. Percent reflectance makes a difference in total energy reflected back into an environment, and within certain architectural geometries, reflectance can be used to control the amount of a light spectrum that is allowed to perpetuate in the environment. Data showed that room volume and distance from significant light sources influence the total spectrum in a room. Smaller environments had a homogenizing effect on total light spectrum, whereas light from multiple sources in larger environments was less mixed. The findings indicated above should be considered when making recommendations for practice or standards for architectural systems. The ambient lighting system, surface reflectance, and display and indicator implementation all factor into the users' spectral environment. A variety of low-cost solutions exist to mitigate the impact of light from non-architectural lighting systems, and much potential for system automation and integration of display systems with the ambient environment. This team believes that proper planning can be used to avoid integration problems and also believes that human-in-the-loop evaluations, real-world test and measurement, and computer modeling can be used to determine how changes to a process, display graphics, and architecture will help maintain the planned spectral operating lighting environment.
NASA Astrophysics Data System (ADS)
Feng, Di; Yang, Xingpeng; Jin, Guofan; Yan, Yingbai; Fan, Shoushan
2006-01-01
Liquid crystal displays (LCDs) with edge-lit backlight systems offer several advantages, such as low energy consuming, low weight, and high uniformity of intensity, over traditional cathode-ray tube displays, and make them ideal for many applications including monitors in notebook personal computers, screens for TV, and many portable information terminals, such as mobile phones, personal digital assistants, etc. To satisfy market requirements for mobile and personal display panels, it is more and more necessary to modify the backlight system and make it thinner, lighter, and brighter all at once. In this paper, we have proposed a new integrated LGP based on periodic and aperiodic microprism structures by using polymethyl methacrylate material, which can be designed to control the illumination angle, and to get high uniformity of intensity. So the backlight system will be simplified to use only light sources and one LGP without using other optical sheets, such as reflection sheet, diffusion sheet and prism sheets. By using optimizing program and ray tracing method, the designed LGPs can achieve a uniformity of intensity better than 86%, and get a peak illumination angle from +400 to -200, without requiring other optical sheets. We have designed a backlight system with only one LED light source and one LGP, and other LGP design examples with different sizes (1.8 inches and 14.1 inches) and different light source (LED or CCFL), are performed also.
NASA Astrophysics Data System (ADS)
Treichel, Todd H.
Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized <70%. Findings from Phase 2 human factors testing showed no statistically significant evidence that the NASA approved ISS fluorescent lights or blue or white LEDs caused fatigue, eye strain and/or headache, when study participants perform detailed tasks of reading and assembling mechanical parts for an extended period of two uninterrupted hours. However, human subjects self-reported that blue LEDs provided the most white light and the favored light source over the white LED and the ISS fluorescent as a sole artificial light source for space travel. According to NASA standards, findings from this study indicate that LEDs meet criteria for the NASA TRL 7 rating, as study findings showed that commercial LED manufacturers passed the rigorous testing standards of suitability for space flight environments and human factor effects. Recommendations for future research include further testing for space flight using the basis of this study for replication, but reduce study limitations by 1) testing human subjects exposure to LEDs in a simulated space capsule environment over several days, and 2) installing and testing LEDs in space modules being tested for human spaceflight.
High Performance OLED Panel and Luminaire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, Jeffrey
2017-02-20
In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementarymore » light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.« less
N-Iodosuccinimide-Promoted Hofmann-Löffler Reactions of Sulfonimides under Visible Light.
O'Broin, Calvin Q; Fernández, Patricia; Martínez, Claudio; Muñiz, Kilian
2016-02-05
Conditions for an attractive and productive protocol for the position-selective intramolecular C-H amination of aliphatic groups (Hofmann-Löffler reaction) are reported employing sulfonimides as nitrogen sources. N-Iodosuccinimide is the only required promoter for this transformation, which is conveniently initiated by visible light. The overall transformation provides pyrrolidines under mild and selective conditions as demonstrated for 17 different substrates.
Simulation of multicomponent light source for optical-electronic system of color analysis objects
NASA Astrophysics Data System (ADS)
Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.
2016-04-01
Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, L. B.; Donohoe, S. P.; Jones, M. H.
This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less
600 eV falcon-linac thomson x-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, J K; LeSage, G P; Ditmire, T
2000-12-15
The advent of 3rd generation light sources such as the Advanced Light Source (ALS) at LBL, and the Advanced Photon Source at Argonne, have produced a revolution in x-ray probing of dense matter during the past decade. These machines use electron-synchrotrons in conjunction with undulator stages to produce 100 psec x-ray pulses with photon energies of several kiloelectronvolts (keV). The applications for x-ray probing of matter are numerous and diverse with experiments in medicine and biology, semiconductors and materials science, and plasma and solid state physics. In spite of the success of the 3rd generation light sources there is strongmore » motivation to push the capabilities of x-ray probing into new realms, requiring shorter pulses, higher brightness and harder x-rays. A 4th generation light source, the Linac Coherent Light Source (LCLS), is being considered at the Stanford Linear Accelerator [1]. The LCLS will produce multi-kilovolt x-rays of subpicosecond duration that are 10 orders of magnitude brighter than today's 3rd generation light sources.[1] Although the LCLS will provide unprecedented capability for performing time-resolved x-ray probing of ultrafast phenomena at solid densities, this machine will not be completed for many years. In the meantime there is a serious need for an ultrashort-pulse, high-brightness, hard x-ray source that is capable of probing deep into high-Z solid materials to measure dynamic effects that occur on picosecond time scales. Such an instrument would be ideal for probing the effects of shock propagation in solids using Bragg and Laue diffraction. These techniques can be used to look at phase transitions, melting and recrystallization, and the propagation of defects and dislocations well below the surface in solid materials. [2] These types of dynamic phenomena undermine the mechanical properties of metals and are of general interest in solid state physics, materials science, metallurgy, and have specific relevance to stockpile stewardship. Another x-ray diagnostic technique, extended x-ray absorption fine structure (EXAFS) spectroscopy, can be used to measure small-scale structural changes to understand the underlying atomic physics associated with the formation of defects. [2]« less
A flux calibration device for the SuperNova Integral Field Spectrograph (SNIFS)
NASA Astrophysics Data System (ADS)
Lombardo, Simona; Aldering, Greg; Hoffmann, Akos; Kowalski, Marek; Kuesters, Daniel; Reif, Klaus; Rigault, Michael
2014-07-01
Observational cosmology employing optical surveys often require precise flux calibration. In this context we present SNIFS Calibration Apparatus (SCALA), a flux calibration system developed for the SuperNova Integral Field Spectrograph (SNIFS), operating at the University of Hawaii 2.2 m telescope. SCALA consists of a hexagonal array of 18 small parabolic mirrors distributed over the face of, and feeding parallel light to, the telescope entrance pupil. The mirrors are illuminated by integrating spheres and a wavelength-tunable (from UV to IR) light source, generating light beams with opening angles of 1°. These nearly parallel beams are flat and flux-calibrated at a subpercent level, enabling us to calibrate our "telescope + SNIFS system" at the required precision.
High-power LED package requirements
NASA Astrophysics Data System (ADS)
Wall, Frank; Martin, Paul S.; Harbers, Gerard
2004-01-01
Power LEDs have evolved from simple indicators into illumination devices. For general lighting applications, where the objective is to light up an area, white LED arrays have been utilized to serve that function. Cost constraints will soon drive the industry to provide a discrete lighting solution. Early on, that will mean increasing the power densities while quantum efficiencies are addressed. For applications such as automotive headlamps & projection, where light needs to be tightly collimated, or controlled, arrays of die or LEDs will not be able to satisfy the requirements & limitations defined by etendue. Ultimately, whether a luminaire requires a small source with high luminance, or light spread over a general area, economics will force the evolution of the illumination LED into a compact discrete high power package. How the customer interfaces with this new package should be an important element considered early on in the design cycle. If an LED footprint of adequate size is not provided, it may prove impossible for the customer, or end user, to get rid of the heat in a manner sufficient to prevent premature LED light output degradation. Therefore it is critical, for maintaining expected LED lifetime & light output, that thermal performance parameters be defined, by design, at the system level, which includes heat sinking methods & interface materials or methdology.
Baran, Timothy M; Foster, Thomas H
2014-02-01
For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D90) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180-8080 J in order to deposit 90 J/cm(2) in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270-2350 J (333-1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485-3600 J were required, compared to ten flat cleaved fibers delivering 2780-3600 J. For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baran, Timothy M., E-mail: timothy.baran@rochester.edu; Foster, Thomas H.
Purpose: For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Methods: Treatment planning software for iPDT was developed based on graphics processing unit enhanced Montemore » Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D{sub 90}) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. Results: When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180–8080 J in order to deposit 90 J/cm{sup 2} in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270–2350 J (333–1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485–3600 J were required, compared to ten flat cleaved fibers delivering 2780–3600 J. Conclusions: For the same number of fibers, cylindrical diffusers allow for a shorter treatment duration compared to flat cleaved fibers. For the same energy delivered per fiber, diffusers allow for the insertion of fewer fibers in order to deliver the same light dose to a target volume.« less
NASA Astrophysics Data System (ADS)
Abbaszadeh, Shiva; Karim, Karim S.; Karanassios, Vassili
2013-05-01
Traditionally, samples are collected on-site (i.e., in the field) and are shipped to a lab for chemical analysis. An alternative is offered by using portable chemical analysis instruments that can be used on-site (i.e., in the field). Many analytical measurements by optical emission spectrometry require use of light-sources and of spectral lines that are in the Ultra-Violet (UV, ~200 nm - 400 nm wavelength) region of the spectrum. For such measurements, a portable, battery-operated, fiber-optic spectrometer equipped with an un-cooled, linear, solid-state detector may be used. To take full advantage of the advanced measurement capabilities offered by state-of-the-art solid-state detectors, cooling of the detector is required. But cooling and other thermal management hamper portability and use on-site because they add size and weight and they increase electrical power requirements. To address these considerations, an alternative was implemented, as described here. Specifically, a microfabricated solid-state detector for measurement of UV photons will be described. Unlike solid-state detectors developed on crystalline Silicon, this miniaturized and low-cost detector utilizes amorphous Selenium (a-Se) as its photosensitive material. Due to its low dark current, this detector does not require cooling, thus it is better suited for portable use and for chemical measurements on-site. In this paper, a microplasma will be used as a light-source of UV photons for the a-Se detector. For example, spectra acquired using a microplasma as a light-source will be compared with those obtained with a portable, fiber-optic spectrometer equipped with a Si-based 2080-element detector. And, analytical performance obtained by introducing ng-amounts of analytes into the microplasma will be described.
Gilmore, Adam Matthew
2014-01-01
Contemporary spectrofluorimeters comprise exciting light sources, excitation and emission monochromators, and detectors that without correction yield data not conforming to an ideal spectral response. The correction of the spectral properties of the exciting and emission light paths first requires calibration of the wavelength and spectral accuracy. The exciting beam path can be corrected up to the sample position using a spectrally corrected reference detection system. The corrected reference response accounts for both the spectral intensity and drift of the exciting light source relative to emission and/or transmission detector responses. The emission detection path must also be corrected for the combined spectral bias of the sample compartment optics, emission monochromator, and detector. There are several crucial issues associated with both excitation and emission correction including the requirement to account for spectral band-pass and resolution, optical band-pass or neutral density filters, and the position and direction of polarizing elements in the light paths. In addition, secondary correction factors are described including (1) subtraction of the solvent's fluorescence background, (2) removal of Rayleigh and Raman scattering lines, as well as (3) correcting for sample concentration-dependent inner-filter effects. The importance of the National Institute of Standards and Technology (NIST) traceable calibration and correction protocols is explained in light of valid intra- and interlaboratory studies and effective spectral qualitative and quantitative analyses including multivariate spectral modeling.
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav
2018-02-01
The mechanism in which multiple scattering influences the radiance of a night sky has been poorly quantified until recently, or even completely unknown from the theoretical point of view. In this paper, the relative contribution of higher-scattering radiances to the total sky radiance is treated analytically for all orders of scattering, showing that a fast and accurate numerical solution to the problem exists. Unlike a class of ray tracing codes in which CPU requirements increase tremendously with each new scattering mode, the solution developed here requires the same processor time for each scattering mode. This allows for rapid estimation of higher-scattering radiances and residual error that is otherwise unknown if these radiances remain undetermined. Such convergence testing is necessary to guarantee accuracy and the stability of the numerical predictions. The performance of the method developed here is demonstrated in a set of numerical experiments aiming to uncover the relative importance of higher-scattering radiances at different distances from a light source. We have shown, that multiple scattering effects are generally low if distance to the light source is below 30 km. At large distances the multiple scattering can become important at the dark sky elements situated opposite to the light source. However, the brightness at this part of sky is several orders of magnitude smaller than that of a glowing dome of light over a city, so we do not expect that a partial increase or even doubling the radiance of otherwise dark sky elements can noticeably affect astronomical observations or living organisms (including humans). Single scattering is an appropriate approximation to the sky radiance of a night sky in the vast majority of cases.
OLED lighting devices having multi element light extraction and luminescence conversion layer
Krummacher, Benjamin Claus; Antoniadis, Homer
2010-11-16
An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.
Power blue and green laser diodes and their applications
NASA Astrophysics Data System (ADS)
Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver
2013-03-01
InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.
NASA Astrophysics Data System (ADS)
Cacouris, Theodore; Rao, Rajasekhar; Rokitski, Rostislav; Jiang, Rui; Melchior, John; Burfeindt, Bernd; O'Brien, Kevin
2012-03-01
Deep UV (DUV) lithography is being applied to pattern increasingly finer geometries, leading to solutions like double- and multiple-patterning. Such process complexities lead to higher costs due to the increasing number of steps required to produce the desired results. One of the consequences is that the lithography equipment needs to provide higher operating efficiencies to minimize the cost increases, especially for producers of memory devices that experience a rapid decline in sales prices of these products over time. In addition to having introduced higher power 193nm light sources to enable higher throughput, we previously described technologies that also enable: higher tool availability via advanced discharge chamber gas management algorithms; improved process monitoring via enhanced on-board beam metrology; and increased depth of focus (DOF) via light source bandwidth modulation. In this paper we will report on the field performance of these technologies with data that supports the desired improvements in on-wafer performance and operational efficiencies.
Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew; ...
2017-08-01
The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring,more » the transition region was redesigned. The control system was also updated to NSLS-II specifications. As a result, this paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.« less
The Least-Squares Calibration on the Micro-Arcsecond Metrology Test Bed
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.
2006-01-01
The Space Interferometry Mission (S1M) will measure optical path differences (OPDs) with an accuracy of tens of picometers, requiring precise calibration of the instrument. In this article, we present a calibration approach based on fitting star light interference fringes in the interferometer using a least-squares algorithm. The algorithm is first analyzed for the case of a monochromatic light source with a monochromatic fringe model. Using fringe data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser source, the error in the determination of the wavelength is shown to be less than 10pm. By using a quasi-monochromatic fringe model, the algorithm can be extended to the case of a white light source with a narrow detection bandwidth. In SIM, because of the finite bandwidth of each CCD pixel, the effect of the fringe envelope can not be neglected, especially for the larger optical path difference range favored for the wavelength calibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew
The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring,more » the transition region was redesigned. The control system was also updated to NSLS-II specifications. As a result, this paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.« less
Why P/OF should look for evidences of over-dense structures in solar flare hard X-ray sources
NASA Technical Reports Server (NTRS)
Neidig, D. F.; Kane, S. R.; Love, J. J.; Cliver, E. W.
1986-01-01
White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that if the radiative losses in the optical continuum are powered by fast electrons directly heating the WLF source, then the column density constraints imposed by the finite range of the electrons requires that the WLF consist of an over-dense region in the chromosphere, with density exceeding 10 to the 14th power/cu cm. Thus, we recommend that P/OF search for evidences of over-dense structures in HXR images obtained simultaneously with optical observations of flares.
Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes.
Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C T Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei
2018-02-09
Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.
Planning Image-Based Measurements in Wind Tunnels by Virtual Imaging
NASA Technical Reports Server (NTRS)
Kushner, Laura Kathryn; Schairer, Edward T.
2011-01-01
Virtual imaging is routinely used at NASA Ames Research Center to plan the placement of cameras and light sources for image-based measurements in production wind tunnel tests. Virtual imaging allows users to quickly and comprehensively model a given test situation, well before the test occurs, in order to verify that all optical testing requirements will be met. It allows optimization of the placement of cameras and light sources and leads to faster set-up times, thereby decreasing tunnel occupancy costs. This paper describes how virtual imaging was used to plan optical measurements for three tests in production wind tunnels at NASA Ames.
2016-01-01
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination. PMID:28066690
Hölz, K; Lietard, J; Somoza, M M
2017-01-03
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.
The emission function of ground-based light sources: State of the art and research challenges
NASA Astrophysics Data System (ADS)
Solano Lamphar, Héctor Antonio
2018-05-01
To understand the night sky radiance generated by the light emissions of urbanised areas, different researchers are currently proposing various theoretical approaches. The distribution of the radiant intensity as a function of the zenith angle is one of the most unknown properties on modelling skyglow. This is due to the collective effects of the artificial radiation emitted from the ground-based light sources. The emission function is a key property in characterising the sky brightness under arbitrary conditions, therefore it is required by modellers, environmental engineers, urban planners, light pollution researchers, and experimentalists who study the diffuse light of the night sky. As a matter of course, the emission function considers the public lighting system, which is in fact the main generator of the skyglow. Still, another class of light-emitting devices are gaining importance since their overuse and the urban sprawl of recent years. This paper will address the importance of the emission function in modelling skyglow and the factors involved in its characterization. On this subject, the author's intention is to organise, integrate, and evaluate previously published research in order to state the progress of current research toward clarifying this topic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry
This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescentmore » lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... requires the submission of dimensional, electrical specification, and marking/designation information, as specified in appendix A and appendix B of this part, for original equipment replaceable light sources used in motor vehicle headlighting systems. [61 FR 20500, May 7, 1996] ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test themore » digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.« less
Solar cell and module performance assessment based on indoor calibration methods
NASA Astrophysics Data System (ADS)
Bogus, K.
A combined space/terrestrial solar cell test calibration method that requires five steps and can be performed indoors is described. The test conditions are designed to qualify the cell or module output data in standard illumination and temperature conditions. Measurements are made of the short-circuit current, the open circuit voltage, the maximum power, the efficiency, and the spectral response. Standard sunlight must be replicated both in earth surface and AM0 conditions; Xe lamps are normally used for the light source, with spectral measurements taken of the light. Cell and module spectral response are assayed by using monochromators and narrow band pass monochromatic filters. Attention is required to define the performance characteristics of modules under partial shadowing. Error sources that may effect the measurements are discussed, as are previous cell performance testing and calibration methods and their effectiveness in comparison with the behaviors of satellite solar power panels.
Miller, L. B.; Donohoe, S. P.; Jones, M. H.; ...
2015-04-22
This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less
OGLE-2015-BLG-1459L: The Challenges of Exo-moon Microlensing
NASA Astrophysics Data System (ADS)
Hwang, K.-H.; Udalski, A.; Bond, I. A.; Albrow, M. D.; Chung, S.-J.; Gould, A.; Han, C.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Collaboration; Pawlak, M.; Poleski, R.; Szymański, M. K.; Skowron, J.; Soszyński, I.; Mróz, P.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; OGLE Collaboration; Abe, F.; Asakura, Y.; Barry, R.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Miyazaki, S.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; MOA Collaboration
2018-06-01
We show that dense OGLE and KMTNet I-band survey data require four bodies (sources plus lenses) to explain the microlensing light curve of OGLE-2015-BLG-1459. However, these can equally well consist of three lenses and one source (3L1S), two lenses and two sources (2L2S), or one lens and three sources (1L3S). In the 3L1S and 2L2S interpretations, the host is a brown dwarf and the dominant companion is a Neptune-class planet, with the third body (in the 3L1S case) being a Mars-class object that could have been a moon of the planet. In the 1L3S solution, the light curve anomalies are explained by a tight (five stellar radii) low-luminosity binary source that is offset from the principal source of the event by ∼ 0.17 {au}. These degeneracies are resolved in favor of the 1L3S solution by color effects derived from comparison to MOA data, which are taken in a slightly different (R/I) passband. To enable current and future (WFIRST) surveys to routinely characterize exo-moons and distinguish among such exotic systems requires an observing strategy that includes both a cadence faster than 9 minute‑1 and observations in a second band on a similar timescale.
Color Choice is Everything - Impacts Color makes to the Lighting Environment
NASA Technical Reports Server (NTRS)
Clark, Toni A.
2012-01-01
When contracts are let out to design multiple systems in a vehicle, it is a challenge to maintain integration between system leads. Designers on niche systems, like lighting and control panel design, often get caught up in the challenge of designing the light source or visual interface and fail to include time in their schedule to work with system architects on how their lighting system will be integrated. Additionally, behavioral scientists, industrial designers, and materials engineers get caught up with the materials and look of the system, but often fail to consider how the selection of their materials could affect the certification or performance of electronic devices like lighting systems. Additionally, computer modeling of the system architecture often assumes a perfect environment without the clutter of actual human use (dirt, stowage, crowding). As a result, lighting systems, and backlit displays run the risk of being overdesigned or under designed. Engineers making the assumption that because they have no input or there is no requirement on work surface reflectance, make the assumption that they can t count on good material choices and thus may install more lighting than is necessary. While having more lights may seem better, for a vehicle that is trying to conserve power, more lights may not be a good option. On the other hand, designers who made the opposite assumption and designed a lighting system that only produced just enough light, often wind up with a system that did conserve power, but didn t produce enough light. These situations are exasperated when the system starts to be used and the models are not perfect anymore. The lack of coordination and iterative design not only can impact lighting levels within an environment, but also can affect color perception. This is because, if materials do not represent a gradation of white or black, the material unevenly absorbs and reflects light at different wavelengths of the visual spectrum. The lighting designer may have built a light that meets light spectra requirements, but the eventual light reaching the human user may not be the spectra of light architects intended, if materials near the light source change the spectrum just by how much color is absorbed or reflected. With the recent findings concerning Circadian rhythm, where the spectra of light is extremely important for addressing crew sleep and wake cycles, system architects should pay considerable attention on the impact material choices have in changing the light spectrum in an environment. This presentation will show examples of how material choices impact the resulting illuminance, color spectrum, and power usage of an illuminated space. Its goal is to encourage system designers and planners to use more care in development of requirements and the verification of systems intended for the human visual interface.
Multicolor white light-emitting diodes for illumination applications
NASA Astrophysics Data System (ADS)
Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.
2004-01-01
Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.
Tools for controlling protein interactions with light
Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.
2014-01-01
Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301
NASA Astrophysics Data System (ADS)
Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro
2018-05-01
We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.
Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE
2008-01-22
An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.
Aflatouni, Firooz; Hashemi, Hossein
2012-01-15
A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.
The 1.083 micron tunable CW semiconductor laser
NASA Technical Reports Server (NTRS)
Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng
1991-01-01
A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).
Diffuse-Illumination Systems for Growing Plants
NASA Technical Reports Server (NTRS)
May, George; Ryan, Robert
2010-01-01
Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation
Piasecki, Tomasz; Breadmore, Michael C; Macka, Mirek
2010-11-01
Although traditional lamps, such as deuterium lamps, are suitable for bench-top instrumentation, their compatibility with the requirements of modern miniaturized instrumentation is limited. This study investigates the option of utilizing solid-state light source technology, namely white LEDs, as a broad band spectrum source for spectrophotometry. Several white light LEDs of both RGB and white phosphorus have been characterized in terms of their emission spectra and energy output and a white phosphorus Luxeon LED was then chosen for demonstration as a light source for visible-spectrum spectrophotometry conducted in CE. The Luxeon LED was fixed onto the base of a dismounted deuterium (D(2) ) lamp so that the light-emitting spot was geometrically positioned exactly where the light-emitting spot of the original D(2) lamp is placed. In this manner, the detector of a commercial CE instrument equipped with a DAD was not modified in any way. As the detector hardware and electronics remained the same, the change of the deuterium lamp for the Luxeon white LED allowed a direct comparison of their performances. Several anionic dyes as model analytes with absorption maxima between 450 and 600 nm were separated by CE in an electrolyte of 0.01 mol/L sodium tetraborate. The absorbance baseline noise as the key parameter was 5 × lower for the white LED lamp, showing clearly superior performance to the deuterium lamp in the available, i.e. visible part of the spectrum. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lighting Control System for Premises with Display Screen Equipment
NASA Astrophysics Data System (ADS)
Kudryashov, A. V.
2017-11-01
The use of Display Screen Equipment (DSE) at enterprises allows one to increase the productivity and safety of production, minimize the number of personnel and leads to the simplification of the work of specialists, but on the other side, changes usual working conditions. If the personnel works with displays, visual fatigue develops more quickly which contributes to the emergence of nervous tension, stress and possible erroneous actions. Low interest of the lighting control system developers towards the rooms with displays is dictated by special requirements for coverage by sanitary and hygienic standards (limiting excess workplace illumination). We decided to create a combined lighting system which works considering daylight illumination and artificial light sources. The brightness adjustment of the LED lamps is carried out according to the DALI protocol, adjustment of the natural illumination by means of smart glasses. The technical requirements for a lighting control system, the structural-functional scheme and the algorithm for controlling the operation of the system have been developed. The elements of control units, sensors and actuators have been selected.
A Strong Shallow Heat Source in the Accreting Neutron Star MAXI J0556-332
NASA Astrophysics Data System (ADS)
Deibel, Alex; Cumming, Andrew; Brown, Edward F.; Page, Dany
2015-08-01
An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star’s crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is ≈4-10 MeV per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to ≈6-16 MeV. This shallow heating is still required to fit the light curve even after taking into account a second accretion episode, uncertainties in distance, and different surface gravities. The amount of shallow heating is larger than that inferred for other neutron star transients and is larger than can be supplied by nuclear reactions or compositionally driven convection; but it is consistent with stored mechanical energy in the accretion disk. The high crust temperature ({T}b≳ {10}9 {{K}}) makes its cooling behavior in quiescence largely independent of the crust composition and envelope properties, so that future observations will probe the gravity of the source. Fits to the light curve disfavor the presence of Urca cooling pairs in the crust.
Backscatter absorption gas imaging systems and light sources therefore
Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA
2006-12-19
The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.
The Impact of Environmental Light Intensity on Experimental Tumor Growth.
Suckow, Mark A; Wolter, William R; Duffield, Giles E
2017-09-01
Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10 6 B16F10 melanoma cells or 2.5×10 5 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (p<0.001 for melanoma; p≤0.01 for LCC) in middle light intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Driver circuit for solid state light sources
Palmer, Fred; Denvir, Kerry; Allen, Steven
2016-02-16
A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.
NASA Astrophysics Data System (ADS)
D'Astous, Y.; Blanchard, M.
1982-05-01
In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-1 General. This subpart contains requirements applicable to emergency power installations having...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-1 General. This subpart contains requirements applicable to emergency power installations having...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-1 General. This subpart contains requirements applicable to emergency power installations having...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-1 General. This subpart contains requirements applicable to emergency power installations having...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-1 General. This subpart contains requirements applicable to emergency power installations having...
Lightweight multi-carrier modulation for IoT
NASA Astrophysics Data System (ADS)
Hussein, Ahmed F.; Elgala, Hany
2018-01-01
Visible light communications (VLC) based on intensity-modulation with direct-detection (IM/DD) is a promising technology to offer broadband wireless Internet access. A VLC system based on the well-known multi-carrier orthogonal frequency-division multiplexing (OFDM) modulation has the potential to coexist with radio frequency (RF) technologies such as WiFi. Recently, the VLC technology is considered to enable wireless connectivity of resource limited devices, thus enabling the Internet-of-Things (IoT) vision. This paper presents a novel concept for modulating multiple light sources to realize a lightweight version of OFDM communication chain suitable for resource limited IoT devices. In such proposed system, different sinusoidal streams from an array of light sources are carrying the encoded OFDM time-domain samples, thus enabling the realization of the Fourier transformation in the optical domain. Accordingly, the fast Fourier transform (FFT) operation required for the demodulation at the receiver side is eliminated, which is crucial for resource limited IoT devices. In addition, the proposed concept, (1) offers the same spectral efficiency as the well-known asymmetrically clipped optical OFDM (ACO-OFDM), (2) reduces the bandwidth requirement from individual light sources, (3) reduces the peak-to-average power ratio (PAPR) of the signal formed and transmitted over the optical channel, and (4) supports simultaneous sensing applications using the different sinusoidal streams that are acting as unique beaconing signals. The proposed concept is numerically evaluated and compared with ACO-OFDM. The obtained results reveal a clear reduction in the PAPR with ˜ 5dB at a complementary cumulative distribution function (CCDF) of 10-2 and remarkable enhancement in bit-error performance.
NASA Technical Reports Server (NTRS)
Hashimoto, T.
1994-01-01
Artificial lighting is very important for experimental purposes, as well as for the practical use of plants when not enough sunlight is available. To grow green higher plants in their normal forms under artificial lighting constructing efficient and economically reasonable lighting systems is not an easy task. One possible approach would be to simulate sunlight in intensity and the radiation spectrum, but its high construction and running costs are not likely to allow its use in practice. Sunlight may be excessive in irradiance in some or all portions of the spectrum. Reducing irradiance and removing unnecessary wavebands might lead to an economically feasible light source. However, removing or reducing a particular waveband from sunlight for testing is not easy. Another approach might be to find the wavebands required for respective aspects of plant growth and to combine them in a proper ratio and intensity. The latter approach seems more practical and economical, and the aim of this Workshop lies in advancing this approach. I summarize our present knowledge on the waveband requirements of higher plants for the regions of blue, UV-A and UV-B.
The Chemistry and Perception of Fluorescent White Textile Materials
NASA Astrophysics Data System (ADS)
Xu, Changhai
Cationic bleach activators (CBA) are precursors to perhydroxyl compounds that, when activated, have higher oxidation potential and potentially improved bleaching performance compared to common oxidizing agents such as hydrogen peroxide. CBAs were first reported in 1997 by Proctor & Gamble Co., and have been further developed at North Carolina State University. To date, an effective low temperature bleaching system has not been developed that offers sufficient economic improvement over existing bleaching systems. The primary purpose of this research was to develop new methods and understand key variables required for achieving enhanced whiteness of textile materials using bleach activators with or without the presence of fluorescence. A new optimized low temperature bleaching system using novel lactam-based bleach activators was developed and the effect of UV content of light sources on the whiteness of fluorescent white textile materials was evaluated. A novel class of bleach activators was synthesized by introducing benzoylcaprolactam group into a stilbene system shown as follows:* While solubility, purification and hydrolytic stability of the compounds were problematic, a new approach to low pH (pH 7-9) and low temperature (50-70°C) bleaching was found using a butyrolactam-based cationic bleach activator, N-[4-(triethylammonio methyl)benzoyl]-butyrolactam chloride (TBBC), using a central composite design (CCD) of experiment. The CCD bleaching experiments showed that cationic bleach activators are less effective with high concentrations of hydrogen peroxide in high alkaline solutions. Also a 2FI model predicted the optimized bleaching performance on 100% cotton at near neutral pH and temperatures around 50°C, in which the dosage of TBBC is the most important factor affecting the bleaching performance. This prediction was validated experimentally during bleaching of bamboo and cotton fibers. In addition, this study confirmed the hypothesis that cationic bleach activators have inherent substantivity to cellulosic fibers and that the substantivity enhances bleach effectiveness. This cationic activated bleach system was effective for cotton bleaching and the bleaching performance is superior to that of conventional peroxide bleaching. TBBC was also applied to bamboo cellulosic fibers, which exhibit excessive strength loss during conventional hot bleaching. Under optimized conditions of 5 g/L TBBC, 50°C, 30 min and pH 7.0, TBBC-based bleaching of bamboo fibers produced CIE Whiteness Index (CIE WI) values of 58.20 compared to untreated bamboo which had CIE WI values of 10.77. Hence, the TBBC bleach activator method is effective at bleaching bamboo fibers. Besides chemical bleaching, the fluorescent whitening was another approach to increase the whiteness of materials. Since the whiteness of fluorescent white materials is produced by absorbing UV light and emitting visible blue light, the UV content of light sources has a significant effect on the perception of whiteness. This research addresses the common light sources used in color matching booths. The pilot data is collected by measuring spectral radiance and spectral irradiance, which is used for analysis of the UV effect on the whiteness of fluorescent white materials. The whitening performance of a fluorescent brightening agent (FBA) is dependent on the energy and intensity of the incident UV light. No data have been reported in the open literature that shows the UV emission of standard lamps used in viewing booths. Indeed, standards pertaining to lighting do not require or recommend the standardization of the UV content in any lamps. Hence, the spectroradiometric quantification of UV emission of a series of standard viewing booths is a requirement for establishment of a methodology to determine the effect of radiometric variability in standard sources on visual perception of fluorescent white materials. The radiance measurement data collected from measuring the radiance of light sources (including daylight simulation, incandescent, horizon daylight, cool white fluorescence, and Ultralume 30) in a SpectraLight III color viewing booth and the irradiance of these light sources over a PTFE diffuse reflectance standard, AATCC textile UV calibration standard and some fluorescent whitened fabric samples showed the inadequacy of UV content of these light sources in the SpectraLight III. *Please refer to dissertation for diagram.
Electronic Flash In Data Acquisition
NASA Astrophysics Data System (ADS)
Miller, C. E.
1982-02-01
Photographic acquisition of data often may be simplified, or the data quality improved upon by employing electronic flash sources with traditional equipment or techniques. The relatively short flash duration compared to movie camera shutters, or to the long integration time of video camera provides improved spatial resolution through blur reduction, particularly important as image movement becomes a significant fraction of film format dimension. Greater accuracy typically is achieved in velocity and acceleration determinations by using a stroboscopic light source rather than a movie camera frame-rate control as a time standard. Electrical efficiency often is an important advantage of electronic flash sources since almost any necessary light level for exposure may be produced, yet the source typically is "off" most of the time. Various synchronization techniques greatly expand the precise control of exposure. Biomechanical and sports equipment studies may involve velocities up to 200 feet-per-second, and often will have associated very rapid actions of interest. The need for brief exposures increases H.s one "ZOOMS in on the action." In golf, for example, the swing may be examined using 100 microsecond (Us) flashes at rates of 60 or 120 flashes-per-second (FPS). Accurate determination of linear and rotational velocity of the ball requires 10 Us flashes at 500-1,000 FPS, while sub-Us flashes at 20,000-50,000 FPS are required to resolve the interaction of the ball and the club, head. Some seldom. used techniques involving streak photography are described, with enhanced results obtained by combining strobe with the usual continuous light source. The combination of strobe and a fast electro-mechanical shutter is considered for Us photography under daylight conditions.
Position Index for the Matrix Light Source
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Kobayashi, Yoshinori; Onda, Shou; Irikura, Takashi
It is expected that in the future white LEDs will be widely used in practical applications including replacing conventional lighting in offices and homes. The white LED light source of matrix arrangement is also considered in it. On the other hand, although now the unified glare rating (UGR) is widely used for evaluation of the discomfort glare of the interior lighting, UGR is a thing for a uniform light source, and its application to the matrix light sources that have non-uniform luminance has not been considered. The aim of this study is to clarify the position index which is one of element of UGR for the matrix light source. In this case, to apply the position index for a matrix light source to UGR, the concept of the revised position index is invented. As the preliminary experiment, method for measuring the position index was conducted, and as the experiment, position index for the matrix light source was conducted and compared with the uniform light source. The results of the experiments show that the position index is decided by the relative angle between line of sight and light source. It is also found that the matrix light source have larger position index than uniform light source. Furthermore, it is shown that the discomfort glare caused by a matrix light source can be evaluated by applying the revised position index to the UGR.
Utility and safety of a novel surgical microscope laser light source
Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi
2018-01-01
Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016
NASA Astrophysics Data System (ADS)
Uchida, Yuji; Taguchi, Tsunemasa
2003-07-01
We have performed theoretical studies on the luminous characeristics of white LED light source which composed of multi phosphors and near ultraviolet (UV) LED for general lighting. White LED source for general lighting applications requires the conditions that have high-flux, high luminous efficacy of radiation (> 100 lm/W) in addition to high color rendering index (Ra > 90) and variable color temperatures. Recently, we have proposed a novel type white LED based on multi phosphors and near UV LED system in order to high-Ra (>93). We will describe the excellent luminescence properties of white LED consisting of orange (O), yellow (Y), green (G) and blue (B) phosphor materials, and near UV LED. The color spectral contributions of individual phosphor-coated LED are theoretically analyzed using our multi LED lighting theory calculated the maximum luminous efficacy can be estimated to be approximately 300 lm/W having a high Ra of about 90 taking into account individual radiation spectrum. Illuminance distribution of white LED is in fairly good agreement with the experimental data.
Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications.
Scarangella, Adriana; Fabbri, Filippo; Reitano, Riccardo; Rossi, Francesca; Priolo, Francesco; Miritello, Maria
2017-12-11
Due to the great development of light sources for several applications from displays to lighting, great efforts are devoted to find stable and efficient visible emitting materials. Moreover, the requirement of Si compatibility could enlarge the range of applications inside microelectronic chips. In this scenario, we have studied the emission properties of bismuth doped yttrium oxide thin films grown on crystalline silicon. Under optical pumping at room temperature a stable and strong visible luminescence has been observed. In particular, by the involvement of Bi ions in the two available lattice sites, the emission can be tuned from violet to green by changing the excitation wavelength. Moreover, under electron beam at low accelerating voltages (3 keV) a blue emission with high efficiency and excellent stability has been recorded. The color is generated by the involvement of Bi ions in both the lattice sites. These peculiarities make this material interesting as a luminescent medium for applications in light emitting devices and field emission displays by opening new perspectives for the realization of silicon-technology compatible light sources operating at room temperature.
Calibration requirements and methodology for remote sensors viewing the ocean in the visible
NASA Technical Reports Server (NTRS)
Gordon, Howard R.
1987-01-01
The calibration requirements for ocean-viewing sensors are outlined, and the present methods of effecting such calibration are described in detail. For future instruments it is suggested that provision be made for the sensor to view solar irradiance in diffuse reflection and that the moon be used as a source of diffuse light for monitoring the sensor stability.
Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors
NASA Astrophysics Data System (ADS)
Bicanic, Kristopher T.
This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.
Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications
NASA Astrophysics Data System (ADS)
Chubenko, Oksana; Afanasev, Andrei
2017-01-01
At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... Generator as the Sole Emergency Power Source § 112.35-1 General. This subpart contains requirements applicable to emergency power installations having a manually controlled storage battery, diesel engine, or...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... Generator as the Sole Emergency Power Source § 112.35-1 General. This subpart contains requirements applicable to emergency power installations having a manually controlled storage battery, diesel engine, or...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... Generator as the Sole Emergency Power Source § 112.35-1 General. This subpart contains requirements applicable to emergency power installations having a manually controlled storage battery, diesel engine, or...
At grade optical crossover for monolithic optial circuits
NASA Technical Reports Server (NTRS)
Jamieson, Robert S. (Inventor)
1983-01-01
Planar optical circuits may be made to cross through each other, (thus eliminating extra steps required to fabricate elevated, nonintersecting crossovers) by control of the dimensions of the crossing light conductors (10, 12) to be significantly greater than d=0.89.lambda. and the angle of crossing as nearly 90.degree. as conveniently possible. A light trap may be provided just ahead of the intersection to trap any light being reflected in the source conductor at angles greater than about 45.degree.. The light trap may take the form of triangular shaped portions (16a, 16b) on each side of the source conductor with the far side of the triangular portion receiving incident light at an angle so that incident light will be reflected to the other side, or it may take the form of windows (18a, 18b) in place of the triangular portions. Planar optical circuit boards (21-23) may be fabricated and stacked to form a keyboard (20) with intersecting conductors (26-29) and keyholes (0-9) where conductors merge at the broad side of the circuit boards. These keyholes may be prearranged to form an array or matrix of keyholes.
NASA Technical Reports Server (NTRS)
Bolin, Kenneth (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Miklus, Kenneth (Inventor); Kissh, Frank (Inventor); Abreu, Rene (Inventor)
1993-01-01
A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.
MPPT Algorithm Development for Laser Powered Surveillance Camera Power Supply Unit
NASA Astrophysics Data System (ADS)
Zhang, Yungui; Dushantha Chaminda, P. R.; Zhao, Kun; Cheng, Lin; Jiang, Yi; Peng, Kai
2018-03-01
Photovoltaics (PV) cells, modules which are semiconducting materials, convert light energy into electricity. Operation of a PV cell requires 3 basic features. When the light is absorbed it generate pairs of electron holes or excitons. An external circuit carrier opposite types of electrons irrespective of the source (sunlight or LASER light). The PV arrays have photovoltaic effect and the PV cells are defined as a device which has electrical characteristics: such as current, voltage and resistance. It varies when exposed to light, that the power output is depend on direct Laser-light. In this paper Laser-light to electricity by direct conversion with the use of PV cells and its concept of Band gap Energy, Series Resistance, Conversion Efficiency and Maximum Power Point Tracking (MPPT) methods [1].
Non-contact pumping of light emitters via non-radiative energy transfer
Klimov, Victor I.; Achermann, Marc
2010-01-05
A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.
Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert
2009-03-10
In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.
BRDF invariant stereo using light transport constancy.
Wang, Liang; Yang, Ruigang; Davis, James E
2007-09-01
Nearly all existing methods for stereo reconstruction assume that scene reflectance is Lambertian and make use of brightness constancy as a matching invariant. We introduce a new invariant for stereo reconstruction called light transport constancy (LTC), which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions (BRDFs)). This invariant can be used to formulate a rank constraint on multiview stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies. In addition, we show that this multiview constraint can be used with as few as two cameras and two lighting configurations. Unlike previous methods for BRDF invariant stereo, LTC does not require precisely configured or calibrated light sources or calibration objects in the scene. Importantly, the new constraint can be used to provide BRDF invariance to any existing stereo method whenever appropriate lighting variation is available.
Determination of X-ray flux using silicon pin diodes
Owen, Robin L.; Holton, James M.; Schulze-Briese, Clemens; Garman, Elspeth F.
2009-01-01
Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced. PMID:19240326
Joule-Thief Circuit Performance for Electricity Energy Saving of Emergency Lamps
NASA Astrophysics Data System (ADS)
Nuryanto Budisusila, Eka; Arifin, Bustanul
2017-04-01
The alternative energy such as battery as power source is required as energy source failures. The other need is outdoor lighting. The electrical power source is expected to be a power saving, optimum and has long life operating. The Joule-Thief circuit is one of solution method for energy saving by using raised electromagnetic force on cored coil when there is back-current. This circuit has a transistor operated as a switch to cut voltage and current flowing along the coils. The present of current causing magnetic induction and generates energy. Experimental prototype was designed by using battery 1.5V to activate Light Emitting Diode or LED as load. The LED was connected in parallel or serial circuit configuration. The result show that the joule-thief circuit able to supply LED circuits up to 40 LEDs.
Personal projection with Ujoy technology
NASA Astrophysics Data System (ADS)
Moench, Holger; Mackens, Uwe; Pekarski, Pavel; Ritz, Arnd; S'heeren, Griet; Verbeek, Will
2007-02-01
Personal projection is a new way to use projectors for gaming, entertainment or photo projection. The requirements for this new category have been defined based on market research with focus groups. A screen brightness of 200-300lm out of compact and affordable devices is a must. In order to reach this performance a very bright light source is at least as important as for professional projectors. The new 50W Ujoy lamp system with 1mm arc enables efficient projection systems. Lower cooling requirements, the potential for battery operation and the low voltage input makes it the ideal source for this new category of projectors.
NASA Astrophysics Data System (ADS)
Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.
2018-02-01
A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.
Lanoue, Jason; Leonardos, Evangelos D.; Ma, Xiao; Grodzinski, Bernard
2017-01-01
Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato (Solanum lycopersicum) leaves under short-term illumination and lisianthus (Eustoma grandiflorum) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H2O and CO2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production. PMID:28676816
Lanoue, Jason; Leonardos, Evangelos D; Ma, Xiao; Grodzinski, Bernard
2017-01-01
Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato ( Solanum lycopersicum ) leaves under short-term illumination and lisianthus ( Eustoma grandiflorum ) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H 2 O and CO 2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO 2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.
Maisch, Tim; Moor, Anne C E; Regensburger, Johannes; Ortland, Christoph; Szeimies, Rolf-Markus; Bäumler, Wolfgang
2011-02-01
Successful photodynamic therapy (PDT) requires a light source by which light is absorbed by the photosensitizer. Such absorption is achieved by adapting the emission spectrum of the lamp to the absorption-spectrum of the photosensitizer. Intense pulsed light sources (IPLs) are widely used in dermatology, but a standardized protocol for IPL-PDT is not available. Five different IPLs were chosen to evaluate their efficacy for PDT in vitro and the possibility for developing a standard protocol for PDT. Emission-spectra of IPLs were measured with an optical spectrograph and compared with the absorption spectrum of protoporphyrine IX (PpIX). Keratinocytes were incubated with 5-ALA and illuminated with the IPLs. Cell viability was determined for radiant exposures ranging from 0 to 504 J/cm(2) and pulse durations from 8 to 100 milliseconds. A standard LED light source was used as a reference. Cell viability is less effectively reduced by 5-ALA-PDT with IPLs than by a LED light source. Radiant exposures of the five IPLs ranged between 80 and 311 J/cm(2) to achieve the EC(50) value. This value correlated with the spectral overlap of the respective IPL and the absorption-spectrum of PpIX but not with the cut-off filter notations supplied by the manufacturer. All IPLs assessed emit different spectra because of different filter technologies. Different radiant exposures (J/cm(2) ) were necessary to achieve a photodynamic effect with 5-ALA in vitro depending on these spectra similar to the photodynamic effect of the standard LED light source. IPLs may be applicable in clinical PDT but radiant exposure protocols must be separately evaluated for each single IPL despite similar cut-off filter specifications. Such protocols are highly important for clinical practice to avoid a potential mismatch of excitation wavelengths and to prevent photothermal side effects when light intensities of up to hundreds of W/cm(2) are applied. Copyright © 2011 Wiley-Liss, Inc.
The laser control of the muon g -2 experiment at Fermilab
Anastasi, A.; Anastasio, A.; Avino, S.; ...
2017-11-09
Here, we present that the Muon g-2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, a μ = (g μ-2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state-of-art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale. The calibration system is composed ofmore » six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons. A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance. Here we present and discuss the main features of the Laser Control board.« less
The laser control of the muon g -2 experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasi, A.; Anastasio, A.; Avino, S.
Here, we present that the Muon g-2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, a μ = (g μ-2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state-of-art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale. The calibration system is composed ofmore » six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons. A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance. Here we present and discuss the main features of the Laser Control board.« less
Visconti, Paolo; Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe
2017-01-01
This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV-vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2 +∙ and MWCNT - , easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.
Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe
2017-01-01
This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples. PMID:28144572
NASA Technical Reports Server (NTRS)
1997-01-01
A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.
Polyplanar optical display electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, L.; Biscardi, C.
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.« less
NASA Technical Reports Server (NTRS)
Verkhoutseva, E. T.; Yaremenko, E. I.
1974-01-01
An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.
Satter, R L; Wetherell, D F
1968-06-01
When Sinningia plants were grown with fluorescent light of photosynthetic intensity for 8 hours each day, stems became abnormally elongated when the P(FR) level was lowered by far red light given during the last half of several consecutive nights. However, plants were even taller if the source also emitted red light. Elongation was independent of the red/far red energy ratio if it was lower than one, but dependent upon irradiance at all values tested.Elongation of plants irradiated by a well filtered far red source was presumed to be limited by a shortage of respiratory substrate. Enhancement by radiation shorter than 700 mmu was attributed to promotion of processes leading to increased substrate supply. Protochlorophyllide was regarded as the primary photoreceptor. Its photoreduction promoted chlorophyll synthesis which, in turn, increased photosynthetic capacity and thus substrate supply.
NASA Astrophysics Data System (ADS)
Lieu, Richard
2018-01-01
A hierarchy of statistics of increasing sophistication and accuracy is proposed, to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level, with the help of high precision computers, to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the bolometric flux measurement of a radio source.
Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations
NASA Astrophysics Data System (ADS)
Ahn, Kyungjin
2015-02-01
We present a novel method to implement time-delayed propagation of radiation fields in cosmo-logical radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative trans-fer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary and a Final Emergency Power Source § 112.20-1 General. This subpart contains requirements applicable to emergency power installations having both a temporary and a final...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary and a Final Emergency Power Source § 112.20-1 General. This subpart contains requirements applicable to emergency power installations having both a temporary and a final...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary and a Final Emergency Power Source § 112.20-1 General. This subpart contains requirements applicable to emergency power installations having both a temporary and a final...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary and a Final Emergency Power Source § 112.20-1 General. This subpart contains requirements applicable to emergency power installations having both a temporary and a final...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having a Temporary and a Final Emergency Power Source § 112.20-1 General. This subpart contains requirements applicable to emergency power installations having both a temporary and a final...
Retrieval of Garstang's emission function from all-sky camera images
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav; Solano Lamphar, Héctor Antonio; Kundracik, František
2015-10-01
The emission function from ground-based light sources predetermines the skyglow features to a large extent, while most mathematical models that are used to predict the night sky brightness require the information on this function. The radiant intensity distribution on a clear sky is experimentally determined as a function of zenith angle using the theoretical approach published only recently in MNRAS, 439, 3405-3413. We have made the experiments in two localities in Slovakia and Mexico by means of two digital single lens reflex professional cameras operating with different lenses that limit the system's field-of-view to either 180º or 167º. The purpose of using two cameras was to identify variances between two different apertures. Images are taken at different distances from an artificial light source (a city) with intention to determine the ratio of zenith radiance relative to horizontal irradiance. Subsequently, the information on the fraction of the light radiated directly into the upward hemisphere (F) is extracted. The results show that inexpensive devices can properly identify the upward emissions with adequate reliability as long as the clear sky radiance distribution is dominated by a largest ground-based light source. Highly unstable turbidity conditions can also make the parameter F difficult to find or even impossible to retrieve. The measurements at low elevation angles should be avoided due to a potentially parasitic effect of direct light emissions from luminaires surrounding the measuring site.
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
NASA Astrophysics Data System (ADS)
DeSanto, Leonard
1998-09-01
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMDTM) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMDTM divorced from the light engine and the interfacing of the DMDTM board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.
Eternal triangle: the interaction of light source, electrical control gear, and optics
NASA Astrophysics Data System (ADS)
S'heeren, Griet
1998-04-01
In this particular 'affair' the participants are less than human but have individual personalities they bring to their relationship with each other. High pressure metal halide lamps such as BriteArc lamps have the highest luminance and radiance of all continuously operating practical light source. Since these lamps have short arcs and are available in power ratings from about 30W to 30kW they have found applications with various optical systems. Besides the lamps, such systems include an electrical control device and an optical system. To fulfil the user's requirements for a specific application, it is not only important to choose the right lamp, but crucial to achieve a harmonious marriage between the light source, electrical control device and the optics. To run a high pressure discharge lamp an ignitor/ballast system is essential This stabilizes the lamp parameters. The chemical components inside the lamp determine the lamp voltage and the gear determines, via the current, the lamp power. These are directly related in the luminance and color temperature of the emitted light. Therefore lamp performance and effective life are dependent on the ignitor, control gear and lamp combination. Since the lamp emits radiation in all directions, collection of the light from a lamp can be improved by using reflectors to deliver the light into a lens system. Since lamps with short arc gaps approach a point source they appear ideal for optical system applications. The shape of the reflector and the focusing of the lamp determine which part of the light is collected out of the light-arc. In the case of an LCD projector, the final light output also depends on the transmission characteristics of the LCD panels. Their nonlinearity causes the color of the emitted light to be different from the lamp color. All these parameters have to be optimized to obtain the highest performance. This leads to the conclusion that a carefully matched combination of lamp, ignitor/ballast and optics should guarantee the best system performance. This paper sets out to provide some guidelines on attempting to achieve a harmonious relationship between the three partners in this particular eternal triangle.
Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification
NASA Technical Reports Server (NTRS)
Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian A.; Richards, Jeffrey T.
2014-01-01
Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure.
Can the relativistic light-bending model explain X-ray spectral variations of Seyfert galaxies?
NASA Astrophysics Data System (ADS)
Mizumoto, Misaki; Moriyama, Kotaro; Ebisawa, Ken; Mineshige, Shin; Kawanaka, Norita; Tsujimoto, Masahiro
2018-04-01
Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features: (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band has low variability, which produces a broad and deep dip in the root-mean-square (rms) spectra, and (3) photons in this band have time lags behind those in the adjacent energy bands with amplitudes of several Rg/c, where Rg is the gravitational radius. The "relativistic light-bending model" is proposed to explain these observed features, where a compact X-ray source ("lamp post") above an extreme Kerr black hole illuminates the innermost area of the accretion disc. In this paper, we critically examine the relativistic light-bending model by computing the rms spectra and the lag features using a ray-tracing technique, when a lamp post moves vertically on the black hole spin axis. As a result, we found that the observed deep rms dip requires that the iron is extremely overabundant (≳10 solar), whereas the observed lag amplitude is consistent with the normal iron abundance. Furthermore, disappearance of the lag in the high-flux state requires a source height as high as ˜40 Rg, which contradicts the relativistically broad emission line feature. Our simulations agree with the data that the reverberation feature moves to lower frequencies with larger source height; however, if this scenario is correct, the simulations predict the detection of a clear Fe-K lag at low frequencies, which is not constrained in the data. Therefore, we conclude that the relativistic light-bending model may not explain the characteristic Fe-K spectral variations in Seyfert galaxies.
Can the relativistic light-bending model explain X-ray spectral variations of Seyfert galaxies?
NASA Astrophysics Data System (ADS)
Mizumoto, Misaki; Moriyama, Kotaro; Ebisawa, Ken; Mineshige, Shin; Kawanaka, Norita; Tsujimoto, Masahiro
2018-06-01
Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features: (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band has low variability, which produces a broad and deep dip in the root-mean-square (rms) spectra, and (3) photons in this band have time lags behind those in the adjacent energy bands with amplitudes of several Rg/c, where Rg is the gravitational radius. The "relativistic light-bending model" is proposed to explain these observed features, where a compact X-ray source ("lamp post") above an extreme Kerr black hole illuminates the innermost area of the accretion disc. In this paper, we critically examine the relativistic light-bending model by computing the rms spectra and the lag features using a ray-tracing technique, when a lamp post moves vertically on the black hole spin axis. As a result, we found that the observed deep rms dip requires that the iron is extremely overabundant (≳10 solar), whereas the observed lag amplitude is consistent with the normal iron abundance. Furthermore, disappearance of the lag in the high-flux state requires a source height as high as ˜40 Rg, which contradicts the relativistically broad emission line feature. Our simulations agree with the data that the reverberation feature moves to lower frequencies with larger source height; however, if this scenario is correct, the simulations predict the detection of a clear Fe-K lag at low frequencies, which is not constrained in the data. Therefore, we conclude that the relativistic light-bending model may not explain the characteristic Fe-K spectral variations in Seyfert galaxies.
Heating device for semiconductor wafers
Vosen, Steven R.
1999-01-01
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.
Heating device for semiconductor wafers
Vosen, S.R.
1999-07-27
An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.
1997-01-01
A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. "A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back," said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.
Modular wide spectrum lighting system for diagnosis, conservation, and restoration
NASA Astrophysics Data System (ADS)
Miccoli, Matteo; Melis, Marcello
2013-05-01
In the framework of imaging, lighting systems have always played a key role due to the primary importance of both the uniformity of the illumination and the richness of the emitted spectra. Multispectral imaging, i.e. imaging systems working inside and outside the visible wavelength range, are even more demanding and require to pay further attention to a number of parameters characterizing the lighting system. A critical issue for lighting systems, even in the visible light, is the shape of the emitted spectra and (only in the visible range) the Color Rendering Index. The color we perceive from a surface is our eyes' interpretation of the linear spectral combination of the illuminant spectrum and the surface spectral reflectance. If there is a lack of energy in a portion of the visible spectrum, that portion will turn into black to our eyes (and to whatever instrument) regardless the actual reflectance of the surface. In other words a lack in the exciting energy hides part of the spectral reflectance of the observed subject. Furthermore, the wider is the investigated spectrum, the fewer are the sources of light able to cover such a range. In this paper we show how we solved both the problems of the not uniformity of the light beam, independently on the incident angle, and of the selection of a light source with energy rich and continuous enough emitted spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayan, Kamran; Rabut, Claire; Kong, Xiaoqing
The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) upmore » to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.« less
NASA Technical Reports Server (NTRS)
Fork, Richard L.
2001-01-01
The objective was to assess the feasibility of safely collecting solar power at geostationary orbit and delivering it to earth. A strategy which could harness a small fraction of the millions of gigawatts of sunlight passing near earth could adequately supply the power needs of earth and those of space exploration far into the future. Light collected and enhanced both spatially and temporally in space and beamed to earth provides probably the only practical means of safe and efficient delivery of this space solar power to earth. In particular, we analyzed the feasibility of delivering power to sites on earth at a comparable intensity, after conversion to a usable form, to existing power needs. Two major obstacles in the delivery of space solar power to earth are safety and the development of a source suitable for space. We focused our approach on: (1) identifying system requirements and designing a strategy satisfying current eye and skin safety requirements; and (2) identifying a concept for a potential space-based source for producing the enhanced light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meichner, Christoph, E-mail: christoph.meichner@uni-bayreuth.de; Kador, Lothar, E-mail: lothar.kador@uni-bayreuth.de; Schedl, Andreas E.
2015-08-15
We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard{sup ®} 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidthmore » of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025{sup ∘} results in an error of the refractive index of typically ±5 ⋅ 10{sup −4}. Information on the sample thickness is not required.« less
Adaptation of commercial microscopes for advanced imaging applications
NASA Astrophysics Data System (ADS)
Brideau, Craig; Poon, Kelvin; Stys, Peter
2015-03-01
Today's commercially available microscopes offer a wide array of options to accommodate common imaging experiments. Occasionally, an experimental goal will require an unusual light source, filter, or even irregular sample that is not compatible with existing equipment. In these situations the ability to modify an existing microscopy platform with custom accessories can greatly extend its utility and allow for experiments not possible with stock equipment. Light source conditioning/manipulation such as polarization, beam diameter or even custom source filtering can easily be added with bulk components. Custom and after-market detectors can be added to external ports using optical construction hardware and adapters. This paper will present various examples of modifications carried out on commercial microscopes to address both atypical imaging modalities and research needs. Violet and near-ultraviolet source adaptation, custom detection filtering, and laser beam conditioning and control modifications will be demonstrated. The availability of basic `building block' parts will be discussed with respect to user safety, construction strategies, and ease of use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.
Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves themore » development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.« less
Smart lighting using a liquid crystal modulator
NASA Astrophysics Data System (ADS)
Baril, Alexandre; Thibault, Simon; Galstian, Tigran
2017-08-01
Now that LEDs have massively invaded the illumination market, a clear trend has emerged for more efficient and targeted lighting. The project described here is at the leading edge of the trend and aims at developing an evaluation board to test smart lighting applications. This is made possible thanks to a new liquid crystal light modulator recently developed for broadening LED light beams. The modulator is controlled by electrical signals and is characterized by a linear working zone. This feature allows the implementation of a closed loop control with a sensor feedback. This project shows that the use of computer vision is a promising opportunity for cheap closed loop control. The developed evaluation board integrates the liquid crystal modulator, a webcam, a LED light source and all the required electronics to implement a closed loop control with a computer vision algorithm.
Optimization of Dynamic Aperture of PEP-X Baseline Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Min-Huey; /SLAC; Cai, Yunhai
2010-08-23
SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. Themore » latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.« less
Visual Method for Detecting Contaminant on Dried Nutmeg Using Fluorescence Imaging
NASA Astrophysics Data System (ADS)
Dahlan, S. A.; Ahmad, U.; Subrata, I. D. M.
2018-05-01
Traditional practice of nutmeg sun-drying causes some fungi such as Aspergillus flavus to grow. One of the secondary metabolites of A. flavus named aflatoxin (AFs) is known to be carcinogenic, so the dried nutmeg kernel must be aflatoxin-free in the trading. Aflatoxin detection requires time and costly, make it difficult to conduct at the farmers level. This study aims to develop a simple and low-cost method to detect aflatoxin at the farmer level. Fresh nutmeg seeds were dried in two ways; sundried everyday (continuous), and sundried every two days (intermittent), both for around 18 days. The dried nutmeg seeds are then stored in a rice sack under normal conditions until the fungi grow, then they were opened and the images of kernels were captured using a CCD camera, with normal light and UV light sources. Visual observation on images captured in normal light source was able to detect the presence of fungi on dried kernels, by 28.0% for continuous and 26.2% for intermittent sun-drying. Visual observation on images captured in UV light source was able to detect the presence of aflatoxin on dried kernels, indicated by blue luminance on kernel, by 10.4% and 13.4% for continuous and intermittent sun-drying.
NASA Technical Reports Server (NTRS)
Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.
2015-01-01
Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.
Flat panel displays in the helmet-mounted display
NASA Astrophysics Data System (ADS)
Bartlett, Christopher T.; Freeman, Jonathan P.
2002-08-01
The Helmet Mounted Display has been in development for over 25 years and with few exceptions those systems in service have incorporated a miniature Cathode Ray Tube as the display source. The exceptions have been the use of Light Emitting Diodes in Helmet Sighting displays. The argument for Flat Panel Displays has been well rehearsed and this paper provides a summary of the available technologies but with a rationale for a decision to use Reflective Liquid Crystal devices. The Paper then describes sources of illumination and derives the luminance required from that source.
Physiological and genetic characterization of plant growth and gravitropism in LED light sources
NASA Technical Reports Server (NTRS)
Deitzer, Gerald F.
1994-01-01
Among the many problems of growing plants in completely controlled environments, such as those anticipated for the space station and the CELSS program, is the need to provide light that is both adequate for photosynthesis and of proper quality for normal growth and development. NASA scientists and engineers have recently become interested in the possibility of utilizing densely packed, solid state, light emitting diodes (LED's) as a source for this light. Unlike more conventional incandescent or electrical discharge lamps, these sources are highly monochromatic and lack energy in spectral regions thought to be important for normal plant development. In addition, a recent observation by NASA scientist has suggested that infra-red LED's, that are routinely used as photographic safelights for plants grown in darkness, may interact with the ability of plants to detect gravity. In order to establish how plants respond to light from these LED light sources we carried out a series of experiments with known pigment mutants of the model mustard plant, Arabidopsis thaliana, growing in either a gravity field or on a clinostat to simulate a micro-gravity environment. Results indicate that only red light from the 665 nm LED's disrupts the ability of normal wildtype seedlings to detect a gravity stimulus. There was no consistent effect found for the far-red (735 nm) LED's or either of the infrared (880 nm or 935 nm) LED sources but both showed some effect in one or more of the genotypes tested. Of these five members of the phytochrome multigene family in Arabidopsis, only the phytochrome B pigment mutant (hy3) lacked the ability to detect gravity under all conditions. There was no effect of either micro-gravity (clinostat) or the infra-red LED's on the light induced inhibition of hypocotyl elongation. Measurements of the pigment phytochrome in oats also showed no photoconversion by 15 min irradiations with the infra-red LED's. We conclude that phytochrome B is required for the perception of gravity and that only red light is able to disrupt this perception. The infra-red LED's also do not appear to interact with gravity perception in Arabidopsis, but caution should be exercised if infra-red LED's are to be used as photographic safelights for these types of experiments.
Nonimaging Optical Illumination System
Winston, Roland
1994-08-02
A nonimaging illumination optical device for producing selected intensity output over an angular range. The device includes a light reflecting surface (24, 26) around a light source (22) which is disposed opposite the aperture opening of the light reflecting surface (24, 26). The light source (22) has a characteristic dimension which is small relative to one or more of the distance from the light source (22) to the light reflecting surface (24, 26) or the angle subtended by the light source (22) at the light reflecting surface (24, 26).
NASA Astrophysics Data System (ADS)
Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu
2015-03-01
Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.
LED-driven backlights for automotive displays
NASA Astrophysics Data System (ADS)
Strauch, Frank
2007-09-01
As a light source the LED has some advantage over the traditionally used fluorescence tube such as longer life or lower space consumption. Consequently customers are asking for the LED lighting design in their products. We introduced in a company owned backlight the white LED technology. This step opens the possibility to have access to the components in the display market. Instead of having a finalized display product which needs to be integrated in the head unit of a car we assemble the backlight, the glass, own electronics and the housing. A major advantage of this concept is the better control of the heat flow generated by the LEDs to the outer side because only a common housing is used for all the components. Also the requirement for slim products can be fulfilled. As always a new technology doesn't come with advantages only. An LED represents a point source compared to the well-known tube thus requiring a mixing zone for the multiple point sources when they enter a light guide. This zone can't be used in displays because of the lack of homogeneity. It's a design goal to minimize this zone which can be helped by the right choice of the LED in terms of slimness. A step ahead is the implementation of RGB LEDs because of their higher color rendering abilities. This allows for the control of the chromaticity point under temperature change but as a drawback needs a larger mixing zone.
Investigation of thermal management technique in blue LED airport taxiway fixtures
NASA Astrophysics Data System (ADS)
Gu, Yimin; Baker, Alex; Narendran, Nadarajah
2007-09-01
On airport runways, blue light fixtures denote taxiways between the runway and the airport terminal. Blue optics transmit mostly short-wavelength radiation, which makes traditional incandescent lamps a poor choice of light source; the resulting fixture efficiency could be less than one percent. LEDs are replacing incandescent lamps in this application. But unlike incandescent sources, LEDs do not radiate enough heat to melt ice and snow from the fixture optics. To meet Federal Aviation Administration (FAA) regulations for weatherability, some LED-based fixtures incorporate electric heaters that, when switched on, nearly negate the energy-savings benefit of converting to LED sources. In this study, we explored methods for conduction and convection of LED junction heat to taxiway fixture optics for the purpose of minimizing snow and ice buildup. A more efficient LED-based system compared to incandescent that would require no additional heaters was demonstrated.
Development of a circadian light source
NASA Astrophysics Data System (ADS)
Nicol, David B.; Ferguson, Ian T.
2002-11-01
Solid state lighting presents a new paradigm for lighting - controllability. Certain characteristics of the lighting environment can be manipulated, because of the possibility of using multiple LEDs of different emission wavelengths as the illumination source. This will provide a new, versatile, general illumination source due to the ability to vary the spectral power distribution. New effects beyond the visual may be achieved that are not possible with conventional light sources. Illumination has long been the primary function of lighting but as the lighting industry has matured the psychological aspects of lighting have been considered by designers; for example, choosing a particular lighting distribution or color variation in retail applications. The next step in the evolution of light is to consider the physiological effects of lighting that cause biological changes in a person within the environment. This work presents the development of a source that may have important bearing on this area of lighting. A circadian light source has been developed to provide an illumination source that works by modulating its correlated color temperature to mimic the changes in natural daylight through the day. In addition, this source can cause or control physiological effects for a person illuminated by it. The importance of this is seen in the human circadian rhythm's peak response corresponding to blue light at ~460 nm which corresponds to the primary spectral difference in increasing color temperature. The device works by adding blue light to a broadband source or mixing polychromatic light to mimic the variation of color temperature observed for the Planckian Locus on the CIE diagram. This device can have several applications including: a tool for researchers in this area, a general illumination lighting technology, and a light therapy device.
A tuneable approach to uniform light distribution for artificial daylight photodynamic therapy.
O'Mahoney, Paul; Haigh, Neil; Wood, Kenny; Brown, C Tom A; Ibbotson, Sally; Eadie, Ewan
2018-06-16
Implementation of daylight photodynamic therapy (dPDT) is somewhat limited by variable weather conditions. Light sources have been employed to provide artificial dPDT indoors, with low irradiances and longer treatment times. Uniform light distribution across the target area is key to ensuring effective treatment, particularly for large areas. A novel light source is developed with tuneable direction of light emission in order to meet this challenge. Wavelength composition of the novel light source is controlled such that the protoporphyrin-IX (PpIX) weighed spectra of both the light source and daylight match. The uniformity of the light source is characterised on a flat surface, a model head and a model leg. For context, a typical conventional PDT light source is also characterised. Additionally, the wavelength uniformity across the treatment site is characterised. The PpIX-weighted spectrum of the novel light source matches with PpIX-weighted daylight spectrum, with irradiance values within the bounds for effective dPDT. By tuning the direction of light emission, improvements are seen in the uniformity across large anatomical surfaces. Wavelength uniformity is discussed. We have developed a light source that addresses the challenges in uniform, multiwavelength light distribution for large area artificial dPDT across curved anatomical surfaces. Copyright © 2018. Published by Elsevier B.V.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1997-01-01
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You
1994-01-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1997-05-06
This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.
Micro optical fiber light source and sensor and method of fabrication thereof
Kopelman, R.; Tan, W.; Shi, Z.Y.
1994-11-01
This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.
Energy Recovery Linacs for Light Source Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Neil
2011-04-01
Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the statusmore » of worldwide programs and discuss the technology challenges to provide such beams for photon production.« less
NASA Astrophysics Data System (ADS)
Chandrasekhar, Ngangbam; Singh, Nungleppam Monorajan; Gartia, R. K.
2018-04-01
Luminescent techniques require one or the other source of excitations which may vary from high cost X-rays, γ-rays, β-rays etc. to low cost LED. Persistent luminescent materials or Glow-in-the-Dark phosphors are the optical harvesters which store the optical energy from day light illuminating a whole night. They are so sensitive that they can be excited even with the low light of firefly. Therefore, instead of using a high cost excitation source authors have developed a low cost functioning of excitation source controlling short pulses of LED to excite persistent phosphors with the aid of ExpEYES Junior (Hardware/software framework developed by IUAC, New Delhi). Using this, the authors have excited the sample under investigation upto 10 ms. Trap spectroscopy of the pre-excited sample with LED is studied using Thermoluminescence (TL) technique. In this communication, development of the excitation source is discussed and demonstrate the its usefulness in the study of trap spectroscopy of commercially available CaS:Eu2+, Sm3+. Trapping parameters are also evaluated using Computerized Glow Curve Deconvolution (CGCD) technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, T.
1994-12-31
It is very important for experimental purposes, as well as for the practical use of plants when not enough sunlight is available. To grow green higher plants in their normal forms under artificial lighting constructing efficient and economically reasonable lighting systems is not an easy task. One possible approach would be to simulate sunlight in intensity and the radiation spectrum, but its high construction and running costs are not likely to allow its use in practice. Sunlight may be excessive in irradiance in some or all portions of the spectrum. Reducing irradiance and removing unnecessary wavebands might lead to anmore » economically feasible light source. However, removing or reducing a particular waveband from sunlight for testing is not easy. Another approach might be to find the wavebands required for respective aspects of plant growth and to combine them in a proper ratio and intensity. The latter approach seems more practical and economical, and the aim of this Workshop lies in advancing this approach. I summarize our present knowledge on the waveband requirements of higher plants for the regions of blue, UV-A and UV-B.« less
The Architect's Guide to Mechanical Systems.
ERIC Educational Resources Information Center
Andrews, F. T.
The principles and problems of designing new building mechanical systems are discussed in this reference source in the light of data on the functions and operation of mechanical systems. As a practical guide to understanding mechanical systems it describes system types, functions, space requirements, weights, installation, maintenance and…
Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi
2014-10-20
Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.
Passive decoy-state quantum key distribution with practical light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curty, Marcos; Ma, Xiongfeng; Qi, Bing
2010-02-15
Decoy states have been proven to be a very useful method for significantly enhancing the performance of quantum key distribution systems with practical light sources. Although active modulation of the intensity of the laser pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Typical passive schemes involve parametric down-conversion. More recently, it has been shown that phase-randomized weak coherent pulses (WCP) can also be used for the same purpose [M. Curty et al., Opt. Lett. 34, 3238 (2009).] This proposal requires only linear optics together with a simplemore » threshold photon detector, which shows the practical feasibility of the method. Most importantly, the resulting secret key rate is comparable to the one delivered by an active decoy-state setup with an infinite number of decoy settings. In this article we extend these results, now showing specifically the analysis for other practical scenarios with different light sources and photodetectors. In particular, we consider sources emitting thermal states, phase-randomized WCP, and strong coherent light in combination with several types of photodetectors, like, for instance, threshold photon detectors, photon number resolving detectors, and classical photodetectors. Our analysis includes as well the effect that detection inefficiencies and noise in the form of dark counts shown by current threshold detectors might have on the final secret key rate. Moreover, we provide estimations on the effects that statistical fluctuations due to a finite data size can have in practical implementations.« less
NASA Astrophysics Data System (ADS)
Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.
2018-06-01
The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey r-band images with artificial AGN point sources added that are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover point source and host galaxy magnitudes with smaller systematic error and a lower average scatter (49 per cent). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ± 50 per cent if it is trained on multiple PSFs. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN is more robust and easy to use than parametric methods as it requires no input parameters.
Front panel engineering with CAD simulation tool
NASA Astrophysics Data System (ADS)
Delacour, Jacques; Ungar, Serge; Mathieu, Gilles; Hasna, Guenther; Martinez, Pascal; Roche, Jean-Christophe
1999-04-01
THe progress made recently in display technology covers many fields of application. The specification of radiance, colorimetry and lighting efficiency creates some new challenges for designers. Photometric design is limited by the capability of correctly predicting the result of a lighting system, to save on the costs and time taken to build multiple prototypes or bread board benches. The second step of the research carried out by company OPTIS is to propose an optimization method to be applied to the lighting system, developed in the software SPEOS. The main features of the tool requires include the CAD interface, to enable fast and efficient transfer between mechanical and light design software, the source modeling, the light transfer model and an optimization tool. The CAD interface is mainly a prototype of transfer, which is not the subjects here. Photometric simulation is efficiently achieved by using the measured source encoding and a simulation by the Monte Carlo method. Today, the advantages and the limitations of the Monte Carlo method are well known. The noise reduction requires a long calculation time, which increases with the complexity of the display panel. A successful optimization is difficult to achieve, due to the long calculation time required for each optimization pass including a Monte Carlo simulation. The problem was initially defined as an engineering method of study. The experience shows that good understanding and mastering of the phenomenon of light transfer is limited by the complexity of non sequential propagation. The engineer must call for the help of a simulation and optimization tool. The main point needed to be able to perform an efficient optimization is a quick method for simulating light transfer. Much work has been done in this area and some interesting results can be observed. It must be said that the Monte Carlo method wastes time calculating some results and information which are not required for the needs of the simulation. Low efficiency transfer system cost a lot of lost time. More generally, the light transfer simulation can be treated efficiently when the integrated result is composed of elementary sub results that include quick analytical calculated intersections. The first axis of research appear. The quick integration research and the quick calculation of geometric intersections. The first axis of research brings some general solutions also valid for multi-reflection systems. The second axis requires some deep thinking on the intersection calculation. An interesting way is the subdivision of space in VOXELS. This is an adapted method of 3D division of space according to the objects and their location. An experimental software has been developed to provide a validation of the method. The gain is particularly high in complex systems. An important reduction in the calculation time has been achieved.
Measurement and standardization of eye safety for optical radiation of LED products
NASA Astrophysics Data System (ADS)
Mou, Tongsheng; Peng, Zhenjian
2013-06-01
The blue light hazard (BLH) to human eye's retina is now a new issue emerging in applications of artificial light sources. Especially for solid state lighting sources based on the blue chip-LED(GaN), the photons with their energy more than 2.4 eV show photochemical effects on the retina significantly, raising damage both in photoreceptors and retinal pigment epithelium. The photobiological safety of artificial light sources emitting optical radiation has gained more and more attention worldwide and addressed by international standards IEC 62471-2006(CIE S009/E: 2002). Meanwhile, it is involved in IEC safety specifications of LED lighting products and covered by European Directive 2006/25/EC on the minimum health and safety requirements regarding the exposure of the workers to artificial optical radiation. In practical applications of the safety standards, the measuring methods of optical radiation from LED products to eyes are important in establishment of executable methods in the industry. In 2011, a new project to develop the international standard of IEC TR62471-4,that is "Measuring methods of optical radiation related to photobiological safety", was approved and are now under way. This paper presents the concerned methods for the assessment of optical radiation hazards in the standards. Furthermore, a retina radiance meter simulating eye's optical geometry is also described, which is a potential tool for blue light hazard assessment of retinal exposure to optical radiation. The spectroradiometric method integrated with charge-coupled device(CCD) imaging system is introduced to provide more reliable results.
Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices
O'Toole, Martina; Diamond, Dermot
2008-01-01
The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829
Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.
O'Toole, Martina; Diamond, Dermot
2008-04-07
The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.
Spectral design flexibility of LED brings better life
NASA Astrophysics Data System (ADS)
Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael
2012-03-01
Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.
Visible-Light-Responsive Catalyst Development for Volatile Organic Carbon Remediation Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Hintze, Paul E.; Coutts, Janelle
2015-01-01
Photocatalysis is a process in which light energy is used to 'activate' oxidation/reduction reactions. Unmodified titanium dioxide (TiO2), a common photocatalyst, requires high-energy UV light for activation due to its large band gap (3.2 eV). Modification of TiO2 can reduce this band gap, leading to visible-light-responsive (VLR) photocatalysts. These catalysts can utilize solar and/or visible wavelength LED lamps as an activation source, replacing mercury-containing UV lamps, to create a "greener," more energy-efficient means for air and water revitalization. Recently, KSC developed several VLR catalysts that, on preliminary evaluation, possessed high catalytic activity within the visible spectrum; these samples out-performed existing commercial VLR catalysts.
Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie
2009-01-01
Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530
Hope, Andrew; Gubbins, Simon; Sanders, Christopher; Denison, Eric; Barber, James; Stubbins, Francesca; Baylis, Matthew; Carpenter, Simon
2015-04-22
The response of Culicoides biting midges (Diptera: Ceratopogonidae) to artificial light sources has led to the use of light-suction traps in surveillance programmes. Recent integration of light emitting diodes (LED) in traps improves flexibility in trapping through reduced power requirements and also allows the wavelength of light used for trapping to be customized. This study investigates the responses of Culicoides to LED light-suction traps emitting different wavelengths of light to make recommendations for use in surveillance. The abundance and diversity of Culicoides collected using commercially available traps fitted with Light Emitting Diode (LED) platforms emitting ultraviolet (UV) (390 nm wavelength), blue (430 nm), green (570 nm), yellow (590 nm), red (660 nm) or white light (425 nm - 750 nm with peaks at 450 nm and 580 nm) were compared. A Centre for Disease Control (CDC) UV light-suction trap was also included within the experimental design which was fitted with a 4 watt UV tube (320-420 nm). Generalised linear models with negative binomial error structure and log-link function were used to compare trap abundance according to LED colour, meteorological conditions and seasonality. The experiment was conducted over 49 nights with 42,766 Culicoides caught in 329 collections. Culicoides obsoletus Meigen and Culicoides scoticus Downes and Kettle responded indiscriminately to all wavelengths of LED used with the exception of red which was significantly less attractive. In contrast, Culicoides dewulfi Goetghebuer and Culicoides pulicaris Linnaeus were found in significantly greater numbers in the green LED trap than in the UV LED trap. The LED traps collected significantly fewer Culicoides than the standard CDC UV light-suction trap. Catches of Culicoides were reduced in LED traps when compared to the standard CDC UV trap, however, their reduced power requirement and small size fulfils a requirement for trapping in logistically challenging areas or where many traps are deployed at a single site. Future work should combine light wavelengths to improve trapping sensitivity and potentially enable direct comparisons with collections from hosts, although this may ultimately require different forms of baits to be developed.
NASA Technical Reports Server (NTRS)
Xu, Jianzeng; Woodyward, James R.
2005-01-01
The operation of multi-junction solar cells used for production of space power is critically dependent on the spectral irradiance of the illuminating light source. Unlike single-junction cells where the spectral irradiance of the simulator and computational techniques may be used to optimized cell designs, optimization of multi-junction solar cell designs requires a solar simulator with a spectral irradiance that closely matches AM0.
The influence of the earth radiation on space target detection system
NASA Astrophysics Data System (ADS)
Su, Xiaofeng; Chen, FanSheng; Cuikun, .; Liuyan, .
2017-05-01
In the view of space remote sensing such as satellite detection space debris detection etc. visible band is usually used in order to have the all-weather detection capability, long wavelength infrared (LWIR) detection is also an important supplement. However, in the tow wave band, the earth can be a very strong interference source, especially in the dim target detecting. When the target is close to the earth, especially the LEO target, the background radiation of the earth will also enter into the baffle, and became the stray light through reflection, the stray light can reduce the signal to clutter ratio (SCR) of the target and make it difficult to be detected. In the visible band, the solar albedo by the earth is the main clutter source while in the LWIR band the radiation of the earth is the main clutter source. So, in this paper, we establish the energy transformation from the earth background radiation to the detection system to assess the effects of the stray light. Firstly, we discretize the surface of the earth to different unit, and using MODTRAN to calculate the radiation of the discrete point in different light and climate conditions, then, we integral all the radiation which can reach the baffle in the same observation angles to get the energy distribution, finally, according the target energy and the non-uniformity of the detector, we can calculate the design requirement of the system stray light suppression, which provides the design basis for the optical system.
Optimization of the polyplanar optical display electronics for a monochrome B-52 display
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, L.
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.« less
USDA-ARS?s Scientific Manuscript database
Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...
Galvez, Miguel; Grossman, Kenneth; Betts, David
2013-11-12
There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2017-06-14
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2016-05-10
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
46 CFR 133.110 - Survival craft muster and embarkation arrangements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Survival craft muster and embarkation arrangements. 133... VESSELS LIFESAVING SYSTEMS Requirements for All OSVs § 133.110 Survival craft muster and embarkation... lighting supplied from the emergency source of electrical power. (e) Each davit-launched survival craft...
7 CFR 220.8 - Meal requirements for breakfasts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... maximum values). h Discretionary sources of calories (solid fats and added sugars) may be added to the... may be plain or flavored, unsweetened or sweetened. Noncommercial and/or non-standardized yogurt... section. Fruits that are fresh; frozen without added sugar; canned in light syrup, water or fruit juice...
Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM
2004-07-27
A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.
Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications
NASA Astrophysics Data System (ADS)
Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2011-04-01
Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch™ light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.
A compact, coherent light source system architecture
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.
2016-09-01
Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.
Intense X-ray and EUV light source
Coleman, Joshua; Ekdahl, Carl; Oertel, John
2017-06-20
An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.
Carambola optics for recycling of light.
Leutz, Ralf; Fu, Ling; Ries, Harald
2006-04-20
Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.
NASA Technical Reports Server (NTRS)
Sliney, David H.
1994-01-01
The eye is protected against bright light by the natural aversion response to viewing bright light sources. The aversion response normally protects the eye against injury from viewing bright light sources such as the sun, arc lamps and welding arcs, since this aversion limits the duration of exposure to a fraction of a second (about 0.25 s). The principal retinal hazard resulting from viewing bright light sources is photoretinitis, e.g., solar retinitis with an accompanying scotoma which results from staring at the sun. Solar retinitis was once referred to as 'eclipse blindness' and associated 'retinal burn'. Only in recent years has it become clear that photoretinitis results from a photochemical injury mechanism following exposure of the retina to shorter wavelengths in the visible spectrum, i.e., violet and blue light. Prior to conclusive animal experiments at that time, it was thought to be a thermal injury mechanism. However, it has been shown conclusively that an intense exposure to short-wavelength light (hereafter referred to as 'blue light') can cause retinal injury. The product of the dose-rate and the exposure duration always must result in the same exposure dose (in joules-per-square centimeter at the retina) to produce a threshold injury. Blue-light retinal injury (photoretinitis) can result from viewing either an extremely bright light for a short time, or a less bright light for longer exposure periods. This characteristic of photochemical injury mechanisms is termed reciprocity and helps to distinguish these effects from thermal burns, where heat conduction requires a very intense exposure within seconds to cause a retinal coagulation otherwise, surrounding tissue conducts the heat away from the retinal image. Injury thresholds for acute injury in experimental animals for both corneal and retinal effects have been corroborated for the human eye from accident data. Occupational safety limits for exposure to UVR and bright light are based upon this knowledge. As with any photochemical injury mechanism must consider the action spectrum, which describes the relative effectiveness of different wavelengths in causing a photobiological effect. The action spectrum for photochemical retinal injury peaks at approximately 440 nm.
Lighting system with thermal management system
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc
2015-02-24
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Lighting system with thermal management system
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc
2015-08-25
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Lighting system with thermal management system
Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc
2013-05-07
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Lighting system with thermal management system
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr, Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc
2016-10-11
Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.
Assessment of the actual light dose in photodynamic therapy.
Schaberle, Fabio A
2018-06-09
Photodynamic therapy (PDT) initiates with the absorption of light, which depends on the spectral overlap between the light source emission and the photosensitizer absorption, resulting in the number of photons absorbed, the key parameter starting PDT processes. Most papers report light doses regardless if the light is only partially absorbed or shifted relatively to the absorption peak, misleading the actual light dose value and not allowing quantitative comparisons between photosensitizers and light sources. In this manuscript a method is presented to calculate the actual light dose delivered by any light source for a given photosensitizer. This method allows comparing light doses delivered for any combination of light source (broad or narrow band or daylight) and photosensitizer. Copyright © 2018. Published by Elsevier B.V.
Nanoscale optical interferometry with incoherent light
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-01-01
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171
Nanoscale optical interferometry with incoherent light.
Li, Dongfang; Feng, Jing; Pacifici, Domenico
2016-02-16
Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.
Beacon system based on light-emitting diode sources for runways lighting
NASA Astrophysics Data System (ADS)
Montes, Mario González; Vázquez, Daniel; Fernandez-Balbuena, Antonio A.; Bernabeu, Eusebio
2014-06-01
New aeronautical ground lighting techniques are becoming increasingly important to ensure the safety and reduce the maintenance costs of the plane's tracks. Until recently, tracks had embedded lighting systems whose sources were based on incandescent lamps. But incandescent lamps have several disadvantages: high energy consumption and frequent breakdowns that result in high maintenance costs (lamp average life-time is ˜1500 operating hours) and the lamp's technology has a lack of new lighting functions, such as signal handling and modification. To solve these problems, the industry has developed systems based on light-emitting diode (LED) technology with improved features: (1) LED lighting consumes one tenth the power, (2) it improves preventive maintenance (an LED's lifetime range is between 25,000 and 100,000 hours), and (3) LED lighting technology can be controlled remotely according to the needs of the track configuration. LEDs have been in use for more than three decades, but only recently, around 2002, have they begun to be used as visual aids, representing the greatest potential change for airport lighting since their inception in the 1920s. Currently, embedded LED systems are not being broadly used due to the specific constraints of the rules and regulations of airports (beacon dimensions, power system technology, etc.). The fundamental requirements applied to embedded lighting systems are to be hosted on a volume where the dimensions are usually critical and also to integrate all the essential components for operation. An embedded architecture that meets the lighting regulations for airport runways is presented. The present work is divided into three main tasks: development of an optical system to optimize lighting according to International Civil Aviation Organization, manufacturing prototype, and model validation.
Enhancing scatterometry CD signal-to-noise ratio for 1x logic and memory challenges
NASA Astrophysics Data System (ADS)
Shaughnessy, Derrick; Krishnan, Shankar; Wei, Lanhua; Shchegrov, Andrei V.
2013-04-01
The ongoing transition from 2D to 3D structures in logic and memory has led to an increased adoption of scatterometry CD (SCD) for inline metrology. However, shrinking device dimensions in logic and high aspect ratios in memory represent primary challenges for SCD and require a significant breakthrough in improving signal-to-noise performance. We present a report on the new generation of SCD technology, enabled by a new laser-driven plasma source. The developed light source provides several key advantages over conventional arc lamps typically used in SCD applications. The plasma color temperature of the laser driven source is considerably higher than available with arc lamps resulting in >5X increase in radiance in the visible and >10X increase in radiance in the DUV when compared to sources on previous generation SCD tools while maintaining or improving source intensity noise. This high radiance across such a broad spectrum allows for the use of a single light source from 190-1700nm. When combined with other optical design changes, the higher source radiance enables reduction of measurement box size of our spectroscopic ellipsometer from 45×45um box to 25×25um box without compromising signal to noise ratio. The benefits for 1×nm SCD metrology of the additional photons across the DUV to IR spectrum have been found to be greater than the increase in source signal to noise ratio would suggest. Better light penetration in Si and poly-Si has resulted in improved sensitivity and correlation breaking for critical parameters in 1xnm FinFET and HAR flash memory structures.
A smartphone-based chip-scale microscope using ambient illumination.
Lee, Seung Ah; Yang, Changhuei
2014-08-21
Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone's camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the image resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction are performed on the device using a custom-built Android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.
A smartphone-based chip-scale microscope using ambient illumination
Lee, Seung Ah; Yang, Changhuei
2014-01-01
Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the imaging resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system. PMID:24964209
NASA Astrophysics Data System (ADS)
Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.
2009-02-01
High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.
NASA Astrophysics Data System (ADS)
Khramtsov, Igor A.; Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.
2018-03-01
Practical applications of quantum information technologies exploiting the quantum nature of light require efficient and bright true single-photon sources which operate under ambient conditions. Currently, point defects in the crystal lattice of diamond known as color centers have taken the lead in the race for the most promising quantum system for practical non-classical light sources. This work is focused on a different quantum optoelectronic material, namely a color center in silicon carbide, and reveals the physics behind the process of single-photon emission from color centers in SiC under electrical pumping. We show that color centers in silicon carbide can be far superior to any other quantum light emitter under electrical control at room temperature. Using a comprehensive theoretical approach and rigorous numerical simulations, we demonstrate that at room temperature, the photon emission rate from a p-i-n silicon carbide single-photon emitting diode can exceed 5 Gcounts/s, which is higher than what can be achieved with electrically driven color centers in diamond or epitaxial quantum dots. These findings lay the foundation for the development of practical photonic quantum devices which can be produced in a well-developed CMOS compatible process flow.
A novel amblyopia treatment system based on LED light source
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling
2011-05-01
A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.
A novel amblyopia treatment system based on LED light source
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqing; Chen, Qingshan; Wang, Xiaoling
2010-12-01
A novel LED (light emitting diode) light source of five different colors (white, red, green, blue and yellow) is adopted instead of conventional incandescent lamps for an amblyopia treatment system and seven training methods for rectifying amblyopia are incorporated so as for achieving an integrated therapy. The LED light source is designed to provide uniform illumination, adjustable light intensity and alterable colors. Experimental tests indicate that the LED light source operates steadily and fulfills the technical demand of amblyopia treatment.
The Inverse-Square Law with Data Loggers
ERIC Educational Resources Information Center
Bates, Alan
2013-01-01
The inverse-square law for the intensity of light received at a distance from a light source has been verified using various experimental techniques. Typical measurements involve a manual variation of the distance between a light source and a light sensor, usually by sliding the sensor or source along a bench, measuring the source-sensor distance…
Colors of attraction: Modeling insect flight to light behavior.
Donners, Maurice; van Grunsven, Roy H A; Groenendijk, Dick; van Langevelde, Frank; Bikker, Jan Willem; Longcore, Travis; Veenendaal, Elmar
2018-06-26
Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model. © 2018 Wiley Periodicals, Inc.
Geometrical analysis of an optical fiber bundle displacement sensor
NASA Astrophysics Data System (ADS)
Shimamoto, Atsushi; Tanaka, Kohichi
1996-12-01
The performance of a multifiber optical lever was geometrically analyzed by extending the Cook and Hamm model [Appl. Opt. 34, 5854-5860 (1995)] for a basic seven-fiber optical lever. The generalized relationships between sensitivity and the displacement detection limit to the fiber core radius, illumination irradiance, and coupling angle were obtained by analyses of three various types of light source, i.e., a parallel beam light source, an infinite plane light source, and a point light source. The analysis of the point light source was confirmed by a measurement that used the light source of a light-emitting diode. The sensitivity of the fiber-optic lever is inversely proportional to the fiber core radius, whereas the receiving light power is proportional to the number of illuminating and receiving fibers. Thus, the bundling of the finer fiber with the larger number of illuminating and receiving fibers is more effective for improving sensitivity and the displacement detection limit.
Single-crystal phosphors for high-brightness white LEDs/LDs
NASA Astrophysics Data System (ADS)
Víllora, Encarnación G.; Arjoca, Stelian; Inomata, Daisuke; Shimamura, Kiyoshi
2016-03-01
White light-emitting diodes (wLEDs) are the new environmental friendly sources for general lighting purposes. For applications requiring a high-brightness, current wLEDs present overheating problems, which drastically decrease their emission efficiency, color quality and lifetime. This work gives an overview of the recent investigations on single-crystal phosphors (SCPs), which are proposed as novel alternative to conventional ceramic powder phosphors (CPPs). This totally new approach takes advantage of the superior properties of single-crystals in comparison with ceramic materials. SCPs exhibit an outstanding conversion efficiency and thermal stability up to 300°C. Furthermore, compared with encapsulated CPPs, SCPs possess a superior thermal conductivity, so that generated heat can be released efficiently. The conjunction of all these characteristics results in a low temperature rise of SCPs even under high blue irradiances, where conventional CPPs are overheated or even burned. Therefore, SCPs represent the ideal, long-demanded all-inorganic phosphors for high-brightness white light sources, especially those involving the use of high-density laser-diode beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieu, Richard
A hierarchy of statistics of increasing sophistication and accuracy is proposed to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level with the help of high-precision computers to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this methodmore » of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the signal-limited bolometric flux measurement of a radio source.« less
Scene-based Shack-Hartmann wavefront sensor for light-sheet microscopy
NASA Astrophysics Data System (ADS)
Lawrence, Keelan; Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter
2018-02-01
Light-sheet microscopy is an ideal imaging modality for long-term live imaging in model organisms. However, significant optical aberrations can be present when imaging into an organism that is hundreds of microns or greater in size. To measure and correct optical aberrations, an adaptive optics system must be incorporated into the microscope. Many biological samples lack point sources that can be used as guide stars with conventional Shack-Hartmann wavefront sensors. We have developed a scene-based Shack-Hartmann wavefront sensor for measuring the optical aberrations in a light-sheet microscopy system that does not require a point-source and can measure the aberrations for different parts of the image. The sensor has 280 lenslets inside the pupil, creates an image from each lenslet with a 500 micron field of view and a resolution of 8 microns, and has a resolution for the wavefront gradient of 75 milliradians per lenslet. We demonstrate the system on both fluorescent bead samples and zebrafish embryos.
High brightness microwave lamp
Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.
2003-09-09
An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.
Integrated experimental setup for angle resolved photoemission spectroscopy of transuranic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Kevin S.; Joyce, John J.; Durakiewicz, Tomasz
2013-09-15
We have developed the Angle Resolved Photoemission Spectroscopy (ARPES) system for transuranic materials. The ARPES transuranic system is an endstation upgrade to the Laser Plasma Light Source (LPLS) at Los Alamos National Laboratory. The LPLS is a tunable light source for photoemission with a photon energy range covering the vacuum ultraviolet (VUV) and soft x-ray regions (27–140 eV). The LPLS was designed and developed for transuranic materials. Transuranic photoemission is currently not permitted at the public synchrotrons worldwide in the VUV energy range due to sample encapsulation requirements. With the addition of the ARPES capability to the LPLS system theremore » is an excellent opportunity to explore new details centered on the electronic structure of actinide and transuranic materials.« less
Solid-state laser source of narrowband ultraviolet B light for skin disease care
NASA Astrophysics Data System (ADS)
Tarasov, Aleksandr A.; Chu, Hong
2013-03-01
We report about the development of all-solid-state laser source of narrowband UV-B light for medical applications. The device is based on a gain-switched Ti: Sapphire laser with volume Bragg grating, pumped at 532 nm and operating at 931.8 nm, followed by a third harmonic generator and a fiber optic beam homogenizer. The maximum available pulse energy exceeded 5 mJ at 310.6 nm, with a pulse repetition rates of 50 Hz. The output characteristics satisfy the medical requirements for psoriasis and vitiligo treatment. A new optical scheme for third harmonic generation enhancement at moderate levels of input intensities is proposed and investigated. As a result, 40% harmonic efficiency was obtained, when input pulse power was only 300 kW.
Report of the EMI Testing of the Johnson Noise Thermometry System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton Jr., Charles L.; Roberts, Michael
This report summarizes the Electromagnetic Interference (EMI) testing of the Johnson Noise Thermometry System developed at ORNL. The EMI performance is very important for Johnson Noise Thermometry because it requires accurate measurement of a very small noise signal that is amplified 10,000 times. Any interference in the form on pickup from external signal sources from such as fluorescent lighting ballasts, motors, etc. can skew the measurement. Testing is therefore very important in determining the effects of these external noise sources. Results from testing in several environments with various sources of EMI are presented here.
NASA Astrophysics Data System (ADS)
Xu, Chang-Qing; Gan, Yi; Sun, Jian
2012-03-01
Laser displays require red, green and blue (RGB) laser sources each with a low-cost, a high wall-plug efficiency, and a small size. However, semiconductor chips that directly emit green light with sufficient power and efficiency are not currently available on the market. A practical solution to the "green" bottleneck is to employ diode pumped solid state laser (DPSSL) technology, in which a frequency doubling crystal is used. In this paper, recent progress of MgO doped periodically poled lithium niobate (MgO:PPLN) frequency doubling optical chips will be presented. It is shown that MgO:PPLN can satisfy all of the requirements for laser displays and is ready for mass production.
Source-sink interaction: a century old concept under the light of modern molecular systems biology.
Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine
2017-07-20
Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Behavioural responses of krill and cod to artificial light in laboratory experiments
Løkkeborg, S.; Humborstad, O-B.
2018-01-01
Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill’s (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425–750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod. PMID:29370231
Behavioural responses of krill and cod to artificial light in laboratory experiments.
Utne-Palm, A C; Breen, M; Løkkeborg, S; Humborstad, O-B
2018-01-01
Most fishes and crustaceans respond to light, and artificial light sources may therefore be an efficient stimulus to manipulate behaviours in aquatic animals. It has been hypothesised that the catch efficiency of pots could be increased if prey, for example krill, can be attracted into the pots providing a visual stimulus and a source of live bait. To find which light characteristics are most attractive to krill, we tested the effects of light intensity and wavelength composition on Northern krill's (Meganyctiphanes norvegica) behavioural response to an artificial light source. The most attractive individual wavelength was 530 nm (green light), while broadband (425-750 nm) white light was an equally attractive light source. The intensity of the emitted light did not appear to have a direct effect on attraction to the light source, however it did significantly increase swimming activity among the observed krill. The most promising light stimuli for krill were tested to determine whether they would have a repulsive or attractive effect on cod (Gadus morhua); These light stimuli appeared to have a slightly repulsive, but non-significant, effect on cod. However, we suggest that a swarm of krill attracted to an artificial light source may produce a more effective visual stimulus to foraging cod.
Du, Cheng; Barnett, Gregory; Borwankar, Ameya; Lewandowski, Angela; Singh, Nripen; Ghose, Sanchayita; Borys, Michael; Li, Zheng Jian
2018-06-01
As macromolecules, biologics are susceptible to light exposure, which induces oxidation of multiple amino acid residues including tryptophan, tyrosine, phenylalanine, cysteine and methionine. Pertaining to safety, efficacy and potency, light-induced oxidation of biologics has been widely studied and necessary precautions need to be taken during biologics manufacturing process, drug substance and products handling and storage. Proteins will degrade to varying extents depending on the protein properties, degradation pathways, formulation compositions and type of light source. In addition to UV light, which has been widely known to degrade proteins, visible light from indoor fluorescent lighting also can mediate protein degradation. In this report, we examine and identify wavelengths in the visual spectrum (400-700 nm) that can cause monoclonal antibody and histidine buffer degradation. Installation of safe lights which exclude the identified damaging wavelengths from visible spectra in manufacturing and storage areas can provide a balance between lighting requirement for human operators and their safety and conservation of product quality. Copyright © 2018 Elsevier B.V. All rights reserved.
Light Pipe Energy Savings Calculator
NASA Astrophysics Data System (ADS)
Owens, Erin; Behringer, Ernest R.
2009-04-01
Dependence on fossil fuels is unsustainable and therefore a shift to renewable energy sources such as sunlight is required. Light pipes provide a way to utilize sunlight for interior lighting, and can reduce the need for fossil fuel-generated electrical energy. Because consumers considering light pipe installation may be more strongly motivated by cost considerations than by sustainability arguments, an easy means to examine the corresponding costs and benefits is needed to facilitate informed decision-making. The purpose of this American Physical Society Physics and Society Fellowship project is to create a Web-based calculator to allow users to quantify the possible cost savings for their specific light pipe application. Initial calculations show that the illumination provided by light pipes can replace electric light use during the day, and in many cases can supply greater illumination levels than those typically given by electric lighting. While the installation cost of a light pipe is significantly greater than the avoided cost of electricity over the lifetime of the light pipe at current prices, savings may be realized if electricity prices increase.
LED Device Illuminates New Path to Healing
NASA Technical Reports Server (NTRS)
2008-01-01
Among NASA s research goals is increased understanding of factors affecting plant growth, including the effects of microgravity. Impeding such studies, traditional light sources used to grow plants on Earth are difficult to adapt to space flight, as they require considerable amounts of power and produce relatively large amounts of heat. As such, an optimized experimental system requires much less energy and reduces temperature variance without negatively affecting plant growth results. Ronald W. Ignatius, founder and chairman of the board at Quantum Devices Inc. (QDI), of Barneveld, Wisconsin, proposed using light-emitting diodes (LEDs) as the photon source for plant growth experiments in space. This proposition was made at a meeting held by the Wisconsin Center for Space Automation and Robotics, a NASA-sponsored research center that facilitates the commercialization of robotics, automation, and other advanced technologies. The Wisconsin group teamed with QDI to determine whether an LED system could provide the necessary wavelengths and intensities for photosynthesis, and the resultant system proved successful. The center then produced the Astroculture3, a plant growth chamber that successfully incorporated this LED light source, which has now flown on several space shuttle missions. NASA subsequently identified another need that could be addressed with the use of LEDs: astronaut health. A central concern in astronaut health is maintaining healthy growth of cells, including preventing bone and muscle loss and boosting the body s ability to heal wounds all adversely affected by prolonged weightlessness. Thus, having determined that LEDs can be used to grow plants in space, NASA decided to investigate whether LEDs might be used for photobiomodulation therapy (PBMT).
Performance of 'energy efficient' compact fluorescent lamps.
Yuen, Gloria S-C; Sproul, Alistair B; Dain, Stephen J
2010-03-01
Compact fluorescent lamps (CFLs) have been heralded as highly energy efficient replacements for incandescent light globes, however, there is some public dissatisfaction with the light output and colour of CFLs. Independent examination of the claims made has not been made. Compliance with the interim Australian/New Zealand Standard has not been established by any independent authority. While the total light output (luminous flux) may meet certain standards, luminous intensity distributions of some designs do differ significantly from the incandescent sources that they are intended to replace. Luminous intensity distribution, luminous flux and spectral energy distribution of CFLs claimed to be equivalent to 75 W incandescent globes and 75 W incandescent globes (pearl and clear) were measured. Luminous flux, luminous efficacy, colour rendering index, correlated colour temperature, wattage and power factor were then calculated and compared with claims made by manufacturers and requirements of the standards. The sources generally complied with the requirements for luminous flux, luminous efficacy, colour rendering index and correlated colour temperature. The claim of 75 W equivalence, which is not regulated in Australia and New Zealand, is justified less than half the time. Luminous intensity distributions of biaxial CFLs are distinctly different from the incandescent lamps they purport to replace. CFLs generally comply with the standards set. The basis on which equivalent wattages are claimed needs to be included in the Australian and New Zealand standard because this is the measure most likely to be relied on by the public. Due to the differences in luminous intensity distribution, CFLs may not necessarily be a direct replacement for incandescent sources without some consideration.
High efficiency light source using solid-state emitter and down-conversion material
Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul
2010-10-26
A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.
A spectrally tunable calibration source using Ebert-Fastie configuration
NASA Astrophysics Data System (ADS)
Wang, Xiaoxu; Li, Zhigang
2018-03-01
A novel spectrally tunable calibration source based on a digital micromirror device (DMD) and Ebert-Fastie optical configuration with two working modes (narrow-band mode and broad-band mode) was designed. The DMD is set on the image plane of the first spectral tuner, and controls the wavelength and intensity of the light reflected into the second spectral tuner by switching the micromirror array’s condition, which in turn controls the working mode of the spectrally tunable source. When working in narrow-band mode, the spectrally tunable source can be calibrated by a Gershun tube radiant power radiometer and a spectroradiometer. In broad-band mode, it can be used to calibrate optical instruments as a standard spectral radiance source. When using a xenon lamp as a light source, the stability of the spectrally tunable source is better than 0.5%, the minimum spectral bandwidth is 7 nm, and the uncertainty of the spectral radiance of the spectrally tunable source is estimated as 14.68% at 450 nm, 1.54% at 550 nm, and 1.48% at 654.6 nm. The uncertainty of the spectral radiance of the spectrally tunable source calibrated by the Gershun tube radiometer and spectroradiometer can be kept low during the radiometric calibration procedure so that it can meet the application requirement of optical quantitative remote sensing calibration.
High-Power Laser Source Evaluation
1998-07-01
uniform:«»! had been:taped. A sample beam profile at the receiver Zerodur Au-coated mirror 20 cm diameter f/6 Diode laser Diode bars 1 21 m beam...amplifiers and mirrors . This is of concern to the NIF Project and the use of unconverted 1.06 p.m light to produce these x-ray sources might require...they may result in DSWA Final Report - 34 NWET ANNUAL REPORT - QDV-99-0001 undesirable conditions at the turning mirrors or ghosts in the up-beam
Silicon micromachined broad band light source
NASA Technical Reports Server (NTRS)
George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)
2004-01-01
A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.
A two-metric proposal to specify the color-rendering properties of light sources for retail lighting
NASA Astrophysics Data System (ADS)
Freyssinier, Jean Paul; Rea, Mark
2010-08-01
Lighting plays an important role in supporting retail operations, from attracting customers, to enabling the evaluation of merchandise, to facilitating the completion of the sale. Lighting also contributes to the identity, comfort, and visual quality of a retail store. With the increasing availability and quality of white LEDs, retail lighting specifiers are now considering LED lighting in stores. The color rendering of light sources is a key factor in supporting retail lighting goals and thus influences a light source's acceptance by users and specifiers. However, there is limited information on what consumers' color preferences are, and metrics used to describe the color properties of light sources often are equivocal and fail to predict preference. The color rendering of light sources is described in the industry solely by the color rendering index (CRI), which is only indirectly related to human perception. CRI is intended to characterize the appearance of objects illuminated by the source and is increasingly being challenged because new sources are being developed with increasingly exotic spectral power distributions. This paper discusses how CRI might be augmented to better use it in support of the design objectives for retail merchandising. The proposed guidelines include the use of gamut area index as a complementary metric to CRI for assuring good color rendering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alstone, Peter; Jacobson, Arne; Mills, Evan
Efforts to promote rechargeable electric lighting as a replacement for fuel-based light sources in developing countries are typically predicated on the notion that lighting service levels can be maintained or improved while reducing the costs and environmental impacts of existing practices. However, the extremely low incomes of those who depend on fuel-based lighting create a need to balance the hypothetically possible or desirable levels of light with those that are sufficient and affordable. In a pilot study of four night vendors in Kenya, we document a field technique we developed to simultaneously measure the effectiveness of lighting service provided bymore » a lighting system and conduct a survey of lighting service demand by end-users. We took gridded illuminance measurements across each vendor's working and selling area, with users indicating the sufficiency of light at each point. User light sources included a mix of kerosene-fueled hurricane lanterns, pressure lamps, and LED lanterns.We observed illuminance levels ranging from just above zero to 150 lux. The LED systems markedly improved the lighting service levels over those provided by kerosene-fueled hurricane lanterns. Users reported that the minimum acceptable threshold was about 2 lux. The results also indicated that the LED lamps in use by the subjects did not always provide sufficient illumination over the desired retail areas. Our sample size is much too small, however, to reach any conclusions about requirements in the broader population. Given the small number of subjects and very specific type of user, our results should be regarded as indicative rather than conclusive. We recommend replicating the method at larger scales and across a variety of user types and contexts. Policymakers should revisit the subject of recommended illuminance levels regularly as LED technology advances and the price/service balance point evolves.« less
Development of high sensitivity and high speed large size blank inspection system LBIS
NASA Astrophysics Data System (ADS)
Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko
2017-07-01
The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.
Development of integrated semiconductor optical sensors for functional brain imaging
NASA Astrophysics Data System (ADS)
Lee, Thomas T.
Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.
Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.
Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz
2017-01-10
Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.
NASA Technical Reports Server (NTRS)
Meyer, Scott A.; Bershader, Daniel; Sharma, Surendra P.; Deiwert, George S.
1996-01-01
Absorption measurements with a tunable vacuum ultraviolet light source have been proposed as a concentration diagnostic for atomic oxygen, and the viability of this technique is assessed in light of recent measurements. The instrumentation, as well as initial calibration measurements, have been reported previously. We report here additional calibration measurements performed to study the resonance broadening line shape for atomic oxygen. The application of this diagnostic is evaluated by considering the range of suitable test conditions and requirements, and by identifying issues that remain to be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gould, A.; Yee, J. C.; Pinsonneault, M. H.
The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A {sub max} {approx} 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.
IES TM-30-15 Is Approved—Now What?: Moving Forward with New Color Rendition Measures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, Michael P.
2015-10-29
IES TM-30-15 [IES, 2015; David and others, 2015] has the potential to change the way light sources are engineered and specified, helping to increase the benefit of electric lighting. Getting there, however, will require a paradigm shift in how we think about color rendering, and a concerted effort to choose better tools over familiar ones. Undoubtedly, engineering and specifying lighting is becoming increasingly complex, but this has been the case throughout history; the tradeoffs between cost, quality, and efficiency breed innovation, but also the need for better and more thorough ways to design products and differentiate between them. This editorialmore » discusses the potential role of various subsets of the lighting industry in ensuring that TM-30-15 reaches its potential.« less
Progress in extremely high brightness LED-based light sources
NASA Astrophysics Data System (ADS)
Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick
2017-09-01
Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.
Evaluating white LEDs for outdoor landscape lighting application
NASA Astrophysics Data System (ADS)
Shakir, Insiya; Narendran, Nadarajah
2002-11-01
A laboratory experiment was conducted to understand the acceptability of different white light emitting diodes (LEDs) for outdoor landscape lighting. The study used a scaled model setup. The scene was designed to replicate the exterior of a typical upscale suburban restaurant including the exterior facade of the building, an approach with steps, and a garden. The lighting was designed to replicate light levels commonly found in nighttime outdoor conditions. The model had a central dividing partition with symmetrical scenes on both sides for side-by-side evaluations of the two scenes with different light sources. While maintaining equal luminance levels and distribution between the two scenes, four types of light sources were evaluated. These include, halogen, phosphor white LED, and two white light systems using RGB LEDs. These light sources were tested by comparing two sources at a time placed side-by-side and by individual assessment of each lighting condition. The results showed that the RGB LEDs performed equal or better than the most widely used halogen light source in this given setting. A majority of the subjects found slightly dimmer ambient lighting to be more typical for restaurants and therefore found RGB LED and halogen light sources to be more inviting. The phosphor white LEDs made the space look brighter, however a majority of the subjects disliked them.
Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source.
Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco
2016-03-30
Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors' precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO₄ laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed.
Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source
Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco
2016-01-01
Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors’ precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO4 laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed. PMID:27043567
Study on Formulation of Optimum Lighting-system for Purchasing Power at Stores
NASA Astrophysics Data System (ADS)
Fujita, Hiroki; Nakashima, Yoshio; Takamatsu, Mamoru; Oota, Masaaki; Sawa, Kazuhiro
In store lighting, difference in the look-and-feel of foods gives effects on the purchasing power of customers. This study conducted the digitalization and quantification on the effects of the variation of light-source color and illuminance used for lighting foods on image recognition on foods. As a result, it was clarified that when meat was illuminated with the light source of “pink” or “faint pink,” image evaluation on foods became higher. In addition, when illuminance increase was applied to these two light-source colors, image evaluation on “faint pink” became further higher. The reason is supposed to be that the redness of meat increased, which may have enhanced fresher impression. From this study, it has been clarified that the light-source color and illuminance optimum for each food are variant. The results show that lighting foods with the optimum light-source color and illuminance can make foods look better.
Light source comprising a common substrate, a first led device and a second led device
Choong, Vi-En
2010-02-23
At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.
Forensic applications of infrared imaging for the detection and recording of latent evidence.
Lin, Apollo Chun-Yen; Hsieh, Hsing-Mei; Tsai, Li-Chin; Linacre, Adrian; Lee, James Chun-I
2007-09-01
We report on a simple method to record infrared (IR) reflected images in a forensic science context. Light sources using ultraviolet light have been used previously in the detection of latent prints, but the use of infrared light has been subjected to less investigation. IR light sources were used to search for latent evidence and the images were captured by either video or using a digital camera with a CCD array sensitive to IR wavelength. Bloodstains invisible to the eye, inks, tire prints, gunshot residue, and charred document on dark background are selected as typical matters that may be identified during a forensic investigation. All the evidence types could be detected and identified using a range of photographic techniques. In this study, a one in eight times dilution of blood could be detected on 10 different samples of black cloth. When using 81 black writing inks, the observation rates were 95%, 88% and 42% for permanent markers, fountain pens and ball-point pens, respectively, on the three kinds of dark cloth. The black particles of gunshot residue scattering around the entrance hole under IR light were still observed at a distance of 60 cm from three different shooting ranges. A requirement of IR reflectivity is that there is a contrast between the latent evidence and the background. In the absence of this contrast no latent image will be detected, which is similar to all light sources. The use of a video camera allows the recording of images either at a scene or in the laboratory. This report highlights and demonstrates the robustness of IR to detect and record the presence of latent evidence.
The Effect of Incident Light Polarization on Vegetation Bidirectional Reflectance Factor
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Thome, Kurt; Ranson, Kurtis J.; King, Michael D.; Butler, James J.
2010-01-01
The Laboratory-based Bidirectional Reflectance Factor (BRF) polarization study of vegetation is presented in this paper. The BRF was measured using a short-arc Xenon lamp/monochromator assembly producing an incoherent, tunable light source with a well-defined spectral bandpass at visible and near-infrared wavelengths of interest at 470 nm and 870 nm and coherent light source at 1.656 microns. All vegetation samples were measured using P and S linearly polarized incident light over a range of incident and scatter angles. By comparing these results, we quantitatively examine how the BRF of the samples depends on the polarization of the incident light. The differences are significant, depend strongly on the incident and scatter angles, and can be as high as 120% at 67 deg incident and 470nm. The global nature of Earth's processes requires consistent long-term calibration of all instruments involved in data retrieval. The BRF defines the reflection characteristics of Earth surface. It provides the reflectance of a target in a specific direction as a function of illumination and viewing geometry. The BRF is a function of wavelength and reflects the structural and optical properties of the surface. Various space and airborne radiometric and imaging remote sensing instruments are used in the remote sensing characterization of vegetation canopies and soils, oceans, or especially large pollution sources. The satellite data is validated through comparison with airborne, ground-based and laboratory-based data in an effort to fully understand the vegetation canopy reflectance, The Sun's light is assumed to be unpolarized at the top of the atmosphere; however it becomes polarized to some degree due to atmospheric effects by the time it reaches the vegetation canopy. Although there are numerous atmospheric correction models, laboratory data is needed for model verification and improvement.
Spatially-resolved probing of biological phantoms by point-radiance spectroscopy
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.
2011-03-01
Interstitial fiber-optic based strategies for therapy monitoring and assessment rely on detecting treatment-induced changes in the light distribution in biological tissues. We present an optical technique to identify spectrally and spatially specific tissue chromophores in highly scattering turbid media. Typical optical sensors measure non-directional light intensity (i.e. fluence) and require fiber translation (i.e. 3-5 positions), which is difficult to implement clinically. Point radiance spectroscopy is based on directional light collection (i.e. radiance) at a single point with a side-firing fiber that can be rotated up to 360°. A side firing fiber accepts light within a well-defined solid angle thus potentially providing an improved spatial resolution. Experimental measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43° cleaved fiber (i.e. radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid (i.e. scattering medium). Light was collected at 1-5° increments through 360°-segment. Gold nanoparticles, placed into a 3.5 mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a non-invasive optical modality for prostate cancer monitoring.
OPTiM: Optical projection tomography integrated microscope using open-source hardware and software
Andrews, Natalie; Davis, Samuel; Bugeon, Laurence; Dallman, Margaret D.; McGinty, James
2017-01-01
We describe the implementation of an OPT plate to perform optical projection tomography (OPT) on a commercial wide-field inverted microscope, using our open-source hardware and software. The OPT plate includes a tilt adjustment for alignment and a stepper motor for sample rotation as required by standard projection tomography. Depending on magnification requirements, three methods of performing OPT are detailed using this adaptor plate: a conventional direct OPT method requiring only the addition of a limiting aperture behind the objective lens; an external optical-relay method allowing conventional OPT to be performed at magnifications >4x; a remote focal scanning and region-of-interest method for improved spatial resolution OPT (up to ~1.6 μm). All three methods use the microscope’s existing incoherent light source (i.e. arc-lamp) and all of its inherent functionality is maintained for day-to-day use. OPT acquisitions are performed on in vivo zebrafish embryos to demonstrate the implementations’ viability. PMID:28700724
Design and evaluation of excitation light source device for fluorescence endoscope
NASA Astrophysics Data System (ADS)
Lim, Hyun Soo
2009-06-01
This study aims at designing and evaluating light source devices that can stably generate light with various wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, and 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.
Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Kenneth A.; Yashchuk, Valeriy
2007-12-01
What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of newmore » light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area. But the situation isn't all dire: several leading groups are blazing a trail forward, and the recognition of this issue is increasing. The workshop featured eleven invited talks whose presenters came from Japan, Europe, and the US.« less
Modeling of an Adjustable Beam Solid State Light Project
NASA Technical Reports Server (NTRS)
Clark, Toni
2015-01-01
This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.
An experiment on the color rendering of different light sources
NASA Astrophysics Data System (ADS)
Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro
2013-02-01
The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.
O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul
2018-02-01
A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.
Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...
2012-04-18
This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B 4C) coating especially optimized for the LCLS FEL conditions was deposited onmore » all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B 4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less
OCT imaging with temporal dispersion induced intense and short coherence laser source
NASA Astrophysics Data System (ADS)
Manna, Suman K.; le Gall, Stephen; Li, Guoqiang
2016-10-01
Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic photonic band gap have been designed to provide maximum reduction in coherence volume while maintaining the intensity higher than 50%. As an example, the coherence length of a multimode He-Ne laser is reduced by more than 730 times.
EGR distribution and fluctuation probe based on CO.sub.2 measurements
Parks, II, James E; Partridge, Jr., William P; Yoo, Ji Hyung
2015-04-07
A diagnostic system having a single-port EGR probe and a method for using the same. The system includes a light source, an EGR probe, a detector and a processor. The light source may provide a combined light beam composed of light from a mid-infrared signal source and a mid-infrared reference source. The signal source may be centered at 4.2 .mu.m and the reference source may be centered at 3.8 .mu.m. The EGR probe may be a single-port probe with internal optics and a sampling chamber with two flow cells arranged along the light path in series. The optics may include a lens for focusing the light beam and a mirror for reflecting the light beam received from a pitch optical cable to a catch optical cable. The signal and reference sources are modulated at different frequencies, thereby allowing them to be separated and the signal normalized by the processor.
Synchrotron Light Sources in Developing Countries
NASA Astrophysics Data System (ADS)
Winick, Herman; Pianetta, Piero
The more than 50 light sources in operation include facilities in Brazil, Korea, and Taiwan which started in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students. They have attracted mid-career diaspora scientists to return. Growing user communities have demanded more advanced facilities, leading to higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: ∖textbf{SESAME}in the Middle East which is scheduled to start research in 2017 (∖underline {www.sesame.org}); ∖textbf{The African Light Source}, in the planning stage (∖underline {www.safricanlightsource.org}); and ∖textbf{The Mexican Light Source}, in the planning stage (∖underline {http://www.aps.org/units/fip/newsletters/201509/mexico.cfm}). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source..
Reduction of background clutter in structured lighting systems
Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.
2010-06-22
Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.
ERIC Educational Resources Information Center
Kesonen, Mikko Henri Petteri; Asikainen, Mervi Anita; Hirvonen, Pekka Emil
2017-01-01
In the present article, the context-dependency of student reasoning is studied in a context of optics. We investigated introductory students' explanations about the behavior of light when different light sources, namely a small light bulb and a laser, were used in otherwise identical task assignments. The data was gathered with the aid of pretest…
Light-driven solute transport in Halobacterium halobium
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1979-01-01
The cell membrane of Halobacterium halobium exhibits differential regions which contain crystalline arrays of a single kind of protein, termed bacteriorhodopsin. This bacterial retinal-protein complex resembles the visual pigment and, after the absorption of protons, translocates H(+) across the cell membrane, leading to an electrochemical gradient for protons between the inside and the outside of the cell. Thus, light is an alternate source of energy in these bacteria, in addition to terminal oxidation. The paper deals with work on light-driven transport in H. halobium with cell envelope vesicles. The discussion covers light-driven movements of H(+), Na(+), and K(+); light-driven amino acid transport; and apparent allosteric control of amino acid transport. The scheme of energy coupling in H. halobium vesicles appears simple, its quantitative details are quite complex and reveal regulatory phenomena. More knowledge is required of the way the coupling components are regulated by the ion gradients present.
A study of optical design of power-saving backlight module with external illuminance
NASA Astrophysics Data System (ADS)
Fang, Yi-Chin; Tzeng, Yih-Fong
2014-05-01
In backlight modules, the light guide plate (LGP) is a key component for performance and also facilitates access to develop LGPs on its own. In this research, we propose a newly developed method: LEDs with freeform as a lighting source, are employed to integrate and manipulate the specially designed and optimized 3D-like pattern distribution of the micro features in order to obtain the required optical characteristics at maximal performance. In this research propose the concept of Light Guide Film(LGF) at the back side of Back Light Unit(BLU). This new design may induce the exterior light ,then improve the power-saving of existent BLU. Two design models are reseated: One is design for 14 inch LCD monitor of notebook computer, which might improve 21% compared to traditional one. Another is designed for 3.5 inch LCD for mobile phone display ,which might improve 15% compared to traditional one.
Controlling the spectrum of photons generated on a silicon nanophotonic chip
Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan
2014-01-01
Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range. PMID:25410792
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
Christa, Gregor; Wescott, Lily; Schäberle, Till F; König, Gabriele M; Wägele, Heike
2013-02-01
The sacoglossan sea slug, Plakobranchus ocellatus, is a so-called long-term retention form that incorporates chloroplasts for several months and thus is able to starve while maintaining photosynthetic activity. Little is known regarding the taxonomy and food sources of this sacoglossan, but it is suggested that P. ocellatus is a species complex and feeds on a broad variety of Ulvophyceae. In particular, we analysed specimens from the Philippines and starved them under various light conditions (high light, low light and darkness) and identified the species of algal food sources depending on starvation time and light treatment by means of DNA-barcoding using for the first time the combination of two algal chloroplast markers, rbcL and tufA. Comparison of available CO1 and 16S sequences of specimens from various localities indicate a species complex with likely four distinct clades, but food analyses do not indicate an ecological separation of the investigated clades into differing foraging strategies. The combined results from both algal markers suggest that, in general, P. ocellatus has a broad food spectrum, including members of the genera Halimeda, Caulerpa, Udotea, Acetabularia and further unidentified algae, with an emphasis on H. macroloba. Independent of the duration of starvation and light exposure, this algal species and a further unidentified Halimeda species seem to be the main food source of P. ocellatus from the Philippines. It is shown here that at least two (or possibly three) barcode markers are required to cover the entire food spectrum in future analyses of Sacoglossa.
NASA Astrophysics Data System (ADS)
Lee, Neam Heng; Swamy, Varghese; Ramakrishnan, Narayanan
2016-01-01
Solid-state technology has enabled the use of light-emitting diodes (LEDs) in lithography systems due to their low cost, low power requirement, and higher efficiency relative to the traditional mercury lamp. Uniform irradiance distribution is essential for photolithography to ensure the critical dimension (CD) of the feature fabricated. However, light illuminated from arrays of LEDs can have nonuniform irradiance distribution, which can be a problem when using LED arrays as a source to batch-fabricate multiple devices on a large wafer piece. In this study, the irradiance distribution of an UV LED array was analyzed, and the separation distance between light source and mask optimized to obtain maximum irradiance uniformity without the use of a complex lens. Further, employing a diffuser glass enhanced the fabrication process and the CD loss was minimized to an average of 300 nm. To assess the performance of the proposed technology, batch fabrication of surface acoustic wave devices on lithium niobate substrate was carried out, and all the devices exhibited identical insertion loss of -18 dB at a resonance frequency of 39.33 MHz. The proposed low-cost UV lithography setup can be adapted in academic laboratories for research and teaching on microdevices.
Maire, E; Lelièvre, E; Brau, D; Lyons, A; Woodward, M; Fafeur, V; Vandenbunder, B
2000-04-10
We have developed an approach to study in single living epithelial cells both cell migration and transcriptional activation, which was evidenced by the detection of luminescence emission from cells transfected with luciferase reporter vectors. The image acquisition chain consists of an epifluorescence inverted microscope, connected to an ultralow-light-level photon-counting camera and an image-acquisition card associated to specialized image analysis software running on a PC computer. Using a simple method based on a thin calibrated light source, the image acquisition chain has been optimized following comparisons of the performance of microscopy objectives and photon-counting cameras designed to observe luminescence. This setup allows us to measure by image analysis the luminescent light emitted by individual cells stably expressing a luciferase reporter vector. The sensitivity of the camera was adjusted to a high value, which required the use of a segmentation algorithm to eliminate the background noise. Following mathematical morphology treatments, kinetic changes of luminescent sources were analyzed and then correlated with the distance and speed of migration. Our results highlight the usefulness of our image acquisition chain and mathematical morphology software to quantify the kinetics of luminescence changes in migrating cells.
An extraocular non-invasive transscleral LED-endoilluminator for eye speculum integration.
Kölbl, Philipp Simon; Lindner, Christoph; Lingenfelder, Christian; Deuchler, Svenja; Singh, Pankaj; Koch, Frank; Hessling, Martin
2015-09-01
Conventional chandelier-endoilluminators used for pars-plana vitrectomy consist of a light-emitting tip attached to an optical fibre. The tip requires introduction into the ocular space through an incision. To achieve complete illumination of the intraocular space, the introduction of more than just one tip is sometimes necessary. An extraocular vitreoretinal LED-endoilluminator discussed in this paper represents a new approach to illuminate the intraocular space. The light source is integrated into a speculum and firmly apposed to the sclera. This approach offers the advantage of effectively illuminating the interior of the eye even though the procedure is non-invasive. Furthermore, this approach significantly reduces the risk of damage to the retina by phototoxic effects. A round white LED was used as a light source. By integrating the light source into a speculum, the LED was firmly held against the sclera. Thus, the ocular space was illuminated transsclerally. As a result, indirect uniform illumination of the complete intraocular space was achieved. The prototype was developed considering the relevant international standards. Porcine eyes were used because their properties are similar to those of human eyes. Porcine eyes could be acceptably illuminated with the selected LED. The LED-endoilluminator conforms with international standards for endoillumination. Thus, possible photochemical and thermal risks are considered and reduced to a minimum. A novel LED-endoilluminator which can be attached to a speculum was developed. The system does not need any connection to an external light source and, consequently, also avoids usage of an optical fibre. Regular and uniform illumination of the intraocular space was achieved by transmitted and scattered visible irradiation, avoiding an incision. The duration of potential light exposure, compared to existing illumination systems, can be significantly increased. This is also true when the illuminator is not directly placed over the pars-plana and the distance to the retina is reduced. Only a part of the light reaches the retina and the fraction of short wavelength becomes very small. Increased safety of the system results from now being able to increase the exposure time and reduce phototoxic stress to the retina.
A compact high brightness laser synchrotron light source for medical applications
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhisa
1999-07-01
The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.
NASA Technical Reports Server (NTRS)
1993-01-01
Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.
NASA Technical Reports Server (NTRS)
Ryan, Robert; Underwood, Lauren; Holekamp, Kara; May, George; Spiering, Bruce; Davis, Bruce
2011-01-01
This technology exploits the organic decomposition capability and hydrophilic properties of the photocatalytic material titanium dioxide (TiO2), a nontoxic and non-hazardous substance, to address contamination and biofouling issues in field-deployed optical sensor systems. Specifically, this technology incorporates TiO2 coatings and materials applied to, or integrated as a part of, the optical surfaces of sensors and calibration sources, including lenses, windows, and mirrors that are used in remote, unattended, ground-based (land or maritime) optical sensor systems. Current methods used to address contamination or biofouling of these optical surfaces in deployed systems are costly, toxic, labor intensive, and non-preventative. By implementing this novel technology, many of these negative aspects can be reduced. The functionality of this innovative self-cleaning solution to address the problem of contamination or biofouling depends on the availability of a sufficient light source with the appropriate spectral properties, which can be attained naturally via sunlight or supplemented using artificial illumination such as UV LEDs (light emitting diodes). In land-based or above-water systems, the TiO2 optical surface is exposed to sunlight, which catalyzes the photocatalytic reaction, facilitating both the decomposition of inorganic and organic compounds, and the activation of superhydrophilic properties. Since underwater optical surfaces are submerged and have limited sunlight exposure, supplementary UV light sources would be required to activate the TiO2 on these optical surfaces. Nighttime operation of land-based or above-water systems would require this addition as well. For most superhydrophilic self-cleaning purposes, a rainwater wash will suffice; however, for some applications an attached rainwater collector/ dispenser or other fresh water dispensing system may be required to wash the optical surface and initiate the removal of contaminates. Deployment of this non-toxic,non-hazardous-technology will take advantage of environmental elements (i.e. rain and sunlight), increase the longevity of unattended optical systems, increase the amount of time between required maintenance, and improve the long-term accuracy of sensor measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riza, Nabeel Agha; Perez, Frank
A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector tomore » calculate a temperature of the device.« less
Illumination control apparatus for compensating solar light
NASA Technical Reports Server (NTRS)
Owens, L. J. (Inventor)
1978-01-01
An illumination control apparatus is presented for supplementing light from solar radiation with light from an artificial light source to compensate for periods of insufficient levels of solar light. The apparatus maintains a desired illumination level within an interior space comprising an artificial light source connected to an electrical power source with a switch means for selectively energizing said light source. An actuator means for controlling the on-off operation of the switch means is connected to a light sensor which responses to the illumination level of the interior space. A limit switch carried adjacent to the actuator limits the movement of the actuator within a predetermined range so as to prevent further movement thereof during detection of erroneous illumination conditions.
Deciphering Periodic Methanol Masers
NASA Astrophysics Data System (ADS)
Stecklum, Bringfried; Caratti o Garatti, Alessio; Henning, Thomas; Hodapp, Klaus; Hopp, Ulrich; Kraus, Alex; Linz, Hendrik; Sanna, Alberto; Sobolev, Andrej; Wolf, Verena
2018-05-01
Impressive progress has been made in recent years on massive star formation, yet the involved high optical depths even at submm/mm wavelengths make it difficult to reveal its details. Recently, accretion bursts of massive YSOs have been identified to cause flares of Class II methanol masers (methanol masers for short) due to enhanced mid-IR pumping. This opens a new window to protostellar accretion variability, and implies that periodic methanol masers hint at cyclic accretion. Pinning down the cause of the periodicity requires joint IR and radio monitoring. We derived the first IR light curve of a periodic maser host from NEOWISE data. The source, G107.298+5.639, is an intermediate-mass YSO hosting methanol and water masers which flare every 34.5 days. Our recent joint K-band and radio observations yielded first but marginal evidence for a phase lag between the rise of IR and maser emission, respectively, and revealed that both NEOWISE and K-band light curves are strongly affected by the light echo from the ambient dust. Both the superior resolution of IRAC over NEOWISE and the longer wavelengths compared to our ground-based imaging are required to inhibit the distractive contamination by the light echo. Thus, we ask for IRAC monitoring of G107 to cover one flare cycle, in tandem with 100-m Effelsberg and 2-m Wendelstein radio and NIR observations to obtain the first high-quality synoptic measurements of this kind of sources. The IR-maser phase lag, the intrinsic shape of the IR light curves and their possible color variation during the cycle allow us to constrain models for the periodic maser excitation. Since methanol masers are signposts of intermediate-mass and massive YSOs, deciphering their variability offers a clue to the dynamics of the accretion-mediated growth of massive stars and their feedback onto the immediate natal environment. The Spitzer light curve of such a maser-hosting YSO would be a legacy science product of the mission.
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, Vasily; Hall, Gregory
Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
Goncharov, Vasily; Hall, Gregory
2016-08-25
Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less
Uniformity of LED light illumination in application to direct imaging lithography
NASA Astrophysics Data System (ADS)
Huang, Ting-Ming; Chang, Shenq-Tsong; Tsay, Ho-Lin; Hsu, Ming-Ying; Chen, Fong-Zhi
2016-09-01
Direct imaging has widely applied in lithography for a long time because of its simplicity and easy-maintenance. Although this method has limitation of lithography resolution, it is still adopted in industries. Uniformity of UV irradiance for a designed area is an important requirement. While mercury lamps were used as the light source in the early stage, LEDs have drawn a lot of attention for consideration from several aspects. Although LED has better and better performance, arrays of LEDs are required to obtain desired irradiance because of limitation of brightness for a single LED. Several effects are considered that affect the uniformity of UV irradiance such as alignment of optics, temperature of each LED, performance of each LED due to production uniformity, and pointing of LED module. Effects of these factors are considered to study the uniformity of LED Light Illumination. Numerical analysis is performed by assuming a serious of control factors to have a better understanding of each factor.
Frank, Alan M.; Edwards, William R.
1983-01-01
A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.
Photoresponse in La0.9Hf0.1MnO3/0.05wt%Nb-doped SrTiO3 heteroepitaxial junctions
NASA Astrophysics Data System (ADS)
Qi, Yaping; Ni, Hao; Zheng, Ming; Zeng, Jiali; Jiang, Yucheng; Gao, Ju
2018-05-01
Excellent photo detectors need to have the rapid response and good repeatability from the requirement of industrial applications. In this paper, transport behavior and opto-response of heterostructures made with La0.9Hf0.1MnO3 and 0.05wt%Nb-doped SrTiO3 were investigated. The heterojunctions exhibited an excellent rectifying feature with very low leakage in a broad temperature region (from 40 to 300 K). These thin films presented persistent and stable photovoltages upon light illumination. Rapid shift between small and large voltages corresponding to "light OFF" and "light ON" states, respectively, was observed, demonstrating reliable photo detection behavior. A semiconductor laser with a wavelength of 650 nm was used as the light source. It is also noted that the observed photovoltages are strongly determined by light intensity. The injection of photoexcited charge carriers (electrons) could be responsible for the appearance of the observed opto-response. Such manipulative features by light irradiation exhibit great potential for light detectors for visible light.
White-Light Emission from Layered Halide Perovskites.
Smith, Matthew D; Karunadasa, Hemamala I
2018-03-20
With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the exciton couples strongly to the lattice, creating transient elastic lattice distortions that can be viewed as "excited-state defects". These deformations stabilize the exciton affording a broad emission with a large Stokes shift. Although material defects very likely contribute to the emission width, our mechanistic studies suggest that the emission mostly arises from the bulk material. Ultrafast spectroscopic measurements support self-trapping, with new, transient, electronic states appearing upon photoexcitation. Importantly, the broad emission appears common to layered Pb-Br and Pb-Cl perovskites, albeit with a strong temperature dependence. Although the emission is attributed to light-induced defects, it still reflects changes in the crystal structure. We find that greater out-of-plane octahedral tilting increases the propensity for the broad emission, enabling synthetic control over the broad emission. Many of these perovskites have color rendering abilities that exceed commercial requirements and mixing halides affords both "warm" and "cold" white light. The most efficient white-light-emitting perovskite has a quantum efficiency of 9%. Improving this value will make these phosphors attractive for solid-state lighting, particularly as large-area coatings that can be deposited inexpensively. The emission mechanism can also be extended to other low-dimensional systems. We hope this Account aids in expanding the phase space of white-light emitters and controlling their exciton dynamics by the synthetic, spectroscopic, theoretical, and engineering communities.
Collimating lens for light-emitting-diode light source based on non-imaging optics.
Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian
2012-04-10
A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.
NASA Technical Reports Server (NTRS)
Clark, Toni A.
2014-01-01
In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed Extra Vehicular Activities are mandatory to ensure safety to the crew and all others involved. Innovation in testing techniques is important as well. The advent of Solid State Lighting technology and the lack of stable national and international standards for its implementation pose new challenges on how to design, test and verify individual light fixtures and the environment that uses them. The ISS will soon be replacing its internal fluorescent lighting system to a solid state LED system. The Solid State Lighting Assembly will be used not only for general lighting, but also as a medical countermeasure to control the circadian rhythm of the crew. The new light source has performance criteria very specific to its spectral fingerprint, creating new challenges that were originally not as significant during the original design of the ISS. This presentation will showcase findings and toolsets our team is using to assist in the planning of tasks, and design of operational lighting environments on the International Space Station.
Evaluation of OLED and edge-lit LED lighting panels
NASA Astrophysics Data System (ADS)
Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Freyssinier, Jean Paul
2016-09-01
Solid-state lighting (SSL) offers a new technology platform for lighting designers and end-users to illuminate spaces with low energy demand. Two types of SSL sources include organic light-emitting diodes (OLEDs) and light-emitting diodes (LEDs). OLED is an area light source, and its primary competing technology is the edge-lit LED panel. Generally, both of these technologies are considered similar in shape and appearance, but there is little understanding of how people perceive discomfort glare from large area light sources. The objective of this study was to evaluate discomfort glare for the two lighting technologies under similar operating conditions by gathering observers' reactions. The human factors study results showed no statistically significant difference in human response to discomfort glare between OLED and edge-lit LED panels when the two light sources produced the same lighting stimulus. This means both technologies appeared equally glary beyond a certain luminance.
Optical nulling apparatus and method for testing an optical surface
NASA Technical Reports Server (NTRS)
Olczak, Eugene (Inventor); Hannon, John J. (Inventor); Dey, Thomas W. (Inventor); Jensen, Arthur E. (Inventor)
2008-01-01
An optical nulling apparatus for testing an optical surface includes an aspheric mirror having a reflecting surface for imaging light near or onto the optical surface under test, where the aspheric mirror is configured to reduce spherical aberration of the optical surface under test. The apparatus includes a light source for emitting light toward the aspheric mirror, the light source longitudinally aligned with the aspheric mirror and the optical surface under test. The aspheric mirror is disposed between the light source and the optical surface under test, and the emitted light is reflected off the reflecting surface of the aspheric mirror and imaged near or onto the optical surface under test. An optical measuring device is disposed between the light source and the aspheric mirror, where light reflected from the optical surface under test enters the optical measuring device. An imaging mirror is disposed longitudinally between the light source and the aspheric mirror, and the imaging mirror is configured to again reflect light, which is first reflected from the reflecting surface of the aspheric mirror, onto the optical surface under test.
Flicker Vision of Selected Light Sources
NASA Astrophysics Data System (ADS)
Otomański, Przemysław; Wiczyński, Grzegorz; Zając, Bartosz
2017-10-01
The results of the laboratory research concerning a dependence of flicker vision on voltage fluctuations are presented in the paper. The research was realized on a designed measuring stand, which included an examined light source, a voltage generator with amplitude modulation supplying the light source and a positioning system of the observer with respect to the observed surface. In this research, the following light sources were used: one incandescent lamp and four LED luminaires by different producers. The research results formulate a conclusion concerning the description of the influence of voltage fluctuations on flicker viewing for selected light sources. The research results indicate that LED luminaires are less susceptible to voltage fluctuations than incandescent bulbs and that flicker vision strongly depends on the type of LED source.
Armbruster, Ute; Correa Galvis, Viviana; Kunz, Hans-Henning; Strand, Deserah D
2017-06-01
Plants use sunlight as their primary energy source. During photosynthesis, absorbed light energy generates reducing power by driving electron transfer reactions. These are coupled to the transfer of protons into the thylakoid lumen, generating a proton motive force (pmf) required for ATP synthesis. Sudden alterations in light availability have to be met by regulatory mechanisms to avoid the over-accumulation of reactive intermediates and maximize energy efficiency. Here, the acidification of the lumen, as an intermediate product of photosynthesis, plays an important role by regulating photosynthesis in response to excitation energy levels. Recent findings reveal pmf regulation and the modulation of its composition as key determinants for efficient photosynthesis, plant growth, and survival in fluctuating light environments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagai, Moeto; Oguri, Michihito; Shibata, Takayuki
2015-06-01
We report a model of a light-controlled microvalve driven by Volvox and characterization of Volvox as a movable microvalve element in a multilayer microfluidic device for development of the valve. First, a three-layer microfluidic device having a single through-hole was fabricated by a replica molding process. The fabricated devices met the requirements for experiments using Volvox. Second, we used the phototactic behavior of V. carteri and controlled its motions in a microchannel by illuminating light. V. carteri migrated to the light source in the channel. Third, a colony of V. carteri was placed on a microhole, and the colony was found to stop the flow compared to the flow without Volvox on the hole. The integration of all of the obtained findings is expected to lead to the fabrication of the proposed microvalve.
NASA Astrophysics Data System (ADS)
Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Optimal integration of daylighting and electric lighting systems using non-imaging optics
NASA Astrophysics Data System (ADS)
Scartezzini, J.-L.; Linhart, F.; Kaegi-Kolisnychenko, E.
2007-09-01
Electric lighting is responsible for a significant fraction of electricity consumption within non-residential buildings. Making daylight more available in office and commercial buildings can lead as a consequence to important electricity savings, as well as to the improvement of occupants' visual performance and wellbeing. Over the last decades, daylighting technologies have been developed for that purpose, some of them having proven to be highly efficient such as anidolic daylighting systems. Based on non-imaging optics these optical devices were designed to achieve an efficient collection and redistribution of daylight within deep office rooms. However in order to benefit from the substantial daylight provision obtained through these systems and convert it into effective electricity savings, novel electric lighting strategies are required. An optimal integration of high efficacy light sources and efficient luminaries based on non-imaging optics with anidolic daylighting systems can lead to such novel strategies. Starting from the experience gained through the development of an Anidolic Integrated Ceiling (AIC), this paper presents an optimal integrated daylighting and electric lighting system. Computer simulations based on ray-tracing techniques were used to achieve the integration of 36W fluorescent tubes and non-imaging reflectors with an advanced daylighting system. Lighting power densities lower than 4 W/m2 can be achieved in this way within the corresponding office room. On-site monitoring of an integrated daylighting and electric lighting system carried out on a solar experimental building confirmed the energy and visual performance of such a system: it showed that low lighting power densities can be achieved by combining an anidolic daylighting system with very efficient electric light sources and luminaries.
Monolithic LED arrays, next generation smart lighting sources
NASA Astrophysics Data System (ADS)
Lagrange, Alexandre; Bono, Hubert; Templier, François
2016-03-01
LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.
High temperature, minimally invasive optical sensing modules
Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA
2008-02-05
A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.
Side-emitting illuminators using LED sources
NASA Astrophysics Data System (ADS)
Zhao, Feng; Van Derlofske, John F.
2003-11-01
This study investigates illuminators composed of light emitting diode (LED) array sources and side-emitting light guides to provide efficient general illumination. Specifically, new geometries are explored to increase the efficiency of current systems while maintaining desired light distribution. LED technology is already successfully applied in many illumination applications, such as traffic signals and liquid crystal display (LCD) backlighting. It provides energy-efficient, small-package, long-life, and color-adjustable illumination. However, the use of LEDs in general illumination is still in its early stages. Current side-emitting systems typically use a light guide with light sources at one end, an end-cap surface at the other end, and light releasing sidewalls. This geometry introduces efficiency loss that can be as high as 40%. The illuminators analyzed in this study use LED array sources along the longitude of a light guide to increase the system efficiency. These new geometries also provide the freedom of elongating the system without sacrificing system efficiency. In addition, alternative geometries can be used to create white light with monochromatic LED sources. As concluded by this study, the side-emitting illuminators using LED sources gives the possibility of an efficient, distribution-controllable linear lighting system.
Heussler, Carina D; Walter, Andreas; Oberkofler, Hannes; Insam, Heribert; Arthofer, Wolfgang; Schlick-Steiner, Birgit C; Steiner, Florian M
2018-01-01
Hermetia illucens (L.), the Black Soldier Fly, has received increased scientific attention for its potential in circular waste management where larvae can serve as feedstuff for livestock and for biodiesel production. The flies occur naturally in (sub)-tropical and warm-temperate climates, and their mating depends on space and sunlight. Small-scale indoor rearing of Black Soldier Flies has been challenging because they react sensitive to artificial light sources and cage sizes, but recent studies have shown that small-scale rearing under artificial light is feasible. Here, we test the influence of three artificial light sources (light-emitting diodes, fluorescent lamps, and halogen lamps) on small-scale indoor rearing. Three experiments were conducted to compare oviposition traits (pre-oviposition period, total oviposition-period, and egg mass per female) and half-life among the three light sources. Oviposition did not differ among the three light sources, but male and female half-life did. Based on the performance of the light-emitting diodes and their outstanding energy efficiency, we recommend this light source for small-scale indoor rearing of Black Soldier Flies.
NASA Astrophysics Data System (ADS)
Taudt, Ch.; Baselt, T.; Nelsen, B.; Assmann, H.; Greiner, A.; Koch, E.; Hartmann, P.
2017-06-01
Within this work an alternative approach to precision surface profilometry based on a low-coherence interferometer is presented. Special emphasis is placed on the characterization of edge effects, which influence the measurement result on sharp edges and steep slopes. In contrast to other works, this examination focuses on the comparison of very broadband light sources such as a supercontinuum white-light source (SC; 380 - 1100 nm) and a laser-driven plasma light source (LDP; 200 - 1100 nm) and their influence on the formation of these effects. The interferometer is equipped with one of these broadband light sources and a defined dispersion over a given spectral range. The spectral width of the light sources in combination with the dispersive element defines the possible measurement range and resolution. Instead of detecting the signals only in a one-dimensional manner, an imaging spectrometer on the basis of a high resolution CMOS-camera is set-up. Through the introduction of a defined dispersion, a controlled phase variation in the spectral domain is created. This phase variation is dependent on the optical path difference between both arms and can therefore be used as a measure for the height of a structure which is present in one arm. The results of measurements on a 100 nm height standard with both selected light sources have been compared. Under consideration of the coherence length of both light sources of 1.58 μm for the SC source and 1.81 m for the LDP source differences could be recorded. Especially at sharp edges, the LDP light source could record height changes with slopes twice as steep as the SC source. Furthermore, it became obvious, that measurements with the SC source tend to show edge effects like batwings due to diffraction. Additional effects on the measured roughness and the flatness of the profile were investigated and discussed.
NASA Astrophysics Data System (ADS)
Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu
2018-06-01
One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.
Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation
NASA Technical Reports Server (NTRS)
Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)
2001-01-01
Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.
Optoelectronic microdevices for combined phototherapy
NASA Astrophysics Data System (ADS)
Zharov, Vladimir P.; Menyaev, Yulian A.; Hamaev, V. A.; Antropov, G. M.; Waner, Milton
2000-03-01
In photomedicine in some of cases radiation delivery to local zones through optical fibers can be changed for the direct placing of tiny optical sources like semiconductor microlasers or light diodes in required zones of ears, nostrils, larynx, nasopharynx cochlea or alimentary tract. Our study accentuates the creation of optoelectronic microdevices for local phototherapy and functional imaging by using reflected light. Phototherapeutic micromodule consist of the light source, microprocessor and miniature optics with different kind of power supply: from autonomous with built-in batteries to remote supply by using pulsed magnetic field and supersmall coils. The developed prototype photomodule has size (phi) 8X16 mm and work duration with built-in battery and light diode up several hours at the average power from several tenths of mW to few mW. Preliminary clinical tests developed physiotherapeutic micrimodules in stomatology for treating the inflammation and in otolaryngology for treating tonsillitis and otitis are presented. The developed implanted electro- optical sources with typical size (phi) 4X0,8 mm and with remote supply were used for optical stimulation of photosensitive retina structure and electrostimulation of visual nerve. In this scheme the superminiature coil with 30 electrical integrated levels was used. Such devices were implanted in eyes of 175 patients with different vision problems during clinical trials in Institute of Eye's Surgery in Moscow. For functional imaging of skin layered structure LED arrays coupled photodiodes arrays were developed. The possibilities of this device for study drug diffusion and visualization small veins are discussed.
Frank, A.M.; Edwards, W.R.
1983-10-11
A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.
Frank, A.M.; Edwards, W.R.
1982-03-23
A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.
... can be exacerbated by light sources such as computer screens or fluorescent lights. Use a flicker-free ... cubicle shield Allow frequent breaks from tasks involving computer Provide alternative light sources: Replace fluorescent lights with ...
NASA Astrophysics Data System (ADS)
Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young
2016-11-01
Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.
Doehlert experimental design applied to optimization of light emitting textile structures
NASA Astrophysics Data System (ADS)
Oguz, Yesim; Cochrane, Cedric; Koncar, Vladan; Mordon, Serge R.
2016-07-01
A light emitting fabric (LEF) has been developed for photodynamic therapy (PDT) for the treatment of dermatologic diseases such as Actinic Keratosis (AK). A successful PDT requires homogenous and reproducible light with controlled power and wavelength on the treated skin area. Due to the shape of the human body, traditional PDT with external light sources is unable to deliver homogenous light everywhere on the skin (head vertex, hand, etc.). For better light delivery homogeneity, plastic optical fibers (POFs) have been woven in textile in order to emit laterally the injected light. The previous studies confirmed that the light power could be locally controlled by modifying the radius of POF macro-bendings within the textile structure. The objective of this study is to optimize the distribution of macro-bendings over the LEF surface in order to increase the light intensity (mW/cm2), and to guarantee the best possible light deliver homogeneity over the LEF which are often contradictory. Fifteen experiments have been carried out with Doehlert experimental design involving Response Surface Methodology (RSM). The proposed models are fitted to the experimental data to enable the optimal set up of the warp yarns tensions.
Optical motion control of maglev graphite.
Kobayashi, Masayuki; Abe, Jiro
2012-12-26
Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.
Modelling of a laser-pumped light source for endoscopic surgery
NASA Astrophysics Data System (ADS)
Nadeau, Valerie J.; Elson, Daniel S.; Hanna, George B.; Neil, Mark A. A.
2008-09-01
A white light source, based on illumination of a yellow phosphor with a fibre-coupled blue-violet diode laser, has been designed and built for use in endoscopic surgery. This narrow light probe can be integrated into a standard laparoscope or inserted into the patient separately via a needle. We present a Monte Carlo model of light scattering and phosphorescence within the phosphor/silicone matrix at the probe tip, and measurements of the colour, intensity, and uniformity of the illumination. Images obtained under illumination with this light source are also presented, demonstrating the improvement in illumination quality over existing endoscopic light sources. This new approach to endoscopic lighting has the advantages of compact design, improved ergonomics, and more uniform illumination in comparison with current technologies.
Mercury free microscopy: an opportunity for core facility directors.
Baird, T Regan; Kaufman, Daniel; Brown, Claire M
2014-07-01
Mercury Free Microscopy (MFM) is a new movement that encourages microscope owners to choose modern mercury free light sources to replace more traditional mercury based arc lamps. Microscope performance is enhanced with new solid state technologies because they offer a more stable light intensity output and have a more uniform light output across the visible spectrum. Solid state sources not only eliminate mercury but also eliminate the cost of consumable bulbs (lifetime ∼200 hours), use less energy, reduce the instrument down time when bulbs fail and reduce the staff time required to replace and align bulbs. With lifetimes on the order of tens of thousands of hours, solid state replacements can pay for themselves over their lifetime with the omission of consumable, staff (no need to replace and align bulbs) and energy costs. Solid state sources are also sustainable and comply with institutional and government body mandates to reduce energy consumption, carbon footprints and hazardous waste. MFM can be used as a mechanism to access institutional financial resources for sustainable technology through a variety of stakeholders to defray the cost to microscope owners for the initial purchase of solid state sources or the replacement cost of mercury based sources. Core facility managers can take a lead in this area as "green" ambassadors for their institution by championing a local MFM program that will save their institution money and energy and eliminate mercury from the waste stream. Managers can leverage MFM to increase the visibility of their facility, their impact within the institution, and as a vital educational resource for scientific and administrative consultation.
NASA Astrophysics Data System (ADS)
Labib, Shady R.; Elsayed, Ahmed A.; Sabry, Yasser M.; Khalil, Diaa
2018-02-01
There is a growing number of spectroscopy applications in the near-infrared (NIR) range including gas sensing, food analysis, pharmaceutical and industrial applications that requires highly efficient, more compact and low-cost miniaturized spectrometers. One of the key components for such systems is the wideband light source that can be fabricated using Silicon technology and hence integrated with other components on the same chip. In this work, we report a ring-patterned plasmonic photonic crystal (PC) thermal light source for miniaturized near-infrared spectrometers. The design is based on silicon and tuned to achieve wavelength selectivity in the emitted spectrum. The design is optimized by using Rigorous Coupled-Wave Analysis (RCWA) simulation, which is used to compute the power reflectance and transmittance that are used to predict the emissivity of the structure. The design consists of a PC of silicon rings coated with platinum. The period of the structure is about 2 μm and the silicon is highly-doped with n-type doping level in the order of 1019-1020 cm-3 to enhance the free-carrier absorption. The ring etching depth, diameter and shell thickness are optimized to increase its emissivity within a specific wavelength range of interest. The simulation results show an emissivity exceeding 0.9 in the NIR range up to 2.5 μm, while the emissivity is decreased significantly for longer wavelengths suppressing the emission out of the range of interest, and hence increasing the efficiency for the source. The reported results open the door for black body radiation engineering in integrated silicon sources for spectrometer miniaturization.
Method for transporting impellent gases
NASA Technical Reports Server (NTRS)
Papst, H.
1975-01-01
The described system DAL comprises a method and a device for transportation of buoyant impellent gases, without the need for expensive pipes and liquid tankers. The gas is self air-lifted from its source to a consignment point by means of voluminous, light, hollow bodies. Upon release of the gas at the consignment point, the bodies are filled with another cheap buoyant gas (steam or heated air) for the return trip to the source. In both directions substantial quantities of supplementary freight goods can be transported. Requirements and advantages are presented.
Removal of Tin from Extreme Ultraviolet Collector Optics by an In-Situ Hydrogen Plasma
NASA Astrophysics Data System (ADS)
Elg, Daniel Tyler
Throughout the 1980s and 1990s, as the semiconductor industry upheld Moore's Law and continuously shrank device feature sizes, the wavelength of the lithography source remained at or below the resolution limit of the minimum feature size. Since 2001, however, the light source has been the 193nm ArF excimer laser. While the industry has managed to keep up with Moore's Law, shrinking feature sizes without shrinking the lithographic wavelength has required extra innovations and steps that increase fabrication time, cost, and error. These innovations include immersion lithography and double patterning. Currently, the industry is at the 14 nm technology node. Thus, the minimum feature size is an order of magnitude below the exposure wavelength. For the 10 nm node, triple and quadruple patterning have been proposed, causing potentially even more cost, fabrication time, and error. Such a trend cannot continue indefinitely in an economic fashion, and it is desirable to decrease the wavelength of the lithography sources. Thus, much research has been invested in extreme ultraviolet lithography (EUVL), which uses 13.5 nm light. While much progress has been made in recent years, some challenges must still be solved in order to yield a throughput high enough for EUVL to be commercially viable for high-volume manufacturing (HVM). One of these problems is collector contamination. Due to the 92 eV energy of a 13.5 nm photon, EUV light must be made by a plasma, rather than by a laser. Specifically, the industrially-favored EUV source topology is to irradiate a droplet of molten Sn with a laser, creating a dense, hot laser-produced plasma (LPP) and ionizing the Sn to (on average) the +10 state. Additionally, no materials are known to easily transmit EUV. All EUV light must be collected by a collector optic mirror, which cannot be guarded by a window. The plasmas used in EUV lithography sources expel Sn ions and neutrals, which degrade the quality of collector optics. The mitigation of this debris is one of the main problems facing potential manufacturers of EUV sources. which can damage the collector optic in three ways: sputtering, implantation, and deposition. The first two damage processes are irreversible and are caused by the high energies (1-10 keV) of the ion debris. Debris mitigation methods have largely managed to reduce this problem by using collisions with H2 buffer gas to slow down the energetic ions. However, deposition can take place at all ion and neutral energies, and no mitigation method can deterministically deflect all neutrals away from the collector. Thus, deposition still takes place, lowering the collector reflectivity and increasing the time needed to deliver enough EUV power to pattern a wafer. Additionally, even once EUV reaches HVM insertion, source power will need to be continually increased as feature sizes continue to shrink; this increase in source power may potentially come at a cost of increased debris. Thus, debris mitigation solutions that work for the initial generation of commercial EUVL systems may not be adequate for future generations. An in-situ technology to clean collector optics without source downtime is required. which will require an in-situ technology to clean collector optics. The novel cleaning solution described in this work is to create the radicals directly on the collector surface by using the collector itself to drive a capacitively-coupled hydrogen plasma. This allows for radical creation at the desired location without requiring any delivery system and without requiring any source downtime. Additionally, the plasma provides energetic radicals that aid in the etching process. This work will focus on two areas. First, it will focus on experimental collector cleaning and EUV reflectivity restoration. Second, it will focus on developing an understanding of the fundamental processes governing Sn removal. It will be shown that this plasma technique can clean an entire collector optic and restore EUV reflectivity to MLMs without damaging them. Additionally, it will be shown that, within the parameter space explored, the limiting factor in Sn etching is not hydrogen radical flux or SnH4 decomposition but ion energy flux. This will be backed up by experimental measurements, as well as a plasma chemistry model of the radical density and a 3D model of SnH4 transport and redeposition.
Microwave-driven ultraviolet light sources
Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.
2002-01-29
A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.
MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A
2004-11-01
At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.
NASA Astrophysics Data System (ADS)
Kenar, Necla; Lim, H. S.; Mirzaaghasi, Amin
2014-02-01
New design of the excitation light source that can stably generate light with center wavelengths of 450nm, 530nm, 632.8nm and white light for auto-fluorescence(AF) and photodynamic diagnosis(PDD) of cancer in clinics in a single system is presented in this study. The light source consists of Xenon Lamp (300W), light guide module including motorize filter wheel equipped with optical filters with corresponding to wavelength bands, servo motor, motorize iris, a cooling system, power supply and optical transmission part for the output light. The transmission part of the light source was developed to collimate the light with desired wavelength into input of fiber optic. Output powers are obtained average 99.91 mW for 450+/-40 nm, 111.01 mW for 530+/-10nm, and 78.50 mW for 632.8+/-10nm.
High power LED standard light sources for photometric applications
NASA Astrophysics Data System (ADS)
Ivashin, Evgeniy; Ogarev, Sergey; Khlevnoy, Boris; Shirokov, Stanislav; Dobroserdov, Dmitry; Sapritsky, Victor
2018-02-01
High power LED light sources have been developed as possible new VNIIOFI standard sources for luminous intensity, luminous flux and colour measurements. Stability, repeatability and spatial uniformity of the sources were investigated and demonstrated high accuracy and homogeneity. The paper describes different tests on one of the manufactured sources. In the future, these LED light sources are planned to be used as standard luminous flux sources to transfer the units of luminous intensity and luminous flux from gonio-spectrometer to sphere-spectrometer.
Study of noninvasive detection of latent fingerprints using UV laser
NASA Astrophysics Data System (ADS)
Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang; Mao, Lin-jie; Chen, Jing-rong
2011-06-01
Latent fingerprints present a considerable challenge in forensics, and noninvasive procedure that captures a digital image of the latent fingerprints is significant in the field of criminal investigation. The capability of photography technologies using 266nm UV Nd:YAG solid state laser as excitation light source to provide detailed images of unprocessed latent fingerprints is demonstrated. Unprocessed latent fingerprints were developed on various non-absorbent and absorbing substrates. According to the special absorption, reflection, scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carbosylic acid salts etc) to the UV light to weaken or eliminate the background disturbance and increase the brightness contrast of fingerprints with the background, and using 266nm UV laser as excitation light source, fresh and old latent fingerprints on the surface of four types of non-absorbent objects as magazine cover, glass, back of cellphone, wood desktop paintwork and two types of absorbing objects as manila envelope, notebook paper were noninvasive detected and appeared through reflection photography and fluorescence photography technologies, and the results meet the fingerprint identification requirements in forensic science.
Castro, Marcelo C M; Barrett, Toby V; Santos, Walter S; Abad-Franch, Fernando; Rafael, José A
2010-12-01
Adult triatomines occasionally fly into artificially lit premises in Amazonia. This can result in Trypanosoma cruzi transmission to humans either by direct contact or via foodstuff contamination, but the frequency of such behaviour has not been quantified. To address this issue, a light-trap was set 45 m above ground in primary rainforest near Manaus, state of Amazonas, Brazil and operated monthly for three consecutive nights over the course of one year (432 trap-hours). The most commonly caught reduviids were triatomines, including 38 Panstrongylus geniculatus, nine Panstrongylus lignarius, three Panstrongylus rufotuberculatus, five Rhodnius robustus, two Rhodnius pictipes, one Rhodnius amazonicus and 17 Eratyrus mucronatus. Males were collected more frequently than females. The only month without any catches was May. Attraction of most of the known local T. cruzi vectors to artificial light sources is common and year-round in the Amazon rainforest, implying that they may often invade premises built near forest edges and thus become involved in disease transmission. Consequently, effective Chagas disease prevention in Amazonia will require integrating entomological surveillance with the currently used epidemiological surveillance.
BRDF Calibration of Sintered PTFE in the SWIR
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Butler, James J.
2009-01-01
Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in their pre-flight calibrations and ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Facility at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NEST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. Currently the Diffuser Calibration Facility extended the covered spectral range from 900 nm up to 1.7 microns. The measurements were made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was setup. Broadband light source application is under development. Gray-scale sintered PTFE samples were used at these first trials, illuminated with P and S polarized incident light. The results are discussed and compared to empirically generated BRDF data from simple model based on 8 deg directional/hemispherical measurements.
A wirelessly controlled implantable LED system for deep brain optogenetic stimulation
Rossi, Mark A.; Go, Vinson; Murphy, Tracy; Fu, Quanhai; Morizio, James; Yin, Henry H.
2015-01-01
In recent years optogenetics has rapidly become an essential technique in neuroscience. Its temporal and spatial specificity, combined with efficacy in manipulating neuronal activity, are especially useful in studying the behavior of awake behaving animals. Conventional optogenetics, however, requires the use of lasers and optic fibers, which can place considerable restrictions on behavior. Here we combined a wirelessly controlled interface and small implantable light-emitting diode (LED) that allows flexible and precise placement of light source to illuminate any brain area. We tested this wireless LED system in vivo, in transgenic mice expressing channelrhodopsin-2 in striatonigral neurons expressing D1-like dopamine receptors. In all mice tested, we were able to elicit movements reliably. The frequency of twitches induced by high power stimulation is proportional to the frequency of stimulation. At lower power, contraversive turning was observed. Moreover, the implanted LED remains effective over 50 days after surgery, demonstrating the long-term stability of the light source. Our results show that the wireless LED system can be used to manipulate neural activity chronically in behaving mice without impeding natural movements. PMID:25713516
Fast method of cross-talk effect reduction in biomedical imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Nowakowski, Maciej; Kolenderska, Sylwia M.; Borycki, Dawid; Wojtkowski, Maciej
2016-03-01
Optical imaging of biological samples or living tissue structures requires light delivery to a region of interest and then collection of scattered light or fluorescent light in order to reconstruct an image of the object. When the coherent illumination light enters bulky biological object, each of scattering center (single molecule, group of molecules or other sample feature) acts as a secondary light source. As a result, scattered spherical waves from these secondary sources interact with each other, generating cross-talk noise between optical channels (eigenmodes). The cross-talk effect have serious impact on the performance of the imaging systems. In particular it reduces an ability of optical system to transfer high spatial frequencies thereby reducing its resolution. In this work we present a fast method to eliminate all unwanted waves combination, that overlap at image plane, suppressing recovery of high spatial frequencies by using the spatio-temporal optical coherence manipulation (STOC, [1]). In this method a number of phase mask is introduced to illuminating beam by spatial light modulator in a time of single image acquisition. We use a digital mirror device (DMD) in order to rapid cross-talk noise reduction (up to 22kHz modulation frequency) when imaging living biological cells in vivo by using full-field microscopy setup with double pass arrangement. This, to our best knowledge, has never been shown before. [1] D. Borycki, M. Nowakowski, and M. Wojtkowski, Opt. Lett. 38, 4817 (2013).
Violet Laser Diode Enables Lighting Communication.
Chi, Yu-Chieh; Huang, Yu-Fang; Wu, Tsai-Chen; Tsai, Cheng-Ting; Chen, Li-Yin; Kuo, Hao-Chung; Lin, Gong-Ru
2017-09-05
Violet laser diode (VLD) based white-light source with high color rendering index (CRI) for lighting communication is implemented by covering with Y 3 Al 5 O 12 :Ce 3+ (YAG:Ce) or Lu 3 Al 5 O 12 :Ce 3+ /CaAlSiN 3 :Eu 2+ (LuAG:Ce/CASN:Eu) phosphorous diffuser plates. After passing the beam of VLD biased at 70 mA (~2I th ) through the YAG:Ce phosphorous diffuser, a daylight with a correlated color temperature (CCT) of 5068 K and a CRI of 65 is acquired to provide a forward error correction (FEC) certified data rate of 4.4 Gbit/s. By using the VLD biased at 122 mA (~3.5I th ) to excite the LuAG:Ce/CASN:Eu phosphorous diffuser with 0.85-mm thickness, a warm white-light source with a CCT of 2700 K and a CRI of 87.9 is obtained at a cost of decreasing transmission capacity to 2.4 Gbit/s. Thinning the phosphor thickness to 0.75 mm effectively reduces the required bias current by 32 mA to achieve the same CCT for the delivered white light, which offers an enlarged CRI of 89.1 and an increased data rate of 4.4 Gbit/s. Further enlarging the bias current to 105 mA remains the white-light transmission capacity at 4.4 Gbit/s but reveals an increased CCT of 3023 K and an upgraded CRI of 91.5.
A technique for phase correction in Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.
2018-03-01
Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.
Hartmann, Sébastien; Elsäßer, Wolfgang
2017-01-01
Initially, ghost imaging (GI) was demonstrated with entangled light from parametric down conversion. Later, classical light sources were introduced with the development of thermal light GI concepts. State-of-the-art classical GI light sources rely either on complex combinations of coherent light with spatially randomizing optical elements or on incoherent lamps with monochromating optics, however suffering strong losses of efficiency and directionality. Here, a broad-area superluminescent diode is proposed as a new light source for classical ghost imaging. The coherence behavior of this spectrally broadband emitting opto-electronic light source is investigated in detail. An interferometric two-photon detection technique is exploited in order to resolve the ultra-short correlation timescales. We thereby quantify the coherence time, the photon statistics as well as the number of spatial modes unveiling a complete incoherent light behavior. With a one-dimensional proof-of-principle GI experiment, we introduce these compact emitters to the field which could be beneficial for high-speed GI systems as well as for long range GI sensing in future applications. PMID:28150737
NASA Astrophysics Data System (ADS)
Zemcov, Michael; SPHEREx Science Team
2018-01-01
The near IR extragalactic background light (EBL) encodes the integrated light production over cosmic history, so traces the total emission from all galaxies along the line of sight up to the ancient first-light objects responsible for the epoch of reionization (EOR). The EBL can be constrained through measurements of anisotropies, taking advantage of the fact that extragalactic populations produce fluctuations with distinct spatial and spectral characteristics from local foregrounds. In particular, EBL anisotropies trace the underlying clustering of faint emission sources, such as stars, galaxies and accreting black holes present during the EOR, dwarf galaxies, and intra-halo light (IHL), all of which are components not readily detected in point source surveys. The fluctuation amplitude observed independently by a number of recent measurements exceeds that expected from the large-scale clustering of known galaxy populations, indicating the presence of a large integrated brightness from these faint and diffuse components. Improved large-area measurements covering the entire near-IR are required to constrain the possible models for the history of emission from stars back to the EOR.SPHEREx brings new capabilities to EBL fluctuation measurements, employing 96 spectral channels covering 0.75 to 5 microns with spectral resolving power R = 41 to 135 that enable SPHEREx to carry out a multi-frequency separation of the integrated light from galaxies, IHL, and EOR components using the rich auto- and cross-correlation information available from two 45 square degree surveys of the ecliptic poles. SPHEREx is an ideal intensity mapping machine, and has the sensitivity to disentangle the history of light production associated with EBL fluctuations. SPHEREx will search for an EOR component its to minimum required level through component separation and spectral fitting techniques optimized for the near-IR. In addition to broad-band intensity mapping that enhances and extends the Euclid survey, uniquely SPHEREx will enable tomography of cosmic large scale structure using line tracers such as Lya, Ha, Hb, O[II] and O[III], as highlighted in community workshops and AAS special sessions over the past several years.
Spatial Light Modulators as Optical Crossbar Switches
NASA Technical Reports Server (NTRS)
Juday, Richard
2003-01-01
A proposed method of implementing cross connections in an optical communication network is based on the use of a spatial light modulator (SLM) to form controlled diffraction patterns that connect inputs (light sources) and outputs (light sinks). Sources would typically include optical fibers and/or light-emitting diodes; sinks would typically include optical fibers and/or photodetectors. The sources and/or sinks could be distributed in two dimensions; that is, on planes. Alternatively or in addition, sources and/or sinks could be distributed in three dimensions -- for example, on curved surfaces or in more complex (including random) three-dimensional patterns.
Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light
NASA Astrophysics Data System (ADS)
Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young
2016-07-01
Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications. Electronic supplementary information (ESI) available: FE-SEM image of thiol-acrylate hydrogels; UV/Vis spectra of Ellman's assay; the temperature increase during transdermal photothermal hydrogelation. See DOI: 10.1039/c6nr01956k
Comparative Study of Light Sources for Household
NASA Astrophysics Data System (ADS)
Pawlak, Andrzej; Zalesińska, Małgorzata
2017-03-01
The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular) the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.
Identification of linearised RMS-voltage dip patterns based on clustering in renewable plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Sánchez, Tania; Gómez-Lázaro, Emilio; Muljadi, Edward
Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors' approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simplemore » but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study.« less
Polarization Dependent Whispering Gallery Modes in Microspheres
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)
2016-01-01
A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.
Morelle, Jérôme; Claquin, Pascal
2018-02-23
Diatoms account for about 40% of primary production in highly productive ecosystems. The development of a new generation of fluorometers has made it possible to improve estimation of the electron transport rate from photosystem II, which, when coupled with the carbon incorporation rate enables estimation of the electrons required for carbon fixation. The aim of this study was to investigate the daily dynamics of these electron requirements as a function of the diel light cycle in three relevant diatom species and to apprehend if the method of estimating the electron transport rate can lead to different pictures of the dynamics. The results confirmed the species-dependent capacity for photoacclimation under increasing light levels. Despite daily variations in the photosynthetic parameters, the results of this study underline the low daily variability of the electron requirements estimated using functional absorption of the photosystem II compared to an estimation based on a specific absorption cross section of chlorophyll a. The stability of the electron requirements throughout the day would suggest it is potentially possible to estimate high-frequency primary production by using autonomous variable fluorescence measurements from ships-of-opportunity or moorings, without taking potential daily variation in this parameter into consideration, but this result has to be confirmed on natural phytoplankton assemblages. The results obtained in this study confirm the low electron requirements of diatoms to perform photosynthesis, and suggest a potential additional source of energy for carbon fixation, as recently described in the literature for this class.
Computational imaging of light in flight
NASA Astrophysics Data System (ADS)
Hullin, Matthias B.
2014-10-01
Many computer vision tasks are hindered by image formation itself, a process that is governed by the so-called plenoptic integral. By averaging light falling into the lens over space, angle, wavelength and time, a great deal of information is irreversibly lost. The emerging idea of transient imaging operates on a time resolution fast enough to resolve non-stationary light distributions in real-world scenes. It enables the discrimination of light contributions by the optical path length from light source to receiver, a dimension unavailable in mainstream imaging to date. Until recently, such measurements used to require high-end optical equipment and could only be acquired under extremely restricted lab conditions. To address this challenge, we introduced a family of computational imaging techniques operating on standard time-of-flight image sensors, for the first time allowing the user to "film" light in flight in an affordable, practical and portable way. Just as impulse responses have proven a valuable tool in almost every branch of science and engineering, we expect light-in-flight analysis to impact a wide variety of applications in computer vision and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, Manvendra; Aiken, Allison; Berg, Larry K.
We deployed Aerodyne Research Inc.’s first Cavity Attenuated Phase Shift extinction (CAPS PMex) monitor (built by Aerodyne) that measures light extinction by using a visible-light-emitting diode (LED) as a light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector in Cape Cod in 2012/13 for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Two-Column Aerosol Project (TCAP). The efficacy of this instrument is based on the fact that aerosols are broadband scatterers and absorbers of light. The input LED is square-wave modulated and passedmore » through the sample cell that distorts it due to exponential decay by aerosol light absorption and scattering; this is measured at the detector. The amount of phase shift of the light at the detector is used to determine the light extinction. This extinction measurement provides an absolute value, requiring no calibration. The goal was to compare the CAPS performance with direct measurements of absorption with ARM’s baseline photoacoustic soot spectrometer (PASS-3) and nephelometer instruments to evaluate its performance.« less
Liu, Peng; Zhang, Yaqin; Zheng, Zhenrong; Li, Haifeng; Liu, Xu
2014-06-01
Although the ventilation system is widely employed in the operating theater, a strictly sterile surgical environment still cannot be ensured because of laminar disturbance, which is mainly caused by the surgical lighting system. Abandoning traditional products, we propose an LED surgical lighting system, which can alleviate the laminar disturbance and provide an appropriate lighting condition for surgery. It contains a certain amount of LED lens units, which are embedded in the ceiling and arranged around the air supply smallpox. The LED lens unit integrated with an LED light source and a free-form lens is required to produce a uniform circular illumination with a large tolerance to the change of lighting distance. To achieve such a dedicated lens, two free-form refractive surfaces, which are converted into two ordinary differential equations by the design method presented in this paper, are used to deflect the rays. The results show that the LED surgical lighting system can provide an excellent illumination environment for surgery, and, apparently, the laminar disturbance also can be relieved.
Particle measurement systems and methods
Steele, Paul T [Livermore, CA
2011-10-04
A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.
Using synchrotron light to accelerate EUV resist and mask materials learning
NASA Astrophysics Data System (ADS)
Naulleau, Patrick; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Jones, Gideon; McClinton, Brittany; Miyakawa, Ryan; Mochi, Iacopo; Montgomery, Warren; Rekawa, Seno; Wallow, Tom
2011-03-01
As commercialization of extreme ultraviolet lithography (EUVL) progresses, direct industry activities are being focused on near term concerns. The question of long term extendibility of EUVL, however, remains crucial given the magnitude of the investments yet required to make EUVL a reality. Extendibility questions are best addressed using advanced research tools such as the SEMATECH Berkeley microfield exposure tool (MET) and actinic inspection tool (AIT). Utilizing Lawrence Berkeley National Laboratory's Advanced Light Source facility as the light source, these tools benefit from the unique properties of synchrotron light enabling research at nodes generations ahead of what is possible with commercial tools. The MET for example uses extremely bright undulator radiation to enable a lossless fully programmable coherence illuminator. Using such a system, resolution enhancing illuminations achieving k1 factors of 0.25 can readily be attained. Given the MET numerical aperture of 0.3, this translates to an ultimate resolution capability of 12 nm. Using such methods, the SEMATECH Berkeley MET has demonstrated resolution in resist to 16-nm half pitch and below in an imageable spin-on hard mask. At a half pitch of 16 nm, this material achieves a line-edge roughness of 2 nm with a correlation length of 6 nm. These new results demonstrate that the observed stall in ultimate resolution progress in chemically amplified resists is a materials issue rather than a tool limitation. With a resolution limit of 20-22 nm, the CAR champion from 2008 remains as the highest performing CAR tested to date. To enable continued advanced learning in EUV resists, SEMATECH has initiated a plan to implement a 0.5 NA microfield tool at the Advanced Light Source synchrotron facility. This tool will be capable of printing down to 8-nm half pitch.
RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan
2015-09-01
JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reducemore » the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.« less
Freeform étendue-preserving optics for light and color mixing
NASA Astrophysics Data System (ADS)
Sorgato, Simone; Mohedano, Rubén.; Chaves, Julio; Cvetkovic, Aleksandra; Hernández, Maikel; Benítez, Pablo; Miñano, Juan C.; Thienpont, Hugo; Duerr, Fabian
2015-09-01
Today's SSL illumination market shows a clear trend towards high flux packages with higher efficiency and higher CRI, realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional diffusers cannot be employed without enlarging the exit aperture and reducing brightness (so increasing étendue). Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied. A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its interior and exterior sides was presented in 2012. When placed on top of an inhomogeneous multichip Lambertian LED, this so-called Shell-Mixer creates a homogeneous (both spatially and angularly) virtual source, also Lambertian, where the images of the chips merge. The virtual source is located at the same position with essentially the same size of the original source. The diameter of this optics was 3 times that of the chip-array footprint. In this work, we present a new version of the Shell-Mixer, based on the Edge Ray Principle, where neither the overall shape of the cap nor the surfaces of the lenses are constrained to spheres or rotational Cartesian ovals. This new Shell- Mixer is freeform, only twice as large as the original chip-array and equals the original model in terms of brightness, color uniformity and efficiency.
Micro-Optic Color Separation Technology for Efficient Projection Displays
NASA Technical Reports Server (NTRS)
Gunning, W. J.; Boehmer, E.
1997-01-01
Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.
Investigation on RGB laser source applied to dynamic photoelastic experiment
NASA Astrophysics Data System (ADS)
Li, Songgang; Yang, Guobiao; Zeng, Weiming
2014-06-01
When the elastomer sustains the shock load or the blast load, its internal stress state of every point will change rapidly over time. Dynamic photoelasticity method is an experimental stress analysis method, which researches the dynamic stress and the stress wave propagation. Light source is one of very important device in dynamic photoelastic experiment system, and the RGB laser light source applied in dynamic photoelastic experiment system is innovative and evolutive to the system. RGB laser is synthesized by red laser, green laser and blue laser, either as a single wavelength laser light source, also as synthesized white laser light source. RGB laser as a light source for dynamic photoelastic experiment system, the colored isochromatic can be captured in dynamic photoelastic experiment, and even the black zero-level stripe can be collected, and the isoclinics can also be collected, which conducively analysis and study of transient stress and stress wave propagation. RGB laser is highly stable and continuous output, and its power can be adjusted. The three wavelengths laser can be synthesized by different power ratio. RGB laser light source used in dynamic photoelastic experiment has overcome a number of deficiencies and shortcomings of other light sources, and simplifies dynamic photoelastic experiment, which has achieved good results.
Malone, Joseph D.; El-Haddad, Mohamed T.; Bozic, Ivan; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.
2016-01-01
Scanning laser ophthalmoscopy (SLO) benefits diagnostic imaging and therapeutic guidance by allowing for high-speed en face imaging of retinal structures. When combined with optical coherence tomography (OCT), SLO enables real-time aiming and retinal tracking and provides complementary information for post-acquisition volumetric co-registration, bulk motion compensation, and averaging. However, multimodality SLO-OCT systems generally require dedicated light sources, scanners, relay optics, detectors, and additional digitization and synchronization electronics, which increase system complexity. Here, we present a multimodal ophthalmic imaging system using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) for in vivo human retinal imaging. SESLO reduces the complexity of en face imaging systems by multiplexing spatial positions as a function of wavelength. SESLO image quality benefited from single-mode illumination and multimode collection through a prototype double-clad fiber coupler, which optimized scattered light throughput and reduce speckle contrast while maintaining lateral resolution. Using a shared 1060 nm swept-source, shared scanner and imaging optics, and a shared dual-channel high-speed digitizer, we acquired inherently co-registered en face retinal images and OCT cross-sections simultaneously at 200 frames-per-second. PMID:28101411
FERMI Observations of TeV-Selected Active Galactic Nuclei
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-12-04
Here, we report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the thirdmore » EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Finally, evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.« less
Research on starlight hardware-in-the-loop simulator
NASA Astrophysics Data System (ADS)
Zhang, Ying; Gao, Yang; Qu, Huiyang; Liu, Dongfang; Du, Huijie; Lei, Jie
2016-10-01
The starlight navigation is considered to be one of the most important methods for spacecraft navigation. Starlight simulation system is a high-precision system with large fields of view, designed to test the starlight navigation sensor performance on the ground. A complete hardware-in-the-loop simulation of the system has been built. The starlight simulator is made up of light source, light source controller, light filter, LCD, collimator and control computer. LCD is the key display component of the system, and is installed at the focal point of the collimator. For the LCD cannot emit light itself, so light source and light source power controller is specially designed for the brightness demanded by the LCD. Light filter is designed for the dark background which is also needed in the simulation.
National Synchrotron Light Source
BNL
2017-12-09
A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.
NASA Astrophysics Data System (ADS)
Zeuner, Katharina D.; Paul, Matthias; Lettner, Thomas; Reuterskiöld Hedlund, Carl; Schweickert, Lucas; Steinhauer, Stephan; Yang, Lily; Zichi, Julien; Hammar, Mattias; Jöns, Klaus D.; Zwiller, Val
2018-04-01
The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 μm with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths.
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Kang, Yoojin; Jang, Junwoo
2017-09-01
Color fidelity has been used as one of indices to evaluate the performance of light sources. Since the Color Rendering Index (CRI) was proposed at CIE, many color fidelity metrics have been proposed to increase the accuracy of the metric. This paper focuses on a comparison of the color fidelity metrics in an aspect of accuracy with human visual assessments. To visually evaluate the color fidelity of light sources, we made a simulator that reproduces the color samples under lighting conditions. In this paper, eighteen color samples of the Macbeth color checker under test light sources and reference illuminant for each of them are simulated and displayed on a well-characterized monitor. With only a spectrum set of the test light source and reference illuminant, color samples under any lighting condition can be reproduced. In this paper, the spectrums of the two LED and two OLED light sources that have similar values of CRI are used for the visual assessment. In addition, the results of the visual assessment are compared with the two color fidelity metrics that include CRI and IES TM-30-15 (Rf), proposed by Illuminating Engineering Society (IES) in 2015. Experimental results indicate that Rf outperforms CRI in terms of the correlation with visual assessment.
NASA Astrophysics Data System (ADS)
Kim, Moon S.; Cho, Byoung-Kwan; Yang, Chun-Chieh; Chao, Kaunglin; Lefcourt, Alan M.; Chen, Yud-Ren
2006-10-01
We have developed nondestructive opto-electronic imaging techniques for rapid assessment of safety and wholesomeness of foods. A recently developed fast hyperspectral line-scan imaging system integrated with a commercial apple-sorting machine was evaluated for rapid detection of animal feces matter on apples. Apples obtained from a local orchard were artificially contaminated with cow feces. For the online trial, hyperspectral images with 60 spectral channels, reflectance in the visible to near infrared regions and fluorescence emissions with UV-A excitation, were acquired from apples moving at a processing sorting-line speed of three apples per second. Reflectance and fluorescence imaging required a passive light source, and each method used independent continuous wave (CW) light sources. In this paper, integration of the hyperspectral imaging system with the commercial applesorting machine and preliminary results for detection of fecal contamination on apples, mainly based on the fluorescence method, are presented.
NASA Technical Reports Server (NTRS)
Holley, Daniel C.; Heeke, D.; Mele, G.
1999-01-01
Currently, the light sources most commonly used in animal habitat lighting are cool white fluorescent or incandescent lamps. We evaluated a novel light-emitting diode (LED) light source for use in animal habitat lighting by comparing its effectiveness to cool white fluorescent light (CWF) in suppressing pineal gland melatonin and maintaining normal retinal physiology and morphology in the rat. Results of pineal melatonin suppression experiments showed equal suppression of pineal melatonin concentrations for LED light and CWF light at five different light illuminances (100, 40, 10, 1 and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light when compared to unexposed controls. Retinal physiology was evaluated using electroretinography. Results show no differences in a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histology assessment show no differences in retinal thickness rod outer segment length and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for days. Furthermore, the retinal pigmented epithelium and rod outer segments of all eyes observed were in good condition and of normal thickness. This study indicates that LED light does not cause retinal damage and can suppress pineal melatonin at similar intensities as a conventional CWF light source. These data suggest that LED light sources may be suitable replacements for conventional light sources used in the lighting of rodent vivariums while providing many mechanical and economical advantages.
Hansen, A.D.
1988-01-25
An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.
Study of Selecting on Light Source Used for Micro-algae Cultivation in Space
NASA Astrophysics Data System (ADS)
Ai, Weidang; Ai, Weidang; Guo, Shuang-Sheng; Gao, Feng; Tang, Yong-Kang; Qin, Li-Feng
To select suitable light source for micro-algae cultivation in future space station, the selected Spirulina plastensis(No.7) were cultured under different lightening qualities, including six light sources that were made up of different combinations of red and blue light-emitting diode(LED). The growth, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the experiments, the red light may promote the cumulation of biomass of the Spirulina, and the cumulating rate was the highest under all red light source, but the syntheses of protein, phycobiliprotein, β-carotene, VE and other nutrients needs a certain portion of blue light; yet, the complete blue light condition is not favorable to the growth of Spirulina, and may bring pollution by chlorella and other kinds of micro-algae. It is concluded that the LEDs can be used as the light resource of micro-algae cultivation. The normal growth and development of microalgae need two light sources of both red and blue LEDs. The comprehensive analyses of the various factors that affect the growth of Spirulina, such as nutrition quality and photosynthetic activities, etc., showed that the combination of 80% red and 20% blue LED is the optimum one among those tested combinations. Key word: light-emitting diode; micro-algae; controlled ecological life support system (CELSS); space cultivation
Grossman, Mark W.; George, William A.; Pai, Robert Y.
1985-01-01
A technique for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support.
Updates on the African Synchrotron Light Source (AfLS) Project
NASA Astrophysics Data System (ADS)
Dobbins, Tabbetha; Mtingwa, Sekazi; Wague, Ahmadou; Connell, Simon; Masara, Brian; Ntsoane, Tshepo; Norris, Lawrence; Winick, Herman; Evans-Lutterodt, Kenneth; Hussein, Tarek; Maresha, Feene; McLaughlin, Krystle; Oladijo, Philip; Du Plessis, Esna; Murenzi, Romain; Reed, Kennedy; Sette, Francesco; Werin, Sverker; Dorfan, Jonathan; Yousef, Mohammad
Africa is the only habitable continent without a synchrotron light source. A full steering committee was elected at the African Light Source (AfLS) conference on November 16-20, 2015 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The conference brought together African scientists, policy makers, and stakeholders to discuss a synchrotron light source in Africa. Firm outcomes of the Conference were a set of resolutions and a roadmap. Additionally, a collaborative proposal to promote Advanced Light Sources and crystallographic sciences in targeted regions of the world was submitted by the International Union of Pure and Applied Physics (IUPAP) and the International Union of Crystallography (IUCr) to the International Council for Science (ICSU). www.africanlightsource.org.
Girdling eastern black walnut to increase heartwood width
Larry D. Godsey; W.D. " Dusty" Walter; H.E. " Gene" Garrett
2004-01-01
Eastern black walnut (Juglans nigra L.) has often been planted at spacings that require pre-commercial thinning. These thinnings are deemed pre-commercial due to the small diameter of the trees and the low ratio of dark wood to light wood. As a consequence of size and wood quality, these thinnings are often an expense rather than a source of revenue...
The Determination of Rate-Limiting Steps during Soot Formation
1989-04-27
acceleration in chemistry due to the presence of oxygen . Quantitative prediction of soot production , should it become a reality, will require knowledge of...PAH ..... ... ..................... 7 Fig. 4 1.25% Benzene/1% Oxygen - Light Products ........ .................... 8 Fig. 5 1.25% Benzene/0.3% Oxygen ...Benzene/0.3% Oxygen - PAH Production ....... .................. 11 Fig. 8 Evolution of Closed Ring Aromatics (t(source) = oo) .................... .15 Fig
Conformal Nitrogen-Doped TiO 2 Photocatalytic Coatings for Sunlight-Activated Membranes
Lee, Anna; Libera, Joseph A.; Waldman, Ruben Z.; ...
2017-01-24
Photocatalytic degradation of organic contaminants is enticing for addressing challenging, nontraditional water sources. A novel nitrogen-doping method is utilized to grow conformal titania coatings with visible-light activity on porous membranes. Here, the resulting membranes exhibit effective degradation of model organic species in simulated sunlight while at the same time requiring substantially lower transmembrane pressure than undoped membranes.